[PATCH] libata: fix ata_qc_issue failure path
[linux-2.6-block.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f 64static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
1da177e4 68static void ata_set_mode(struct ata_port *ap);
83206a29
TH
69static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
70 struct ata_device *dev);
acf356b1 71static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
72
73static unsigned int ata_unique_id = 1;
74static struct workqueue_struct *ata_wq;
75
418dc1f5 76int atapi_enabled = 1;
1623c81e
JG
77module_param(atapi_enabled, int, 0444);
78MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
79
c3c013a2
JG
80int libata_fua = 0;
81module_param_named(fua, libata_fua, int, 0444);
82MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
1da177e4
LT
84MODULE_AUTHOR("Jeff Garzik");
85MODULE_DESCRIPTION("Library module for ATA devices");
86MODULE_LICENSE("GPL");
87MODULE_VERSION(DRV_VERSION);
88
0baab86b 89
1da177e4
LT
90/**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
057ace5e 103void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
104{
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130}
131
132/**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
e12a1be6 137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
057ace5e 143void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
144{
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159}
160
8cbd6df1
AL
161static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 0,
8cbd6df1
AL
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
9a3dccc4
TH
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 189};
1da177e4
LT
190
191/**
8cbd6df1
AL
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
1da177e4 194 *
2e9edbf8 195 * Examine the device configuration and tf->flags to calculate
8cbd6df1 196 * the proper read/write commands and protocol to use.
1da177e4
LT
197 *
198 * LOCKING:
199 * caller.
200 */
9a3dccc4 201int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 202{
8cbd6df1
AL
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
9a3dccc4 205 u8 cmd;
1da177e4 206
9a3dccc4 207 int index, fua, lba48, write;
2e9edbf8 208
9a3dccc4 209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 212
8cbd6df1
AL
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
9a3dccc4 215 index = dev->multi_count ? 0 : 8;
8d238e01
AC
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
0565c26d 219 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
220 } else {
221 tf->protocol = ATA_PROT_DMA;
9a3dccc4 222 index = 16;
8cbd6df1 223 }
1da177e4 224
9a3dccc4
TH
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
1da177e4
LT
231}
232
cb95d562
TH
233/**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251{
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255}
256
c0489e4e
TH
257/**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271{
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278}
279
cb95d562
TH
280static const struct ata_xfer_ent {
281 unsigned int shift, bits;
282 u8 base;
283} ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288};
289
290/**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304{
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312}
313
314/**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327{
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334}
335
336/**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348static int ata_xfer_mode2shift(unsigned int xfer_mode)
349{
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356}
357
1da177e4 358/**
1da7b0d0
TH
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
361 *
362 * Determine string which represents the highest speed
1da7b0d0 363 * (highest bit in @modemask).
1da177e4
LT
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
1da7b0d0 370 * @mode_mask, or the constant C string "<n/a>".
1da177e4 371 */
1da7b0d0 372static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 373{
75f554bc
TH
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
1da7b0d0 392 int highbit;
1da177e4 393
1da7b0d0
TH
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
1da177e4 397 return "<n/a>";
1da177e4
LT
398}
399
0b8efb0a
TH
400static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
401{
402 if (ata_dev_present(dev)) {
403 printk(KERN_WARNING "ata%u: dev %u disabled\n",
404 ap->id, dev->devno);
405 dev->class++;
406 }
407}
408
1da177e4
LT
409/**
410 * ata_pio_devchk - PATA device presence detection
411 * @ap: ATA channel to examine
412 * @device: Device to examine (starting at zero)
413 *
414 * This technique was originally described in
415 * Hale Landis's ATADRVR (www.ata-atapi.com), and
416 * later found its way into the ATA/ATAPI spec.
417 *
418 * Write a pattern to the ATA shadow registers,
419 * and if a device is present, it will respond by
420 * correctly storing and echoing back the
421 * ATA shadow register contents.
422 *
423 * LOCKING:
424 * caller.
425 */
426
427static unsigned int ata_pio_devchk(struct ata_port *ap,
428 unsigned int device)
429{
430 struct ata_ioports *ioaddr = &ap->ioaddr;
431 u8 nsect, lbal;
432
433 ap->ops->dev_select(ap, device);
434
435 outb(0x55, ioaddr->nsect_addr);
436 outb(0xaa, ioaddr->lbal_addr);
437
438 outb(0xaa, ioaddr->nsect_addr);
439 outb(0x55, ioaddr->lbal_addr);
440
441 outb(0x55, ioaddr->nsect_addr);
442 outb(0xaa, ioaddr->lbal_addr);
443
444 nsect = inb(ioaddr->nsect_addr);
445 lbal = inb(ioaddr->lbal_addr);
446
447 if ((nsect == 0x55) && (lbal == 0xaa))
448 return 1; /* we found a device */
449
450 return 0; /* nothing found */
451}
452
453/**
454 * ata_mmio_devchk - PATA device presence detection
455 * @ap: ATA channel to examine
456 * @device: Device to examine (starting at zero)
457 *
458 * This technique was originally described in
459 * Hale Landis's ATADRVR (www.ata-atapi.com), and
460 * later found its way into the ATA/ATAPI spec.
461 *
462 * Write a pattern to the ATA shadow registers,
463 * and if a device is present, it will respond by
464 * correctly storing and echoing back the
465 * ATA shadow register contents.
466 *
467 * LOCKING:
468 * caller.
469 */
470
471static unsigned int ata_mmio_devchk(struct ata_port *ap,
472 unsigned int device)
473{
474 struct ata_ioports *ioaddr = &ap->ioaddr;
475 u8 nsect, lbal;
476
477 ap->ops->dev_select(ap, device);
478
479 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
480 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
481
482 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
483 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
484
485 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
486 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
487
488 nsect = readb((void __iomem *) ioaddr->nsect_addr);
489 lbal = readb((void __iomem *) ioaddr->lbal_addr);
490
491 if ((nsect == 0x55) && (lbal == 0xaa))
492 return 1; /* we found a device */
493
494 return 0; /* nothing found */
495}
496
497/**
498 * ata_devchk - PATA device presence detection
499 * @ap: ATA channel to examine
500 * @device: Device to examine (starting at zero)
501 *
502 * Dispatch ATA device presence detection, depending
503 * on whether we are using PIO or MMIO to talk to the
504 * ATA shadow registers.
505 *
506 * LOCKING:
507 * caller.
508 */
509
510static unsigned int ata_devchk(struct ata_port *ap,
511 unsigned int device)
512{
513 if (ap->flags & ATA_FLAG_MMIO)
514 return ata_mmio_devchk(ap, device);
515 return ata_pio_devchk(ap, device);
516}
517
518/**
519 * ata_dev_classify - determine device type based on ATA-spec signature
520 * @tf: ATA taskfile register set for device to be identified
521 *
522 * Determine from taskfile register contents whether a device is
523 * ATA or ATAPI, as per "Signature and persistence" section
524 * of ATA/PI spec (volume 1, sect 5.14).
525 *
526 * LOCKING:
527 * None.
528 *
529 * RETURNS:
530 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
531 * the event of failure.
532 */
533
057ace5e 534unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
535{
536 /* Apple's open source Darwin code hints that some devices only
537 * put a proper signature into the LBA mid/high registers,
538 * So, we only check those. It's sufficient for uniqueness.
539 */
540
541 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
542 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
543 DPRINTK("found ATA device by sig\n");
544 return ATA_DEV_ATA;
545 }
546
547 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
548 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
549 DPRINTK("found ATAPI device by sig\n");
550 return ATA_DEV_ATAPI;
551 }
552
553 DPRINTK("unknown device\n");
554 return ATA_DEV_UNKNOWN;
555}
556
557/**
558 * ata_dev_try_classify - Parse returned ATA device signature
559 * @ap: ATA channel to examine
560 * @device: Device to examine (starting at zero)
b4dc7623 561 * @r_err: Value of error register on completion
1da177e4
LT
562 *
563 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
564 * an ATA/ATAPI-defined set of values is placed in the ATA
565 * shadow registers, indicating the results of device detection
566 * and diagnostics.
567 *
568 * Select the ATA device, and read the values from the ATA shadow
569 * registers. Then parse according to the Error register value,
570 * and the spec-defined values examined by ata_dev_classify().
571 *
572 * LOCKING:
573 * caller.
b4dc7623
TH
574 *
575 * RETURNS:
576 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
577 */
578
b4dc7623
TH
579static unsigned int
580ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 581{
1da177e4
LT
582 struct ata_taskfile tf;
583 unsigned int class;
584 u8 err;
585
586 ap->ops->dev_select(ap, device);
587
588 memset(&tf, 0, sizeof(tf));
589
1da177e4 590 ap->ops->tf_read(ap, &tf);
0169e284 591 err = tf.feature;
b4dc7623
TH
592 if (r_err)
593 *r_err = err;
1da177e4
LT
594
595 /* see if device passed diags */
596 if (err == 1)
597 /* do nothing */ ;
598 else if ((device == 0) && (err == 0x81))
599 /* do nothing */ ;
600 else
b4dc7623 601 return ATA_DEV_NONE;
1da177e4 602
b4dc7623 603 /* determine if device is ATA or ATAPI */
1da177e4 604 class = ata_dev_classify(&tf);
b4dc7623 605
1da177e4 606 if (class == ATA_DEV_UNKNOWN)
b4dc7623 607 return ATA_DEV_NONE;
1da177e4 608 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
609 return ATA_DEV_NONE;
610 return class;
1da177e4
LT
611}
612
613/**
6a62a04d 614 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
615 * @id: IDENTIFY DEVICE results we will examine
616 * @s: string into which data is output
617 * @ofs: offset into identify device page
618 * @len: length of string to return. must be an even number.
619 *
620 * The strings in the IDENTIFY DEVICE page are broken up into
621 * 16-bit chunks. Run through the string, and output each
622 * 8-bit chunk linearly, regardless of platform.
623 *
624 * LOCKING:
625 * caller.
626 */
627
6a62a04d
TH
628void ata_id_string(const u16 *id, unsigned char *s,
629 unsigned int ofs, unsigned int len)
1da177e4
LT
630{
631 unsigned int c;
632
633 while (len > 0) {
634 c = id[ofs] >> 8;
635 *s = c;
636 s++;
637
638 c = id[ofs] & 0xff;
639 *s = c;
640 s++;
641
642 ofs++;
643 len -= 2;
644 }
645}
646
0e949ff3 647/**
6a62a04d 648 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
649 * @id: IDENTIFY DEVICE results we will examine
650 * @s: string into which data is output
651 * @ofs: offset into identify device page
652 * @len: length of string to return. must be an odd number.
653 *
6a62a04d 654 * This function is identical to ata_id_string except that it
0e949ff3
TH
655 * trims trailing spaces and terminates the resulting string with
656 * null. @len must be actual maximum length (even number) + 1.
657 *
658 * LOCKING:
659 * caller.
660 */
6a62a04d
TH
661void ata_id_c_string(const u16 *id, unsigned char *s,
662 unsigned int ofs, unsigned int len)
0e949ff3
TH
663{
664 unsigned char *p;
665
666 WARN_ON(!(len & 1));
667
6a62a04d 668 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
669
670 p = s + strnlen(s, len - 1);
671 while (p > s && p[-1] == ' ')
672 p--;
673 *p = '\0';
674}
0baab86b 675
2940740b
TH
676static u64 ata_id_n_sectors(const u16 *id)
677{
678 if (ata_id_has_lba(id)) {
679 if (ata_id_has_lba48(id))
680 return ata_id_u64(id, 100);
681 else
682 return ata_id_u32(id, 60);
683 } else {
684 if (ata_id_current_chs_valid(id))
685 return ata_id_u32(id, 57);
686 else
687 return id[1] * id[3] * id[6];
688 }
689}
690
0baab86b
EF
691/**
692 * ata_noop_dev_select - Select device 0/1 on ATA bus
693 * @ap: ATA channel to manipulate
694 * @device: ATA device (numbered from zero) to select
695 *
696 * This function performs no actual function.
697 *
698 * May be used as the dev_select() entry in ata_port_operations.
699 *
700 * LOCKING:
701 * caller.
702 */
1da177e4
LT
703void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
704{
705}
706
0baab86b 707
1da177e4
LT
708/**
709 * ata_std_dev_select - Select device 0/1 on ATA bus
710 * @ap: ATA channel to manipulate
711 * @device: ATA device (numbered from zero) to select
712 *
713 * Use the method defined in the ATA specification to
714 * make either device 0, or device 1, active on the
0baab86b
EF
715 * ATA channel. Works with both PIO and MMIO.
716 *
717 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
718 *
719 * LOCKING:
720 * caller.
721 */
722
723void ata_std_dev_select (struct ata_port *ap, unsigned int device)
724{
725 u8 tmp;
726
727 if (device == 0)
728 tmp = ATA_DEVICE_OBS;
729 else
730 tmp = ATA_DEVICE_OBS | ATA_DEV1;
731
732 if (ap->flags & ATA_FLAG_MMIO) {
733 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
734 } else {
735 outb(tmp, ap->ioaddr.device_addr);
736 }
737 ata_pause(ap); /* needed; also flushes, for mmio */
738}
739
740/**
741 * ata_dev_select - Select device 0/1 on ATA bus
742 * @ap: ATA channel to manipulate
743 * @device: ATA device (numbered from zero) to select
744 * @wait: non-zero to wait for Status register BSY bit to clear
745 * @can_sleep: non-zero if context allows sleeping
746 *
747 * Use the method defined in the ATA specification to
748 * make either device 0, or device 1, active on the
749 * ATA channel.
750 *
751 * This is a high-level version of ata_std_dev_select(),
752 * which additionally provides the services of inserting
753 * the proper pauses and status polling, where needed.
754 *
755 * LOCKING:
756 * caller.
757 */
758
759void ata_dev_select(struct ata_port *ap, unsigned int device,
760 unsigned int wait, unsigned int can_sleep)
761{
762 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
763 ap->id, device, wait);
764
765 if (wait)
766 ata_wait_idle(ap);
767
768 ap->ops->dev_select(ap, device);
769
770 if (wait) {
771 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
772 msleep(150);
773 ata_wait_idle(ap);
774 }
775}
776
777/**
778 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 779 * @id: IDENTIFY DEVICE page to dump
1da177e4 780 *
0bd3300a
TH
781 * Dump selected 16-bit words from the given IDENTIFY DEVICE
782 * page.
1da177e4
LT
783 *
784 * LOCKING:
785 * caller.
786 */
787
0bd3300a 788static inline void ata_dump_id(const u16 *id)
1da177e4
LT
789{
790 DPRINTK("49==0x%04x "
791 "53==0x%04x "
792 "63==0x%04x "
793 "64==0x%04x "
794 "75==0x%04x \n",
0bd3300a
TH
795 id[49],
796 id[53],
797 id[63],
798 id[64],
799 id[75]);
1da177e4
LT
800 DPRINTK("80==0x%04x "
801 "81==0x%04x "
802 "82==0x%04x "
803 "83==0x%04x "
804 "84==0x%04x \n",
0bd3300a
TH
805 id[80],
806 id[81],
807 id[82],
808 id[83],
809 id[84]);
1da177e4
LT
810 DPRINTK("88==0x%04x "
811 "93==0x%04x\n",
0bd3300a
TH
812 id[88],
813 id[93]);
1da177e4
LT
814}
815
cb95d562
TH
816/**
817 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
818 * @id: IDENTIFY data to compute xfer mask from
819 *
820 * Compute the xfermask for this device. This is not as trivial
821 * as it seems if we must consider early devices correctly.
822 *
823 * FIXME: pre IDE drive timing (do we care ?).
824 *
825 * LOCKING:
826 * None.
827 *
828 * RETURNS:
829 * Computed xfermask
830 */
831static unsigned int ata_id_xfermask(const u16 *id)
832{
833 unsigned int pio_mask, mwdma_mask, udma_mask;
834
835 /* Usual case. Word 53 indicates word 64 is valid */
836 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
837 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
838 pio_mask <<= 3;
839 pio_mask |= 0x7;
840 } else {
841 /* If word 64 isn't valid then Word 51 high byte holds
842 * the PIO timing number for the maximum. Turn it into
843 * a mask.
844 */
845 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
846
847 /* But wait.. there's more. Design your standards by
848 * committee and you too can get a free iordy field to
849 * process. However its the speeds not the modes that
850 * are supported... Note drivers using the timing API
851 * will get this right anyway
852 */
853 }
854
855 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
856
857 udma_mask = 0;
858 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
859 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
860
861 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
862}
863
86e45b6b
TH
864/**
865 * ata_port_queue_task - Queue port_task
866 * @ap: The ata_port to queue port_task for
867 *
868 * Schedule @fn(@data) for execution after @delay jiffies using
869 * port_task. There is one port_task per port and it's the
870 * user(low level driver)'s responsibility to make sure that only
871 * one task is active at any given time.
872 *
873 * libata core layer takes care of synchronization between
874 * port_task and EH. ata_port_queue_task() may be ignored for EH
875 * synchronization.
876 *
877 * LOCKING:
878 * Inherited from caller.
879 */
880void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
881 unsigned long delay)
882{
883 int rc;
884
2e755f68 885 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
886 return;
887
888 PREPARE_WORK(&ap->port_task, fn, data);
889
890 if (!delay)
891 rc = queue_work(ata_wq, &ap->port_task);
892 else
893 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
894
895 /* rc == 0 means that another user is using port task */
896 WARN_ON(rc == 0);
897}
898
899/**
900 * ata_port_flush_task - Flush port_task
901 * @ap: The ata_port to flush port_task for
902 *
903 * After this function completes, port_task is guranteed not to
904 * be running or scheduled.
905 *
906 * LOCKING:
907 * Kernel thread context (may sleep)
908 */
909void ata_port_flush_task(struct ata_port *ap)
910{
911 unsigned long flags;
912
913 DPRINTK("ENTER\n");
914
915 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 916 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
917 spin_unlock_irqrestore(&ap->host_set->lock, flags);
918
919 DPRINTK("flush #1\n");
920 flush_workqueue(ata_wq);
921
922 /*
923 * At this point, if a task is running, it's guaranteed to see
924 * the FLUSH flag; thus, it will never queue pio tasks again.
925 * Cancel and flush.
926 */
927 if (!cancel_delayed_work(&ap->port_task)) {
928 DPRINTK("flush #2\n");
929 flush_workqueue(ata_wq);
930 }
931
932 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 933 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
934 spin_unlock_irqrestore(&ap->host_set->lock, flags);
935
936 DPRINTK("EXIT\n");
937}
938
77853bf2 939void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 940{
77853bf2 941 struct completion *waiting = qc->private_data;
a2a7a662 942
77853bf2 943 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 944 complete(waiting);
a2a7a662
TH
945}
946
947/**
948 * ata_exec_internal - execute libata internal command
949 * @ap: Port to which the command is sent
950 * @dev: Device to which the command is sent
951 * @tf: Taskfile registers for the command and the result
952 * @dma_dir: Data tranfer direction of the command
953 * @buf: Data buffer of the command
954 * @buflen: Length of data buffer
955 *
956 * Executes libata internal command with timeout. @tf contains
957 * command on entry and result on return. Timeout and error
958 * conditions are reported via return value. No recovery action
959 * is taken after a command times out. It's caller's duty to
960 * clean up after timeout.
961 *
962 * LOCKING:
963 * None. Should be called with kernel context, might sleep.
964 */
965
966static unsigned
967ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
968 struct ata_taskfile *tf,
969 int dma_dir, void *buf, unsigned int buflen)
970{
971 u8 command = tf->command;
972 struct ata_queued_cmd *qc;
973 DECLARE_COMPLETION(wait);
974 unsigned long flags;
77853bf2 975 unsigned int err_mask;
a2a7a662
TH
976
977 spin_lock_irqsave(&ap->host_set->lock, flags);
978
979 qc = ata_qc_new_init(ap, dev);
980 BUG_ON(qc == NULL);
981
982 qc->tf = *tf;
983 qc->dma_dir = dma_dir;
984 if (dma_dir != DMA_NONE) {
985 ata_sg_init_one(qc, buf, buflen);
986 qc->nsect = buflen / ATA_SECT_SIZE;
987 }
988
77853bf2 989 qc->private_data = &wait;
a2a7a662
TH
990 qc->complete_fn = ata_qc_complete_internal;
991
9a3d9eb0
TH
992 qc->err_mask = ata_qc_issue(qc);
993 if (qc->err_mask)
8e436af9 994 ata_qc_complete(qc);
a2a7a662
TH
995
996 spin_unlock_irqrestore(&ap->host_set->lock, flags);
997
998 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
999 ata_port_flush_task(ap);
1000
a2a7a662
TH
1001 spin_lock_irqsave(&ap->host_set->lock, flags);
1002
1003 /* We're racing with irq here. If we lose, the
1004 * following test prevents us from completing the qc
1005 * again. If completion irq occurs after here but
1006 * before the caller cleans up, it will result in a
1007 * spurious interrupt. We can live with that.
1008 */
77853bf2 1009 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1010 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1011 ata_qc_complete(qc);
1012 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1013 ap->id, command);
1014 }
1015
1016 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1017 }
1018
77853bf2
TH
1019 *tf = qc->tf;
1020 err_mask = qc->err_mask;
1021
1022 ata_qc_free(qc);
1023
1f7dd3e9
TH
1024 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1025 * Until those drivers are fixed, we detect the condition
1026 * here, fail the command with AC_ERR_SYSTEM and reenable the
1027 * port.
1028 *
1029 * Note that this doesn't change any behavior as internal
1030 * command failure results in disabling the device in the
1031 * higher layer for LLDDs without new reset/EH callbacks.
1032 *
1033 * Kill the following code as soon as those drivers are fixed.
1034 */
1035 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1036 err_mask |= AC_ERR_SYSTEM;
1037 ata_port_probe(ap);
1038 }
1039
77853bf2 1040 return err_mask;
a2a7a662
TH
1041}
1042
1bc4ccff
AC
1043/**
1044 * ata_pio_need_iordy - check if iordy needed
1045 * @adev: ATA device
1046 *
1047 * Check if the current speed of the device requires IORDY. Used
1048 * by various controllers for chip configuration.
1049 */
1050
1051unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1052{
1053 int pio;
1054 int speed = adev->pio_mode - XFER_PIO_0;
1055
1056 if (speed < 2)
1057 return 0;
1058 if (speed > 2)
1059 return 1;
2e9edbf8 1060
1bc4ccff
AC
1061 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1062
1063 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1064 pio = adev->id[ATA_ID_EIDE_PIO];
1065 /* Is the speed faster than the drive allows non IORDY ? */
1066 if (pio) {
1067 /* This is cycle times not frequency - watch the logic! */
1068 if (pio > 240) /* PIO2 is 240nS per cycle */
1069 return 1;
1070 return 0;
1071 }
1072 }
1073 return 0;
1074}
1075
1da177e4 1076/**
49016aca
TH
1077 * ata_dev_read_id - Read ID data from the specified device
1078 * @ap: port on which target device resides
1079 * @dev: target device
1080 * @p_class: pointer to class of the target device (may be changed)
1081 * @post_reset: is this read ID post-reset?
d9572b1d 1082 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1083 *
49016aca
TH
1084 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1085 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1086 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1087 * for pre-ATA4 drives.
1da177e4
LT
1088 *
1089 * LOCKING:
49016aca
TH
1090 * Kernel thread context (may sleep)
1091 *
1092 * RETURNS:
1093 * 0 on success, -errno otherwise.
1da177e4 1094 */
49016aca 1095static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1096 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1097{
49016aca 1098 unsigned int class = *p_class;
a0123703 1099 struct ata_taskfile tf;
49016aca 1100 unsigned int err_mask = 0;
d9572b1d 1101 u16 *id;
49016aca
TH
1102 const char *reason;
1103 int rc;
1da177e4 1104
49016aca 1105 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1106
49016aca 1107 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1108
d9572b1d
TH
1109 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1110 if (id == NULL) {
1111 rc = -ENOMEM;
1112 reason = "out of memory";
1113 goto err_out;
1114 }
1115
49016aca
TH
1116 retry:
1117 ata_tf_init(ap, &tf, dev->devno);
a0123703 1118
49016aca
TH
1119 switch (class) {
1120 case ATA_DEV_ATA:
a0123703 1121 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1122 break;
1123 case ATA_DEV_ATAPI:
a0123703 1124 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1125 break;
1126 default:
1127 rc = -ENODEV;
1128 reason = "unsupported class";
1129 goto err_out;
1da177e4
LT
1130 }
1131
a0123703 1132 tf.protocol = ATA_PROT_PIO;
1da177e4 1133
a0123703 1134 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
49016aca 1135 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1136 if (err_mask) {
49016aca
TH
1137 rc = -EIO;
1138 reason = "I/O error";
1da177e4
LT
1139 goto err_out;
1140 }
1141
49016aca 1142 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1143
49016aca 1144 /* sanity check */
692785e7 1145 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1146 rc = -EINVAL;
1147 reason = "device reports illegal type";
1148 goto err_out;
1149 }
1150
1151 if (post_reset && class == ATA_DEV_ATA) {
1152 /*
1153 * The exact sequence expected by certain pre-ATA4 drives is:
1154 * SRST RESET
1155 * IDENTIFY
1156 * INITIALIZE DEVICE PARAMETERS
1157 * anything else..
1158 * Some drives were very specific about that exact sequence.
1159 */
1160 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
00b6f5e9 1161 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
49016aca
TH
1162 if (err_mask) {
1163 rc = -EIO;
1164 reason = "INIT_DEV_PARAMS failed";
1165 goto err_out;
1166 }
1167
1168 /* current CHS translation info (id[53-58]) might be
1169 * changed. reread the identify device info.
1170 */
1171 post_reset = 0;
1172 goto retry;
1173 }
1174 }
1175
1176 *p_class = class;
d9572b1d 1177 *p_id = id;
49016aca
TH
1178 return 0;
1179
1180 err_out:
1181 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1182 ap->id, dev->devno, reason);
d9572b1d 1183 kfree(id);
49016aca
TH
1184 return rc;
1185}
1186
4b2f3ede
TH
1187static inline u8 ata_dev_knobble(const struct ata_port *ap,
1188 struct ata_device *dev)
1189{
1190 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1191}
1192
49016aca 1193/**
ffeae418
TH
1194 * ata_dev_configure - Configure the specified ATA/ATAPI device
1195 * @ap: Port on which target device resides
1196 * @dev: Target device to configure
4c2d721a 1197 * @print_info: Enable device info printout
ffeae418
TH
1198 *
1199 * Configure @dev according to @dev->id. Generic and low-level
1200 * driver specific fixups are also applied.
49016aca
TH
1201 *
1202 * LOCKING:
ffeae418
TH
1203 * Kernel thread context (may sleep)
1204 *
1205 * RETURNS:
1206 * 0 on success, -errno otherwise
49016aca 1207 */
4c2d721a
TH
1208static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1209 int print_info)
49016aca 1210{
1148c3a7 1211 const u16 *id = dev->id;
ff8854b2 1212 unsigned int xfer_mask;
49016aca
TH
1213 int i, rc;
1214
1215 if (!ata_dev_present(dev)) {
1216 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1217 ap->id, dev->devno);
1218 return 0;
49016aca
TH
1219 }
1220
ffeae418 1221 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1222
c39f5ebe
TH
1223 /* print device capabilities */
1224 if (print_info)
1225 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1226 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1227 ap->id, dev->devno, id[49], id[82], id[83],
1228 id[84], id[85], id[86], id[87], id[88]);
1229
208a9933
TH
1230 /* initialize to-be-configured parameters */
1231 dev->flags = 0;
1232 dev->max_sectors = 0;
1233 dev->cdb_len = 0;
1234 dev->n_sectors = 0;
1235 dev->cylinders = 0;
1236 dev->heads = 0;
1237 dev->sectors = 0;
1238
1da177e4
LT
1239 /*
1240 * common ATA, ATAPI feature tests
1241 */
1242
ff8854b2 1243 /* find max transfer mode; for printk only */
1148c3a7 1244 xfer_mask = ata_id_xfermask(id);
1da177e4 1245
1148c3a7 1246 ata_dump_id(id);
1da177e4
LT
1247
1248 /* ATA-specific feature tests */
1249 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1250 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1251
1148c3a7 1252 if (ata_id_has_lba(id)) {
4c2d721a 1253 const char *lba_desc;
8bf62ece 1254
4c2d721a
TH
1255 lba_desc = "LBA";
1256 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1257 if (ata_id_has_lba48(id)) {
8bf62ece 1258 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1259 lba_desc = "LBA48";
1260 }
8bf62ece
AL
1261
1262 /* print device info to dmesg */
4c2d721a
TH
1263 if (print_info)
1264 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1265 "max %s, %Lu sectors: %s\n",
1266 ap->id, dev->devno,
1148c3a7 1267 ata_id_major_version(id),
ff8854b2 1268 ata_mode_string(xfer_mask),
4c2d721a
TH
1269 (unsigned long long)dev->n_sectors,
1270 lba_desc);
ffeae418 1271 } else {
8bf62ece
AL
1272 /* CHS */
1273
1274 /* Default translation */
1148c3a7
TH
1275 dev->cylinders = id[1];
1276 dev->heads = id[3];
1277 dev->sectors = id[6];
8bf62ece 1278
1148c3a7 1279 if (ata_id_current_chs_valid(id)) {
8bf62ece 1280 /* Current CHS translation is valid. */
1148c3a7
TH
1281 dev->cylinders = id[54];
1282 dev->heads = id[55];
1283 dev->sectors = id[56];
8bf62ece
AL
1284 }
1285
1286 /* print device info to dmesg */
4c2d721a
TH
1287 if (print_info)
1288 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1289 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1290 ap->id, dev->devno,
1148c3a7 1291 ata_id_major_version(id),
ff8854b2 1292 ata_mode_string(xfer_mask),
4c2d721a
TH
1293 (unsigned long long)dev->n_sectors,
1294 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1295 }
1296
6e7846e9 1297 dev->cdb_len = 16;
1da177e4
LT
1298 }
1299
1300 /* ATAPI-specific feature tests */
2c13b7ce 1301 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1302 rc = atapi_cdb_len(id);
1da177e4
LT
1303 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1304 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1305 rc = -EINVAL;
1da177e4
LT
1306 goto err_out_nosup;
1307 }
6e7846e9 1308 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1309
1310 /* print device info to dmesg */
4c2d721a
TH
1311 if (print_info)
1312 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1313 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1314 }
1315
6e7846e9
TH
1316 ap->host->max_cmd_len = 0;
1317 for (i = 0; i < ATA_MAX_DEVICES; i++)
1318 ap->host->max_cmd_len = max_t(unsigned int,
1319 ap->host->max_cmd_len,
1320 ap->device[i].cdb_len);
1321
4b2f3ede
TH
1322 /* limit bridge transfers to udma5, 200 sectors */
1323 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1324 if (print_info)
1325 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1326 ap->id, dev->devno);
5a529139 1327 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1328 dev->max_sectors = ATA_MAX_SECTORS;
1329 }
1330
1331 if (ap->ops->dev_config)
1332 ap->ops->dev_config(ap, dev);
1333
1da177e4 1334 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1335 return 0;
1da177e4
LT
1336
1337err_out_nosup:
1da177e4 1338 DPRINTK("EXIT, err\n");
ffeae418 1339 return rc;
1da177e4
LT
1340}
1341
1342/**
1343 * ata_bus_probe - Reset and probe ATA bus
1344 * @ap: Bus to probe
1345 *
0cba632b
JG
1346 * Master ATA bus probing function. Initiates a hardware-dependent
1347 * bus reset, then attempts to identify any devices found on
1348 * the bus.
1349 *
1da177e4 1350 * LOCKING:
0cba632b 1351 * PCI/etc. bus probe sem.
1da177e4
LT
1352 *
1353 * RETURNS:
1354 * Zero on success, non-zero on error.
1355 */
1356
1357static int ata_bus_probe(struct ata_port *ap)
1358{
28ca5c57
TH
1359 unsigned int classes[ATA_MAX_DEVICES];
1360 unsigned int i, rc, found = 0;
1da177e4 1361
28ca5c57 1362 ata_port_probe(ap);
c19ba8af 1363
2044470c
TH
1364 /* reset and determine device classes */
1365 for (i = 0; i < ATA_MAX_DEVICES; i++)
1366 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1367
2044470c 1368 if (ap->ops->probe_reset) {
c19ba8af 1369 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1370 if (rc) {
1371 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1372 return rc;
c19ba8af 1373 }
28ca5c57 1374 } else {
c19ba8af
TH
1375 ap->ops->phy_reset(ap);
1376
2044470c
TH
1377 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1378 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1379 classes[i] = ap->device[i].class;
2044470c 1380
28ca5c57
TH
1381 ata_port_probe(ap);
1382 }
1da177e4 1383
2044470c
TH
1384 for (i = 0; i < ATA_MAX_DEVICES; i++)
1385 if (classes[i] == ATA_DEV_UNKNOWN)
1386 classes[i] = ATA_DEV_NONE;
1387
28ca5c57 1388 /* read IDENTIFY page and configure devices */
1da177e4 1389 for (i = 0; i < ATA_MAX_DEVICES; i++) {
ffeae418
TH
1390 struct ata_device *dev = &ap->device[i];
1391
28ca5c57
TH
1392 dev->class = classes[i];
1393
ffeae418
TH
1394 if (!ata_dev_present(dev))
1395 continue;
1396
1397 WARN_ON(dev->id != NULL);
1398 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1399 dev->class = ATA_DEV_NONE;
1400 continue;
1401 }
1402
4c2d721a 1403 if (ata_dev_configure(ap, dev, 1)) {
fcef978f 1404 ata_dev_disable(ap, dev);
ffeae418 1405 continue;
1da177e4 1406 }
ffeae418 1407
ffeae418 1408 found = 1;
1da177e4
LT
1409 }
1410
28ca5c57 1411 if (!found)
1da177e4
LT
1412 goto err_out_disable;
1413
e35a9e01
AC
1414 if (ap->ops->set_mode)
1415 ap->ops->set_mode(ap);
1416 else
1417 ata_set_mode(ap);
1418
1da177e4
LT
1419 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1420 goto err_out_disable;
1421
1422 return 0;
1423
1424err_out_disable:
1425 ap->ops->port_disable(ap);
1da177e4
LT
1426 return -1;
1427}
1428
1429/**
0cba632b
JG
1430 * ata_port_probe - Mark port as enabled
1431 * @ap: Port for which we indicate enablement
1da177e4 1432 *
0cba632b
JG
1433 * Modify @ap data structure such that the system
1434 * thinks that the entire port is enabled.
1435 *
1436 * LOCKING: host_set lock, or some other form of
1437 * serialization.
1da177e4
LT
1438 */
1439
1440void ata_port_probe(struct ata_port *ap)
1441{
1442 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1443}
1444
3be680b7
TH
1445/**
1446 * sata_print_link_status - Print SATA link status
1447 * @ap: SATA port to printk link status about
1448 *
1449 * This function prints link speed and status of a SATA link.
1450 *
1451 * LOCKING:
1452 * None.
1453 */
1454static void sata_print_link_status(struct ata_port *ap)
1455{
1456 u32 sstatus, tmp;
1457 const char *speed;
1458
1459 if (!ap->ops->scr_read)
1460 return;
1461
1462 sstatus = scr_read(ap, SCR_STATUS);
1463
1464 if (sata_dev_present(ap)) {
1465 tmp = (sstatus >> 4) & 0xf;
1466 if (tmp & (1 << 0))
1467 speed = "1.5";
1468 else if (tmp & (1 << 1))
1469 speed = "3.0";
1470 else
1471 speed = "<unknown>";
1472 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1473 ap->id, speed, sstatus);
1474 } else {
1475 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1476 ap->id, sstatus);
1477 }
1478}
1479
1da177e4 1480/**
780a87f7
JG
1481 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1482 * @ap: SATA port associated with target SATA PHY.
1da177e4 1483 *
780a87f7
JG
1484 * This function issues commands to standard SATA Sxxx
1485 * PHY registers, to wake up the phy (and device), and
1486 * clear any reset condition.
1da177e4
LT
1487 *
1488 * LOCKING:
0cba632b 1489 * PCI/etc. bus probe sem.
1da177e4
LT
1490 *
1491 */
1492void __sata_phy_reset(struct ata_port *ap)
1493{
1494 u32 sstatus;
1495 unsigned long timeout = jiffies + (HZ * 5);
1496
1497 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1498 /* issue phy wake/reset */
1499 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1500 /* Couldn't find anything in SATA I/II specs, but
1501 * AHCI-1.1 10.4.2 says at least 1 ms. */
1502 mdelay(1);
1da177e4 1503 }
cdcca89e 1504 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1505
1506 /* wait for phy to become ready, if necessary */
1507 do {
1508 msleep(200);
1509 sstatus = scr_read(ap, SCR_STATUS);
1510 if ((sstatus & 0xf) != 1)
1511 break;
1512 } while (time_before(jiffies, timeout));
1513
3be680b7
TH
1514 /* print link status */
1515 sata_print_link_status(ap);
656563e3 1516
3be680b7
TH
1517 /* TODO: phy layer with polling, timeouts, etc. */
1518 if (sata_dev_present(ap))
1da177e4 1519 ata_port_probe(ap);
3be680b7 1520 else
1da177e4 1521 ata_port_disable(ap);
1da177e4
LT
1522
1523 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1524 return;
1525
1526 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1527 ata_port_disable(ap);
1528 return;
1529 }
1530
1531 ap->cbl = ATA_CBL_SATA;
1532}
1533
1534/**
780a87f7
JG
1535 * sata_phy_reset - Reset SATA bus.
1536 * @ap: SATA port associated with target SATA PHY.
1da177e4 1537 *
780a87f7
JG
1538 * This function resets the SATA bus, and then probes
1539 * the bus for devices.
1da177e4
LT
1540 *
1541 * LOCKING:
0cba632b 1542 * PCI/etc. bus probe sem.
1da177e4
LT
1543 *
1544 */
1545void sata_phy_reset(struct ata_port *ap)
1546{
1547 __sata_phy_reset(ap);
1548 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1549 return;
1550 ata_bus_reset(ap);
1551}
1552
ebdfca6e
AC
1553/**
1554 * ata_dev_pair - return other device on cable
1555 * @ap: port
1556 * @adev: device
1557 *
1558 * Obtain the other device on the same cable, or if none is
1559 * present NULL is returned
1560 */
2e9edbf8 1561
ebdfca6e
AC
1562struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1563{
1564 struct ata_device *pair = &ap->device[1 - adev->devno];
1565 if (!ata_dev_present(pair))
1566 return NULL;
1567 return pair;
1568}
1569
1da177e4 1570/**
780a87f7
JG
1571 * ata_port_disable - Disable port.
1572 * @ap: Port to be disabled.
1da177e4 1573 *
780a87f7
JG
1574 * Modify @ap data structure such that the system
1575 * thinks that the entire port is disabled, and should
1576 * never attempt to probe or communicate with devices
1577 * on this port.
1578 *
1579 * LOCKING: host_set lock, or some other form of
1580 * serialization.
1da177e4
LT
1581 */
1582
1583void ata_port_disable(struct ata_port *ap)
1584{
1585 ap->device[0].class = ATA_DEV_NONE;
1586 ap->device[1].class = ATA_DEV_NONE;
1587 ap->flags |= ATA_FLAG_PORT_DISABLED;
1588}
1589
452503f9
AC
1590/*
1591 * This mode timing computation functionality is ported over from
1592 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1593 */
1594/*
1595 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1596 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1597 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1598 * is currently supported only by Maxtor drives.
452503f9
AC
1599 */
1600
1601static const struct ata_timing ata_timing[] = {
1602
1603 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1604 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1605 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1606 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1607
1608 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1609 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1610 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1611
1612/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1613
452503f9
AC
1614 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1615 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1616 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1617
452503f9
AC
1618 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1619 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1620 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1621
1622/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1623 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1624 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1625
1626 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1627 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1628 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1629
1630/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1631
1632 { 0xFF }
1633};
1634
1635#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1636#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1637
1638static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1639{
1640 q->setup = EZ(t->setup * 1000, T);
1641 q->act8b = EZ(t->act8b * 1000, T);
1642 q->rec8b = EZ(t->rec8b * 1000, T);
1643 q->cyc8b = EZ(t->cyc8b * 1000, T);
1644 q->active = EZ(t->active * 1000, T);
1645 q->recover = EZ(t->recover * 1000, T);
1646 q->cycle = EZ(t->cycle * 1000, T);
1647 q->udma = EZ(t->udma * 1000, UT);
1648}
1649
1650void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1651 struct ata_timing *m, unsigned int what)
1652{
1653 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1654 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1655 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1656 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1657 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1658 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1659 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1660 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1661}
1662
1663static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1664{
1665 const struct ata_timing *t;
1666
1667 for (t = ata_timing; t->mode != speed; t++)
91190758 1668 if (t->mode == 0xFF)
452503f9 1669 return NULL;
2e9edbf8 1670 return t;
452503f9
AC
1671}
1672
1673int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1674 struct ata_timing *t, int T, int UT)
1675{
1676 const struct ata_timing *s;
1677 struct ata_timing p;
1678
1679 /*
2e9edbf8 1680 * Find the mode.
75b1f2f8 1681 */
452503f9
AC
1682
1683 if (!(s = ata_timing_find_mode(speed)))
1684 return -EINVAL;
1685
75b1f2f8
AL
1686 memcpy(t, s, sizeof(*s));
1687
452503f9
AC
1688 /*
1689 * If the drive is an EIDE drive, it can tell us it needs extended
1690 * PIO/MW_DMA cycle timing.
1691 */
1692
1693 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1694 memset(&p, 0, sizeof(p));
1695 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1696 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1697 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1698 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1699 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1700 }
1701 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1702 }
1703
1704 /*
1705 * Convert the timing to bus clock counts.
1706 */
1707
75b1f2f8 1708 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1709
1710 /*
c893a3ae
RD
1711 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1712 * S.M.A.R.T * and some other commands. We have to ensure that the
1713 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1714 */
1715
1716 if (speed > XFER_PIO_4) {
1717 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1718 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1719 }
1720
1721 /*
c893a3ae 1722 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1723 */
1724
1725 if (t->act8b + t->rec8b < t->cyc8b) {
1726 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1727 t->rec8b = t->cyc8b - t->act8b;
1728 }
1729
1730 if (t->active + t->recover < t->cycle) {
1731 t->active += (t->cycle - (t->active + t->recover)) / 2;
1732 t->recover = t->cycle - t->active;
1733 }
1734
1735 return 0;
1736}
1737
83206a29 1738static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1739{
83206a29
TH
1740 unsigned int err_mask;
1741 int rc;
1da177e4
LT
1742
1743 if (dev->xfer_shift == ATA_SHIFT_PIO)
1744 dev->flags |= ATA_DFLAG_PIO;
1745
83206a29
TH
1746 err_mask = ata_dev_set_xfermode(ap, dev);
1747 if (err_mask) {
1748 printk(KERN_ERR
1749 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1750 ap->id, err_mask);
1751 return -EIO;
1752 }
1da177e4 1753
83206a29
TH
1754 rc = ata_dev_revalidate(ap, dev, 0);
1755 if (rc) {
1756 printk(KERN_ERR
1757 "ata%u: failed to revalidate after set xfermode\n",
1758 ap->id);
1759 return rc;
48a8a14f
TH
1760 }
1761
23e71c3d
TH
1762 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1763 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1764
1765 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1766 ap->id, dev->devno,
1767 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1768 return 0;
1da177e4
LT
1769}
1770
1771static int ata_host_set_pio(struct ata_port *ap)
1772{
a6d5a51c 1773 int i;
1da177e4
LT
1774
1775 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1776 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1777
1778 if (!ata_dev_present(dev))
1779 continue;
1780
1781 if (!dev->pio_mode) {
88f93a31 1782 printk(KERN_WARNING "ata%u: no PIO support for device %d.\n", ap->id, i);
a6d5a51c 1783 return -1;
1da177e4 1784 }
a6d5a51c
TH
1785
1786 dev->xfer_mode = dev->pio_mode;
1787 dev->xfer_shift = ATA_SHIFT_PIO;
1788 if (ap->ops->set_piomode)
1789 ap->ops->set_piomode(ap, dev);
1da177e4
LT
1790 }
1791
1792 return 0;
1793}
1794
a6d5a51c 1795static void ata_host_set_dma(struct ata_port *ap)
1da177e4
LT
1796{
1797 int i;
1798
1799 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1800 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1801
1802 if (!ata_dev_present(dev) || !dev->dma_mode)
1803 continue;
1804
1805 dev->xfer_mode = dev->dma_mode;
1806 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1807 if (ap->ops->set_dmamode)
1808 ap->ops->set_dmamode(ap, dev);
1da177e4
LT
1809 }
1810}
1811
1812/**
1813 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1814 * @ap: port on which timings will be programmed
1815 *
780a87f7
JG
1816 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1817 *
1da177e4 1818 * LOCKING:
0cba632b 1819 * PCI/etc. bus probe sem.
1da177e4
LT
1820 */
1821static void ata_set_mode(struct ata_port *ap)
1822{
5444a6f4 1823 int i, rc, used_dma = 0;
1da177e4 1824
a6d5a51c
TH
1825 /* step 1: calculate xfer_mask */
1826 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1827 struct ata_device *dev = &ap->device[i];
acf356b1 1828 unsigned int pio_mask, dma_mask;
a6d5a51c
TH
1829
1830 if (!ata_dev_present(dev))
1831 continue;
1832
acf356b1 1833 ata_dev_xfermask(ap, dev);
1da177e4 1834
acf356b1
TH
1835 /* TODO: let LLDD filter dev->*_mask here */
1836
1837 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1838 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1839 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1840 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4
AC
1841
1842 if (dev->dma_mode)
1843 used_dma = 1;
a6d5a51c
TH
1844 }
1845
1846 /* step 2: always set host PIO timings */
1847 rc = ata_host_set_pio(ap);
1da177e4
LT
1848 if (rc)
1849 goto err_out;
1850
a6d5a51c
TH
1851 /* step 3: set host DMA timings */
1852 ata_host_set_dma(ap);
1da177e4
LT
1853
1854 /* step 4: update devices' xfer mode */
83206a29
TH
1855 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1856 struct ata_device *dev = &ap->device[i];
1da177e4 1857
83206a29
TH
1858 if (!ata_dev_present(dev))
1859 continue;
1860
1861 if (ata_dev_set_mode(ap, dev))
1862 goto err_out;
1863 }
1da177e4 1864
5444a6f4
AC
1865 /*
1866 * Record simplex status. If we selected DMA then the other
1867 * host channels are not permitted to do so.
1868 */
1869
1870 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
1871 ap->host_set->simplex_claimed = 1;
1872
1873 /*
1874 * Chip specific finalisation
1875 */
1da177e4
LT
1876 if (ap->ops->post_set_mode)
1877 ap->ops->post_set_mode(ap);
1878
1da177e4
LT
1879 return;
1880
1881err_out:
1882 ata_port_disable(ap);
1883}
1884
1fdffbce
JG
1885/**
1886 * ata_tf_to_host - issue ATA taskfile to host controller
1887 * @ap: port to which command is being issued
1888 * @tf: ATA taskfile register set
1889 *
1890 * Issues ATA taskfile register set to ATA host controller,
1891 * with proper synchronization with interrupt handler and
1892 * other threads.
1893 *
1894 * LOCKING:
1895 * spin_lock_irqsave(host_set lock)
1896 */
1897
1898static inline void ata_tf_to_host(struct ata_port *ap,
1899 const struct ata_taskfile *tf)
1900{
1901 ap->ops->tf_load(ap, tf);
1902 ap->ops->exec_command(ap, tf);
1903}
1904
1da177e4
LT
1905/**
1906 * ata_busy_sleep - sleep until BSY clears, or timeout
1907 * @ap: port containing status register to be polled
1908 * @tmout_pat: impatience timeout
1909 * @tmout: overall timeout
1910 *
780a87f7
JG
1911 * Sleep until ATA Status register bit BSY clears,
1912 * or a timeout occurs.
1913 *
1914 * LOCKING: None.
1da177e4
LT
1915 */
1916
6f8b9958
TH
1917unsigned int ata_busy_sleep (struct ata_port *ap,
1918 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
1919{
1920 unsigned long timer_start, timeout;
1921 u8 status;
1922
1923 status = ata_busy_wait(ap, ATA_BUSY, 300);
1924 timer_start = jiffies;
1925 timeout = timer_start + tmout_pat;
1926 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1927 msleep(50);
1928 status = ata_busy_wait(ap, ATA_BUSY, 3);
1929 }
1930
1931 if (status & ATA_BUSY)
1932 printk(KERN_WARNING "ata%u is slow to respond, "
1933 "please be patient\n", ap->id);
1934
1935 timeout = timer_start + tmout;
1936 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1937 msleep(50);
1938 status = ata_chk_status(ap);
1939 }
1940
1941 if (status & ATA_BUSY) {
1942 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1943 ap->id, tmout / HZ);
1944 return 1;
1945 }
1946
1947 return 0;
1948}
1949
1950static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1951{
1952 struct ata_ioports *ioaddr = &ap->ioaddr;
1953 unsigned int dev0 = devmask & (1 << 0);
1954 unsigned int dev1 = devmask & (1 << 1);
1955 unsigned long timeout;
1956
1957 /* if device 0 was found in ata_devchk, wait for its
1958 * BSY bit to clear
1959 */
1960 if (dev0)
1961 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1962
1963 /* if device 1 was found in ata_devchk, wait for
1964 * register access, then wait for BSY to clear
1965 */
1966 timeout = jiffies + ATA_TMOUT_BOOT;
1967 while (dev1) {
1968 u8 nsect, lbal;
1969
1970 ap->ops->dev_select(ap, 1);
1971 if (ap->flags & ATA_FLAG_MMIO) {
1972 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1973 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1974 } else {
1975 nsect = inb(ioaddr->nsect_addr);
1976 lbal = inb(ioaddr->lbal_addr);
1977 }
1978 if ((nsect == 1) && (lbal == 1))
1979 break;
1980 if (time_after(jiffies, timeout)) {
1981 dev1 = 0;
1982 break;
1983 }
1984 msleep(50); /* give drive a breather */
1985 }
1986 if (dev1)
1987 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1988
1989 /* is all this really necessary? */
1990 ap->ops->dev_select(ap, 0);
1991 if (dev1)
1992 ap->ops->dev_select(ap, 1);
1993 if (dev0)
1994 ap->ops->dev_select(ap, 0);
1995}
1996
1da177e4
LT
1997static unsigned int ata_bus_softreset(struct ata_port *ap,
1998 unsigned int devmask)
1999{
2000 struct ata_ioports *ioaddr = &ap->ioaddr;
2001
2002 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2003
2004 /* software reset. causes dev0 to be selected */
2005 if (ap->flags & ATA_FLAG_MMIO) {
2006 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2007 udelay(20); /* FIXME: flush */
2008 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2009 udelay(20); /* FIXME: flush */
2010 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2011 } else {
2012 outb(ap->ctl, ioaddr->ctl_addr);
2013 udelay(10);
2014 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2015 udelay(10);
2016 outb(ap->ctl, ioaddr->ctl_addr);
2017 }
2018
2019 /* spec mandates ">= 2ms" before checking status.
2020 * We wait 150ms, because that was the magic delay used for
2021 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2022 * between when the ATA command register is written, and then
2023 * status is checked. Because waiting for "a while" before
2024 * checking status is fine, post SRST, we perform this magic
2025 * delay here as well.
09c7ad79
AC
2026 *
2027 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2028 */
2029 msleep(150);
2030
2e9edbf8 2031 /* Before we perform post reset processing we want to see if
298a41ca
TH
2032 * the bus shows 0xFF because the odd clown forgets the D7
2033 * pulldown resistor.
2034 */
09c7ad79 2035 if (ata_check_status(ap) == 0xFF)
298a41ca 2036 return AC_ERR_OTHER;
09c7ad79 2037
1da177e4
LT
2038 ata_bus_post_reset(ap, devmask);
2039
2040 return 0;
2041}
2042
2043/**
2044 * ata_bus_reset - reset host port and associated ATA channel
2045 * @ap: port to reset
2046 *
2047 * This is typically the first time we actually start issuing
2048 * commands to the ATA channel. We wait for BSY to clear, then
2049 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2050 * result. Determine what devices, if any, are on the channel
2051 * by looking at the device 0/1 error register. Look at the signature
2052 * stored in each device's taskfile registers, to determine if
2053 * the device is ATA or ATAPI.
2054 *
2055 * LOCKING:
0cba632b
JG
2056 * PCI/etc. bus probe sem.
2057 * Obtains host_set lock.
1da177e4
LT
2058 *
2059 * SIDE EFFECTS:
2060 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2061 */
2062
2063void ata_bus_reset(struct ata_port *ap)
2064{
2065 struct ata_ioports *ioaddr = &ap->ioaddr;
2066 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2067 u8 err;
aec5c3c1 2068 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2069
2070 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2071
2072 /* determine if device 0/1 are present */
2073 if (ap->flags & ATA_FLAG_SATA_RESET)
2074 dev0 = 1;
2075 else {
2076 dev0 = ata_devchk(ap, 0);
2077 if (slave_possible)
2078 dev1 = ata_devchk(ap, 1);
2079 }
2080
2081 if (dev0)
2082 devmask |= (1 << 0);
2083 if (dev1)
2084 devmask |= (1 << 1);
2085
2086 /* select device 0 again */
2087 ap->ops->dev_select(ap, 0);
2088
2089 /* issue bus reset */
2090 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2091 if (ata_bus_softreset(ap, devmask))
2092 goto err_out;
1da177e4
LT
2093
2094 /*
2095 * determine by signature whether we have ATA or ATAPI devices
2096 */
b4dc7623 2097 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2098 if ((slave_possible) && (err != 0x81))
b4dc7623 2099 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2100
2101 /* re-enable interrupts */
2102 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2103 ata_irq_on(ap);
2104
2105 /* is double-select really necessary? */
2106 if (ap->device[1].class != ATA_DEV_NONE)
2107 ap->ops->dev_select(ap, 1);
2108 if (ap->device[0].class != ATA_DEV_NONE)
2109 ap->ops->dev_select(ap, 0);
2110
2111 /* if no devices were detected, disable this port */
2112 if ((ap->device[0].class == ATA_DEV_NONE) &&
2113 (ap->device[1].class == ATA_DEV_NONE))
2114 goto err_out;
2115
2116 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2117 /* set up device control for ATA_FLAG_SATA_RESET */
2118 if (ap->flags & ATA_FLAG_MMIO)
2119 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2120 else
2121 outb(ap->ctl, ioaddr->ctl_addr);
2122 }
2123
2124 DPRINTK("EXIT\n");
2125 return;
2126
2127err_out:
2128 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2129 ap->ops->port_disable(ap);
2130
2131 DPRINTK("EXIT\n");
2132}
2133
7a7921e8
TH
2134static int sata_phy_resume(struct ata_port *ap)
2135{
2136 unsigned long timeout = jiffies + (HZ * 5);
2137 u32 sstatus;
2138
2139 scr_write_flush(ap, SCR_CONTROL, 0x300);
2140
2141 /* Wait for phy to become ready, if necessary. */
2142 do {
2143 msleep(200);
2144 sstatus = scr_read(ap, SCR_STATUS);
2145 if ((sstatus & 0xf) != 1)
2146 return 0;
2147 } while (time_before(jiffies, timeout));
2148
2149 return -1;
2150}
2151
8a19ac89
TH
2152/**
2153 * ata_std_probeinit - initialize probing
2154 * @ap: port to be probed
2155 *
2156 * @ap is about to be probed. Initialize it. This function is
2157 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2158 *
2159 * NOTE!!! Do not use this function as probeinit if a low level
2160 * driver implements only hardreset. Just pass NULL as probeinit
2161 * in that case. Using this function is probably okay but doing
2162 * so makes reset sequence different from the original
2163 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2164 */
17efc5f7 2165void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2166{
17efc5f7 2167 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
8a19ac89 2168 sata_phy_resume(ap);
3a39746a
TH
2169 if (sata_dev_present(ap))
2170 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2171 }
8a19ac89
TH
2172}
2173
c2bd5804
TH
2174/**
2175 * ata_std_softreset - reset host port via ATA SRST
2176 * @ap: port to reset
2177 * @verbose: fail verbosely
2178 * @classes: resulting classes of attached devices
2179 *
2180 * Reset host port using ATA SRST. This function is to be used
2181 * as standard callback for ata_drive_*_reset() functions.
2182 *
2183 * LOCKING:
2184 * Kernel thread context (may sleep)
2185 *
2186 * RETURNS:
2187 * 0 on success, -errno otherwise.
2188 */
2189int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2190{
2191 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2192 unsigned int devmask = 0, err_mask;
2193 u8 err;
2194
2195 DPRINTK("ENTER\n");
2196
3a39746a
TH
2197 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2198 classes[0] = ATA_DEV_NONE;
2199 goto out;
2200 }
2201
c2bd5804
TH
2202 /* determine if device 0/1 are present */
2203 if (ata_devchk(ap, 0))
2204 devmask |= (1 << 0);
2205 if (slave_possible && ata_devchk(ap, 1))
2206 devmask |= (1 << 1);
2207
c2bd5804
TH
2208 /* select device 0 again */
2209 ap->ops->dev_select(ap, 0);
2210
2211 /* issue bus reset */
2212 DPRINTK("about to softreset, devmask=%x\n", devmask);
2213 err_mask = ata_bus_softreset(ap, devmask);
2214 if (err_mask) {
2215 if (verbose)
2216 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2217 ap->id, err_mask);
2218 else
2219 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2220 err_mask);
2221 return -EIO;
2222 }
2223
2224 /* determine by signature whether we have ATA or ATAPI devices */
2225 classes[0] = ata_dev_try_classify(ap, 0, &err);
2226 if (slave_possible && err != 0x81)
2227 classes[1] = ata_dev_try_classify(ap, 1, &err);
2228
3a39746a 2229 out:
c2bd5804
TH
2230 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2231 return 0;
2232}
2233
2234/**
2235 * sata_std_hardreset - reset host port via SATA phy reset
2236 * @ap: port to reset
2237 * @verbose: fail verbosely
2238 * @class: resulting class of attached device
2239 *
2240 * SATA phy-reset host port using DET bits of SControl register.
2241 * This function is to be used as standard callback for
2242 * ata_drive_*_reset().
2243 *
2244 * LOCKING:
2245 * Kernel thread context (may sleep)
2246 *
2247 * RETURNS:
2248 * 0 on success, -errno otherwise.
2249 */
2250int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2251{
c2bd5804
TH
2252 DPRINTK("ENTER\n");
2253
2254 /* Issue phy wake/reset */
2255 scr_write_flush(ap, SCR_CONTROL, 0x301);
2256
2257 /*
2258 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2259 * 10.4.2 says at least 1 ms.
2260 */
2261 msleep(1);
2262
7a7921e8
TH
2263 /* Bring phy back */
2264 sata_phy_resume(ap);
c2bd5804 2265
c2bd5804
TH
2266 /* TODO: phy layer with polling, timeouts, etc. */
2267 if (!sata_dev_present(ap)) {
2268 *class = ATA_DEV_NONE;
2269 DPRINTK("EXIT, link offline\n");
2270 return 0;
2271 }
2272
2273 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2274 if (verbose)
2275 printk(KERN_ERR "ata%u: COMRESET failed "
2276 "(device not ready)\n", ap->id);
2277 else
2278 DPRINTK("EXIT, device not ready\n");
2279 return -EIO;
2280 }
2281
3a39746a
TH
2282 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2283
c2bd5804
TH
2284 *class = ata_dev_try_classify(ap, 0, NULL);
2285
2286 DPRINTK("EXIT, class=%u\n", *class);
2287 return 0;
2288}
2289
2290/**
2291 * ata_std_postreset - standard postreset callback
2292 * @ap: the target ata_port
2293 * @classes: classes of attached devices
2294 *
2295 * This function is invoked after a successful reset. Note that
2296 * the device might have been reset more than once using
2297 * different reset methods before postreset is invoked.
c2bd5804
TH
2298 *
2299 * This function is to be used as standard callback for
2300 * ata_drive_*_reset().
2301 *
2302 * LOCKING:
2303 * Kernel thread context (may sleep)
2304 */
2305void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2306{
2307 DPRINTK("ENTER\n");
2308
56497bd5 2309 /* set cable type if it isn't already set */
c2bd5804
TH
2310 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2311 ap->cbl = ATA_CBL_SATA;
2312
2313 /* print link status */
2314 if (ap->cbl == ATA_CBL_SATA)
2315 sata_print_link_status(ap);
2316
3a39746a
TH
2317 /* re-enable interrupts */
2318 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2319 ata_irq_on(ap);
c2bd5804
TH
2320
2321 /* is double-select really necessary? */
2322 if (classes[0] != ATA_DEV_NONE)
2323 ap->ops->dev_select(ap, 1);
2324 if (classes[1] != ATA_DEV_NONE)
2325 ap->ops->dev_select(ap, 0);
2326
3a39746a
TH
2327 /* bail out if no device is present */
2328 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2329 DPRINTK("EXIT, no device\n");
2330 return;
2331 }
2332
2333 /* set up device control */
2334 if (ap->ioaddr.ctl_addr) {
2335 if (ap->flags & ATA_FLAG_MMIO)
2336 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2337 else
2338 outb(ap->ctl, ap->ioaddr.ctl_addr);
2339 }
c2bd5804
TH
2340
2341 DPRINTK("EXIT\n");
2342}
2343
2344/**
2345 * ata_std_probe_reset - standard probe reset method
2346 * @ap: prot to perform probe-reset
2347 * @classes: resulting classes of attached devices
2348 *
2349 * The stock off-the-shelf ->probe_reset method.
2350 *
2351 * LOCKING:
2352 * Kernel thread context (may sleep)
2353 *
2354 * RETURNS:
2355 * 0 on success, -errno otherwise.
2356 */
2357int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2358{
2359 ata_reset_fn_t hardreset;
2360
2361 hardreset = NULL;
b911fc3a 2362 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2363 hardreset = sata_std_hardreset;
2364
8a19ac89 2365 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2366 ata_std_softreset, hardreset,
c2bd5804
TH
2367 ata_std_postreset, classes);
2368}
2369
a62c0fc5
TH
2370static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2371 ata_postreset_fn_t postreset,
2372 unsigned int *classes)
2373{
2374 int i, rc;
2375
2376 for (i = 0; i < ATA_MAX_DEVICES; i++)
2377 classes[i] = ATA_DEV_UNKNOWN;
2378
2379 rc = reset(ap, 0, classes);
2380 if (rc)
2381 return rc;
2382
2383 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2384 * is complete and convert all ATA_DEV_UNKNOWN to
2385 * ATA_DEV_NONE.
2386 */
2387 for (i = 0; i < ATA_MAX_DEVICES; i++)
2388 if (classes[i] != ATA_DEV_UNKNOWN)
2389 break;
2390
2391 if (i < ATA_MAX_DEVICES)
2392 for (i = 0; i < ATA_MAX_DEVICES; i++)
2393 if (classes[i] == ATA_DEV_UNKNOWN)
2394 classes[i] = ATA_DEV_NONE;
2395
2396 if (postreset)
2397 postreset(ap, classes);
2398
2399 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2400}
2401
2402/**
2403 * ata_drive_probe_reset - Perform probe reset with given methods
2404 * @ap: port to reset
7944ea95 2405 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2406 * @softreset: softreset method (can be NULL)
2407 * @hardreset: hardreset method (can be NULL)
2408 * @postreset: postreset method (can be NULL)
2409 * @classes: resulting classes of attached devices
2410 *
2411 * Reset the specified port and classify attached devices using
2412 * given methods. This function prefers softreset but tries all
2413 * possible reset sequences to reset and classify devices. This
2414 * function is intended to be used for constructing ->probe_reset
2415 * callback by low level drivers.
2416 *
2417 * Reset methods should follow the following rules.
2418 *
2419 * - Return 0 on sucess, -errno on failure.
2420 * - If classification is supported, fill classes[] with
2421 * recognized class codes.
2422 * - If classification is not supported, leave classes[] alone.
2423 * - If verbose is non-zero, print error message on failure;
2424 * otherwise, shut up.
2425 *
2426 * LOCKING:
2427 * Kernel thread context (may sleep)
2428 *
2429 * RETURNS:
2430 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2431 * if classification fails, and any error code from reset
2432 * methods.
2433 */
7944ea95 2434int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2435 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2436 ata_postreset_fn_t postreset, unsigned int *classes)
2437{
2438 int rc = -EINVAL;
2439
7944ea95
TH
2440 if (probeinit)
2441 probeinit(ap);
2442
a62c0fc5
TH
2443 if (softreset) {
2444 rc = do_probe_reset(ap, softreset, postreset, classes);
2445 if (rc == 0)
2446 return 0;
2447 }
2448
2449 if (!hardreset)
2450 return rc;
2451
2452 rc = do_probe_reset(ap, hardreset, postreset, classes);
2453 if (rc == 0 || rc != -ENODEV)
2454 return rc;
2455
2456 if (softreset)
2457 rc = do_probe_reset(ap, softreset, postreset, classes);
2458
2459 return rc;
2460}
2461
623a3128
TH
2462/**
2463 * ata_dev_same_device - Determine whether new ID matches configured device
2464 * @ap: port on which the device to compare against resides
2465 * @dev: device to compare against
2466 * @new_class: class of the new device
2467 * @new_id: IDENTIFY page of the new device
2468 *
2469 * Compare @new_class and @new_id against @dev and determine
2470 * whether @dev is the device indicated by @new_class and
2471 * @new_id.
2472 *
2473 * LOCKING:
2474 * None.
2475 *
2476 * RETURNS:
2477 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2478 */
2479static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2480 unsigned int new_class, const u16 *new_id)
2481{
2482 const u16 *old_id = dev->id;
2483 unsigned char model[2][41], serial[2][21];
2484 u64 new_n_sectors;
2485
2486 if (dev->class != new_class) {
2487 printk(KERN_INFO
2488 "ata%u: dev %u class mismatch %d != %d\n",
2489 ap->id, dev->devno, dev->class, new_class);
2490 return 0;
2491 }
2492
2493 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2494 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2495 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2496 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2497 new_n_sectors = ata_id_n_sectors(new_id);
2498
2499 if (strcmp(model[0], model[1])) {
2500 printk(KERN_INFO
2501 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2502 ap->id, dev->devno, model[0], model[1]);
2503 return 0;
2504 }
2505
2506 if (strcmp(serial[0], serial[1])) {
2507 printk(KERN_INFO
2508 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2509 ap->id, dev->devno, serial[0], serial[1]);
2510 return 0;
2511 }
2512
2513 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2514 printk(KERN_INFO
2515 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2516 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2517 (unsigned long long)new_n_sectors);
2518 return 0;
2519 }
2520
2521 return 1;
2522}
2523
2524/**
2525 * ata_dev_revalidate - Revalidate ATA device
2526 * @ap: port on which the device to revalidate resides
2527 * @dev: device to revalidate
2528 * @post_reset: is this revalidation after reset?
2529 *
2530 * Re-read IDENTIFY page and make sure @dev is still attached to
2531 * the port.
2532 *
2533 * LOCKING:
2534 * Kernel thread context (may sleep)
2535 *
2536 * RETURNS:
2537 * 0 on success, negative errno otherwise
2538 */
2539int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2540 int post_reset)
2541{
2542 unsigned int class;
2543 u16 *id;
2544 int rc;
2545
2546 if (!ata_dev_present(dev))
2547 return -ENODEV;
2548
2549 class = dev->class;
2550 id = NULL;
2551
2552 /* allocate & read ID data */
2553 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2554 if (rc)
2555 goto fail;
2556
2557 /* is the device still there? */
2558 if (!ata_dev_same_device(ap, dev, class, id)) {
2559 rc = -ENODEV;
2560 goto fail;
2561 }
2562
2563 kfree(dev->id);
2564 dev->id = id;
2565
2566 /* configure device according to the new ID */
2567 return ata_dev_configure(ap, dev, 0);
2568
2569 fail:
2570 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2571 ap->id, dev->devno, rc);
2572 kfree(id);
2573 return rc;
2574}
2575
98ac62de 2576static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2577 "WDC AC11000H", NULL,
2578 "WDC AC22100H", NULL,
2579 "WDC AC32500H", NULL,
2580 "WDC AC33100H", NULL,
2581 "WDC AC31600H", NULL,
2582 "WDC AC32100H", "24.09P07",
2583 "WDC AC23200L", "21.10N21",
2584 "Compaq CRD-8241B", NULL,
2585 "CRD-8400B", NULL,
2586 "CRD-8480B", NULL,
2587 "CRD-8482B", NULL,
2588 "CRD-84", NULL,
2589 "SanDisk SDP3B", NULL,
2590 "SanDisk SDP3B-64", NULL,
2591 "SANYO CD-ROM CRD", NULL,
2592 "HITACHI CDR-8", NULL,
2e9edbf8 2593 "HITACHI CDR-8335", NULL,
f4b15fef 2594 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2595 "Toshiba CD-ROM XM-6202B", NULL,
2596 "TOSHIBA CD-ROM XM-1702BC", NULL,
2597 "CD-532E-A", NULL,
2598 "E-IDE CD-ROM CR-840", NULL,
2599 "CD-ROM Drive/F5A", NULL,
2600 "WPI CDD-820", NULL,
f4b15fef 2601 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2602 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2603 "SanDisk SDP3B-64", NULL,
2604 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2605 "_NEC DV5800A", NULL,
2606 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2607};
2e9edbf8 2608
f4b15fef
AC
2609static int ata_strim(char *s, size_t len)
2610{
2611 len = strnlen(s, len);
2612
2613 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2614 while ((len > 0) && (s[len - 1] == ' ')) {
2615 len--;
2616 s[len] = 0;
2617 }
2618 return len;
2619}
1da177e4 2620
057ace5e 2621static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2622{
f4b15fef
AC
2623 unsigned char model_num[40];
2624 unsigned char model_rev[16];
2625 unsigned int nlen, rlen;
1da177e4
LT
2626 int i;
2627
f4b15fef
AC
2628 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2629 sizeof(model_num));
2630 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2631 sizeof(model_rev));
2632 nlen = ata_strim(model_num, sizeof(model_num));
2633 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2634
f4b15fef
AC
2635 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2636 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2637 if (ata_dma_blacklist[i+1] == NULL)
2638 return 1;
2639 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2640 return 1;
2641 }
2642 }
1da177e4
LT
2643 return 0;
2644}
2645
a6d5a51c
TH
2646/**
2647 * ata_dev_xfermask - Compute supported xfermask of the given device
2648 * @ap: Port on which the device to compute xfermask for resides
2649 * @dev: Device to compute xfermask for
2650 *
acf356b1
TH
2651 * Compute supported xfermask of @dev and store it in
2652 * dev->*_mask. This function is responsible for applying all
2653 * known limits including host controller limits, device
2654 * blacklist, etc...
a6d5a51c 2655 *
600511e8
TH
2656 * FIXME: The current implementation limits all transfer modes to
2657 * the fastest of the lowested device on the port. This is not
05c8e0ac 2658 * required on most controllers.
600511e8 2659 *
a6d5a51c
TH
2660 * LOCKING:
2661 * None.
a6d5a51c 2662 */
acf356b1 2663static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2664{
5444a6f4 2665 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2666 unsigned long xfer_mask;
2667 int i;
1da177e4 2668
a6d5a51c
TH
2669 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2670 ap->udma_mask);
1da177e4 2671
5444a6f4 2672 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2673 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2674 struct ata_device *d = &ap->device[i];
2675 if (!ata_dev_present(d))
2676 continue;
acf356b1
TH
2677 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2678 d->udma_mask);
a6d5a51c
TH
2679 xfer_mask &= ata_id_xfermask(d->id);
2680 if (ata_dma_blacklisted(d))
2681 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
5444a6f4
AC
2682 /* Apply cable rule here. Don't apply it early because when
2683 we handle hot plug the cable type can itself change */
2684 if (ap->cbl == ATA_CBL_PATA40)
2685 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4
LT
2686 }
2687
a6d5a51c
TH
2688 if (ata_dma_blacklisted(dev))
2689 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2690 "disabling DMA\n", ap->id, dev->devno);
2691
5444a6f4
AC
2692 if (hs->flags & ATA_HOST_SIMPLEX) {
2693 if (hs->simplex_claimed)
2694 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2695 }
2696 if (ap->ops->mode_filter)
2697 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2698
acf356b1
TH
2699 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2700 &dev->udma_mask);
1da177e4
LT
2701}
2702
1da177e4
LT
2703/**
2704 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2705 * @ap: Port associated with device @dev
2706 * @dev: Device to which command will be sent
2707 *
780a87f7
JG
2708 * Issue SET FEATURES - XFER MODE command to device @dev
2709 * on port @ap.
2710 *
1da177e4 2711 * LOCKING:
0cba632b 2712 * PCI/etc. bus probe sem.
83206a29
TH
2713 *
2714 * RETURNS:
2715 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2716 */
2717
83206a29
TH
2718static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2719 struct ata_device *dev)
1da177e4 2720{
a0123703 2721 struct ata_taskfile tf;
83206a29 2722 unsigned int err_mask;
1da177e4
LT
2723
2724 /* set up set-features taskfile */
2725 DPRINTK("set features - xfer mode\n");
2726
a0123703
TH
2727 ata_tf_init(ap, &tf, dev->devno);
2728 tf.command = ATA_CMD_SET_FEATURES;
2729 tf.feature = SETFEATURES_XFER;
2730 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2731 tf.protocol = ATA_PROT_NODATA;
2732 tf.nsect = dev->xfer_mode;
1da177e4 2733
83206a29 2734 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
1da177e4 2735
83206a29
TH
2736 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2737 return err_mask;
1da177e4
LT
2738}
2739
8bf62ece
AL
2740/**
2741 * ata_dev_init_params - Issue INIT DEV PARAMS command
2742 * @ap: Port associated with device @dev
2743 * @dev: Device to which command will be sent
2744 *
2745 * LOCKING:
6aff8f1f
TH
2746 * Kernel thread context (may sleep)
2747 *
2748 * RETURNS:
2749 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
2750 */
2751
6aff8f1f 2752static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
2753 struct ata_device *dev,
2754 u16 heads,
2755 u16 sectors)
8bf62ece 2756{
a0123703 2757 struct ata_taskfile tf;
6aff8f1f 2758 unsigned int err_mask;
8bf62ece
AL
2759
2760 /* Number of sectors per track 1-255. Number of heads 1-16 */
2761 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 2762 return AC_ERR_INVALID;
8bf62ece
AL
2763
2764 /* set up init dev params taskfile */
2765 DPRINTK("init dev params \n");
2766
a0123703
TH
2767 ata_tf_init(ap, &tf, dev->devno);
2768 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2769 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2770 tf.protocol = ATA_PROT_NODATA;
2771 tf.nsect = sectors;
2772 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2773
6aff8f1f 2774 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
8bf62ece 2775
6aff8f1f
TH
2776 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2777 return err_mask;
8bf62ece
AL
2778}
2779
1da177e4 2780/**
0cba632b
JG
2781 * ata_sg_clean - Unmap DMA memory associated with command
2782 * @qc: Command containing DMA memory to be released
2783 *
2784 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2785 *
2786 * LOCKING:
0cba632b 2787 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2788 */
2789
2790static void ata_sg_clean(struct ata_queued_cmd *qc)
2791{
2792 struct ata_port *ap = qc->ap;
cedc9a47 2793 struct scatterlist *sg = qc->__sg;
1da177e4 2794 int dir = qc->dma_dir;
cedc9a47 2795 void *pad_buf = NULL;
1da177e4 2796
a4631474
TH
2797 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2798 WARN_ON(sg == NULL);
1da177e4
LT
2799
2800 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 2801 WARN_ON(qc->n_elem > 1);
1da177e4 2802
2c13b7ce 2803 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2804
cedc9a47
JG
2805 /* if we padded the buffer out to 32-bit bound, and data
2806 * xfer direction is from-device, we must copy from the
2807 * pad buffer back into the supplied buffer
2808 */
2809 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2810 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2811
2812 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 2813 if (qc->n_elem)
2f1f610b 2814 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2815 /* restore last sg */
2816 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2817 if (pad_buf) {
2818 struct scatterlist *psg = &qc->pad_sgent;
2819 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2820 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2821 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2822 }
2823 } else {
2e242fa9 2824 if (qc->n_elem)
2f1f610b 2825 dma_unmap_single(ap->dev,
e1410f2d
JG
2826 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2827 dir);
cedc9a47
JG
2828 /* restore sg */
2829 sg->length += qc->pad_len;
2830 if (pad_buf)
2831 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2832 pad_buf, qc->pad_len);
2833 }
1da177e4
LT
2834
2835 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2836 qc->__sg = NULL;
1da177e4
LT
2837}
2838
2839/**
2840 * ata_fill_sg - Fill PCI IDE PRD table
2841 * @qc: Metadata associated with taskfile to be transferred
2842 *
780a87f7
JG
2843 * Fill PCI IDE PRD (scatter-gather) table with segments
2844 * associated with the current disk command.
2845 *
1da177e4 2846 * LOCKING:
780a87f7 2847 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2848 *
2849 */
2850static void ata_fill_sg(struct ata_queued_cmd *qc)
2851{
1da177e4 2852 struct ata_port *ap = qc->ap;
cedc9a47
JG
2853 struct scatterlist *sg;
2854 unsigned int idx;
1da177e4 2855
a4631474 2856 WARN_ON(qc->__sg == NULL);
f131883e 2857 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
2858
2859 idx = 0;
cedc9a47 2860 ata_for_each_sg(sg, qc) {
1da177e4
LT
2861 u32 addr, offset;
2862 u32 sg_len, len;
2863
2864 /* determine if physical DMA addr spans 64K boundary.
2865 * Note h/w doesn't support 64-bit, so we unconditionally
2866 * truncate dma_addr_t to u32.
2867 */
2868 addr = (u32) sg_dma_address(sg);
2869 sg_len = sg_dma_len(sg);
2870
2871 while (sg_len) {
2872 offset = addr & 0xffff;
2873 len = sg_len;
2874 if ((offset + sg_len) > 0x10000)
2875 len = 0x10000 - offset;
2876
2877 ap->prd[idx].addr = cpu_to_le32(addr);
2878 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2879 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2880
2881 idx++;
2882 sg_len -= len;
2883 addr += len;
2884 }
2885 }
2886
2887 if (idx)
2888 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2889}
2890/**
2891 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2892 * @qc: Metadata associated with taskfile to check
2893 *
780a87f7
JG
2894 * Allow low-level driver to filter ATA PACKET commands, returning
2895 * a status indicating whether or not it is OK to use DMA for the
2896 * supplied PACKET command.
2897 *
1da177e4 2898 * LOCKING:
0cba632b
JG
2899 * spin_lock_irqsave(host_set lock)
2900 *
1da177e4
LT
2901 * RETURNS: 0 when ATAPI DMA can be used
2902 * nonzero otherwise
2903 */
2904int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2905{
2906 struct ata_port *ap = qc->ap;
2907 int rc = 0; /* Assume ATAPI DMA is OK by default */
2908
2909 if (ap->ops->check_atapi_dma)
2910 rc = ap->ops->check_atapi_dma(qc);
2911
2912 return rc;
2913}
2914/**
2915 * ata_qc_prep - Prepare taskfile for submission
2916 * @qc: Metadata associated with taskfile to be prepared
2917 *
780a87f7
JG
2918 * Prepare ATA taskfile for submission.
2919 *
1da177e4
LT
2920 * LOCKING:
2921 * spin_lock_irqsave(host_set lock)
2922 */
2923void ata_qc_prep(struct ata_queued_cmd *qc)
2924{
2925 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2926 return;
2927
2928 ata_fill_sg(qc);
2929}
2930
e46834cd
BK
2931void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2932
0cba632b
JG
2933/**
2934 * ata_sg_init_one - Associate command with memory buffer
2935 * @qc: Command to be associated
2936 * @buf: Memory buffer
2937 * @buflen: Length of memory buffer, in bytes.
2938 *
2939 * Initialize the data-related elements of queued_cmd @qc
2940 * to point to a single memory buffer, @buf of byte length @buflen.
2941 *
2942 * LOCKING:
2943 * spin_lock_irqsave(host_set lock)
2944 */
2945
1da177e4
LT
2946void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2947{
2948 struct scatterlist *sg;
2949
2950 qc->flags |= ATA_QCFLAG_SINGLE;
2951
2952 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2953 qc->__sg = &qc->sgent;
1da177e4 2954 qc->n_elem = 1;
cedc9a47 2955 qc->orig_n_elem = 1;
1da177e4
LT
2956 qc->buf_virt = buf;
2957
cedc9a47 2958 sg = qc->__sg;
f0612bbc 2959 sg_init_one(sg, buf, buflen);
1da177e4
LT
2960}
2961
0cba632b
JG
2962/**
2963 * ata_sg_init - Associate command with scatter-gather table.
2964 * @qc: Command to be associated
2965 * @sg: Scatter-gather table.
2966 * @n_elem: Number of elements in s/g table.
2967 *
2968 * Initialize the data-related elements of queued_cmd @qc
2969 * to point to a scatter-gather table @sg, containing @n_elem
2970 * elements.
2971 *
2972 * LOCKING:
2973 * spin_lock_irqsave(host_set lock)
2974 */
2975
1da177e4
LT
2976void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2977 unsigned int n_elem)
2978{
2979 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2980 qc->__sg = sg;
1da177e4 2981 qc->n_elem = n_elem;
cedc9a47 2982 qc->orig_n_elem = n_elem;
1da177e4
LT
2983}
2984
2985/**
0cba632b
JG
2986 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2987 * @qc: Command with memory buffer to be mapped.
2988 *
2989 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2990 *
2991 * LOCKING:
2992 * spin_lock_irqsave(host_set lock)
2993 *
2994 * RETURNS:
0cba632b 2995 * Zero on success, negative on error.
1da177e4
LT
2996 */
2997
2998static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2999{
3000 struct ata_port *ap = qc->ap;
3001 int dir = qc->dma_dir;
cedc9a47 3002 struct scatterlist *sg = qc->__sg;
1da177e4 3003 dma_addr_t dma_address;
2e242fa9 3004 int trim_sg = 0;
1da177e4 3005
cedc9a47
JG
3006 /* we must lengthen transfers to end on a 32-bit boundary */
3007 qc->pad_len = sg->length & 3;
3008 if (qc->pad_len) {
3009 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3010 struct scatterlist *psg = &qc->pad_sgent;
3011
a4631474 3012 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3013
3014 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3015
3016 if (qc->tf.flags & ATA_TFLAG_WRITE)
3017 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3018 qc->pad_len);
3019
3020 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3021 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3022 /* trim sg */
3023 sg->length -= qc->pad_len;
2e242fa9
TH
3024 if (sg->length == 0)
3025 trim_sg = 1;
cedc9a47
JG
3026
3027 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3028 sg->length, qc->pad_len);
3029 }
3030
2e242fa9
TH
3031 if (trim_sg) {
3032 qc->n_elem--;
e1410f2d
JG
3033 goto skip_map;
3034 }
3035
2f1f610b 3036 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3037 sg->length, dir);
537a95d9
TH
3038 if (dma_mapping_error(dma_address)) {
3039 /* restore sg */
3040 sg->length += qc->pad_len;
1da177e4 3041 return -1;
537a95d9 3042 }
1da177e4
LT
3043
3044 sg_dma_address(sg) = dma_address;
32529e01 3045 sg_dma_len(sg) = sg->length;
1da177e4 3046
2e242fa9 3047skip_map:
1da177e4
LT
3048 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3049 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3050
3051 return 0;
3052}
3053
3054/**
0cba632b
JG
3055 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3056 * @qc: Command with scatter-gather table to be mapped.
3057 *
3058 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3059 *
3060 * LOCKING:
3061 * spin_lock_irqsave(host_set lock)
3062 *
3063 * RETURNS:
0cba632b 3064 * Zero on success, negative on error.
1da177e4
LT
3065 *
3066 */
3067
3068static int ata_sg_setup(struct ata_queued_cmd *qc)
3069{
3070 struct ata_port *ap = qc->ap;
cedc9a47
JG
3071 struct scatterlist *sg = qc->__sg;
3072 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3073 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3074
3075 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3076 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3077
cedc9a47
JG
3078 /* we must lengthen transfers to end on a 32-bit boundary */
3079 qc->pad_len = lsg->length & 3;
3080 if (qc->pad_len) {
3081 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3082 struct scatterlist *psg = &qc->pad_sgent;
3083 unsigned int offset;
3084
a4631474 3085 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3086
3087 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3088
3089 /*
3090 * psg->page/offset are used to copy to-be-written
3091 * data in this function or read data in ata_sg_clean.
3092 */
3093 offset = lsg->offset + lsg->length - qc->pad_len;
3094 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3095 psg->offset = offset_in_page(offset);
3096
3097 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3098 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3099 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3100 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3101 }
3102
3103 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3104 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3105 /* trim last sg */
3106 lsg->length -= qc->pad_len;
e1410f2d
JG
3107 if (lsg->length == 0)
3108 trim_sg = 1;
cedc9a47
JG
3109
3110 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3111 qc->n_elem - 1, lsg->length, qc->pad_len);
3112 }
3113
e1410f2d
JG
3114 pre_n_elem = qc->n_elem;
3115 if (trim_sg && pre_n_elem)
3116 pre_n_elem--;
3117
3118 if (!pre_n_elem) {
3119 n_elem = 0;
3120 goto skip_map;
3121 }
3122
1da177e4 3123 dir = qc->dma_dir;
2f1f610b 3124 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3125 if (n_elem < 1) {
3126 /* restore last sg */
3127 lsg->length += qc->pad_len;
1da177e4 3128 return -1;
537a95d9 3129 }
1da177e4
LT
3130
3131 DPRINTK("%d sg elements mapped\n", n_elem);
3132
e1410f2d 3133skip_map:
1da177e4
LT
3134 qc->n_elem = n_elem;
3135
3136 return 0;
3137}
3138
40e8c82c
TH
3139/**
3140 * ata_poll_qc_complete - turn irq back on and finish qc
3141 * @qc: Command to complete
8e8b77dd 3142 * @err_mask: ATA status register content
40e8c82c
TH
3143 *
3144 * LOCKING:
3145 * None. (grabs host lock)
3146 */
3147
a22e2eb0 3148void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3149{
3150 struct ata_port *ap = qc->ap;
b8f6153e 3151 unsigned long flags;
40e8c82c 3152
b8f6153e 3153 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3154 ap->flags &= ~ATA_FLAG_NOINTR;
3155 ata_irq_on(ap);
a22e2eb0 3156 ata_qc_complete(qc);
b8f6153e 3157 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3158}
3159
1da177e4 3160/**
c893a3ae 3161 * ata_pio_poll - poll using PIO, depending on current state
6f0ef4fa 3162 * @ap: the target ata_port
1da177e4
LT
3163 *
3164 * LOCKING:
0cba632b 3165 * None. (executing in kernel thread context)
1da177e4
LT
3166 *
3167 * RETURNS:
6f0ef4fa 3168 * timeout value to use
1da177e4
LT
3169 */
3170
3171static unsigned long ata_pio_poll(struct ata_port *ap)
3172{
c14b8331 3173 struct ata_queued_cmd *qc;
1da177e4 3174 u8 status;
14be71f4
AL
3175 unsigned int poll_state = HSM_ST_UNKNOWN;
3176 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 3177
c14b8331 3178 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3179 WARN_ON(qc == NULL);
c14b8331 3180
14be71f4
AL
3181 switch (ap->hsm_task_state) {
3182 case HSM_ST:
3183 case HSM_ST_POLL:
3184 poll_state = HSM_ST_POLL;
3185 reg_state = HSM_ST;
1da177e4 3186 break;
14be71f4
AL
3187 case HSM_ST_LAST:
3188 case HSM_ST_LAST_POLL:
3189 poll_state = HSM_ST_LAST_POLL;
3190 reg_state = HSM_ST_LAST;
1da177e4
LT
3191 break;
3192 default:
3193 BUG();
3194 break;
3195 }
3196
3197 status = ata_chk_status(ap);
3198 if (status & ATA_BUSY) {
3199 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3200 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3201 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3202 return 0;
3203 }
14be71f4 3204 ap->hsm_task_state = poll_state;
1da177e4
LT
3205 return ATA_SHORT_PAUSE;
3206 }
3207
14be71f4 3208 ap->hsm_task_state = reg_state;
1da177e4
LT
3209 return 0;
3210}
3211
3212/**
6f0ef4fa
RD
3213 * ata_pio_complete - check if drive is busy or idle
3214 * @ap: the target ata_port
1da177e4
LT
3215 *
3216 * LOCKING:
0cba632b 3217 * None. (executing in kernel thread context)
7fb6ec28
JG
3218 *
3219 * RETURNS:
3220 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
3221 */
3222
7fb6ec28 3223static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
3224{
3225 struct ata_queued_cmd *qc;
3226 u8 drv_stat;
3227
3228 /*
31433ea3
AC
3229 * This is purely heuristic. This is a fast path. Sometimes when
3230 * we enter, BSY will be cleared in a chk-status or two. If not,
3231 * the drive is probably seeking or something. Snooze for a couple
3232 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3233 * HSM_ST_POLL state.
1da177e4 3234 */
fe79e683
AL
3235 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3236 if (drv_stat & ATA_BUSY) {
1da177e4 3237 msleep(2);
fe79e683
AL
3238 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3239 if (drv_stat & ATA_BUSY) {
14be71f4 3240 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3241 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3242 return 0;
1da177e4
LT
3243 }
3244 }
3245
c14b8331 3246 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3247 WARN_ON(qc == NULL);
c14b8331 3248
1da177e4
LT
3249 drv_stat = ata_wait_idle(ap);
3250 if (!ata_ok(drv_stat)) {
1c848984 3251 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3252 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3253 return 0;
1da177e4
LT
3254 }
3255
14be71f4 3256 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3257
a4631474 3258 WARN_ON(qc->err_mask);
a22e2eb0 3259 ata_poll_qc_complete(qc);
7fb6ec28
JG
3260
3261 /* another command may start at this point */
3262
3263 return 1;
1da177e4
LT
3264}
3265
0baab86b
EF
3266
3267/**
c893a3ae 3268 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3269 * @buf: Buffer to swap
3270 * @buf_words: Number of 16-bit words in buffer.
3271 *
3272 * Swap halves of 16-bit words if needed to convert from
3273 * little-endian byte order to native cpu byte order, or
3274 * vice-versa.
3275 *
3276 * LOCKING:
6f0ef4fa 3277 * Inherited from caller.
0baab86b 3278 */
1da177e4
LT
3279void swap_buf_le16(u16 *buf, unsigned int buf_words)
3280{
3281#ifdef __BIG_ENDIAN
3282 unsigned int i;
3283
3284 for (i = 0; i < buf_words; i++)
3285 buf[i] = le16_to_cpu(buf[i]);
3286#endif /* __BIG_ENDIAN */
3287}
3288
6ae4cfb5
AL
3289/**
3290 * ata_mmio_data_xfer - Transfer data by MMIO
3291 * @ap: port to read/write
3292 * @buf: data buffer
3293 * @buflen: buffer length
344babaa 3294 * @write_data: read/write
6ae4cfb5
AL
3295 *
3296 * Transfer data from/to the device data register by MMIO.
3297 *
3298 * LOCKING:
3299 * Inherited from caller.
6ae4cfb5
AL
3300 */
3301
1da177e4
LT
3302static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3303 unsigned int buflen, int write_data)
3304{
3305 unsigned int i;
3306 unsigned int words = buflen >> 1;
3307 u16 *buf16 = (u16 *) buf;
3308 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3309
6ae4cfb5 3310 /* Transfer multiple of 2 bytes */
1da177e4
LT
3311 if (write_data) {
3312 for (i = 0; i < words; i++)
3313 writew(le16_to_cpu(buf16[i]), mmio);
3314 } else {
3315 for (i = 0; i < words; i++)
3316 buf16[i] = cpu_to_le16(readw(mmio));
3317 }
6ae4cfb5
AL
3318
3319 /* Transfer trailing 1 byte, if any. */
3320 if (unlikely(buflen & 0x01)) {
3321 u16 align_buf[1] = { 0 };
3322 unsigned char *trailing_buf = buf + buflen - 1;
3323
3324 if (write_data) {
3325 memcpy(align_buf, trailing_buf, 1);
3326 writew(le16_to_cpu(align_buf[0]), mmio);
3327 } else {
3328 align_buf[0] = cpu_to_le16(readw(mmio));
3329 memcpy(trailing_buf, align_buf, 1);
3330 }
3331 }
1da177e4
LT
3332}
3333
6ae4cfb5
AL
3334/**
3335 * ata_pio_data_xfer - Transfer data by PIO
3336 * @ap: port to read/write
3337 * @buf: data buffer
3338 * @buflen: buffer length
344babaa 3339 * @write_data: read/write
6ae4cfb5
AL
3340 *
3341 * Transfer data from/to the device data register by PIO.
3342 *
3343 * LOCKING:
3344 * Inherited from caller.
6ae4cfb5
AL
3345 */
3346
1da177e4
LT
3347static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3348 unsigned int buflen, int write_data)
3349{
6ae4cfb5 3350 unsigned int words = buflen >> 1;
1da177e4 3351
6ae4cfb5 3352 /* Transfer multiple of 2 bytes */
1da177e4 3353 if (write_data)
6ae4cfb5 3354 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3355 else
6ae4cfb5
AL
3356 insw(ap->ioaddr.data_addr, buf, words);
3357
3358 /* Transfer trailing 1 byte, if any. */
3359 if (unlikely(buflen & 0x01)) {
3360 u16 align_buf[1] = { 0 };
3361 unsigned char *trailing_buf = buf + buflen - 1;
3362
3363 if (write_data) {
3364 memcpy(align_buf, trailing_buf, 1);
3365 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3366 } else {
3367 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3368 memcpy(trailing_buf, align_buf, 1);
3369 }
3370 }
1da177e4
LT
3371}
3372
6ae4cfb5
AL
3373/**
3374 * ata_data_xfer - Transfer data from/to the data register.
3375 * @ap: port to read/write
3376 * @buf: data buffer
3377 * @buflen: buffer length
3378 * @do_write: read/write
3379 *
3380 * Transfer data from/to the device data register.
3381 *
3382 * LOCKING:
3383 * Inherited from caller.
6ae4cfb5
AL
3384 */
3385
1da177e4
LT
3386static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3387 unsigned int buflen, int do_write)
3388{
a1bd9e68
AC
3389 /* Make the crap hardware pay the costs not the good stuff */
3390 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3391 unsigned long flags;
3392 local_irq_save(flags);
3393 if (ap->flags & ATA_FLAG_MMIO)
3394 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3395 else
3396 ata_pio_data_xfer(ap, buf, buflen, do_write);
3397 local_irq_restore(flags);
3398 } else {
3399 if (ap->flags & ATA_FLAG_MMIO)
3400 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3401 else
3402 ata_pio_data_xfer(ap, buf, buflen, do_write);
3403 }
1da177e4
LT
3404}
3405
6ae4cfb5
AL
3406/**
3407 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3408 * @qc: Command on going
3409 *
3410 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3411 *
3412 * LOCKING:
3413 * Inherited from caller.
3414 */
3415
1da177e4
LT
3416static void ata_pio_sector(struct ata_queued_cmd *qc)
3417{
3418 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3419 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3420 struct ata_port *ap = qc->ap;
3421 struct page *page;
3422 unsigned int offset;
3423 unsigned char *buf;
3424
3425 if (qc->cursect == (qc->nsect - 1))
14be71f4 3426 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3427
3428 page = sg[qc->cursg].page;
3429 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3430
3431 /* get the current page and offset */
3432 page = nth_page(page, (offset >> PAGE_SHIFT));
3433 offset %= PAGE_SIZE;
3434
3435 buf = kmap(page) + offset;
3436
3437 qc->cursect++;
3438 qc->cursg_ofs++;
3439
32529e01 3440 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3441 qc->cursg++;
3442 qc->cursg_ofs = 0;
3443 }
3444
3445 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3446
3447 /* do the actual data transfer */
3448 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3449 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3450
3451 kunmap(page);
3452}
3453
6ae4cfb5
AL
3454/**
3455 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3456 * @qc: Command on going
3457 * @bytes: number of bytes
3458 *
3459 * Transfer Transfer data from/to the ATAPI device.
3460 *
3461 * LOCKING:
3462 * Inherited from caller.
3463 *
3464 */
3465
1da177e4
LT
3466static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3467{
3468 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3469 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3470 struct ata_port *ap = qc->ap;
3471 struct page *page;
3472 unsigned char *buf;
3473 unsigned int offset, count;
3474
563a6e1f 3475 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3476 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3477
3478next_sg:
563a6e1f 3479 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3480 /*
563a6e1f
AL
3481 * The end of qc->sg is reached and the device expects
3482 * more data to transfer. In order not to overrun qc->sg
3483 * and fulfill length specified in the byte count register,
3484 * - for read case, discard trailing data from the device
3485 * - for write case, padding zero data to the device
3486 */
3487 u16 pad_buf[1] = { 0 };
3488 unsigned int words = bytes >> 1;
3489 unsigned int i;
3490
3491 if (words) /* warning if bytes > 1 */
7fb6ec28 3492 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3493 ap->id, bytes);
3494
3495 for (i = 0; i < words; i++)
3496 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3497
14be71f4 3498 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3499 return;
3500 }
3501
cedc9a47 3502 sg = &qc->__sg[qc->cursg];
1da177e4 3503
1da177e4
LT
3504 page = sg->page;
3505 offset = sg->offset + qc->cursg_ofs;
3506
3507 /* get the current page and offset */
3508 page = nth_page(page, (offset >> PAGE_SHIFT));
3509 offset %= PAGE_SIZE;
3510
6952df03 3511 /* don't overrun current sg */
32529e01 3512 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3513
3514 /* don't cross page boundaries */
3515 count = min(count, (unsigned int)PAGE_SIZE - offset);
3516
3517 buf = kmap(page) + offset;
3518
3519 bytes -= count;
3520 qc->curbytes += count;
3521 qc->cursg_ofs += count;
3522
32529e01 3523 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3524 qc->cursg++;
3525 qc->cursg_ofs = 0;
3526 }
3527
3528 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3529
3530 /* do the actual data transfer */
3531 ata_data_xfer(ap, buf, count, do_write);
3532
3533 kunmap(page);
3534
563a6e1f 3535 if (bytes)
1da177e4 3536 goto next_sg;
1da177e4
LT
3537}
3538
6ae4cfb5
AL
3539/**
3540 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3541 * @qc: Command on going
3542 *
3543 * Transfer Transfer data from/to the ATAPI device.
3544 *
3545 * LOCKING:
3546 * Inherited from caller.
6ae4cfb5
AL
3547 */
3548
1da177e4
LT
3549static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3550{
3551 struct ata_port *ap = qc->ap;
3552 struct ata_device *dev = qc->dev;
3553 unsigned int ireason, bc_lo, bc_hi, bytes;
3554 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3555
3556 ap->ops->tf_read(ap, &qc->tf);
3557 ireason = qc->tf.nsect;
3558 bc_lo = qc->tf.lbam;
3559 bc_hi = qc->tf.lbah;
3560 bytes = (bc_hi << 8) | bc_lo;
3561
3562 /* shall be cleared to zero, indicating xfer of data */
3563 if (ireason & (1 << 0))
3564 goto err_out;
3565
3566 /* make sure transfer direction matches expected */
3567 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3568 if (do_write != i_write)
3569 goto err_out;
3570
3571 __atapi_pio_bytes(qc, bytes);
3572
3573 return;
3574
3575err_out:
3576 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3577 ap->id, dev->devno);
11a56d24 3578 qc->err_mask |= AC_ERR_HSM;
14be71f4 3579 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3580}
3581
3582/**
6f0ef4fa
RD
3583 * ata_pio_block - start PIO on a block
3584 * @ap: the target ata_port
1da177e4
LT
3585 *
3586 * LOCKING:
0cba632b 3587 * None. (executing in kernel thread context)
1da177e4
LT
3588 */
3589
3590static void ata_pio_block(struct ata_port *ap)
3591{
3592 struct ata_queued_cmd *qc;
3593 u8 status;
3594
3595 /*
6f0ef4fa 3596 * This is purely heuristic. This is a fast path.
1da177e4
LT
3597 * Sometimes when we enter, BSY will be cleared in
3598 * a chk-status or two. If not, the drive is probably seeking
3599 * or something. Snooze for a couple msecs, then
3600 * chk-status again. If still busy, fall back to
14be71f4 3601 * HSM_ST_POLL state.
1da177e4
LT
3602 */
3603 status = ata_busy_wait(ap, ATA_BUSY, 5);
3604 if (status & ATA_BUSY) {
3605 msleep(2);
3606 status = ata_busy_wait(ap, ATA_BUSY, 10);
3607 if (status & ATA_BUSY) {
14be71f4 3608 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3609 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3610 return;
3611 }
3612 }
3613
3614 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3615 WARN_ON(qc == NULL);
1da177e4 3616
fe79e683
AL
3617 /* check error */
3618 if (status & (ATA_ERR | ATA_DF)) {
3619 qc->err_mask |= AC_ERR_DEV;
3620 ap->hsm_task_state = HSM_ST_ERR;
3621 return;
3622 }
3623
3624 /* transfer data if any */
1da177e4 3625 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3626 /* DRQ=0 means no more data to transfer */
1da177e4 3627 if ((status & ATA_DRQ) == 0) {
14be71f4 3628 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3629 return;
3630 }
3631
3632 atapi_pio_bytes(qc);
3633 } else {
3634 /* handle BSY=0, DRQ=0 as error */
3635 if ((status & ATA_DRQ) == 0) {
11a56d24 3636 qc->err_mask |= AC_ERR_HSM;
14be71f4 3637 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3638 return;
3639 }
3640
3641 ata_pio_sector(qc);
3642 }
3643}
3644
3645static void ata_pio_error(struct ata_port *ap)
3646{
3647 struct ata_queued_cmd *qc;
a7dac447 3648
1da177e4 3649 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3650 WARN_ON(qc == NULL);
1da177e4 3651
0565c26d
AL
3652 if (qc->tf.command != ATA_CMD_PACKET)
3653 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3654
2e9edbf8 3655 /* make sure qc->err_mask is available to
1c848984
AL
3656 * know what's wrong and recover
3657 */
a4631474 3658 WARN_ON(qc->err_mask == 0);
1c848984 3659
14be71f4 3660 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3661
a22e2eb0 3662 ata_poll_qc_complete(qc);
1da177e4
LT
3663}
3664
3665static void ata_pio_task(void *_data)
3666{
3667 struct ata_port *ap = _data;
7fb6ec28
JG
3668 unsigned long timeout;
3669 int qc_completed;
3670
3671fsm_start:
3672 timeout = 0;
3673 qc_completed = 0;
1da177e4 3674
14be71f4
AL
3675 switch (ap->hsm_task_state) {
3676 case HSM_ST_IDLE:
1da177e4
LT
3677 return;
3678
14be71f4 3679 case HSM_ST:
1da177e4
LT
3680 ata_pio_block(ap);
3681 break;
3682
14be71f4 3683 case HSM_ST_LAST:
7fb6ec28 3684 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3685 break;
3686
14be71f4
AL
3687 case HSM_ST_POLL:
3688 case HSM_ST_LAST_POLL:
1da177e4
LT
3689 timeout = ata_pio_poll(ap);
3690 break;
3691
14be71f4
AL
3692 case HSM_ST_TMOUT:
3693 case HSM_ST_ERR:
1da177e4
LT
3694 ata_pio_error(ap);
3695 return;
3696 }
3697
3698 if (timeout)
8061f5f0 3699 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
7fb6ec28
JG
3700 else if (!qc_completed)
3701 goto fsm_start;
1da177e4
LT
3702}
3703
8061f5f0
TH
3704/**
3705 * atapi_packet_task - Write CDB bytes to hardware
3706 * @_data: Port to which ATAPI device is attached.
3707 *
3708 * When device has indicated its readiness to accept
3709 * a CDB, this function is called. Send the CDB.
3710 * If DMA is to be performed, exit immediately.
3711 * Otherwise, we are in polling mode, so poll
3712 * status under operation succeeds or fails.
3713 *
3714 * LOCKING:
3715 * Kernel thread context (may sleep)
3716 */
3717
3718static void atapi_packet_task(void *_data)
3719{
3720 struct ata_port *ap = _data;
3721 struct ata_queued_cmd *qc;
3722 u8 status;
3723
3724 qc = ata_qc_from_tag(ap, ap->active_tag);
3725 WARN_ON(qc == NULL);
3726 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3727
3728 /* sleep-wait for BSY to clear */
3729 DPRINTK("busy wait\n");
3730 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3731 qc->err_mask |= AC_ERR_TIMEOUT;
3732 goto err_out;
3733 }
3734
3735 /* make sure DRQ is set */
3736 status = ata_chk_status(ap);
3737 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3738 qc->err_mask |= AC_ERR_HSM;
3739 goto err_out;
3740 }
3741
3742 /* send SCSI cdb */
3743 DPRINTK("send cdb\n");
3744 WARN_ON(qc->dev->cdb_len < 12);
3745
3746 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3747 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3748 unsigned long flags;
3749
3750 /* Once we're done issuing command and kicking bmdma,
3751 * irq handler takes over. To not lose irq, we need
3752 * to clear NOINTR flag before sending cdb, but
3753 * interrupt handler shouldn't be invoked before we're
3754 * finished. Hence, the following locking.
3755 */
3756 spin_lock_irqsave(&ap->host_set->lock, flags);
3757 ap->flags &= ~ATA_FLAG_NOINTR;
3758 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3759 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3760 ap->ops->bmdma_start(qc); /* initiate bmdma */
3761 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3762 } else {
3763 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3764
3765 /* PIO commands are handled by polling */
3766 ap->hsm_task_state = HSM_ST;
3767 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3768 }
3769
3770 return;
3771
3772err_out:
3773 ata_poll_qc_complete(qc);
3774}
3775
1da177e4
LT
3776/**
3777 * ata_qc_timeout - Handle timeout of queued command
3778 * @qc: Command that timed out
3779 *
3780 * Some part of the kernel (currently, only the SCSI layer)
3781 * has noticed that the active command on port @ap has not
3782 * completed after a specified length of time. Handle this
3783 * condition by disabling DMA (if necessary) and completing
3784 * transactions, with error if necessary.
3785 *
3786 * This also handles the case of the "lost interrupt", where
3787 * for some reason (possibly hardware bug, possibly driver bug)
3788 * an interrupt was not delivered to the driver, even though the
3789 * transaction completed successfully.
3790 *
3791 * LOCKING:
0cba632b 3792 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3793 */
3794
3795static void ata_qc_timeout(struct ata_queued_cmd *qc)
3796{
3797 struct ata_port *ap = qc->ap;
b8f6153e 3798 struct ata_host_set *host_set = ap->host_set;
1da177e4 3799 u8 host_stat = 0, drv_stat;
b8f6153e 3800 unsigned long flags;
1da177e4
LT
3801
3802 DPRINTK("ENTER\n");
3803
c18d06f8
TH
3804 ap->hsm_task_state = HSM_ST_IDLE;
3805
b8f6153e
JG
3806 spin_lock_irqsave(&host_set->lock, flags);
3807
1da177e4
LT
3808 switch (qc->tf.protocol) {
3809
3810 case ATA_PROT_DMA:
3811 case ATA_PROT_ATAPI_DMA:
3812 host_stat = ap->ops->bmdma_status(ap);
3813
3814 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3815 ap->ops->bmdma_stop(qc);
1da177e4
LT
3816
3817 /* fall through */
3818
3819 default:
3820 ata_altstatus(ap);
3821 drv_stat = ata_chk_status(ap);
3822
3823 /* ack bmdma irq events */
3824 ap->ops->irq_clear(ap);
3825
3826 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3827 ap->id, qc->tf.command, drv_stat, host_stat);
3828
3829 /* complete taskfile transaction */
a22e2eb0 3830 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
3831 break;
3832 }
b8f6153e
JG
3833
3834 spin_unlock_irqrestore(&host_set->lock, flags);
3835
a72ec4ce
TH
3836 ata_eh_qc_complete(qc);
3837
1da177e4
LT
3838 DPRINTK("EXIT\n");
3839}
3840
3841/**
3842 * ata_eng_timeout - Handle timeout of queued command
3843 * @ap: Port on which timed-out command is active
3844 *
3845 * Some part of the kernel (currently, only the SCSI layer)
3846 * has noticed that the active command on port @ap has not
3847 * completed after a specified length of time. Handle this
3848 * condition by disabling DMA (if necessary) and completing
3849 * transactions, with error if necessary.
3850 *
3851 * This also handles the case of the "lost interrupt", where
3852 * for some reason (possibly hardware bug, possibly driver bug)
3853 * an interrupt was not delivered to the driver, even though the
3854 * transaction completed successfully.
3855 *
3856 * LOCKING:
3857 * Inherited from SCSI layer (none, can sleep)
3858 */
3859
3860void ata_eng_timeout(struct ata_port *ap)
3861{
1da177e4
LT
3862 DPRINTK("ENTER\n");
3863
f6379020 3864 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 3865
1da177e4
LT
3866 DPRINTK("EXIT\n");
3867}
3868
3869/**
3870 * ata_qc_new - Request an available ATA command, for queueing
3871 * @ap: Port associated with device @dev
3872 * @dev: Device from whom we request an available command structure
3873 *
3874 * LOCKING:
0cba632b 3875 * None.
1da177e4
LT
3876 */
3877
3878static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3879{
3880 struct ata_queued_cmd *qc = NULL;
3881 unsigned int i;
3882
3883 for (i = 0; i < ATA_MAX_QUEUE; i++)
3884 if (!test_and_set_bit(i, &ap->qactive)) {
3885 qc = ata_qc_from_tag(ap, i);
3886 break;
3887 }
3888
3889 if (qc)
3890 qc->tag = i;
3891
3892 return qc;
3893}
3894
3895/**
3896 * ata_qc_new_init - Request an available ATA command, and initialize it
3897 * @ap: Port associated with device @dev
3898 * @dev: Device from whom we request an available command structure
3899 *
3900 * LOCKING:
0cba632b 3901 * None.
1da177e4
LT
3902 */
3903
3904struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3905 struct ata_device *dev)
3906{
3907 struct ata_queued_cmd *qc;
3908
3909 qc = ata_qc_new(ap);
3910 if (qc) {
1da177e4
LT
3911 qc->scsicmd = NULL;
3912 qc->ap = ap;
3913 qc->dev = dev;
1da177e4 3914
2c13b7ce 3915 ata_qc_reinit(qc);
1da177e4
LT
3916 }
3917
3918 return qc;
3919}
3920
1da177e4
LT
3921/**
3922 * ata_qc_free - free unused ata_queued_cmd
3923 * @qc: Command to complete
3924 *
3925 * Designed to free unused ata_queued_cmd object
3926 * in case something prevents using it.
3927 *
3928 * LOCKING:
0cba632b 3929 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3930 */
3931void ata_qc_free(struct ata_queued_cmd *qc)
3932{
4ba946e9
TH
3933 struct ata_port *ap = qc->ap;
3934 unsigned int tag;
3935
a4631474 3936 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3937
4ba946e9
TH
3938 qc->flags = 0;
3939 tag = qc->tag;
3940 if (likely(ata_tag_valid(tag))) {
3941 if (tag == ap->active_tag)
3942 ap->active_tag = ATA_TAG_POISON;
3943 qc->tag = ATA_TAG_POISON;
3944 clear_bit(tag, &ap->qactive);
3945 }
1da177e4
LT
3946}
3947
76014427 3948void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3949{
a4631474
TH
3950 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3951 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
3952
3953 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3954 ata_sg_clean(qc);
3955
3f3791d3
AL
3956 /* atapi: mark qc as inactive to prevent the interrupt handler
3957 * from completing the command twice later, before the error handler
3958 * is called. (when rc != 0 and atapi request sense is needed)
3959 */
3960 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3961
1da177e4 3962 /* call completion callback */
77853bf2 3963 qc->complete_fn(qc);
1da177e4
LT
3964}
3965
3966static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3967{
3968 struct ata_port *ap = qc->ap;
3969
3970 switch (qc->tf.protocol) {
3971 case ATA_PROT_DMA:
3972 case ATA_PROT_ATAPI_DMA:
3973 return 1;
3974
3975 case ATA_PROT_ATAPI:
3976 case ATA_PROT_PIO:
1da177e4
LT
3977 if (ap->flags & ATA_FLAG_PIO_DMA)
3978 return 1;
3979
3980 /* fall through */
3981
3982 default:
3983 return 0;
3984 }
3985
3986 /* never reached */
3987}
3988
3989/**
3990 * ata_qc_issue - issue taskfile to device
3991 * @qc: command to issue to device
3992 *
3993 * Prepare an ATA command to submission to device.
3994 * This includes mapping the data into a DMA-able
3995 * area, filling in the S/G table, and finally
3996 * writing the taskfile to hardware, starting the command.
3997 *
3998 * LOCKING:
3999 * spin_lock_irqsave(host_set lock)
4000 *
4001 * RETURNS:
9a3d9eb0 4002 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4003 */
4004
9a3d9eb0 4005unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4006{
4007 struct ata_port *ap = qc->ap;
4008
e4a70e76
TH
4009 qc->ap->active_tag = qc->tag;
4010 qc->flags |= ATA_QCFLAG_ACTIVE;
4011
1da177e4
LT
4012 if (ata_should_dma_map(qc)) {
4013 if (qc->flags & ATA_QCFLAG_SG) {
4014 if (ata_sg_setup(qc))
8e436af9 4015 goto sg_err;
1da177e4
LT
4016 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4017 if (ata_sg_setup_one(qc))
8e436af9 4018 goto sg_err;
1da177e4
LT
4019 }
4020 } else {
4021 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4022 }
4023
4024 ap->ops->qc_prep(qc);
4025
1da177e4
LT
4026 return ap->ops->qc_issue(qc);
4027
8e436af9
TH
4028sg_err:
4029 qc->flags &= ~ATA_QCFLAG_DMAMAP;
9a3d9eb0 4030 return AC_ERR_SYSTEM;
1da177e4
LT
4031}
4032
0baab86b 4033
1da177e4
LT
4034/**
4035 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4036 * @qc: command to issue to device
4037 *
4038 * Using various libata functions and hooks, this function
4039 * starts an ATA command. ATA commands are grouped into
4040 * classes called "protocols", and issuing each type of protocol
4041 * is slightly different.
4042 *
0baab86b
EF
4043 * May be used as the qc_issue() entry in ata_port_operations.
4044 *
1da177e4
LT
4045 * LOCKING:
4046 * spin_lock_irqsave(host_set lock)
4047 *
4048 * RETURNS:
9a3d9eb0 4049 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4050 */
4051
9a3d9eb0 4052unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4053{
4054 struct ata_port *ap = qc->ap;
4055
4056 ata_dev_select(ap, qc->dev->devno, 1, 0);
4057
4058 switch (qc->tf.protocol) {
4059 case ATA_PROT_NODATA:
e5338254 4060 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4061 break;
4062
4063 case ATA_PROT_DMA:
4064 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4065 ap->ops->bmdma_setup(qc); /* set up bmdma */
4066 ap->ops->bmdma_start(qc); /* initiate bmdma */
4067 break;
4068
4069 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4070 ata_qc_set_polling(qc);
e5338254 4071 ata_tf_to_host(ap, &qc->tf);
14be71f4 4072 ap->hsm_task_state = HSM_ST;
8061f5f0 4073 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4074 break;
4075
4076 case ATA_PROT_ATAPI:
4077 ata_qc_set_polling(qc);
e5338254 4078 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4079 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4080 break;
4081
4082 case ATA_PROT_ATAPI_NODATA:
c1389503 4083 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4084 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4085 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4086 break;
4087
4088 case ATA_PROT_ATAPI_DMA:
c1389503 4089 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4090 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4091 ap->ops->bmdma_setup(qc); /* set up bmdma */
8061f5f0 4092 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4093 break;
4094
4095 default:
4096 WARN_ON(1);
9a3d9eb0 4097 return AC_ERR_SYSTEM;
1da177e4
LT
4098 }
4099
4100 return 0;
4101}
4102
1da177e4
LT
4103/**
4104 * ata_host_intr - Handle host interrupt for given (port, task)
4105 * @ap: Port on which interrupt arrived (possibly...)
4106 * @qc: Taskfile currently active in engine
4107 *
4108 * Handle host interrupt for given queued command. Currently,
4109 * only DMA interrupts are handled. All other commands are
4110 * handled via polling with interrupts disabled (nIEN bit).
4111 *
4112 * LOCKING:
4113 * spin_lock_irqsave(host_set lock)
4114 *
4115 * RETURNS:
4116 * One if interrupt was handled, zero if not (shared irq).
4117 */
4118
4119inline unsigned int ata_host_intr (struct ata_port *ap,
4120 struct ata_queued_cmd *qc)
4121{
4122 u8 status, host_stat;
4123
4124 switch (qc->tf.protocol) {
4125
4126 case ATA_PROT_DMA:
4127 case ATA_PROT_ATAPI_DMA:
4128 case ATA_PROT_ATAPI:
4129 /* check status of DMA engine */
4130 host_stat = ap->ops->bmdma_status(ap);
4131 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4132
4133 /* if it's not our irq... */
4134 if (!(host_stat & ATA_DMA_INTR))
4135 goto idle_irq;
4136
4137 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4138 ap->ops->bmdma_stop(qc);
1da177e4
LT
4139
4140 /* fall through */
4141
4142 case ATA_PROT_ATAPI_NODATA:
4143 case ATA_PROT_NODATA:
4144 /* check altstatus */
4145 status = ata_altstatus(ap);
4146 if (status & ATA_BUSY)
4147 goto idle_irq;
4148
4149 /* check main status, clearing INTRQ */
4150 status = ata_chk_status(ap);
4151 if (unlikely(status & ATA_BUSY))
4152 goto idle_irq;
4153 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4154 ap->id, qc->tf.protocol, status);
4155
4156 /* ack bmdma irq events */
4157 ap->ops->irq_clear(ap);
4158
4159 /* complete taskfile transaction */
a22e2eb0
AL
4160 qc->err_mask |= ac_err_mask(status);
4161 ata_qc_complete(qc);
1da177e4
LT
4162 break;
4163
4164 default:
4165 goto idle_irq;
4166 }
4167
4168 return 1; /* irq handled */
4169
4170idle_irq:
4171 ap->stats.idle_irq++;
4172
4173#ifdef ATA_IRQ_TRAP
4174 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4175 ata_irq_ack(ap, 0); /* debug trap */
4176 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4177 return 1;
1da177e4
LT
4178 }
4179#endif
4180 return 0; /* irq not handled */
4181}
4182
4183/**
4184 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4185 * @irq: irq line (unused)
4186 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4187 * @regs: unused
4188 *
0cba632b
JG
4189 * Default interrupt handler for PCI IDE devices. Calls
4190 * ata_host_intr() for each port that is not disabled.
4191 *
1da177e4 4192 * LOCKING:
0cba632b 4193 * Obtains host_set lock during operation.
1da177e4
LT
4194 *
4195 * RETURNS:
0cba632b 4196 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4197 */
4198
4199irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4200{
4201 struct ata_host_set *host_set = dev_instance;
4202 unsigned int i;
4203 unsigned int handled = 0;
4204 unsigned long flags;
4205
4206 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4207 spin_lock_irqsave(&host_set->lock, flags);
4208
4209 for (i = 0; i < host_set->n_ports; i++) {
4210 struct ata_port *ap;
4211
4212 ap = host_set->ports[i];
c1389503
TH
4213 if (ap &&
4214 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4215 struct ata_queued_cmd *qc;
4216
4217 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4218 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4219 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4220 handled |= ata_host_intr(ap, qc);
4221 }
4222 }
4223
4224 spin_unlock_irqrestore(&host_set->lock, flags);
4225
4226 return IRQ_RETVAL(handled);
4227}
4228
0baab86b 4229
9b847548
JA
4230/*
4231 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4232 * without filling any other registers
4233 */
4234static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4235 u8 cmd)
4236{
4237 struct ata_taskfile tf;
4238 int err;
4239
4240 ata_tf_init(ap, &tf, dev->devno);
4241
4242 tf.command = cmd;
4243 tf.flags |= ATA_TFLAG_DEVICE;
4244 tf.protocol = ATA_PROT_NODATA;
4245
4246 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4247 if (err)
4248 printk(KERN_ERR "%s: ata command failed: %d\n",
4249 __FUNCTION__, err);
4250
4251 return err;
4252}
4253
4254static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4255{
4256 u8 cmd;
4257
4258 if (!ata_try_flush_cache(dev))
4259 return 0;
4260
4261 if (ata_id_has_flush_ext(dev->id))
4262 cmd = ATA_CMD_FLUSH_EXT;
4263 else
4264 cmd = ATA_CMD_FLUSH;
4265
4266 return ata_do_simple_cmd(ap, dev, cmd);
4267}
4268
4269static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4270{
4271 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4272}
4273
4274static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4275{
4276 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4277}
4278
4279/**
4280 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4281 * @ap: port the device is connected to
4282 * @dev: the device to resume
9b847548
JA
4283 *
4284 * Kick the drive back into action, by sending it an idle immediate
4285 * command and making sure its transfer mode matches between drive
4286 * and host.
4287 *
4288 */
4289int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4290{
4291 if (ap->flags & ATA_FLAG_SUSPENDED) {
4292 ap->flags &= ~ATA_FLAG_SUSPENDED;
4293 ata_set_mode(ap);
4294 }
4295 if (!ata_dev_present(dev))
4296 return 0;
4297 if (dev->class == ATA_DEV_ATA)
4298 ata_start_drive(ap, dev);
4299
4300 return 0;
4301}
4302
4303/**
4304 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4305 * @ap: port the device is connected to
4306 * @dev: the device to suspend
9b847548
JA
4307 *
4308 * Flush the cache on the drive, if appropriate, then issue a
4309 * standbynow command.
9b847548 4310 */
082776e4 4311int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548
JA
4312{
4313 if (!ata_dev_present(dev))
4314 return 0;
4315 if (dev->class == ATA_DEV_ATA)
4316 ata_flush_cache(ap, dev);
4317
082776e4
NC
4318 if (state.event != PM_EVENT_FREEZE)
4319 ata_standby_drive(ap, dev);
9b847548
JA
4320 ap->flags |= ATA_FLAG_SUSPENDED;
4321 return 0;
4322}
4323
c893a3ae
RD
4324/**
4325 * ata_port_start - Set port up for dma.
4326 * @ap: Port to initialize
4327 *
4328 * Called just after data structures for each port are
4329 * initialized. Allocates space for PRD table.
4330 *
4331 * May be used as the port_start() entry in ata_port_operations.
4332 *
4333 * LOCKING:
4334 * Inherited from caller.
4335 */
4336
1da177e4
LT
4337int ata_port_start (struct ata_port *ap)
4338{
2f1f610b 4339 struct device *dev = ap->dev;
6037d6bb 4340 int rc;
1da177e4
LT
4341
4342 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4343 if (!ap->prd)
4344 return -ENOMEM;
4345
6037d6bb
JG
4346 rc = ata_pad_alloc(ap, dev);
4347 if (rc) {
cedc9a47 4348 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4349 return rc;
cedc9a47
JG
4350 }
4351
1da177e4
LT
4352 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4353
4354 return 0;
4355}
4356
0baab86b
EF
4357
4358/**
4359 * ata_port_stop - Undo ata_port_start()
4360 * @ap: Port to shut down
4361 *
4362 * Frees the PRD table.
4363 *
4364 * May be used as the port_stop() entry in ata_port_operations.
4365 *
4366 * LOCKING:
6f0ef4fa 4367 * Inherited from caller.
0baab86b
EF
4368 */
4369
1da177e4
LT
4370void ata_port_stop (struct ata_port *ap)
4371{
2f1f610b 4372 struct device *dev = ap->dev;
1da177e4
LT
4373
4374 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4375 ata_pad_free(ap, dev);
1da177e4
LT
4376}
4377
aa8f0dc6
JG
4378void ata_host_stop (struct ata_host_set *host_set)
4379{
4380 if (host_set->mmio_base)
4381 iounmap(host_set->mmio_base);
4382}
4383
4384
1da177e4
LT
4385/**
4386 * ata_host_remove - Unregister SCSI host structure with upper layers
4387 * @ap: Port to unregister
4388 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4389 *
4390 * LOCKING:
6f0ef4fa 4391 * Inherited from caller.
1da177e4
LT
4392 */
4393
4394static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4395{
4396 struct Scsi_Host *sh = ap->host;
4397
4398 DPRINTK("ENTER\n");
4399
4400 if (do_unregister)
4401 scsi_remove_host(sh);
4402
4403 ap->ops->port_stop(ap);
4404}
4405
4406/**
4407 * ata_host_init - Initialize an ata_port structure
4408 * @ap: Structure to initialize
4409 * @host: associated SCSI mid-layer structure
4410 * @host_set: Collection of hosts to which @ap belongs
4411 * @ent: Probe information provided by low-level driver
4412 * @port_no: Port number associated with this ata_port
4413 *
0cba632b
JG
4414 * Initialize a new ata_port structure, and its associated
4415 * scsi_host.
4416 *
1da177e4 4417 * LOCKING:
0cba632b 4418 * Inherited from caller.
1da177e4
LT
4419 */
4420
4421static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4422 struct ata_host_set *host_set,
057ace5e 4423 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4424{
4425 unsigned int i;
4426
4427 host->max_id = 16;
4428 host->max_lun = 1;
4429 host->max_channel = 1;
4430 host->unique_id = ata_unique_id++;
4431 host->max_cmd_len = 12;
12413197 4432
1da177e4
LT
4433 ap->flags = ATA_FLAG_PORT_DISABLED;
4434 ap->id = host->unique_id;
4435 ap->host = host;
4436 ap->ctl = ATA_DEVCTL_OBS;
4437 ap->host_set = host_set;
2f1f610b 4438 ap->dev = ent->dev;
1da177e4
LT
4439 ap->port_no = port_no;
4440 ap->hard_port_no =
4441 ent->legacy_mode ? ent->hard_port_no : port_no;
4442 ap->pio_mask = ent->pio_mask;
4443 ap->mwdma_mask = ent->mwdma_mask;
4444 ap->udma_mask = ent->udma_mask;
4445 ap->flags |= ent->host_flags;
4446 ap->ops = ent->port_ops;
4447 ap->cbl = ATA_CBL_NONE;
4448 ap->active_tag = ATA_TAG_POISON;
4449 ap->last_ctl = 0xFF;
4450
86e45b6b 4451 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4452 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4453
acf356b1
TH
4454 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4455 struct ata_device *dev = &ap->device[i];
4456 dev->devno = i;
4457 dev->pio_mask = UINT_MAX;
4458 dev->mwdma_mask = UINT_MAX;
4459 dev->udma_mask = UINT_MAX;
4460 }
1da177e4
LT
4461
4462#ifdef ATA_IRQ_TRAP
4463 ap->stats.unhandled_irq = 1;
4464 ap->stats.idle_irq = 1;
4465#endif
4466
4467 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4468}
4469
4470/**
4471 * ata_host_add - Attach low-level ATA driver to system
4472 * @ent: Information provided by low-level driver
4473 * @host_set: Collections of ports to which we add
4474 * @port_no: Port number associated with this host
4475 *
0cba632b
JG
4476 * Attach low-level ATA driver to system.
4477 *
1da177e4 4478 * LOCKING:
0cba632b 4479 * PCI/etc. bus probe sem.
1da177e4
LT
4480 *
4481 * RETURNS:
0cba632b 4482 * New ata_port on success, for NULL on error.
1da177e4
LT
4483 */
4484
057ace5e 4485static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4486 struct ata_host_set *host_set,
4487 unsigned int port_no)
4488{
4489 struct Scsi_Host *host;
4490 struct ata_port *ap;
4491 int rc;
4492
4493 DPRINTK("ENTER\n");
aec5c3c1
TH
4494
4495 if (!ent->port_ops->probe_reset &&
4496 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4497 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4498 port_no);
4499 return NULL;
4500 }
4501
1da177e4
LT
4502 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4503 if (!host)
4504 return NULL;
4505
30afc84c
TH
4506 host->transportt = &ata_scsi_transport_template;
4507
1da177e4
LT
4508 ap = (struct ata_port *) &host->hostdata[0];
4509
4510 ata_host_init(ap, host, host_set, ent, port_no);
4511
4512 rc = ap->ops->port_start(ap);
4513 if (rc)
4514 goto err_out;
4515
4516 return ap;
4517
4518err_out:
4519 scsi_host_put(host);
4520 return NULL;
4521}
4522
4523/**
0cba632b
JG
4524 * ata_device_add - Register hardware device with ATA and SCSI layers
4525 * @ent: Probe information describing hardware device to be registered
4526 *
4527 * This function processes the information provided in the probe
4528 * information struct @ent, allocates the necessary ATA and SCSI
4529 * host information structures, initializes them, and registers
4530 * everything with requisite kernel subsystems.
4531 *
4532 * This function requests irqs, probes the ATA bus, and probes
4533 * the SCSI bus.
1da177e4
LT
4534 *
4535 * LOCKING:
0cba632b 4536 * PCI/etc. bus probe sem.
1da177e4
LT
4537 *
4538 * RETURNS:
0cba632b 4539 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4540 */
4541
057ace5e 4542int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4543{
4544 unsigned int count = 0, i;
4545 struct device *dev = ent->dev;
4546 struct ata_host_set *host_set;
4547
4548 DPRINTK("ENTER\n");
4549 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4550 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4551 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4552 if (!host_set)
4553 return 0;
1da177e4
LT
4554 spin_lock_init(&host_set->lock);
4555
4556 host_set->dev = dev;
4557 host_set->n_ports = ent->n_ports;
4558 host_set->irq = ent->irq;
4559 host_set->mmio_base = ent->mmio_base;
4560 host_set->private_data = ent->private_data;
4561 host_set->ops = ent->port_ops;
5444a6f4 4562 host_set->flags = ent->host_set_flags;
1da177e4
LT
4563
4564 /* register each port bound to this device */
4565 for (i = 0; i < ent->n_ports; i++) {
4566 struct ata_port *ap;
4567 unsigned long xfer_mode_mask;
4568
4569 ap = ata_host_add(ent, host_set, i);
4570 if (!ap)
4571 goto err_out;
4572
4573 host_set->ports[i] = ap;
4574 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4575 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4576 (ap->pio_mask << ATA_SHIFT_PIO);
4577
4578 /* print per-port info to dmesg */
4579 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4580 "bmdma 0x%lX irq %lu\n",
4581 ap->id,
4582 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4583 ata_mode_string(xfer_mode_mask),
4584 ap->ioaddr.cmd_addr,
4585 ap->ioaddr.ctl_addr,
4586 ap->ioaddr.bmdma_addr,
4587 ent->irq);
4588
4589 ata_chk_status(ap);
4590 host_set->ops->irq_clear(ap);
4591 count++;
4592 }
4593
57f3bda8
RD
4594 if (!count)
4595 goto err_free_ret;
1da177e4
LT
4596
4597 /* obtain irq, that is shared between channels */
4598 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4599 DRV_NAME, host_set))
4600 goto err_out;
4601
4602 /* perform each probe synchronously */
4603 DPRINTK("probe begin\n");
4604 for (i = 0; i < count; i++) {
4605 struct ata_port *ap;
4606 int rc;
4607
4608 ap = host_set->ports[i];
4609
c893a3ae 4610 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4611 rc = ata_bus_probe(ap);
c893a3ae 4612 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4613
4614 if (rc) {
4615 /* FIXME: do something useful here?
4616 * Current libata behavior will
4617 * tear down everything when
4618 * the module is removed
4619 * or the h/w is unplugged.
4620 */
4621 }
4622
4623 rc = scsi_add_host(ap->host, dev);
4624 if (rc) {
4625 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4626 ap->id);
4627 /* FIXME: do something useful here */
4628 /* FIXME: handle unconditional calls to
4629 * scsi_scan_host and ata_host_remove, below,
4630 * at the very least
4631 */
4632 }
4633 }
4634
4635 /* probes are done, now scan each port's disk(s) */
c893a3ae 4636 DPRINTK("host probe begin\n");
1da177e4
LT
4637 for (i = 0; i < count; i++) {
4638 struct ata_port *ap = host_set->ports[i];
4639
644dd0cc 4640 ata_scsi_scan_host(ap);
1da177e4
LT
4641 }
4642
4643 dev_set_drvdata(dev, host_set);
4644
4645 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4646 return ent->n_ports; /* success */
4647
4648err_out:
4649 for (i = 0; i < count; i++) {
4650 ata_host_remove(host_set->ports[i], 1);
4651 scsi_host_put(host_set->ports[i]->host);
4652 }
57f3bda8 4653err_free_ret:
1da177e4
LT
4654 kfree(host_set);
4655 VPRINTK("EXIT, returning 0\n");
4656 return 0;
4657}
4658
17b14451
AC
4659/**
4660 * ata_host_set_remove - PCI layer callback for device removal
4661 * @host_set: ATA host set that was removed
4662 *
2e9edbf8 4663 * Unregister all objects associated with this host set. Free those
17b14451
AC
4664 * objects.
4665 *
4666 * LOCKING:
4667 * Inherited from calling layer (may sleep).
4668 */
4669
17b14451
AC
4670void ata_host_set_remove(struct ata_host_set *host_set)
4671{
4672 struct ata_port *ap;
4673 unsigned int i;
4674
4675 for (i = 0; i < host_set->n_ports; i++) {
4676 ap = host_set->ports[i];
4677 scsi_remove_host(ap->host);
4678 }
4679
4680 free_irq(host_set->irq, host_set);
4681
4682 for (i = 0; i < host_set->n_ports; i++) {
4683 ap = host_set->ports[i];
4684
4685 ata_scsi_release(ap->host);
4686
4687 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4688 struct ata_ioports *ioaddr = &ap->ioaddr;
4689
4690 if (ioaddr->cmd_addr == 0x1f0)
4691 release_region(0x1f0, 8);
4692 else if (ioaddr->cmd_addr == 0x170)
4693 release_region(0x170, 8);
4694 }
4695
4696 scsi_host_put(ap->host);
4697 }
4698
4699 if (host_set->ops->host_stop)
4700 host_set->ops->host_stop(host_set);
4701
4702 kfree(host_set);
4703}
4704
1da177e4
LT
4705/**
4706 * ata_scsi_release - SCSI layer callback hook for host unload
4707 * @host: libata host to be unloaded
4708 *
4709 * Performs all duties necessary to shut down a libata port...
4710 * Kill port kthread, disable port, and release resources.
4711 *
4712 * LOCKING:
4713 * Inherited from SCSI layer.
4714 *
4715 * RETURNS:
4716 * One.
4717 */
4718
4719int ata_scsi_release(struct Scsi_Host *host)
4720{
4721 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4722 int i;
1da177e4
LT
4723
4724 DPRINTK("ENTER\n");
4725
4726 ap->ops->port_disable(ap);
4727 ata_host_remove(ap, 0);
d9572b1d
TH
4728 for (i = 0; i < ATA_MAX_DEVICES; i++)
4729 kfree(ap->device[i].id);
1da177e4
LT
4730
4731 DPRINTK("EXIT\n");
4732 return 1;
4733}
4734
4735/**
4736 * ata_std_ports - initialize ioaddr with standard port offsets.
4737 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4738 *
4739 * Utility function which initializes data_addr, error_addr,
4740 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4741 * device_addr, status_addr, and command_addr to standard offsets
4742 * relative to cmd_addr.
4743 *
4744 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4745 */
0baab86b 4746
1da177e4
LT
4747void ata_std_ports(struct ata_ioports *ioaddr)
4748{
4749 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4750 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4751 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4752 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4753 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4754 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4755 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4756 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4757 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4758 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4759}
4760
0baab86b 4761
374b1873
JG
4762#ifdef CONFIG_PCI
4763
4764void ata_pci_host_stop (struct ata_host_set *host_set)
4765{
4766 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4767
4768 pci_iounmap(pdev, host_set->mmio_base);
4769}
4770
1da177e4
LT
4771/**
4772 * ata_pci_remove_one - PCI layer callback for device removal
4773 * @pdev: PCI device that was removed
4774 *
4775 * PCI layer indicates to libata via this hook that
6f0ef4fa 4776 * hot-unplug or module unload event has occurred.
1da177e4
LT
4777 * Handle this by unregistering all objects associated
4778 * with this PCI device. Free those objects. Then finally
4779 * release PCI resources and disable device.
4780 *
4781 * LOCKING:
4782 * Inherited from PCI layer (may sleep).
4783 */
4784
4785void ata_pci_remove_one (struct pci_dev *pdev)
4786{
4787 struct device *dev = pci_dev_to_dev(pdev);
4788 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4789
17b14451 4790 ata_host_set_remove(host_set);
1da177e4
LT
4791 pci_release_regions(pdev);
4792 pci_disable_device(pdev);
4793 dev_set_drvdata(dev, NULL);
4794}
4795
4796/* move to PCI subsystem */
057ace5e 4797int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4798{
4799 unsigned long tmp = 0;
4800
4801 switch (bits->width) {
4802 case 1: {
4803 u8 tmp8 = 0;
4804 pci_read_config_byte(pdev, bits->reg, &tmp8);
4805 tmp = tmp8;
4806 break;
4807 }
4808 case 2: {
4809 u16 tmp16 = 0;
4810 pci_read_config_word(pdev, bits->reg, &tmp16);
4811 tmp = tmp16;
4812 break;
4813 }
4814 case 4: {
4815 u32 tmp32 = 0;
4816 pci_read_config_dword(pdev, bits->reg, &tmp32);
4817 tmp = tmp32;
4818 break;
4819 }
4820
4821 default:
4822 return -EINVAL;
4823 }
4824
4825 tmp &= bits->mask;
4826
4827 return (tmp == bits->val) ? 1 : 0;
4828}
9b847548
JA
4829
4830int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4831{
4832 pci_save_state(pdev);
4833 pci_disable_device(pdev);
4834 pci_set_power_state(pdev, PCI_D3hot);
4835 return 0;
4836}
4837
4838int ata_pci_device_resume(struct pci_dev *pdev)
4839{
4840 pci_set_power_state(pdev, PCI_D0);
4841 pci_restore_state(pdev);
4842 pci_enable_device(pdev);
4843 pci_set_master(pdev);
4844 return 0;
4845}
1da177e4
LT
4846#endif /* CONFIG_PCI */
4847
4848
1da177e4
LT
4849static int __init ata_init(void)
4850{
4851 ata_wq = create_workqueue("ata");
4852 if (!ata_wq)
4853 return -ENOMEM;
4854
4855 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4856 return 0;
4857}
4858
4859static void __exit ata_exit(void)
4860{
4861 destroy_workqueue(ata_wq);
4862}
4863
4864module_init(ata_init);
4865module_exit(ata_exit);
4866
67846b30
JG
4867static unsigned long ratelimit_time;
4868static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4869
4870int ata_ratelimit(void)
4871{
4872 int rc;
4873 unsigned long flags;
4874
4875 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4876
4877 if (time_after(jiffies, ratelimit_time)) {
4878 rc = 1;
4879 ratelimit_time = jiffies + (HZ/5);
4880 } else
4881 rc = 0;
4882
4883 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4884
4885 return rc;
4886}
4887
1da177e4
LT
4888/*
4889 * libata is essentially a library of internal helper functions for
4890 * low-level ATA host controller drivers. As such, the API/ABI is
4891 * likely to change as new drivers are added and updated.
4892 * Do not depend on ABI/API stability.
4893 */
4894
4895EXPORT_SYMBOL_GPL(ata_std_bios_param);
4896EXPORT_SYMBOL_GPL(ata_std_ports);
4897EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4898EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4899EXPORT_SYMBOL_GPL(ata_sg_init);
4900EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 4901EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
4902EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4903EXPORT_SYMBOL_GPL(ata_eng_timeout);
4904EXPORT_SYMBOL_GPL(ata_tf_load);
4905EXPORT_SYMBOL_GPL(ata_tf_read);
4906EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4907EXPORT_SYMBOL_GPL(ata_std_dev_select);
4908EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4909EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4910EXPORT_SYMBOL_GPL(ata_check_status);
4911EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
4912EXPORT_SYMBOL_GPL(ata_exec_command);
4913EXPORT_SYMBOL_GPL(ata_port_start);
4914EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4915EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4916EXPORT_SYMBOL_GPL(ata_interrupt);
4917EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 4918EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
4919EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4920EXPORT_SYMBOL_GPL(ata_bmdma_start);
4921EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4922EXPORT_SYMBOL_GPL(ata_bmdma_status);
4923EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4924EXPORT_SYMBOL_GPL(ata_port_probe);
4925EXPORT_SYMBOL_GPL(sata_phy_reset);
4926EXPORT_SYMBOL_GPL(__sata_phy_reset);
4927EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 4928EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
4929EXPORT_SYMBOL_GPL(ata_std_softreset);
4930EXPORT_SYMBOL_GPL(sata_std_hardreset);
4931EXPORT_SYMBOL_GPL(ata_std_postreset);
4932EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 4933EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 4934EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
4935EXPORT_SYMBOL_GPL(ata_dev_classify);
4936EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 4937EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 4938EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 4939EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 4940EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
4941EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4942EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4943EXPORT_SYMBOL_GPL(ata_scsi_error);
4944EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4945EXPORT_SYMBOL_GPL(ata_scsi_release);
4946EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
4947EXPORT_SYMBOL_GPL(ata_id_string);
4948EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 4949EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
4950EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4951EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 4952
1bc4ccff 4953EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
4954EXPORT_SYMBOL_GPL(ata_timing_compute);
4955EXPORT_SYMBOL_GPL(ata_timing_merge);
4956
1da177e4
LT
4957#ifdef CONFIG_PCI
4958EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 4959EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
4960EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4961EXPORT_SYMBOL_GPL(ata_pci_init_one);
4962EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
4963EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4964EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
4965EXPORT_SYMBOL_GPL(ata_pci_default_filter);
4966EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 4967#endif /* CONFIG_PCI */
9b847548
JA
4968
4969EXPORT_SYMBOL_GPL(ata_device_suspend);
4970EXPORT_SYMBOL_GPL(ata_device_resume);
4971EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4972EXPORT_SYMBOL_GPL(ata_scsi_device_resume);