mpt3sas: Don't send PHYDISK_HIDDEN RAID action request on SAS2 HBAs
[linux-2.6-block.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
CommitLineData
f92363d1
SR
1/*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
a4ffce0d 6 * Copyright (C) 2012-2014 LSI Corporation
a03bd153
SR
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
f92363d1
SR
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
f92363d1
SR
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/errno.h>
49#include <linux/init.h>
50#include <linux/slab.h>
51#include <linux/types.h>
52#include <linux/pci.h>
53#include <linux/kdev_t.h>
54#include <linux/blkdev.h>
55#include <linux/delay.h>
56#include <linux/interrupt.h>
57#include <linux/dma-mapping.h>
58#include <linux/io.h>
59#include <linux/time.h>
60#include <linux/kthread.h>
61#include <linux/aer.h>
62
63
64#include "mpt3sas_base.h"
65
66static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
67
68
69#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70
71 /* maximum controller queue depth */
72#define MAX_HBA_QUEUE_DEPTH 30000
73#define MAX_CHAIN_DEPTH 100000
74static int max_queue_depth = -1;
75module_param(max_queue_depth, int, 0);
76MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77
78static int max_sgl_entries = -1;
79module_param(max_sgl_entries, int, 0);
80MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81
82static int msix_disable = -1;
83module_param(msix_disable, int, 0);
84MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85
fb77bb53 86static int max_msix_vectors = -1;
9c500060
SR
87module_param(max_msix_vectors, int, 0);
88MODULE_PARM_DESC(max_msix_vectors,
fb77bb53 89 " max msix vectors");
f92363d1
SR
90
91static int mpt3sas_fwfault_debug;
92MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93 " enable detection of firmware fault and halt firmware - (default=0)");
94
9b05c91a
SR
95static int
96_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
f92363d1
SR
97
98/**
99 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
100 *
101 */
102static int
103_scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
104{
105 int ret = param_set_int(val, kp);
106 struct MPT3SAS_ADAPTER *ioc;
107
108 if (ret)
109 return ret;
110
111 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
112 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
113 ioc->fwfault_debug = mpt3sas_fwfault_debug;
114 return 0;
115}
116module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
117 param_get_int, &mpt3sas_fwfault_debug, 0644);
118
119/**
120 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
121 * @arg: input argument, used to derive ioc
122 *
123 * Return 0 if controller is removed from pci subsystem.
124 * Return -1 for other case.
125 */
126static int mpt3sas_remove_dead_ioc_func(void *arg)
127{
128 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
129 struct pci_dev *pdev;
130
131 if ((ioc == NULL))
132 return -1;
133
134 pdev = ioc->pdev;
135 if ((pdev == NULL))
136 return -1;
64cdb418 137 pci_stop_and_remove_bus_device_locked(pdev);
f92363d1
SR
138 return 0;
139}
140
141/**
142 * _base_fault_reset_work - workq handling ioc fault conditions
143 * @work: input argument, used to derive ioc
144 * Context: sleep.
145 *
146 * Return nothing.
147 */
148static void
149_base_fault_reset_work(struct work_struct *work)
150{
151 struct MPT3SAS_ADAPTER *ioc =
152 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
153 unsigned long flags;
154 u32 doorbell;
155 int rc;
156 struct task_struct *p;
157
158
159 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
160 if (ioc->shost_recovery)
161 goto rearm_timer;
162 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
163
164 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
165 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
166 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
167 ioc->name);
168
169 /*
170 * Call _scsih_flush_pending_cmds callback so that we flush all
171 * pending commands back to OS. This call is required to aovid
172 * deadlock at block layer. Dead IOC will fail to do diag reset,
173 * and this call is safe since dead ioc will never return any
174 * command back from HW.
175 */
176 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
177 /*
178 * Set remove_host flag early since kernel thread will
179 * take some time to execute.
180 */
181 ioc->remove_host = 1;
182 /*Remove the Dead Host */
183 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
184 "mpt3sas_dead_ioc_%d", ioc->id);
185 if (IS_ERR(p))
186 pr_err(MPT3SAS_FMT
187 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
188 ioc->name, __func__);
189 else
190 pr_err(MPT3SAS_FMT
191 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
192 ioc->name, __func__);
193 return; /* don't rearm timer */
194 }
195
196 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
197 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
198 FORCE_BIG_HAMMER);
199 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
200 __func__, (rc == 0) ? "success" : "failed");
201 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
202 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
203 mpt3sas_base_fault_info(ioc, doorbell &
204 MPI2_DOORBELL_DATA_MASK);
205 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
206 MPI2_IOC_STATE_OPERATIONAL)
207 return; /* don't rearm timer */
208 }
209
210 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
211 rearm_timer:
212 if (ioc->fault_reset_work_q)
213 queue_delayed_work(ioc->fault_reset_work_q,
214 &ioc->fault_reset_work,
215 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
216 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
217}
218
219/**
220 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
221 * @ioc: per adapter object
222 * Context: sleep.
223 *
224 * Return nothing.
225 */
226void
227mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
228{
229 unsigned long flags;
230
231 if (ioc->fault_reset_work_q)
232 return;
233
234 /* initialize fault polling */
235
236 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
237 snprintf(ioc->fault_reset_work_q_name,
238 sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
239 ioc->fault_reset_work_q =
240 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
241 if (!ioc->fault_reset_work_q) {
242 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
243 ioc->name, __func__, __LINE__);
244 return;
245 }
246 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
247 if (ioc->fault_reset_work_q)
248 queue_delayed_work(ioc->fault_reset_work_q,
249 &ioc->fault_reset_work,
250 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
251 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
252}
253
254/**
255 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
256 * @ioc: per adapter object
257 * Context: sleep.
258 *
259 * Return nothing.
260 */
261void
262mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
263{
264 unsigned long flags;
265 struct workqueue_struct *wq;
266
267 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
268 wq = ioc->fault_reset_work_q;
269 ioc->fault_reset_work_q = NULL;
270 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
271 if (wq) {
4dc06fd8 272 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
f92363d1
SR
273 flush_workqueue(wq);
274 destroy_workqueue(wq);
275 }
276}
277
278/**
279 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
280 * @ioc: per adapter object
281 * @fault_code: fault code
282 *
283 * Return nothing.
284 */
285void
286mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
287{
288 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
289 ioc->name, fault_code);
290}
291
292/**
293 * mpt3sas_halt_firmware - halt's mpt controller firmware
294 * @ioc: per adapter object
295 *
296 * For debugging timeout related issues. Writing 0xCOFFEE00
297 * to the doorbell register will halt controller firmware. With
298 * the purpose to stop both driver and firmware, the enduser can
299 * obtain a ring buffer from controller UART.
300 */
301void
302mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
303{
304 u32 doorbell;
305
306 if (!ioc->fwfault_debug)
307 return;
308
309 dump_stack();
310
311 doorbell = readl(&ioc->chip->Doorbell);
312 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
313 mpt3sas_base_fault_info(ioc , doorbell);
314 else {
315 writel(0xC0FFEE00, &ioc->chip->Doorbell);
316 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
317 ioc->name);
318 }
319
320 if (ioc->fwfault_debug == 2)
321 for (;;)
322 ;
323 else
324 panic("panic in %s\n", __func__);
325}
326
f92363d1
SR
327/**
328 * _base_sas_ioc_info - verbose translation of the ioc status
329 * @ioc: per adapter object
330 * @mpi_reply: reply mf payload returned from firmware
331 * @request_hdr: request mf
332 *
333 * Return nothing.
334 */
335static void
336_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
337 MPI2RequestHeader_t *request_hdr)
338{
339 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
340 MPI2_IOCSTATUS_MASK;
341 char *desc = NULL;
342 u16 frame_sz;
343 char *func_str = NULL;
344
345 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
346 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
347 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
348 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
349 return;
350
351 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
352 return;
353
354 switch (ioc_status) {
355
356/****************************************************************************
357* Common IOCStatus values for all replies
358****************************************************************************/
359
360 case MPI2_IOCSTATUS_INVALID_FUNCTION:
361 desc = "invalid function";
362 break;
363 case MPI2_IOCSTATUS_BUSY:
364 desc = "busy";
365 break;
366 case MPI2_IOCSTATUS_INVALID_SGL:
367 desc = "invalid sgl";
368 break;
369 case MPI2_IOCSTATUS_INTERNAL_ERROR:
370 desc = "internal error";
371 break;
372 case MPI2_IOCSTATUS_INVALID_VPID:
373 desc = "invalid vpid";
374 break;
375 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
376 desc = "insufficient resources";
377 break;
378 case MPI2_IOCSTATUS_INVALID_FIELD:
379 desc = "invalid field";
380 break;
381 case MPI2_IOCSTATUS_INVALID_STATE:
382 desc = "invalid state";
383 break;
384 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
385 desc = "op state not supported";
386 break;
387
388/****************************************************************************
389* Config IOCStatus values
390****************************************************************************/
391
392 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
393 desc = "config invalid action";
394 break;
395 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
396 desc = "config invalid type";
397 break;
398 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
399 desc = "config invalid page";
400 break;
401 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
402 desc = "config invalid data";
403 break;
404 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
405 desc = "config no defaults";
406 break;
407 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
408 desc = "config cant commit";
409 break;
410
411/****************************************************************************
412* SCSI IO Reply
413****************************************************************************/
414
415 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
416 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
417 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
418 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
419 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
420 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
421 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
422 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
423 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
424 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
425 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
426 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
427 break;
428
429/****************************************************************************
430* For use by SCSI Initiator and SCSI Target end-to-end data protection
431****************************************************************************/
432
433 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
434 desc = "eedp guard error";
435 break;
436 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
437 desc = "eedp ref tag error";
438 break;
439 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
440 desc = "eedp app tag error";
441 break;
442
443/****************************************************************************
444* SCSI Target values
445****************************************************************************/
446
447 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
448 desc = "target invalid io index";
449 break;
450 case MPI2_IOCSTATUS_TARGET_ABORTED:
451 desc = "target aborted";
452 break;
453 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
454 desc = "target no conn retryable";
455 break;
456 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
457 desc = "target no connection";
458 break;
459 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
460 desc = "target xfer count mismatch";
461 break;
462 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
463 desc = "target data offset error";
464 break;
465 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
466 desc = "target too much write data";
467 break;
468 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
469 desc = "target iu too short";
470 break;
471 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
472 desc = "target ack nak timeout";
473 break;
474 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
475 desc = "target nak received";
476 break;
477
478/****************************************************************************
479* Serial Attached SCSI values
480****************************************************************************/
481
482 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
483 desc = "smp request failed";
484 break;
485 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
486 desc = "smp data overrun";
487 break;
488
489/****************************************************************************
490* Diagnostic Buffer Post / Diagnostic Release values
491****************************************************************************/
492
493 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
494 desc = "diagnostic released";
495 break;
496 default:
497 break;
498 }
499
500 if (!desc)
501 return;
502
503 switch (request_hdr->Function) {
504 case MPI2_FUNCTION_CONFIG:
505 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
506 func_str = "config_page";
507 break;
508 case MPI2_FUNCTION_SCSI_TASK_MGMT:
509 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
510 func_str = "task_mgmt";
511 break;
512 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
513 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
514 func_str = "sas_iounit_ctl";
515 break;
516 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
517 frame_sz = sizeof(Mpi2SepRequest_t);
518 func_str = "enclosure";
519 break;
520 case MPI2_FUNCTION_IOC_INIT:
521 frame_sz = sizeof(Mpi2IOCInitRequest_t);
522 func_str = "ioc_init";
523 break;
524 case MPI2_FUNCTION_PORT_ENABLE:
525 frame_sz = sizeof(Mpi2PortEnableRequest_t);
526 func_str = "port_enable";
527 break;
528 case MPI2_FUNCTION_SMP_PASSTHROUGH:
529 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
530 func_str = "smp_passthru";
531 break;
532 default:
533 frame_sz = 32;
534 func_str = "unknown";
535 break;
536 }
537
538 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
539 ioc->name, desc, ioc_status, request_hdr, func_str);
540
541 _debug_dump_mf(request_hdr, frame_sz/4);
542}
543
544/**
545 * _base_display_event_data - verbose translation of firmware asyn events
546 * @ioc: per adapter object
547 * @mpi_reply: reply mf payload returned from firmware
548 *
549 * Return nothing.
550 */
551static void
552_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
553 Mpi2EventNotificationReply_t *mpi_reply)
554{
555 char *desc = NULL;
556 u16 event;
557
558 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
559 return;
560
561 event = le16_to_cpu(mpi_reply->Event);
562
563 switch (event) {
564 case MPI2_EVENT_LOG_DATA:
565 desc = "Log Data";
566 break;
567 case MPI2_EVENT_STATE_CHANGE:
568 desc = "Status Change";
569 break;
570 case MPI2_EVENT_HARD_RESET_RECEIVED:
571 desc = "Hard Reset Received";
572 break;
573 case MPI2_EVENT_EVENT_CHANGE:
574 desc = "Event Change";
575 break;
576 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
577 desc = "Device Status Change";
578 break;
579 case MPI2_EVENT_IR_OPERATION_STATUS:
580 desc = "IR Operation Status";
581 break;
582 case MPI2_EVENT_SAS_DISCOVERY:
583 {
584 Mpi2EventDataSasDiscovery_t *event_data =
585 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
586 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
587 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
588 "start" : "stop");
589 if (event_data->DiscoveryStatus)
590 pr_info("discovery_status(0x%08x)",
591 le32_to_cpu(event_data->DiscoveryStatus));
592 pr_info("\n");
593 return;
594 }
595 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
596 desc = "SAS Broadcast Primitive";
597 break;
598 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
599 desc = "SAS Init Device Status Change";
600 break;
601 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
602 desc = "SAS Init Table Overflow";
603 break;
604 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
605 desc = "SAS Topology Change List";
606 break;
607 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
608 desc = "SAS Enclosure Device Status Change";
609 break;
610 case MPI2_EVENT_IR_VOLUME:
611 desc = "IR Volume";
612 break;
613 case MPI2_EVENT_IR_PHYSICAL_DISK:
614 desc = "IR Physical Disk";
615 break;
616 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
617 desc = "IR Configuration Change List";
618 break;
619 case MPI2_EVENT_LOG_ENTRY_ADDED:
620 desc = "Log Entry Added";
621 break;
2d8ce8c9
SR
622 case MPI2_EVENT_TEMP_THRESHOLD:
623 desc = "Temperature Threshold";
624 break;
f92363d1
SR
625 }
626
627 if (!desc)
628 return;
629
630 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
631}
f92363d1
SR
632
633/**
634 * _base_sas_log_info - verbose translation of firmware log info
635 * @ioc: per adapter object
636 * @log_info: log info
637 *
638 * Return nothing.
639 */
640static void
641_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
642{
643 union loginfo_type {
644 u32 loginfo;
645 struct {
646 u32 subcode:16;
647 u32 code:8;
648 u32 originator:4;
649 u32 bus_type:4;
650 } dw;
651 };
652 union loginfo_type sas_loginfo;
653 char *originator_str = NULL;
654
655 sas_loginfo.loginfo = log_info;
656 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
657 return;
658
659 /* each nexus loss loginfo */
660 if (log_info == 0x31170000)
661 return;
662
663 /* eat the loginfos associated with task aborts */
664 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
665 0x31140000 || log_info == 0x31130000))
666 return;
667
668 switch (sas_loginfo.dw.originator) {
669 case 0:
670 originator_str = "IOP";
671 break;
672 case 1:
673 originator_str = "PL";
674 break;
675 case 2:
676 originator_str = "IR";
677 break;
678 }
679
680 pr_warn(MPT3SAS_FMT
681 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
682 ioc->name, log_info,
683 originator_str, sas_loginfo.dw.code,
684 sas_loginfo.dw.subcode);
685}
686
687/**
688 * _base_display_reply_info -
689 * @ioc: per adapter object
690 * @smid: system request message index
691 * @msix_index: MSIX table index supplied by the OS
692 * @reply: reply message frame(lower 32bit addr)
693 *
694 * Return nothing.
695 */
696static void
697_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
698 u32 reply)
699{
700 MPI2DefaultReply_t *mpi_reply;
701 u16 ioc_status;
702 u32 loginfo = 0;
703
704 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
705 if (unlikely(!mpi_reply)) {
706 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
707 ioc->name, __FILE__, __LINE__, __func__);
708 return;
709 }
710 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
af009411 711
f92363d1
SR
712 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
713 (ioc->logging_level & MPT_DEBUG_REPLY)) {
714 _base_sas_ioc_info(ioc , mpi_reply,
715 mpt3sas_base_get_msg_frame(ioc, smid));
716 }
af009411 717
f92363d1
SR
718 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
719 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
720 _base_sas_log_info(ioc, loginfo);
721 }
722
723 if (ioc_status || loginfo) {
724 ioc_status &= MPI2_IOCSTATUS_MASK;
725 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
726 }
727}
728
729/**
730 * mpt3sas_base_done - base internal command completion routine
731 * @ioc: per adapter object
732 * @smid: system request message index
733 * @msix_index: MSIX table index supplied by the OS
734 * @reply: reply message frame(lower 32bit addr)
735 *
736 * Return 1 meaning mf should be freed from _base_interrupt
737 * 0 means the mf is freed from this function.
738 */
739u8
740mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
741 u32 reply)
742{
743 MPI2DefaultReply_t *mpi_reply;
744
745 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
746 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
747 return 1;
748
749 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
750 return 1;
751
752 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
753 if (mpi_reply) {
754 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
755 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
756 }
757 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
758
759 complete(&ioc->base_cmds.done);
760 return 1;
761}
762
763/**
764 * _base_async_event - main callback handler for firmware asyn events
765 * @ioc: per adapter object
766 * @msix_index: MSIX table index supplied by the OS
767 * @reply: reply message frame(lower 32bit addr)
768 *
769 * Return 1 meaning mf should be freed from _base_interrupt
770 * 0 means the mf is freed from this function.
771 */
772static u8
773_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
774{
775 Mpi2EventNotificationReply_t *mpi_reply;
776 Mpi2EventAckRequest_t *ack_request;
777 u16 smid;
778
779 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
780 if (!mpi_reply)
781 return 1;
782 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
783 return 1;
af009411 784
f92363d1 785 _base_display_event_data(ioc, mpi_reply);
af009411 786
f92363d1
SR
787 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
788 goto out;
789 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
790 if (!smid) {
791 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
792 ioc->name, __func__);
793 goto out;
794 }
795
796 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
797 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
798 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
799 ack_request->Event = mpi_reply->Event;
800 ack_request->EventContext = mpi_reply->EventContext;
801 ack_request->VF_ID = 0; /* TODO */
802 ack_request->VP_ID = 0;
803 mpt3sas_base_put_smid_default(ioc, smid);
804
805 out:
806
807 /* scsih callback handler */
808 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
809
810 /* ctl callback handler */
811 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
812
813 return 1;
814}
815
816/**
817 * _base_get_cb_idx - obtain the callback index
818 * @ioc: per adapter object
819 * @smid: system request message index
820 *
821 * Return callback index.
822 */
823static u8
824_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
825{
826 int i;
827 u8 cb_idx;
828
829 if (smid < ioc->hi_priority_smid) {
830 i = smid - 1;
831 cb_idx = ioc->scsi_lookup[i].cb_idx;
832 } else if (smid < ioc->internal_smid) {
833 i = smid - ioc->hi_priority_smid;
834 cb_idx = ioc->hpr_lookup[i].cb_idx;
835 } else if (smid <= ioc->hba_queue_depth) {
836 i = smid - ioc->internal_smid;
837 cb_idx = ioc->internal_lookup[i].cb_idx;
838 } else
839 cb_idx = 0xFF;
840 return cb_idx;
841}
842
843/**
844 * _base_mask_interrupts - disable interrupts
845 * @ioc: per adapter object
846 *
847 * Disabling ResetIRQ, Reply and Doorbell Interrupts
848 *
849 * Return nothing.
850 */
851static void
852_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
853{
854 u32 him_register;
855
856 ioc->mask_interrupts = 1;
857 him_register = readl(&ioc->chip->HostInterruptMask);
858 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
859 writel(him_register, &ioc->chip->HostInterruptMask);
860 readl(&ioc->chip->HostInterruptMask);
861}
862
863/**
864 * _base_unmask_interrupts - enable interrupts
865 * @ioc: per adapter object
866 *
867 * Enabling only Reply Interrupts
868 *
869 * Return nothing.
870 */
871static void
872_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
873{
874 u32 him_register;
875
876 him_register = readl(&ioc->chip->HostInterruptMask);
877 him_register &= ~MPI2_HIM_RIM;
878 writel(him_register, &ioc->chip->HostInterruptMask);
879 ioc->mask_interrupts = 0;
880}
881
882union reply_descriptor {
883 u64 word;
884 struct {
885 u32 low;
886 u32 high;
887 } u;
888};
889
890/**
891 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
892 * @irq: irq number (not used)
893 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
894 * @r: pt_regs pointer (not used)
895 *
896 * Return IRQ_HANDLE if processed, else IRQ_NONE.
897 */
898static irqreturn_t
899_base_interrupt(int irq, void *bus_id)
900{
901 struct adapter_reply_queue *reply_q = bus_id;
902 union reply_descriptor rd;
903 u32 completed_cmds;
904 u8 request_desript_type;
905 u16 smid;
906 u8 cb_idx;
907 u32 reply;
908 u8 msix_index = reply_q->msix_index;
909 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
910 Mpi2ReplyDescriptorsUnion_t *rpf;
911 u8 rc;
912
913 if (ioc->mask_interrupts)
914 return IRQ_NONE;
915
916 if (!atomic_add_unless(&reply_q->busy, 1, 1))
917 return IRQ_NONE;
918
919 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
920 request_desript_type = rpf->Default.ReplyFlags
921 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
922 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
923 atomic_dec(&reply_q->busy);
924 return IRQ_NONE;
925 }
926
927 completed_cmds = 0;
928 cb_idx = 0xFF;
929 do {
930 rd.word = le64_to_cpu(rpf->Words);
931 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
932 goto out;
933 reply = 0;
934 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
935 if (request_desript_type ==
936 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
937 request_desript_type ==
938 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
939 cb_idx = _base_get_cb_idx(ioc, smid);
940 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
941 (likely(mpt_callbacks[cb_idx] != NULL))) {
942 rc = mpt_callbacks[cb_idx](ioc, smid,
943 msix_index, 0);
944 if (rc)
945 mpt3sas_base_free_smid(ioc, smid);
946 }
947 } else if (request_desript_type ==
948 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
949 reply = le32_to_cpu(
950 rpf->AddressReply.ReplyFrameAddress);
951 if (reply > ioc->reply_dma_max_address ||
952 reply < ioc->reply_dma_min_address)
953 reply = 0;
954 if (smid) {
955 cb_idx = _base_get_cb_idx(ioc, smid);
956 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
957 (likely(mpt_callbacks[cb_idx] != NULL))) {
958 rc = mpt_callbacks[cb_idx](ioc, smid,
959 msix_index, reply);
960 if (reply)
961 _base_display_reply_info(ioc,
962 smid, msix_index, reply);
963 if (rc)
964 mpt3sas_base_free_smid(ioc,
965 smid);
966 }
967 } else {
968 _base_async_event(ioc, msix_index, reply);
969 }
970
971 /* reply free queue handling */
972 if (reply) {
973 ioc->reply_free_host_index =
974 (ioc->reply_free_host_index ==
975 (ioc->reply_free_queue_depth - 1)) ?
976 0 : ioc->reply_free_host_index + 1;
977 ioc->reply_free[ioc->reply_free_host_index] =
978 cpu_to_le32(reply);
979 wmb();
980 writel(ioc->reply_free_host_index,
981 &ioc->chip->ReplyFreeHostIndex);
982 }
983 }
984
985 rpf->Words = cpu_to_le64(ULLONG_MAX);
986 reply_q->reply_post_host_index =
987 (reply_q->reply_post_host_index ==
988 (ioc->reply_post_queue_depth - 1)) ? 0 :
989 reply_q->reply_post_host_index + 1;
990 request_desript_type =
991 reply_q->reply_post_free[reply_q->reply_post_host_index].
992 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
993 completed_cmds++;
994 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
995 goto out;
996 if (!reply_q->reply_post_host_index)
997 rpf = reply_q->reply_post_free;
998 else
999 rpf++;
1000 } while (1);
1001
1002 out:
1003
1004 if (!completed_cmds) {
1005 atomic_dec(&reply_q->busy);
1006 return IRQ_NONE;
1007 }
1008
1009 wmb();
fb77bb53
SR
1010
1011 /* Update Reply Post Host Index.
1012 * For those HBA's which support combined reply queue feature
1013 * 1. Get the correct Supplemental Reply Post Host Index Register.
1014 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1015 * Index Register address bank i.e replyPostRegisterIndex[],
1016 * 2. Then update this register with new reply host index value
1017 * in ReplyPostIndex field and the MSIxIndex field with
1018 * msix_index value reduced to a value between 0 and 7,
1019 * using a modulo 8 operation. Since each Supplemental Reply Post
1020 * Host Index Register supports 8 MSI-X vectors.
1021 *
1022 * For other HBA's just update the Reply Post Host Index register with
1023 * new reply host index value in ReplyPostIndex Field and msix_index
1024 * value in MSIxIndex field.
1025 */
1026 if (ioc->msix96_vector)
1027 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1028 MPI2_RPHI_MSIX_INDEX_SHIFT),
1029 ioc->replyPostRegisterIndex[msix_index/8]);
1030 else
1031 writel(reply_q->reply_post_host_index | (msix_index <<
1032 MPI2_RPHI_MSIX_INDEX_SHIFT),
1033 &ioc->chip->ReplyPostHostIndex);
f92363d1
SR
1034 atomic_dec(&reply_q->busy);
1035 return IRQ_HANDLED;
1036}
1037
1038/**
1039 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1040 * @ioc: per adapter object
1041 *
1042 */
1043static inline int
1044_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1045{
1046 return (ioc->facts.IOCCapabilities &
1047 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1048}
1049
1050/**
1051 * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1052 * @ioc: per adapter object
1053 * Context: ISR conext
1054 *
1055 * Called when a Task Management request has completed. We want
1056 * to flush the other reply queues so all the outstanding IO has been
1057 * completed back to OS before we process the TM completetion.
1058 *
1059 * Return nothing.
1060 */
1061void
1062mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1063{
1064 struct adapter_reply_queue *reply_q;
1065
1066 /* If MSIX capability is turned off
1067 * then multi-queues are not enabled
1068 */
1069 if (!_base_is_controller_msix_enabled(ioc))
1070 return;
1071
1072 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1073 if (ioc->shost_recovery)
1074 return;
1075 /* TMs are on msix_index == 0 */
1076 if (reply_q->msix_index == 0)
1077 continue;
1078 _base_interrupt(reply_q->vector, (void *)reply_q);
1079 }
1080}
1081
1082/**
1083 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1084 * @cb_idx: callback index
1085 *
1086 * Return nothing.
1087 */
1088void
1089mpt3sas_base_release_callback_handler(u8 cb_idx)
1090{
1091 mpt_callbacks[cb_idx] = NULL;
1092}
1093
1094/**
1095 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1096 * @cb_func: callback function
1097 *
1098 * Returns cb_func.
1099 */
1100u8
1101mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1102{
1103 u8 cb_idx;
1104
1105 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1106 if (mpt_callbacks[cb_idx] == NULL)
1107 break;
1108
1109 mpt_callbacks[cb_idx] = cb_func;
1110 return cb_idx;
1111}
1112
1113/**
1114 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1115 *
1116 * Return nothing.
1117 */
1118void
1119mpt3sas_base_initialize_callback_handler(void)
1120{
1121 u8 cb_idx;
1122
1123 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1124 mpt3sas_base_release_callback_handler(cb_idx);
1125}
1126
1127
1128/**
1129 * _base_build_zero_len_sge - build zero length sg entry
1130 * @ioc: per adapter object
1131 * @paddr: virtual address for SGE
1132 *
1133 * Create a zero length scatter gather entry to insure the IOCs hardware has
1134 * something to use if the target device goes brain dead and tries
1135 * to send data even when none is asked for.
1136 *
1137 * Return nothing.
1138 */
1139static void
1140_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1141{
1142 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1143 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1144 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1145 MPI2_SGE_FLAGS_SHIFT);
1146 ioc->base_add_sg_single(paddr, flags_length, -1);
1147}
1148
1149/**
1150 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1151 * @paddr: virtual address for SGE
1152 * @flags_length: SGE flags and data transfer length
1153 * @dma_addr: Physical address
1154 *
1155 * Return nothing.
1156 */
1157static void
1158_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1159{
1160 Mpi2SGESimple32_t *sgel = paddr;
1161
1162 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1163 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1164 sgel->FlagsLength = cpu_to_le32(flags_length);
1165 sgel->Address = cpu_to_le32(dma_addr);
1166}
1167
1168
1169/**
1170 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1171 * @paddr: virtual address for SGE
1172 * @flags_length: SGE flags and data transfer length
1173 * @dma_addr: Physical address
1174 *
1175 * Return nothing.
1176 */
1177static void
1178_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1179{
1180 Mpi2SGESimple64_t *sgel = paddr;
1181
1182 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1183 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1184 sgel->FlagsLength = cpu_to_le32(flags_length);
1185 sgel->Address = cpu_to_le64(dma_addr);
1186}
1187
1188/**
1189 * _base_get_chain_buffer_tracker - obtain chain tracker
1190 * @ioc: per adapter object
1191 * @smid: smid associated to an IO request
1192 *
1193 * Returns chain tracker(from ioc->free_chain_list)
1194 */
1195static struct chain_tracker *
1196_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1197{
1198 struct chain_tracker *chain_req;
1199 unsigned long flags;
1200
1201 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1202 if (list_empty(&ioc->free_chain_list)) {
1203 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1204 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1205 "chain buffers not available\n", ioc->name));
1206 return NULL;
1207 }
1208 chain_req = list_entry(ioc->free_chain_list.next,
1209 struct chain_tracker, tracker_list);
1210 list_del_init(&chain_req->tracker_list);
1211 list_add_tail(&chain_req->tracker_list,
1212 &ioc->scsi_lookup[smid - 1].chain_list);
1213 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1214 return chain_req;
1215}
1216
1217
1218/**
1219 * _base_build_sg - build generic sg
1220 * @ioc: per adapter object
1221 * @psge: virtual address for SGE
1222 * @data_out_dma: physical address for WRITES
1223 * @data_out_sz: data xfer size for WRITES
1224 * @data_in_dma: physical address for READS
1225 * @data_in_sz: data xfer size for READS
1226 *
1227 * Return nothing.
1228 */
1229static void
1230_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1231 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1232 size_t data_in_sz)
1233{
1234 u32 sgl_flags;
1235
1236 if (!data_out_sz && !data_in_sz) {
1237 _base_build_zero_len_sge(ioc, psge);
1238 return;
1239 }
1240
1241 if (data_out_sz && data_in_sz) {
1242 /* WRITE sgel first */
1243 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1244 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1245 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1246 ioc->base_add_sg_single(psge, sgl_flags |
1247 data_out_sz, data_out_dma);
1248
1249 /* incr sgel */
1250 psge += ioc->sge_size;
1251
1252 /* READ sgel last */
1253 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1254 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1255 MPI2_SGE_FLAGS_END_OF_LIST);
1256 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1257 ioc->base_add_sg_single(psge, sgl_flags |
1258 data_in_sz, data_in_dma);
1259 } else if (data_out_sz) /* WRITE */ {
1260 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1261 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1262 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1263 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1264 ioc->base_add_sg_single(psge, sgl_flags |
1265 data_out_sz, data_out_dma);
1266 } else if (data_in_sz) /* READ */ {
1267 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1268 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1269 MPI2_SGE_FLAGS_END_OF_LIST);
1270 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1271 ioc->base_add_sg_single(psge, sgl_flags |
1272 data_in_sz, data_in_dma);
1273 }
1274}
1275
1276/* IEEE format sgls */
1277
1278/**
1279 * _base_add_sg_single_ieee - add sg element for IEEE format
1280 * @paddr: virtual address for SGE
1281 * @flags: SGE flags
1282 * @chain_offset: number of 128 byte elements from start of segment
1283 * @length: data transfer length
1284 * @dma_addr: Physical address
1285 *
1286 * Return nothing.
1287 */
1288static void
1289_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1290 dma_addr_t dma_addr)
1291{
1292 Mpi25IeeeSgeChain64_t *sgel = paddr;
1293
1294 sgel->Flags = flags;
1295 sgel->NextChainOffset = chain_offset;
1296 sgel->Length = cpu_to_le32(length);
1297 sgel->Address = cpu_to_le64(dma_addr);
1298}
1299
1300/**
1301 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1302 * @ioc: per adapter object
1303 * @paddr: virtual address for SGE
1304 *
1305 * Create a zero length scatter gather entry to insure the IOCs hardware has
1306 * something to use if the target device goes brain dead and tries
1307 * to send data even when none is asked for.
1308 *
1309 * Return nothing.
1310 */
1311static void
1312_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1313{
1314 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1315 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1316 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1317 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1318}
1319
471ef9d4
SR
1320/**
1321 * _base_build_sg_scmd - main sg creation routine
1322 * @ioc: per adapter object
1323 * @scmd: scsi command
1324 * @smid: system request message index
1325 * Context: none.
1326 *
1327 * The main routine that builds scatter gather table from a given
1328 * scsi request sent via the .queuecommand main handler.
1329 *
1330 * Returns 0 success, anything else error
1331 */
1332static int
1333_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1334 struct scsi_cmnd *scmd, u16 smid)
1335{
1336 Mpi2SCSIIORequest_t *mpi_request;
1337 dma_addr_t chain_dma;
1338 struct scatterlist *sg_scmd;
1339 void *sg_local, *chain;
1340 u32 chain_offset;
1341 u32 chain_length;
1342 u32 chain_flags;
1343 int sges_left;
1344 u32 sges_in_segment;
1345 u32 sgl_flags;
1346 u32 sgl_flags_last_element;
1347 u32 sgl_flags_end_buffer;
1348 struct chain_tracker *chain_req;
1349
1350 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1351
1352 /* init scatter gather flags */
1353 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1354 if (scmd->sc_data_direction == DMA_TO_DEVICE)
1355 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1356 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1357 << MPI2_SGE_FLAGS_SHIFT;
1358 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1359 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1360 << MPI2_SGE_FLAGS_SHIFT;
1361 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1362
1363 sg_scmd = scsi_sglist(scmd);
1364 sges_left = scsi_dma_map(scmd);
1365 if (sges_left < 0) {
1366 sdev_printk(KERN_ERR, scmd->device,
1367 "pci_map_sg failed: request for %d bytes!\n",
1368 scsi_bufflen(scmd));
1369 return -ENOMEM;
1370 }
1371
1372 sg_local = &mpi_request->SGL;
1373 sges_in_segment = ioc->max_sges_in_main_message;
1374 if (sges_left <= sges_in_segment)
1375 goto fill_in_last_segment;
1376
1377 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1378 (sges_in_segment * ioc->sge_size))/4;
1379
1380 /* fill in main message segment when there is a chain following */
1381 while (sges_in_segment) {
1382 if (sges_in_segment == 1)
1383 ioc->base_add_sg_single(sg_local,
1384 sgl_flags_last_element | sg_dma_len(sg_scmd),
1385 sg_dma_address(sg_scmd));
1386 else
1387 ioc->base_add_sg_single(sg_local, sgl_flags |
1388 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1389 sg_scmd = sg_next(sg_scmd);
1390 sg_local += ioc->sge_size;
1391 sges_left--;
1392 sges_in_segment--;
1393 }
1394
1395 /* initializing the chain flags and pointers */
1396 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1397 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1398 if (!chain_req)
1399 return -1;
1400 chain = chain_req->chain_buffer;
1401 chain_dma = chain_req->chain_buffer_dma;
1402 do {
1403 sges_in_segment = (sges_left <=
1404 ioc->max_sges_in_chain_message) ? sges_left :
1405 ioc->max_sges_in_chain_message;
1406 chain_offset = (sges_left == sges_in_segment) ?
1407 0 : (sges_in_segment * ioc->sge_size)/4;
1408 chain_length = sges_in_segment * ioc->sge_size;
1409 if (chain_offset) {
1410 chain_offset = chain_offset <<
1411 MPI2_SGE_CHAIN_OFFSET_SHIFT;
1412 chain_length += ioc->sge_size;
1413 }
1414 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1415 chain_length, chain_dma);
1416 sg_local = chain;
1417 if (!chain_offset)
1418 goto fill_in_last_segment;
1419
1420 /* fill in chain segments */
1421 while (sges_in_segment) {
1422 if (sges_in_segment == 1)
1423 ioc->base_add_sg_single(sg_local,
1424 sgl_flags_last_element |
1425 sg_dma_len(sg_scmd),
1426 sg_dma_address(sg_scmd));
1427 else
1428 ioc->base_add_sg_single(sg_local, sgl_flags |
1429 sg_dma_len(sg_scmd),
1430 sg_dma_address(sg_scmd));
1431 sg_scmd = sg_next(sg_scmd);
1432 sg_local += ioc->sge_size;
1433 sges_left--;
1434 sges_in_segment--;
1435 }
1436
1437 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1438 if (!chain_req)
1439 return -1;
1440 chain = chain_req->chain_buffer;
1441 chain_dma = chain_req->chain_buffer_dma;
1442 } while (1);
1443
1444
1445 fill_in_last_segment:
1446
1447 /* fill the last segment */
1448 while (sges_left) {
1449 if (sges_left == 1)
1450 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1451 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1452 else
1453 ioc->base_add_sg_single(sg_local, sgl_flags |
1454 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1455 sg_scmd = sg_next(sg_scmd);
1456 sg_local += ioc->sge_size;
1457 sges_left--;
1458 }
1459
1460 return 0;
1461}
1462
f92363d1
SR
1463/**
1464 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1465 * @ioc: per adapter object
1466 * @scmd: scsi command
1467 * @smid: system request message index
1468 * Context: none.
1469 *
1470 * The main routine that builds scatter gather table from a given
1471 * scsi request sent via the .queuecommand main handler.
1472 *
1473 * Returns 0 success, anything else error
1474 */
1475static int
1476_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1477 struct scsi_cmnd *scmd, u16 smid)
1478{
1479 Mpi2SCSIIORequest_t *mpi_request;
1480 dma_addr_t chain_dma;
1481 struct scatterlist *sg_scmd;
1482 void *sg_local, *chain;
1483 u32 chain_offset;
1484 u32 chain_length;
f92363d1
SR
1485 int sges_left;
1486 u32 sges_in_segment;
1487 u8 simple_sgl_flags;
1488 u8 simple_sgl_flags_last;
1489 u8 chain_sgl_flags;
1490 struct chain_tracker *chain_req;
1491
1492 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1493
1494 /* init scatter gather flags */
1495 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1496 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1497 simple_sgl_flags_last = simple_sgl_flags |
1498 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1499 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1500 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1501
1502 sg_scmd = scsi_sglist(scmd);
1503 sges_left = scsi_dma_map(scmd);
62f5c74c 1504 if (sges_left < 0) {
f92363d1
SR
1505 sdev_printk(KERN_ERR, scmd->device,
1506 "pci_map_sg failed: request for %d bytes!\n",
1507 scsi_bufflen(scmd));
1508 return -ENOMEM;
1509 }
1510
1511 sg_local = &mpi_request->SGL;
1512 sges_in_segment = (ioc->request_sz -
1513 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1514 if (sges_left <= sges_in_segment)
1515 goto fill_in_last_segment;
1516
1517 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1518 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1519
1520 /* fill in main message segment when there is a chain following */
1521 while (sges_in_segment > 1) {
1522 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1523 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1524 sg_scmd = sg_next(sg_scmd);
1525 sg_local += ioc->sge_size_ieee;
1526 sges_left--;
1527 sges_in_segment--;
1528 }
1529
25ef16d0 1530 /* initializing the pointers */
f92363d1
SR
1531 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1532 if (!chain_req)
1533 return -1;
1534 chain = chain_req->chain_buffer;
1535 chain_dma = chain_req->chain_buffer_dma;
1536 do {
1537 sges_in_segment = (sges_left <=
1538 ioc->max_sges_in_chain_message) ? sges_left :
1539 ioc->max_sges_in_chain_message;
1540 chain_offset = (sges_left == sges_in_segment) ?
1541 0 : sges_in_segment;
1542 chain_length = sges_in_segment * ioc->sge_size_ieee;
1543 if (chain_offset)
1544 chain_length += ioc->sge_size_ieee;
1545 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1546 chain_offset, chain_length, chain_dma);
1547
1548 sg_local = chain;
1549 if (!chain_offset)
1550 goto fill_in_last_segment;
1551
1552 /* fill in chain segments */
1553 while (sges_in_segment) {
1554 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1555 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1556 sg_scmd = sg_next(sg_scmd);
1557 sg_local += ioc->sge_size_ieee;
1558 sges_left--;
1559 sges_in_segment--;
1560 }
1561
1562 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1563 if (!chain_req)
1564 return -1;
1565 chain = chain_req->chain_buffer;
1566 chain_dma = chain_req->chain_buffer_dma;
1567 } while (1);
1568
1569
1570 fill_in_last_segment:
1571
1572 /* fill the last segment */
62f5c74c 1573 while (sges_left > 0) {
f92363d1
SR
1574 if (sges_left == 1)
1575 _base_add_sg_single_ieee(sg_local,
1576 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1577 sg_dma_address(sg_scmd));
1578 else
1579 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1580 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1581 sg_scmd = sg_next(sg_scmd);
1582 sg_local += ioc->sge_size_ieee;
1583 sges_left--;
1584 }
1585
1586 return 0;
1587}
1588
1589/**
1590 * _base_build_sg_ieee - build generic sg for IEEE format
1591 * @ioc: per adapter object
1592 * @psge: virtual address for SGE
1593 * @data_out_dma: physical address for WRITES
1594 * @data_out_sz: data xfer size for WRITES
1595 * @data_in_dma: physical address for READS
1596 * @data_in_sz: data xfer size for READS
1597 *
1598 * Return nothing.
1599 */
1600static void
1601_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1602 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1603 size_t data_in_sz)
1604{
1605 u8 sgl_flags;
1606
1607 if (!data_out_sz && !data_in_sz) {
1608 _base_build_zero_len_sge_ieee(ioc, psge);
1609 return;
1610 }
1611
1612 if (data_out_sz && data_in_sz) {
1613 /* WRITE sgel first */
1614 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1615 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1616 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1617 data_out_dma);
1618
1619 /* incr sgel */
1620 psge += ioc->sge_size_ieee;
1621
1622 /* READ sgel last */
1623 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1624 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1625 data_in_dma);
1626 } else if (data_out_sz) /* WRITE */ {
1627 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1628 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1629 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1630 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1631 data_out_dma);
1632 } else if (data_in_sz) /* READ */ {
1633 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1634 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1635 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1636 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1637 data_in_dma);
1638 }
1639}
1640
1641#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1642
1643/**
1644 * _base_config_dma_addressing - set dma addressing
1645 * @ioc: per adapter object
1646 * @pdev: PCI device struct
1647 *
1648 * Returns 0 for success, non-zero for failure.
1649 */
1650static int
1651_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1652{
1653 struct sysinfo s;
9b05c91a
SR
1654 u64 consistent_dma_mask;
1655
1656 if (ioc->dma_mask)
1657 consistent_dma_mask = DMA_BIT_MASK(64);
1658 else
1659 consistent_dma_mask = DMA_BIT_MASK(32);
f92363d1
SR
1660
1661 if (sizeof(dma_addr_t) > 4) {
1662 const uint64_t required_mask =
1663 dma_get_required_mask(&pdev->dev);
1664 if ((required_mask > DMA_BIT_MASK(32)) &&
1665 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
9b05c91a 1666 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
f92363d1
SR
1667 ioc->base_add_sg_single = &_base_add_sg_single_64;
1668 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
9b05c91a 1669 ioc->dma_mask = 64;
f92363d1
SR
1670 goto out;
1671 }
1672 }
1673
1674 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1675 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1676 ioc->base_add_sg_single = &_base_add_sg_single_32;
1677 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
9b05c91a 1678 ioc->dma_mask = 32;
f92363d1
SR
1679 } else
1680 return -ENODEV;
1681
1682 out:
1683 si_meminfo(&s);
1684 pr_info(MPT3SAS_FMT
9b05c91a
SR
1685 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1686 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1687
1688 return 0;
1689}
f92363d1 1690
9b05c91a
SR
1691static int
1692_base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1693 struct pci_dev *pdev)
1694{
1695 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1696 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1697 return -ENODEV;
1698 }
f92363d1
SR
1699 return 0;
1700}
1701
1702/**
1703 * _base_check_enable_msix - checks MSIX capabable.
1704 * @ioc: per adapter object
1705 *
1706 * Check to see if card is capable of MSIX, and set number
1707 * of available msix vectors
1708 */
1709static int
1710_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1711{
1712 int base;
1713 u16 message_control;
1714
1715 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1716 if (!base) {
1717 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1718 ioc->name));
1719 return -EINVAL;
1720 }
1721
1722 /* get msix vector count */
1723
1724 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1725 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
f92363d1
SR
1726 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1727 "msix is supported, vector_count(%d)\n",
1728 ioc->name, ioc->msix_vector_count));
1729 return 0;
1730}
1731
1732/**
1733 * _base_free_irq - free irq
1734 * @ioc: per adapter object
1735 *
1736 * Freeing respective reply_queue from the list.
1737 */
1738static void
1739_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1740{
1741 struct adapter_reply_queue *reply_q, *next;
1742
1743 if (list_empty(&ioc->reply_queue_list))
1744 return;
1745
1746 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1747 list_del(&reply_q->list);
14b3114d
SR
1748 irq_set_affinity_hint(reply_q->vector, NULL);
1749 free_cpumask_var(reply_q->affinity_hint);
f92363d1
SR
1750 synchronize_irq(reply_q->vector);
1751 free_irq(reply_q->vector, reply_q);
1752 kfree(reply_q);
1753 }
1754}
1755
1756/**
1757 * _base_request_irq - request irq
1758 * @ioc: per adapter object
1759 * @index: msix index into vector table
1760 * @vector: irq vector
1761 *
1762 * Inserting respective reply_queue into the list.
1763 */
1764static int
1765_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1766{
1767 struct adapter_reply_queue *reply_q;
1768 int r;
1769
1770 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1771 if (!reply_q) {
1772 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1773 ioc->name, (int)sizeof(struct adapter_reply_queue));
1774 return -ENOMEM;
1775 }
1776 reply_q->ioc = ioc;
1777 reply_q->msix_index = index;
1778 reply_q->vector = vector;
14b3114d
SR
1779
1780 if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1781 return -ENOMEM;
1782 cpumask_clear(reply_q->affinity_hint);
1783
f92363d1
SR
1784 atomic_set(&reply_q->busy, 0);
1785 if (ioc->msix_enable)
1786 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
d357e84d 1787 driver_name, ioc->id, index);
f92363d1
SR
1788 else
1789 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
d357e84d 1790 driver_name, ioc->id);
f92363d1
SR
1791 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1792 reply_q);
1793 if (r) {
1794 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1795 reply_q->name, vector);
1796 kfree(reply_q);
1797 return -EBUSY;
1798 }
1799
1800 INIT_LIST_HEAD(&reply_q->list);
1801 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1802 return 0;
1803}
1804
1805/**
1806 * _base_assign_reply_queues - assigning msix index for each cpu
1807 * @ioc: per adapter object
1808 *
1809 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1810 *
1811 * It would nice if we could call irq_set_affinity, however it is not
1812 * an exported symbol
1813 */
1814static void
1815_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1816{
91b265bf 1817 unsigned int cpu, nr_cpus, nr_msix, index = 0;
14b3114d 1818 struct adapter_reply_queue *reply_q;
f92363d1
SR
1819
1820 if (!_base_is_controller_msix_enabled(ioc))
1821 return;
1822
1823 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1824
91b265bf
MP
1825 nr_cpus = num_online_cpus();
1826 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1827 ioc->facts.MaxMSIxVectors);
1828 if (!nr_msix)
1829 return;
f92363d1 1830
91b265bf
MP
1831 cpu = cpumask_first(cpu_online_mask);
1832
14b3114d
SR
1833 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1834
91b265bf
MP
1835 unsigned int i, group = nr_cpus / nr_msix;
1836
14b3114d
SR
1837 if (cpu >= nr_cpus)
1838 break;
1839
91b265bf
MP
1840 if (index < nr_cpus % nr_msix)
1841 group++;
1842
1843 for (i = 0 ; i < group ; i++) {
1844 ioc->cpu_msix_table[cpu] = index;
14b3114d
SR
1845 cpumask_or(reply_q->affinity_hint,
1846 reply_q->affinity_hint, get_cpu_mask(cpu));
91b265bf 1847 cpu = cpumask_next(cpu, cpu_online_mask);
f92363d1 1848 }
91b265bf 1849
14b3114d
SR
1850 if (irq_set_affinity_hint(reply_q->vector,
1851 reply_q->affinity_hint))
1852 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1853 "error setting affinity hint for irq vector %d\n",
1854 ioc->name, reply_q->vector));
91b265bf 1855 index++;
14b3114d 1856 }
f92363d1
SR
1857}
1858
1859/**
1860 * _base_disable_msix - disables msix
1861 * @ioc: per adapter object
1862 *
1863 */
1864static void
1865_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1866{
1867 if (!ioc->msix_enable)
1868 return;
1869 pci_disable_msix(ioc->pdev);
1870 ioc->msix_enable = 0;
1871}
1872
1873/**
1874 * _base_enable_msix - enables msix, failback to io_apic
1875 * @ioc: per adapter object
1876 *
1877 */
1878static int
1879_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1880{
1881 struct msix_entry *entries, *a;
1882 int r;
1883 int i;
1884 u8 try_msix = 0;
1885
f92363d1
SR
1886 if (msix_disable == -1 || msix_disable == 0)
1887 try_msix = 1;
1888
1889 if (!try_msix)
1890 goto try_ioapic;
1891
1892 if (_base_check_enable_msix(ioc) != 0)
1893 goto try_ioapic;
1894
1895 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1896 ioc->msix_vector_count);
1897
9c500060
SR
1898 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1899 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1900 ioc->cpu_count, max_msix_vectors);
1901
9b05c91a
SR
1902 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1903 max_msix_vectors = 8;
1904
9c500060
SR
1905 if (max_msix_vectors > 0) {
1906 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1907 ioc->reply_queue_count);
1908 ioc->msix_vector_count = ioc->reply_queue_count;
9b05c91a
SR
1909 } else if (max_msix_vectors == 0)
1910 goto try_ioapic;
9c500060 1911
f92363d1
SR
1912 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1913 GFP_KERNEL);
1914 if (!entries) {
1915 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1916 "kcalloc failed @ at %s:%d/%s() !!!\n",
1917 ioc->name, __FILE__, __LINE__, __func__));
1918 goto try_ioapic;
1919 }
1920
1921 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1922 a->entry = i;
1923
6bfa6907 1924 r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
f92363d1
SR
1925 if (r) {
1926 dfailprintk(ioc, pr_info(MPT3SAS_FMT
6bfa6907 1927 "pci_enable_msix_exact failed (r=%d) !!!\n",
f92363d1
SR
1928 ioc->name, r));
1929 kfree(entries);
1930 goto try_ioapic;
1931 }
1932
1933 ioc->msix_enable = 1;
1934 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1935 r = _base_request_irq(ioc, i, a->vector);
1936 if (r) {
1937 _base_free_irq(ioc);
1938 _base_disable_msix(ioc);
1939 kfree(entries);
1940 goto try_ioapic;
1941 }
1942 }
1943
1944 kfree(entries);
1945 return 0;
1946
1947/* failback to io_apic interrupt routing */
1948 try_ioapic:
1949
9b05c91a 1950 ioc->reply_queue_count = 1;
f92363d1
SR
1951 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1952
1953 return r;
1954}
1955
580d4e31
SR
1956/**
1957 * mpt3sas_base_unmap_resources - free controller resources
1958 * @ioc: per adapter object
1959 */
1960void
1961mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
1962{
1963 struct pci_dev *pdev = ioc->pdev;
1964
1965 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
1966 ioc->name, __func__));
1967
1968 _base_free_irq(ioc);
1969 _base_disable_msix(ioc);
1970
1971 if (ioc->msix96_vector)
1972 kfree(ioc->replyPostRegisterIndex);
1973
1974 if (ioc->chip_phys) {
1975 iounmap(ioc->chip);
1976 ioc->chip_phys = 0;
1977 }
1978
1979 if (pci_is_enabled(pdev)) {
1980 pci_release_selected_regions(ioc->pdev, ioc->bars);
1981 pci_disable_pcie_error_reporting(pdev);
1982 pci_disable_device(pdev);
1983 }
1984}
1985
f92363d1
SR
1986/**
1987 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
1988 * @ioc: per adapter object
1989 *
1990 * Returns 0 for success, non-zero for failure.
1991 */
1992int
1993mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
1994{
1995 struct pci_dev *pdev = ioc->pdev;
1996 u32 memap_sz;
1997 u32 pio_sz;
1998 int i, r = 0;
1999 u64 pio_chip = 0;
2000 u64 chip_phys = 0;
2001 struct adapter_reply_queue *reply_q;
2002
2003 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2004 ioc->name, __func__));
2005
2006 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2007 if (pci_enable_device_mem(pdev)) {
2008 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2009 ioc->name);
cf9bd21a 2010 ioc->bars = 0;
f92363d1
SR
2011 return -ENODEV;
2012 }
2013
2014
2015 if (pci_request_selected_regions(pdev, ioc->bars,
d357e84d 2016 driver_name)) {
f92363d1
SR
2017 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2018 ioc->name);
cf9bd21a 2019 ioc->bars = 0;
f92363d1
SR
2020 r = -ENODEV;
2021 goto out_fail;
2022 }
2023
2024/* AER (Advanced Error Reporting) hooks */
2025 pci_enable_pcie_error_reporting(pdev);
2026
2027 pci_set_master(pdev);
2028
2029
2030 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2031 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2032 ioc->name, pci_name(pdev));
2033 r = -ENODEV;
2034 goto out_fail;
2035 }
2036
5aeeb78a
SR
2037 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2038 (!memap_sz || !pio_sz); i++) {
f92363d1
SR
2039 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2040 if (pio_sz)
2041 continue;
2042 pio_chip = (u64)pci_resource_start(pdev, i);
2043 pio_sz = pci_resource_len(pdev, i);
2044 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2045 if (memap_sz)
2046 continue;
2047 ioc->chip_phys = pci_resource_start(pdev, i);
2048 chip_phys = (u64)ioc->chip_phys;
2049 memap_sz = pci_resource_len(pdev, i);
2050 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
f92363d1
SR
2051 }
2052 }
2053
5aeeb78a
SR
2054 if (ioc->chip == NULL) {
2055 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2056 " or resource not found\n", ioc->name);
2057 r = -EINVAL;
2058 goto out_fail;
2059 }
2060
f92363d1 2061 _base_mask_interrupts(ioc);
9b05c91a
SR
2062
2063 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2064 if (r)
2065 goto out_fail;
2066
2067 if (!ioc->rdpq_array_enable_assigned) {
2068 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2069 ioc->rdpq_array_enable_assigned = 1;
2070 }
2071
f92363d1
SR
2072 r = _base_enable_msix(ioc);
2073 if (r)
2074 goto out_fail;
2075
fb77bb53
SR
2076 /* Use the Combined reply queue feature only for SAS3 C0 & higher
2077 * revision HBAs and also only when reply queue count is greater than 8
2078 */
2079 if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2080 /* Determine the Supplemental Reply Post Host Index Registers
2081 * Addresse. Supplemental Reply Post Host Index Registers
2082 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2083 * each register is at offset bytes of
2084 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2085 */
2086 ioc->replyPostRegisterIndex = kcalloc(
2087 MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2088 sizeof(resource_size_t *), GFP_KERNEL);
2089 if (!ioc->replyPostRegisterIndex) {
2090 dfailprintk(ioc, printk(MPT3SAS_FMT
2091 "allocation for reply Post Register Index failed!!!\n",
2092 ioc->name));
2093 r = -ENOMEM;
2094 goto out_fail;
2095 }
2096
2097 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2098 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2099 ((u8 *)&ioc->chip->Doorbell +
2100 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2101 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2102 }
2103 } else
2104 ioc->msix96_vector = 0;
2105
f92363d1
SR
2106 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2107 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2108 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2109 "IO-APIC enabled"), reply_q->vector);
2110
2111 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2112 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2113 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2114 ioc->name, (unsigned long long)pio_chip, pio_sz);
2115
2116 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2117 pci_save_state(pdev);
2118 return 0;
2119
2120 out_fail:
580d4e31 2121 mpt3sas_base_unmap_resources(ioc);
f92363d1
SR
2122 return r;
2123}
2124
2125/**
2126 * mpt3sas_base_get_msg_frame - obtain request mf pointer
2127 * @ioc: per adapter object
2128 * @smid: system request message index(smid zero is invalid)
2129 *
2130 * Returns virt pointer to message frame.
2131 */
2132void *
2133mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2134{
2135 return (void *)(ioc->request + (smid * ioc->request_sz));
2136}
2137
2138/**
2139 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2140 * @ioc: per adapter object
2141 * @smid: system request message index
2142 *
2143 * Returns virt pointer to sense buffer.
2144 */
2145void *
2146mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2147{
2148 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2149}
2150
2151/**
2152 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2153 * @ioc: per adapter object
2154 * @smid: system request message index
2155 *
2156 * Returns phys pointer to the low 32bit address of the sense buffer.
2157 */
2158__le32
2159mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2160{
2161 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2162 SCSI_SENSE_BUFFERSIZE));
2163}
2164
2165/**
2166 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2167 * @ioc: per adapter object
2168 * @phys_addr: lower 32 physical addr of the reply
2169 *
2170 * Converts 32bit lower physical addr into a virt address.
2171 */
2172void *
2173mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2174{
2175 if (!phys_addr)
2176 return NULL;
2177 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2178}
2179
2180/**
2181 * mpt3sas_base_get_smid - obtain a free smid from internal queue
2182 * @ioc: per adapter object
2183 * @cb_idx: callback index
2184 *
2185 * Returns smid (zero is invalid)
2186 */
2187u16
2188mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2189{
2190 unsigned long flags;
2191 struct request_tracker *request;
2192 u16 smid;
2193
2194 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2195 if (list_empty(&ioc->internal_free_list)) {
2196 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2197 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2198 ioc->name, __func__);
2199 return 0;
2200 }
2201
2202 request = list_entry(ioc->internal_free_list.next,
2203 struct request_tracker, tracker_list);
2204 request->cb_idx = cb_idx;
2205 smid = request->smid;
2206 list_del(&request->tracker_list);
2207 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2208 return smid;
2209}
2210
2211/**
2212 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2213 * @ioc: per adapter object
2214 * @cb_idx: callback index
2215 * @scmd: pointer to scsi command object
2216 *
2217 * Returns smid (zero is invalid)
2218 */
2219u16
2220mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2221 struct scsi_cmnd *scmd)
2222{
2223 unsigned long flags;
2224 struct scsiio_tracker *request;
2225 u16 smid;
2226
2227 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2228 if (list_empty(&ioc->free_list)) {
2229 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2230 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2231 ioc->name, __func__);
2232 return 0;
2233 }
2234
2235 request = list_entry(ioc->free_list.next,
2236 struct scsiio_tracker, tracker_list);
2237 request->scmd = scmd;
2238 request->cb_idx = cb_idx;
2239 smid = request->smid;
2240 list_del(&request->tracker_list);
2241 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2242 return smid;
2243}
2244
2245/**
2246 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2247 * @ioc: per adapter object
2248 * @cb_idx: callback index
2249 *
2250 * Returns smid (zero is invalid)
2251 */
2252u16
2253mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2254{
2255 unsigned long flags;
2256 struct request_tracker *request;
2257 u16 smid;
2258
2259 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2260 if (list_empty(&ioc->hpr_free_list)) {
2261 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2262 return 0;
2263 }
2264
2265 request = list_entry(ioc->hpr_free_list.next,
2266 struct request_tracker, tracker_list);
2267 request->cb_idx = cb_idx;
2268 smid = request->smid;
2269 list_del(&request->tracker_list);
2270 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2271 return smid;
2272}
2273
2274/**
2275 * mpt3sas_base_free_smid - put smid back on free_list
2276 * @ioc: per adapter object
2277 * @smid: system request message index
2278 *
2279 * Return nothing.
2280 */
2281void
2282mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2283{
2284 unsigned long flags;
2285 int i;
2286 struct chain_tracker *chain_req, *next;
2287
2288 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2289 if (smid < ioc->hi_priority_smid) {
2290 /* scsiio queue */
2291 i = smid - 1;
2292 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2293 list_for_each_entry_safe(chain_req, next,
2294 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2295 list_del_init(&chain_req->tracker_list);
2296 list_add(&chain_req->tracker_list,
2297 &ioc->free_chain_list);
2298 }
2299 }
2300 ioc->scsi_lookup[i].cb_idx = 0xFF;
2301 ioc->scsi_lookup[i].scmd = NULL;
2302 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2303 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2304
2305 /*
2306 * See _wait_for_commands_to_complete() call with regards
2307 * to this code.
2308 */
2309 if (ioc->shost_recovery && ioc->pending_io_count) {
2310 if (ioc->pending_io_count == 1)
2311 wake_up(&ioc->reset_wq);
2312 ioc->pending_io_count--;
2313 }
2314 return;
2315 } else if (smid < ioc->internal_smid) {
2316 /* hi-priority */
2317 i = smid - ioc->hi_priority_smid;
2318 ioc->hpr_lookup[i].cb_idx = 0xFF;
2319 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2320 } else if (smid <= ioc->hba_queue_depth) {
2321 /* internal queue */
2322 i = smid - ioc->internal_smid;
2323 ioc->internal_lookup[i].cb_idx = 0xFF;
2324 list_add(&ioc->internal_lookup[i].tracker_list,
2325 &ioc->internal_free_list);
2326 }
2327 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2328}
2329
2330/**
2331 * _base_writeq - 64 bit write to MMIO
2332 * @ioc: per adapter object
2333 * @b: data payload
2334 * @addr: address in MMIO space
2335 * @writeq_lock: spin lock
2336 *
2337 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2338 * care of 32 bit environment where its not quarenteed to send the entire word
2339 * in one transfer.
2340 */
2341#if defined(writeq) && defined(CONFIG_64BIT)
2342static inline void
2343_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2344{
2345 writeq(cpu_to_le64(b), addr);
2346}
2347#else
2348static inline void
2349_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2350{
2351 unsigned long flags;
2352 __u64 data_out = cpu_to_le64(b);
2353
2354 spin_lock_irqsave(writeq_lock, flags);
2355 writel((u32)(data_out), addr);
2356 writel((u32)(data_out >> 32), (addr + 4));
2357 spin_unlock_irqrestore(writeq_lock, flags);
2358}
2359#endif
2360
2361static inline u8
2362_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2363{
2364 return ioc->cpu_msix_table[raw_smp_processor_id()];
2365}
2366
2367/**
2368 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2369 * @ioc: per adapter object
2370 * @smid: system request message index
2371 * @handle: device handle
2372 *
2373 * Return nothing.
2374 */
2375void
2376mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2377{
2378 Mpi2RequestDescriptorUnion_t descriptor;
2379 u64 *request = (u64 *)&descriptor;
2380
2381
2382 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2383 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2384 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2385 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2386 descriptor.SCSIIO.LMID = 0;
2387 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2388 &ioc->scsi_lookup_lock);
2389}
2390
2391/**
2392 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2393 * @ioc: per adapter object
2394 * @smid: system request message index
2395 * @handle: device handle
2396 *
2397 * Return nothing.
2398 */
2399void
2400mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2401 u16 handle)
2402{
2403 Mpi2RequestDescriptorUnion_t descriptor;
2404 u64 *request = (u64 *)&descriptor;
2405
2406 descriptor.SCSIIO.RequestFlags =
2407 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2408 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2409 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2410 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2411 descriptor.SCSIIO.LMID = 0;
2412 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2413 &ioc->scsi_lookup_lock);
2414}
2415
2416/**
2417 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2418 * @ioc: per adapter object
2419 * @smid: system request message index
2420 *
2421 * Return nothing.
2422 */
2423void
2424mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2425{
2426 Mpi2RequestDescriptorUnion_t descriptor;
2427 u64 *request = (u64 *)&descriptor;
2428
2429 descriptor.HighPriority.RequestFlags =
2430 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2431 descriptor.HighPriority.MSIxIndex = 0;
2432 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2433 descriptor.HighPriority.LMID = 0;
2434 descriptor.HighPriority.Reserved1 = 0;
2435 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2436 &ioc->scsi_lookup_lock);
2437}
2438
2439/**
2440 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2441 * @ioc: per adapter object
2442 * @smid: system request message index
2443 *
2444 * Return nothing.
2445 */
2446void
2447mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2448{
2449 Mpi2RequestDescriptorUnion_t descriptor;
2450 u64 *request = (u64 *)&descriptor;
2451
2452 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2453 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2454 descriptor.Default.SMID = cpu_to_le16(smid);
2455 descriptor.Default.LMID = 0;
2456 descriptor.Default.DescriptorTypeDependent = 0;
2457 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2458 &ioc->scsi_lookup_lock);
2459}
2460
1117b31a
SR
2461/**
2462 * _base_display_intel_branding - Display branding string
2463 * @ioc: per adapter object
2464 *
2465 * Return nothing.
2466 */
2467static void
2468_base_display_intel_branding(struct MPT3SAS_ADAPTER *ioc)
2469{
2470 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2471 return;
2472
2473 switch (ioc->pdev->device) {
2474 case MPI25_MFGPAGE_DEVID_SAS3008:
2475 switch (ioc->pdev->subsystem_device) {
2476 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2477 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2478 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2479 break;
2480
2481 case MPT3SAS_INTEL_RS3GC008_SSDID:
2482 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2483 MPT3SAS_INTEL_RS3GC008_BRANDING);
2484 break;
2485 case MPT3SAS_INTEL_RS3FC044_SSDID:
2486 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2487 MPT3SAS_INTEL_RS3FC044_BRANDING);
2488 break;
2489 case MPT3SAS_INTEL_RS3UC080_SSDID:
2490 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2491 MPT3SAS_INTEL_RS3UC080_BRANDING);
2492 break;
2493 default:
2494 pr_info(MPT3SAS_FMT
2495 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2496 ioc->name, ioc->pdev->subsystem_device);
2497 break;
2498 }
2499 break;
2500 default:
2501 pr_info(MPT3SAS_FMT
2502 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2503 ioc->name, ioc->pdev->subsystem_device);
2504 break;
2505 }
2506}
2507
f92363d1
SR
2508
2509
fb84dfc4
SR
2510/**
2511 * _base_display_dell_branding - Display branding string
2512 * @ioc: per adapter object
2513 *
2514 * Return nothing.
2515 */
2516static void
2517_base_display_dell_branding(struct MPT3SAS_ADAPTER *ioc)
2518{
2519 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_DELL)
2520 return;
2521
2522 switch (ioc->pdev->device) {
2523 case MPI25_MFGPAGE_DEVID_SAS3008:
2524 switch (ioc->pdev->subsystem_device) {
2525 case MPT3SAS_DELL_12G_HBA_SSDID:
2526 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2527 MPT3SAS_DELL_12G_HBA_BRANDING);
2528 break;
2529 default:
2530 pr_info(MPT3SAS_FMT
2531 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", ioc->name,
2532 ioc->pdev->subsystem_device);
2533 break;
2534 }
2535 break;
2536 default:
2537 pr_info(MPT3SAS_FMT
2538 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n", ioc->name,
2539 ioc->pdev->subsystem_device);
2540 break;
2541 }
2542}
2543
38e4141e
SR
2544/**
2545 * _base_display_cisco_branding - Display branding string
2546 * @ioc: per adapter object
2547 *
2548 * Return nothing.
2549 */
2550static void
2551_base_display_cisco_branding(struct MPT3SAS_ADAPTER *ioc)
2552{
2553 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_CISCO)
2554 return;
2555
2556 switch (ioc->pdev->device) {
2557 case MPI25_MFGPAGE_DEVID_SAS3008:
2558 switch (ioc->pdev->subsystem_device) {
d8eb4a47 2559 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
38e4141e 2560 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
d8eb4a47
SR
2561 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2562 break;
2563 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2564 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2565 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2566 break;
2567 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2568 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2569 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
38e4141e
SR
2570 break;
2571 default:
2572 pr_info(MPT3SAS_FMT
2573 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2574 ioc->name, ioc->pdev->subsystem_device);
2575 break;
2576 }
2577 break;
d8eb4a47
SR
2578 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2579 switch (ioc->pdev->subsystem_device) {
2580 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2581 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2582 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2583 break;
2584 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2585 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2586 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
2587 break;
2588 default:
2589 pr_info(MPT3SAS_FMT
2590 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2591 ioc->name, ioc->pdev->subsystem_device);
2592 break;
2593 }
2594 break;
38e4141e
SR
2595 default:
2596 pr_info(MPT3SAS_FMT
2597 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2598 ioc->name, ioc->pdev->subsystem_device);
2599 break;
2600 }
2601}
fb84dfc4 2602
f92363d1
SR
2603/**
2604 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2605 * @ioc: per adapter object
2606 *
2607 * Return nothing.
2608 */
2609static void
2610_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2611{
2612 int i = 0;
2613 char desc[16];
2614 u32 iounit_pg1_flags;
2615 u32 bios_version;
2616
2617 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2618 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2619 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2620 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2621 ioc->name, desc,
2622 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2623 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2624 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2625 ioc->facts.FWVersion.Word & 0x000000FF,
2626 ioc->pdev->revision,
2627 (bios_version & 0xFF000000) >> 24,
2628 (bios_version & 0x00FF0000) >> 16,
2629 (bios_version & 0x0000FF00) >> 8,
2630 bios_version & 0x000000FF);
2631
1117b31a 2632 _base_display_intel_branding(ioc);
fb84dfc4 2633 _base_display_dell_branding(ioc);
38e4141e 2634 _base_display_cisco_branding(ioc);
1117b31a 2635
f92363d1
SR
2636 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2637
2638 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2639 pr_info("Initiator");
2640 i++;
2641 }
2642
2643 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2644 pr_info("%sTarget", i ? "," : "");
2645 i++;
2646 }
2647
2648 i = 0;
2649 pr_info("), ");
2650 pr_info("Capabilities=(");
2651
2652 if (ioc->facts.IOCCapabilities &
2653 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2654 pr_info("Raid");
2655 i++;
2656 }
2657
2658 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2659 pr_info("%sTLR", i ? "," : "");
2660 i++;
2661 }
2662
2663 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2664 pr_info("%sMulticast", i ? "," : "");
2665 i++;
2666 }
2667
2668 if (ioc->facts.IOCCapabilities &
2669 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2670 pr_info("%sBIDI Target", i ? "," : "");
2671 i++;
2672 }
2673
2674 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2675 pr_info("%sEEDP", i ? "," : "");
2676 i++;
2677 }
2678
2679 if (ioc->facts.IOCCapabilities &
2680 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2681 pr_info("%sSnapshot Buffer", i ? "," : "");
2682 i++;
2683 }
2684
2685 if (ioc->facts.IOCCapabilities &
2686 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2687 pr_info("%sDiag Trace Buffer", i ? "," : "");
2688 i++;
2689 }
2690
2691 if (ioc->facts.IOCCapabilities &
2692 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2693 pr_info("%sDiag Extended Buffer", i ? "," : "");
2694 i++;
2695 }
2696
2697 if (ioc->facts.IOCCapabilities &
2698 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2699 pr_info("%sTask Set Full", i ? "," : "");
2700 i++;
2701 }
2702
2703 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2704 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2705 pr_info("%sNCQ", i ? "," : "");
2706 i++;
2707 }
2708
2709 pr_info(")\n");
2710}
2711
2712/**
2713 * mpt3sas_base_update_missing_delay - change the missing delay timers
2714 * @ioc: per adapter object
2715 * @device_missing_delay: amount of time till device is reported missing
2716 * @io_missing_delay: interval IO is returned when there is a missing device
2717 *
2718 * Return nothing.
2719 *
2720 * Passed on the command line, this function will modify the device missing
2721 * delay, as well as the io missing delay. This should be called at driver
2722 * load time.
2723 */
2724void
2725mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2726 u16 device_missing_delay, u8 io_missing_delay)
2727{
2728 u16 dmd, dmd_new, dmd_orignal;
2729 u8 io_missing_delay_original;
2730 u16 sz;
2731 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2732 Mpi2ConfigReply_t mpi_reply;
2733 u8 num_phys = 0;
2734 u16 ioc_status;
2735
2736 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2737 if (!num_phys)
2738 return;
2739
2740 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2741 sizeof(Mpi2SasIOUnit1PhyData_t));
2742 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2743 if (!sas_iounit_pg1) {
2744 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2745 ioc->name, __FILE__, __LINE__, __func__);
2746 goto out;
2747 }
2748 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2749 sas_iounit_pg1, sz))) {
2750 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2751 ioc->name, __FILE__, __LINE__, __func__);
2752 goto out;
2753 }
2754 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2755 MPI2_IOCSTATUS_MASK;
2756 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2757 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2758 ioc->name, __FILE__, __LINE__, __func__);
2759 goto out;
2760 }
2761
2762 /* device missing delay */
2763 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2764 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2765 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2766 else
2767 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2768 dmd_orignal = dmd;
2769 if (device_missing_delay > 0x7F) {
2770 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2771 device_missing_delay;
2772 dmd = dmd / 16;
2773 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2774 } else
2775 dmd = device_missing_delay;
2776 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2777
2778 /* io missing delay */
2779 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2780 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2781
2782 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2783 sz)) {
2784 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2785 dmd_new = (dmd &
2786 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2787 else
2788 dmd_new =
2789 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2790 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2791 ioc->name, dmd_orignal, dmd_new);
2792 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2793 ioc->name, io_missing_delay_original,
2794 io_missing_delay);
2795 ioc->device_missing_delay = dmd_new;
2796 ioc->io_missing_delay = io_missing_delay;
2797 }
2798
2799out:
2800 kfree(sas_iounit_pg1);
2801}
2802/**
2803 * _base_static_config_pages - static start of day config pages
2804 * @ioc: per adapter object
2805 *
2806 * Return nothing.
2807 */
2808static void
2809_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2810{
2811 Mpi2ConfigReply_t mpi_reply;
2812 u32 iounit_pg1_flags;
2813
2814 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2815 if (ioc->ir_firmware)
2816 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2817 &ioc->manu_pg10);
2818
2819 /*
2820 * Ensure correct T10 PI operation if vendor left EEDPTagMode
2821 * flag unset in NVDATA.
2822 */
2823 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2824 if (ioc->manu_pg11.EEDPTagMode == 0) {
2825 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2826 ioc->name);
2827 ioc->manu_pg11.EEDPTagMode &= ~0x3;
2828 ioc->manu_pg11.EEDPTagMode |= 0x1;
2829 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
2830 &ioc->manu_pg11);
2831 }
2832
2833 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2834 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2835 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2836 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2837 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2d8ce8c9 2838 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
f92363d1
SR
2839 _base_display_ioc_capabilities(ioc);
2840
2841 /*
2842 * Enable task_set_full handling in iounit_pg1 when the
2843 * facts capabilities indicate that its supported.
2844 */
2845 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2846 if ((ioc->facts.IOCCapabilities &
2847 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2848 iounit_pg1_flags &=
2849 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2850 else
2851 iounit_pg1_flags |=
2852 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2853 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2854 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2d8ce8c9
SR
2855
2856 if (ioc->iounit_pg8.NumSensors)
2857 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
f92363d1
SR
2858}
2859
2860/**
2861 * _base_release_memory_pools - release memory
2862 * @ioc: per adapter object
2863 *
2864 * Free memory allocated from _base_allocate_memory_pools.
2865 *
2866 * Return nothing.
2867 */
2868static void
2869_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
2870{
9b05c91a
SR
2871 int i = 0;
2872 struct reply_post_struct *rps;
f92363d1
SR
2873
2874 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2875 __func__));
2876
2877 if (ioc->request) {
2878 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2879 ioc->request, ioc->request_dma);
2880 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2881 "request_pool(0x%p): free\n",
2882 ioc->name, ioc->request));
2883 ioc->request = NULL;
2884 }
2885
2886 if (ioc->sense) {
2887 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2888 if (ioc->sense_dma_pool)
2889 pci_pool_destroy(ioc->sense_dma_pool);
2890 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2891 "sense_pool(0x%p): free\n",
2892 ioc->name, ioc->sense));
2893 ioc->sense = NULL;
2894 }
2895
2896 if (ioc->reply) {
2897 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2898 if (ioc->reply_dma_pool)
2899 pci_pool_destroy(ioc->reply_dma_pool);
2900 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2901 "reply_pool(0x%p): free\n",
2902 ioc->name, ioc->reply));
2903 ioc->reply = NULL;
2904 }
2905
2906 if (ioc->reply_free) {
2907 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2908 ioc->reply_free_dma);
2909 if (ioc->reply_free_dma_pool)
2910 pci_pool_destroy(ioc->reply_free_dma_pool);
2911 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2912 "reply_free_pool(0x%p): free\n",
2913 ioc->name, ioc->reply_free));
2914 ioc->reply_free = NULL;
2915 }
2916
9b05c91a
SR
2917 if (ioc->reply_post) {
2918 do {
2919 rps = &ioc->reply_post[i];
2920 if (rps->reply_post_free) {
2921 pci_pool_free(
2922 ioc->reply_post_free_dma_pool,
2923 rps->reply_post_free,
2924 rps->reply_post_free_dma);
2925 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2926 "reply_post_free_pool(0x%p): free\n",
2927 ioc->name, rps->reply_post_free));
2928 rps->reply_post_free = NULL;
2929 }
2930 } while (ioc->rdpq_array_enable &&
2931 (++i < ioc->reply_queue_count));
2932
f92363d1
SR
2933 if (ioc->reply_post_free_dma_pool)
2934 pci_pool_destroy(ioc->reply_post_free_dma_pool);
9b05c91a 2935 kfree(ioc->reply_post);
f92363d1
SR
2936 }
2937
2938 if (ioc->config_page) {
2939 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2940 "config_page(0x%p): free\n", ioc->name,
2941 ioc->config_page));
2942 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2943 ioc->config_page, ioc->config_page_dma);
2944 }
2945
2946 if (ioc->scsi_lookup) {
2947 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2948 ioc->scsi_lookup = NULL;
2949 }
2950 kfree(ioc->hpr_lookup);
2951 kfree(ioc->internal_lookup);
2952 if (ioc->chain_lookup) {
2953 for (i = 0; i < ioc->chain_depth; i++) {
2954 if (ioc->chain_lookup[i].chain_buffer)
2955 pci_pool_free(ioc->chain_dma_pool,
2956 ioc->chain_lookup[i].chain_buffer,
2957 ioc->chain_lookup[i].chain_buffer_dma);
2958 }
2959 if (ioc->chain_dma_pool)
2960 pci_pool_destroy(ioc->chain_dma_pool);
2961 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2962 ioc->chain_lookup = NULL;
2963 }
2964}
2965
2966/**
2967 * _base_allocate_memory_pools - allocate start of day memory pools
2968 * @ioc: per adapter object
2969 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2970 *
2971 * Returns 0 success, anything else error
2972 */
2973static int
2974_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
2975{
2976 struct mpt3sas_facts *facts;
2977 u16 max_sge_elements;
2978 u16 chains_needed_per_io;
2979 u32 sz, total_sz, reply_post_free_sz;
2980 u32 retry_sz;
2981 u16 max_request_credit;
2982 unsigned short sg_tablesize;
2983 u16 sge_size;
2984 int i;
2985
2986 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2987 __func__));
2988
2989
2990 retry_sz = 0;
2991 facts = &ioc->facts;
2992
2993 /* command line tunables for max sgl entries */
2994 if (max_sgl_entries != -1)
2995 sg_tablesize = max_sgl_entries;
471ef9d4
SR
2996 else {
2997 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
2998 sg_tablesize = MPT2SAS_SG_DEPTH;
2999 else
3000 sg_tablesize = MPT3SAS_SG_DEPTH;
3001 }
f92363d1 3002
8a7e4c24
SR
3003 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3004 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3005 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
ad666a0f
SR
3006 sg_tablesize = min_t(unsigned short, sg_tablesize,
3007 SCSI_MAX_SG_CHAIN_SEGMENTS);
3008 pr_warn(MPT3SAS_FMT
3009 "sg_tablesize(%u) is bigger than kernel"
3010 " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
8a7e4c24 3011 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
ad666a0f 3012 }
f92363d1
SR
3013 ioc->shost->sg_tablesize = sg_tablesize;
3014
3015 ioc->hi_priority_depth = facts->HighPriorityCredit;
3016 ioc->internal_depth = ioc->hi_priority_depth + (5);
3017 /* command line tunables for max controller queue depth */
3018 if (max_queue_depth != -1 && max_queue_depth != 0) {
3019 max_request_credit = min_t(u16, max_queue_depth +
3020 ioc->hi_priority_depth + ioc->internal_depth,
3021 facts->RequestCredit);
3022 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3023 max_request_credit = MAX_HBA_QUEUE_DEPTH;
3024 } else
3025 max_request_credit = min_t(u16, facts->RequestCredit,
3026 MAX_HBA_QUEUE_DEPTH);
3027
3028 ioc->hba_queue_depth = max_request_credit;
3029
3030 /* request frame size */
3031 ioc->request_sz = facts->IOCRequestFrameSize * 4;
3032
3033 /* reply frame size */
3034 ioc->reply_sz = facts->ReplyFrameSize * 4;
3035
3036 /* calculate the max scatter element size */
3037 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3038
3039 retry_allocation:
3040 total_sz = 0;
3041 /* calculate number of sg elements left over in the 1st frame */
3042 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3043 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3044 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3045
3046 /* now do the same for a chain buffer */
3047 max_sge_elements = ioc->request_sz - sge_size;
3048 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3049
3050 /*
3051 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3052 */
3053 chains_needed_per_io = ((ioc->shost->sg_tablesize -
3054 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3055 + 1;
3056 if (chains_needed_per_io > facts->MaxChainDepth) {
3057 chains_needed_per_io = facts->MaxChainDepth;
3058 ioc->shost->sg_tablesize = min_t(u16,
3059 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3060 * chains_needed_per_io), ioc->shost->sg_tablesize);
3061 }
3062 ioc->chains_needed_per_io = chains_needed_per_io;
3063
3064 /* reply free queue sizing - taking into account for 64 FW events */
3065 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3066
3067 /* calculate reply descriptor post queue depth */
3068 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3069 ioc->reply_free_queue_depth + 1 ;
3070 /* align the reply post queue on the next 16 count boundary */
3071 if (ioc->reply_post_queue_depth % 16)
3072 ioc->reply_post_queue_depth += 16 -
3073 (ioc->reply_post_queue_depth % 16);
3074
3075
3076 if (ioc->reply_post_queue_depth >
3077 facts->MaxReplyDescriptorPostQueueDepth) {
3078 ioc->reply_post_queue_depth =
3079 facts->MaxReplyDescriptorPostQueueDepth -
3080 (facts->MaxReplyDescriptorPostQueueDepth % 16);
3081 ioc->hba_queue_depth =
3082 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3083 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3084 }
3085
3086 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3087 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3088 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3089 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3090 ioc->chains_needed_per_io));
3091
9b05c91a
SR
3092 /* reply post queue, 16 byte align */
3093 reply_post_free_sz = ioc->reply_post_queue_depth *
3094 sizeof(Mpi2DefaultReplyDescriptor_t);
3095
3096 sz = reply_post_free_sz;
3097 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3098 sz *= ioc->reply_queue_count;
3099
3100 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3101 (ioc->reply_queue_count):1,
3102 sizeof(struct reply_post_struct), GFP_KERNEL);
3103
3104 if (!ioc->reply_post) {
3105 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3106 ioc->name);
3107 goto out;
3108 }
3109 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3110 ioc->pdev, sz, 16, 0);
3111 if (!ioc->reply_post_free_dma_pool) {
3112 pr_err(MPT3SAS_FMT
3113 "reply_post_free pool: pci_pool_create failed\n",
3114 ioc->name);
3115 goto out;
3116 }
3117 i = 0;
3118 do {
3119 ioc->reply_post[i].reply_post_free =
3120 pci_pool_alloc(ioc->reply_post_free_dma_pool,
3121 GFP_KERNEL,
3122 &ioc->reply_post[i].reply_post_free_dma);
3123 if (!ioc->reply_post[i].reply_post_free) {
3124 pr_err(MPT3SAS_FMT
3125 "reply_post_free pool: pci_pool_alloc failed\n",
3126 ioc->name);
3127 goto out;
3128 }
3129 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3130 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3131 "reply post free pool (0x%p): depth(%d),"
3132 "element_size(%d), pool_size(%d kB)\n", ioc->name,
3133 ioc->reply_post[i].reply_post_free,
3134 ioc->reply_post_queue_depth, 8, sz/1024));
3135 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3136 "reply_post_free_dma = (0x%llx)\n", ioc->name,
3137 (unsigned long long)
3138 ioc->reply_post[i].reply_post_free_dma));
3139 total_sz += sz;
3140 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3141
3142 if (ioc->dma_mask == 64) {
3143 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3144 pr_warn(MPT3SAS_FMT
3145 "no suitable consistent DMA mask for %s\n",
3146 ioc->name, pci_name(ioc->pdev));
3147 goto out;
3148 }
3149 }
3150
f92363d1
SR
3151 ioc->scsiio_depth = ioc->hba_queue_depth -
3152 ioc->hi_priority_depth - ioc->internal_depth;
3153
3154 /* set the scsi host can_queue depth
3155 * with some internal commands that could be outstanding
3156 */
3157 ioc->shost->can_queue = ioc->scsiio_depth;
3158 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3159 "scsi host: can_queue depth (%d)\n",
3160 ioc->name, ioc->shost->can_queue));
3161
3162
3163 /* contiguous pool for request and chains, 16 byte align, one extra "
3164 * "frame for smid=0
3165 */
3166 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3167 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3168
3169 /* hi-priority queue */
3170 sz += (ioc->hi_priority_depth * ioc->request_sz);
3171
3172 /* internal queue */
3173 sz += (ioc->internal_depth * ioc->request_sz);
3174
3175 ioc->request_dma_sz = sz;
3176 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3177 if (!ioc->request) {
3178 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3179 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3180 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3181 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3182 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3183 goto out;
3184 retry_sz += 64;
3185 ioc->hba_queue_depth = max_request_credit - retry_sz;
3186 goto retry_allocation;
3187 }
3188
3189 if (retry_sz)
3190 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3191 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3192 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3193 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3194
3195 /* hi-priority queue */
3196 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3197 ioc->request_sz);
3198 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3199 ioc->request_sz);
3200
3201 /* internal queue */
3202 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3203 ioc->request_sz);
3204 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3205 ioc->request_sz);
3206
3207 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3208 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3209 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3210 (ioc->hba_queue_depth * ioc->request_sz)/1024));
3211
3212 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3213 ioc->name, (unsigned long long) ioc->request_dma));
3214 total_sz += sz;
3215
3216 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3217 ioc->scsi_lookup_pages = get_order(sz);
3218 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3219 GFP_KERNEL, ioc->scsi_lookup_pages);
3220 if (!ioc->scsi_lookup) {
3221 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3222 ioc->name, (int)sz);
3223 goto out;
3224 }
3225
3226 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3227 ioc->name, ioc->request, ioc->scsiio_depth));
3228
3229 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3230 sz = ioc->chain_depth * sizeof(struct chain_tracker);
3231 ioc->chain_pages = get_order(sz);
3232 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3233 GFP_KERNEL, ioc->chain_pages);
3234 if (!ioc->chain_lookup) {
3235 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3236 ioc->name);
3237 goto out;
3238 }
3239 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3240 ioc->request_sz, 16, 0);
3241 if (!ioc->chain_dma_pool) {
3242 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3243 ioc->name);
3244 goto out;
3245 }
3246 for (i = 0; i < ioc->chain_depth; i++) {
3247 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3248 ioc->chain_dma_pool , GFP_KERNEL,
3249 &ioc->chain_lookup[i].chain_buffer_dma);
3250 if (!ioc->chain_lookup[i].chain_buffer) {
3251 ioc->chain_depth = i;
3252 goto chain_done;
3253 }
3254 total_sz += ioc->request_sz;
3255 }
3256 chain_done:
3257 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3258 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3259 ioc->name, ioc->chain_depth, ioc->request_sz,
3260 ((ioc->chain_depth * ioc->request_sz))/1024));
3261
3262 /* initialize hi-priority queue smid's */
3263 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3264 sizeof(struct request_tracker), GFP_KERNEL);
3265 if (!ioc->hpr_lookup) {
3266 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3267 ioc->name);
3268 goto out;
3269 }
3270 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3271 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3272 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3273 ioc->name, ioc->hi_priority,
3274 ioc->hi_priority_depth, ioc->hi_priority_smid));
3275
3276 /* initialize internal queue smid's */
3277 ioc->internal_lookup = kcalloc(ioc->internal_depth,
3278 sizeof(struct request_tracker), GFP_KERNEL);
3279 if (!ioc->internal_lookup) {
3280 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3281 ioc->name);
3282 goto out;
3283 }
3284 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3285 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3286 "internal(0x%p): depth(%d), start smid(%d)\n",
3287 ioc->name, ioc->internal,
3288 ioc->internal_depth, ioc->internal_smid));
3289
3290 /* sense buffers, 4 byte align */
3291 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3292 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3293 0);
3294 if (!ioc->sense_dma_pool) {
3295 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3296 ioc->name);
3297 goto out;
3298 }
3299 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3300 &ioc->sense_dma);
3301 if (!ioc->sense) {
3302 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3303 ioc->name);
3304 goto out;
3305 }
3306 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3307 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3308 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3309 SCSI_SENSE_BUFFERSIZE, sz/1024));
3310 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3311 ioc->name, (unsigned long long)ioc->sense_dma));
3312 total_sz += sz;
3313
3314 /* reply pool, 4 byte align */
3315 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3316 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3317 0);
3318 if (!ioc->reply_dma_pool) {
3319 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3320 ioc->name);
3321 goto out;
3322 }
3323 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3324 &ioc->reply_dma);
3325 if (!ioc->reply) {
3326 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3327 ioc->name);
3328 goto out;
3329 }
3330 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3331 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3332 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3333 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3334 ioc->name, ioc->reply,
3335 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3336 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3337 ioc->name, (unsigned long long)ioc->reply_dma));
3338 total_sz += sz;
3339
3340 /* reply free queue, 16 byte align */
3341 sz = ioc->reply_free_queue_depth * 4;
3342 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3343 ioc->pdev, sz, 16, 0);
3344 if (!ioc->reply_free_dma_pool) {
3345 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3346 ioc->name);
3347 goto out;
3348 }
3349 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3350 &ioc->reply_free_dma);
3351 if (!ioc->reply_free) {
3352 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3353 ioc->name);
3354 goto out;
3355 }
3356 memset(ioc->reply_free, 0, sz);
3357 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3358 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3359 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3360 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3361 "reply_free_dma (0x%llx)\n",
3362 ioc->name, (unsigned long long)ioc->reply_free_dma));
3363 total_sz += sz;
3364
f92363d1
SR
3365 ioc->config_page_sz = 512;
3366 ioc->config_page = pci_alloc_consistent(ioc->pdev,
3367 ioc->config_page_sz, &ioc->config_page_dma);
3368 if (!ioc->config_page) {
3369 pr_err(MPT3SAS_FMT
3370 "config page: pci_pool_alloc failed\n",
3371 ioc->name);
3372 goto out;
3373 }
3374 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3375 "config page(0x%p): size(%d)\n",
3376 ioc->name, ioc->config_page, ioc->config_page_sz));
3377 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3378 ioc->name, (unsigned long long)ioc->config_page_dma));
3379 total_sz += ioc->config_page_sz;
3380
3381 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3382 ioc->name, total_sz/1024);
3383 pr_info(MPT3SAS_FMT
3384 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3385 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3386 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3387 ioc->name, ioc->shost->sg_tablesize);
3388 return 0;
3389
3390 out:
3391 return -ENOMEM;
3392}
3393
3394/**
3395 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3396 * @ioc: Pointer to MPT_ADAPTER structure
3397 * @cooked: Request raw or cooked IOC state
3398 *
3399 * Returns all IOC Doorbell register bits if cooked==0, else just the
3400 * Doorbell bits in MPI_IOC_STATE_MASK.
3401 */
3402u32
3403mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3404{
3405 u32 s, sc;
3406
3407 s = readl(&ioc->chip->Doorbell);
3408 sc = s & MPI2_IOC_STATE_MASK;
3409 return cooked ? sc : s;
3410}
3411
3412/**
3413 * _base_wait_on_iocstate - waiting on a particular ioc state
3414 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3415 * @timeout: timeout in second
3416 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3417 *
3418 * Returns 0 for success, non-zero for failure.
3419 */
3420static int
3421_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3422 int sleep_flag)
3423{
3424 u32 count, cntdn;
3425 u32 current_state;
3426
3427 count = 0;
3428 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3429 do {
3430 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3431 if (current_state == ioc_state)
3432 return 0;
3433 if (count && current_state == MPI2_IOC_STATE_FAULT)
3434 break;
3435 if (sleep_flag == CAN_SLEEP)
3436 usleep_range(1000, 1500);
3437 else
3438 udelay(500);
3439 count++;
3440 } while (--cntdn);
3441
3442 return current_state;
3443}
3444
3445/**
3446 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3447 * a write to the doorbell)
3448 * @ioc: per adapter object
3449 * @timeout: timeout in second
3450 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3451 *
3452 * Returns 0 for success, non-zero for failure.
3453 *
3454 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3455 */
4dc8c808
SR
3456static int
3457_base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3458
f92363d1
SR
3459static int
3460_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3461 int sleep_flag)
3462{
3463 u32 cntdn, count;
3464 u32 int_status;
3465
3466 count = 0;
3467 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3468 do {
3469 int_status = readl(&ioc->chip->HostInterruptStatus);
3470 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3471 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3472 "%s: successful count(%d), timeout(%d)\n",
3473 ioc->name, __func__, count, timeout));
3474 return 0;
3475 }
3476 if (sleep_flag == CAN_SLEEP)
3477 usleep_range(1000, 1500);
3478 else
3479 udelay(500);
3480 count++;
3481 } while (--cntdn);
3482
3483 pr_err(MPT3SAS_FMT
3484 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3485 ioc->name, __func__, count, int_status);
3486 return -EFAULT;
3487}
3488
3489/**
3490 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3491 * @ioc: per adapter object
3492 * @timeout: timeout in second
3493 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3494 *
3495 * Returns 0 for success, non-zero for failure.
3496 *
3497 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3498 * doorbell.
3499 */
3500static int
3501_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3502 int sleep_flag)
3503{
3504 u32 cntdn, count;
3505 u32 int_status;
3506 u32 doorbell;
3507
3508 count = 0;
3509 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3510 do {
3511 int_status = readl(&ioc->chip->HostInterruptStatus);
3512 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3513 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3514 "%s: successful count(%d), timeout(%d)\n",
3515 ioc->name, __func__, count, timeout));
3516 return 0;
3517 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3518 doorbell = readl(&ioc->chip->Doorbell);
3519 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3520 MPI2_IOC_STATE_FAULT) {
3521 mpt3sas_base_fault_info(ioc , doorbell);
3522 return -EFAULT;
3523 }
3524 } else if (int_status == 0xFFFFFFFF)
3525 goto out;
3526
3527 if (sleep_flag == CAN_SLEEP)
3528 usleep_range(1000, 1500);
3529 else
3530 udelay(500);
3531 count++;
3532 } while (--cntdn);
3533
3534 out:
3535 pr_err(MPT3SAS_FMT
3536 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3537 ioc->name, __func__, count, int_status);
3538 return -EFAULT;
3539}
3540
3541/**
3542 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3543 * @ioc: per adapter object
3544 * @timeout: timeout in second
3545 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3546 *
3547 * Returns 0 for success, non-zero for failure.
3548 *
3549 */
3550static int
3551_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3552 int sleep_flag)
3553{
3554 u32 cntdn, count;
3555 u32 doorbell_reg;
3556
3557 count = 0;
3558 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3559 do {
3560 doorbell_reg = readl(&ioc->chip->Doorbell);
3561 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3562 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3563 "%s: successful count(%d), timeout(%d)\n",
3564 ioc->name, __func__, count, timeout));
3565 return 0;
3566 }
3567 if (sleep_flag == CAN_SLEEP)
3568 usleep_range(1000, 1500);
3569 else
3570 udelay(500);
3571 count++;
3572 } while (--cntdn);
3573
3574 pr_err(MPT3SAS_FMT
3575 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3576 ioc->name, __func__, count, doorbell_reg);
3577 return -EFAULT;
3578}
3579
3580/**
3581 * _base_send_ioc_reset - send doorbell reset
3582 * @ioc: per adapter object
3583 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3584 * @timeout: timeout in second
3585 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3586 *
3587 * Returns 0 for success, non-zero for failure.
3588 */
3589static int
3590_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3591 int sleep_flag)
3592{
3593 u32 ioc_state;
3594 int r = 0;
3595
3596 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3597 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3598 ioc->name, __func__);
3599 return -EFAULT;
3600 }
3601
3602 if (!(ioc->facts.IOCCapabilities &
3603 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3604 return -EFAULT;
3605
3606 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3607
3608 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3609 &ioc->chip->Doorbell);
3610 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3611 r = -EFAULT;
3612 goto out;
3613 }
3614 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3615 timeout, sleep_flag);
3616 if (ioc_state) {
3617 pr_err(MPT3SAS_FMT
3618 "%s: failed going to ready state (ioc_state=0x%x)\n",
3619 ioc->name, __func__, ioc_state);
3620 r = -EFAULT;
3621 goto out;
3622 }
3623 out:
3624 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3625 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3626 return r;
3627}
3628
3629/**
3630 * _base_handshake_req_reply_wait - send request thru doorbell interface
3631 * @ioc: per adapter object
3632 * @request_bytes: request length
3633 * @request: pointer having request payload
3634 * @reply_bytes: reply length
3635 * @reply: pointer to reply payload
3636 * @timeout: timeout in second
3637 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3638 *
3639 * Returns 0 for success, non-zero for failure.
3640 */
3641static int
3642_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3643 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3644{
3645 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3646 int i;
3647 u8 failed;
3648 u16 dummy;
3649 __le32 *mfp;
3650
3651 /* make sure doorbell is not in use */
3652 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3653 pr_err(MPT3SAS_FMT
3654 "doorbell is in use (line=%d)\n",
3655 ioc->name, __LINE__);
3656 return -EFAULT;
3657 }
3658
3659 /* clear pending doorbell interrupts from previous state changes */
3660 if (readl(&ioc->chip->HostInterruptStatus) &
3661 MPI2_HIS_IOC2SYS_DB_STATUS)
3662 writel(0, &ioc->chip->HostInterruptStatus);
3663
3664 /* send message to ioc */
3665 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3666 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3667 &ioc->chip->Doorbell);
3668
3669 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3670 pr_err(MPT3SAS_FMT
3671 "doorbell handshake int failed (line=%d)\n",
3672 ioc->name, __LINE__);
3673 return -EFAULT;
3674 }
3675 writel(0, &ioc->chip->HostInterruptStatus);
3676
3677 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3678 pr_err(MPT3SAS_FMT
3679 "doorbell handshake ack failed (line=%d)\n",
3680 ioc->name, __LINE__);
3681 return -EFAULT;
3682 }
3683
3684 /* send message 32-bits at a time */
3685 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3686 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3687 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3688 failed = 1;
3689 }
3690
3691 if (failed) {
3692 pr_err(MPT3SAS_FMT
3693 "doorbell handshake sending request failed (line=%d)\n",
3694 ioc->name, __LINE__);
3695 return -EFAULT;
3696 }
3697
3698 /* now wait for the reply */
3699 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3700 pr_err(MPT3SAS_FMT
3701 "doorbell handshake int failed (line=%d)\n",
3702 ioc->name, __LINE__);
3703 return -EFAULT;
3704 }
3705
3706 /* read the first two 16-bits, it gives the total length of the reply */
3707 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3708 & MPI2_DOORBELL_DATA_MASK);
3709 writel(0, &ioc->chip->HostInterruptStatus);
3710 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3711 pr_err(MPT3SAS_FMT
3712 "doorbell handshake int failed (line=%d)\n",
3713 ioc->name, __LINE__);
3714 return -EFAULT;
3715 }
3716 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3717 & MPI2_DOORBELL_DATA_MASK);
3718 writel(0, &ioc->chip->HostInterruptStatus);
3719
3720 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3721 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3722 pr_err(MPT3SAS_FMT
3723 "doorbell handshake int failed (line=%d)\n",
3724 ioc->name, __LINE__);
3725 return -EFAULT;
3726 }
3727 if (i >= reply_bytes/2) /* overflow case */
3728 dummy = readl(&ioc->chip->Doorbell);
3729 else
3730 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3731 & MPI2_DOORBELL_DATA_MASK);
3732 writel(0, &ioc->chip->HostInterruptStatus);
3733 }
3734
3735 _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3736 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3737 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3738 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3739 }
3740 writel(0, &ioc->chip->HostInterruptStatus);
3741
3742 if (ioc->logging_level & MPT_DEBUG_INIT) {
3743 mfp = (__le32 *)reply;
3744 pr_info("\toffset:data\n");
3745 for (i = 0; i < reply_bytes/4; i++)
3746 pr_info("\t[0x%02x]:%08x\n", i*4,
3747 le32_to_cpu(mfp[i]));
3748 }
3749 return 0;
3750}
3751
3752/**
3753 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3754 * @ioc: per adapter object
3755 * @mpi_reply: the reply payload from FW
3756 * @mpi_request: the request payload sent to FW
3757 *
3758 * The SAS IO Unit Control Request message allows the host to perform low-level
3759 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3760 * to obtain the IOC assigned device handles for a device if it has other
3761 * identifying information about the device, in addition allows the host to
3762 * remove IOC resources associated with the device.
3763 *
3764 * Returns 0 for success, non-zero for failure.
3765 */
3766int
3767mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3768 Mpi2SasIoUnitControlReply_t *mpi_reply,
3769 Mpi2SasIoUnitControlRequest_t *mpi_request)
3770{
3771 u16 smid;
3772 u32 ioc_state;
3773 unsigned long timeleft;
eb44552b 3774 bool issue_reset = false;
f92363d1
SR
3775 int rc;
3776 void *request;
3777 u16 wait_state_count;
3778
3779 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3780 __func__));
3781
3782 mutex_lock(&ioc->base_cmds.mutex);
3783
3784 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3785 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3786 ioc->name, __func__);
3787 rc = -EAGAIN;
3788 goto out;
3789 }
3790
3791 wait_state_count = 0;
3792 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3793 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3794 if (wait_state_count++ == 10) {
3795 pr_err(MPT3SAS_FMT
3796 "%s: failed due to ioc not operational\n",
3797 ioc->name, __func__);
3798 rc = -EFAULT;
3799 goto out;
3800 }
3801 ssleep(1);
3802 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3803 pr_info(MPT3SAS_FMT
3804 "%s: waiting for operational state(count=%d)\n",
3805 ioc->name, __func__, wait_state_count);
3806 }
3807
3808 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3809 if (!smid) {
3810 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3811 ioc->name, __func__);
3812 rc = -EAGAIN;
3813 goto out;
3814 }
3815
3816 rc = 0;
3817 ioc->base_cmds.status = MPT3_CMD_PENDING;
3818 request = mpt3sas_base_get_msg_frame(ioc, smid);
3819 ioc->base_cmds.smid = smid;
3820 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3821 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3822 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3823 ioc->ioc_link_reset_in_progress = 1;
3824 init_completion(&ioc->base_cmds.done);
3825 mpt3sas_base_put_smid_default(ioc, smid);
3826 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3827 msecs_to_jiffies(10000));
3828 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3829 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3830 ioc->ioc_link_reset_in_progress)
3831 ioc->ioc_link_reset_in_progress = 0;
3832 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3833 pr_err(MPT3SAS_FMT "%s: timeout\n",
3834 ioc->name, __func__);
3835 _debug_dump_mf(mpi_request,
3836 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3837 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
eb44552b 3838 issue_reset = true;
f92363d1
SR
3839 goto issue_host_reset;
3840 }
3841 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3842 memcpy(mpi_reply, ioc->base_cmds.reply,
3843 sizeof(Mpi2SasIoUnitControlReply_t));
3844 else
3845 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3846 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3847 goto out;
3848
3849 issue_host_reset:
3850 if (issue_reset)
3851 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3852 FORCE_BIG_HAMMER);
3853 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3854 rc = -EFAULT;
3855 out:
3856 mutex_unlock(&ioc->base_cmds.mutex);
3857 return rc;
3858}
3859
3860/**
3861 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
3862 * @ioc: per adapter object
3863 * @mpi_reply: the reply payload from FW
3864 * @mpi_request: the request payload sent to FW
3865 *
3866 * The SCSI Enclosure Processor request message causes the IOC to
3867 * communicate with SES devices to control LED status signals.
3868 *
3869 * Returns 0 for success, non-zero for failure.
3870 */
3871int
3872mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
3873 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3874{
3875 u16 smid;
3876 u32 ioc_state;
3877 unsigned long timeleft;
eb44552b 3878 bool issue_reset = false;
f92363d1
SR
3879 int rc;
3880 void *request;
3881 u16 wait_state_count;
3882
3883 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3884 __func__));
3885
3886 mutex_lock(&ioc->base_cmds.mutex);
3887
3888 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3889 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3890 ioc->name, __func__);
3891 rc = -EAGAIN;
3892 goto out;
3893 }
3894
3895 wait_state_count = 0;
3896 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3897 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3898 if (wait_state_count++ == 10) {
3899 pr_err(MPT3SAS_FMT
3900 "%s: failed due to ioc not operational\n",
3901 ioc->name, __func__);
3902 rc = -EFAULT;
3903 goto out;
3904 }
3905 ssleep(1);
3906 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3907 pr_info(MPT3SAS_FMT
3908 "%s: waiting for operational state(count=%d)\n",
3909 ioc->name,
3910 __func__, wait_state_count);
3911 }
3912
3913 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3914 if (!smid) {
3915 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3916 ioc->name, __func__);
3917 rc = -EAGAIN;
3918 goto out;
3919 }
3920
3921 rc = 0;
3922 ioc->base_cmds.status = MPT3_CMD_PENDING;
3923 request = mpt3sas_base_get_msg_frame(ioc, smid);
3924 ioc->base_cmds.smid = smid;
3925 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3926 init_completion(&ioc->base_cmds.done);
3927 mpt3sas_base_put_smid_default(ioc, smid);
3928 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3929 msecs_to_jiffies(10000));
3930 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3931 pr_err(MPT3SAS_FMT "%s: timeout\n",
3932 ioc->name, __func__);
3933 _debug_dump_mf(mpi_request,
3934 sizeof(Mpi2SepRequest_t)/4);
3935 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
eb44552b 3936 issue_reset = false;
f92363d1
SR
3937 goto issue_host_reset;
3938 }
3939 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3940 memcpy(mpi_reply, ioc->base_cmds.reply,
3941 sizeof(Mpi2SepReply_t));
3942 else
3943 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3944 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3945 goto out;
3946
3947 issue_host_reset:
3948 if (issue_reset)
3949 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3950 FORCE_BIG_HAMMER);
3951 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3952 rc = -EFAULT;
3953 out:
3954 mutex_unlock(&ioc->base_cmds.mutex);
3955 return rc;
3956}
3957
3958/**
3959 * _base_get_port_facts - obtain port facts reply and save in ioc
3960 * @ioc: per adapter object
3961 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3962 *
3963 * Returns 0 for success, non-zero for failure.
3964 */
3965static int
3966_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
3967{
3968 Mpi2PortFactsRequest_t mpi_request;
3969 Mpi2PortFactsReply_t mpi_reply;
3970 struct mpt3sas_port_facts *pfacts;
3971 int mpi_reply_sz, mpi_request_sz, r;
3972
3973 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3974 __func__));
3975
3976 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3977 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3978 memset(&mpi_request, 0, mpi_request_sz);
3979 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3980 mpi_request.PortNumber = port;
3981 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3982 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3983
3984 if (r != 0) {
3985 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3986 ioc->name, __func__, r);
3987 return r;
3988 }
3989
3990 pfacts = &ioc->pfacts[port];
3991 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
3992 pfacts->PortNumber = mpi_reply.PortNumber;
3993 pfacts->VP_ID = mpi_reply.VP_ID;
3994 pfacts->VF_ID = mpi_reply.VF_ID;
3995 pfacts->MaxPostedCmdBuffers =
3996 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3997
3998 return 0;
3999}
4000
4dc8c808
SR
4001/**
4002 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4003 * @ioc: per adapter object
4004 * @timeout:
4005 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4006 *
4007 * Returns 0 for success, non-zero for failure.
4008 */
4009static int
4010_base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4011 int sleep_flag)
4012{
4013 u32 ioc_state;
4014 int rc;
4015
4016 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4017 __func__));
4018
4019 if (ioc->pci_error_recovery) {
4020 dfailprintk(ioc, printk(MPT3SAS_FMT
4021 "%s: host in pci error recovery\n", ioc->name, __func__));
4022 return -EFAULT;
4023 }
4024
4025 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4026 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4027 ioc->name, __func__, ioc_state));
4028
4029 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4030 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4031 return 0;
4032
4033 if (ioc_state & MPI2_DOORBELL_USED) {
4034 dhsprintk(ioc, printk(MPT3SAS_FMT
4035 "unexpected doorbell active!\n", ioc->name));
4036 goto issue_diag_reset;
4037 }
4038
4039 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4040 mpt3sas_base_fault_info(ioc, ioc_state &
4041 MPI2_DOORBELL_DATA_MASK);
4042 goto issue_diag_reset;
4043 }
4044
4045 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4046 timeout, sleep_flag);
4047 if (ioc_state) {
4048 dfailprintk(ioc, printk(MPT3SAS_FMT
4049 "%s: failed going to ready state (ioc_state=0x%x)\n",
4050 ioc->name, __func__, ioc_state));
4051 return -EFAULT;
4052 }
4053
4054 issue_diag_reset:
4055 rc = _base_diag_reset(ioc, sleep_flag);
4056 return rc;
4057}
4058
f92363d1
SR
4059/**
4060 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4061 * @ioc: per adapter object
4062 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4063 *
4064 * Returns 0 for success, non-zero for failure.
4065 */
4066static int
4067_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4068{
4069 Mpi2IOCFactsRequest_t mpi_request;
4070 Mpi2IOCFactsReply_t mpi_reply;
4071 struct mpt3sas_facts *facts;
4072 int mpi_reply_sz, mpi_request_sz, r;
4073
4074 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4075 __func__));
4076
4dc8c808
SR
4077 r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4078 if (r) {
4079 dfailprintk(ioc, printk(MPT3SAS_FMT
4080 "%s: failed getting to correct state\n",
4081 ioc->name, __func__));
4082 return r;
4083 }
f92363d1
SR
4084 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4085 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4086 memset(&mpi_request, 0, mpi_request_sz);
4087 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4088 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4089 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4090
4091 if (r != 0) {
4092 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4093 ioc->name, __func__, r);
4094 return r;
4095 }
4096
4097 facts = &ioc->facts;
4098 memset(facts, 0, sizeof(struct mpt3sas_facts));
4099 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4100 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4101 facts->VP_ID = mpi_reply.VP_ID;
4102 facts->VF_ID = mpi_reply.VF_ID;
4103 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4104 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4105 facts->WhoInit = mpi_reply.WhoInit;
4106 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4107 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4108 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4109 facts->MaxReplyDescriptorPostQueueDepth =
4110 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4111 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4112 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4113 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4114 ioc->ir_firmware = 1;
9b05c91a
SR
4115 if ((facts->IOCCapabilities &
4116 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4117 ioc->rdpq_array_capable = 1;
f92363d1
SR
4118 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4119 facts->IOCRequestFrameSize =
4120 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4121 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4122 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4123 ioc->shost->max_id = -1;
4124 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4125 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4126 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4127 facts->HighPriorityCredit =
4128 le16_to_cpu(mpi_reply.HighPriorityCredit);
4129 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4130 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4131
4132 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4133 "hba queue depth(%d), max chains per io(%d)\n",
4134 ioc->name, facts->RequestCredit,
4135 facts->MaxChainDepth));
4136 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4137 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4138 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4139 return 0;
4140}
4141
4142/**
4143 * _base_send_ioc_init - send ioc_init to firmware
4144 * @ioc: per adapter object
4145 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4146 *
4147 * Returns 0 for success, non-zero for failure.
4148 */
4149static int
4150_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4151{
4152 Mpi2IOCInitRequest_t mpi_request;
4153 Mpi2IOCInitReply_t mpi_reply;
9b05c91a 4154 int i, r = 0;
f92363d1
SR
4155 struct timeval current_time;
4156 u16 ioc_status;
9b05c91a
SR
4157 u32 reply_post_free_array_sz = 0;
4158 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4159 dma_addr_t reply_post_free_array_dma;
f92363d1
SR
4160
4161 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4162 __func__));
4163
4164 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4165 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4166 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4167 mpi_request.VF_ID = 0; /* TODO */
4168 mpi_request.VP_ID = 0;
d357e84d 4169 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
f92363d1
SR
4170 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4171
4172 if (_base_is_controller_msix_enabled(ioc))
4173 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4174 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4175 mpi_request.ReplyDescriptorPostQueueDepth =
4176 cpu_to_le16(ioc->reply_post_queue_depth);
4177 mpi_request.ReplyFreeQueueDepth =
4178 cpu_to_le16(ioc->reply_free_queue_depth);
4179
4180 mpi_request.SenseBufferAddressHigh =
4181 cpu_to_le32((u64)ioc->sense_dma >> 32);
4182 mpi_request.SystemReplyAddressHigh =
4183 cpu_to_le32((u64)ioc->reply_dma >> 32);
4184 mpi_request.SystemRequestFrameBaseAddress =
4185 cpu_to_le64((u64)ioc->request_dma);
4186 mpi_request.ReplyFreeQueueAddress =
4187 cpu_to_le64((u64)ioc->reply_free_dma);
f92363d1 4188
9b05c91a
SR
4189 if (ioc->rdpq_array_enable) {
4190 reply_post_free_array_sz = ioc->reply_queue_count *
4191 sizeof(Mpi2IOCInitRDPQArrayEntry);
4192 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4193 reply_post_free_array_sz, &reply_post_free_array_dma);
4194 if (!reply_post_free_array) {
4195 pr_err(MPT3SAS_FMT
4196 "reply_post_free_array: pci_alloc_consistent failed\n",
4197 ioc->name);
4198 r = -ENOMEM;
4199 goto out;
4200 }
4201 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4202 for (i = 0; i < ioc->reply_queue_count; i++)
4203 reply_post_free_array[i].RDPQBaseAddress =
4204 cpu_to_le64(
4205 (u64)ioc->reply_post[i].reply_post_free_dma);
4206 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4207 mpi_request.ReplyDescriptorPostQueueAddress =
4208 cpu_to_le64((u64)reply_post_free_array_dma);
4209 } else {
4210 mpi_request.ReplyDescriptorPostQueueAddress =
4211 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4212 }
f92363d1
SR
4213
4214 /* This time stamp specifies number of milliseconds
4215 * since epoch ~ midnight January 1, 1970.
4216 */
4217 do_gettimeofday(&current_time);
4218 mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
4219 (current_time.tv_usec / 1000));
4220
4221 if (ioc->logging_level & MPT_DEBUG_INIT) {
4222 __le32 *mfp;
4223 int i;
4224
4225 mfp = (__le32 *)&mpi_request;
4226 pr_info("\toffset:data\n");
4227 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4228 pr_info("\t[0x%02x]:%08x\n", i*4,
4229 le32_to_cpu(mfp[i]));
4230 }
4231
4232 r = _base_handshake_req_reply_wait(ioc,
4233 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4234 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4235 sleep_flag);
4236
4237 if (r != 0) {
4238 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4239 ioc->name, __func__, r);
9b05c91a 4240 goto out;
f92363d1
SR
4241 }
4242
4243 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4244 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4245 mpi_reply.IOCLogInfo) {
4246 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4247 r = -EIO;
4248 }
4249
9b05c91a
SR
4250out:
4251 if (reply_post_free_array)
4252 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4253 reply_post_free_array,
4254 reply_post_free_array_dma);
4255 return r;
f92363d1
SR
4256}
4257
4258/**
4259 * mpt3sas_port_enable_done - command completion routine for port enable
4260 * @ioc: per adapter object
4261 * @smid: system request message index
4262 * @msix_index: MSIX table index supplied by the OS
4263 * @reply: reply message frame(lower 32bit addr)
4264 *
4265 * Return 1 meaning mf should be freed from _base_interrupt
4266 * 0 means the mf is freed from this function.
4267 */
4268u8
4269mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4270 u32 reply)
4271{
4272 MPI2DefaultReply_t *mpi_reply;
4273 u16 ioc_status;
4274
4275 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4276 return 1;
4277
4278 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4279 if (!mpi_reply)
4280 return 1;
4281
4282 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4283 return 1;
4284
4285 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4286 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4287 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4288 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4289 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4290 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4291 ioc->port_enable_failed = 1;
4292
4293 if (ioc->is_driver_loading) {
4294 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4295 mpt3sas_port_enable_complete(ioc);
4296 return 1;
4297 } else {
4298 ioc->start_scan_failed = ioc_status;
4299 ioc->start_scan = 0;
4300 return 1;
4301 }
4302 }
4303 complete(&ioc->port_enable_cmds.done);
4304 return 1;
4305}
4306
4307/**
4308 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4309 * @ioc: per adapter object
4310 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4311 *
4312 * Returns 0 for success, non-zero for failure.
4313 */
4314static int
4315_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4316{
4317 Mpi2PortEnableRequest_t *mpi_request;
4318 Mpi2PortEnableReply_t *mpi_reply;
4319 unsigned long timeleft;
4320 int r = 0;
4321 u16 smid;
4322 u16 ioc_status;
4323
4324 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4325
4326 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4327 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4328 ioc->name, __func__);
4329 return -EAGAIN;
4330 }
4331
4332 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4333 if (!smid) {
4334 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4335 ioc->name, __func__);
4336 return -EAGAIN;
4337 }
4338
4339 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4340 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4341 ioc->port_enable_cmds.smid = smid;
4342 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4343 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4344
4345 init_completion(&ioc->port_enable_cmds.done);
4346 mpt3sas_base_put_smid_default(ioc, smid);
4347 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4348 300*HZ);
4349 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4350 pr_err(MPT3SAS_FMT "%s: timeout\n",
4351 ioc->name, __func__);
4352 _debug_dump_mf(mpi_request,
4353 sizeof(Mpi2PortEnableRequest_t)/4);
4354 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4355 r = -EFAULT;
4356 else
4357 r = -ETIME;
4358 goto out;
4359 }
4360
4361 mpi_reply = ioc->port_enable_cmds.reply;
4362 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4363 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4364 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4365 ioc->name, __func__, ioc_status);
4366 r = -EFAULT;
4367 goto out;
4368 }
4369
4370 out:
4371 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4372 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4373 "SUCCESS" : "FAILED"));
4374 return r;
4375}
4376
4377/**
4378 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4379 * @ioc: per adapter object
4380 *
4381 * Returns 0 for success, non-zero for failure.
4382 */
4383int
4384mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4385{
4386 Mpi2PortEnableRequest_t *mpi_request;
4387 u16 smid;
4388
4389 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4390
4391 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4392 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4393 ioc->name, __func__);
4394 return -EAGAIN;
4395 }
4396
4397 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4398 if (!smid) {
4399 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4400 ioc->name, __func__);
4401 return -EAGAIN;
4402 }
4403
4404 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4405 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4406 ioc->port_enable_cmds.smid = smid;
4407 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4408 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4409
4410 mpt3sas_base_put_smid_default(ioc, smid);
4411 return 0;
4412}
4413
4414/**
4415 * _base_determine_wait_on_discovery - desposition
4416 * @ioc: per adapter object
4417 *
4418 * Decide whether to wait on discovery to complete. Used to either
4419 * locate boot device, or report volumes ahead of physical devices.
4420 *
4421 * Returns 1 for wait, 0 for don't wait
4422 */
4423static int
4424_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4425{
4426 /* We wait for discovery to complete if IR firmware is loaded.
4427 * The sas topology events arrive before PD events, so we need time to
4428 * turn on the bit in ioc->pd_handles to indicate PD
4429 * Also, it maybe required to report Volumes ahead of physical
4430 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4431 */
4432 if (ioc->ir_firmware)
4433 return 1;
4434
4435 /* if no Bios, then we don't need to wait */
4436 if (!ioc->bios_pg3.BiosVersion)
4437 return 0;
4438
4439 /* Bios is present, then we drop down here.
4440 *
4441 * If there any entries in the Bios Page 2, then we wait
4442 * for discovery to complete.
4443 */
4444
4445 /* Current Boot Device */
4446 if ((ioc->bios_pg2.CurrentBootDeviceForm &
4447 MPI2_BIOSPAGE2_FORM_MASK) ==
4448 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4449 /* Request Boot Device */
4450 (ioc->bios_pg2.ReqBootDeviceForm &
4451 MPI2_BIOSPAGE2_FORM_MASK) ==
4452 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4453 /* Alternate Request Boot Device */
4454 (ioc->bios_pg2.ReqAltBootDeviceForm &
4455 MPI2_BIOSPAGE2_FORM_MASK) ==
4456 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4457 return 0;
4458
4459 return 1;
4460}
4461
4462/**
4463 * _base_unmask_events - turn on notification for this event
4464 * @ioc: per adapter object
4465 * @event: firmware event
4466 *
4467 * The mask is stored in ioc->event_masks.
4468 */
4469static void
4470_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4471{
4472 u32 desired_event;
4473
4474 if (event >= 128)
4475 return;
4476
4477 desired_event = (1 << (event % 32));
4478
4479 if (event < 32)
4480 ioc->event_masks[0] &= ~desired_event;
4481 else if (event < 64)
4482 ioc->event_masks[1] &= ~desired_event;
4483 else if (event < 96)
4484 ioc->event_masks[2] &= ~desired_event;
4485 else if (event < 128)
4486 ioc->event_masks[3] &= ~desired_event;
4487}
4488
4489/**
4490 * _base_event_notification - send event notification
4491 * @ioc: per adapter object
4492 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4493 *
4494 * Returns 0 for success, non-zero for failure.
4495 */
4496static int
4497_base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4498{
4499 Mpi2EventNotificationRequest_t *mpi_request;
4500 unsigned long timeleft;
4501 u16 smid;
4502 int r = 0;
4503 int i;
4504
4505 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4506 __func__));
4507
4508 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4509 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4510 ioc->name, __func__);
4511 return -EAGAIN;
4512 }
4513
4514 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4515 if (!smid) {
4516 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4517 ioc->name, __func__);
4518 return -EAGAIN;
4519 }
4520 ioc->base_cmds.status = MPT3_CMD_PENDING;
4521 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4522 ioc->base_cmds.smid = smid;
4523 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4524 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4525 mpi_request->VF_ID = 0; /* TODO */
4526 mpi_request->VP_ID = 0;
4527 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4528 mpi_request->EventMasks[i] =
4529 cpu_to_le32(ioc->event_masks[i]);
4530 init_completion(&ioc->base_cmds.done);
4531 mpt3sas_base_put_smid_default(ioc, smid);
4532 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4533 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4534 pr_err(MPT3SAS_FMT "%s: timeout\n",
4535 ioc->name, __func__);
4536 _debug_dump_mf(mpi_request,
4537 sizeof(Mpi2EventNotificationRequest_t)/4);
4538 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4539 r = -EFAULT;
4540 else
4541 r = -ETIME;
4542 } else
4543 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4544 ioc->name, __func__));
4545 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4546 return r;
4547}
4548
4549/**
4550 * mpt3sas_base_validate_event_type - validating event types
4551 * @ioc: per adapter object
4552 * @event: firmware event
4553 *
4554 * This will turn on firmware event notification when application
4555 * ask for that event. We don't mask events that are already enabled.
4556 */
4557void
4558mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4559{
4560 int i, j;
4561 u32 event_mask, desired_event;
4562 u8 send_update_to_fw;
4563
4564 for (i = 0, send_update_to_fw = 0; i <
4565 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4566 event_mask = ~event_type[i];
4567 desired_event = 1;
4568 for (j = 0; j < 32; j++) {
4569 if (!(event_mask & desired_event) &&
4570 (ioc->event_masks[i] & desired_event)) {
4571 ioc->event_masks[i] &= ~desired_event;
4572 send_update_to_fw = 1;
4573 }
4574 desired_event = (desired_event << 1);
4575 }
4576 }
4577
4578 if (!send_update_to_fw)
4579 return;
4580
4581 mutex_lock(&ioc->base_cmds.mutex);
4582 _base_event_notification(ioc, CAN_SLEEP);
4583 mutex_unlock(&ioc->base_cmds.mutex);
4584}
4585
4586/**
4587 * _base_diag_reset - the "big hammer" start of day reset
4588 * @ioc: per adapter object
4589 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4590 *
4591 * Returns 0 for success, non-zero for failure.
4592 */
4593static int
4594_base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4595{
4596 u32 host_diagnostic;
4597 u32 ioc_state;
4598 u32 count;
4599 u32 hcb_size;
4600
4601 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4602
4603 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4604 ioc->name));
4605
4606 count = 0;
4607 do {
4608 /* Write magic sequence to WriteSequence register
4609 * Loop until in diagnostic mode
4610 */
4611 drsprintk(ioc, pr_info(MPT3SAS_FMT
4612 "write magic sequence\n", ioc->name));
4613 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4614 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4615 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4616 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4617 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4618 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4619 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4620
4621 /* wait 100 msec */
4622 if (sleep_flag == CAN_SLEEP)
4623 msleep(100);
4624 else
4625 mdelay(100);
4626
4627 if (count++ > 20)
4628 goto out;
4629
4630 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4631 drsprintk(ioc, pr_info(MPT3SAS_FMT
4632 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4633 ioc->name, count, host_diagnostic));
4634
4635 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4636
4637 hcb_size = readl(&ioc->chip->HCBSize);
4638
4639 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4640 ioc->name));
4641 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4642 &ioc->chip->HostDiagnostic);
4643
b453ff84
SR
4644 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4645 if (sleep_flag == CAN_SLEEP)
4646 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4647 else
4648 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
f92363d1 4649
b453ff84
SR
4650 /* Approximately 300 second max wait */
4651 for (count = 0; count < (300000000 /
4652 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
f92363d1
SR
4653
4654 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4655
4656 if (host_diagnostic == 0xFFFFFFFF)
4657 goto out;
4658 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4659 break;
4660
b453ff84 4661 /* Wait to pass the second read delay window */
f92363d1 4662 if (sleep_flag == CAN_SLEEP)
b453ff84
SR
4663 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4664 / 1000);
f92363d1 4665 else
b453ff84
SR
4666 mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4667 / 1000);
f92363d1
SR
4668 }
4669
4670 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4671
4672 drsprintk(ioc, pr_info(MPT3SAS_FMT
4673 "restart the adapter assuming the HCB Address points to good F/W\n",
4674 ioc->name));
4675 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4676 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4677 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4678
4679 drsprintk(ioc, pr_info(MPT3SAS_FMT
4680 "re-enable the HCDW\n", ioc->name));
4681 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4682 &ioc->chip->HCBSize);
4683 }
4684
4685 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4686 ioc->name));
4687 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4688 &ioc->chip->HostDiagnostic);
4689
4690 drsprintk(ioc, pr_info(MPT3SAS_FMT
4691 "disable writes to the diagnostic register\n", ioc->name));
4692 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4693
4694 drsprintk(ioc, pr_info(MPT3SAS_FMT
4695 "Wait for FW to go to the READY state\n", ioc->name));
4696 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4697 sleep_flag);
4698 if (ioc_state) {
4699 pr_err(MPT3SAS_FMT
4700 "%s: failed going to ready state (ioc_state=0x%x)\n",
4701 ioc->name, __func__, ioc_state);
4702 goto out;
4703 }
4704
4705 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4706 return 0;
4707
4708 out:
4709 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4710 return -EFAULT;
4711}
4712
4713/**
4714 * _base_make_ioc_ready - put controller in READY state
4715 * @ioc: per adapter object
4716 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4717 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4718 *
4719 * Returns 0 for success, non-zero for failure.
4720 */
4721static int
4722_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4723 enum reset_type type)
4724{
4725 u32 ioc_state;
4726 int rc;
4727 int count;
4728
4729 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4730 __func__));
4731
4732 if (ioc->pci_error_recovery)
4733 return 0;
4734
4735 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4736 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4737 ioc->name, __func__, ioc_state));
4738
4739 /* if in RESET state, it should move to READY state shortly */
4740 count = 0;
4741 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4742 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4743 MPI2_IOC_STATE_READY) {
4744 if (count++ == 10) {
4745 pr_err(MPT3SAS_FMT
4746 "%s: failed going to ready state (ioc_state=0x%x)\n",
4747 ioc->name, __func__, ioc_state);
4748 return -EFAULT;
4749 }
4750 if (sleep_flag == CAN_SLEEP)
4751 ssleep(1);
4752 else
4753 mdelay(1000);
4754 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4755 }
4756 }
4757
4758 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4759 return 0;
4760
4761 if (ioc_state & MPI2_DOORBELL_USED) {
4762 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4763 "unexpected doorbell active!\n",
4764 ioc->name));
4765 goto issue_diag_reset;
4766 }
4767
4768 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4769 mpt3sas_base_fault_info(ioc, ioc_state &
4770 MPI2_DOORBELL_DATA_MASK);
4771 goto issue_diag_reset;
4772 }
4773
4774 if (type == FORCE_BIG_HAMMER)
4775 goto issue_diag_reset;
4776
4777 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4778 if (!(_base_send_ioc_reset(ioc,
4779 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4780 return 0;
4781 }
4782
4783 issue_diag_reset:
4784 rc = _base_diag_reset(ioc, CAN_SLEEP);
4785 return rc;
4786}
4787
4788/**
4789 * _base_make_ioc_operational - put controller in OPERATIONAL state
4790 * @ioc: per adapter object
4791 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4792 *
4793 * Returns 0 for success, non-zero for failure.
4794 */
4795static int
4796_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4797{
4798 int r, i;
4799 unsigned long flags;
4800 u32 reply_address;
4801 u16 smid;
4802 struct _tr_list *delayed_tr, *delayed_tr_next;
4803 struct adapter_reply_queue *reply_q;
4804 long reply_post_free;
9b05c91a 4805 u32 reply_post_free_sz, index = 0;
f92363d1
SR
4806
4807 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4808 __func__));
4809
4810 /* clean the delayed target reset list */
4811 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4812 &ioc->delayed_tr_list, list) {
4813 list_del(&delayed_tr->list);
4814 kfree(delayed_tr);
4815 }
4816
4817
4818 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4819 &ioc->delayed_tr_volume_list, list) {
4820 list_del(&delayed_tr->list);
4821 kfree(delayed_tr);
4822 }
4823
4824 /* initialize the scsi lookup free list */
4825 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4826 INIT_LIST_HEAD(&ioc->free_list);
4827 smid = 1;
4828 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4829 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4830 ioc->scsi_lookup[i].cb_idx = 0xFF;
4831 ioc->scsi_lookup[i].smid = smid;
4832 ioc->scsi_lookup[i].scmd = NULL;
4833 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4834 &ioc->free_list);
4835 }
4836
4837 /* hi-priority queue */
4838 INIT_LIST_HEAD(&ioc->hpr_free_list);
4839 smid = ioc->hi_priority_smid;
4840 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4841 ioc->hpr_lookup[i].cb_idx = 0xFF;
4842 ioc->hpr_lookup[i].smid = smid;
4843 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4844 &ioc->hpr_free_list);
4845 }
4846
4847 /* internal queue */
4848 INIT_LIST_HEAD(&ioc->internal_free_list);
4849 smid = ioc->internal_smid;
4850 for (i = 0; i < ioc->internal_depth; i++, smid++) {
4851 ioc->internal_lookup[i].cb_idx = 0xFF;
4852 ioc->internal_lookup[i].smid = smid;
4853 list_add_tail(&ioc->internal_lookup[i].tracker_list,
4854 &ioc->internal_free_list);
4855 }
4856
4857 /* chain pool */
4858 INIT_LIST_HEAD(&ioc->free_chain_list);
4859 for (i = 0; i < ioc->chain_depth; i++)
4860 list_add_tail(&ioc->chain_lookup[i].tracker_list,
4861 &ioc->free_chain_list);
4862
4863 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4864
4865 /* initialize Reply Free Queue */
4866 for (i = 0, reply_address = (u32)ioc->reply_dma ;
4867 i < ioc->reply_free_queue_depth ; i++, reply_address +=
4868 ioc->reply_sz)
4869 ioc->reply_free[i] = cpu_to_le32(reply_address);
4870
4871 /* initialize reply queues */
4872 if (ioc->is_driver_loading)
4873 _base_assign_reply_queues(ioc);
4874
4875 /* initialize Reply Post Free Queue */
f92363d1
SR
4876 reply_post_free_sz = ioc->reply_post_queue_depth *
4877 sizeof(Mpi2DefaultReplyDescriptor_t);
9b05c91a 4878 reply_post_free = (long)ioc->reply_post[index].reply_post_free;
f92363d1
SR
4879 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4880 reply_q->reply_post_host_index = 0;
4881 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4882 reply_post_free;
4883 for (i = 0; i < ioc->reply_post_queue_depth; i++)
4884 reply_q->reply_post_free[i].Words =
4885 cpu_to_le64(ULLONG_MAX);
4886 if (!_base_is_controller_msix_enabled(ioc))
4887 goto skip_init_reply_post_free_queue;
9b05c91a
SR
4888 /*
4889 * If RDPQ is enabled, switch to the next allocation.
4890 * Otherwise advance within the contiguous region.
4891 */
4892 if (ioc->rdpq_array_enable)
4893 reply_post_free = (long)
4894 ioc->reply_post[++index].reply_post_free;
4895 else
4896 reply_post_free += reply_post_free_sz;
f92363d1
SR
4897 }
4898 skip_init_reply_post_free_queue:
4899
4900 r = _base_send_ioc_init(ioc, sleep_flag);
4901 if (r)
4902 return r;
4903
4904 /* initialize reply free host index */
4905 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4906 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4907
4908 /* initialize reply post host index */
4909 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
fb77bb53
SR
4910 if (ioc->msix96_vector)
4911 writel((reply_q->msix_index & 7)<<
4912 MPI2_RPHI_MSIX_INDEX_SHIFT,
4913 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
4914 else
4915 writel(reply_q->msix_index <<
4916 MPI2_RPHI_MSIX_INDEX_SHIFT,
4917 &ioc->chip->ReplyPostHostIndex);
4918
f92363d1
SR
4919 if (!_base_is_controller_msix_enabled(ioc))
4920 goto skip_init_reply_post_host_index;
4921 }
4922
4923 skip_init_reply_post_host_index:
4924
4925 _base_unmask_interrupts(ioc);
4926 r = _base_event_notification(ioc, sleep_flag);
4927 if (r)
4928 return r;
4929
4930 if (sleep_flag == CAN_SLEEP)
4931 _base_static_config_pages(ioc);
4932
4933
4934 if (ioc->is_driver_loading) {
4935 ioc->wait_for_discovery_to_complete =
4936 _base_determine_wait_on_discovery(ioc);
4937
4938 return r; /* scan_start and scan_finished support */
4939 }
4940
4941 r = _base_send_port_enable(ioc, sleep_flag);
4942 if (r)
4943 return r;
4944
4945 return r;
4946}
4947
4948/**
4949 * mpt3sas_base_free_resources - free resources controller resources
4950 * @ioc: per adapter object
4951 *
4952 * Return nothing.
4953 */
4954void
4955mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
4956{
f92363d1
SR
4957 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4958 __func__));
4959
cf9bd21a
JL
4960 if (ioc->chip_phys && ioc->chip) {
4961 _base_mask_interrupts(ioc);
4962 ioc->shost_recovery = 1;
4963 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4964 ioc->shost_recovery = 0;
4965 }
4966
580d4e31 4967 mpt3sas_base_unmap_resources(ioc);
f92363d1
SR
4968 return;
4969}
4970
4971/**
4972 * mpt3sas_base_attach - attach controller instance
4973 * @ioc: per adapter object
4974 *
4975 * Returns 0 for success, non-zero for failure.
4976 */
4977int
4978mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
4979{
4980 int r, i;
4981 int cpu_id, last_cpu_id = 0;
fb77bb53 4982 u8 revision;
f92363d1
SR
4983
4984 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4985 __func__));
4986
4987 /* setup cpu_msix_table */
4988 ioc->cpu_count = num_online_cpus();
4989 for_each_online_cpu(cpu_id)
4990 last_cpu_id = cpu_id;
4991 ioc->cpu_msix_table_sz = last_cpu_id + 1;
4992 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4993 ioc->reply_queue_count = 1;
4994 if (!ioc->cpu_msix_table) {
4995 dfailprintk(ioc, pr_info(MPT3SAS_FMT
4996 "allocation for cpu_msix_table failed!!!\n",
4997 ioc->name));
4998 r = -ENOMEM;
4999 goto out_free_resources;
5000 }
5001
fb77bb53
SR
5002 /* Check whether the controller revision is C0 or above.
5003 * only C0 and above revision controllers support 96 MSI-X vectors.
5004 */
5005 revision = ioc->pdev->revision;
5006
5007 if ((ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3004 ||
5008 ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3008 ||
5009 ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_1 ||
5010 ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_2 ||
5011 ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_5 ||
5012 ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_6) &&
5013 (revision >= 0x02))
5014 ioc->msix96_vector = 1;
5015
9b05c91a
SR
5016 ioc->rdpq_array_enable_assigned = 0;
5017 ioc->dma_mask = 0;
f92363d1
SR
5018 r = mpt3sas_base_map_resources(ioc);
5019 if (r)
5020 goto out_free_resources;
5021
5022
5023 pci_set_drvdata(ioc->pdev, ioc->shost);
5024 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5025 if (r)
5026 goto out_free_resources;
5027
471ef9d4
SR
5028 switch (ioc->hba_mpi_version_belonged) {
5029 case MPI2_VERSION:
5030 ioc->build_sg_scmd = &_base_build_sg_scmd;
5031 ioc->build_sg = &_base_build_sg;
5032 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5033 break;
5034 case MPI25_VERSION:
5035 /*
5036 * In SAS3.0,
5037 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5038 * Target Status - all require the IEEE formated scatter gather
5039 * elements.
5040 */
5041 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5042 ioc->build_sg = &_base_build_sg_ieee;
5043 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5044 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5045 break;
5046 }
f92363d1
SR
5047
5048 /*
5049 * These function pointers for other requests that don't
5050 * the require IEEE scatter gather elements.
5051 *
5052 * For example Configuration Pages and SAS IOUNIT Control don't.
5053 */
5054 ioc->build_sg_mpi = &_base_build_sg;
5055 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5056
5057 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5058 if (r)
5059 goto out_free_resources;
5060
5061 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5062 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5063 if (!ioc->pfacts) {
5064 r = -ENOMEM;
5065 goto out_free_resources;
5066 }
5067
5068 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5069 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5070 if (r)
5071 goto out_free_resources;
5072 }
5073
5074 r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5075 if (r)
5076 goto out_free_resources;
5077
5078 init_waitqueue_head(&ioc->reset_wq);
5079
5080 /* allocate memory pd handle bitmask list */
5081 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5082 if (ioc->facts.MaxDevHandle % 8)
5083 ioc->pd_handles_sz++;
5084 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5085 GFP_KERNEL);
5086 if (!ioc->pd_handles) {
5087 r = -ENOMEM;
5088 goto out_free_resources;
5089 }
5090 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5091 GFP_KERNEL);
5092 if (!ioc->blocking_handles) {
5093 r = -ENOMEM;
5094 goto out_free_resources;
5095 }
5096
5097 ioc->fwfault_debug = mpt3sas_fwfault_debug;
5098
5099 /* base internal command bits */
5100 mutex_init(&ioc->base_cmds.mutex);
5101 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5102 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5103
5104 /* port_enable command bits */
5105 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5106 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5107
5108 /* transport internal command bits */
5109 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5110 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5111 mutex_init(&ioc->transport_cmds.mutex);
5112
5113 /* scsih internal command bits */
5114 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5115 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5116 mutex_init(&ioc->scsih_cmds.mutex);
5117
5118 /* task management internal command bits */
5119 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5120 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5121 mutex_init(&ioc->tm_cmds.mutex);
5122
5123 /* config page internal command bits */
5124 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5125 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5126 mutex_init(&ioc->config_cmds.mutex);
5127
5128 /* ctl module internal command bits */
5129 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5130 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5131 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5132 mutex_init(&ioc->ctl_cmds.mutex);
5133
5134 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5135 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5136 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5137 !ioc->ctl_cmds.sense) {
5138 r = -ENOMEM;
5139 goto out_free_resources;
5140 }
5141
5142 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5143 ioc->event_masks[i] = -1;
5144
5145 /* here we enable the events we care about */
5146 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5147 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5148 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5149 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5150 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5151 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5152 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5153 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5154 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5155 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
2d8ce8c9 5156 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
f92363d1
SR
5157
5158 r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5159 if (r)
5160 goto out_free_resources;
5161
5162 return 0;
5163
5164 out_free_resources:
5165
5166 ioc->remove_host = 1;
5167
5168 mpt3sas_base_free_resources(ioc);
5169 _base_release_memory_pools(ioc);
5170 pci_set_drvdata(ioc->pdev, NULL);
5171 kfree(ioc->cpu_msix_table);
5172 kfree(ioc->pd_handles);
5173 kfree(ioc->blocking_handles);
5174 kfree(ioc->tm_cmds.reply);
5175 kfree(ioc->transport_cmds.reply);
5176 kfree(ioc->scsih_cmds.reply);
5177 kfree(ioc->config_cmds.reply);
5178 kfree(ioc->base_cmds.reply);
5179 kfree(ioc->port_enable_cmds.reply);
5180 kfree(ioc->ctl_cmds.reply);
5181 kfree(ioc->ctl_cmds.sense);
5182 kfree(ioc->pfacts);
5183 ioc->ctl_cmds.reply = NULL;
5184 ioc->base_cmds.reply = NULL;
5185 ioc->tm_cmds.reply = NULL;
5186 ioc->scsih_cmds.reply = NULL;
5187 ioc->transport_cmds.reply = NULL;
5188 ioc->config_cmds.reply = NULL;
5189 ioc->pfacts = NULL;
5190 return r;
5191}
5192
5193
5194/**
5195 * mpt3sas_base_detach - remove controller instance
5196 * @ioc: per adapter object
5197 *
5198 * Return nothing.
5199 */
5200void
5201mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5202{
5203 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5204 __func__));
5205
5206 mpt3sas_base_stop_watchdog(ioc);
5207 mpt3sas_base_free_resources(ioc);
5208 _base_release_memory_pools(ioc);
5209 pci_set_drvdata(ioc->pdev, NULL);
5210 kfree(ioc->cpu_msix_table);
5211 kfree(ioc->pd_handles);
5212 kfree(ioc->blocking_handles);
5213 kfree(ioc->pfacts);
5214 kfree(ioc->ctl_cmds.reply);
5215 kfree(ioc->ctl_cmds.sense);
5216 kfree(ioc->base_cmds.reply);
5217 kfree(ioc->port_enable_cmds.reply);
5218 kfree(ioc->tm_cmds.reply);
5219 kfree(ioc->transport_cmds.reply);
5220 kfree(ioc->scsih_cmds.reply);
5221 kfree(ioc->config_cmds.reply);
5222}
5223
5224/**
5225 * _base_reset_handler - reset callback handler (for base)
5226 * @ioc: per adapter object
5227 * @reset_phase: phase
5228 *
5229 * The handler for doing any required cleanup or initialization.
5230 *
5231 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5232 * MPT3_IOC_DONE_RESET
5233 *
5234 * Return nothing.
5235 */
5236static void
5237_base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5238{
5239 mpt3sas_scsih_reset_handler(ioc, reset_phase);
5240 mpt3sas_ctl_reset_handler(ioc, reset_phase);
5241 switch (reset_phase) {
5242 case MPT3_IOC_PRE_RESET:
5243 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5244 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5245 break;
5246 case MPT3_IOC_AFTER_RESET:
5247 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5248 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5249 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5250 ioc->transport_cmds.status |= MPT3_CMD_RESET;
5251 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5252 complete(&ioc->transport_cmds.done);
5253 }
5254 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5255 ioc->base_cmds.status |= MPT3_CMD_RESET;
5256 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5257 complete(&ioc->base_cmds.done);
5258 }
5259 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5260 ioc->port_enable_failed = 1;
5261 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5262 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5263 if (ioc->is_driver_loading) {
5264 ioc->start_scan_failed =
5265 MPI2_IOCSTATUS_INTERNAL_ERROR;
5266 ioc->start_scan = 0;
5267 ioc->port_enable_cmds.status =
5268 MPT3_CMD_NOT_USED;
5269 } else
5270 complete(&ioc->port_enable_cmds.done);
5271 }
5272 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5273 ioc->config_cmds.status |= MPT3_CMD_RESET;
5274 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5275 ioc->config_cmds.smid = USHRT_MAX;
5276 complete(&ioc->config_cmds.done);
5277 }
5278 break;
5279 case MPT3_IOC_DONE_RESET:
5280 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5281 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5282 break;
5283 }
5284}
5285
5286/**
5287 * _wait_for_commands_to_complete - reset controller
5288 * @ioc: Pointer to MPT_ADAPTER structure
5289 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5290 *
5291 * This function waiting(3s) for all pending commands to complete
5292 * prior to putting controller in reset.
5293 */
5294static void
5295_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5296{
5297 u32 ioc_state;
5298 unsigned long flags;
5299 u16 i;
5300
5301 ioc->pending_io_count = 0;
5302 if (sleep_flag != CAN_SLEEP)
5303 return;
5304
5305 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5306 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5307 return;
5308
5309 /* pending command count */
5310 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5311 for (i = 0; i < ioc->scsiio_depth; i++)
5312 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5313 ioc->pending_io_count++;
5314 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5315
5316 if (!ioc->pending_io_count)
5317 return;
5318
5319 /* wait for pending commands to complete */
5320 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5321}
5322
5323/**
5324 * mpt3sas_base_hard_reset_handler - reset controller
5325 * @ioc: Pointer to MPT_ADAPTER structure
5326 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5327 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5328 *
5329 * Returns 0 for success, non-zero for failure.
5330 */
5331int
5332mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5333 enum reset_type type)
5334{
5335 int r;
5336 unsigned long flags;
5337 u32 ioc_state;
5338 u8 is_fault = 0, is_trigger = 0;
5339
5340 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5341 __func__));
5342
5343 if (ioc->pci_error_recovery) {
5344 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5345 ioc->name, __func__);
5346 r = 0;
5347 goto out_unlocked;
5348 }
5349
5350 if (mpt3sas_fwfault_debug)
5351 mpt3sas_halt_firmware(ioc);
5352
5353 /* TODO - What we really should be doing is pulling
5354 * out all the code associated with NO_SLEEP; its never used.
5355 * That is legacy code from mpt fusion driver, ported over.
5356 * I will leave this BUG_ON here for now till its been resolved.
5357 */
5358 BUG_ON(sleep_flag == NO_SLEEP);
5359
5360 /* wait for an active reset in progress to complete */
5361 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5362 do {
5363 ssleep(1);
5364 } while (ioc->shost_recovery == 1);
5365 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5366 __func__));
5367 return ioc->ioc_reset_in_progress_status;
5368 }
5369
5370 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5371 ioc->shost_recovery = 1;
5372 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5373
5374 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5375 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5376 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5377 MPT3_DIAG_BUFFER_IS_RELEASED))) {
5378 is_trigger = 1;
5379 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5380 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5381 is_fault = 1;
5382 }
5383 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5384 _wait_for_commands_to_complete(ioc, sleep_flag);
5385 _base_mask_interrupts(ioc);
5386 r = _base_make_ioc_ready(ioc, sleep_flag, type);
5387 if (r)
5388 goto out;
5389 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5390
5391 /* If this hard reset is called while port enable is active, then
5392 * there is no reason to call make_ioc_operational
5393 */
5394 if (ioc->is_driver_loading && ioc->port_enable_failed) {
5395 ioc->remove_host = 1;
5396 r = -EFAULT;
5397 goto out;
5398 }
5399 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5400 if (r)
5401 goto out;
9b05c91a
SR
5402
5403 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5404 panic("%s: Issue occurred with flashing controller firmware."
5405 "Please reboot the system and ensure that the correct"
5406 " firmware version is running\n", ioc->name);
5407
f92363d1
SR
5408 r = _base_make_ioc_operational(ioc, sleep_flag);
5409 if (!r)
5410 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5411
5412 out:
5413 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5414 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5415
5416 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5417 ioc->ioc_reset_in_progress_status = r;
5418 ioc->shost_recovery = 0;
5419 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5420 ioc->ioc_reset_count++;
5421 mutex_unlock(&ioc->reset_in_progress_mutex);
5422
5423 out_unlocked:
5424 if ((r == 0) && is_trigger) {
5425 if (is_fault)
5426 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5427 else
5428 mpt3sas_trigger_master(ioc,
5429 MASTER_TRIGGER_ADAPTER_RESET);
5430 }
5431 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5432 __func__));
5433 return r;
5434}