[PATCH] libata: reorganize ata_set_mode()
[linux-2.6-block.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f 64static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
1da177e4 68static void ata_set_mode(struct ata_port *ap);
83206a29
TH
69static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
70 struct ata_device *dev);
acf356b1 71static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
72
73static unsigned int ata_unique_id = 1;
74static struct workqueue_struct *ata_wq;
75
418dc1f5 76int atapi_enabled = 1;
1623c81e
JG
77module_param(atapi_enabled, int, 0444);
78MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562 280static const struct ata_xfer_ent {
be9a50c8 281 int shift, bits;
cb95d562
TH
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
4c360c81
TH
400static const char *sata_spd_string(unsigned int spd)
401{
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410}
411
0b8efb0a
TH
412static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
413{
e1211e3f 414 if (ata_dev_enabled(dev)) {
0b8efb0a
TH
415 printk(KERN_WARNING "ata%u: dev %u disabled\n",
416 ap->id, dev->devno);
417 dev->class++;
418 }
419}
420
1da177e4
LT
421/**
422 * ata_pio_devchk - PATA device presence detection
423 * @ap: ATA channel to examine
424 * @device: Device to examine (starting at zero)
425 *
426 * This technique was originally described in
427 * Hale Landis's ATADRVR (www.ata-atapi.com), and
428 * later found its way into the ATA/ATAPI spec.
429 *
430 * Write a pattern to the ATA shadow registers,
431 * and if a device is present, it will respond by
432 * correctly storing and echoing back the
433 * ATA shadow register contents.
434 *
435 * LOCKING:
436 * caller.
437 */
438
439static unsigned int ata_pio_devchk(struct ata_port *ap,
440 unsigned int device)
441{
442 struct ata_ioports *ioaddr = &ap->ioaddr;
443 u8 nsect, lbal;
444
445 ap->ops->dev_select(ap, device);
446
447 outb(0x55, ioaddr->nsect_addr);
448 outb(0xaa, ioaddr->lbal_addr);
449
450 outb(0xaa, ioaddr->nsect_addr);
451 outb(0x55, ioaddr->lbal_addr);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 nsect = inb(ioaddr->nsect_addr);
457 lbal = inb(ioaddr->lbal_addr);
458
459 if ((nsect == 0x55) && (lbal == 0xaa))
460 return 1; /* we found a device */
461
462 return 0; /* nothing found */
463}
464
465/**
466 * ata_mmio_devchk - PATA device presence detection
467 * @ap: ATA channel to examine
468 * @device: Device to examine (starting at zero)
469 *
470 * This technique was originally described in
471 * Hale Landis's ATADRVR (www.ata-atapi.com), and
472 * later found its way into the ATA/ATAPI spec.
473 *
474 * Write a pattern to the ATA shadow registers,
475 * and if a device is present, it will respond by
476 * correctly storing and echoing back the
477 * ATA shadow register contents.
478 *
479 * LOCKING:
480 * caller.
481 */
482
483static unsigned int ata_mmio_devchk(struct ata_port *ap,
484 unsigned int device)
485{
486 struct ata_ioports *ioaddr = &ap->ioaddr;
487 u8 nsect, lbal;
488
489 ap->ops->dev_select(ap, device);
490
491 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
492 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
493
494 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 nsect = readb((void __iomem *) ioaddr->nsect_addr);
501 lbal = readb((void __iomem *) ioaddr->lbal_addr);
502
503 if ((nsect == 0x55) && (lbal == 0xaa))
504 return 1; /* we found a device */
505
506 return 0; /* nothing found */
507}
508
509/**
510 * ata_devchk - PATA device presence detection
511 * @ap: ATA channel to examine
512 * @device: Device to examine (starting at zero)
513 *
514 * Dispatch ATA device presence detection, depending
515 * on whether we are using PIO or MMIO to talk to the
516 * ATA shadow registers.
517 *
518 * LOCKING:
519 * caller.
520 */
521
522static unsigned int ata_devchk(struct ata_port *ap,
523 unsigned int device)
524{
525 if (ap->flags & ATA_FLAG_MMIO)
526 return ata_mmio_devchk(ap, device);
527 return ata_pio_devchk(ap, device);
528}
529
530/**
531 * ata_dev_classify - determine device type based on ATA-spec signature
532 * @tf: ATA taskfile register set for device to be identified
533 *
534 * Determine from taskfile register contents whether a device is
535 * ATA or ATAPI, as per "Signature and persistence" section
536 * of ATA/PI spec (volume 1, sect 5.14).
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
543 * the event of failure.
544 */
545
057ace5e 546unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
547{
548 /* Apple's open source Darwin code hints that some devices only
549 * put a proper signature into the LBA mid/high registers,
550 * So, we only check those. It's sufficient for uniqueness.
551 */
552
553 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
554 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
555 DPRINTK("found ATA device by sig\n");
556 return ATA_DEV_ATA;
557 }
558
559 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
560 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
561 DPRINTK("found ATAPI device by sig\n");
562 return ATA_DEV_ATAPI;
563 }
564
565 DPRINTK("unknown device\n");
566 return ATA_DEV_UNKNOWN;
567}
568
569/**
570 * ata_dev_try_classify - Parse returned ATA device signature
571 * @ap: ATA channel to examine
572 * @device: Device to examine (starting at zero)
b4dc7623 573 * @r_err: Value of error register on completion
1da177e4
LT
574 *
575 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
576 * an ATA/ATAPI-defined set of values is placed in the ATA
577 * shadow registers, indicating the results of device detection
578 * and diagnostics.
579 *
580 * Select the ATA device, and read the values from the ATA shadow
581 * registers. Then parse according to the Error register value,
582 * and the spec-defined values examined by ata_dev_classify().
583 *
584 * LOCKING:
585 * caller.
b4dc7623
TH
586 *
587 * RETURNS:
588 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
589 */
590
b4dc7623
TH
591static unsigned int
592ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 593{
1da177e4
LT
594 struct ata_taskfile tf;
595 unsigned int class;
596 u8 err;
597
598 ap->ops->dev_select(ap, device);
599
600 memset(&tf, 0, sizeof(tf));
601
1da177e4 602 ap->ops->tf_read(ap, &tf);
0169e284 603 err = tf.feature;
b4dc7623
TH
604 if (r_err)
605 *r_err = err;
1da177e4
LT
606
607 /* see if device passed diags */
608 if (err == 1)
609 /* do nothing */ ;
610 else if ((device == 0) && (err == 0x81))
611 /* do nothing */ ;
612 else
b4dc7623 613 return ATA_DEV_NONE;
1da177e4 614
b4dc7623 615 /* determine if device is ATA or ATAPI */
1da177e4 616 class = ata_dev_classify(&tf);
b4dc7623 617
1da177e4 618 if (class == ATA_DEV_UNKNOWN)
b4dc7623 619 return ATA_DEV_NONE;
1da177e4 620 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
621 return ATA_DEV_NONE;
622 return class;
1da177e4
LT
623}
624
625/**
6a62a04d 626 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
627 * @id: IDENTIFY DEVICE results we will examine
628 * @s: string into which data is output
629 * @ofs: offset into identify device page
630 * @len: length of string to return. must be an even number.
631 *
632 * The strings in the IDENTIFY DEVICE page are broken up into
633 * 16-bit chunks. Run through the string, and output each
634 * 8-bit chunk linearly, regardless of platform.
635 *
636 * LOCKING:
637 * caller.
638 */
639
6a62a04d
TH
640void ata_id_string(const u16 *id, unsigned char *s,
641 unsigned int ofs, unsigned int len)
1da177e4
LT
642{
643 unsigned int c;
644
645 while (len > 0) {
646 c = id[ofs] >> 8;
647 *s = c;
648 s++;
649
650 c = id[ofs] & 0xff;
651 *s = c;
652 s++;
653
654 ofs++;
655 len -= 2;
656 }
657}
658
0e949ff3 659/**
6a62a04d 660 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
661 * @id: IDENTIFY DEVICE results we will examine
662 * @s: string into which data is output
663 * @ofs: offset into identify device page
664 * @len: length of string to return. must be an odd number.
665 *
6a62a04d 666 * This function is identical to ata_id_string except that it
0e949ff3
TH
667 * trims trailing spaces and terminates the resulting string with
668 * null. @len must be actual maximum length (even number) + 1.
669 *
670 * LOCKING:
671 * caller.
672 */
6a62a04d
TH
673void ata_id_c_string(const u16 *id, unsigned char *s,
674 unsigned int ofs, unsigned int len)
0e949ff3
TH
675{
676 unsigned char *p;
677
678 WARN_ON(!(len & 1));
679
6a62a04d 680 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
681
682 p = s + strnlen(s, len - 1);
683 while (p > s && p[-1] == ' ')
684 p--;
685 *p = '\0';
686}
0baab86b 687
2940740b
TH
688static u64 ata_id_n_sectors(const u16 *id)
689{
690 if (ata_id_has_lba(id)) {
691 if (ata_id_has_lba48(id))
692 return ata_id_u64(id, 100);
693 else
694 return ata_id_u32(id, 60);
695 } else {
696 if (ata_id_current_chs_valid(id))
697 return ata_id_u32(id, 57);
698 else
699 return id[1] * id[3] * id[6];
700 }
701}
702
0baab86b
EF
703/**
704 * ata_noop_dev_select - Select device 0/1 on ATA bus
705 * @ap: ATA channel to manipulate
706 * @device: ATA device (numbered from zero) to select
707 *
708 * This function performs no actual function.
709 *
710 * May be used as the dev_select() entry in ata_port_operations.
711 *
712 * LOCKING:
713 * caller.
714 */
1da177e4
LT
715void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
716{
717}
718
0baab86b 719
1da177e4
LT
720/**
721 * ata_std_dev_select - Select device 0/1 on ATA bus
722 * @ap: ATA channel to manipulate
723 * @device: ATA device (numbered from zero) to select
724 *
725 * Use the method defined in the ATA specification to
726 * make either device 0, or device 1, active on the
0baab86b
EF
727 * ATA channel. Works with both PIO and MMIO.
728 *
729 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
730 *
731 * LOCKING:
732 * caller.
733 */
734
735void ata_std_dev_select (struct ata_port *ap, unsigned int device)
736{
737 u8 tmp;
738
739 if (device == 0)
740 tmp = ATA_DEVICE_OBS;
741 else
742 tmp = ATA_DEVICE_OBS | ATA_DEV1;
743
744 if (ap->flags & ATA_FLAG_MMIO) {
745 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
746 } else {
747 outb(tmp, ap->ioaddr.device_addr);
748 }
749 ata_pause(ap); /* needed; also flushes, for mmio */
750}
751
752/**
753 * ata_dev_select - Select device 0/1 on ATA bus
754 * @ap: ATA channel to manipulate
755 * @device: ATA device (numbered from zero) to select
756 * @wait: non-zero to wait for Status register BSY bit to clear
757 * @can_sleep: non-zero if context allows sleeping
758 *
759 * Use the method defined in the ATA specification to
760 * make either device 0, or device 1, active on the
761 * ATA channel.
762 *
763 * This is a high-level version of ata_std_dev_select(),
764 * which additionally provides the services of inserting
765 * the proper pauses and status polling, where needed.
766 *
767 * LOCKING:
768 * caller.
769 */
770
771void ata_dev_select(struct ata_port *ap, unsigned int device,
772 unsigned int wait, unsigned int can_sleep)
773{
774 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
775 ap->id, device, wait);
776
777 if (wait)
778 ata_wait_idle(ap);
779
780 ap->ops->dev_select(ap, device);
781
782 if (wait) {
783 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
784 msleep(150);
785 ata_wait_idle(ap);
786 }
787}
788
789/**
790 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 791 * @id: IDENTIFY DEVICE page to dump
1da177e4 792 *
0bd3300a
TH
793 * Dump selected 16-bit words from the given IDENTIFY DEVICE
794 * page.
1da177e4
LT
795 *
796 * LOCKING:
797 * caller.
798 */
799
0bd3300a 800static inline void ata_dump_id(const u16 *id)
1da177e4
LT
801{
802 DPRINTK("49==0x%04x "
803 "53==0x%04x "
804 "63==0x%04x "
805 "64==0x%04x "
806 "75==0x%04x \n",
0bd3300a
TH
807 id[49],
808 id[53],
809 id[63],
810 id[64],
811 id[75]);
1da177e4
LT
812 DPRINTK("80==0x%04x "
813 "81==0x%04x "
814 "82==0x%04x "
815 "83==0x%04x "
816 "84==0x%04x \n",
0bd3300a
TH
817 id[80],
818 id[81],
819 id[82],
820 id[83],
821 id[84]);
1da177e4
LT
822 DPRINTK("88==0x%04x "
823 "93==0x%04x\n",
0bd3300a
TH
824 id[88],
825 id[93]);
1da177e4
LT
826}
827
cb95d562
TH
828/**
829 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
830 * @id: IDENTIFY data to compute xfer mask from
831 *
832 * Compute the xfermask for this device. This is not as trivial
833 * as it seems if we must consider early devices correctly.
834 *
835 * FIXME: pre IDE drive timing (do we care ?).
836 *
837 * LOCKING:
838 * None.
839 *
840 * RETURNS:
841 * Computed xfermask
842 */
843static unsigned int ata_id_xfermask(const u16 *id)
844{
845 unsigned int pio_mask, mwdma_mask, udma_mask;
846
847 /* Usual case. Word 53 indicates word 64 is valid */
848 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
849 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
850 pio_mask <<= 3;
851 pio_mask |= 0x7;
852 } else {
853 /* If word 64 isn't valid then Word 51 high byte holds
854 * the PIO timing number for the maximum. Turn it into
855 * a mask.
856 */
857 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
858
859 /* But wait.. there's more. Design your standards by
860 * committee and you too can get a free iordy field to
861 * process. However its the speeds not the modes that
862 * are supported... Note drivers using the timing API
863 * will get this right anyway
864 */
865 }
866
867 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
868
869 udma_mask = 0;
870 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
871 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
872
873 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
874}
875
86e45b6b
TH
876/**
877 * ata_port_queue_task - Queue port_task
878 * @ap: The ata_port to queue port_task for
879 *
880 * Schedule @fn(@data) for execution after @delay jiffies using
881 * port_task. There is one port_task per port and it's the
882 * user(low level driver)'s responsibility to make sure that only
883 * one task is active at any given time.
884 *
885 * libata core layer takes care of synchronization between
886 * port_task and EH. ata_port_queue_task() may be ignored for EH
887 * synchronization.
888 *
889 * LOCKING:
890 * Inherited from caller.
891 */
892void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
893 unsigned long delay)
894{
895 int rc;
896
2e755f68 897 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
898 return;
899
900 PREPARE_WORK(&ap->port_task, fn, data);
901
902 if (!delay)
903 rc = queue_work(ata_wq, &ap->port_task);
904 else
905 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
906
907 /* rc == 0 means that another user is using port task */
908 WARN_ON(rc == 0);
909}
910
911/**
912 * ata_port_flush_task - Flush port_task
913 * @ap: The ata_port to flush port_task for
914 *
915 * After this function completes, port_task is guranteed not to
916 * be running or scheduled.
917 *
918 * LOCKING:
919 * Kernel thread context (may sleep)
920 */
921void ata_port_flush_task(struct ata_port *ap)
922{
923 unsigned long flags;
924
925 DPRINTK("ENTER\n");
926
927 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 928 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
929 spin_unlock_irqrestore(&ap->host_set->lock, flags);
930
931 DPRINTK("flush #1\n");
932 flush_workqueue(ata_wq);
933
934 /*
935 * At this point, if a task is running, it's guaranteed to see
936 * the FLUSH flag; thus, it will never queue pio tasks again.
937 * Cancel and flush.
938 */
939 if (!cancel_delayed_work(&ap->port_task)) {
940 DPRINTK("flush #2\n");
941 flush_workqueue(ata_wq);
942 }
943
944 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 945 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
946 spin_unlock_irqrestore(&ap->host_set->lock, flags);
947
948 DPRINTK("EXIT\n");
949}
950
77853bf2 951void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 952{
77853bf2 953 struct completion *waiting = qc->private_data;
a2a7a662 954
77853bf2 955 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 956 complete(waiting);
a2a7a662
TH
957}
958
959/**
960 * ata_exec_internal - execute libata internal command
961 * @ap: Port to which the command is sent
962 * @dev: Device to which the command is sent
963 * @tf: Taskfile registers for the command and the result
964 * @dma_dir: Data tranfer direction of the command
965 * @buf: Data buffer of the command
966 * @buflen: Length of data buffer
967 *
968 * Executes libata internal command with timeout. @tf contains
969 * command on entry and result on return. Timeout and error
970 * conditions are reported via return value. No recovery action
971 * is taken after a command times out. It's caller's duty to
972 * clean up after timeout.
973 *
974 * LOCKING:
975 * None. Should be called with kernel context, might sleep.
976 */
977
978static unsigned
979ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
980 struct ata_taskfile *tf,
981 int dma_dir, void *buf, unsigned int buflen)
982{
983 u8 command = tf->command;
984 struct ata_queued_cmd *qc;
985 DECLARE_COMPLETION(wait);
986 unsigned long flags;
77853bf2 987 unsigned int err_mask;
a2a7a662
TH
988
989 spin_lock_irqsave(&ap->host_set->lock, flags);
990
991 qc = ata_qc_new_init(ap, dev);
992 BUG_ON(qc == NULL);
993
994 qc->tf = *tf;
995 qc->dma_dir = dma_dir;
996 if (dma_dir != DMA_NONE) {
997 ata_sg_init_one(qc, buf, buflen);
998 qc->nsect = buflen / ATA_SECT_SIZE;
999 }
1000
77853bf2 1001 qc->private_data = &wait;
a2a7a662
TH
1002 qc->complete_fn = ata_qc_complete_internal;
1003
8e0e694a 1004 ata_qc_issue(qc);
a2a7a662
TH
1005
1006 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1007
1008 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1009 ata_port_flush_task(ap);
1010
a2a7a662
TH
1011 spin_lock_irqsave(&ap->host_set->lock, flags);
1012
1013 /* We're racing with irq here. If we lose, the
1014 * following test prevents us from completing the qc
1015 * again. If completion irq occurs after here but
1016 * before the caller cleans up, it will result in a
1017 * spurious interrupt. We can live with that.
1018 */
77853bf2 1019 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1020 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1021 ata_qc_complete(qc);
1022 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1023 ap->id, command);
1024 }
1025
1026 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1027 }
1028
77853bf2
TH
1029 *tf = qc->tf;
1030 err_mask = qc->err_mask;
1031
1032 ata_qc_free(qc);
1033
1f7dd3e9
TH
1034 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1035 * Until those drivers are fixed, we detect the condition
1036 * here, fail the command with AC_ERR_SYSTEM and reenable the
1037 * port.
1038 *
1039 * Note that this doesn't change any behavior as internal
1040 * command failure results in disabling the device in the
1041 * higher layer for LLDDs without new reset/EH callbacks.
1042 *
1043 * Kill the following code as soon as those drivers are fixed.
1044 */
1045 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1046 err_mask |= AC_ERR_SYSTEM;
1047 ata_port_probe(ap);
1048 }
1049
77853bf2 1050 return err_mask;
a2a7a662
TH
1051}
1052
1bc4ccff
AC
1053/**
1054 * ata_pio_need_iordy - check if iordy needed
1055 * @adev: ATA device
1056 *
1057 * Check if the current speed of the device requires IORDY. Used
1058 * by various controllers for chip configuration.
1059 */
1060
1061unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1062{
1063 int pio;
1064 int speed = adev->pio_mode - XFER_PIO_0;
1065
1066 if (speed < 2)
1067 return 0;
1068 if (speed > 2)
1069 return 1;
2e9edbf8 1070
1bc4ccff
AC
1071 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1072
1073 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1074 pio = adev->id[ATA_ID_EIDE_PIO];
1075 /* Is the speed faster than the drive allows non IORDY ? */
1076 if (pio) {
1077 /* This is cycle times not frequency - watch the logic! */
1078 if (pio > 240) /* PIO2 is 240nS per cycle */
1079 return 1;
1080 return 0;
1081 }
1082 }
1083 return 0;
1084}
1085
1da177e4 1086/**
49016aca
TH
1087 * ata_dev_read_id - Read ID data from the specified device
1088 * @ap: port on which target device resides
1089 * @dev: target device
1090 * @p_class: pointer to class of the target device (may be changed)
1091 * @post_reset: is this read ID post-reset?
d9572b1d 1092 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1093 *
49016aca
TH
1094 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1095 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1096 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1097 * for pre-ATA4 drives.
1da177e4
LT
1098 *
1099 * LOCKING:
49016aca
TH
1100 * Kernel thread context (may sleep)
1101 *
1102 * RETURNS:
1103 * 0 on success, -errno otherwise.
1da177e4 1104 */
49016aca 1105static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1106 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1107{
49016aca 1108 unsigned int class = *p_class;
a0123703 1109 struct ata_taskfile tf;
49016aca 1110 unsigned int err_mask = 0;
d9572b1d 1111 u16 *id;
49016aca
TH
1112 const char *reason;
1113 int rc;
1da177e4 1114
49016aca 1115 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1116
49016aca 1117 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1118
d9572b1d
TH
1119 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1120 if (id == NULL) {
1121 rc = -ENOMEM;
1122 reason = "out of memory";
1123 goto err_out;
1124 }
1125
49016aca
TH
1126 retry:
1127 ata_tf_init(ap, &tf, dev->devno);
a0123703 1128
49016aca
TH
1129 switch (class) {
1130 case ATA_DEV_ATA:
a0123703 1131 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1132 break;
1133 case ATA_DEV_ATAPI:
a0123703 1134 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1135 break;
1136 default:
1137 rc = -ENODEV;
1138 reason = "unsupported class";
1139 goto err_out;
1da177e4
LT
1140 }
1141
a0123703 1142 tf.protocol = ATA_PROT_PIO;
1da177e4 1143
a0123703 1144 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
49016aca 1145 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1146 if (err_mask) {
49016aca
TH
1147 rc = -EIO;
1148 reason = "I/O error";
1da177e4
LT
1149 goto err_out;
1150 }
1151
49016aca 1152 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1153
49016aca 1154 /* sanity check */
692785e7 1155 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1156 rc = -EINVAL;
1157 reason = "device reports illegal type";
1158 goto err_out;
1159 }
1160
1161 if (post_reset && class == ATA_DEV_ATA) {
1162 /*
1163 * The exact sequence expected by certain pre-ATA4 drives is:
1164 * SRST RESET
1165 * IDENTIFY
1166 * INITIALIZE DEVICE PARAMETERS
1167 * anything else..
1168 * Some drives were very specific about that exact sequence.
1169 */
1170 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
00b6f5e9 1171 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
49016aca
TH
1172 if (err_mask) {
1173 rc = -EIO;
1174 reason = "INIT_DEV_PARAMS failed";
1175 goto err_out;
1176 }
1177
1178 /* current CHS translation info (id[53-58]) might be
1179 * changed. reread the identify device info.
1180 */
1181 post_reset = 0;
1182 goto retry;
1183 }
1184 }
1185
1186 *p_class = class;
d9572b1d 1187 *p_id = id;
49016aca
TH
1188 return 0;
1189
1190 err_out:
1191 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1192 ap->id, dev->devno, reason);
d9572b1d 1193 kfree(id);
49016aca
TH
1194 return rc;
1195}
1196
4b2f3ede
TH
1197static inline u8 ata_dev_knobble(const struct ata_port *ap,
1198 struct ata_device *dev)
1199{
1200 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1201}
1202
49016aca 1203/**
ffeae418
TH
1204 * ata_dev_configure - Configure the specified ATA/ATAPI device
1205 * @ap: Port on which target device resides
1206 * @dev: Target device to configure
4c2d721a 1207 * @print_info: Enable device info printout
ffeae418
TH
1208 *
1209 * Configure @dev according to @dev->id. Generic and low-level
1210 * driver specific fixups are also applied.
49016aca
TH
1211 *
1212 * LOCKING:
ffeae418
TH
1213 * Kernel thread context (may sleep)
1214 *
1215 * RETURNS:
1216 * 0 on success, -errno otherwise
49016aca 1217 */
4c2d721a
TH
1218static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1219 int print_info)
49016aca 1220{
1148c3a7 1221 const u16 *id = dev->id;
ff8854b2 1222 unsigned int xfer_mask;
49016aca
TH
1223 int i, rc;
1224
e1211e3f 1225 if (!ata_dev_enabled(dev)) {
49016aca 1226 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1227 ap->id, dev->devno);
1228 return 0;
49016aca
TH
1229 }
1230
ffeae418 1231 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1232
c39f5ebe
TH
1233 /* print device capabilities */
1234 if (print_info)
1235 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1236 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1237 ap->id, dev->devno, id[49], id[82], id[83],
1238 id[84], id[85], id[86], id[87], id[88]);
1239
208a9933
TH
1240 /* initialize to-be-configured parameters */
1241 dev->flags = 0;
1242 dev->max_sectors = 0;
1243 dev->cdb_len = 0;
1244 dev->n_sectors = 0;
1245 dev->cylinders = 0;
1246 dev->heads = 0;
1247 dev->sectors = 0;
1248
1da177e4
LT
1249 /*
1250 * common ATA, ATAPI feature tests
1251 */
1252
ff8854b2 1253 /* find max transfer mode; for printk only */
1148c3a7 1254 xfer_mask = ata_id_xfermask(id);
1da177e4 1255
1148c3a7 1256 ata_dump_id(id);
1da177e4
LT
1257
1258 /* ATA-specific feature tests */
1259 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1260 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1261
1148c3a7 1262 if (ata_id_has_lba(id)) {
4c2d721a 1263 const char *lba_desc;
8bf62ece 1264
4c2d721a
TH
1265 lba_desc = "LBA";
1266 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1267 if (ata_id_has_lba48(id)) {
8bf62ece 1268 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1269 lba_desc = "LBA48";
1270 }
8bf62ece
AL
1271
1272 /* print device info to dmesg */
4c2d721a
TH
1273 if (print_info)
1274 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1275 "max %s, %Lu sectors: %s\n",
1276 ap->id, dev->devno,
1148c3a7 1277 ata_id_major_version(id),
ff8854b2 1278 ata_mode_string(xfer_mask),
4c2d721a
TH
1279 (unsigned long long)dev->n_sectors,
1280 lba_desc);
ffeae418 1281 } else {
8bf62ece
AL
1282 /* CHS */
1283
1284 /* Default translation */
1148c3a7
TH
1285 dev->cylinders = id[1];
1286 dev->heads = id[3];
1287 dev->sectors = id[6];
8bf62ece 1288
1148c3a7 1289 if (ata_id_current_chs_valid(id)) {
8bf62ece 1290 /* Current CHS translation is valid. */
1148c3a7
TH
1291 dev->cylinders = id[54];
1292 dev->heads = id[55];
1293 dev->sectors = id[56];
8bf62ece
AL
1294 }
1295
1296 /* print device info to dmesg */
4c2d721a
TH
1297 if (print_info)
1298 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1299 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1300 ap->id, dev->devno,
1148c3a7 1301 ata_id_major_version(id),
ff8854b2 1302 ata_mode_string(xfer_mask),
4c2d721a
TH
1303 (unsigned long long)dev->n_sectors,
1304 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1305 }
1306
6e7846e9 1307 dev->cdb_len = 16;
1da177e4
LT
1308 }
1309
1310 /* ATAPI-specific feature tests */
2c13b7ce 1311 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1312 rc = atapi_cdb_len(id);
1da177e4
LT
1313 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1314 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1315 rc = -EINVAL;
1da177e4
LT
1316 goto err_out_nosup;
1317 }
6e7846e9 1318 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1319
1320 /* print device info to dmesg */
4c2d721a
TH
1321 if (print_info)
1322 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1323 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1324 }
1325
6e7846e9
TH
1326 ap->host->max_cmd_len = 0;
1327 for (i = 0; i < ATA_MAX_DEVICES; i++)
1328 ap->host->max_cmd_len = max_t(unsigned int,
1329 ap->host->max_cmd_len,
1330 ap->device[i].cdb_len);
1331
4b2f3ede
TH
1332 /* limit bridge transfers to udma5, 200 sectors */
1333 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1334 if (print_info)
1335 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1336 ap->id, dev->devno);
5a529139 1337 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1338 dev->max_sectors = ATA_MAX_SECTORS;
1339 }
1340
1341 if (ap->ops->dev_config)
1342 ap->ops->dev_config(ap, dev);
1343
1da177e4 1344 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1345 return 0;
1da177e4
LT
1346
1347err_out_nosup:
1da177e4 1348 DPRINTK("EXIT, err\n");
ffeae418 1349 return rc;
1da177e4
LT
1350}
1351
1352/**
1353 * ata_bus_probe - Reset and probe ATA bus
1354 * @ap: Bus to probe
1355 *
0cba632b
JG
1356 * Master ATA bus probing function. Initiates a hardware-dependent
1357 * bus reset, then attempts to identify any devices found on
1358 * the bus.
1359 *
1da177e4 1360 * LOCKING:
0cba632b 1361 * PCI/etc. bus probe sem.
1da177e4
LT
1362 *
1363 * RETURNS:
96072e69 1364 * Zero on success, negative errno otherwise.
1da177e4
LT
1365 */
1366
1367static int ata_bus_probe(struct ata_port *ap)
1368{
28ca5c57 1369 unsigned int classes[ATA_MAX_DEVICES];
96072e69 1370 int i, rc, found = 0;
1da177e4 1371
28ca5c57 1372 ata_port_probe(ap);
c19ba8af 1373
2044470c
TH
1374 /* reset and determine device classes */
1375 for (i = 0; i < ATA_MAX_DEVICES; i++)
1376 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1377
2044470c 1378 if (ap->ops->probe_reset) {
c19ba8af 1379 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1380 if (rc) {
1381 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1382 return rc;
c19ba8af 1383 }
28ca5c57 1384 } else {
c19ba8af
TH
1385 ap->ops->phy_reset(ap);
1386
2044470c
TH
1387 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1388 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1389 classes[i] = ap->device[i].class;
2044470c 1390
28ca5c57
TH
1391 ata_port_probe(ap);
1392 }
1da177e4 1393
2044470c
TH
1394 for (i = 0; i < ATA_MAX_DEVICES; i++)
1395 if (classes[i] == ATA_DEV_UNKNOWN)
1396 classes[i] = ATA_DEV_NONE;
1397
28ca5c57 1398 /* read IDENTIFY page and configure devices */
1da177e4 1399 for (i = 0; i < ATA_MAX_DEVICES; i++) {
ffeae418
TH
1400 struct ata_device *dev = &ap->device[i];
1401
28ca5c57
TH
1402 dev->class = classes[i];
1403
e1211e3f 1404 if (!ata_dev_enabled(dev))
ffeae418
TH
1405 continue;
1406
1407 WARN_ON(dev->id != NULL);
1408 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1409 dev->class = ATA_DEV_NONE;
1410 continue;
1411 }
1412
4c2d721a 1413 if (ata_dev_configure(ap, dev, 1)) {
fcef978f 1414 ata_dev_disable(ap, dev);
ffeae418 1415 continue;
1da177e4 1416 }
ffeae418 1417
ffeae418 1418 found = 1;
1da177e4
LT
1419 }
1420
28ca5c57 1421 if (!found)
1da177e4
LT
1422 goto err_out_disable;
1423
e35a9e01
AC
1424 if (ap->ops->set_mode)
1425 ap->ops->set_mode(ap);
1426 else
1427 ata_set_mode(ap);
1428
1da177e4
LT
1429 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1430 goto err_out_disable;
1431
1432 return 0;
1433
1434err_out_disable:
1435 ap->ops->port_disable(ap);
96072e69 1436 return -ENODEV;
1da177e4
LT
1437}
1438
1439/**
0cba632b
JG
1440 * ata_port_probe - Mark port as enabled
1441 * @ap: Port for which we indicate enablement
1da177e4 1442 *
0cba632b
JG
1443 * Modify @ap data structure such that the system
1444 * thinks that the entire port is enabled.
1445 *
1446 * LOCKING: host_set lock, or some other form of
1447 * serialization.
1da177e4
LT
1448 */
1449
1450void ata_port_probe(struct ata_port *ap)
1451{
1452 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1453}
1454
3be680b7
TH
1455/**
1456 * sata_print_link_status - Print SATA link status
1457 * @ap: SATA port to printk link status about
1458 *
1459 * This function prints link speed and status of a SATA link.
1460 *
1461 * LOCKING:
1462 * None.
1463 */
1464static void sata_print_link_status(struct ata_port *ap)
1465{
1466 u32 sstatus, tmp;
3be680b7
TH
1467
1468 if (!ap->ops->scr_read)
1469 return;
1470
1471 sstatus = scr_read(ap, SCR_STATUS);
1472
1473 if (sata_dev_present(ap)) {
1474 tmp = (sstatus >> 4) & 0xf;
4c360c81
TH
1475 printk(KERN_INFO "ata%u: SATA link up %s (SStatus %X)\n",
1476 ap->id, sata_spd_string(tmp), sstatus);
3be680b7
TH
1477 } else {
1478 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1479 ap->id, sstatus);
1480 }
1481}
1482
1da177e4 1483/**
780a87f7
JG
1484 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1485 * @ap: SATA port associated with target SATA PHY.
1da177e4 1486 *
780a87f7
JG
1487 * This function issues commands to standard SATA Sxxx
1488 * PHY registers, to wake up the phy (and device), and
1489 * clear any reset condition.
1da177e4
LT
1490 *
1491 * LOCKING:
0cba632b 1492 * PCI/etc. bus probe sem.
1da177e4
LT
1493 *
1494 */
1495void __sata_phy_reset(struct ata_port *ap)
1496{
1497 u32 sstatus;
1498 unsigned long timeout = jiffies + (HZ * 5);
1499
1500 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1501 /* issue phy wake/reset */
1502 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1503 /* Couldn't find anything in SATA I/II specs, but
1504 * AHCI-1.1 10.4.2 says at least 1 ms. */
1505 mdelay(1);
1da177e4 1506 }
cdcca89e 1507 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1508
1509 /* wait for phy to become ready, if necessary */
1510 do {
1511 msleep(200);
1512 sstatus = scr_read(ap, SCR_STATUS);
1513 if ((sstatus & 0xf) != 1)
1514 break;
1515 } while (time_before(jiffies, timeout));
1516
3be680b7
TH
1517 /* print link status */
1518 sata_print_link_status(ap);
656563e3 1519
3be680b7
TH
1520 /* TODO: phy layer with polling, timeouts, etc. */
1521 if (sata_dev_present(ap))
1da177e4 1522 ata_port_probe(ap);
3be680b7 1523 else
1da177e4 1524 ata_port_disable(ap);
1da177e4
LT
1525
1526 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1527 return;
1528
1529 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1530 ata_port_disable(ap);
1531 return;
1532 }
1533
1534 ap->cbl = ATA_CBL_SATA;
1535}
1536
1537/**
780a87f7
JG
1538 * sata_phy_reset - Reset SATA bus.
1539 * @ap: SATA port associated with target SATA PHY.
1da177e4 1540 *
780a87f7
JG
1541 * This function resets the SATA bus, and then probes
1542 * the bus for devices.
1da177e4
LT
1543 *
1544 * LOCKING:
0cba632b 1545 * PCI/etc. bus probe sem.
1da177e4
LT
1546 *
1547 */
1548void sata_phy_reset(struct ata_port *ap)
1549{
1550 __sata_phy_reset(ap);
1551 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1552 return;
1553 ata_bus_reset(ap);
1554}
1555
ebdfca6e
AC
1556/**
1557 * ata_dev_pair - return other device on cable
1558 * @ap: port
1559 * @adev: device
1560 *
1561 * Obtain the other device on the same cable, or if none is
1562 * present NULL is returned
1563 */
2e9edbf8 1564
ebdfca6e
AC
1565struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1566{
1567 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1568 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1569 return NULL;
1570 return pair;
1571}
1572
1da177e4 1573/**
780a87f7
JG
1574 * ata_port_disable - Disable port.
1575 * @ap: Port to be disabled.
1da177e4 1576 *
780a87f7
JG
1577 * Modify @ap data structure such that the system
1578 * thinks that the entire port is disabled, and should
1579 * never attempt to probe or communicate with devices
1580 * on this port.
1581 *
1582 * LOCKING: host_set lock, or some other form of
1583 * serialization.
1da177e4
LT
1584 */
1585
1586void ata_port_disable(struct ata_port *ap)
1587{
1588 ap->device[0].class = ATA_DEV_NONE;
1589 ap->device[1].class = ATA_DEV_NONE;
1590 ap->flags |= ATA_FLAG_PORT_DISABLED;
1591}
1592
452503f9
AC
1593/*
1594 * This mode timing computation functionality is ported over from
1595 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1596 */
1597/*
1598 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1599 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1600 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1601 * is currently supported only by Maxtor drives.
452503f9
AC
1602 */
1603
1604static const struct ata_timing ata_timing[] = {
1605
1606 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1607 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1608 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1609 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1610
1611 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1612 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1613 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1614
1615/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1616
452503f9
AC
1617 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1618 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1619 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1620
452503f9
AC
1621 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1622 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1623 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1624
1625/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1626 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1627 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1628
1629 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1630 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1631 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1632
1633/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1634
1635 { 0xFF }
1636};
1637
1638#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1639#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1640
1641static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1642{
1643 q->setup = EZ(t->setup * 1000, T);
1644 q->act8b = EZ(t->act8b * 1000, T);
1645 q->rec8b = EZ(t->rec8b * 1000, T);
1646 q->cyc8b = EZ(t->cyc8b * 1000, T);
1647 q->active = EZ(t->active * 1000, T);
1648 q->recover = EZ(t->recover * 1000, T);
1649 q->cycle = EZ(t->cycle * 1000, T);
1650 q->udma = EZ(t->udma * 1000, UT);
1651}
1652
1653void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1654 struct ata_timing *m, unsigned int what)
1655{
1656 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1657 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1658 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1659 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1660 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1661 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1662 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1663 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1664}
1665
1666static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1667{
1668 const struct ata_timing *t;
1669
1670 for (t = ata_timing; t->mode != speed; t++)
91190758 1671 if (t->mode == 0xFF)
452503f9 1672 return NULL;
2e9edbf8 1673 return t;
452503f9
AC
1674}
1675
1676int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1677 struct ata_timing *t, int T, int UT)
1678{
1679 const struct ata_timing *s;
1680 struct ata_timing p;
1681
1682 /*
2e9edbf8 1683 * Find the mode.
75b1f2f8 1684 */
452503f9
AC
1685
1686 if (!(s = ata_timing_find_mode(speed)))
1687 return -EINVAL;
1688
75b1f2f8
AL
1689 memcpy(t, s, sizeof(*s));
1690
452503f9
AC
1691 /*
1692 * If the drive is an EIDE drive, it can tell us it needs extended
1693 * PIO/MW_DMA cycle timing.
1694 */
1695
1696 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1697 memset(&p, 0, sizeof(p));
1698 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1699 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1700 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1701 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1702 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1703 }
1704 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1705 }
1706
1707 /*
1708 * Convert the timing to bus clock counts.
1709 */
1710
75b1f2f8 1711 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1712
1713 /*
c893a3ae
RD
1714 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1715 * S.M.A.R.T * and some other commands. We have to ensure that the
1716 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1717 */
1718
1719 if (speed > XFER_PIO_4) {
1720 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1721 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1722 }
1723
1724 /*
c893a3ae 1725 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1726 */
1727
1728 if (t->act8b + t->rec8b < t->cyc8b) {
1729 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1730 t->rec8b = t->cyc8b - t->act8b;
1731 }
1732
1733 if (t->active + t->recover < t->cycle) {
1734 t->active += (t->cycle - (t->active + t->recover)) / 2;
1735 t->recover = t->cycle - t->active;
1736 }
1737
1738 return 0;
1739}
1740
83206a29 1741static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1742{
83206a29
TH
1743 unsigned int err_mask;
1744 int rc;
1da177e4
LT
1745
1746 if (dev->xfer_shift == ATA_SHIFT_PIO)
1747 dev->flags |= ATA_DFLAG_PIO;
1748
83206a29
TH
1749 err_mask = ata_dev_set_xfermode(ap, dev);
1750 if (err_mask) {
1751 printk(KERN_ERR
1752 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1753 ap->id, err_mask);
1754 return -EIO;
1755 }
1da177e4 1756
83206a29
TH
1757 rc = ata_dev_revalidate(ap, dev, 0);
1758 if (rc) {
1759 printk(KERN_ERR
1760 "ata%u: failed to revalidate after set xfermode\n",
1761 ap->id);
1762 return rc;
48a8a14f
TH
1763 }
1764
23e71c3d
TH
1765 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1766 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1767
1768 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1769 ap->id, dev->devno,
1770 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1771 return 0;
1da177e4
LT
1772}
1773
1da177e4
LT
1774/**
1775 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1776 * @ap: port on which timings will be programmed
1777 *
780a87f7
JG
1778 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1779 *
1da177e4 1780 * LOCKING:
0cba632b 1781 * PCI/etc. bus probe sem.
1da177e4
LT
1782 */
1783static void ata_set_mode(struct ata_port *ap)
1784{
e8e0619f 1785 struct ata_device *dev;
4f65977d 1786 int i, rc, used_dma = 0, found = 0;
1da177e4 1787
a6d5a51c
TH
1788 /* step 1: calculate xfer_mask */
1789 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 1790 unsigned int pio_mask, dma_mask;
a6d5a51c 1791
e8e0619f
TH
1792 dev = &ap->device[i];
1793
e1211e3f 1794 if (!ata_dev_enabled(dev))
a6d5a51c
TH
1795 continue;
1796
acf356b1 1797 ata_dev_xfermask(ap, dev);
1da177e4 1798
acf356b1
TH
1799 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1800 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1801 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1802 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 1803
4f65977d 1804 found = 1;
5444a6f4
AC
1805 if (dev->dma_mode)
1806 used_dma = 1;
a6d5a51c 1807 }
4f65977d
TH
1808 if (!found)
1809 return;
a6d5a51c
TH
1810
1811 /* step 2: always set host PIO timings */
e8e0619f
TH
1812 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1813 dev = &ap->device[i];
1814 if (!ata_dev_enabled(dev))
1815 continue;
1816
1817 if (!dev->pio_mode) {
1818 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
1819 ap->id, dev->devno);
1820 rc = -EINVAL;
1821 goto err_out;
1822 }
1823
1824 dev->xfer_mode = dev->pio_mode;
1825 dev->xfer_shift = ATA_SHIFT_PIO;
1826 if (ap->ops->set_piomode)
1827 ap->ops->set_piomode(ap, dev);
1828 }
1da177e4 1829
a6d5a51c 1830 /* step 3: set host DMA timings */
e8e0619f
TH
1831 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1832 dev = &ap->device[i];
1833
1834 if (!ata_dev_enabled(dev) || !dev->dma_mode)
1835 continue;
1836
1837 dev->xfer_mode = dev->dma_mode;
1838 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1839 if (ap->ops->set_dmamode)
1840 ap->ops->set_dmamode(ap, dev);
1841 }
1da177e4
LT
1842
1843 /* step 4: update devices' xfer mode */
83206a29 1844 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 1845 dev = &ap->device[i];
1da177e4 1846
e1211e3f 1847 if (!ata_dev_enabled(dev))
83206a29
TH
1848 continue;
1849
5bbc53f4
TH
1850 rc = ata_dev_set_mode(ap, dev);
1851 if (rc)
83206a29
TH
1852 goto err_out;
1853 }
1da177e4 1854
e8e0619f
TH
1855 /* Record simplex status. If we selected DMA then the other
1856 * host channels are not permitted to do so.
5444a6f4 1857 */
5444a6f4
AC
1858 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
1859 ap->host_set->simplex_claimed = 1;
1860
e8e0619f 1861 /* step5: chip specific finalisation */
1da177e4
LT
1862 if (ap->ops->post_set_mode)
1863 ap->ops->post_set_mode(ap);
1864
1da177e4
LT
1865 return;
1866
1867err_out:
1868 ata_port_disable(ap);
1869}
1870
1fdffbce
JG
1871/**
1872 * ata_tf_to_host - issue ATA taskfile to host controller
1873 * @ap: port to which command is being issued
1874 * @tf: ATA taskfile register set
1875 *
1876 * Issues ATA taskfile register set to ATA host controller,
1877 * with proper synchronization with interrupt handler and
1878 * other threads.
1879 *
1880 * LOCKING:
1881 * spin_lock_irqsave(host_set lock)
1882 */
1883
1884static inline void ata_tf_to_host(struct ata_port *ap,
1885 const struct ata_taskfile *tf)
1886{
1887 ap->ops->tf_load(ap, tf);
1888 ap->ops->exec_command(ap, tf);
1889}
1890
1da177e4
LT
1891/**
1892 * ata_busy_sleep - sleep until BSY clears, or timeout
1893 * @ap: port containing status register to be polled
1894 * @tmout_pat: impatience timeout
1895 * @tmout: overall timeout
1896 *
780a87f7
JG
1897 * Sleep until ATA Status register bit BSY clears,
1898 * or a timeout occurs.
1899 *
1900 * LOCKING: None.
1da177e4
LT
1901 */
1902
6f8b9958
TH
1903unsigned int ata_busy_sleep (struct ata_port *ap,
1904 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
1905{
1906 unsigned long timer_start, timeout;
1907 u8 status;
1908
1909 status = ata_busy_wait(ap, ATA_BUSY, 300);
1910 timer_start = jiffies;
1911 timeout = timer_start + tmout_pat;
1912 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1913 msleep(50);
1914 status = ata_busy_wait(ap, ATA_BUSY, 3);
1915 }
1916
1917 if (status & ATA_BUSY)
1918 printk(KERN_WARNING "ata%u is slow to respond, "
1919 "please be patient\n", ap->id);
1920
1921 timeout = timer_start + tmout;
1922 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1923 msleep(50);
1924 status = ata_chk_status(ap);
1925 }
1926
1927 if (status & ATA_BUSY) {
1928 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1929 ap->id, tmout / HZ);
1930 return 1;
1931 }
1932
1933 return 0;
1934}
1935
1936static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1937{
1938 struct ata_ioports *ioaddr = &ap->ioaddr;
1939 unsigned int dev0 = devmask & (1 << 0);
1940 unsigned int dev1 = devmask & (1 << 1);
1941 unsigned long timeout;
1942
1943 /* if device 0 was found in ata_devchk, wait for its
1944 * BSY bit to clear
1945 */
1946 if (dev0)
1947 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1948
1949 /* if device 1 was found in ata_devchk, wait for
1950 * register access, then wait for BSY to clear
1951 */
1952 timeout = jiffies + ATA_TMOUT_BOOT;
1953 while (dev1) {
1954 u8 nsect, lbal;
1955
1956 ap->ops->dev_select(ap, 1);
1957 if (ap->flags & ATA_FLAG_MMIO) {
1958 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1959 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1960 } else {
1961 nsect = inb(ioaddr->nsect_addr);
1962 lbal = inb(ioaddr->lbal_addr);
1963 }
1964 if ((nsect == 1) && (lbal == 1))
1965 break;
1966 if (time_after(jiffies, timeout)) {
1967 dev1 = 0;
1968 break;
1969 }
1970 msleep(50); /* give drive a breather */
1971 }
1972 if (dev1)
1973 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1974
1975 /* is all this really necessary? */
1976 ap->ops->dev_select(ap, 0);
1977 if (dev1)
1978 ap->ops->dev_select(ap, 1);
1979 if (dev0)
1980 ap->ops->dev_select(ap, 0);
1981}
1982
1da177e4
LT
1983static unsigned int ata_bus_softreset(struct ata_port *ap,
1984 unsigned int devmask)
1985{
1986 struct ata_ioports *ioaddr = &ap->ioaddr;
1987
1988 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1989
1990 /* software reset. causes dev0 to be selected */
1991 if (ap->flags & ATA_FLAG_MMIO) {
1992 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1993 udelay(20); /* FIXME: flush */
1994 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1995 udelay(20); /* FIXME: flush */
1996 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1997 } else {
1998 outb(ap->ctl, ioaddr->ctl_addr);
1999 udelay(10);
2000 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2001 udelay(10);
2002 outb(ap->ctl, ioaddr->ctl_addr);
2003 }
2004
2005 /* spec mandates ">= 2ms" before checking status.
2006 * We wait 150ms, because that was the magic delay used for
2007 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2008 * between when the ATA command register is written, and then
2009 * status is checked. Because waiting for "a while" before
2010 * checking status is fine, post SRST, we perform this magic
2011 * delay here as well.
09c7ad79
AC
2012 *
2013 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2014 */
2015 msleep(150);
2016
2e9edbf8 2017 /* Before we perform post reset processing we want to see if
298a41ca
TH
2018 * the bus shows 0xFF because the odd clown forgets the D7
2019 * pulldown resistor.
2020 */
09c7ad79 2021 if (ata_check_status(ap) == 0xFF)
298a41ca 2022 return AC_ERR_OTHER;
09c7ad79 2023
1da177e4
LT
2024 ata_bus_post_reset(ap, devmask);
2025
2026 return 0;
2027}
2028
2029/**
2030 * ata_bus_reset - reset host port and associated ATA channel
2031 * @ap: port to reset
2032 *
2033 * This is typically the first time we actually start issuing
2034 * commands to the ATA channel. We wait for BSY to clear, then
2035 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2036 * result. Determine what devices, if any, are on the channel
2037 * by looking at the device 0/1 error register. Look at the signature
2038 * stored in each device's taskfile registers, to determine if
2039 * the device is ATA or ATAPI.
2040 *
2041 * LOCKING:
0cba632b
JG
2042 * PCI/etc. bus probe sem.
2043 * Obtains host_set lock.
1da177e4
LT
2044 *
2045 * SIDE EFFECTS:
2046 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2047 */
2048
2049void ata_bus_reset(struct ata_port *ap)
2050{
2051 struct ata_ioports *ioaddr = &ap->ioaddr;
2052 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2053 u8 err;
aec5c3c1 2054 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2055
2056 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2057
2058 /* determine if device 0/1 are present */
2059 if (ap->flags & ATA_FLAG_SATA_RESET)
2060 dev0 = 1;
2061 else {
2062 dev0 = ata_devchk(ap, 0);
2063 if (slave_possible)
2064 dev1 = ata_devchk(ap, 1);
2065 }
2066
2067 if (dev0)
2068 devmask |= (1 << 0);
2069 if (dev1)
2070 devmask |= (1 << 1);
2071
2072 /* select device 0 again */
2073 ap->ops->dev_select(ap, 0);
2074
2075 /* issue bus reset */
2076 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2077 if (ata_bus_softreset(ap, devmask))
2078 goto err_out;
1da177e4
LT
2079
2080 /*
2081 * determine by signature whether we have ATA or ATAPI devices
2082 */
b4dc7623 2083 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2084 if ((slave_possible) && (err != 0x81))
b4dc7623 2085 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2086
2087 /* re-enable interrupts */
2088 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2089 ata_irq_on(ap);
2090
2091 /* is double-select really necessary? */
2092 if (ap->device[1].class != ATA_DEV_NONE)
2093 ap->ops->dev_select(ap, 1);
2094 if (ap->device[0].class != ATA_DEV_NONE)
2095 ap->ops->dev_select(ap, 0);
2096
2097 /* if no devices were detected, disable this port */
2098 if ((ap->device[0].class == ATA_DEV_NONE) &&
2099 (ap->device[1].class == ATA_DEV_NONE))
2100 goto err_out;
2101
2102 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2103 /* set up device control for ATA_FLAG_SATA_RESET */
2104 if (ap->flags & ATA_FLAG_MMIO)
2105 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2106 else
2107 outb(ap->ctl, ioaddr->ctl_addr);
2108 }
2109
2110 DPRINTK("EXIT\n");
2111 return;
2112
2113err_out:
2114 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2115 ap->ops->port_disable(ap);
2116
2117 DPRINTK("EXIT\n");
2118}
2119
7a7921e8
TH
2120static int sata_phy_resume(struct ata_port *ap)
2121{
2122 unsigned long timeout = jiffies + (HZ * 5);
2123 u32 sstatus;
2124
2125 scr_write_flush(ap, SCR_CONTROL, 0x300);
2126
2127 /* Wait for phy to become ready, if necessary. */
2128 do {
2129 msleep(200);
2130 sstatus = scr_read(ap, SCR_STATUS);
2131 if ((sstatus & 0xf) != 1)
2132 return 0;
2133 } while (time_before(jiffies, timeout));
2134
2135 return -1;
2136}
2137
8a19ac89
TH
2138/**
2139 * ata_std_probeinit - initialize probing
2140 * @ap: port to be probed
2141 *
2142 * @ap is about to be probed. Initialize it. This function is
2143 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2144 *
2145 * NOTE!!! Do not use this function as probeinit if a low level
2146 * driver implements only hardreset. Just pass NULL as probeinit
2147 * in that case. Using this function is probably okay but doing
2148 * so makes reset sequence different from the original
2149 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2150 */
17efc5f7 2151void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2152{
17efc5f7 2153 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
8a19ac89 2154 sata_phy_resume(ap);
3a39746a
TH
2155 if (sata_dev_present(ap))
2156 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2157 }
8a19ac89
TH
2158}
2159
c2bd5804
TH
2160/**
2161 * ata_std_softreset - reset host port via ATA SRST
2162 * @ap: port to reset
2163 * @verbose: fail verbosely
2164 * @classes: resulting classes of attached devices
2165 *
2166 * Reset host port using ATA SRST. This function is to be used
2167 * as standard callback for ata_drive_*_reset() functions.
2168 *
2169 * LOCKING:
2170 * Kernel thread context (may sleep)
2171 *
2172 * RETURNS:
2173 * 0 on success, -errno otherwise.
2174 */
2175int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2176{
2177 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2178 unsigned int devmask = 0, err_mask;
2179 u8 err;
2180
2181 DPRINTK("ENTER\n");
2182
3a39746a
TH
2183 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2184 classes[0] = ATA_DEV_NONE;
2185 goto out;
2186 }
2187
c2bd5804
TH
2188 /* determine if device 0/1 are present */
2189 if (ata_devchk(ap, 0))
2190 devmask |= (1 << 0);
2191 if (slave_possible && ata_devchk(ap, 1))
2192 devmask |= (1 << 1);
2193
c2bd5804
TH
2194 /* select device 0 again */
2195 ap->ops->dev_select(ap, 0);
2196
2197 /* issue bus reset */
2198 DPRINTK("about to softreset, devmask=%x\n", devmask);
2199 err_mask = ata_bus_softreset(ap, devmask);
2200 if (err_mask) {
2201 if (verbose)
2202 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2203 ap->id, err_mask);
2204 else
2205 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2206 err_mask);
2207 return -EIO;
2208 }
2209
2210 /* determine by signature whether we have ATA or ATAPI devices */
2211 classes[0] = ata_dev_try_classify(ap, 0, &err);
2212 if (slave_possible && err != 0x81)
2213 classes[1] = ata_dev_try_classify(ap, 1, &err);
2214
3a39746a 2215 out:
c2bd5804
TH
2216 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2217 return 0;
2218}
2219
2220/**
2221 * sata_std_hardreset - reset host port via SATA phy reset
2222 * @ap: port to reset
2223 * @verbose: fail verbosely
2224 * @class: resulting class of attached device
2225 *
2226 * SATA phy-reset host port using DET bits of SControl register.
2227 * This function is to be used as standard callback for
2228 * ata_drive_*_reset().
2229 *
2230 * LOCKING:
2231 * Kernel thread context (may sleep)
2232 *
2233 * RETURNS:
2234 * 0 on success, -errno otherwise.
2235 */
2236int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2237{
c2bd5804
TH
2238 DPRINTK("ENTER\n");
2239
2240 /* Issue phy wake/reset */
2241 scr_write_flush(ap, SCR_CONTROL, 0x301);
2242
2243 /*
2244 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2245 * 10.4.2 says at least 1 ms.
2246 */
2247 msleep(1);
2248
7a7921e8
TH
2249 /* Bring phy back */
2250 sata_phy_resume(ap);
c2bd5804 2251
c2bd5804
TH
2252 /* TODO: phy layer with polling, timeouts, etc. */
2253 if (!sata_dev_present(ap)) {
2254 *class = ATA_DEV_NONE;
2255 DPRINTK("EXIT, link offline\n");
2256 return 0;
2257 }
2258
2259 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2260 if (verbose)
2261 printk(KERN_ERR "ata%u: COMRESET failed "
2262 "(device not ready)\n", ap->id);
2263 else
2264 DPRINTK("EXIT, device not ready\n");
2265 return -EIO;
2266 }
2267
3a39746a
TH
2268 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2269
c2bd5804
TH
2270 *class = ata_dev_try_classify(ap, 0, NULL);
2271
2272 DPRINTK("EXIT, class=%u\n", *class);
2273 return 0;
2274}
2275
2276/**
2277 * ata_std_postreset - standard postreset callback
2278 * @ap: the target ata_port
2279 * @classes: classes of attached devices
2280 *
2281 * This function is invoked after a successful reset. Note that
2282 * the device might have been reset more than once using
2283 * different reset methods before postreset is invoked.
c2bd5804
TH
2284 *
2285 * This function is to be used as standard callback for
2286 * ata_drive_*_reset().
2287 *
2288 * LOCKING:
2289 * Kernel thread context (may sleep)
2290 */
2291void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2292{
2293 DPRINTK("ENTER\n");
2294
56497bd5 2295 /* set cable type if it isn't already set */
c2bd5804
TH
2296 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2297 ap->cbl = ATA_CBL_SATA;
2298
2299 /* print link status */
2300 if (ap->cbl == ATA_CBL_SATA)
2301 sata_print_link_status(ap);
2302
3a39746a
TH
2303 /* re-enable interrupts */
2304 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2305 ata_irq_on(ap);
c2bd5804
TH
2306
2307 /* is double-select really necessary? */
2308 if (classes[0] != ATA_DEV_NONE)
2309 ap->ops->dev_select(ap, 1);
2310 if (classes[1] != ATA_DEV_NONE)
2311 ap->ops->dev_select(ap, 0);
2312
3a39746a
TH
2313 /* bail out if no device is present */
2314 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2315 DPRINTK("EXIT, no device\n");
2316 return;
2317 }
2318
2319 /* set up device control */
2320 if (ap->ioaddr.ctl_addr) {
2321 if (ap->flags & ATA_FLAG_MMIO)
2322 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2323 else
2324 outb(ap->ctl, ap->ioaddr.ctl_addr);
2325 }
c2bd5804
TH
2326
2327 DPRINTK("EXIT\n");
2328}
2329
2330/**
2331 * ata_std_probe_reset - standard probe reset method
2332 * @ap: prot to perform probe-reset
2333 * @classes: resulting classes of attached devices
2334 *
2335 * The stock off-the-shelf ->probe_reset method.
2336 *
2337 * LOCKING:
2338 * Kernel thread context (may sleep)
2339 *
2340 * RETURNS:
2341 * 0 on success, -errno otherwise.
2342 */
2343int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2344{
2345 ata_reset_fn_t hardreset;
2346
2347 hardreset = NULL;
b911fc3a 2348 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2349 hardreset = sata_std_hardreset;
2350
8a19ac89 2351 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2352 ata_std_softreset, hardreset,
c2bd5804
TH
2353 ata_std_postreset, classes);
2354}
2355
9974e7cc
TH
2356static int ata_do_reset(struct ata_port *ap,
2357 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2358 int verbose, unsigned int *classes)
a62c0fc5
TH
2359{
2360 int i, rc;
2361
2362 for (i = 0; i < ATA_MAX_DEVICES; i++)
2363 classes[i] = ATA_DEV_UNKNOWN;
2364
9974e7cc 2365 rc = reset(ap, verbose, classes);
a62c0fc5
TH
2366 if (rc)
2367 return rc;
2368
2369 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2370 * is complete and convert all ATA_DEV_UNKNOWN to
2371 * ATA_DEV_NONE.
2372 */
2373 for (i = 0; i < ATA_MAX_DEVICES; i++)
2374 if (classes[i] != ATA_DEV_UNKNOWN)
2375 break;
2376
2377 if (i < ATA_MAX_DEVICES)
2378 for (i = 0; i < ATA_MAX_DEVICES; i++)
2379 if (classes[i] == ATA_DEV_UNKNOWN)
2380 classes[i] = ATA_DEV_NONE;
2381
2382 if (postreset)
2383 postreset(ap, classes);
2384
9974e7cc 2385 return 0;
a62c0fc5
TH
2386}
2387
2388/**
2389 * ata_drive_probe_reset - Perform probe reset with given methods
2390 * @ap: port to reset
7944ea95 2391 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2392 * @softreset: softreset method (can be NULL)
2393 * @hardreset: hardreset method (can be NULL)
2394 * @postreset: postreset method (can be NULL)
2395 * @classes: resulting classes of attached devices
2396 *
2397 * Reset the specified port and classify attached devices using
2398 * given methods. This function prefers softreset but tries all
2399 * possible reset sequences to reset and classify devices. This
2400 * function is intended to be used for constructing ->probe_reset
2401 * callback by low level drivers.
2402 *
2403 * Reset methods should follow the following rules.
2404 *
2405 * - Return 0 on sucess, -errno on failure.
2406 * - If classification is supported, fill classes[] with
2407 * recognized class codes.
2408 * - If classification is not supported, leave classes[] alone.
2409 * - If verbose is non-zero, print error message on failure;
2410 * otherwise, shut up.
2411 *
2412 * LOCKING:
2413 * Kernel thread context (may sleep)
2414 *
2415 * RETURNS:
2416 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2417 * if classification fails, and any error code from reset
2418 * methods.
2419 */
7944ea95 2420int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2421 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2422 ata_postreset_fn_t postreset, unsigned int *classes)
2423{
2424 int rc = -EINVAL;
2425
7944ea95
TH
2426 if (probeinit)
2427 probeinit(ap);
2428
a62c0fc5 2429 if (softreset) {
9974e7cc
TH
2430 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2431 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2432 goto done;
a62c0fc5
TH
2433 }
2434
2435 if (!hardreset)
9974e7cc 2436 goto done;
a62c0fc5 2437
9974e7cc
TH
2438 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2439 if (rc || classes[0] != ATA_DEV_UNKNOWN)
2440 goto done;
a62c0fc5
TH
2441
2442 if (softreset)
9974e7cc 2443 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
a62c0fc5 2444
9974e7cc
TH
2445 done:
2446 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2447 rc = -ENODEV;
a62c0fc5
TH
2448 return rc;
2449}
2450
623a3128
TH
2451/**
2452 * ata_dev_same_device - Determine whether new ID matches configured device
2453 * @ap: port on which the device to compare against resides
2454 * @dev: device to compare against
2455 * @new_class: class of the new device
2456 * @new_id: IDENTIFY page of the new device
2457 *
2458 * Compare @new_class and @new_id against @dev and determine
2459 * whether @dev is the device indicated by @new_class and
2460 * @new_id.
2461 *
2462 * LOCKING:
2463 * None.
2464 *
2465 * RETURNS:
2466 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2467 */
2468static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2469 unsigned int new_class, const u16 *new_id)
2470{
2471 const u16 *old_id = dev->id;
2472 unsigned char model[2][41], serial[2][21];
2473 u64 new_n_sectors;
2474
2475 if (dev->class != new_class) {
2476 printk(KERN_INFO
2477 "ata%u: dev %u class mismatch %d != %d\n",
2478 ap->id, dev->devno, dev->class, new_class);
2479 return 0;
2480 }
2481
2482 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2483 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2484 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2485 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2486 new_n_sectors = ata_id_n_sectors(new_id);
2487
2488 if (strcmp(model[0], model[1])) {
2489 printk(KERN_INFO
2490 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2491 ap->id, dev->devno, model[0], model[1]);
2492 return 0;
2493 }
2494
2495 if (strcmp(serial[0], serial[1])) {
2496 printk(KERN_INFO
2497 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2498 ap->id, dev->devno, serial[0], serial[1]);
2499 return 0;
2500 }
2501
2502 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2503 printk(KERN_INFO
2504 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2505 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2506 (unsigned long long)new_n_sectors);
2507 return 0;
2508 }
2509
2510 return 1;
2511}
2512
2513/**
2514 * ata_dev_revalidate - Revalidate ATA device
2515 * @ap: port on which the device to revalidate resides
2516 * @dev: device to revalidate
2517 * @post_reset: is this revalidation after reset?
2518 *
2519 * Re-read IDENTIFY page and make sure @dev is still attached to
2520 * the port.
2521 *
2522 * LOCKING:
2523 * Kernel thread context (may sleep)
2524 *
2525 * RETURNS:
2526 * 0 on success, negative errno otherwise
2527 */
2528int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2529 int post_reset)
2530{
2531 unsigned int class;
2532 u16 *id;
2533 int rc;
2534
e1211e3f 2535 if (!ata_dev_enabled(dev))
623a3128
TH
2536 return -ENODEV;
2537
2538 class = dev->class;
2539 id = NULL;
2540
2541 /* allocate & read ID data */
2542 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2543 if (rc)
2544 goto fail;
2545
2546 /* is the device still there? */
2547 if (!ata_dev_same_device(ap, dev, class, id)) {
2548 rc = -ENODEV;
2549 goto fail;
2550 }
2551
2552 kfree(dev->id);
2553 dev->id = id;
2554
2555 /* configure device according to the new ID */
2556 return ata_dev_configure(ap, dev, 0);
2557
2558 fail:
2559 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2560 ap->id, dev->devno, rc);
2561 kfree(id);
2562 return rc;
2563}
2564
98ac62de 2565static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2566 "WDC AC11000H", NULL,
2567 "WDC AC22100H", NULL,
2568 "WDC AC32500H", NULL,
2569 "WDC AC33100H", NULL,
2570 "WDC AC31600H", NULL,
2571 "WDC AC32100H", "24.09P07",
2572 "WDC AC23200L", "21.10N21",
2573 "Compaq CRD-8241B", NULL,
2574 "CRD-8400B", NULL,
2575 "CRD-8480B", NULL,
2576 "CRD-8482B", NULL,
2577 "CRD-84", NULL,
2578 "SanDisk SDP3B", NULL,
2579 "SanDisk SDP3B-64", NULL,
2580 "SANYO CD-ROM CRD", NULL,
2581 "HITACHI CDR-8", NULL,
2e9edbf8 2582 "HITACHI CDR-8335", NULL,
f4b15fef 2583 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2584 "Toshiba CD-ROM XM-6202B", NULL,
2585 "TOSHIBA CD-ROM XM-1702BC", NULL,
2586 "CD-532E-A", NULL,
2587 "E-IDE CD-ROM CR-840", NULL,
2588 "CD-ROM Drive/F5A", NULL,
2589 "WPI CDD-820", NULL,
f4b15fef 2590 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2591 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2592 "SanDisk SDP3B-64", NULL,
2593 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2594 "_NEC DV5800A", NULL,
2595 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2596};
2e9edbf8 2597
f4b15fef
AC
2598static int ata_strim(char *s, size_t len)
2599{
2600 len = strnlen(s, len);
2601
2602 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2603 while ((len > 0) && (s[len - 1] == ' ')) {
2604 len--;
2605 s[len] = 0;
2606 }
2607 return len;
2608}
1da177e4 2609
057ace5e 2610static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2611{
f4b15fef
AC
2612 unsigned char model_num[40];
2613 unsigned char model_rev[16];
2614 unsigned int nlen, rlen;
1da177e4
LT
2615 int i;
2616
f4b15fef
AC
2617 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2618 sizeof(model_num));
2619 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2620 sizeof(model_rev));
2621 nlen = ata_strim(model_num, sizeof(model_num));
2622 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2623
f4b15fef
AC
2624 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2625 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2626 if (ata_dma_blacklist[i+1] == NULL)
2627 return 1;
2628 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2629 return 1;
2630 }
2631 }
1da177e4
LT
2632 return 0;
2633}
2634
a6d5a51c
TH
2635/**
2636 * ata_dev_xfermask - Compute supported xfermask of the given device
2637 * @ap: Port on which the device to compute xfermask for resides
2638 * @dev: Device to compute xfermask for
2639 *
acf356b1
TH
2640 * Compute supported xfermask of @dev and store it in
2641 * dev->*_mask. This function is responsible for applying all
2642 * known limits including host controller limits, device
2643 * blacklist, etc...
a6d5a51c 2644 *
600511e8
TH
2645 * FIXME: The current implementation limits all transfer modes to
2646 * the fastest of the lowested device on the port. This is not
05c8e0ac 2647 * required on most controllers.
600511e8 2648 *
a6d5a51c
TH
2649 * LOCKING:
2650 * None.
a6d5a51c 2651 */
acf356b1 2652static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2653{
5444a6f4 2654 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2655 unsigned long xfer_mask;
2656 int i;
1da177e4 2657
a6d5a51c
TH
2658 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2659 ap->udma_mask);
1da177e4 2660
5444a6f4 2661 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2662 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2663 struct ata_device *d = &ap->device[i];
e1211e3f 2664 if (!ata_dev_enabled(d))
a6d5a51c 2665 continue;
acf356b1
TH
2666 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2667 d->udma_mask);
a6d5a51c
TH
2668 xfer_mask &= ata_id_xfermask(d->id);
2669 if (ata_dma_blacklisted(d))
2670 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
5444a6f4
AC
2671 /* Apply cable rule here. Don't apply it early because when
2672 we handle hot plug the cable type can itself change */
2673 if (ap->cbl == ATA_CBL_PATA40)
2674 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4
LT
2675 }
2676
a6d5a51c
TH
2677 if (ata_dma_blacklisted(dev))
2678 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2679 "disabling DMA\n", ap->id, dev->devno);
2680
5444a6f4
AC
2681 if (hs->flags & ATA_HOST_SIMPLEX) {
2682 if (hs->simplex_claimed)
2683 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2684 }
2685 if (ap->ops->mode_filter)
2686 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2687
acf356b1
TH
2688 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2689 &dev->udma_mask);
1da177e4
LT
2690}
2691
1da177e4
LT
2692/**
2693 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2694 * @ap: Port associated with device @dev
2695 * @dev: Device to which command will be sent
2696 *
780a87f7
JG
2697 * Issue SET FEATURES - XFER MODE command to device @dev
2698 * on port @ap.
2699 *
1da177e4 2700 * LOCKING:
0cba632b 2701 * PCI/etc. bus probe sem.
83206a29
TH
2702 *
2703 * RETURNS:
2704 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2705 */
2706
83206a29
TH
2707static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2708 struct ata_device *dev)
1da177e4 2709{
a0123703 2710 struct ata_taskfile tf;
83206a29 2711 unsigned int err_mask;
1da177e4
LT
2712
2713 /* set up set-features taskfile */
2714 DPRINTK("set features - xfer mode\n");
2715
a0123703
TH
2716 ata_tf_init(ap, &tf, dev->devno);
2717 tf.command = ATA_CMD_SET_FEATURES;
2718 tf.feature = SETFEATURES_XFER;
2719 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2720 tf.protocol = ATA_PROT_NODATA;
2721 tf.nsect = dev->xfer_mode;
1da177e4 2722
83206a29 2723 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
1da177e4 2724
83206a29
TH
2725 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2726 return err_mask;
1da177e4
LT
2727}
2728
8bf62ece
AL
2729/**
2730 * ata_dev_init_params - Issue INIT DEV PARAMS command
2731 * @ap: Port associated with device @dev
2732 * @dev: Device to which command will be sent
2733 *
2734 * LOCKING:
6aff8f1f
TH
2735 * Kernel thread context (may sleep)
2736 *
2737 * RETURNS:
2738 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
2739 */
2740
6aff8f1f 2741static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
2742 struct ata_device *dev,
2743 u16 heads,
2744 u16 sectors)
8bf62ece 2745{
a0123703 2746 struct ata_taskfile tf;
6aff8f1f 2747 unsigned int err_mask;
8bf62ece
AL
2748
2749 /* Number of sectors per track 1-255. Number of heads 1-16 */
2750 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 2751 return AC_ERR_INVALID;
8bf62ece
AL
2752
2753 /* set up init dev params taskfile */
2754 DPRINTK("init dev params \n");
2755
a0123703
TH
2756 ata_tf_init(ap, &tf, dev->devno);
2757 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2758 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2759 tf.protocol = ATA_PROT_NODATA;
2760 tf.nsect = sectors;
2761 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2762
6aff8f1f 2763 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
8bf62ece 2764
6aff8f1f
TH
2765 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2766 return err_mask;
8bf62ece
AL
2767}
2768
1da177e4 2769/**
0cba632b
JG
2770 * ata_sg_clean - Unmap DMA memory associated with command
2771 * @qc: Command containing DMA memory to be released
2772 *
2773 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2774 *
2775 * LOCKING:
0cba632b 2776 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2777 */
2778
2779static void ata_sg_clean(struct ata_queued_cmd *qc)
2780{
2781 struct ata_port *ap = qc->ap;
cedc9a47 2782 struct scatterlist *sg = qc->__sg;
1da177e4 2783 int dir = qc->dma_dir;
cedc9a47 2784 void *pad_buf = NULL;
1da177e4 2785
a4631474
TH
2786 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2787 WARN_ON(sg == NULL);
1da177e4
LT
2788
2789 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 2790 WARN_ON(qc->n_elem > 1);
1da177e4 2791
2c13b7ce 2792 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2793
cedc9a47
JG
2794 /* if we padded the buffer out to 32-bit bound, and data
2795 * xfer direction is from-device, we must copy from the
2796 * pad buffer back into the supplied buffer
2797 */
2798 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2799 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2800
2801 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 2802 if (qc->n_elem)
2f1f610b 2803 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2804 /* restore last sg */
2805 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2806 if (pad_buf) {
2807 struct scatterlist *psg = &qc->pad_sgent;
2808 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2809 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2810 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2811 }
2812 } else {
2e242fa9 2813 if (qc->n_elem)
2f1f610b 2814 dma_unmap_single(ap->dev,
e1410f2d
JG
2815 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2816 dir);
cedc9a47
JG
2817 /* restore sg */
2818 sg->length += qc->pad_len;
2819 if (pad_buf)
2820 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2821 pad_buf, qc->pad_len);
2822 }
1da177e4
LT
2823
2824 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2825 qc->__sg = NULL;
1da177e4
LT
2826}
2827
2828/**
2829 * ata_fill_sg - Fill PCI IDE PRD table
2830 * @qc: Metadata associated with taskfile to be transferred
2831 *
780a87f7
JG
2832 * Fill PCI IDE PRD (scatter-gather) table with segments
2833 * associated with the current disk command.
2834 *
1da177e4 2835 * LOCKING:
780a87f7 2836 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2837 *
2838 */
2839static void ata_fill_sg(struct ata_queued_cmd *qc)
2840{
1da177e4 2841 struct ata_port *ap = qc->ap;
cedc9a47
JG
2842 struct scatterlist *sg;
2843 unsigned int idx;
1da177e4 2844
a4631474 2845 WARN_ON(qc->__sg == NULL);
f131883e 2846 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
2847
2848 idx = 0;
cedc9a47 2849 ata_for_each_sg(sg, qc) {
1da177e4
LT
2850 u32 addr, offset;
2851 u32 sg_len, len;
2852
2853 /* determine if physical DMA addr spans 64K boundary.
2854 * Note h/w doesn't support 64-bit, so we unconditionally
2855 * truncate dma_addr_t to u32.
2856 */
2857 addr = (u32) sg_dma_address(sg);
2858 sg_len = sg_dma_len(sg);
2859
2860 while (sg_len) {
2861 offset = addr & 0xffff;
2862 len = sg_len;
2863 if ((offset + sg_len) > 0x10000)
2864 len = 0x10000 - offset;
2865
2866 ap->prd[idx].addr = cpu_to_le32(addr);
2867 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2868 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2869
2870 idx++;
2871 sg_len -= len;
2872 addr += len;
2873 }
2874 }
2875
2876 if (idx)
2877 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2878}
2879/**
2880 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2881 * @qc: Metadata associated with taskfile to check
2882 *
780a87f7
JG
2883 * Allow low-level driver to filter ATA PACKET commands, returning
2884 * a status indicating whether or not it is OK to use DMA for the
2885 * supplied PACKET command.
2886 *
1da177e4 2887 * LOCKING:
0cba632b
JG
2888 * spin_lock_irqsave(host_set lock)
2889 *
1da177e4
LT
2890 * RETURNS: 0 when ATAPI DMA can be used
2891 * nonzero otherwise
2892 */
2893int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2894{
2895 struct ata_port *ap = qc->ap;
2896 int rc = 0; /* Assume ATAPI DMA is OK by default */
2897
2898 if (ap->ops->check_atapi_dma)
2899 rc = ap->ops->check_atapi_dma(qc);
2900
2901 return rc;
2902}
2903/**
2904 * ata_qc_prep - Prepare taskfile for submission
2905 * @qc: Metadata associated with taskfile to be prepared
2906 *
780a87f7
JG
2907 * Prepare ATA taskfile for submission.
2908 *
1da177e4
LT
2909 * LOCKING:
2910 * spin_lock_irqsave(host_set lock)
2911 */
2912void ata_qc_prep(struct ata_queued_cmd *qc)
2913{
2914 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2915 return;
2916
2917 ata_fill_sg(qc);
2918}
2919
e46834cd
BK
2920void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2921
0cba632b
JG
2922/**
2923 * ata_sg_init_one - Associate command with memory buffer
2924 * @qc: Command to be associated
2925 * @buf: Memory buffer
2926 * @buflen: Length of memory buffer, in bytes.
2927 *
2928 * Initialize the data-related elements of queued_cmd @qc
2929 * to point to a single memory buffer, @buf of byte length @buflen.
2930 *
2931 * LOCKING:
2932 * spin_lock_irqsave(host_set lock)
2933 */
2934
1da177e4
LT
2935void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2936{
2937 struct scatterlist *sg;
2938
2939 qc->flags |= ATA_QCFLAG_SINGLE;
2940
2941 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2942 qc->__sg = &qc->sgent;
1da177e4 2943 qc->n_elem = 1;
cedc9a47 2944 qc->orig_n_elem = 1;
1da177e4
LT
2945 qc->buf_virt = buf;
2946
cedc9a47 2947 sg = qc->__sg;
f0612bbc 2948 sg_init_one(sg, buf, buflen);
1da177e4
LT
2949}
2950
0cba632b
JG
2951/**
2952 * ata_sg_init - Associate command with scatter-gather table.
2953 * @qc: Command to be associated
2954 * @sg: Scatter-gather table.
2955 * @n_elem: Number of elements in s/g table.
2956 *
2957 * Initialize the data-related elements of queued_cmd @qc
2958 * to point to a scatter-gather table @sg, containing @n_elem
2959 * elements.
2960 *
2961 * LOCKING:
2962 * spin_lock_irqsave(host_set lock)
2963 */
2964
1da177e4
LT
2965void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2966 unsigned int n_elem)
2967{
2968 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2969 qc->__sg = sg;
1da177e4 2970 qc->n_elem = n_elem;
cedc9a47 2971 qc->orig_n_elem = n_elem;
1da177e4
LT
2972}
2973
2974/**
0cba632b
JG
2975 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2976 * @qc: Command with memory buffer to be mapped.
2977 *
2978 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2979 *
2980 * LOCKING:
2981 * spin_lock_irqsave(host_set lock)
2982 *
2983 * RETURNS:
0cba632b 2984 * Zero on success, negative on error.
1da177e4
LT
2985 */
2986
2987static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2988{
2989 struct ata_port *ap = qc->ap;
2990 int dir = qc->dma_dir;
cedc9a47 2991 struct scatterlist *sg = qc->__sg;
1da177e4 2992 dma_addr_t dma_address;
2e242fa9 2993 int trim_sg = 0;
1da177e4 2994
cedc9a47
JG
2995 /* we must lengthen transfers to end on a 32-bit boundary */
2996 qc->pad_len = sg->length & 3;
2997 if (qc->pad_len) {
2998 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2999 struct scatterlist *psg = &qc->pad_sgent;
3000
a4631474 3001 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3002
3003 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3004
3005 if (qc->tf.flags & ATA_TFLAG_WRITE)
3006 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3007 qc->pad_len);
3008
3009 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3010 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3011 /* trim sg */
3012 sg->length -= qc->pad_len;
2e242fa9
TH
3013 if (sg->length == 0)
3014 trim_sg = 1;
cedc9a47
JG
3015
3016 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3017 sg->length, qc->pad_len);
3018 }
3019
2e242fa9
TH
3020 if (trim_sg) {
3021 qc->n_elem--;
e1410f2d
JG
3022 goto skip_map;
3023 }
3024
2f1f610b 3025 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3026 sg->length, dir);
537a95d9
TH
3027 if (dma_mapping_error(dma_address)) {
3028 /* restore sg */
3029 sg->length += qc->pad_len;
1da177e4 3030 return -1;
537a95d9 3031 }
1da177e4
LT
3032
3033 sg_dma_address(sg) = dma_address;
32529e01 3034 sg_dma_len(sg) = sg->length;
1da177e4 3035
2e242fa9 3036skip_map:
1da177e4
LT
3037 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3038 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3039
3040 return 0;
3041}
3042
3043/**
0cba632b
JG
3044 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3045 * @qc: Command with scatter-gather table to be mapped.
3046 *
3047 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3048 *
3049 * LOCKING:
3050 * spin_lock_irqsave(host_set lock)
3051 *
3052 * RETURNS:
0cba632b 3053 * Zero on success, negative on error.
1da177e4
LT
3054 *
3055 */
3056
3057static int ata_sg_setup(struct ata_queued_cmd *qc)
3058{
3059 struct ata_port *ap = qc->ap;
cedc9a47
JG
3060 struct scatterlist *sg = qc->__sg;
3061 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3062 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3063
3064 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3065 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3066
cedc9a47
JG
3067 /* we must lengthen transfers to end on a 32-bit boundary */
3068 qc->pad_len = lsg->length & 3;
3069 if (qc->pad_len) {
3070 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3071 struct scatterlist *psg = &qc->pad_sgent;
3072 unsigned int offset;
3073
a4631474 3074 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3075
3076 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3077
3078 /*
3079 * psg->page/offset are used to copy to-be-written
3080 * data in this function or read data in ata_sg_clean.
3081 */
3082 offset = lsg->offset + lsg->length - qc->pad_len;
3083 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3084 psg->offset = offset_in_page(offset);
3085
3086 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3087 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3088 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3089 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3090 }
3091
3092 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3093 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3094 /* trim last sg */
3095 lsg->length -= qc->pad_len;
e1410f2d
JG
3096 if (lsg->length == 0)
3097 trim_sg = 1;
cedc9a47
JG
3098
3099 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3100 qc->n_elem - 1, lsg->length, qc->pad_len);
3101 }
3102
e1410f2d
JG
3103 pre_n_elem = qc->n_elem;
3104 if (trim_sg && pre_n_elem)
3105 pre_n_elem--;
3106
3107 if (!pre_n_elem) {
3108 n_elem = 0;
3109 goto skip_map;
3110 }
3111
1da177e4 3112 dir = qc->dma_dir;
2f1f610b 3113 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3114 if (n_elem < 1) {
3115 /* restore last sg */
3116 lsg->length += qc->pad_len;
1da177e4 3117 return -1;
537a95d9 3118 }
1da177e4
LT
3119
3120 DPRINTK("%d sg elements mapped\n", n_elem);
3121
e1410f2d 3122skip_map:
1da177e4
LT
3123 qc->n_elem = n_elem;
3124
3125 return 0;
3126}
3127
40e8c82c
TH
3128/**
3129 * ata_poll_qc_complete - turn irq back on and finish qc
3130 * @qc: Command to complete
8e8b77dd 3131 * @err_mask: ATA status register content
40e8c82c
TH
3132 *
3133 * LOCKING:
3134 * None. (grabs host lock)
3135 */
3136
a22e2eb0 3137void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3138{
3139 struct ata_port *ap = qc->ap;
b8f6153e 3140 unsigned long flags;
40e8c82c 3141
b8f6153e 3142 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3143 ap->flags &= ~ATA_FLAG_NOINTR;
3144 ata_irq_on(ap);
a22e2eb0 3145 ata_qc_complete(qc);
b8f6153e 3146 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3147}
3148
1da177e4 3149/**
c893a3ae 3150 * ata_pio_poll - poll using PIO, depending on current state
6f0ef4fa 3151 * @ap: the target ata_port
1da177e4
LT
3152 *
3153 * LOCKING:
0cba632b 3154 * None. (executing in kernel thread context)
1da177e4
LT
3155 *
3156 * RETURNS:
6f0ef4fa 3157 * timeout value to use
1da177e4
LT
3158 */
3159
3160static unsigned long ata_pio_poll(struct ata_port *ap)
3161{
c14b8331 3162 struct ata_queued_cmd *qc;
1da177e4 3163 u8 status;
14be71f4
AL
3164 unsigned int poll_state = HSM_ST_UNKNOWN;
3165 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 3166
c14b8331 3167 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3168 WARN_ON(qc == NULL);
c14b8331 3169
14be71f4
AL
3170 switch (ap->hsm_task_state) {
3171 case HSM_ST:
3172 case HSM_ST_POLL:
3173 poll_state = HSM_ST_POLL;
3174 reg_state = HSM_ST;
1da177e4 3175 break;
14be71f4
AL
3176 case HSM_ST_LAST:
3177 case HSM_ST_LAST_POLL:
3178 poll_state = HSM_ST_LAST_POLL;
3179 reg_state = HSM_ST_LAST;
1da177e4
LT
3180 break;
3181 default:
3182 BUG();
3183 break;
3184 }
3185
3186 status = ata_chk_status(ap);
3187 if (status & ATA_BUSY) {
3188 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3189 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3190 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3191 return 0;
3192 }
14be71f4 3193 ap->hsm_task_state = poll_state;
1da177e4
LT
3194 return ATA_SHORT_PAUSE;
3195 }
3196
14be71f4 3197 ap->hsm_task_state = reg_state;
1da177e4
LT
3198 return 0;
3199}
3200
3201/**
6f0ef4fa
RD
3202 * ata_pio_complete - check if drive is busy or idle
3203 * @ap: the target ata_port
1da177e4
LT
3204 *
3205 * LOCKING:
0cba632b 3206 * None. (executing in kernel thread context)
7fb6ec28
JG
3207 *
3208 * RETURNS:
3209 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
3210 */
3211
7fb6ec28 3212static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
3213{
3214 struct ata_queued_cmd *qc;
3215 u8 drv_stat;
3216
3217 /*
31433ea3
AC
3218 * This is purely heuristic. This is a fast path. Sometimes when
3219 * we enter, BSY will be cleared in a chk-status or two. If not,
3220 * the drive is probably seeking or something. Snooze for a couple
3221 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3222 * HSM_ST_POLL state.
1da177e4 3223 */
fe79e683
AL
3224 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3225 if (drv_stat & ATA_BUSY) {
1da177e4 3226 msleep(2);
fe79e683
AL
3227 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3228 if (drv_stat & ATA_BUSY) {
14be71f4 3229 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3230 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3231 return 0;
1da177e4
LT
3232 }
3233 }
3234
c14b8331 3235 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3236 WARN_ON(qc == NULL);
c14b8331 3237
1da177e4
LT
3238 drv_stat = ata_wait_idle(ap);
3239 if (!ata_ok(drv_stat)) {
1c848984 3240 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3241 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3242 return 0;
1da177e4
LT
3243 }
3244
14be71f4 3245 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3246
a4631474 3247 WARN_ON(qc->err_mask);
a22e2eb0 3248 ata_poll_qc_complete(qc);
7fb6ec28
JG
3249
3250 /* another command may start at this point */
3251
3252 return 1;
1da177e4
LT
3253}
3254
0baab86b
EF
3255
3256/**
c893a3ae 3257 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3258 * @buf: Buffer to swap
3259 * @buf_words: Number of 16-bit words in buffer.
3260 *
3261 * Swap halves of 16-bit words if needed to convert from
3262 * little-endian byte order to native cpu byte order, or
3263 * vice-versa.
3264 *
3265 * LOCKING:
6f0ef4fa 3266 * Inherited from caller.
0baab86b 3267 */
1da177e4
LT
3268void swap_buf_le16(u16 *buf, unsigned int buf_words)
3269{
3270#ifdef __BIG_ENDIAN
3271 unsigned int i;
3272
3273 for (i = 0; i < buf_words; i++)
3274 buf[i] = le16_to_cpu(buf[i]);
3275#endif /* __BIG_ENDIAN */
3276}
3277
6ae4cfb5
AL
3278/**
3279 * ata_mmio_data_xfer - Transfer data by MMIO
3280 * @ap: port to read/write
3281 * @buf: data buffer
3282 * @buflen: buffer length
344babaa 3283 * @write_data: read/write
6ae4cfb5
AL
3284 *
3285 * Transfer data from/to the device data register by MMIO.
3286 *
3287 * LOCKING:
3288 * Inherited from caller.
6ae4cfb5
AL
3289 */
3290
1da177e4
LT
3291static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3292 unsigned int buflen, int write_data)
3293{
3294 unsigned int i;
3295 unsigned int words = buflen >> 1;
3296 u16 *buf16 = (u16 *) buf;
3297 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3298
6ae4cfb5 3299 /* Transfer multiple of 2 bytes */
1da177e4
LT
3300 if (write_data) {
3301 for (i = 0; i < words; i++)
3302 writew(le16_to_cpu(buf16[i]), mmio);
3303 } else {
3304 for (i = 0; i < words; i++)
3305 buf16[i] = cpu_to_le16(readw(mmio));
3306 }
6ae4cfb5
AL
3307
3308 /* Transfer trailing 1 byte, if any. */
3309 if (unlikely(buflen & 0x01)) {
3310 u16 align_buf[1] = { 0 };
3311 unsigned char *trailing_buf = buf + buflen - 1;
3312
3313 if (write_data) {
3314 memcpy(align_buf, trailing_buf, 1);
3315 writew(le16_to_cpu(align_buf[0]), mmio);
3316 } else {
3317 align_buf[0] = cpu_to_le16(readw(mmio));
3318 memcpy(trailing_buf, align_buf, 1);
3319 }
3320 }
1da177e4
LT
3321}
3322
6ae4cfb5
AL
3323/**
3324 * ata_pio_data_xfer - Transfer data by PIO
3325 * @ap: port to read/write
3326 * @buf: data buffer
3327 * @buflen: buffer length
344babaa 3328 * @write_data: read/write
6ae4cfb5
AL
3329 *
3330 * Transfer data from/to the device data register by PIO.
3331 *
3332 * LOCKING:
3333 * Inherited from caller.
6ae4cfb5
AL
3334 */
3335
1da177e4
LT
3336static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3337 unsigned int buflen, int write_data)
3338{
6ae4cfb5 3339 unsigned int words = buflen >> 1;
1da177e4 3340
6ae4cfb5 3341 /* Transfer multiple of 2 bytes */
1da177e4 3342 if (write_data)
6ae4cfb5 3343 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3344 else
6ae4cfb5
AL
3345 insw(ap->ioaddr.data_addr, buf, words);
3346
3347 /* Transfer trailing 1 byte, if any. */
3348 if (unlikely(buflen & 0x01)) {
3349 u16 align_buf[1] = { 0 };
3350 unsigned char *trailing_buf = buf + buflen - 1;
3351
3352 if (write_data) {
3353 memcpy(align_buf, trailing_buf, 1);
3354 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3355 } else {
3356 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3357 memcpy(trailing_buf, align_buf, 1);
3358 }
3359 }
1da177e4
LT
3360}
3361
6ae4cfb5
AL
3362/**
3363 * ata_data_xfer - Transfer data from/to the data register.
3364 * @ap: port to read/write
3365 * @buf: data buffer
3366 * @buflen: buffer length
3367 * @do_write: read/write
3368 *
3369 * Transfer data from/to the device data register.
3370 *
3371 * LOCKING:
3372 * Inherited from caller.
6ae4cfb5
AL
3373 */
3374
1da177e4
LT
3375static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3376 unsigned int buflen, int do_write)
3377{
a1bd9e68
AC
3378 /* Make the crap hardware pay the costs not the good stuff */
3379 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3380 unsigned long flags;
3381 local_irq_save(flags);
3382 if (ap->flags & ATA_FLAG_MMIO)
3383 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3384 else
3385 ata_pio_data_xfer(ap, buf, buflen, do_write);
3386 local_irq_restore(flags);
3387 } else {
3388 if (ap->flags & ATA_FLAG_MMIO)
3389 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3390 else
3391 ata_pio_data_xfer(ap, buf, buflen, do_write);
3392 }
1da177e4
LT
3393}
3394
6ae4cfb5
AL
3395/**
3396 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3397 * @qc: Command on going
3398 *
3399 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3400 *
3401 * LOCKING:
3402 * Inherited from caller.
3403 */
3404
1da177e4
LT
3405static void ata_pio_sector(struct ata_queued_cmd *qc)
3406{
3407 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3408 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3409 struct ata_port *ap = qc->ap;
3410 struct page *page;
3411 unsigned int offset;
3412 unsigned char *buf;
3413
3414 if (qc->cursect == (qc->nsect - 1))
14be71f4 3415 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3416
3417 page = sg[qc->cursg].page;
3418 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3419
3420 /* get the current page and offset */
3421 page = nth_page(page, (offset >> PAGE_SHIFT));
3422 offset %= PAGE_SIZE;
3423
3424 buf = kmap(page) + offset;
3425
3426 qc->cursect++;
3427 qc->cursg_ofs++;
3428
32529e01 3429 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3430 qc->cursg++;
3431 qc->cursg_ofs = 0;
3432 }
3433
3434 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3435
3436 /* do the actual data transfer */
3437 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3438 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3439
3440 kunmap(page);
3441}
3442
6ae4cfb5
AL
3443/**
3444 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3445 * @qc: Command on going
3446 * @bytes: number of bytes
3447 *
3448 * Transfer Transfer data from/to the ATAPI device.
3449 *
3450 * LOCKING:
3451 * Inherited from caller.
3452 *
3453 */
3454
1da177e4
LT
3455static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3456{
3457 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3458 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3459 struct ata_port *ap = qc->ap;
3460 struct page *page;
3461 unsigned char *buf;
3462 unsigned int offset, count;
3463
563a6e1f 3464 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3465 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3466
3467next_sg:
563a6e1f 3468 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3469 /*
563a6e1f
AL
3470 * The end of qc->sg is reached and the device expects
3471 * more data to transfer. In order not to overrun qc->sg
3472 * and fulfill length specified in the byte count register,
3473 * - for read case, discard trailing data from the device
3474 * - for write case, padding zero data to the device
3475 */
3476 u16 pad_buf[1] = { 0 };
3477 unsigned int words = bytes >> 1;
3478 unsigned int i;
3479
3480 if (words) /* warning if bytes > 1 */
7fb6ec28 3481 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3482 ap->id, bytes);
3483
3484 for (i = 0; i < words; i++)
3485 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3486
14be71f4 3487 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3488 return;
3489 }
3490
cedc9a47 3491 sg = &qc->__sg[qc->cursg];
1da177e4 3492
1da177e4
LT
3493 page = sg->page;
3494 offset = sg->offset + qc->cursg_ofs;
3495
3496 /* get the current page and offset */
3497 page = nth_page(page, (offset >> PAGE_SHIFT));
3498 offset %= PAGE_SIZE;
3499
6952df03 3500 /* don't overrun current sg */
32529e01 3501 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3502
3503 /* don't cross page boundaries */
3504 count = min(count, (unsigned int)PAGE_SIZE - offset);
3505
3506 buf = kmap(page) + offset;
3507
3508 bytes -= count;
3509 qc->curbytes += count;
3510 qc->cursg_ofs += count;
3511
32529e01 3512 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3513 qc->cursg++;
3514 qc->cursg_ofs = 0;
3515 }
3516
3517 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3518
3519 /* do the actual data transfer */
3520 ata_data_xfer(ap, buf, count, do_write);
3521
3522 kunmap(page);
3523
563a6e1f 3524 if (bytes)
1da177e4 3525 goto next_sg;
1da177e4
LT
3526}
3527
6ae4cfb5
AL
3528/**
3529 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3530 * @qc: Command on going
3531 *
3532 * Transfer Transfer data from/to the ATAPI device.
3533 *
3534 * LOCKING:
3535 * Inherited from caller.
6ae4cfb5
AL
3536 */
3537
1da177e4
LT
3538static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3539{
3540 struct ata_port *ap = qc->ap;
3541 struct ata_device *dev = qc->dev;
3542 unsigned int ireason, bc_lo, bc_hi, bytes;
3543 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3544
3545 ap->ops->tf_read(ap, &qc->tf);
3546 ireason = qc->tf.nsect;
3547 bc_lo = qc->tf.lbam;
3548 bc_hi = qc->tf.lbah;
3549 bytes = (bc_hi << 8) | bc_lo;
3550
3551 /* shall be cleared to zero, indicating xfer of data */
3552 if (ireason & (1 << 0))
3553 goto err_out;
3554
3555 /* make sure transfer direction matches expected */
3556 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3557 if (do_write != i_write)
3558 goto err_out;
3559
3560 __atapi_pio_bytes(qc, bytes);
3561
3562 return;
3563
3564err_out:
3565 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3566 ap->id, dev->devno);
11a56d24 3567 qc->err_mask |= AC_ERR_HSM;
14be71f4 3568 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3569}
3570
3571/**
6f0ef4fa
RD
3572 * ata_pio_block - start PIO on a block
3573 * @ap: the target ata_port
1da177e4
LT
3574 *
3575 * LOCKING:
0cba632b 3576 * None. (executing in kernel thread context)
1da177e4
LT
3577 */
3578
3579static void ata_pio_block(struct ata_port *ap)
3580{
3581 struct ata_queued_cmd *qc;
3582 u8 status;
3583
3584 /*
6f0ef4fa 3585 * This is purely heuristic. This is a fast path.
1da177e4
LT
3586 * Sometimes when we enter, BSY will be cleared in
3587 * a chk-status or two. If not, the drive is probably seeking
3588 * or something. Snooze for a couple msecs, then
3589 * chk-status again. If still busy, fall back to
14be71f4 3590 * HSM_ST_POLL state.
1da177e4
LT
3591 */
3592 status = ata_busy_wait(ap, ATA_BUSY, 5);
3593 if (status & ATA_BUSY) {
3594 msleep(2);
3595 status = ata_busy_wait(ap, ATA_BUSY, 10);
3596 if (status & ATA_BUSY) {
14be71f4 3597 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3598 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3599 return;
3600 }
3601 }
3602
3603 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3604 WARN_ON(qc == NULL);
1da177e4 3605
fe79e683
AL
3606 /* check error */
3607 if (status & (ATA_ERR | ATA_DF)) {
3608 qc->err_mask |= AC_ERR_DEV;
3609 ap->hsm_task_state = HSM_ST_ERR;
3610 return;
3611 }
3612
3613 /* transfer data if any */
1da177e4 3614 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3615 /* DRQ=0 means no more data to transfer */
1da177e4 3616 if ((status & ATA_DRQ) == 0) {
14be71f4 3617 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3618 return;
3619 }
3620
3621 atapi_pio_bytes(qc);
3622 } else {
3623 /* handle BSY=0, DRQ=0 as error */
3624 if ((status & ATA_DRQ) == 0) {
11a56d24 3625 qc->err_mask |= AC_ERR_HSM;
14be71f4 3626 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3627 return;
3628 }
3629
3630 ata_pio_sector(qc);
3631 }
3632}
3633
3634static void ata_pio_error(struct ata_port *ap)
3635{
3636 struct ata_queued_cmd *qc;
a7dac447 3637
1da177e4 3638 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3639 WARN_ON(qc == NULL);
1da177e4 3640
0565c26d
AL
3641 if (qc->tf.command != ATA_CMD_PACKET)
3642 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3643
2e9edbf8 3644 /* make sure qc->err_mask is available to
1c848984
AL
3645 * know what's wrong and recover
3646 */
a4631474 3647 WARN_ON(qc->err_mask == 0);
1c848984 3648
14be71f4 3649 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3650
a22e2eb0 3651 ata_poll_qc_complete(qc);
1da177e4
LT
3652}
3653
3654static void ata_pio_task(void *_data)
3655{
3656 struct ata_port *ap = _data;
7fb6ec28
JG
3657 unsigned long timeout;
3658 int qc_completed;
3659
3660fsm_start:
3661 timeout = 0;
3662 qc_completed = 0;
1da177e4 3663
14be71f4
AL
3664 switch (ap->hsm_task_state) {
3665 case HSM_ST_IDLE:
1da177e4
LT
3666 return;
3667
14be71f4 3668 case HSM_ST:
1da177e4
LT
3669 ata_pio_block(ap);
3670 break;
3671
14be71f4 3672 case HSM_ST_LAST:
7fb6ec28 3673 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3674 break;
3675
14be71f4
AL
3676 case HSM_ST_POLL:
3677 case HSM_ST_LAST_POLL:
1da177e4
LT
3678 timeout = ata_pio_poll(ap);
3679 break;
3680
14be71f4
AL
3681 case HSM_ST_TMOUT:
3682 case HSM_ST_ERR:
1da177e4
LT
3683 ata_pio_error(ap);
3684 return;
3685 }
3686
3687 if (timeout)
8061f5f0 3688 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
7fb6ec28
JG
3689 else if (!qc_completed)
3690 goto fsm_start;
1da177e4
LT
3691}
3692
8061f5f0
TH
3693/**
3694 * atapi_packet_task - Write CDB bytes to hardware
3695 * @_data: Port to which ATAPI device is attached.
3696 *
3697 * When device has indicated its readiness to accept
3698 * a CDB, this function is called. Send the CDB.
3699 * If DMA is to be performed, exit immediately.
3700 * Otherwise, we are in polling mode, so poll
3701 * status under operation succeeds or fails.
3702 *
3703 * LOCKING:
3704 * Kernel thread context (may sleep)
3705 */
3706
3707static void atapi_packet_task(void *_data)
3708{
3709 struct ata_port *ap = _data;
3710 struct ata_queued_cmd *qc;
3711 u8 status;
3712
3713 qc = ata_qc_from_tag(ap, ap->active_tag);
3714 WARN_ON(qc == NULL);
3715 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3716
3717 /* sleep-wait for BSY to clear */
3718 DPRINTK("busy wait\n");
3719 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3720 qc->err_mask |= AC_ERR_TIMEOUT;
3721 goto err_out;
3722 }
3723
3724 /* make sure DRQ is set */
3725 status = ata_chk_status(ap);
3726 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3727 qc->err_mask |= AC_ERR_HSM;
3728 goto err_out;
3729 }
3730
3731 /* send SCSI cdb */
3732 DPRINTK("send cdb\n");
3733 WARN_ON(qc->dev->cdb_len < 12);
3734
3735 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3736 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3737 unsigned long flags;
3738
3739 /* Once we're done issuing command and kicking bmdma,
3740 * irq handler takes over. To not lose irq, we need
3741 * to clear NOINTR flag before sending cdb, but
3742 * interrupt handler shouldn't be invoked before we're
3743 * finished. Hence, the following locking.
3744 */
3745 spin_lock_irqsave(&ap->host_set->lock, flags);
3746 ap->flags &= ~ATA_FLAG_NOINTR;
3747 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3748 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3749 ap->ops->bmdma_start(qc); /* initiate bmdma */
3750 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3751 } else {
3752 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3753
3754 /* PIO commands are handled by polling */
3755 ap->hsm_task_state = HSM_ST;
3756 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3757 }
3758
3759 return;
3760
3761err_out:
3762 ata_poll_qc_complete(qc);
3763}
3764
1da177e4
LT
3765/**
3766 * ata_qc_timeout - Handle timeout of queued command
3767 * @qc: Command that timed out
3768 *
3769 * Some part of the kernel (currently, only the SCSI layer)
3770 * has noticed that the active command on port @ap has not
3771 * completed after a specified length of time. Handle this
3772 * condition by disabling DMA (if necessary) and completing
3773 * transactions, with error if necessary.
3774 *
3775 * This also handles the case of the "lost interrupt", where
3776 * for some reason (possibly hardware bug, possibly driver bug)
3777 * an interrupt was not delivered to the driver, even though the
3778 * transaction completed successfully.
3779 *
3780 * LOCKING:
0cba632b 3781 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3782 */
3783
3784static void ata_qc_timeout(struct ata_queued_cmd *qc)
3785{
3786 struct ata_port *ap = qc->ap;
b8f6153e 3787 struct ata_host_set *host_set = ap->host_set;
1da177e4 3788 u8 host_stat = 0, drv_stat;
b8f6153e 3789 unsigned long flags;
1da177e4
LT
3790
3791 DPRINTK("ENTER\n");
3792
c18d06f8
TH
3793 ap->hsm_task_state = HSM_ST_IDLE;
3794
b8f6153e
JG
3795 spin_lock_irqsave(&host_set->lock, flags);
3796
1da177e4
LT
3797 switch (qc->tf.protocol) {
3798
3799 case ATA_PROT_DMA:
3800 case ATA_PROT_ATAPI_DMA:
3801 host_stat = ap->ops->bmdma_status(ap);
3802
3803 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3804 ap->ops->bmdma_stop(qc);
1da177e4
LT
3805
3806 /* fall through */
3807
3808 default:
3809 ata_altstatus(ap);
3810 drv_stat = ata_chk_status(ap);
3811
3812 /* ack bmdma irq events */
3813 ap->ops->irq_clear(ap);
3814
3815 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3816 ap->id, qc->tf.command, drv_stat, host_stat);
3817
3818 /* complete taskfile transaction */
a22e2eb0 3819 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
3820 break;
3821 }
b8f6153e
JG
3822
3823 spin_unlock_irqrestore(&host_set->lock, flags);
3824
a72ec4ce
TH
3825 ata_eh_qc_complete(qc);
3826
1da177e4
LT
3827 DPRINTK("EXIT\n");
3828}
3829
3830/**
3831 * ata_eng_timeout - Handle timeout of queued command
3832 * @ap: Port on which timed-out command is active
3833 *
3834 * Some part of the kernel (currently, only the SCSI layer)
3835 * has noticed that the active command on port @ap has not
3836 * completed after a specified length of time. Handle this
3837 * condition by disabling DMA (if necessary) and completing
3838 * transactions, with error if necessary.
3839 *
3840 * This also handles the case of the "lost interrupt", where
3841 * for some reason (possibly hardware bug, possibly driver bug)
3842 * an interrupt was not delivered to the driver, even though the
3843 * transaction completed successfully.
3844 *
3845 * LOCKING:
3846 * Inherited from SCSI layer (none, can sleep)
3847 */
3848
3849void ata_eng_timeout(struct ata_port *ap)
3850{
1da177e4
LT
3851 DPRINTK("ENTER\n");
3852
f6379020 3853 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 3854
1da177e4
LT
3855 DPRINTK("EXIT\n");
3856}
3857
3858/**
3859 * ata_qc_new - Request an available ATA command, for queueing
3860 * @ap: Port associated with device @dev
3861 * @dev: Device from whom we request an available command structure
3862 *
3863 * LOCKING:
0cba632b 3864 * None.
1da177e4
LT
3865 */
3866
3867static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3868{
3869 struct ata_queued_cmd *qc = NULL;
3870 unsigned int i;
3871
3872 for (i = 0; i < ATA_MAX_QUEUE; i++)
3873 if (!test_and_set_bit(i, &ap->qactive)) {
3874 qc = ata_qc_from_tag(ap, i);
3875 break;
3876 }
3877
3878 if (qc)
3879 qc->tag = i;
3880
3881 return qc;
3882}
3883
3884/**
3885 * ata_qc_new_init - Request an available ATA command, and initialize it
3886 * @ap: Port associated with device @dev
3887 * @dev: Device from whom we request an available command structure
3888 *
3889 * LOCKING:
0cba632b 3890 * None.
1da177e4
LT
3891 */
3892
3893struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3894 struct ata_device *dev)
3895{
3896 struct ata_queued_cmd *qc;
3897
3898 qc = ata_qc_new(ap);
3899 if (qc) {
1da177e4
LT
3900 qc->scsicmd = NULL;
3901 qc->ap = ap;
3902 qc->dev = dev;
1da177e4 3903
2c13b7ce 3904 ata_qc_reinit(qc);
1da177e4
LT
3905 }
3906
3907 return qc;
3908}
3909
1da177e4
LT
3910/**
3911 * ata_qc_free - free unused ata_queued_cmd
3912 * @qc: Command to complete
3913 *
3914 * Designed to free unused ata_queued_cmd object
3915 * in case something prevents using it.
3916 *
3917 * LOCKING:
0cba632b 3918 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3919 */
3920void ata_qc_free(struct ata_queued_cmd *qc)
3921{
4ba946e9
TH
3922 struct ata_port *ap = qc->ap;
3923 unsigned int tag;
3924
a4631474 3925 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3926
4ba946e9
TH
3927 qc->flags = 0;
3928 tag = qc->tag;
3929 if (likely(ata_tag_valid(tag))) {
3930 if (tag == ap->active_tag)
3931 ap->active_tag = ATA_TAG_POISON;
3932 qc->tag = ATA_TAG_POISON;
3933 clear_bit(tag, &ap->qactive);
3934 }
1da177e4
LT
3935}
3936
76014427 3937void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3938{
a4631474
TH
3939 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3940 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
3941
3942 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3943 ata_sg_clean(qc);
3944
3f3791d3
AL
3945 /* atapi: mark qc as inactive to prevent the interrupt handler
3946 * from completing the command twice later, before the error handler
3947 * is called. (when rc != 0 and atapi request sense is needed)
3948 */
3949 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3950
1da177e4 3951 /* call completion callback */
77853bf2 3952 qc->complete_fn(qc);
1da177e4
LT
3953}
3954
3955static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3956{
3957 struct ata_port *ap = qc->ap;
3958
3959 switch (qc->tf.protocol) {
3960 case ATA_PROT_DMA:
3961 case ATA_PROT_ATAPI_DMA:
3962 return 1;
3963
3964 case ATA_PROT_ATAPI:
3965 case ATA_PROT_PIO:
1da177e4
LT
3966 if (ap->flags & ATA_FLAG_PIO_DMA)
3967 return 1;
3968
3969 /* fall through */
3970
3971 default:
3972 return 0;
3973 }
3974
3975 /* never reached */
3976}
3977
3978/**
3979 * ata_qc_issue - issue taskfile to device
3980 * @qc: command to issue to device
3981 *
3982 * Prepare an ATA command to submission to device.
3983 * This includes mapping the data into a DMA-able
3984 * area, filling in the S/G table, and finally
3985 * writing the taskfile to hardware, starting the command.
3986 *
3987 * LOCKING:
3988 * spin_lock_irqsave(host_set lock)
1da177e4 3989 */
8e0e694a 3990void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
3991{
3992 struct ata_port *ap = qc->ap;
3993
e4a70e76
TH
3994 qc->ap->active_tag = qc->tag;
3995 qc->flags |= ATA_QCFLAG_ACTIVE;
3996
1da177e4
LT
3997 if (ata_should_dma_map(qc)) {
3998 if (qc->flags & ATA_QCFLAG_SG) {
3999 if (ata_sg_setup(qc))
8e436af9 4000 goto sg_err;
1da177e4
LT
4001 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4002 if (ata_sg_setup_one(qc))
8e436af9 4003 goto sg_err;
1da177e4
LT
4004 }
4005 } else {
4006 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4007 }
4008
4009 ap->ops->qc_prep(qc);
4010
8e0e694a
TH
4011 qc->err_mask |= ap->ops->qc_issue(qc);
4012 if (unlikely(qc->err_mask))
4013 goto err;
4014 return;
1da177e4 4015
8e436af9
TH
4016sg_err:
4017 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4018 qc->err_mask |= AC_ERR_SYSTEM;
4019err:
4020 ata_qc_complete(qc);
1da177e4
LT
4021}
4022
4023/**
4024 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4025 * @qc: command to issue to device
4026 *
4027 * Using various libata functions and hooks, this function
4028 * starts an ATA command. ATA commands are grouped into
4029 * classes called "protocols", and issuing each type of protocol
4030 * is slightly different.
4031 *
0baab86b
EF
4032 * May be used as the qc_issue() entry in ata_port_operations.
4033 *
1da177e4
LT
4034 * LOCKING:
4035 * spin_lock_irqsave(host_set lock)
4036 *
4037 * RETURNS:
9a3d9eb0 4038 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4039 */
4040
9a3d9eb0 4041unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4042{
4043 struct ata_port *ap = qc->ap;
4044
4045 ata_dev_select(ap, qc->dev->devno, 1, 0);
4046
4047 switch (qc->tf.protocol) {
4048 case ATA_PROT_NODATA:
e5338254 4049 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4050 break;
4051
4052 case ATA_PROT_DMA:
4053 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4054 ap->ops->bmdma_setup(qc); /* set up bmdma */
4055 ap->ops->bmdma_start(qc); /* initiate bmdma */
4056 break;
4057
4058 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4059 ata_qc_set_polling(qc);
e5338254 4060 ata_tf_to_host(ap, &qc->tf);
14be71f4 4061 ap->hsm_task_state = HSM_ST;
8061f5f0 4062 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4063 break;
4064
4065 case ATA_PROT_ATAPI:
4066 ata_qc_set_polling(qc);
e5338254 4067 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4068 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4069 break;
4070
4071 case ATA_PROT_ATAPI_NODATA:
c1389503 4072 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4073 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4074 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4075 break;
4076
4077 case ATA_PROT_ATAPI_DMA:
c1389503 4078 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4079 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4080 ap->ops->bmdma_setup(qc); /* set up bmdma */
8061f5f0 4081 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4082 break;
4083
4084 default:
4085 WARN_ON(1);
9a3d9eb0 4086 return AC_ERR_SYSTEM;
1da177e4
LT
4087 }
4088
4089 return 0;
4090}
4091
1da177e4
LT
4092/**
4093 * ata_host_intr - Handle host interrupt for given (port, task)
4094 * @ap: Port on which interrupt arrived (possibly...)
4095 * @qc: Taskfile currently active in engine
4096 *
4097 * Handle host interrupt for given queued command. Currently,
4098 * only DMA interrupts are handled. All other commands are
4099 * handled via polling with interrupts disabled (nIEN bit).
4100 *
4101 * LOCKING:
4102 * spin_lock_irqsave(host_set lock)
4103 *
4104 * RETURNS:
4105 * One if interrupt was handled, zero if not (shared irq).
4106 */
4107
4108inline unsigned int ata_host_intr (struct ata_port *ap,
4109 struct ata_queued_cmd *qc)
4110{
4111 u8 status, host_stat;
4112
4113 switch (qc->tf.protocol) {
4114
4115 case ATA_PROT_DMA:
4116 case ATA_PROT_ATAPI_DMA:
4117 case ATA_PROT_ATAPI:
4118 /* check status of DMA engine */
4119 host_stat = ap->ops->bmdma_status(ap);
4120 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4121
4122 /* if it's not our irq... */
4123 if (!(host_stat & ATA_DMA_INTR))
4124 goto idle_irq;
4125
4126 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4127 ap->ops->bmdma_stop(qc);
1da177e4
LT
4128
4129 /* fall through */
4130
4131 case ATA_PROT_ATAPI_NODATA:
4132 case ATA_PROT_NODATA:
4133 /* check altstatus */
4134 status = ata_altstatus(ap);
4135 if (status & ATA_BUSY)
4136 goto idle_irq;
4137
4138 /* check main status, clearing INTRQ */
4139 status = ata_chk_status(ap);
4140 if (unlikely(status & ATA_BUSY))
4141 goto idle_irq;
4142 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4143 ap->id, qc->tf.protocol, status);
4144
4145 /* ack bmdma irq events */
4146 ap->ops->irq_clear(ap);
4147
4148 /* complete taskfile transaction */
a22e2eb0
AL
4149 qc->err_mask |= ac_err_mask(status);
4150 ata_qc_complete(qc);
1da177e4
LT
4151 break;
4152
4153 default:
4154 goto idle_irq;
4155 }
4156
4157 return 1; /* irq handled */
4158
4159idle_irq:
4160 ap->stats.idle_irq++;
4161
4162#ifdef ATA_IRQ_TRAP
4163 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4164 ata_irq_ack(ap, 0); /* debug trap */
4165 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4166 return 1;
1da177e4
LT
4167 }
4168#endif
4169 return 0; /* irq not handled */
4170}
4171
4172/**
4173 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4174 * @irq: irq line (unused)
4175 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4176 * @regs: unused
4177 *
0cba632b
JG
4178 * Default interrupt handler for PCI IDE devices. Calls
4179 * ata_host_intr() for each port that is not disabled.
4180 *
1da177e4 4181 * LOCKING:
0cba632b 4182 * Obtains host_set lock during operation.
1da177e4
LT
4183 *
4184 * RETURNS:
0cba632b 4185 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4186 */
4187
4188irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4189{
4190 struct ata_host_set *host_set = dev_instance;
4191 unsigned int i;
4192 unsigned int handled = 0;
4193 unsigned long flags;
4194
4195 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4196 spin_lock_irqsave(&host_set->lock, flags);
4197
4198 for (i = 0; i < host_set->n_ports; i++) {
4199 struct ata_port *ap;
4200
4201 ap = host_set->ports[i];
c1389503
TH
4202 if (ap &&
4203 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4204 struct ata_queued_cmd *qc;
4205
4206 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4207 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4208 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4209 handled |= ata_host_intr(ap, qc);
4210 }
4211 }
4212
4213 spin_unlock_irqrestore(&host_set->lock, flags);
4214
4215 return IRQ_RETVAL(handled);
4216}
4217
0baab86b 4218
9b847548
JA
4219/*
4220 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4221 * without filling any other registers
4222 */
4223static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4224 u8 cmd)
4225{
4226 struct ata_taskfile tf;
4227 int err;
4228
4229 ata_tf_init(ap, &tf, dev->devno);
4230
4231 tf.command = cmd;
4232 tf.flags |= ATA_TFLAG_DEVICE;
4233 tf.protocol = ATA_PROT_NODATA;
4234
4235 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4236 if (err)
4237 printk(KERN_ERR "%s: ata command failed: %d\n",
4238 __FUNCTION__, err);
4239
4240 return err;
4241}
4242
4243static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4244{
4245 u8 cmd;
4246
4247 if (!ata_try_flush_cache(dev))
4248 return 0;
4249
4250 if (ata_id_has_flush_ext(dev->id))
4251 cmd = ATA_CMD_FLUSH_EXT;
4252 else
4253 cmd = ATA_CMD_FLUSH;
4254
4255 return ata_do_simple_cmd(ap, dev, cmd);
4256}
4257
4258static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4259{
4260 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4261}
4262
4263static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4264{
4265 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4266}
4267
4268/**
4269 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4270 * @ap: port the device is connected to
4271 * @dev: the device to resume
9b847548
JA
4272 *
4273 * Kick the drive back into action, by sending it an idle immediate
4274 * command and making sure its transfer mode matches between drive
4275 * and host.
4276 *
4277 */
4278int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4279{
4280 if (ap->flags & ATA_FLAG_SUSPENDED) {
4281 ap->flags &= ~ATA_FLAG_SUSPENDED;
4282 ata_set_mode(ap);
4283 }
e1211e3f 4284 if (!ata_dev_enabled(dev))
9b847548
JA
4285 return 0;
4286 if (dev->class == ATA_DEV_ATA)
4287 ata_start_drive(ap, dev);
4288
4289 return 0;
4290}
4291
4292/**
4293 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4294 * @ap: port the device is connected to
4295 * @dev: the device to suspend
9b847548
JA
4296 *
4297 * Flush the cache on the drive, if appropriate, then issue a
4298 * standbynow command.
9b847548 4299 */
082776e4 4300int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548 4301{
e1211e3f 4302 if (!ata_dev_enabled(dev))
9b847548
JA
4303 return 0;
4304 if (dev->class == ATA_DEV_ATA)
4305 ata_flush_cache(ap, dev);
4306
082776e4
NC
4307 if (state.event != PM_EVENT_FREEZE)
4308 ata_standby_drive(ap, dev);
9b847548
JA
4309 ap->flags |= ATA_FLAG_SUSPENDED;
4310 return 0;
4311}
4312
c893a3ae
RD
4313/**
4314 * ata_port_start - Set port up for dma.
4315 * @ap: Port to initialize
4316 *
4317 * Called just after data structures for each port are
4318 * initialized. Allocates space for PRD table.
4319 *
4320 * May be used as the port_start() entry in ata_port_operations.
4321 *
4322 * LOCKING:
4323 * Inherited from caller.
4324 */
4325
1da177e4
LT
4326int ata_port_start (struct ata_port *ap)
4327{
2f1f610b 4328 struct device *dev = ap->dev;
6037d6bb 4329 int rc;
1da177e4
LT
4330
4331 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4332 if (!ap->prd)
4333 return -ENOMEM;
4334
6037d6bb
JG
4335 rc = ata_pad_alloc(ap, dev);
4336 if (rc) {
cedc9a47 4337 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4338 return rc;
cedc9a47
JG
4339 }
4340
1da177e4
LT
4341 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4342
4343 return 0;
4344}
4345
0baab86b
EF
4346
4347/**
4348 * ata_port_stop - Undo ata_port_start()
4349 * @ap: Port to shut down
4350 *
4351 * Frees the PRD table.
4352 *
4353 * May be used as the port_stop() entry in ata_port_operations.
4354 *
4355 * LOCKING:
6f0ef4fa 4356 * Inherited from caller.
0baab86b
EF
4357 */
4358
1da177e4
LT
4359void ata_port_stop (struct ata_port *ap)
4360{
2f1f610b 4361 struct device *dev = ap->dev;
1da177e4
LT
4362
4363 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4364 ata_pad_free(ap, dev);
1da177e4
LT
4365}
4366
aa8f0dc6
JG
4367void ata_host_stop (struct ata_host_set *host_set)
4368{
4369 if (host_set->mmio_base)
4370 iounmap(host_set->mmio_base);
4371}
4372
4373
1da177e4
LT
4374/**
4375 * ata_host_remove - Unregister SCSI host structure with upper layers
4376 * @ap: Port to unregister
4377 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4378 *
4379 * LOCKING:
6f0ef4fa 4380 * Inherited from caller.
1da177e4
LT
4381 */
4382
4383static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4384{
4385 struct Scsi_Host *sh = ap->host;
4386
4387 DPRINTK("ENTER\n");
4388
4389 if (do_unregister)
4390 scsi_remove_host(sh);
4391
4392 ap->ops->port_stop(ap);
4393}
4394
4395/**
4396 * ata_host_init - Initialize an ata_port structure
4397 * @ap: Structure to initialize
4398 * @host: associated SCSI mid-layer structure
4399 * @host_set: Collection of hosts to which @ap belongs
4400 * @ent: Probe information provided by low-level driver
4401 * @port_no: Port number associated with this ata_port
4402 *
0cba632b
JG
4403 * Initialize a new ata_port structure, and its associated
4404 * scsi_host.
4405 *
1da177e4 4406 * LOCKING:
0cba632b 4407 * Inherited from caller.
1da177e4
LT
4408 */
4409
4410static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4411 struct ata_host_set *host_set,
057ace5e 4412 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4413{
4414 unsigned int i;
4415
4416 host->max_id = 16;
4417 host->max_lun = 1;
4418 host->max_channel = 1;
4419 host->unique_id = ata_unique_id++;
4420 host->max_cmd_len = 12;
12413197 4421
1da177e4
LT
4422 ap->flags = ATA_FLAG_PORT_DISABLED;
4423 ap->id = host->unique_id;
4424 ap->host = host;
4425 ap->ctl = ATA_DEVCTL_OBS;
4426 ap->host_set = host_set;
2f1f610b 4427 ap->dev = ent->dev;
1da177e4
LT
4428 ap->port_no = port_no;
4429 ap->hard_port_no =
4430 ent->legacy_mode ? ent->hard_port_no : port_no;
4431 ap->pio_mask = ent->pio_mask;
4432 ap->mwdma_mask = ent->mwdma_mask;
4433 ap->udma_mask = ent->udma_mask;
4434 ap->flags |= ent->host_flags;
4435 ap->ops = ent->port_ops;
4436 ap->cbl = ATA_CBL_NONE;
4437 ap->active_tag = ATA_TAG_POISON;
4438 ap->last_ctl = 0xFF;
4439
86e45b6b 4440 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4441 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4442
acf356b1
TH
4443 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4444 struct ata_device *dev = &ap->device[i];
4445 dev->devno = i;
4446 dev->pio_mask = UINT_MAX;
4447 dev->mwdma_mask = UINT_MAX;
4448 dev->udma_mask = UINT_MAX;
4449 }
1da177e4
LT
4450
4451#ifdef ATA_IRQ_TRAP
4452 ap->stats.unhandled_irq = 1;
4453 ap->stats.idle_irq = 1;
4454#endif
4455
4456 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4457}
4458
4459/**
4460 * ata_host_add - Attach low-level ATA driver to system
4461 * @ent: Information provided by low-level driver
4462 * @host_set: Collections of ports to which we add
4463 * @port_no: Port number associated with this host
4464 *
0cba632b
JG
4465 * Attach low-level ATA driver to system.
4466 *
1da177e4 4467 * LOCKING:
0cba632b 4468 * PCI/etc. bus probe sem.
1da177e4
LT
4469 *
4470 * RETURNS:
0cba632b 4471 * New ata_port on success, for NULL on error.
1da177e4
LT
4472 */
4473
057ace5e 4474static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4475 struct ata_host_set *host_set,
4476 unsigned int port_no)
4477{
4478 struct Scsi_Host *host;
4479 struct ata_port *ap;
4480 int rc;
4481
4482 DPRINTK("ENTER\n");
aec5c3c1
TH
4483
4484 if (!ent->port_ops->probe_reset &&
4485 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4486 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4487 port_no);
4488 return NULL;
4489 }
4490
1da177e4
LT
4491 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4492 if (!host)
4493 return NULL;
4494
30afc84c
TH
4495 host->transportt = &ata_scsi_transport_template;
4496
1da177e4
LT
4497 ap = (struct ata_port *) &host->hostdata[0];
4498
4499 ata_host_init(ap, host, host_set, ent, port_no);
4500
4501 rc = ap->ops->port_start(ap);
4502 if (rc)
4503 goto err_out;
4504
4505 return ap;
4506
4507err_out:
4508 scsi_host_put(host);
4509 return NULL;
4510}
4511
4512/**
0cba632b
JG
4513 * ata_device_add - Register hardware device with ATA and SCSI layers
4514 * @ent: Probe information describing hardware device to be registered
4515 *
4516 * This function processes the information provided in the probe
4517 * information struct @ent, allocates the necessary ATA and SCSI
4518 * host information structures, initializes them, and registers
4519 * everything with requisite kernel subsystems.
4520 *
4521 * This function requests irqs, probes the ATA bus, and probes
4522 * the SCSI bus.
1da177e4
LT
4523 *
4524 * LOCKING:
0cba632b 4525 * PCI/etc. bus probe sem.
1da177e4
LT
4526 *
4527 * RETURNS:
0cba632b 4528 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4529 */
4530
057ace5e 4531int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4532{
4533 unsigned int count = 0, i;
4534 struct device *dev = ent->dev;
4535 struct ata_host_set *host_set;
4536
4537 DPRINTK("ENTER\n");
4538 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4539 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4540 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4541 if (!host_set)
4542 return 0;
1da177e4
LT
4543 spin_lock_init(&host_set->lock);
4544
4545 host_set->dev = dev;
4546 host_set->n_ports = ent->n_ports;
4547 host_set->irq = ent->irq;
4548 host_set->mmio_base = ent->mmio_base;
4549 host_set->private_data = ent->private_data;
4550 host_set->ops = ent->port_ops;
5444a6f4 4551 host_set->flags = ent->host_set_flags;
1da177e4
LT
4552
4553 /* register each port bound to this device */
4554 for (i = 0; i < ent->n_ports; i++) {
4555 struct ata_port *ap;
4556 unsigned long xfer_mode_mask;
4557
4558 ap = ata_host_add(ent, host_set, i);
4559 if (!ap)
4560 goto err_out;
4561
4562 host_set->ports[i] = ap;
4563 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4564 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4565 (ap->pio_mask << ATA_SHIFT_PIO);
4566
4567 /* print per-port info to dmesg */
4568 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4569 "bmdma 0x%lX irq %lu\n",
4570 ap->id,
4571 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4572 ata_mode_string(xfer_mode_mask),
4573 ap->ioaddr.cmd_addr,
4574 ap->ioaddr.ctl_addr,
4575 ap->ioaddr.bmdma_addr,
4576 ent->irq);
4577
4578 ata_chk_status(ap);
4579 host_set->ops->irq_clear(ap);
4580 count++;
4581 }
4582
57f3bda8
RD
4583 if (!count)
4584 goto err_free_ret;
1da177e4
LT
4585
4586 /* obtain irq, that is shared between channels */
4587 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4588 DRV_NAME, host_set))
4589 goto err_out;
4590
4591 /* perform each probe synchronously */
4592 DPRINTK("probe begin\n");
4593 for (i = 0; i < count; i++) {
4594 struct ata_port *ap;
4595 int rc;
4596
4597 ap = host_set->ports[i];
4598
c893a3ae 4599 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4600 rc = ata_bus_probe(ap);
c893a3ae 4601 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4602
4603 if (rc) {
4604 /* FIXME: do something useful here?
4605 * Current libata behavior will
4606 * tear down everything when
4607 * the module is removed
4608 * or the h/w is unplugged.
4609 */
4610 }
4611
4612 rc = scsi_add_host(ap->host, dev);
4613 if (rc) {
4614 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4615 ap->id);
4616 /* FIXME: do something useful here */
4617 /* FIXME: handle unconditional calls to
4618 * scsi_scan_host and ata_host_remove, below,
4619 * at the very least
4620 */
4621 }
4622 }
4623
4624 /* probes are done, now scan each port's disk(s) */
c893a3ae 4625 DPRINTK("host probe begin\n");
1da177e4
LT
4626 for (i = 0; i < count; i++) {
4627 struct ata_port *ap = host_set->ports[i];
4628
644dd0cc 4629 ata_scsi_scan_host(ap);
1da177e4
LT
4630 }
4631
4632 dev_set_drvdata(dev, host_set);
4633
4634 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4635 return ent->n_ports; /* success */
4636
4637err_out:
4638 for (i = 0; i < count; i++) {
4639 ata_host_remove(host_set->ports[i], 1);
4640 scsi_host_put(host_set->ports[i]->host);
4641 }
57f3bda8 4642err_free_ret:
1da177e4
LT
4643 kfree(host_set);
4644 VPRINTK("EXIT, returning 0\n");
4645 return 0;
4646}
4647
17b14451
AC
4648/**
4649 * ata_host_set_remove - PCI layer callback for device removal
4650 * @host_set: ATA host set that was removed
4651 *
2e9edbf8 4652 * Unregister all objects associated with this host set. Free those
17b14451
AC
4653 * objects.
4654 *
4655 * LOCKING:
4656 * Inherited from calling layer (may sleep).
4657 */
4658
17b14451
AC
4659void ata_host_set_remove(struct ata_host_set *host_set)
4660{
4661 struct ata_port *ap;
4662 unsigned int i;
4663
4664 for (i = 0; i < host_set->n_ports; i++) {
4665 ap = host_set->ports[i];
4666 scsi_remove_host(ap->host);
4667 }
4668
4669 free_irq(host_set->irq, host_set);
4670
4671 for (i = 0; i < host_set->n_ports; i++) {
4672 ap = host_set->ports[i];
4673
4674 ata_scsi_release(ap->host);
4675
4676 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4677 struct ata_ioports *ioaddr = &ap->ioaddr;
4678
4679 if (ioaddr->cmd_addr == 0x1f0)
4680 release_region(0x1f0, 8);
4681 else if (ioaddr->cmd_addr == 0x170)
4682 release_region(0x170, 8);
4683 }
4684
4685 scsi_host_put(ap->host);
4686 }
4687
4688 if (host_set->ops->host_stop)
4689 host_set->ops->host_stop(host_set);
4690
4691 kfree(host_set);
4692}
4693
1da177e4
LT
4694/**
4695 * ata_scsi_release - SCSI layer callback hook for host unload
4696 * @host: libata host to be unloaded
4697 *
4698 * Performs all duties necessary to shut down a libata port...
4699 * Kill port kthread, disable port, and release resources.
4700 *
4701 * LOCKING:
4702 * Inherited from SCSI layer.
4703 *
4704 * RETURNS:
4705 * One.
4706 */
4707
4708int ata_scsi_release(struct Scsi_Host *host)
4709{
4710 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4711 int i;
1da177e4
LT
4712
4713 DPRINTK("ENTER\n");
4714
4715 ap->ops->port_disable(ap);
4716 ata_host_remove(ap, 0);
d9572b1d
TH
4717 for (i = 0; i < ATA_MAX_DEVICES; i++)
4718 kfree(ap->device[i].id);
1da177e4
LT
4719
4720 DPRINTK("EXIT\n");
4721 return 1;
4722}
4723
4724/**
4725 * ata_std_ports - initialize ioaddr with standard port offsets.
4726 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4727 *
4728 * Utility function which initializes data_addr, error_addr,
4729 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4730 * device_addr, status_addr, and command_addr to standard offsets
4731 * relative to cmd_addr.
4732 *
4733 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4734 */
0baab86b 4735
1da177e4
LT
4736void ata_std_ports(struct ata_ioports *ioaddr)
4737{
4738 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4739 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4740 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4741 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4742 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4743 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4744 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4745 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4746 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4747 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4748}
4749
0baab86b 4750
374b1873
JG
4751#ifdef CONFIG_PCI
4752
4753void ata_pci_host_stop (struct ata_host_set *host_set)
4754{
4755 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4756
4757 pci_iounmap(pdev, host_set->mmio_base);
4758}
4759
1da177e4
LT
4760/**
4761 * ata_pci_remove_one - PCI layer callback for device removal
4762 * @pdev: PCI device that was removed
4763 *
4764 * PCI layer indicates to libata via this hook that
6f0ef4fa 4765 * hot-unplug or module unload event has occurred.
1da177e4
LT
4766 * Handle this by unregistering all objects associated
4767 * with this PCI device. Free those objects. Then finally
4768 * release PCI resources and disable device.
4769 *
4770 * LOCKING:
4771 * Inherited from PCI layer (may sleep).
4772 */
4773
4774void ata_pci_remove_one (struct pci_dev *pdev)
4775{
4776 struct device *dev = pci_dev_to_dev(pdev);
4777 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4778
17b14451 4779 ata_host_set_remove(host_set);
1da177e4
LT
4780 pci_release_regions(pdev);
4781 pci_disable_device(pdev);
4782 dev_set_drvdata(dev, NULL);
4783}
4784
4785/* move to PCI subsystem */
057ace5e 4786int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4787{
4788 unsigned long tmp = 0;
4789
4790 switch (bits->width) {
4791 case 1: {
4792 u8 tmp8 = 0;
4793 pci_read_config_byte(pdev, bits->reg, &tmp8);
4794 tmp = tmp8;
4795 break;
4796 }
4797 case 2: {
4798 u16 tmp16 = 0;
4799 pci_read_config_word(pdev, bits->reg, &tmp16);
4800 tmp = tmp16;
4801 break;
4802 }
4803 case 4: {
4804 u32 tmp32 = 0;
4805 pci_read_config_dword(pdev, bits->reg, &tmp32);
4806 tmp = tmp32;
4807 break;
4808 }
4809
4810 default:
4811 return -EINVAL;
4812 }
4813
4814 tmp &= bits->mask;
4815
4816 return (tmp == bits->val) ? 1 : 0;
4817}
9b847548
JA
4818
4819int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4820{
4821 pci_save_state(pdev);
4822 pci_disable_device(pdev);
4823 pci_set_power_state(pdev, PCI_D3hot);
4824 return 0;
4825}
4826
4827int ata_pci_device_resume(struct pci_dev *pdev)
4828{
4829 pci_set_power_state(pdev, PCI_D0);
4830 pci_restore_state(pdev);
4831 pci_enable_device(pdev);
4832 pci_set_master(pdev);
4833 return 0;
4834}
1da177e4
LT
4835#endif /* CONFIG_PCI */
4836
4837
1da177e4
LT
4838static int __init ata_init(void)
4839{
4840 ata_wq = create_workqueue("ata");
4841 if (!ata_wq)
4842 return -ENOMEM;
4843
4844 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4845 return 0;
4846}
4847
4848static void __exit ata_exit(void)
4849{
4850 destroy_workqueue(ata_wq);
4851}
4852
4853module_init(ata_init);
4854module_exit(ata_exit);
4855
67846b30
JG
4856static unsigned long ratelimit_time;
4857static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4858
4859int ata_ratelimit(void)
4860{
4861 int rc;
4862 unsigned long flags;
4863
4864 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4865
4866 if (time_after(jiffies, ratelimit_time)) {
4867 rc = 1;
4868 ratelimit_time = jiffies + (HZ/5);
4869 } else
4870 rc = 0;
4871
4872 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4873
4874 return rc;
4875}
4876
1da177e4
LT
4877/*
4878 * libata is essentially a library of internal helper functions for
4879 * low-level ATA host controller drivers. As such, the API/ABI is
4880 * likely to change as new drivers are added and updated.
4881 * Do not depend on ABI/API stability.
4882 */
4883
4884EXPORT_SYMBOL_GPL(ata_std_bios_param);
4885EXPORT_SYMBOL_GPL(ata_std_ports);
4886EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4887EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4888EXPORT_SYMBOL_GPL(ata_sg_init);
4889EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 4890EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
4891EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4892EXPORT_SYMBOL_GPL(ata_eng_timeout);
4893EXPORT_SYMBOL_GPL(ata_tf_load);
4894EXPORT_SYMBOL_GPL(ata_tf_read);
4895EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4896EXPORT_SYMBOL_GPL(ata_std_dev_select);
4897EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4898EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4899EXPORT_SYMBOL_GPL(ata_check_status);
4900EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
4901EXPORT_SYMBOL_GPL(ata_exec_command);
4902EXPORT_SYMBOL_GPL(ata_port_start);
4903EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4904EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4905EXPORT_SYMBOL_GPL(ata_interrupt);
4906EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 4907EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
4908EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4909EXPORT_SYMBOL_GPL(ata_bmdma_start);
4910EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4911EXPORT_SYMBOL_GPL(ata_bmdma_status);
4912EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4913EXPORT_SYMBOL_GPL(ata_port_probe);
4914EXPORT_SYMBOL_GPL(sata_phy_reset);
4915EXPORT_SYMBOL_GPL(__sata_phy_reset);
4916EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 4917EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
4918EXPORT_SYMBOL_GPL(ata_std_softreset);
4919EXPORT_SYMBOL_GPL(sata_std_hardreset);
4920EXPORT_SYMBOL_GPL(ata_std_postreset);
4921EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 4922EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 4923EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
4924EXPORT_SYMBOL_GPL(ata_dev_classify);
4925EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 4926EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 4927EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 4928EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 4929EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
4930EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4931EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4932EXPORT_SYMBOL_GPL(ata_scsi_error);
4933EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4934EXPORT_SYMBOL_GPL(ata_scsi_release);
4935EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
4936EXPORT_SYMBOL_GPL(ata_id_string);
4937EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 4938EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
4939EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4940EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 4941
1bc4ccff 4942EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
4943EXPORT_SYMBOL_GPL(ata_timing_compute);
4944EXPORT_SYMBOL_GPL(ata_timing_merge);
4945
1da177e4
LT
4946#ifdef CONFIG_PCI
4947EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 4948EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
4949EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4950EXPORT_SYMBOL_GPL(ata_pci_init_one);
4951EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
4952EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4953EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
4954EXPORT_SYMBOL_GPL(ata_pci_default_filter);
4955EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 4956#endif /* CONFIG_PCI */
9b847548
JA
4957
4958EXPORT_SYMBOL_GPL(ata_device_suspend);
4959EXPORT_SYMBOL_GPL(ata_device_resume);
4960EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4961EXPORT_SYMBOL_GPL(ata_scsi_device_resume);