Merge branch 'upstream-fixes'
[linux-block.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
64static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
66 unsigned long tmout);
59a10b17 67static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
8bf62ece 68static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
69static void ata_set_mode(struct ata_port *ap);
70static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
057ace5e 71static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
1da177e4 72static int fgb(u32 bitmap);
057ace5e 73static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
74 u8 *xfer_mode_out,
75 unsigned int *xfer_shift_out);
1da177e4
LT
76static void __ata_qc_complete(struct ata_queued_cmd *qc);
77
78static unsigned int ata_unique_id = 1;
79static struct workqueue_struct *ata_wq;
80
1623c81e
JG
81int atapi_enabled = 0;
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
1da177e4
LT
85MODULE_AUTHOR("Jeff Garzik");
86MODULE_DESCRIPTION("Library module for ATA devices");
87MODULE_LICENSE("GPL");
88MODULE_VERSION(DRV_VERSION);
89
90/**
6f0ef4fa 91 * ata_tf_load_pio - send taskfile registers to host controller
1da177e4
LT
92 * @ap: Port to which output is sent
93 * @tf: ATA taskfile register set
94 *
95 * Outputs ATA taskfile to standard ATA host controller.
96 *
97 * LOCKING:
98 * Inherited from caller.
99 */
100
057ace5e 101static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
102{
103 struct ata_ioports *ioaddr = &ap->ioaddr;
104 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
105
106 if (tf->ctl != ap->last_ctl) {
107 outb(tf->ctl, ioaddr->ctl_addr);
108 ap->last_ctl = tf->ctl;
109 ata_wait_idle(ap);
110 }
111
112 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
113 outb(tf->hob_feature, ioaddr->feature_addr);
114 outb(tf->hob_nsect, ioaddr->nsect_addr);
115 outb(tf->hob_lbal, ioaddr->lbal_addr);
116 outb(tf->hob_lbam, ioaddr->lbam_addr);
117 outb(tf->hob_lbah, ioaddr->lbah_addr);
118 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
119 tf->hob_feature,
120 tf->hob_nsect,
121 tf->hob_lbal,
122 tf->hob_lbam,
123 tf->hob_lbah);
124 }
125
126 if (is_addr) {
127 outb(tf->feature, ioaddr->feature_addr);
128 outb(tf->nsect, ioaddr->nsect_addr);
129 outb(tf->lbal, ioaddr->lbal_addr);
130 outb(tf->lbam, ioaddr->lbam_addr);
131 outb(tf->lbah, ioaddr->lbah_addr);
132 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
133 tf->feature,
134 tf->nsect,
135 tf->lbal,
136 tf->lbam,
137 tf->lbah);
138 }
139
140 if (tf->flags & ATA_TFLAG_DEVICE) {
141 outb(tf->device, ioaddr->device_addr);
142 VPRINTK("device 0x%X\n", tf->device);
143 }
144
145 ata_wait_idle(ap);
146}
147
148/**
149 * ata_tf_load_mmio - send taskfile registers to host controller
150 * @ap: Port to which output is sent
151 * @tf: ATA taskfile register set
152 *
153 * Outputs ATA taskfile to standard ATA host controller using MMIO.
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
057ace5e 159static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
160{
161 struct ata_ioports *ioaddr = &ap->ioaddr;
162 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
163
164 if (tf->ctl != ap->last_ctl) {
165 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
166 ap->last_ctl = tf->ctl;
167 ata_wait_idle(ap);
168 }
169
170 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
171 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
172 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
173 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
174 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
175 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
176 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
177 tf->hob_feature,
178 tf->hob_nsect,
179 tf->hob_lbal,
180 tf->hob_lbam,
181 tf->hob_lbah);
182 }
183
184 if (is_addr) {
185 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
186 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
187 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
188 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
189 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
190 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
191 tf->feature,
192 tf->nsect,
193 tf->lbal,
194 tf->lbam,
195 tf->lbah);
196 }
197
198 if (tf->flags & ATA_TFLAG_DEVICE) {
199 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
200 VPRINTK("device 0x%X\n", tf->device);
201 }
202
203 ata_wait_idle(ap);
204}
205
0baab86b
EF
206
207/**
208 * ata_tf_load - send taskfile registers to host controller
209 * @ap: Port to which output is sent
210 * @tf: ATA taskfile register set
211 *
212 * Outputs ATA taskfile to standard ATA host controller using MMIO
213 * or PIO as indicated by the ATA_FLAG_MMIO flag.
214 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216 * hob_lbal, hob_lbam, and hob_lbah.
217 *
218 * This function waits for idle (!BUSY and !DRQ) after writing
219 * registers. If the control register has a new value, this
220 * function also waits for idle after writing control and before
221 * writing the remaining registers.
222 *
223 * May be used as the tf_load() entry in ata_port_operations.
224 *
225 * LOCKING:
226 * Inherited from caller.
227 */
057ace5e 228void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
229{
230 if (ap->flags & ATA_FLAG_MMIO)
231 ata_tf_load_mmio(ap, tf);
232 else
233 ata_tf_load_pio(ap, tf);
234}
235
236/**
0baab86b 237 * ata_exec_command_pio - issue ATA command to host controller
1da177e4
LT
238 * @ap: port to which command is being issued
239 * @tf: ATA taskfile register set
240 *
0baab86b 241 * Issues PIO write to ATA command register, with proper
1da177e4
LT
242 * synchronization with interrupt handler / other threads.
243 *
244 * LOCKING:
245 * spin_lock_irqsave(host_set lock)
246 */
247
057ace5e 248static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
249{
250 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
251
252 outb(tf->command, ap->ioaddr.command_addr);
253 ata_pause(ap);
254}
255
256
257/**
258 * ata_exec_command_mmio - issue ATA command to host controller
259 * @ap: port to which command is being issued
260 * @tf: ATA taskfile register set
261 *
262 * Issues MMIO write to ATA command register, with proper
263 * synchronization with interrupt handler / other threads.
264 *
265 * LOCKING:
266 * spin_lock_irqsave(host_set lock)
267 */
268
057ace5e 269static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
270{
271 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
272
273 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
274 ata_pause(ap);
275}
276
0baab86b
EF
277
278/**
279 * ata_exec_command - issue ATA command to host controller
280 * @ap: port to which command is being issued
281 * @tf: ATA taskfile register set
282 *
283 * Issues PIO/MMIO write to ATA command register, with proper
284 * synchronization with interrupt handler / other threads.
285 *
286 * LOCKING:
287 * spin_lock_irqsave(host_set lock)
288 */
057ace5e 289void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
1da177e4
LT
290{
291 if (ap->flags & ATA_FLAG_MMIO)
292 ata_exec_command_mmio(ap, tf);
293 else
294 ata_exec_command_pio(ap, tf);
295}
296
1da177e4
LT
297/**
298 * ata_tf_to_host - issue ATA taskfile to host controller
299 * @ap: port to which command is being issued
300 * @tf: ATA taskfile register set
301 *
302 * Issues ATA taskfile register set to ATA host controller,
303 * with proper synchronization with interrupt handler and
304 * other threads.
305 *
306 * LOCKING:
1da177e4
LT
307 * spin_lock_irqsave(host_set lock)
308 */
309
e5338254
JG
310static inline void ata_tf_to_host(struct ata_port *ap,
311 const struct ata_taskfile *tf)
1da177e4
LT
312{
313 ap->ops->tf_load(ap, tf);
314 ap->ops->exec_command(ap, tf);
315}
316
317/**
0baab86b 318 * ata_tf_read_pio - input device's ATA taskfile shadow registers
1da177e4
LT
319 * @ap: Port from which input is read
320 * @tf: ATA taskfile register set for storing input
321 *
322 * Reads ATA taskfile registers for currently-selected device
323 * into @tf.
324 *
325 * LOCKING:
326 * Inherited from caller.
327 */
328
329static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
330{
331 struct ata_ioports *ioaddr = &ap->ioaddr;
332
ac19bff2 333 tf->command = ata_check_status(ap);
0169e284 334 tf->feature = inb(ioaddr->error_addr);
1da177e4
LT
335 tf->nsect = inb(ioaddr->nsect_addr);
336 tf->lbal = inb(ioaddr->lbal_addr);
337 tf->lbam = inb(ioaddr->lbam_addr);
338 tf->lbah = inb(ioaddr->lbah_addr);
339 tf->device = inb(ioaddr->device_addr);
340
341 if (tf->flags & ATA_TFLAG_LBA48) {
342 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
343 tf->hob_feature = inb(ioaddr->error_addr);
344 tf->hob_nsect = inb(ioaddr->nsect_addr);
345 tf->hob_lbal = inb(ioaddr->lbal_addr);
346 tf->hob_lbam = inb(ioaddr->lbam_addr);
347 tf->hob_lbah = inb(ioaddr->lbah_addr);
348 }
349}
350
351/**
352 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
355 *
356 * Reads ATA taskfile registers for currently-selected device
357 * into @tf via MMIO.
358 *
359 * LOCKING:
360 * Inherited from caller.
361 */
362
363static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
364{
365 struct ata_ioports *ioaddr = &ap->ioaddr;
366
ac19bff2 367 tf->command = ata_check_status(ap);
0169e284 368 tf->feature = readb((void __iomem *)ioaddr->error_addr);
1da177e4
LT
369 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
370 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
371 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
372 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
373 tf->device = readb((void __iomem *)ioaddr->device_addr);
374
375 if (tf->flags & ATA_TFLAG_LBA48) {
376 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
377 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
378 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
379 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
380 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
381 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
382 }
383}
384
0baab86b
EF
385
386/**
387 * ata_tf_read - input device's ATA taskfile shadow registers
388 * @ap: Port from which input is read
389 * @tf: ATA taskfile register set for storing input
390 *
391 * Reads ATA taskfile registers for currently-selected device
392 * into @tf.
393 *
394 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
395 * is set, also reads the hob registers.
396 *
397 * May be used as the tf_read() entry in ata_port_operations.
398 *
399 * LOCKING:
400 * Inherited from caller.
401 */
1da177e4
LT
402void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
403{
404 if (ap->flags & ATA_FLAG_MMIO)
405 ata_tf_read_mmio(ap, tf);
406 else
407 ata_tf_read_pio(ap, tf);
408}
409
410/**
411 * ata_check_status_pio - Read device status reg & clear interrupt
412 * @ap: port where the device is
413 *
414 * Reads ATA taskfile status register for currently-selected device
0baab86b 415 * and return its value. This also clears pending interrupts
1da177e4
LT
416 * from this device
417 *
418 * LOCKING:
419 * Inherited from caller.
420 */
421static u8 ata_check_status_pio(struct ata_port *ap)
422{
423 return inb(ap->ioaddr.status_addr);
424}
425
426/**
427 * ata_check_status_mmio - Read device status reg & clear interrupt
428 * @ap: port where the device is
429 *
430 * Reads ATA taskfile status register for currently-selected device
0baab86b 431 * via MMIO and return its value. This also clears pending interrupts
1da177e4
LT
432 * from this device
433 *
434 * LOCKING:
435 * Inherited from caller.
436 */
437static u8 ata_check_status_mmio(struct ata_port *ap)
438{
439 return readb((void __iomem *) ap->ioaddr.status_addr);
440}
441
0baab86b
EF
442
443/**
444 * ata_check_status - Read device status reg & clear interrupt
445 * @ap: port where the device is
446 *
447 * Reads ATA taskfile status register for currently-selected device
448 * and return its value. This also clears pending interrupts
449 * from this device
450 *
451 * May be used as the check_status() entry in ata_port_operations.
452 *
453 * LOCKING:
454 * Inherited from caller.
455 */
1da177e4
LT
456u8 ata_check_status(struct ata_port *ap)
457{
458 if (ap->flags & ATA_FLAG_MMIO)
459 return ata_check_status_mmio(ap);
460 return ata_check_status_pio(ap);
461}
462
0baab86b
EF
463
464/**
465 * ata_altstatus - Read device alternate status reg
466 * @ap: port where the device is
467 *
468 * Reads ATA taskfile alternate status register for
469 * currently-selected device and return its value.
470 *
471 * Note: may NOT be used as the check_altstatus() entry in
472 * ata_port_operations.
473 *
474 * LOCKING:
475 * Inherited from caller.
476 */
1da177e4
LT
477u8 ata_altstatus(struct ata_port *ap)
478{
479 if (ap->ops->check_altstatus)
480 return ap->ops->check_altstatus(ap);
481
482 if (ap->flags & ATA_FLAG_MMIO)
483 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
484 return inb(ap->ioaddr.altstatus_addr);
485}
486
0baab86b 487
1da177e4
LT
488/**
489 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
490 * @tf: Taskfile to convert
491 * @fis: Buffer into which data will output
492 * @pmp: Port multiplier port
493 *
494 * Converts a standard ATA taskfile to a Serial ATA
495 * FIS structure (Register - Host to Device).
496 *
497 * LOCKING:
498 * Inherited from caller.
499 */
500
057ace5e 501void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
502{
503 fis[0] = 0x27; /* Register - Host to Device FIS */
504 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
505 bit 7 indicates Command FIS */
506 fis[2] = tf->command;
507 fis[3] = tf->feature;
508
509 fis[4] = tf->lbal;
510 fis[5] = tf->lbam;
511 fis[6] = tf->lbah;
512 fis[7] = tf->device;
513
514 fis[8] = tf->hob_lbal;
515 fis[9] = tf->hob_lbam;
516 fis[10] = tf->hob_lbah;
517 fis[11] = tf->hob_feature;
518
519 fis[12] = tf->nsect;
520 fis[13] = tf->hob_nsect;
521 fis[14] = 0;
522 fis[15] = tf->ctl;
523
524 fis[16] = 0;
525 fis[17] = 0;
526 fis[18] = 0;
527 fis[19] = 0;
528}
529
530/**
531 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
532 * @fis: Buffer from which data will be input
533 * @tf: Taskfile to output
534 *
e12a1be6 535 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
536 *
537 * LOCKING:
538 * Inherited from caller.
539 */
540
057ace5e 541void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
542{
543 tf->command = fis[2]; /* status */
544 tf->feature = fis[3]; /* error */
545
546 tf->lbal = fis[4];
547 tf->lbam = fis[5];
548 tf->lbah = fis[6];
549 tf->device = fis[7];
550
551 tf->hob_lbal = fis[8];
552 tf->hob_lbam = fis[9];
553 tf->hob_lbah = fis[10];
554
555 tf->nsect = fis[12];
556 tf->hob_nsect = fis[13];
557}
558
8cbd6df1
AL
559static const u8 ata_rw_cmds[] = {
560 /* pio multi */
561 ATA_CMD_READ_MULTI,
562 ATA_CMD_WRITE_MULTI,
563 ATA_CMD_READ_MULTI_EXT,
564 ATA_CMD_WRITE_MULTI_EXT,
565 /* pio */
566 ATA_CMD_PIO_READ,
567 ATA_CMD_PIO_WRITE,
568 ATA_CMD_PIO_READ_EXT,
569 ATA_CMD_PIO_WRITE_EXT,
570 /* dma */
571 ATA_CMD_READ,
572 ATA_CMD_WRITE,
573 ATA_CMD_READ_EXT,
574 ATA_CMD_WRITE_EXT
575};
1da177e4
LT
576
577/**
8cbd6df1
AL
578 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
579 * @qc: command to examine and configure
1da177e4 580 *
8cbd6df1
AL
581 * Examine the device configuration and tf->flags to calculate
582 * the proper read/write commands and protocol to use.
1da177e4
LT
583 *
584 * LOCKING:
585 * caller.
586 */
8cbd6df1 587void ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 588{
8cbd6df1
AL
589 struct ata_taskfile *tf = &qc->tf;
590 struct ata_device *dev = qc->dev;
1da177e4 591
8cbd6df1
AL
592 int index, lba48, write;
593
594 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
595 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 596
8cbd6df1
AL
597 if (dev->flags & ATA_DFLAG_PIO) {
598 tf->protocol = ATA_PROT_PIO;
599 index = dev->multi_count ? 0 : 4;
600 } else {
601 tf->protocol = ATA_PROT_DMA;
602 index = 8;
603 }
1da177e4 604
8cbd6df1 605 tf->command = ata_rw_cmds[index + lba48 + write];
1da177e4
LT
606}
607
608static const char * xfer_mode_str[] = {
609 "UDMA/16",
610 "UDMA/25",
611 "UDMA/33",
612 "UDMA/44",
613 "UDMA/66",
614 "UDMA/100",
615 "UDMA/133",
616 "UDMA7",
617 "MWDMA0",
618 "MWDMA1",
619 "MWDMA2",
620 "PIO0",
621 "PIO1",
622 "PIO2",
623 "PIO3",
624 "PIO4",
625};
626
627/**
628 * ata_udma_string - convert UDMA bit offset to string
629 * @mask: mask of bits supported; only highest bit counts.
630 *
631 * Determine string which represents the highest speed
632 * (highest bit in @udma_mask).
633 *
634 * LOCKING:
635 * None.
636 *
637 * RETURNS:
638 * Constant C string representing highest speed listed in
639 * @udma_mask, or the constant C string "<n/a>".
640 */
641
642static const char *ata_mode_string(unsigned int mask)
643{
644 int i;
645
646 for (i = 7; i >= 0; i--)
647 if (mask & (1 << i))
648 goto out;
649 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
650 if (mask & (1 << i))
651 goto out;
652 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
653 if (mask & (1 << i))
654 goto out;
655
656 return "<n/a>";
657
658out:
659 return xfer_mode_str[i];
660}
661
662/**
663 * ata_pio_devchk - PATA device presence detection
664 * @ap: ATA channel to examine
665 * @device: Device to examine (starting at zero)
666 *
667 * This technique was originally described in
668 * Hale Landis's ATADRVR (www.ata-atapi.com), and
669 * later found its way into the ATA/ATAPI spec.
670 *
671 * Write a pattern to the ATA shadow registers,
672 * and if a device is present, it will respond by
673 * correctly storing and echoing back the
674 * ATA shadow register contents.
675 *
676 * LOCKING:
677 * caller.
678 */
679
680static unsigned int ata_pio_devchk(struct ata_port *ap,
681 unsigned int device)
682{
683 struct ata_ioports *ioaddr = &ap->ioaddr;
684 u8 nsect, lbal;
685
686 ap->ops->dev_select(ap, device);
687
688 outb(0x55, ioaddr->nsect_addr);
689 outb(0xaa, ioaddr->lbal_addr);
690
691 outb(0xaa, ioaddr->nsect_addr);
692 outb(0x55, ioaddr->lbal_addr);
693
694 outb(0x55, ioaddr->nsect_addr);
695 outb(0xaa, ioaddr->lbal_addr);
696
697 nsect = inb(ioaddr->nsect_addr);
698 lbal = inb(ioaddr->lbal_addr);
699
700 if ((nsect == 0x55) && (lbal == 0xaa))
701 return 1; /* we found a device */
702
703 return 0; /* nothing found */
704}
705
706/**
707 * ata_mmio_devchk - PATA device presence detection
708 * @ap: ATA channel to examine
709 * @device: Device to examine (starting at zero)
710 *
711 * This technique was originally described in
712 * Hale Landis's ATADRVR (www.ata-atapi.com), and
713 * later found its way into the ATA/ATAPI spec.
714 *
715 * Write a pattern to the ATA shadow registers,
716 * and if a device is present, it will respond by
717 * correctly storing and echoing back the
718 * ATA shadow register contents.
719 *
720 * LOCKING:
721 * caller.
722 */
723
724static unsigned int ata_mmio_devchk(struct ata_port *ap,
725 unsigned int device)
726{
727 struct ata_ioports *ioaddr = &ap->ioaddr;
728 u8 nsect, lbal;
729
730 ap->ops->dev_select(ap, device);
731
732 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
733 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
734
735 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
736 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
737
738 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
739 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
740
741 nsect = readb((void __iomem *) ioaddr->nsect_addr);
742 lbal = readb((void __iomem *) ioaddr->lbal_addr);
743
744 if ((nsect == 0x55) && (lbal == 0xaa))
745 return 1; /* we found a device */
746
747 return 0; /* nothing found */
748}
749
750/**
751 * ata_devchk - PATA device presence detection
752 * @ap: ATA channel to examine
753 * @device: Device to examine (starting at zero)
754 *
755 * Dispatch ATA device presence detection, depending
756 * on whether we are using PIO or MMIO to talk to the
757 * ATA shadow registers.
758 *
759 * LOCKING:
760 * caller.
761 */
762
763static unsigned int ata_devchk(struct ata_port *ap,
764 unsigned int device)
765{
766 if (ap->flags & ATA_FLAG_MMIO)
767 return ata_mmio_devchk(ap, device);
768 return ata_pio_devchk(ap, device);
769}
770
771/**
772 * ata_dev_classify - determine device type based on ATA-spec signature
773 * @tf: ATA taskfile register set for device to be identified
774 *
775 * Determine from taskfile register contents whether a device is
776 * ATA or ATAPI, as per "Signature and persistence" section
777 * of ATA/PI spec (volume 1, sect 5.14).
778 *
779 * LOCKING:
780 * None.
781 *
782 * RETURNS:
783 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
784 * the event of failure.
785 */
786
057ace5e 787unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
788{
789 /* Apple's open source Darwin code hints that some devices only
790 * put a proper signature into the LBA mid/high registers,
791 * So, we only check those. It's sufficient for uniqueness.
792 */
793
794 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
795 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
796 DPRINTK("found ATA device by sig\n");
797 return ATA_DEV_ATA;
798 }
799
800 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
801 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
802 DPRINTK("found ATAPI device by sig\n");
803 return ATA_DEV_ATAPI;
804 }
805
806 DPRINTK("unknown device\n");
807 return ATA_DEV_UNKNOWN;
808}
809
810/**
811 * ata_dev_try_classify - Parse returned ATA device signature
812 * @ap: ATA channel to examine
813 * @device: Device to examine (starting at zero)
814 *
815 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
816 * an ATA/ATAPI-defined set of values is placed in the ATA
817 * shadow registers, indicating the results of device detection
818 * and diagnostics.
819 *
820 * Select the ATA device, and read the values from the ATA shadow
821 * registers. Then parse according to the Error register value,
822 * and the spec-defined values examined by ata_dev_classify().
823 *
824 * LOCKING:
825 * caller.
826 */
827
828static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
829{
830 struct ata_device *dev = &ap->device[device];
831 struct ata_taskfile tf;
832 unsigned int class;
833 u8 err;
834
835 ap->ops->dev_select(ap, device);
836
837 memset(&tf, 0, sizeof(tf));
838
1da177e4 839 ap->ops->tf_read(ap, &tf);
0169e284 840 err = tf.feature;
1da177e4
LT
841
842 dev->class = ATA_DEV_NONE;
843
844 /* see if device passed diags */
845 if (err == 1)
846 /* do nothing */ ;
847 else if ((device == 0) && (err == 0x81))
848 /* do nothing */ ;
849 else
850 return err;
851
852 /* determine if device if ATA or ATAPI */
853 class = ata_dev_classify(&tf);
854 if (class == ATA_DEV_UNKNOWN)
855 return err;
856 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
857 return err;
858
859 dev->class = class;
860
861 return err;
862}
863
864/**
865 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
866 * @id: IDENTIFY DEVICE results we will examine
867 * @s: string into which data is output
868 * @ofs: offset into identify device page
869 * @len: length of string to return. must be an even number.
870 *
871 * The strings in the IDENTIFY DEVICE page are broken up into
872 * 16-bit chunks. Run through the string, and output each
873 * 8-bit chunk linearly, regardless of platform.
874 *
875 * LOCKING:
876 * caller.
877 */
878
057ace5e 879void ata_dev_id_string(const u16 *id, unsigned char *s,
1da177e4
LT
880 unsigned int ofs, unsigned int len)
881{
882 unsigned int c;
883
884 while (len > 0) {
885 c = id[ofs] >> 8;
886 *s = c;
887 s++;
888
889 c = id[ofs] & 0xff;
890 *s = c;
891 s++;
892
893 ofs++;
894 len -= 2;
895 }
896}
897
0baab86b
EF
898
899/**
900 * ata_noop_dev_select - Select device 0/1 on ATA bus
901 * @ap: ATA channel to manipulate
902 * @device: ATA device (numbered from zero) to select
903 *
904 * This function performs no actual function.
905 *
906 * May be used as the dev_select() entry in ata_port_operations.
907 *
908 * LOCKING:
909 * caller.
910 */
1da177e4
LT
911void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
912{
913}
914
0baab86b 915
1da177e4
LT
916/**
917 * ata_std_dev_select - Select device 0/1 on ATA bus
918 * @ap: ATA channel to manipulate
919 * @device: ATA device (numbered from zero) to select
920 *
921 * Use the method defined in the ATA specification to
922 * make either device 0, or device 1, active on the
0baab86b
EF
923 * ATA channel. Works with both PIO and MMIO.
924 *
925 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
926 *
927 * LOCKING:
928 * caller.
929 */
930
931void ata_std_dev_select (struct ata_port *ap, unsigned int device)
932{
933 u8 tmp;
934
935 if (device == 0)
936 tmp = ATA_DEVICE_OBS;
937 else
938 tmp = ATA_DEVICE_OBS | ATA_DEV1;
939
940 if (ap->flags & ATA_FLAG_MMIO) {
941 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
942 } else {
943 outb(tmp, ap->ioaddr.device_addr);
944 }
945 ata_pause(ap); /* needed; also flushes, for mmio */
946}
947
948/**
949 * ata_dev_select - Select device 0/1 on ATA bus
950 * @ap: ATA channel to manipulate
951 * @device: ATA device (numbered from zero) to select
952 * @wait: non-zero to wait for Status register BSY bit to clear
953 * @can_sleep: non-zero if context allows sleeping
954 *
955 * Use the method defined in the ATA specification to
956 * make either device 0, or device 1, active on the
957 * ATA channel.
958 *
959 * This is a high-level version of ata_std_dev_select(),
960 * which additionally provides the services of inserting
961 * the proper pauses and status polling, where needed.
962 *
963 * LOCKING:
964 * caller.
965 */
966
967void ata_dev_select(struct ata_port *ap, unsigned int device,
968 unsigned int wait, unsigned int can_sleep)
969{
970 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
971 ap->id, device, wait);
972
973 if (wait)
974 ata_wait_idle(ap);
975
976 ap->ops->dev_select(ap, device);
977
978 if (wait) {
979 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
980 msleep(150);
981 ata_wait_idle(ap);
982 }
983}
984
985/**
986 * ata_dump_id - IDENTIFY DEVICE info debugging output
987 * @dev: Device whose IDENTIFY DEVICE page we will dump
988 *
989 * Dump selected 16-bit words from a detected device's
990 * IDENTIFY PAGE page.
991 *
992 * LOCKING:
993 * caller.
994 */
995
057ace5e 996static inline void ata_dump_id(const struct ata_device *dev)
1da177e4
LT
997{
998 DPRINTK("49==0x%04x "
999 "53==0x%04x "
1000 "63==0x%04x "
1001 "64==0x%04x "
1002 "75==0x%04x \n",
1003 dev->id[49],
1004 dev->id[53],
1005 dev->id[63],
1006 dev->id[64],
1007 dev->id[75]);
1008 DPRINTK("80==0x%04x "
1009 "81==0x%04x "
1010 "82==0x%04x "
1011 "83==0x%04x "
1012 "84==0x%04x \n",
1013 dev->id[80],
1014 dev->id[81],
1015 dev->id[82],
1016 dev->id[83],
1017 dev->id[84]);
1018 DPRINTK("88==0x%04x "
1019 "93==0x%04x\n",
1020 dev->id[88],
1021 dev->id[93]);
1022}
1023
11e29e21
AC
1024/*
1025 * Compute the PIO modes available for this device. This is not as
1026 * trivial as it seems if we must consider early devices correctly.
1027 *
1028 * FIXME: pre IDE drive timing (do we care ?).
1029 */
1030
057ace5e 1031static unsigned int ata_pio_modes(const struct ata_device *adev)
11e29e21
AC
1032{
1033 u16 modes;
1034
1035 /* Usual case. Word 53 indicates word 88 is valid */
1036 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 2)) {
1037 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1038 modes <<= 3;
1039 modes |= 0x7;
1040 return modes;
1041 }
1042
1043 /* If word 88 isn't valid then Word 51 holds the PIO timing number
1044 for the maximum. Turn it into a mask and return it */
1045 modes = (2 << (adev->id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
1046 return modes;
1047}
1048
1da177e4
LT
1049/**
1050 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1051 * @ap: port on which device we wish to probe resides
1052 * @device: device bus address, starting at zero
1053 *
1054 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1055 * command, and read back the 512-byte device information page.
1056 * The device information page is fed to us via the standard
1057 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1058 * using standard PIO-IN paths)
1059 *
1060 * After reading the device information page, we use several
1061 * bits of information from it to initialize data structures
1062 * that will be used during the lifetime of the ata_device.
1063 * Other data from the info page is used to disqualify certain
1064 * older ATA devices we do not wish to support.
1065 *
1066 * LOCKING:
1067 * Inherited from caller. Some functions called by this function
1068 * obtain the host_set lock.
1069 */
1070
1071static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1072{
1073 struct ata_device *dev = &ap->device[device];
8bf62ece 1074 unsigned int major_version;
1da177e4
LT
1075 u16 tmp;
1076 unsigned long xfer_modes;
1da177e4
LT
1077 unsigned int using_edd;
1078 DECLARE_COMPLETION(wait);
1079 struct ata_queued_cmd *qc;
1080 unsigned long flags;
1081 int rc;
1082
1083 if (!ata_dev_present(dev)) {
1084 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1085 ap->id, device);
1086 return;
1087 }
1088
1089 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1090 using_edd = 0;
1091 else
1092 using_edd = 1;
1093
1094 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1095
1096 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1097 dev->class == ATA_DEV_NONE);
1098
1099 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1100
1101 qc = ata_qc_new_init(ap, dev);
1102 BUG_ON(qc == NULL);
1103
1104 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1105 qc->dma_dir = DMA_FROM_DEVICE;
1106 qc->tf.protocol = ATA_PROT_PIO;
1107 qc->nsect = 1;
1108
1109retry:
1110 if (dev->class == ATA_DEV_ATA) {
1111 qc->tf.command = ATA_CMD_ID_ATA;
1112 DPRINTK("do ATA identify\n");
1113 } else {
1114 qc->tf.command = ATA_CMD_ID_ATAPI;
1115 DPRINTK("do ATAPI identify\n");
1116 }
1117
1118 qc->waiting = &wait;
1119 qc->complete_fn = ata_qc_complete_noop;
1120
1121 spin_lock_irqsave(&ap->host_set->lock, flags);
1122 rc = ata_qc_issue(qc);
1123 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1124
1125 if (rc)
1126 goto err_out;
1127 else
1128 wait_for_completion(&wait);
1129
0169e284
JG
1130 spin_lock_irqsave(&ap->host_set->lock, flags);
1131 ap->ops->tf_read(ap, &qc->tf);
1132 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1133
1134 if (qc->tf.command & ATA_ERR) {
1da177e4
LT
1135 /*
1136 * arg! EDD works for all test cases, but seems to return
1137 * the ATA signature for some ATAPI devices. Until the
1138 * reason for this is found and fixed, we fix up the mess
1139 * here. If IDENTIFY DEVICE returns command aborted
1140 * (as ATAPI devices do), then we issue an
1141 * IDENTIFY PACKET DEVICE.
1142 *
1143 * ATA software reset (SRST, the default) does not appear
1144 * to have this problem.
1145 */
7c398335 1146 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
0169e284 1147 u8 err = qc->tf.feature;
1da177e4
LT
1148 if (err & ATA_ABORTED) {
1149 dev->class = ATA_DEV_ATAPI;
1150 qc->cursg = 0;
1151 qc->cursg_ofs = 0;
1152 qc->cursect = 0;
1153 qc->nsect = 1;
1154 goto retry;
1155 }
1156 }
1157 goto err_out;
1158 }
1159
1160 swap_buf_le16(dev->id, ATA_ID_WORDS);
1161
1162 /* print device capabilities */
1163 printk(KERN_DEBUG "ata%u: dev %u cfg "
1164 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1165 ap->id, device, dev->id[49],
1166 dev->id[82], dev->id[83], dev->id[84],
1167 dev->id[85], dev->id[86], dev->id[87],
1168 dev->id[88]);
1169
1170 /*
1171 * common ATA, ATAPI feature tests
1172 */
1173
8bf62ece
AL
1174 /* we require DMA support (bits 8 of word 49) */
1175 if (!ata_id_has_dma(dev->id)) {
1176 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1da177e4
LT
1177 goto err_out_nosup;
1178 }
1179
1180 /* quick-n-dirty find max transfer mode; for printk only */
1181 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1182 if (!xfer_modes)
1183 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
11e29e21
AC
1184 if (!xfer_modes)
1185 xfer_modes = ata_pio_modes(dev);
1da177e4
LT
1186
1187 ata_dump_id(dev);
1188
1189 /* ATA-specific feature tests */
1190 if (dev->class == ATA_DEV_ATA) {
1191 if (!ata_id_is_ata(dev->id)) /* sanity check */
1192 goto err_out_nosup;
1193
8bf62ece 1194 /* get major version */
1da177e4 1195 tmp = dev->id[ATA_ID_MAJOR_VER];
8bf62ece
AL
1196 for (major_version = 14; major_version >= 1; major_version--)
1197 if (tmp & (1 << major_version))
1da177e4
LT
1198 break;
1199
8bf62ece
AL
1200 /*
1201 * The exact sequence expected by certain pre-ATA4 drives is:
1202 * SRST RESET
1203 * IDENTIFY
1204 * INITIALIZE DEVICE PARAMETERS
1205 * anything else..
1206 * Some drives were very specific about that exact sequence.
1207 */
59a10b17 1208 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
8bf62ece
AL
1209 ata_dev_init_params(ap, dev);
1210
59a10b17
AL
1211 /* current CHS translation info (id[53-58]) might be
1212 * changed. reread the identify device info.
1213 */
1214 ata_dev_reread_id(ap, dev);
1215 }
1216
8bf62ece
AL
1217 if (ata_id_has_lba(dev->id)) {
1218 dev->flags |= ATA_DFLAG_LBA;
1219
1220 if (ata_id_has_lba48(dev->id)) {
1221 dev->flags |= ATA_DFLAG_LBA48;
1222 dev->n_sectors = ata_id_u64(dev->id, 100);
1223 } else {
1224 dev->n_sectors = ata_id_u32(dev->id, 60);
1225 }
1226
1227 /* print device info to dmesg */
1228 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1229 ap->id, device,
1230 major_version,
1231 ata_mode_string(xfer_modes),
1232 (unsigned long long)dev->n_sectors,
1233 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1234 } else {
1235 /* CHS */
1236
1237 /* Default translation */
1238 dev->cylinders = dev->id[1];
1239 dev->heads = dev->id[3];
1240 dev->sectors = dev->id[6];
1241 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1242
1243 if (ata_id_current_chs_valid(dev->id)) {
1244 /* Current CHS translation is valid. */
1245 dev->cylinders = dev->id[54];
1246 dev->heads = dev->id[55];
1247 dev->sectors = dev->id[56];
1248
1249 dev->n_sectors = ata_id_u32(dev->id, 57);
1250 }
1251
1252 /* print device info to dmesg */
1253 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1254 ap->id, device,
1255 major_version,
1256 ata_mode_string(xfer_modes),
1257 (unsigned long long)dev->n_sectors,
1258 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1da177e4 1259
1da177e4
LT
1260 }
1261
1262 ap->host->max_cmd_len = 16;
1da177e4
LT
1263 }
1264
1265 /* ATAPI-specific feature tests */
2c13b7ce 1266 else if (dev->class == ATA_DEV_ATAPI) {
1da177e4
LT
1267 if (ata_id_is_ata(dev->id)) /* sanity check */
1268 goto err_out_nosup;
1269
1270 rc = atapi_cdb_len(dev->id);
1271 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1272 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1273 goto err_out_nosup;
1274 }
1275 ap->cdb_len = (unsigned int) rc;
1276 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1277
1278 /* print device info to dmesg */
1279 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1280 ap->id, device,
1281 ata_mode_string(xfer_modes));
1282 }
1283
1284 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1285 return;
1286
1287err_out_nosup:
1288 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1289 ap->id, device);
1290err_out:
1291 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1292 DPRINTK("EXIT, err\n");
1293}
1294
6f2f3812 1295
057ace5e 1296static inline u8 ata_dev_knobble(const struct ata_port *ap)
6f2f3812
BC
1297{
1298 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1299}
1300
1301/**
1302 * ata_dev_config - Run device specific handlers and check for
1303 * SATA->PATA bridges
8a60a071 1304 * @ap: Bus
6f2f3812
BC
1305 * @i: Device
1306 *
1307 * LOCKING:
1308 */
8a60a071 1309
6f2f3812
BC
1310void ata_dev_config(struct ata_port *ap, unsigned int i)
1311{
1312 /* limit bridge transfers to udma5, 200 sectors */
1313 if (ata_dev_knobble(ap)) {
1314 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1315 ap->id, ap->device->devno);
1316 ap->udma_mask &= ATA_UDMA5;
1317 ap->host->max_sectors = ATA_MAX_SECTORS;
1318 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1319 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1320 }
1321
1322 if (ap->ops->dev_config)
1323 ap->ops->dev_config(ap, &ap->device[i]);
1324}
1325
1da177e4
LT
1326/**
1327 * ata_bus_probe - Reset and probe ATA bus
1328 * @ap: Bus to probe
1329 *
0cba632b
JG
1330 * Master ATA bus probing function. Initiates a hardware-dependent
1331 * bus reset, then attempts to identify any devices found on
1332 * the bus.
1333 *
1da177e4 1334 * LOCKING:
0cba632b 1335 * PCI/etc. bus probe sem.
1da177e4
LT
1336 *
1337 * RETURNS:
1338 * Zero on success, non-zero on error.
1339 */
1340
1341static int ata_bus_probe(struct ata_port *ap)
1342{
1343 unsigned int i, found = 0;
1344
1345 ap->ops->phy_reset(ap);
1346 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1347 goto err_out;
1348
1349 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1350 ata_dev_identify(ap, i);
1351 if (ata_dev_present(&ap->device[i])) {
1352 found = 1;
6f2f3812 1353 ata_dev_config(ap,i);
1da177e4
LT
1354 }
1355 }
1356
1357 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1358 goto err_out_disable;
1359
1360 ata_set_mode(ap);
1361 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1362 goto err_out_disable;
1363
1364 return 0;
1365
1366err_out_disable:
1367 ap->ops->port_disable(ap);
1368err_out:
1369 return -1;
1370}
1371
1372/**
0cba632b
JG
1373 * ata_port_probe - Mark port as enabled
1374 * @ap: Port for which we indicate enablement
1da177e4 1375 *
0cba632b
JG
1376 * Modify @ap data structure such that the system
1377 * thinks that the entire port is enabled.
1378 *
1379 * LOCKING: host_set lock, or some other form of
1380 * serialization.
1da177e4
LT
1381 */
1382
1383void ata_port_probe(struct ata_port *ap)
1384{
1385 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1386}
1387
1388/**
780a87f7
JG
1389 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1390 * @ap: SATA port associated with target SATA PHY.
1da177e4 1391 *
780a87f7
JG
1392 * This function issues commands to standard SATA Sxxx
1393 * PHY registers, to wake up the phy (and device), and
1394 * clear any reset condition.
1da177e4
LT
1395 *
1396 * LOCKING:
0cba632b 1397 * PCI/etc. bus probe sem.
1da177e4
LT
1398 *
1399 */
1400void __sata_phy_reset(struct ata_port *ap)
1401{
1402 u32 sstatus;
1403 unsigned long timeout = jiffies + (HZ * 5);
1404
1405 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1406 /* issue phy wake/reset */
1407 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1408 /* Couldn't find anything in SATA I/II specs, but
1409 * AHCI-1.1 10.4.2 says at least 1 ms. */
1410 mdelay(1);
1da177e4 1411 }
cdcca89e 1412 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1413
1414 /* wait for phy to become ready, if necessary */
1415 do {
1416 msleep(200);
1417 sstatus = scr_read(ap, SCR_STATUS);
1418 if ((sstatus & 0xf) != 1)
1419 break;
1420 } while (time_before(jiffies, timeout));
1421
1422 /* TODO: phy layer with polling, timeouts, etc. */
1423 if (sata_dev_present(ap))
1424 ata_port_probe(ap);
1425 else {
1426 sstatus = scr_read(ap, SCR_STATUS);
1427 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1428 ap->id, sstatus);
1429 ata_port_disable(ap);
1430 }
1431
1432 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1433 return;
1434
1435 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1436 ata_port_disable(ap);
1437 return;
1438 }
1439
1440 ap->cbl = ATA_CBL_SATA;
1441}
1442
1443/**
780a87f7
JG
1444 * sata_phy_reset - Reset SATA bus.
1445 * @ap: SATA port associated with target SATA PHY.
1da177e4 1446 *
780a87f7
JG
1447 * This function resets the SATA bus, and then probes
1448 * the bus for devices.
1da177e4
LT
1449 *
1450 * LOCKING:
0cba632b 1451 * PCI/etc. bus probe sem.
1da177e4
LT
1452 *
1453 */
1454void sata_phy_reset(struct ata_port *ap)
1455{
1456 __sata_phy_reset(ap);
1457 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1458 return;
1459 ata_bus_reset(ap);
1460}
1461
1462/**
780a87f7
JG
1463 * ata_port_disable - Disable port.
1464 * @ap: Port to be disabled.
1da177e4 1465 *
780a87f7
JG
1466 * Modify @ap data structure such that the system
1467 * thinks that the entire port is disabled, and should
1468 * never attempt to probe or communicate with devices
1469 * on this port.
1470 *
1471 * LOCKING: host_set lock, or some other form of
1472 * serialization.
1da177e4
LT
1473 */
1474
1475void ata_port_disable(struct ata_port *ap)
1476{
1477 ap->device[0].class = ATA_DEV_NONE;
1478 ap->device[1].class = ATA_DEV_NONE;
1479 ap->flags |= ATA_FLAG_PORT_DISABLED;
1480}
1481
452503f9
AC
1482/*
1483 * This mode timing computation functionality is ported over from
1484 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1485 */
1486/*
1487 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1488 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1489 * for PIO 5, which is a nonstandard extension and UDMA6, which
1490 * is currently supported only by Maxtor drives.
1491 */
1492
1493static const struct ata_timing ata_timing[] = {
1494
1495 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1496 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1497 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1498 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1499
1500 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1501 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1502 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1503
1504/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1505
1506 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1507 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1508 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1509
1510 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1511 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1512 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1513
1514/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1515 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1516 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1517
1518 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1519 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1520 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1521
1522/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1523
1524 { 0xFF }
1525};
1526
1527#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1528#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1529
1530static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1531{
1532 q->setup = EZ(t->setup * 1000, T);
1533 q->act8b = EZ(t->act8b * 1000, T);
1534 q->rec8b = EZ(t->rec8b * 1000, T);
1535 q->cyc8b = EZ(t->cyc8b * 1000, T);
1536 q->active = EZ(t->active * 1000, T);
1537 q->recover = EZ(t->recover * 1000, T);
1538 q->cycle = EZ(t->cycle * 1000, T);
1539 q->udma = EZ(t->udma * 1000, UT);
1540}
1541
1542void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1543 struct ata_timing *m, unsigned int what)
1544{
1545 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1546 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1547 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1548 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1549 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1550 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1551 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1552 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1553}
1554
1555static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1556{
1557 const struct ata_timing *t;
1558
1559 for (t = ata_timing; t->mode != speed; t++)
91190758 1560 if (t->mode == 0xFF)
452503f9
AC
1561 return NULL;
1562 return t;
1563}
1564
1565int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1566 struct ata_timing *t, int T, int UT)
1567{
1568 const struct ata_timing *s;
1569 struct ata_timing p;
1570
1571 /*
1572 * Find the mode.
75b1f2f8 1573 */
452503f9
AC
1574
1575 if (!(s = ata_timing_find_mode(speed)))
1576 return -EINVAL;
1577
75b1f2f8
AL
1578 memcpy(t, s, sizeof(*s));
1579
452503f9
AC
1580 /*
1581 * If the drive is an EIDE drive, it can tell us it needs extended
1582 * PIO/MW_DMA cycle timing.
1583 */
1584
1585 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1586 memset(&p, 0, sizeof(p));
1587 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1588 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1589 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1590 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1591 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1592 }
1593 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1594 }
1595
1596 /*
1597 * Convert the timing to bus clock counts.
1598 */
1599
75b1f2f8 1600 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1601
1602 /*
1603 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1604 * and some other commands. We have to ensure that the DMA cycle timing is
1605 * slower/equal than the fastest PIO timing.
1606 */
1607
1608 if (speed > XFER_PIO_4) {
1609 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1610 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1611 }
1612
1613 /*
1614 * Lenghten active & recovery time so that cycle time is correct.
1615 */
1616
1617 if (t->act8b + t->rec8b < t->cyc8b) {
1618 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1619 t->rec8b = t->cyc8b - t->act8b;
1620 }
1621
1622 if (t->active + t->recover < t->cycle) {
1623 t->active += (t->cycle - (t->active + t->recover)) / 2;
1624 t->recover = t->cycle - t->active;
1625 }
1626
1627 return 0;
1628}
1629
057ace5e 1630static const struct {
1da177e4
LT
1631 unsigned int shift;
1632 u8 base;
1633} xfer_mode_classes[] = {
1634 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1635 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1636 { ATA_SHIFT_PIO, XFER_PIO_0 },
1637};
1638
1639static inline u8 base_from_shift(unsigned int shift)
1640{
1641 int i;
1642
1643 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1644 if (xfer_mode_classes[i].shift == shift)
1645 return xfer_mode_classes[i].base;
1646
1647 return 0xff;
1648}
1649
1650static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1651{
1652 int ofs, idx;
1653 u8 base;
1654
1655 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1656 return;
1657
1658 if (dev->xfer_shift == ATA_SHIFT_PIO)
1659 dev->flags |= ATA_DFLAG_PIO;
1660
1661 ata_dev_set_xfermode(ap, dev);
1662
1663 base = base_from_shift(dev->xfer_shift);
1664 ofs = dev->xfer_mode - base;
1665 idx = ofs + dev->xfer_shift;
1666 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1667
1668 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1669 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1670
1671 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1672 ap->id, dev->devno, xfer_mode_str[idx]);
1673}
1674
1675static int ata_host_set_pio(struct ata_port *ap)
1676{
1677 unsigned int mask;
1678 int x, i;
1679 u8 base, xfer_mode;
1680
1681 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1682 x = fgb(mask);
1683 if (x < 0) {
1684 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1685 return -1;
1686 }
1687
1688 base = base_from_shift(ATA_SHIFT_PIO);
1689 xfer_mode = base + x;
1690
1691 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1692 (int)base, (int)xfer_mode, mask, x);
1693
1694 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1695 struct ata_device *dev = &ap->device[i];
1696 if (ata_dev_present(dev)) {
1697 dev->pio_mode = xfer_mode;
1698 dev->xfer_mode = xfer_mode;
1699 dev->xfer_shift = ATA_SHIFT_PIO;
1700 if (ap->ops->set_piomode)
1701 ap->ops->set_piomode(ap, dev);
1702 }
1703 }
1704
1705 return 0;
1706}
1707
1708static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1709 unsigned int xfer_shift)
1710{
1711 int i;
1712
1713 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1714 struct ata_device *dev = &ap->device[i];
1715 if (ata_dev_present(dev)) {
1716 dev->dma_mode = xfer_mode;
1717 dev->xfer_mode = xfer_mode;
1718 dev->xfer_shift = xfer_shift;
1719 if (ap->ops->set_dmamode)
1720 ap->ops->set_dmamode(ap, dev);
1721 }
1722 }
1723}
1724
1725/**
1726 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1727 * @ap: port on which timings will be programmed
1728 *
780a87f7
JG
1729 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1730 *
1da177e4 1731 * LOCKING:
0cba632b 1732 * PCI/etc. bus probe sem.
1da177e4
LT
1733 *
1734 */
1735static void ata_set_mode(struct ata_port *ap)
1736{
8cbd6df1 1737 unsigned int xfer_shift;
1da177e4
LT
1738 u8 xfer_mode;
1739 int rc;
1740
1741 /* step 1: always set host PIO timings */
1742 rc = ata_host_set_pio(ap);
1743 if (rc)
1744 goto err_out;
1745
1746 /* step 2: choose the best data xfer mode */
1747 xfer_mode = xfer_shift = 0;
1748 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1749 if (rc)
1750 goto err_out;
1751
1752 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1753 if (xfer_shift != ATA_SHIFT_PIO)
1754 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1755
1756 /* step 4: update devices' xfer mode */
1757 ata_dev_set_mode(ap, &ap->device[0]);
1758 ata_dev_set_mode(ap, &ap->device[1]);
1759
1760 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1761 return;
1762
1763 if (ap->ops->post_set_mode)
1764 ap->ops->post_set_mode(ap);
1765
1da177e4
LT
1766 return;
1767
1768err_out:
1769 ata_port_disable(ap);
1770}
1771
1772/**
1773 * ata_busy_sleep - sleep until BSY clears, or timeout
1774 * @ap: port containing status register to be polled
1775 * @tmout_pat: impatience timeout
1776 * @tmout: overall timeout
1777 *
780a87f7
JG
1778 * Sleep until ATA Status register bit BSY clears,
1779 * or a timeout occurs.
1780 *
1781 * LOCKING: None.
1da177e4
LT
1782 *
1783 */
1784
1785static unsigned int ata_busy_sleep (struct ata_port *ap,
1786 unsigned long tmout_pat,
1787 unsigned long tmout)
1788{
1789 unsigned long timer_start, timeout;
1790 u8 status;
1791
1792 status = ata_busy_wait(ap, ATA_BUSY, 300);
1793 timer_start = jiffies;
1794 timeout = timer_start + tmout_pat;
1795 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1796 msleep(50);
1797 status = ata_busy_wait(ap, ATA_BUSY, 3);
1798 }
1799
1800 if (status & ATA_BUSY)
1801 printk(KERN_WARNING "ata%u is slow to respond, "
1802 "please be patient\n", ap->id);
1803
1804 timeout = timer_start + tmout;
1805 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1806 msleep(50);
1807 status = ata_chk_status(ap);
1808 }
1809
1810 if (status & ATA_BUSY) {
1811 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1812 ap->id, tmout / HZ);
1813 return 1;
1814 }
1815
1816 return 0;
1817}
1818
1819static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1820{
1821 struct ata_ioports *ioaddr = &ap->ioaddr;
1822 unsigned int dev0 = devmask & (1 << 0);
1823 unsigned int dev1 = devmask & (1 << 1);
1824 unsigned long timeout;
1825
1826 /* if device 0 was found in ata_devchk, wait for its
1827 * BSY bit to clear
1828 */
1829 if (dev0)
1830 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1831
1832 /* if device 1 was found in ata_devchk, wait for
1833 * register access, then wait for BSY to clear
1834 */
1835 timeout = jiffies + ATA_TMOUT_BOOT;
1836 while (dev1) {
1837 u8 nsect, lbal;
1838
1839 ap->ops->dev_select(ap, 1);
1840 if (ap->flags & ATA_FLAG_MMIO) {
1841 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1842 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1843 } else {
1844 nsect = inb(ioaddr->nsect_addr);
1845 lbal = inb(ioaddr->lbal_addr);
1846 }
1847 if ((nsect == 1) && (lbal == 1))
1848 break;
1849 if (time_after(jiffies, timeout)) {
1850 dev1 = 0;
1851 break;
1852 }
1853 msleep(50); /* give drive a breather */
1854 }
1855 if (dev1)
1856 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1857
1858 /* is all this really necessary? */
1859 ap->ops->dev_select(ap, 0);
1860 if (dev1)
1861 ap->ops->dev_select(ap, 1);
1862 if (dev0)
1863 ap->ops->dev_select(ap, 0);
1864}
1865
1866/**
0cba632b
JG
1867 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1868 * @ap: Port to reset and probe
1869 *
1870 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1871 * probe the bus. Not often used these days.
1da177e4
LT
1872 *
1873 * LOCKING:
0cba632b 1874 * PCI/etc. bus probe sem.
e5338254 1875 * Obtains host_set lock.
1da177e4
LT
1876 *
1877 */
1878
1879static unsigned int ata_bus_edd(struct ata_port *ap)
1880{
1881 struct ata_taskfile tf;
e5338254 1882 unsigned long flags;
1da177e4
LT
1883
1884 /* set up execute-device-diag (bus reset) taskfile */
1885 /* also, take interrupts to a known state (disabled) */
1886 DPRINTK("execute-device-diag\n");
1887 ata_tf_init(ap, &tf, 0);
1888 tf.ctl |= ATA_NIEN;
1889 tf.command = ATA_CMD_EDD;
1890 tf.protocol = ATA_PROT_NODATA;
1891
1892 /* do bus reset */
e5338254 1893 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 1894 ata_tf_to_host(ap, &tf);
e5338254 1895 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1da177e4
LT
1896
1897 /* spec says at least 2ms. but who knows with those
1898 * crazy ATAPI devices...
1899 */
1900 msleep(150);
1901
1902 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1903}
1904
1905static unsigned int ata_bus_softreset(struct ata_port *ap,
1906 unsigned int devmask)
1907{
1908 struct ata_ioports *ioaddr = &ap->ioaddr;
1909
1910 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1911
1912 /* software reset. causes dev0 to be selected */
1913 if (ap->flags & ATA_FLAG_MMIO) {
1914 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1915 udelay(20); /* FIXME: flush */
1916 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1917 udelay(20); /* FIXME: flush */
1918 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1919 } else {
1920 outb(ap->ctl, ioaddr->ctl_addr);
1921 udelay(10);
1922 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1923 udelay(10);
1924 outb(ap->ctl, ioaddr->ctl_addr);
1925 }
1926
1927 /* spec mandates ">= 2ms" before checking status.
1928 * We wait 150ms, because that was the magic delay used for
1929 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1930 * between when the ATA command register is written, and then
1931 * status is checked. Because waiting for "a while" before
1932 * checking status is fine, post SRST, we perform this magic
1933 * delay here as well.
1934 */
1935 msleep(150);
1936
1937 ata_bus_post_reset(ap, devmask);
1938
1939 return 0;
1940}
1941
1942/**
1943 * ata_bus_reset - reset host port and associated ATA channel
1944 * @ap: port to reset
1945 *
1946 * This is typically the first time we actually start issuing
1947 * commands to the ATA channel. We wait for BSY to clear, then
1948 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1949 * result. Determine what devices, if any, are on the channel
1950 * by looking at the device 0/1 error register. Look at the signature
1951 * stored in each device's taskfile registers, to determine if
1952 * the device is ATA or ATAPI.
1953 *
1954 * LOCKING:
0cba632b
JG
1955 * PCI/etc. bus probe sem.
1956 * Obtains host_set lock.
1da177e4
LT
1957 *
1958 * SIDE EFFECTS:
1959 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1960 */
1961
1962void ata_bus_reset(struct ata_port *ap)
1963{
1964 struct ata_ioports *ioaddr = &ap->ioaddr;
1965 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1966 u8 err;
1967 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1968
1969 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1970
1971 /* determine if device 0/1 are present */
1972 if (ap->flags & ATA_FLAG_SATA_RESET)
1973 dev0 = 1;
1974 else {
1975 dev0 = ata_devchk(ap, 0);
1976 if (slave_possible)
1977 dev1 = ata_devchk(ap, 1);
1978 }
1979
1980 if (dev0)
1981 devmask |= (1 << 0);
1982 if (dev1)
1983 devmask |= (1 << 1);
1984
1985 /* select device 0 again */
1986 ap->ops->dev_select(ap, 0);
1987
1988 /* issue bus reset */
1989 if (ap->flags & ATA_FLAG_SRST)
1990 rc = ata_bus_softreset(ap, devmask);
1991 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1992 /* set up device control */
1993 if (ap->flags & ATA_FLAG_MMIO)
1994 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1995 else
1996 outb(ap->ctl, ioaddr->ctl_addr);
1997 rc = ata_bus_edd(ap);
1998 }
1999
2000 if (rc)
2001 goto err_out;
2002
2003 /*
2004 * determine by signature whether we have ATA or ATAPI devices
2005 */
2006 err = ata_dev_try_classify(ap, 0);
2007 if ((slave_possible) && (err != 0x81))
2008 ata_dev_try_classify(ap, 1);
2009
2010 /* re-enable interrupts */
2011 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2012 ata_irq_on(ap);
2013
2014 /* is double-select really necessary? */
2015 if (ap->device[1].class != ATA_DEV_NONE)
2016 ap->ops->dev_select(ap, 1);
2017 if (ap->device[0].class != ATA_DEV_NONE)
2018 ap->ops->dev_select(ap, 0);
2019
2020 /* if no devices were detected, disable this port */
2021 if ((ap->device[0].class == ATA_DEV_NONE) &&
2022 (ap->device[1].class == ATA_DEV_NONE))
2023 goto err_out;
2024
2025 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2026 /* set up device control for ATA_FLAG_SATA_RESET */
2027 if (ap->flags & ATA_FLAG_MMIO)
2028 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2029 else
2030 outb(ap->ctl, ioaddr->ctl_addr);
2031 }
2032
2033 DPRINTK("EXIT\n");
2034 return;
2035
2036err_out:
2037 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2038 ap->ops->port_disable(ap);
2039
2040 DPRINTK("EXIT\n");
2041}
2042
057ace5e
JG
2043static void ata_pr_blacklisted(const struct ata_port *ap,
2044 const struct ata_device *dev)
1da177e4
LT
2045{
2046 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2047 ap->id, dev->devno);
2048}
2049
2050static const char * ata_dma_blacklist [] = {
2051 "WDC AC11000H",
2052 "WDC AC22100H",
2053 "WDC AC32500H",
2054 "WDC AC33100H",
2055 "WDC AC31600H",
2056 "WDC AC32100H",
2057 "WDC AC23200L",
2058 "Compaq CRD-8241B",
2059 "CRD-8400B",
2060 "CRD-8480B",
2061 "CRD-8482B",
2062 "CRD-84",
2063 "SanDisk SDP3B",
2064 "SanDisk SDP3B-64",
2065 "SANYO CD-ROM CRD",
2066 "HITACHI CDR-8",
2067 "HITACHI CDR-8335",
2068 "HITACHI CDR-8435",
2069 "Toshiba CD-ROM XM-6202B",
e922256a 2070 "TOSHIBA CD-ROM XM-1702BC",
1da177e4
LT
2071 "CD-532E-A",
2072 "E-IDE CD-ROM CR-840",
2073 "CD-ROM Drive/F5A",
2074 "WPI CDD-820",
2075 "SAMSUNG CD-ROM SC-148C",
2076 "SAMSUNG CD-ROM SC",
2077 "SanDisk SDP3B-64",
1da177e4
LT
2078 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2079 "_NEC DV5800A",
2080};
2081
057ace5e 2082static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4
LT
2083{
2084 unsigned char model_num[40];
2085 char *s;
2086 unsigned int len;
2087 int i;
2088
2089 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2090 sizeof(model_num));
2091 s = &model_num[0];
2092 len = strnlen(s, sizeof(model_num));
2093
2094 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2095 while ((len > 0) && (s[len - 1] == ' ')) {
2096 len--;
2097 s[len] = 0;
2098 }
2099
2100 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2101 if (!strncmp(ata_dma_blacklist[i], s, len))
2102 return 1;
2103
2104 return 0;
2105}
2106
057ace5e 2107static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
1da177e4 2108{
057ace5e 2109 const struct ata_device *master, *slave;
1da177e4
LT
2110 unsigned int mask;
2111
2112 master = &ap->device[0];
2113 slave = &ap->device[1];
2114
2115 assert (ata_dev_present(master) || ata_dev_present(slave));
2116
2117 if (shift == ATA_SHIFT_UDMA) {
2118 mask = ap->udma_mask;
2119 if (ata_dev_present(master)) {
2120 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2121 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2122 mask = 0;
2123 ata_pr_blacklisted(ap, master);
2124 }
2125 }
2126 if (ata_dev_present(slave)) {
2127 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2128 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2129 mask = 0;
2130 ata_pr_blacklisted(ap, slave);
2131 }
2132 }
2133 }
2134 else if (shift == ATA_SHIFT_MWDMA) {
2135 mask = ap->mwdma_mask;
2136 if (ata_dev_present(master)) {
2137 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2138 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2139 mask = 0;
2140 ata_pr_blacklisted(ap, master);
2141 }
2142 }
2143 if (ata_dev_present(slave)) {
2144 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2145 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2146 mask = 0;
2147 ata_pr_blacklisted(ap, slave);
2148 }
2149 }
2150 }
2151 else if (shift == ATA_SHIFT_PIO) {
2152 mask = ap->pio_mask;
2153 if (ata_dev_present(master)) {
2154 /* spec doesn't return explicit support for
2155 * PIO0-2, so we fake it
2156 */
2157 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2158 tmp_mode <<= 3;
2159 tmp_mode |= 0x7;
2160 mask &= tmp_mode;
2161 }
2162 if (ata_dev_present(slave)) {
2163 /* spec doesn't return explicit support for
2164 * PIO0-2, so we fake it
2165 */
2166 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2167 tmp_mode <<= 3;
2168 tmp_mode |= 0x7;
2169 mask &= tmp_mode;
2170 }
2171 }
2172 else {
2173 mask = 0xffffffff; /* shut up compiler warning */
2174 BUG();
2175 }
2176
2177 return mask;
2178}
2179
2180/* find greatest bit */
2181static int fgb(u32 bitmap)
2182{
2183 unsigned int i;
2184 int x = -1;
2185
2186 for (i = 0; i < 32; i++)
2187 if (bitmap & (1 << i))
2188 x = i;
2189
2190 return x;
2191}
2192
2193/**
2194 * ata_choose_xfer_mode - attempt to find best transfer mode
2195 * @ap: Port for which an xfer mode will be selected
2196 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2197 * @xfer_shift_out: (output) bit shift that selects this mode
2198 *
0cba632b
JG
2199 * Based on host and device capabilities, determine the
2200 * maximum transfer mode that is amenable to all.
2201 *
1da177e4 2202 * LOCKING:
0cba632b 2203 * PCI/etc. bus probe sem.
1da177e4
LT
2204 *
2205 * RETURNS:
2206 * Zero on success, negative on error.
2207 */
2208
057ace5e 2209static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
2210 u8 *xfer_mode_out,
2211 unsigned int *xfer_shift_out)
2212{
2213 unsigned int mask, shift;
2214 int x, i;
2215
2216 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2217 shift = xfer_mode_classes[i].shift;
2218 mask = ata_get_mode_mask(ap, shift);
2219
2220 x = fgb(mask);
2221 if (x >= 0) {
2222 *xfer_mode_out = xfer_mode_classes[i].base + x;
2223 *xfer_shift_out = shift;
2224 return 0;
2225 }
2226 }
2227
2228 return -1;
2229}
2230
2231/**
2232 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2233 * @ap: Port associated with device @dev
2234 * @dev: Device to which command will be sent
2235 *
780a87f7
JG
2236 * Issue SET FEATURES - XFER MODE command to device @dev
2237 * on port @ap.
2238 *
1da177e4 2239 * LOCKING:
0cba632b 2240 * PCI/etc. bus probe sem.
1da177e4
LT
2241 */
2242
2243static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2244{
2245 DECLARE_COMPLETION(wait);
2246 struct ata_queued_cmd *qc;
2247 int rc;
2248 unsigned long flags;
2249
2250 /* set up set-features taskfile */
2251 DPRINTK("set features - xfer mode\n");
2252
2253 qc = ata_qc_new_init(ap, dev);
2254 BUG_ON(qc == NULL);
2255
2256 qc->tf.command = ATA_CMD_SET_FEATURES;
2257 qc->tf.feature = SETFEATURES_XFER;
2258 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2259 qc->tf.protocol = ATA_PROT_NODATA;
2260 qc->tf.nsect = dev->xfer_mode;
2261
2262 qc->waiting = &wait;
2263 qc->complete_fn = ata_qc_complete_noop;
2264
2265 spin_lock_irqsave(&ap->host_set->lock, flags);
2266 rc = ata_qc_issue(qc);
2267 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2268
2269 if (rc)
2270 ata_port_disable(ap);
2271 else
2272 wait_for_completion(&wait);
2273
2274 DPRINTK("EXIT\n");
2275}
2276
59a10b17
AL
2277/**
2278 * ata_dev_reread_id - Reread the device identify device info
2279 * @ap: port where the device is
2280 * @dev: device to reread the identify device info
2281 *
2282 * LOCKING:
2283 */
2284
2285static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2286{
2287 DECLARE_COMPLETION(wait);
2288 struct ata_queued_cmd *qc;
2289 unsigned long flags;
2290 int rc;
2291
2292 qc = ata_qc_new_init(ap, dev);
2293 BUG_ON(qc == NULL);
2294
2295 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
2296 qc->dma_dir = DMA_FROM_DEVICE;
2297
2298 if (dev->class == ATA_DEV_ATA) {
2299 qc->tf.command = ATA_CMD_ID_ATA;
2300 DPRINTK("do ATA identify\n");
2301 } else {
2302 qc->tf.command = ATA_CMD_ID_ATAPI;
2303 DPRINTK("do ATAPI identify\n");
2304 }
2305
2306 qc->tf.flags |= ATA_TFLAG_DEVICE;
2307 qc->tf.protocol = ATA_PROT_PIO;
2308 qc->nsect = 1;
2309
2310 qc->waiting = &wait;
2311 qc->complete_fn = ata_qc_complete_noop;
2312
2313 spin_lock_irqsave(&ap->host_set->lock, flags);
2314 rc = ata_qc_issue(qc);
2315 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2316
2317 if (rc)
2318 goto err_out;
2319
2320 wait_for_completion(&wait);
2321
2322 swap_buf_le16(dev->id, ATA_ID_WORDS);
2323
2324 ata_dump_id(dev);
2325
2326 DPRINTK("EXIT\n");
2327
2328 return;
2329err_out:
2330 ata_port_disable(ap);
2331}
2332
8bf62ece
AL
2333/**
2334 * ata_dev_init_params - Issue INIT DEV PARAMS command
2335 * @ap: Port associated with device @dev
2336 * @dev: Device to which command will be sent
2337 *
2338 * LOCKING:
2339 */
2340
2341static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2342{
2343 DECLARE_COMPLETION(wait);
2344 struct ata_queued_cmd *qc;
2345 int rc;
2346 unsigned long flags;
2347 u16 sectors = dev->id[6];
2348 u16 heads = dev->id[3];
2349
2350 /* Number of sectors per track 1-255. Number of heads 1-16 */
2351 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2352 return;
2353
2354 /* set up init dev params taskfile */
2355 DPRINTK("init dev params \n");
2356
2357 qc = ata_qc_new_init(ap, dev);
2358 BUG_ON(qc == NULL);
2359
2360 qc->tf.command = ATA_CMD_INIT_DEV_PARAMS;
2361 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2362 qc->tf.protocol = ATA_PROT_NODATA;
2363 qc->tf.nsect = sectors;
2364 qc->tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2365
2366 qc->waiting = &wait;
2367 qc->complete_fn = ata_qc_complete_noop;
2368
2369 spin_lock_irqsave(&ap->host_set->lock, flags);
2370 rc = ata_qc_issue(qc);
2371 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2372
2373 if (rc)
2374 ata_port_disable(ap);
2375 else
2376 wait_for_completion(&wait);
2377
2378 DPRINTK("EXIT\n");
2379}
2380
1da177e4 2381/**
0cba632b
JG
2382 * ata_sg_clean - Unmap DMA memory associated with command
2383 * @qc: Command containing DMA memory to be released
2384 *
2385 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2386 *
2387 * LOCKING:
0cba632b 2388 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2389 */
2390
2391static void ata_sg_clean(struct ata_queued_cmd *qc)
2392{
2393 struct ata_port *ap = qc->ap;
cedc9a47 2394 struct scatterlist *sg = qc->__sg;
1da177e4 2395 int dir = qc->dma_dir;
cedc9a47 2396 void *pad_buf = NULL;
1da177e4
LT
2397
2398 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2399 assert(sg != NULL);
2400
2401 if (qc->flags & ATA_QCFLAG_SINGLE)
2402 assert(qc->n_elem == 1);
2403
2c13b7ce 2404 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2405
cedc9a47
JG
2406 /* if we padded the buffer out to 32-bit bound, and data
2407 * xfer direction is from-device, we must copy from the
2408 * pad buffer back into the supplied buffer
2409 */
2410 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2411 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2412
2413 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d
JG
2414 if (qc->n_elem)
2415 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2416 /* restore last sg */
2417 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2418 if (pad_buf) {
2419 struct scatterlist *psg = &qc->pad_sgent;
2420 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2421 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2422 kunmap_atomic(psg->page, KM_IRQ0);
2423 }
2424 } else {
e1410f2d
JG
2425 if (sg_dma_len(&sg[0]) > 0)
2426 dma_unmap_single(ap->host_set->dev,
2427 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2428 dir);
cedc9a47
JG
2429 /* restore sg */
2430 sg->length += qc->pad_len;
2431 if (pad_buf)
2432 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2433 pad_buf, qc->pad_len);
2434 }
1da177e4
LT
2435
2436 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2437 qc->__sg = NULL;
1da177e4
LT
2438}
2439
2440/**
2441 * ata_fill_sg - Fill PCI IDE PRD table
2442 * @qc: Metadata associated with taskfile to be transferred
2443 *
780a87f7
JG
2444 * Fill PCI IDE PRD (scatter-gather) table with segments
2445 * associated with the current disk command.
2446 *
1da177e4 2447 * LOCKING:
780a87f7 2448 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2449 *
2450 */
2451static void ata_fill_sg(struct ata_queued_cmd *qc)
2452{
1da177e4 2453 struct ata_port *ap = qc->ap;
cedc9a47
JG
2454 struct scatterlist *sg;
2455 unsigned int idx;
1da177e4 2456
cedc9a47 2457 assert(qc->__sg != NULL);
1da177e4
LT
2458 assert(qc->n_elem > 0);
2459
2460 idx = 0;
cedc9a47 2461 ata_for_each_sg(sg, qc) {
1da177e4
LT
2462 u32 addr, offset;
2463 u32 sg_len, len;
2464
2465 /* determine if physical DMA addr spans 64K boundary.
2466 * Note h/w doesn't support 64-bit, so we unconditionally
2467 * truncate dma_addr_t to u32.
2468 */
2469 addr = (u32) sg_dma_address(sg);
2470 sg_len = sg_dma_len(sg);
2471
2472 while (sg_len) {
2473 offset = addr & 0xffff;
2474 len = sg_len;
2475 if ((offset + sg_len) > 0x10000)
2476 len = 0x10000 - offset;
2477
2478 ap->prd[idx].addr = cpu_to_le32(addr);
2479 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2480 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2481
2482 idx++;
2483 sg_len -= len;
2484 addr += len;
2485 }
2486 }
2487
2488 if (idx)
2489 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2490}
2491/**
2492 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2493 * @qc: Metadata associated with taskfile to check
2494 *
780a87f7
JG
2495 * Allow low-level driver to filter ATA PACKET commands, returning
2496 * a status indicating whether or not it is OK to use DMA for the
2497 * supplied PACKET command.
2498 *
1da177e4 2499 * LOCKING:
0cba632b
JG
2500 * spin_lock_irqsave(host_set lock)
2501 *
1da177e4
LT
2502 * RETURNS: 0 when ATAPI DMA can be used
2503 * nonzero otherwise
2504 */
2505int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2506{
2507 struct ata_port *ap = qc->ap;
2508 int rc = 0; /* Assume ATAPI DMA is OK by default */
2509
2510 if (ap->ops->check_atapi_dma)
2511 rc = ap->ops->check_atapi_dma(qc);
2512
2513 return rc;
2514}
2515/**
2516 * ata_qc_prep - Prepare taskfile for submission
2517 * @qc: Metadata associated with taskfile to be prepared
2518 *
780a87f7
JG
2519 * Prepare ATA taskfile for submission.
2520 *
1da177e4
LT
2521 * LOCKING:
2522 * spin_lock_irqsave(host_set lock)
2523 */
2524void ata_qc_prep(struct ata_queued_cmd *qc)
2525{
2526 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2527 return;
2528
2529 ata_fill_sg(qc);
2530}
2531
0cba632b
JG
2532/**
2533 * ata_sg_init_one - Associate command with memory buffer
2534 * @qc: Command to be associated
2535 * @buf: Memory buffer
2536 * @buflen: Length of memory buffer, in bytes.
2537 *
2538 * Initialize the data-related elements of queued_cmd @qc
2539 * to point to a single memory buffer, @buf of byte length @buflen.
2540 *
2541 * LOCKING:
2542 * spin_lock_irqsave(host_set lock)
2543 */
2544
1da177e4
LT
2545void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2546{
2547 struct scatterlist *sg;
2548
2549 qc->flags |= ATA_QCFLAG_SINGLE;
2550
2551 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2552 qc->__sg = &qc->sgent;
1da177e4 2553 qc->n_elem = 1;
cedc9a47 2554 qc->orig_n_elem = 1;
1da177e4
LT
2555 qc->buf_virt = buf;
2556
cedc9a47 2557 sg = qc->__sg;
f0612bbc 2558 sg_init_one(sg, buf, buflen);
1da177e4
LT
2559}
2560
0cba632b
JG
2561/**
2562 * ata_sg_init - Associate command with scatter-gather table.
2563 * @qc: Command to be associated
2564 * @sg: Scatter-gather table.
2565 * @n_elem: Number of elements in s/g table.
2566 *
2567 * Initialize the data-related elements of queued_cmd @qc
2568 * to point to a scatter-gather table @sg, containing @n_elem
2569 * elements.
2570 *
2571 * LOCKING:
2572 * spin_lock_irqsave(host_set lock)
2573 */
2574
1da177e4
LT
2575void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2576 unsigned int n_elem)
2577{
2578 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2579 qc->__sg = sg;
1da177e4 2580 qc->n_elem = n_elem;
cedc9a47 2581 qc->orig_n_elem = n_elem;
1da177e4
LT
2582}
2583
2584/**
0cba632b
JG
2585 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2586 * @qc: Command with memory buffer to be mapped.
2587 *
2588 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2589 *
2590 * LOCKING:
2591 * spin_lock_irqsave(host_set lock)
2592 *
2593 * RETURNS:
0cba632b 2594 * Zero on success, negative on error.
1da177e4
LT
2595 */
2596
2597static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2598{
2599 struct ata_port *ap = qc->ap;
2600 int dir = qc->dma_dir;
cedc9a47 2601 struct scatterlist *sg = qc->__sg;
1da177e4
LT
2602 dma_addr_t dma_address;
2603
cedc9a47
JG
2604 /* we must lengthen transfers to end on a 32-bit boundary */
2605 qc->pad_len = sg->length & 3;
2606 if (qc->pad_len) {
2607 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2608 struct scatterlist *psg = &qc->pad_sgent;
2609
2610 assert(qc->dev->class == ATA_DEV_ATAPI);
2611
2612 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2613
2614 if (qc->tf.flags & ATA_TFLAG_WRITE)
2615 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2616 qc->pad_len);
2617
2618 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2619 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2620 /* trim sg */
2621 sg->length -= qc->pad_len;
2622
2623 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2624 sg->length, qc->pad_len);
2625 }
2626
e1410f2d
JG
2627 if (!sg->length) {
2628 sg_dma_address(sg) = 0;
2629 goto skip_map;
2630 }
2631
1da177e4 2632 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
32529e01 2633 sg->length, dir);
537a95d9
TH
2634 if (dma_mapping_error(dma_address)) {
2635 /* restore sg */
2636 sg->length += qc->pad_len;
1da177e4 2637 return -1;
537a95d9 2638 }
1da177e4
LT
2639
2640 sg_dma_address(sg) = dma_address;
e1410f2d 2641skip_map:
32529e01 2642 sg_dma_len(sg) = sg->length;
1da177e4
LT
2643
2644 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2645 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2646
2647 return 0;
2648}
2649
2650/**
0cba632b
JG
2651 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2652 * @qc: Command with scatter-gather table to be mapped.
2653 *
2654 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
2655 *
2656 * LOCKING:
2657 * spin_lock_irqsave(host_set lock)
2658 *
2659 * RETURNS:
0cba632b 2660 * Zero on success, negative on error.
1da177e4
LT
2661 *
2662 */
2663
2664static int ata_sg_setup(struct ata_queued_cmd *qc)
2665{
2666 struct ata_port *ap = qc->ap;
cedc9a47
JG
2667 struct scatterlist *sg = qc->__sg;
2668 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 2669 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
2670
2671 VPRINTK("ENTER, ata%u\n", ap->id);
2672 assert(qc->flags & ATA_QCFLAG_SG);
2673
cedc9a47
JG
2674 /* we must lengthen transfers to end on a 32-bit boundary */
2675 qc->pad_len = lsg->length & 3;
2676 if (qc->pad_len) {
2677 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2678 struct scatterlist *psg = &qc->pad_sgent;
2679 unsigned int offset;
2680
2681 assert(qc->dev->class == ATA_DEV_ATAPI);
2682
2683 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2684
2685 /*
2686 * psg->page/offset are used to copy to-be-written
2687 * data in this function or read data in ata_sg_clean.
2688 */
2689 offset = lsg->offset + lsg->length - qc->pad_len;
2690 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2691 psg->offset = offset_in_page(offset);
2692
2693 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2694 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2695 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2696 kunmap_atomic(psg->page, KM_IRQ0);
2697 }
2698
2699 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2700 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2701 /* trim last sg */
2702 lsg->length -= qc->pad_len;
e1410f2d
JG
2703 if (lsg->length == 0)
2704 trim_sg = 1;
cedc9a47
JG
2705
2706 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2707 qc->n_elem - 1, lsg->length, qc->pad_len);
2708 }
2709
e1410f2d
JG
2710 pre_n_elem = qc->n_elem;
2711 if (trim_sg && pre_n_elem)
2712 pre_n_elem--;
2713
2714 if (!pre_n_elem) {
2715 n_elem = 0;
2716 goto skip_map;
2717 }
2718
1da177e4 2719 dir = qc->dma_dir;
e1410f2d 2720 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
537a95d9
TH
2721 if (n_elem < 1) {
2722 /* restore last sg */
2723 lsg->length += qc->pad_len;
1da177e4 2724 return -1;
537a95d9 2725 }
1da177e4
LT
2726
2727 DPRINTK("%d sg elements mapped\n", n_elem);
2728
e1410f2d 2729skip_map:
1da177e4
LT
2730 qc->n_elem = n_elem;
2731
2732 return 0;
2733}
2734
40e8c82c
TH
2735/**
2736 * ata_poll_qc_complete - turn irq back on and finish qc
2737 * @qc: Command to complete
8e8b77dd 2738 * @err_mask: ATA status register content
40e8c82c
TH
2739 *
2740 * LOCKING:
2741 * None. (grabs host lock)
2742 */
2743
a7dac447 2744void ata_poll_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
40e8c82c
TH
2745{
2746 struct ata_port *ap = qc->ap;
b8f6153e 2747 unsigned long flags;
40e8c82c 2748
b8f6153e 2749 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
2750 ap->flags &= ~ATA_FLAG_NOINTR;
2751 ata_irq_on(ap);
a7dac447 2752 ata_qc_complete(qc, err_mask);
b8f6153e 2753 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
2754}
2755
1da177e4
LT
2756/**
2757 * ata_pio_poll -
6f0ef4fa 2758 * @ap: the target ata_port
1da177e4
LT
2759 *
2760 * LOCKING:
0cba632b 2761 * None. (executing in kernel thread context)
1da177e4
LT
2762 *
2763 * RETURNS:
6f0ef4fa 2764 * timeout value to use
1da177e4
LT
2765 */
2766
2767static unsigned long ata_pio_poll(struct ata_port *ap)
2768{
2769 u8 status;
14be71f4
AL
2770 unsigned int poll_state = HSM_ST_UNKNOWN;
2771 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4
AL
2772
2773 switch (ap->hsm_task_state) {
2774 case HSM_ST:
2775 case HSM_ST_POLL:
2776 poll_state = HSM_ST_POLL;
2777 reg_state = HSM_ST;
1da177e4 2778 break;
14be71f4
AL
2779 case HSM_ST_LAST:
2780 case HSM_ST_LAST_POLL:
2781 poll_state = HSM_ST_LAST_POLL;
2782 reg_state = HSM_ST_LAST;
1da177e4
LT
2783 break;
2784 default:
2785 BUG();
2786 break;
2787 }
2788
2789 status = ata_chk_status(ap);
2790 if (status & ATA_BUSY) {
2791 if (time_after(jiffies, ap->pio_task_timeout)) {
7c398335 2792 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
2793 return 0;
2794 }
14be71f4 2795 ap->hsm_task_state = poll_state;
1da177e4
LT
2796 return ATA_SHORT_PAUSE;
2797 }
2798
14be71f4 2799 ap->hsm_task_state = reg_state;
1da177e4
LT
2800 return 0;
2801}
2802
2803/**
6f0ef4fa
RD
2804 * ata_pio_complete - check if drive is busy or idle
2805 * @ap: the target ata_port
1da177e4
LT
2806 *
2807 * LOCKING:
0cba632b 2808 * None. (executing in kernel thread context)
7fb6ec28
JG
2809 *
2810 * RETURNS:
2811 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
2812 */
2813
7fb6ec28 2814static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
2815{
2816 struct ata_queued_cmd *qc;
2817 u8 drv_stat;
2818
2819 /*
31433ea3
AC
2820 * This is purely heuristic. This is a fast path. Sometimes when
2821 * we enter, BSY will be cleared in a chk-status or two. If not,
2822 * the drive is probably seeking or something. Snooze for a couple
2823 * msecs, then chk-status again. If still busy, fall back to
14be71f4 2824 * HSM_ST_POLL state.
1da177e4
LT
2825 */
2826 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2827 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2828 msleep(2);
2829 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2830 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
14be71f4 2831 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 2832 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 2833 return 0;
1da177e4
LT
2834 }
2835 }
2836
2837 drv_stat = ata_wait_idle(ap);
2838 if (!ata_ok(drv_stat)) {
14be71f4 2839 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 2840 return 0;
1da177e4
LT
2841 }
2842
2843 qc = ata_qc_from_tag(ap, ap->active_tag);
2844 assert(qc != NULL);
2845
14be71f4 2846 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 2847
a7dac447 2848 ata_poll_qc_complete(qc, 0);
7fb6ec28
JG
2849
2850 /* another command may start at this point */
2851
2852 return 1;
1da177e4
LT
2853}
2854
0baab86b
EF
2855
2856/**
6f0ef4fa 2857 * swap_buf_le16 - swap halves of 16-words in place
0baab86b
EF
2858 * @buf: Buffer to swap
2859 * @buf_words: Number of 16-bit words in buffer.
2860 *
2861 * Swap halves of 16-bit words if needed to convert from
2862 * little-endian byte order to native cpu byte order, or
2863 * vice-versa.
2864 *
2865 * LOCKING:
6f0ef4fa 2866 * Inherited from caller.
0baab86b 2867 */
1da177e4
LT
2868void swap_buf_le16(u16 *buf, unsigned int buf_words)
2869{
2870#ifdef __BIG_ENDIAN
2871 unsigned int i;
2872
2873 for (i = 0; i < buf_words; i++)
2874 buf[i] = le16_to_cpu(buf[i]);
2875#endif /* __BIG_ENDIAN */
2876}
2877
6ae4cfb5
AL
2878/**
2879 * ata_mmio_data_xfer - Transfer data by MMIO
2880 * @ap: port to read/write
2881 * @buf: data buffer
2882 * @buflen: buffer length
344babaa 2883 * @write_data: read/write
6ae4cfb5
AL
2884 *
2885 * Transfer data from/to the device data register by MMIO.
2886 *
2887 * LOCKING:
2888 * Inherited from caller.
6ae4cfb5
AL
2889 */
2890
1da177e4
LT
2891static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2892 unsigned int buflen, int write_data)
2893{
2894 unsigned int i;
2895 unsigned int words = buflen >> 1;
2896 u16 *buf16 = (u16 *) buf;
2897 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2898
6ae4cfb5 2899 /* Transfer multiple of 2 bytes */
1da177e4
LT
2900 if (write_data) {
2901 for (i = 0; i < words; i++)
2902 writew(le16_to_cpu(buf16[i]), mmio);
2903 } else {
2904 for (i = 0; i < words; i++)
2905 buf16[i] = cpu_to_le16(readw(mmio));
2906 }
6ae4cfb5
AL
2907
2908 /* Transfer trailing 1 byte, if any. */
2909 if (unlikely(buflen & 0x01)) {
2910 u16 align_buf[1] = { 0 };
2911 unsigned char *trailing_buf = buf + buflen - 1;
2912
2913 if (write_data) {
2914 memcpy(align_buf, trailing_buf, 1);
2915 writew(le16_to_cpu(align_buf[0]), mmio);
2916 } else {
2917 align_buf[0] = cpu_to_le16(readw(mmio));
2918 memcpy(trailing_buf, align_buf, 1);
2919 }
2920 }
1da177e4
LT
2921}
2922
6ae4cfb5
AL
2923/**
2924 * ata_pio_data_xfer - Transfer data by PIO
2925 * @ap: port to read/write
2926 * @buf: data buffer
2927 * @buflen: buffer length
344babaa 2928 * @write_data: read/write
6ae4cfb5
AL
2929 *
2930 * Transfer data from/to the device data register by PIO.
2931 *
2932 * LOCKING:
2933 * Inherited from caller.
6ae4cfb5
AL
2934 */
2935
1da177e4
LT
2936static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2937 unsigned int buflen, int write_data)
2938{
6ae4cfb5 2939 unsigned int words = buflen >> 1;
1da177e4 2940
6ae4cfb5 2941 /* Transfer multiple of 2 bytes */
1da177e4 2942 if (write_data)
6ae4cfb5 2943 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 2944 else
6ae4cfb5
AL
2945 insw(ap->ioaddr.data_addr, buf, words);
2946
2947 /* Transfer trailing 1 byte, if any. */
2948 if (unlikely(buflen & 0x01)) {
2949 u16 align_buf[1] = { 0 };
2950 unsigned char *trailing_buf = buf + buflen - 1;
2951
2952 if (write_data) {
2953 memcpy(align_buf, trailing_buf, 1);
2954 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2955 } else {
2956 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2957 memcpy(trailing_buf, align_buf, 1);
2958 }
2959 }
1da177e4
LT
2960}
2961
6ae4cfb5
AL
2962/**
2963 * ata_data_xfer - Transfer data from/to the data register.
2964 * @ap: port to read/write
2965 * @buf: data buffer
2966 * @buflen: buffer length
2967 * @do_write: read/write
2968 *
2969 * Transfer data from/to the device data register.
2970 *
2971 * LOCKING:
2972 * Inherited from caller.
6ae4cfb5
AL
2973 */
2974
1da177e4
LT
2975static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2976 unsigned int buflen, int do_write)
2977{
2978 if (ap->flags & ATA_FLAG_MMIO)
2979 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2980 else
2981 ata_pio_data_xfer(ap, buf, buflen, do_write);
2982}
2983
6ae4cfb5
AL
2984/**
2985 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
2986 * @qc: Command on going
2987 *
2988 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
2989 *
2990 * LOCKING:
2991 * Inherited from caller.
2992 */
2993
1da177e4
LT
2994static void ata_pio_sector(struct ata_queued_cmd *qc)
2995{
2996 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 2997 struct scatterlist *sg = qc->__sg;
1da177e4
LT
2998 struct ata_port *ap = qc->ap;
2999 struct page *page;
3000 unsigned int offset;
3001 unsigned char *buf;
3002
3003 if (qc->cursect == (qc->nsect - 1))
14be71f4 3004 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3005
3006 page = sg[qc->cursg].page;
3007 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3008
3009 /* get the current page and offset */
3010 page = nth_page(page, (offset >> PAGE_SHIFT));
3011 offset %= PAGE_SIZE;
3012
3013 buf = kmap(page) + offset;
3014
3015 qc->cursect++;
3016 qc->cursg_ofs++;
3017
32529e01 3018 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3019 qc->cursg++;
3020 qc->cursg_ofs = 0;
3021 }
3022
3023 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3024
3025 /* do the actual data transfer */
3026 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3027 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3028
3029 kunmap(page);
3030}
3031
6ae4cfb5
AL
3032/**
3033 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3034 * @qc: Command on going
3035 * @bytes: number of bytes
3036 *
3037 * Transfer Transfer data from/to the ATAPI device.
3038 *
3039 * LOCKING:
3040 * Inherited from caller.
3041 *
3042 */
3043
1da177e4
LT
3044static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3045{
3046 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3047 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3048 struct ata_port *ap = qc->ap;
3049 struct page *page;
3050 unsigned char *buf;
3051 unsigned int offset, count;
3052
563a6e1f 3053 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3054 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3055
3056next_sg:
563a6e1f 3057 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3058 /*
563a6e1f
AL
3059 * The end of qc->sg is reached and the device expects
3060 * more data to transfer. In order not to overrun qc->sg
3061 * and fulfill length specified in the byte count register,
3062 * - for read case, discard trailing data from the device
3063 * - for write case, padding zero data to the device
3064 */
3065 u16 pad_buf[1] = { 0 };
3066 unsigned int words = bytes >> 1;
3067 unsigned int i;
3068
3069 if (words) /* warning if bytes > 1 */
7fb6ec28 3070 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3071 ap->id, bytes);
3072
3073 for (i = 0; i < words; i++)
3074 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3075
14be71f4 3076 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3077 return;
3078 }
3079
cedc9a47 3080 sg = &qc->__sg[qc->cursg];
1da177e4 3081
1da177e4
LT
3082 page = sg->page;
3083 offset = sg->offset + qc->cursg_ofs;
3084
3085 /* get the current page and offset */
3086 page = nth_page(page, (offset >> PAGE_SHIFT));
3087 offset %= PAGE_SIZE;
3088
6952df03 3089 /* don't overrun current sg */
32529e01 3090 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3091
3092 /* don't cross page boundaries */
3093 count = min(count, (unsigned int)PAGE_SIZE - offset);
3094
3095 buf = kmap(page) + offset;
3096
3097 bytes -= count;
3098 qc->curbytes += count;
3099 qc->cursg_ofs += count;
3100
32529e01 3101 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3102 qc->cursg++;
3103 qc->cursg_ofs = 0;
3104 }
3105
3106 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3107
3108 /* do the actual data transfer */
3109 ata_data_xfer(ap, buf, count, do_write);
3110
3111 kunmap(page);
3112
563a6e1f 3113 if (bytes)
1da177e4 3114 goto next_sg;
1da177e4
LT
3115}
3116
6ae4cfb5
AL
3117/**
3118 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3119 * @qc: Command on going
3120 *
3121 * Transfer Transfer data from/to the ATAPI device.
3122 *
3123 * LOCKING:
3124 * Inherited from caller.
6ae4cfb5
AL
3125 */
3126
1da177e4
LT
3127static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3128{
3129 struct ata_port *ap = qc->ap;
3130 struct ata_device *dev = qc->dev;
3131 unsigned int ireason, bc_lo, bc_hi, bytes;
3132 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3133
3134 ap->ops->tf_read(ap, &qc->tf);
3135 ireason = qc->tf.nsect;
3136 bc_lo = qc->tf.lbam;
3137 bc_hi = qc->tf.lbah;
3138 bytes = (bc_hi << 8) | bc_lo;
3139
3140 /* shall be cleared to zero, indicating xfer of data */
3141 if (ireason & (1 << 0))
3142 goto err_out;
3143
3144 /* make sure transfer direction matches expected */
3145 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3146 if (do_write != i_write)
3147 goto err_out;
3148
3149 __atapi_pio_bytes(qc, bytes);
3150
3151 return;
3152
3153err_out:
3154 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3155 ap->id, dev->devno);
14be71f4 3156 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3157}
3158
3159/**
6f0ef4fa
RD
3160 * ata_pio_block - start PIO on a block
3161 * @ap: the target ata_port
1da177e4
LT
3162 *
3163 * LOCKING:
0cba632b 3164 * None. (executing in kernel thread context)
1da177e4
LT
3165 */
3166
3167static void ata_pio_block(struct ata_port *ap)
3168{
3169 struct ata_queued_cmd *qc;
3170 u8 status;
3171
3172 /*
6f0ef4fa 3173 * This is purely heuristic. This is a fast path.
1da177e4
LT
3174 * Sometimes when we enter, BSY will be cleared in
3175 * a chk-status or two. If not, the drive is probably seeking
3176 * or something. Snooze for a couple msecs, then
3177 * chk-status again. If still busy, fall back to
14be71f4 3178 * HSM_ST_POLL state.
1da177e4
LT
3179 */
3180 status = ata_busy_wait(ap, ATA_BUSY, 5);
3181 if (status & ATA_BUSY) {
3182 msleep(2);
3183 status = ata_busy_wait(ap, ATA_BUSY, 10);
3184 if (status & ATA_BUSY) {
14be71f4 3185 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3186 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3187 return;
3188 }
3189 }
3190
3191 qc = ata_qc_from_tag(ap, ap->active_tag);
3192 assert(qc != NULL);
3193
3194 if (is_atapi_taskfile(&qc->tf)) {
3195 /* no more data to transfer or unsupported ATAPI command */
3196 if ((status & ATA_DRQ) == 0) {
14be71f4 3197 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3198 return;
3199 }
3200
3201 atapi_pio_bytes(qc);
3202 } else {
3203 /* handle BSY=0, DRQ=0 as error */
3204 if ((status & ATA_DRQ) == 0) {
14be71f4 3205 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3206 return;
3207 }
3208
3209 ata_pio_sector(qc);
3210 }
3211}
3212
3213static void ata_pio_error(struct ata_port *ap)
3214{
3215 struct ata_queued_cmd *qc;
a7dac447
JG
3216
3217 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
1da177e4
LT
3218
3219 qc = ata_qc_from_tag(ap, ap->active_tag);
3220 assert(qc != NULL);
3221
14be71f4 3222 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3223
a7dac447 3224 ata_poll_qc_complete(qc, AC_ERR_ATA_BUS);
1da177e4
LT
3225}
3226
3227static void ata_pio_task(void *_data)
3228{
3229 struct ata_port *ap = _data;
7fb6ec28
JG
3230 unsigned long timeout;
3231 int qc_completed;
3232
3233fsm_start:
3234 timeout = 0;
3235 qc_completed = 0;
1da177e4 3236
14be71f4
AL
3237 switch (ap->hsm_task_state) {
3238 case HSM_ST_IDLE:
1da177e4
LT
3239 return;
3240
14be71f4 3241 case HSM_ST:
1da177e4
LT
3242 ata_pio_block(ap);
3243 break;
3244
14be71f4 3245 case HSM_ST_LAST:
7fb6ec28 3246 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3247 break;
3248
14be71f4
AL
3249 case HSM_ST_POLL:
3250 case HSM_ST_LAST_POLL:
1da177e4
LT
3251 timeout = ata_pio_poll(ap);
3252 break;
3253
14be71f4
AL
3254 case HSM_ST_TMOUT:
3255 case HSM_ST_ERR:
1da177e4
LT
3256 ata_pio_error(ap);
3257 return;
3258 }
3259
3260 if (timeout)
7fb6ec28
JG
3261 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3262 else if (!qc_completed)
3263 goto fsm_start;
1da177e4
LT
3264}
3265
1da177e4
LT
3266/**
3267 * ata_qc_timeout - Handle timeout of queued command
3268 * @qc: Command that timed out
3269 *
3270 * Some part of the kernel (currently, only the SCSI layer)
3271 * has noticed that the active command on port @ap has not
3272 * completed after a specified length of time. Handle this
3273 * condition by disabling DMA (if necessary) and completing
3274 * transactions, with error if necessary.
3275 *
3276 * This also handles the case of the "lost interrupt", where
3277 * for some reason (possibly hardware bug, possibly driver bug)
3278 * an interrupt was not delivered to the driver, even though the
3279 * transaction completed successfully.
3280 *
3281 * LOCKING:
0cba632b 3282 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3283 */
3284
3285static void ata_qc_timeout(struct ata_queued_cmd *qc)
3286{
3287 struct ata_port *ap = qc->ap;
b8f6153e 3288 struct ata_host_set *host_set = ap->host_set;
1da177e4 3289 u8 host_stat = 0, drv_stat;
b8f6153e 3290 unsigned long flags;
1da177e4
LT
3291
3292 DPRINTK("ENTER\n");
3293
b8f6153e
JG
3294 spin_lock_irqsave(&host_set->lock, flags);
3295
1da177e4
LT
3296 /* hack alert! We cannot use the supplied completion
3297 * function from inside the ->eh_strategy_handler() thread.
3298 * libata is the only user of ->eh_strategy_handler() in
3299 * any kernel, so the default scsi_done() assumes it is
3300 * not being called from the SCSI EH.
3301 */
3302 qc->scsidone = scsi_finish_command;
3303
3304 switch (qc->tf.protocol) {
3305
3306 case ATA_PROT_DMA:
3307 case ATA_PROT_ATAPI_DMA:
3308 host_stat = ap->ops->bmdma_status(ap);
3309
3310 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3311 ap->ops->bmdma_stop(qc);
1da177e4
LT
3312
3313 /* fall through */
3314
3315 default:
3316 ata_altstatus(ap);
3317 drv_stat = ata_chk_status(ap);
3318
3319 /* ack bmdma irq events */
3320 ap->ops->irq_clear(ap);
3321
3322 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3323 ap->id, qc->tf.command, drv_stat, host_stat);
3324
3325 /* complete taskfile transaction */
a7dac447 3326 ata_qc_complete(qc, ac_err_mask(drv_stat));
1da177e4
LT
3327 break;
3328 }
b8f6153e
JG
3329
3330 spin_unlock_irqrestore(&host_set->lock, flags);
3331
1da177e4
LT
3332 DPRINTK("EXIT\n");
3333}
3334
3335/**
3336 * ata_eng_timeout - Handle timeout of queued command
3337 * @ap: Port on which timed-out command is active
3338 *
3339 * Some part of the kernel (currently, only the SCSI layer)
3340 * has noticed that the active command on port @ap has not
3341 * completed after a specified length of time. Handle this
3342 * condition by disabling DMA (if necessary) and completing
3343 * transactions, with error if necessary.
3344 *
3345 * This also handles the case of the "lost interrupt", where
3346 * for some reason (possibly hardware bug, possibly driver bug)
3347 * an interrupt was not delivered to the driver, even though the
3348 * transaction completed successfully.
3349 *
3350 * LOCKING:
3351 * Inherited from SCSI layer (none, can sleep)
3352 */
3353
3354void ata_eng_timeout(struct ata_port *ap)
3355{
3356 struct ata_queued_cmd *qc;
3357
3358 DPRINTK("ENTER\n");
3359
3360 qc = ata_qc_from_tag(ap, ap->active_tag);
e12669e7
JG
3361 if (qc)
3362 ata_qc_timeout(qc);
3363 else {
1da177e4
LT
3364 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3365 ap->id);
3366 goto out;
3367 }
3368
1da177e4
LT
3369out:
3370 DPRINTK("EXIT\n");
3371}
3372
3373/**
3374 * ata_qc_new - Request an available ATA command, for queueing
3375 * @ap: Port associated with device @dev
3376 * @dev: Device from whom we request an available command structure
3377 *
3378 * LOCKING:
0cba632b 3379 * None.
1da177e4
LT
3380 */
3381
3382static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3383{
3384 struct ata_queued_cmd *qc = NULL;
3385 unsigned int i;
3386
3387 for (i = 0; i < ATA_MAX_QUEUE; i++)
3388 if (!test_and_set_bit(i, &ap->qactive)) {
3389 qc = ata_qc_from_tag(ap, i);
3390 break;
3391 }
3392
3393 if (qc)
3394 qc->tag = i;
3395
3396 return qc;
3397}
3398
3399/**
3400 * ata_qc_new_init - Request an available ATA command, and initialize it
3401 * @ap: Port associated with device @dev
3402 * @dev: Device from whom we request an available command structure
3403 *
3404 * LOCKING:
0cba632b 3405 * None.
1da177e4
LT
3406 */
3407
3408struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3409 struct ata_device *dev)
3410{
3411 struct ata_queued_cmd *qc;
3412
3413 qc = ata_qc_new(ap);
3414 if (qc) {
1da177e4
LT
3415 qc->scsicmd = NULL;
3416 qc->ap = ap;
3417 qc->dev = dev;
1da177e4 3418
2c13b7ce 3419 ata_qc_reinit(qc);
1da177e4
LT
3420 }
3421
3422 return qc;
3423}
3424
a7dac447 3425int ata_qc_complete_noop(struct ata_queued_cmd *qc, unsigned int err_mask)
1da177e4
LT
3426{
3427 return 0;
3428}
3429
3430static void __ata_qc_complete(struct ata_queued_cmd *qc)
3431{
3432 struct ata_port *ap = qc->ap;
3433 unsigned int tag, do_clear = 0;
3434
3435 qc->flags = 0;
3436 tag = qc->tag;
3437 if (likely(ata_tag_valid(tag))) {
3438 if (tag == ap->active_tag)
3439 ap->active_tag = ATA_TAG_POISON;
3440 qc->tag = ATA_TAG_POISON;
3441 do_clear = 1;
3442 }
3443
3444 if (qc->waiting) {
3445 struct completion *waiting = qc->waiting;
3446 qc->waiting = NULL;
3447 complete(waiting);
3448 }
3449
3450 if (likely(do_clear))
3451 clear_bit(tag, &ap->qactive);
3452}
3453
3454/**
3455 * ata_qc_free - free unused ata_queued_cmd
3456 * @qc: Command to complete
3457 *
3458 * Designed to free unused ata_queued_cmd object
3459 * in case something prevents using it.
3460 *
3461 * LOCKING:
0cba632b 3462 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3463 */
3464void ata_qc_free(struct ata_queued_cmd *qc)
3465{
3466 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3467 assert(qc->waiting == NULL); /* nothing should be waiting */
3468
3469 __ata_qc_complete(qc);
3470}
3471
3472/**
3473 * ata_qc_complete - Complete an active ATA command
3474 * @qc: Command to complete
8e8b77dd 3475 * @err_mask: ATA Status register contents
0cba632b
JG
3476 *
3477 * Indicate to the mid and upper layers that an ATA
3478 * command has completed, with either an ok or not-ok status.
1da177e4
LT
3479 *
3480 * LOCKING:
0cba632b 3481 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3482 */
3483
a7dac447 3484void ata_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask)
1da177e4
LT
3485{
3486 int rc;
3487
3488 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3489 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3490
3491 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3492 ata_sg_clean(qc);
3493
3f3791d3
AL
3494 /* atapi: mark qc as inactive to prevent the interrupt handler
3495 * from completing the command twice later, before the error handler
3496 * is called. (when rc != 0 and atapi request sense is needed)
3497 */
3498 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3499
1da177e4 3500 /* call completion callback */
a7dac447 3501 rc = qc->complete_fn(qc, err_mask);
1da177e4
LT
3502
3503 /* if callback indicates not to complete command (non-zero),
3504 * return immediately
3505 */
3506 if (rc != 0)
3507 return;
3508
3509 __ata_qc_complete(qc);
3510
3511 VPRINTK("EXIT\n");
3512}
3513
3514static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3515{
3516 struct ata_port *ap = qc->ap;
3517
3518 switch (qc->tf.protocol) {
3519 case ATA_PROT_DMA:
3520 case ATA_PROT_ATAPI_DMA:
3521 return 1;
3522
3523 case ATA_PROT_ATAPI:
3524 case ATA_PROT_PIO:
3525 case ATA_PROT_PIO_MULT:
3526 if (ap->flags & ATA_FLAG_PIO_DMA)
3527 return 1;
3528
3529 /* fall through */
3530
3531 default:
3532 return 0;
3533 }
3534
3535 /* never reached */
3536}
3537
3538/**
3539 * ata_qc_issue - issue taskfile to device
3540 * @qc: command to issue to device
3541 *
3542 * Prepare an ATA command to submission to device.
3543 * This includes mapping the data into a DMA-able
3544 * area, filling in the S/G table, and finally
3545 * writing the taskfile to hardware, starting the command.
3546 *
3547 * LOCKING:
3548 * spin_lock_irqsave(host_set lock)
3549 *
3550 * RETURNS:
3551 * Zero on success, negative on error.
3552 */
3553
3554int ata_qc_issue(struct ata_queued_cmd *qc)
3555{
3556 struct ata_port *ap = qc->ap;
3557
3558 if (ata_should_dma_map(qc)) {
3559 if (qc->flags & ATA_QCFLAG_SG) {
3560 if (ata_sg_setup(qc))
3561 goto err_out;
3562 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3563 if (ata_sg_setup_one(qc))
3564 goto err_out;
3565 }
3566 } else {
3567 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3568 }
3569
3570 ap->ops->qc_prep(qc);
3571
3572 qc->ap->active_tag = qc->tag;
3573 qc->flags |= ATA_QCFLAG_ACTIVE;
3574
3575 return ap->ops->qc_issue(qc);
3576
3577err_out:
3578 return -1;
3579}
3580
0baab86b 3581
1da177e4
LT
3582/**
3583 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3584 * @qc: command to issue to device
3585 *
3586 * Using various libata functions and hooks, this function
3587 * starts an ATA command. ATA commands are grouped into
3588 * classes called "protocols", and issuing each type of protocol
3589 * is slightly different.
3590 *
0baab86b
EF
3591 * May be used as the qc_issue() entry in ata_port_operations.
3592 *
1da177e4
LT
3593 * LOCKING:
3594 * spin_lock_irqsave(host_set lock)
3595 *
3596 * RETURNS:
3597 * Zero on success, negative on error.
3598 */
3599
3600int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3601{
3602 struct ata_port *ap = qc->ap;
3603
3604 ata_dev_select(ap, qc->dev->devno, 1, 0);
3605
3606 switch (qc->tf.protocol) {
3607 case ATA_PROT_NODATA:
e5338254 3608 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3609 break;
3610
3611 case ATA_PROT_DMA:
3612 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3613 ap->ops->bmdma_setup(qc); /* set up bmdma */
3614 ap->ops->bmdma_start(qc); /* initiate bmdma */
3615 break;
3616
3617 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3618 ata_qc_set_polling(qc);
e5338254 3619 ata_tf_to_host(ap, &qc->tf);
14be71f4 3620 ap->hsm_task_state = HSM_ST;
1da177e4
LT
3621 queue_work(ata_wq, &ap->pio_task);
3622 break;
3623
3624 case ATA_PROT_ATAPI:
3625 ata_qc_set_polling(qc);
e5338254 3626 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3627 queue_work(ata_wq, &ap->packet_task);
3628 break;
3629
3630 case ATA_PROT_ATAPI_NODATA:
c1389503 3631 ap->flags |= ATA_FLAG_NOINTR;
e5338254 3632 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3633 queue_work(ata_wq, &ap->packet_task);
3634 break;
3635
3636 case ATA_PROT_ATAPI_DMA:
c1389503 3637 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
3638 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3639 ap->ops->bmdma_setup(qc); /* set up bmdma */
3640 queue_work(ata_wq, &ap->packet_task);
3641 break;
3642
3643 default:
3644 WARN_ON(1);
3645 return -1;
3646 }
3647
3648 return 0;
3649}
3650
3651/**
0baab86b 3652 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
1da177e4
LT
3653 * @qc: Info associated with this ATA transaction.
3654 *
3655 * LOCKING:
3656 * spin_lock_irqsave(host_set lock)
3657 */
3658
3659static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3660{
3661 struct ata_port *ap = qc->ap;
3662 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3663 u8 dmactl;
3664 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3665
3666 /* load PRD table addr. */
3667 mb(); /* make sure PRD table writes are visible to controller */
3668 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3669
3670 /* specify data direction, triple-check start bit is clear */
3671 dmactl = readb(mmio + ATA_DMA_CMD);
3672 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3673 if (!rw)
3674 dmactl |= ATA_DMA_WR;
3675 writeb(dmactl, mmio + ATA_DMA_CMD);
3676
3677 /* issue r/w command */
3678 ap->ops->exec_command(ap, &qc->tf);
3679}
3680
3681/**
b73fc89f 3682 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
1da177e4
LT
3683 * @qc: Info associated with this ATA transaction.
3684 *
3685 * LOCKING:
3686 * spin_lock_irqsave(host_set lock)
3687 */
3688
3689static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3690{
3691 struct ata_port *ap = qc->ap;
3692 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3693 u8 dmactl;
3694
3695 /* start host DMA transaction */
3696 dmactl = readb(mmio + ATA_DMA_CMD);
3697 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3698
3699 /* Strictly, one may wish to issue a readb() here, to
3700 * flush the mmio write. However, control also passes
3701 * to the hardware at this point, and it will interrupt
3702 * us when we are to resume control. So, in effect,
3703 * we don't care when the mmio write flushes.
3704 * Further, a read of the DMA status register _immediately_
3705 * following the write may not be what certain flaky hardware
3706 * is expected, so I think it is best to not add a readb()
3707 * without first all the MMIO ATA cards/mobos.
3708 * Or maybe I'm just being paranoid.
3709 */
3710}
3711
3712/**
3713 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3714 * @qc: Info associated with this ATA transaction.
3715 *
3716 * LOCKING:
3717 * spin_lock_irqsave(host_set lock)
3718 */
3719
3720static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3721{
3722 struct ata_port *ap = qc->ap;
3723 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3724 u8 dmactl;
3725
3726 /* load PRD table addr. */
3727 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3728
3729 /* specify data direction, triple-check start bit is clear */
3730 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3731 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3732 if (!rw)
3733 dmactl |= ATA_DMA_WR;
3734 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3735
3736 /* issue r/w command */
3737 ap->ops->exec_command(ap, &qc->tf);
3738}
3739
3740/**
3741 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3742 * @qc: Info associated with this ATA transaction.
3743 *
3744 * LOCKING:
3745 * spin_lock_irqsave(host_set lock)
3746 */
3747
3748static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3749{
3750 struct ata_port *ap = qc->ap;
3751 u8 dmactl;
3752
3753 /* start host DMA transaction */
3754 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3755 outb(dmactl | ATA_DMA_START,
3756 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3757}
3758
0baab86b
EF
3759
3760/**
3761 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3762 * @qc: Info associated with this ATA transaction.
3763 *
3764 * Writes the ATA_DMA_START flag to the DMA command register.
3765 *
3766 * May be used as the bmdma_start() entry in ata_port_operations.
3767 *
3768 * LOCKING:
3769 * spin_lock_irqsave(host_set lock)
3770 */
1da177e4
LT
3771void ata_bmdma_start(struct ata_queued_cmd *qc)
3772{
3773 if (qc->ap->flags & ATA_FLAG_MMIO)
3774 ata_bmdma_start_mmio(qc);
3775 else
3776 ata_bmdma_start_pio(qc);
3777}
3778
0baab86b
EF
3779
3780/**
3781 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3782 * @qc: Info associated with this ATA transaction.
3783 *
3784 * Writes address of PRD table to device's PRD Table Address
3785 * register, sets the DMA control register, and calls
3786 * ops->exec_command() to start the transfer.
3787 *
3788 * May be used as the bmdma_setup() entry in ata_port_operations.
3789 *
3790 * LOCKING:
3791 * spin_lock_irqsave(host_set lock)
3792 */
1da177e4
LT
3793void ata_bmdma_setup(struct ata_queued_cmd *qc)
3794{
3795 if (qc->ap->flags & ATA_FLAG_MMIO)
3796 ata_bmdma_setup_mmio(qc);
3797 else
3798 ata_bmdma_setup_pio(qc);
3799}
3800
0baab86b
EF
3801
3802/**
3803 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
decc6d0b 3804 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3805 *
3806 * Clear interrupt and error flags in DMA status register.
3807 *
3808 * May be used as the irq_clear() entry in ata_port_operations.
3809 *
3810 * LOCKING:
3811 * spin_lock_irqsave(host_set lock)
3812 */
3813
1da177e4
LT
3814void ata_bmdma_irq_clear(struct ata_port *ap)
3815{
3816 if (ap->flags & ATA_FLAG_MMIO) {
3817 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3818 writeb(readb(mmio), mmio);
3819 } else {
3820 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3821 outb(inb(addr), addr);
3822 }
3823
3824}
3825
0baab86b
EF
3826
3827/**
3828 * ata_bmdma_status - Read PCI IDE BMDMA status
decc6d0b 3829 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3830 *
3831 * Read and return BMDMA status register.
3832 *
3833 * May be used as the bmdma_status() entry in ata_port_operations.
3834 *
3835 * LOCKING:
3836 * spin_lock_irqsave(host_set lock)
3837 */
3838
1da177e4
LT
3839u8 ata_bmdma_status(struct ata_port *ap)
3840{
3841 u8 host_stat;
3842 if (ap->flags & ATA_FLAG_MMIO) {
3843 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3844 host_stat = readb(mmio + ATA_DMA_STATUS);
3845 } else
ee500aab 3846 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
1da177e4
LT
3847 return host_stat;
3848}
3849
0baab86b
EF
3850
3851/**
3852 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
b73fc89f 3853 * @qc: Command we are ending DMA for
0baab86b
EF
3854 *
3855 * Clears the ATA_DMA_START flag in the dma control register
3856 *
3857 * May be used as the bmdma_stop() entry in ata_port_operations.
3858 *
3859 * LOCKING:
3860 * spin_lock_irqsave(host_set lock)
3861 */
3862
b73fc89f 3863void ata_bmdma_stop(struct ata_queued_cmd *qc)
1da177e4 3864{
b73fc89f 3865 struct ata_port *ap = qc->ap;
1da177e4
LT
3866 if (ap->flags & ATA_FLAG_MMIO) {
3867 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3868
3869 /* clear start/stop bit */
3870 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3871 mmio + ATA_DMA_CMD);
3872 } else {
3873 /* clear start/stop bit */
3874 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3875 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3876 }
3877
3878 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3879 ata_altstatus(ap); /* dummy read */
3880}
3881
3882/**
3883 * ata_host_intr - Handle host interrupt for given (port, task)
3884 * @ap: Port on which interrupt arrived (possibly...)
3885 * @qc: Taskfile currently active in engine
3886 *
3887 * Handle host interrupt for given queued command. Currently,
3888 * only DMA interrupts are handled. All other commands are
3889 * handled via polling with interrupts disabled (nIEN bit).
3890 *
3891 * LOCKING:
3892 * spin_lock_irqsave(host_set lock)
3893 *
3894 * RETURNS:
3895 * One if interrupt was handled, zero if not (shared irq).
3896 */
3897
3898inline unsigned int ata_host_intr (struct ata_port *ap,
3899 struct ata_queued_cmd *qc)
3900{
3901 u8 status, host_stat;
3902
3903 switch (qc->tf.protocol) {
3904
3905 case ATA_PROT_DMA:
3906 case ATA_PROT_ATAPI_DMA:
3907 case ATA_PROT_ATAPI:
3908 /* check status of DMA engine */
3909 host_stat = ap->ops->bmdma_status(ap);
3910 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3911
3912 /* if it's not our irq... */
3913 if (!(host_stat & ATA_DMA_INTR))
3914 goto idle_irq;
3915
3916 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3917 ap->ops->bmdma_stop(qc);
1da177e4
LT
3918
3919 /* fall through */
3920
3921 case ATA_PROT_ATAPI_NODATA:
3922 case ATA_PROT_NODATA:
3923 /* check altstatus */
3924 status = ata_altstatus(ap);
3925 if (status & ATA_BUSY)
3926 goto idle_irq;
3927
3928 /* check main status, clearing INTRQ */
3929 status = ata_chk_status(ap);
3930 if (unlikely(status & ATA_BUSY))
3931 goto idle_irq;
3932 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
3933 ap->id, qc->tf.protocol, status);
3934
3935 /* ack bmdma irq events */
3936 ap->ops->irq_clear(ap);
3937
3938 /* complete taskfile transaction */
a7dac447 3939 ata_qc_complete(qc, ac_err_mask(status));
1da177e4
LT
3940 break;
3941
3942 default:
3943 goto idle_irq;
3944 }
3945
3946 return 1; /* irq handled */
3947
3948idle_irq:
3949 ap->stats.idle_irq++;
3950
3951#ifdef ATA_IRQ_TRAP
3952 if ((ap->stats.idle_irq % 1000) == 0) {
3953 handled = 1;
3954 ata_irq_ack(ap, 0); /* debug trap */
3955 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
3956 }
3957#endif
3958 return 0; /* irq not handled */
3959}
3960
3961/**
3962 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
3963 * @irq: irq line (unused)
3964 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
3965 * @regs: unused
3966 *
0cba632b
JG
3967 * Default interrupt handler for PCI IDE devices. Calls
3968 * ata_host_intr() for each port that is not disabled.
3969 *
1da177e4 3970 * LOCKING:
0cba632b 3971 * Obtains host_set lock during operation.
1da177e4
LT
3972 *
3973 * RETURNS:
0cba632b 3974 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
3975 */
3976
3977irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
3978{
3979 struct ata_host_set *host_set = dev_instance;
3980 unsigned int i;
3981 unsigned int handled = 0;
3982 unsigned long flags;
3983
3984 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
3985 spin_lock_irqsave(&host_set->lock, flags);
3986
3987 for (i = 0; i < host_set->n_ports; i++) {
3988 struct ata_port *ap;
3989
3990 ap = host_set->ports[i];
c1389503
TH
3991 if (ap &&
3992 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
3993 struct ata_queued_cmd *qc;
3994
3995 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
3996 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
3997 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
3998 handled |= ata_host_intr(ap, qc);
3999 }
4000 }
4001
4002 spin_unlock_irqrestore(&host_set->lock, flags);
4003
4004 return IRQ_RETVAL(handled);
4005}
4006
4007/**
4008 * atapi_packet_task - Write CDB bytes to hardware
4009 * @_data: Port to which ATAPI device is attached.
4010 *
4011 * When device has indicated its readiness to accept
4012 * a CDB, this function is called. Send the CDB.
4013 * If DMA is to be performed, exit immediately.
4014 * Otherwise, we are in polling mode, so poll
4015 * status under operation succeeds or fails.
4016 *
4017 * LOCKING:
4018 * Kernel thread context (may sleep)
4019 */
4020
4021static void atapi_packet_task(void *_data)
4022{
4023 struct ata_port *ap = _data;
4024 struct ata_queued_cmd *qc;
4025 u8 status;
4026
4027 qc = ata_qc_from_tag(ap, ap->active_tag);
4028 assert(qc != NULL);
4029 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4030
4031 /* sleep-wait for BSY to clear */
4032 DPRINTK("busy wait\n");
4033 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB))
a7dac447 4034 goto err_out_status;
1da177e4
LT
4035
4036 /* make sure DRQ is set */
4037 status = ata_chk_status(ap);
4038 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)
4039 goto err_out;
4040
4041 /* send SCSI cdb */
4042 DPRINTK("send cdb\n");
4043 assert(ap->cdb_len >= 12);
1da177e4 4044
c1389503
TH
4045 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4046 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4047 unsigned long flags;
1da177e4 4048
c1389503
TH
4049 /* Once we're done issuing command and kicking bmdma,
4050 * irq handler takes over. To not lose irq, we need
4051 * to clear NOINTR flag before sending cdb, but
4052 * interrupt handler shouldn't be invoked before we're
4053 * finished. Hence, the following locking.
4054 */
4055 spin_lock_irqsave(&ap->host_set->lock, flags);
4056 ap->flags &= ~ATA_FLAG_NOINTR;
4057 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4058 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4059 ap->ops->bmdma_start(qc); /* initiate bmdma */
4060 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4061 } else {
4062 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
1da177e4 4063
c1389503 4064 /* PIO commands are handled by polling */
14be71f4 4065 ap->hsm_task_state = HSM_ST;
1da177e4
LT
4066 queue_work(ata_wq, &ap->pio_task);
4067 }
4068
4069 return;
4070
a7dac447
JG
4071err_out_status:
4072 status = ata_chk_status(ap);
1da177e4 4073err_out:
a7dac447 4074 ata_poll_qc_complete(qc, __ac_err_mask(status));
1da177e4
LT
4075}
4076
0baab86b
EF
4077
4078/**
4079 * ata_port_start - Set port up for dma.
4080 * @ap: Port to initialize
4081 *
4082 * Called just after data structures for each port are
4083 * initialized. Allocates space for PRD table.
4084 *
4085 * May be used as the port_start() entry in ata_port_operations.
4086 *
4087 * LOCKING:
6f0ef4fa 4088 * Inherited from caller.
0baab86b
EF
4089 */
4090
1da177e4
LT
4091int ata_port_start (struct ata_port *ap)
4092{
4093 struct device *dev = ap->host_set->dev;
6037d6bb 4094 int rc;
1da177e4
LT
4095
4096 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4097 if (!ap->prd)
4098 return -ENOMEM;
4099
6037d6bb
JG
4100 rc = ata_pad_alloc(ap, dev);
4101 if (rc) {
cedc9a47 4102 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4103 return rc;
cedc9a47
JG
4104 }
4105
1da177e4
LT
4106 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4107
4108 return 0;
4109}
4110
0baab86b
EF
4111
4112/**
4113 * ata_port_stop - Undo ata_port_start()
4114 * @ap: Port to shut down
4115 *
4116 * Frees the PRD table.
4117 *
4118 * May be used as the port_stop() entry in ata_port_operations.
4119 *
4120 * LOCKING:
6f0ef4fa 4121 * Inherited from caller.
0baab86b
EF
4122 */
4123
1da177e4
LT
4124void ata_port_stop (struct ata_port *ap)
4125{
4126 struct device *dev = ap->host_set->dev;
4127
4128 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4129 ata_pad_free(ap, dev);
1da177e4
LT
4130}
4131
aa8f0dc6
JG
4132void ata_host_stop (struct ata_host_set *host_set)
4133{
4134 if (host_set->mmio_base)
4135 iounmap(host_set->mmio_base);
4136}
4137
4138
1da177e4
LT
4139/**
4140 * ata_host_remove - Unregister SCSI host structure with upper layers
4141 * @ap: Port to unregister
4142 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4143 *
4144 * LOCKING:
6f0ef4fa 4145 * Inherited from caller.
1da177e4
LT
4146 */
4147
4148static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4149{
4150 struct Scsi_Host *sh = ap->host;
4151
4152 DPRINTK("ENTER\n");
4153
4154 if (do_unregister)
4155 scsi_remove_host(sh);
4156
4157 ap->ops->port_stop(ap);
4158}
4159
4160/**
4161 * ata_host_init - Initialize an ata_port structure
4162 * @ap: Structure to initialize
4163 * @host: associated SCSI mid-layer structure
4164 * @host_set: Collection of hosts to which @ap belongs
4165 * @ent: Probe information provided by low-level driver
4166 * @port_no: Port number associated with this ata_port
4167 *
0cba632b
JG
4168 * Initialize a new ata_port structure, and its associated
4169 * scsi_host.
4170 *
1da177e4 4171 * LOCKING:
0cba632b 4172 * Inherited from caller.
1da177e4
LT
4173 */
4174
4175static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4176 struct ata_host_set *host_set,
057ace5e 4177 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4178{
4179 unsigned int i;
4180
4181 host->max_id = 16;
4182 host->max_lun = 1;
4183 host->max_channel = 1;
4184 host->unique_id = ata_unique_id++;
4185 host->max_cmd_len = 12;
12413197 4186
1da177e4
LT
4187 ap->flags = ATA_FLAG_PORT_DISABLED;
4188 ap->id = host->unique_id;
4189 ap->host = host;
4190 ap->ctl = ATA_DEVCTL_OBS;
4191 ap->host_set = host_set;
4192 ap->port_no = port_no;
4193 ap->hard_port_no =
4194 ent->legacy_mode ? ent->hard_port_no : port_no;
4195 ap->pio_mask = ent->pio_mask;
4196 ap->mwdma_mask = ent->mwdma_mask;
4197 ap->udma_mask = ent->udma_mask;
4198 ap->flags |= ent->host_flags;
4199 ap->ops = ent->port_ops;
4200 ap->cbl = ATA_CBL_NONE;
4201 ap->active_tag = ATA_TAG_POISON;
4202 ap->last_ctl = 0xFF;
4203
4204 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4205 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4206
4207 for (i = 0; i < ATA_MAX_DEVICES; i++)
4208 ap->device[i].devno = i;
4209
4210#ifdef ATA_IRQ_TRAP
4211 ap->stats.unhandled_irq = 1;
4212 ap->stats.idle_irq = 1;
4213#endif
4214
4215 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4216}
4217
4218/**
4219 * ata_host_add - Attach low-level ATA driver to system
4220 * @ent: Information provided by low-level driver
4221 * @host_set: Collections of ports to which we add
4222 * @port_no: Port number associated with this host
4223 *
0cba632b
JG
4224 * Attach low-level ATA driver to system.
4225 *
1da177e4 4226 * LOCKING:
0cba632b 4227 * PCI/etc. bus probe sem.
1da177e4
LT
4228 *
4229 * RETURNS:
0cba632b 4230 * New ata_port on success, for NULL on error.
1da177e4
LT
4231 */
4232
057ace5e 4233static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4234 struct ata_host_set *host_set,
4235 unsigned int port_no)
4236{
4237 struct Scsi_Host *host;
4238 struct ata_port *ap;
4239 int rc;
4240
4241 DPRINTK("ENTER\n");
4242 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4243 if (!host)
4244 return NULL;
4245
4246 ap = (struct ata_port *) &host->hostdata[0];
4247
4248 ata_host_init(ap, host, host_set, ent, port_no);
4249
4250 rc = ap->ops->port_start(ap);
4251 if (rc)
4252 goto err_out;
4253
4254 return ap;
4255
4256err_out:
4257 scsi_host_put(host);
4258 return NULL;
4259}
4260
4261/**
0cba632b
JG
4262 * ata_device_add - Register hardware device with ATA and SCSI layers
4263 * @ent: Probe information describing hardware device to be registered
4264 *
4265 * This function processes the information provided in the probe
4266 * information struct @ent, allocates the necessary ATA and SCSI
4267 * host information structures, initializes them, and registers
4268 * everything with requisite kernel subsystems.
4269 *
4270 * This function requests irqs, probes the ATA bus, and probes
4271 * the SCSI bus.
1da177e4
LT
4272 *
4273 * LOCKING:
0cba632b 4274 * PCI/etc. bus probe sem.
1da177e4
LT
4275 *
4276 * RETURNS:
0cba632b 4277 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4278 */
4279
057ace5e 4280int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4281{
4282 unsigned int count = 0, i;
4283 struct device *dev = ent->dev;
4284 struct ata_host_set *host_set;
4285
4286 DPRINTK("ENTER\n");
4287 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4288 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4289 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4290 if (!host_set)
4291 return 0;
1da177e4
LT
4292 spin_lock_init(&host_set->lock);
4293
4294 host_set->dev = dev;
4295 host_set->n_ports = ent->n_ports;
4296 host_set->irq = ent->irq;
4297 host_set->mmio_base = ent->mmio_base;
4298 host_set->private_data = ent->private_data;
4299 host_set->ops = ent->port_ops;
4300
4301 /* register each port bound to this device */
4302 for (i = 0; i < ent->n_ports; i++) {
4303 struct ata_port *ap;
4304 unsigned long xfer_mode_mask;
4305
4306 ap = ata_host_add(ent, host_set, i);
4307 if (!ap)
4308 goto err_out;
4309
4310 host_set->ports[i] = ap;
4311 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4312 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4313 (ap->pio_mask << ATA_SHIFT_PIO);
4314
4315 /* print per-port info to dmesg */
4316 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4317 "bmdma 0x%lX irq %lu\n",
4318 ap->id,
4319 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4320 ata_mode_string(xfer_mode_mask),
4321 ap->ioaddr.cmd_addr,
4322 ap->ioaddr.ctl_addr,
4323 ap->ioaddr.bmdma_addr,
4324 ent->irq);
4325
4326 ata_chk_status(ap);
4327 host_set->ops->irq_clear(ap);
4328 count++;
4329 }
4330
57f3bda8
RD
4331 if (!count)
4332 goto err_free_ret;
1da177e4
LT
4333
4334 /* obtain irq, that is shared between channels */
4335 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4336 DRV_NAME, host_set))
4337 goto err_out;
4338
4339 /* perform each probe synchronously */
4340 DPRINTK("probe begin\n");
4341 for (i = 0; i < count; i++) {
4342 struct ata_port *ap;
4343 int rc;
4344
4345 ap = host_set->ports[i];
4346
4347 DPRINTK("ata%u: probe begin\n", ap->id);
4348 rc = ata_bus_probe(ap);
4349 DPRINTK("ata%u: probe end\n", ap->id);
4350
4351 if (rc) {
4352 /* FIXME: do something useful here?
4353 * Current libata behavior will
4354 * tear down everything when
4355 * the module is removed
4356 * or the h/w is unplugged.
4357 */
4358 }
4359
4360 rc = scsi_add_host(ap->host, dev);
4361 if (rc) {
4362 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4363 ap->id);
4364 /* FIXME: do something useful here */
4365 /* FIXME: handle unconditional calls to
4366 * scsi_scan_host and ata_host_remove, below,
4367 * at the very least
4368 */
4369 }
4370 }
4371
4372 /* probes are done, now scan each port's disk(s) */
4373 DPRINTK("probe begin\n");
4374 for (i = 0; i < count; i++) {
4375 struct ata_port *ap = host_set->ports[i];
4376
644dd0cc 4377 ata_scsi_scan_host(ap);
1da177e4
LT
4378 }
4379
4380 dev_set_drvdata(dev, host_set);
4381
4382 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4383 return ent->n_ports; /* success */
4384
4385err_out:
4386 for (i = 0; i < count; i++) {
4387 ata_host_remove(host_set->ports[i], 1);
4388 scsi_host_put(host_set->ports[i]->host);
4389 }
57f3bda8 4390err_free_ret:
1da177e4
LT
4391 kfree(host_set);
4392 VPRINTK("EXIT, returning 0\n");
4393 return 0;
4394}
4395
17b14451
AC
4396/**
4397 * ata_host_set_remove - PCI layer callback for device removal
4398 * @host_set: ATA host set that was removed
4399 *
4400 * Unregister all objects associated with this host set. Free those
4401 * objects.
4402 *
4403 * LOCKING:
4404 * Inherited from calling layer (may sleep).
4405 */
4406
17b14451
AC
4407void ata_host_set_remove(struct ata_host_set *host_set)
4408{
4409 struct ata_port *ap;
4410 unsigned int i;
4411
4412 for (i = 0; i < host_set->n_ports; i++) {
4413 ap = host_set->ports[i];
4414 scsi_remove_host(ap->host);
4415 }
4416
4417 free_irq(host_set->irq, host_set);
4418
4419 for (i = 0; i < host_set->n_ports; i++) {
4420 ap = host_set->ports[i];
4421
4422 ata_scsi_release(ap->host);
4423
4424 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4425 struct ata_ioports *ioaddr = &ap->ioaddr;
4426
4427 if (ioaddr->cmd_addr == 0x1f0)
4428 release_region(0x1f0, 8);
4429 else if (ioaddr->cmd_addr == 0x170)
4430 release_region(0x170, 8);
4431 }
4432
4433 scsi_host_put(ap->host);
4434 }
4435
4436 if (host_set->ops->host_stop)
4437 host_set->ops->host_stop(host_set);
4438
4439 kfree(host_set);
4440}
4441
1da177e4
LT
4442/**
4443 * ata_scsi_release - SCSI layer callback hook for host unload
4444 * @host: libata host to be unloaded
4445 *
4446 * Performs all duties necessary to shut down a libata port...
4447 * Kill port kthread, disable port, and release resources.
4448 *
4449 * LOCKING:
4450 * Inherited from SCSI layer.
4451 *
4452 * RETURNS:
4453 * One.
4454 */
4455
4456int ata_scsi_release(struct Scsi_Host *host)
4457{
4458 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4459
4460 DPRINTK("ENTER\n");
4461
4462 ap->ops->port_disable(ap);
4463 ata_host_remove(ap, 0);
4464
4465 DPRINTK("EXIT\n");
4466 return 1;
4467}
4468
4469/**
4470 * ata_std_ports - initialize ioaddr with standard port offsets.
4471 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4472 *
4473 * Utility function which initializes data_addr, error_addr,
4474 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4475 * device_addr, status_addr, and command_addr to standard offsets
4476 * relative to cmd_addr.
4477 *
4478 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4479 */
0baab86b 4480
1da177e4
LT
4481void ata_std_ports(struct ata_ioports *ioaddr)
4482{
4483 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4484 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4485 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4486 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4487 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4488 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4489 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4490 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4491 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4492 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4493}
4494
4495static struct ata_probe_ent *
057ace5e 4496ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
1da177e4
LT
4497{
4498 struct ata_probe_ent *probe_ent;
4499
57f3bda8 4500 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
1da177e4
LT
4501 if (!probe_ent) {
4502 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4503 kobject_name(&(dev->kobj)));
4504 return NULL;
4505 }
4506
1da177e4
LT
4507 INIT_LIST_HEAD(&probe_ent->node);
4508 probe_ent->dev = dev;
4509
4510 probe_ent->sht = port->sht;
4511 probe_ent->host_flags = port->host_flags;
4512 probe_ent->pio_mask = port->pio_mask;
4513 probe_ent->mwdma_mask = port->mwdma_mask;
4514 probe_ent->udma_mask = port->udma_mask;
4515 probe_ent->port_ops = port->port_ops;
4516
4517 return probe_ent;
4518}
4519
0baab86b
EF
4520
4521
374b1873
JG
4522#ifdef CONFIG_PCI
4523
4524void ata_pci_host_stop (struct ata_host_set *host_set)
4525{
4526 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4527
4528 pci_iounmap(pdev, host_set->mmio_base);
4529}
4530
0baab86b
EF
4531/**
4532 * ata_pci_init_native_mode - Initialize native-mode driver
4533 * @pdev: pci device to be initialized
4534 * @port: array[2] of pointers to port info structures.
47a86593 4535 * @ports: bitmap of ports present
0baab86b
EF
4536 *
4537 * Utility function which allocates and initializes an
4538 * ata_probe_ent structure for a standard dual-port
4539 * PIO-based IDE controller. The returned ata_probe_ent
4540 * structure can be passed to ata_device_add(). The returned
4541 * ata_probe_ent structure should then be freed with kfree().
47a86593
AC
4542 *
4543 * The caller need only pass the address of the primary port, the
4544 * secondary will be deduced automatically. If the device has non
4545 * standard secondary port mappings this function can be called twice,
4546 * once for each interface.
0baab86b
EF
4547 */
4548
1da177e4 4549struct ata_probe_ent *
47a86593 4550ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
1da177e4
LT
4551{
4552 struct ata_probe_ent *probe_ent =
4553 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
47a86593
AC
4554 int p = 0;
4555
1da177e4
LT
4556 if (!probe_ent)
4557 return NULL;
4558
1da177e4
LT
4559 probe_ent->irq = pdev->irq;
4560 probe_ent->irq_flags = SA_SHIRQ;
e99f8b5e 4561 probe_ent->private_data = port[0]->private_data;
1da177e4 4562
47a86593
AC
4563 if (ports & ATA_PORT_PRIMARY) {
4564 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4565 probe_ent->port[p].altstatus_addr =
4566 probe_ent->port[p].ctl_addr =
4567 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4568 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4569 ata_std_ports(&probe_ent->port[p]);
4570 p++;
4571 }
1da177e4 4572
47a86593
AC
4573 if (ports & ATA_PORT_SECONDARY) {
4574 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4575 probe_ent->port[p].altstatus_addr =
4576 probe_ent->port[p].ctl_addr =
4577 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4578 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4579 ata_std_ports(&probe_ent->port[p]);
4580 p++;
4581 }
1da177e4 4582
47a86593 4583 probe_ent->n_ports = p;
1da177e4
LT
4584 return probe_ent;
4585}
4586
0f0d5192 4587static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
1da177e4 4588{
47a86593 4589 struct ata_probe_ent *probe_ent;
1da177e4 4590
0f0d5192 4591 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
1da177e4
LT
4592 if (!probe_ent)
4593 return NULL;
1da177e4 4594
1da177e4 4595 probe_ent->legacy_mode = 1;
47a86593
AC
4596 probe_ent->n_ports = 1;
4597 probe_ent->hard_port_no = port_num;
e99f8b5e 4598 probe_ent->private_data = port->private_data;
47a86593
AC
4599
4600 switch(port_num)
4601 {
4602 case 0:
4603 probe_ent->irq = 14;
4604 probe_ent->port[0].cmd_addr = 0x1f0;
4605 probe_ent->port[0].altstatus_addr =
4606 probe_ent->port[0].ctl_addr = 0x3f6;
4607 break;
4608 case 1:
4609 probe_ent->irq = 15;
4610 probe_ent->port[0].cmd_addr = 0x170;
4611 probe_ent->port[0].altstatus_addr =
4612 probe_ent->port[0].ctl_addr = 0x376;
4613 break;
4614 }
4615 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
1da177e4 4616 ata_std_ports(&probe_ent->port[0]);
1da177e4
LT
4617 return probe_ent;
4618}
4619
4620/**
4621 * ata_pci_init_one - Initialize/register PCI IDE host controller
4622 * @pdev: Controller to be initialized
4623 * @port_info: Information from low-level host driver
4624 * @n_ports: Number of ports attached to host controller
4625 *
0baab86b
EF
4626 * This is a helper function which can be called from a driver's
4627 * xxx_init_one() probe function if the hardware uses traditional
4628 * IDE taskfile registers.
4629 *
4630 * This function calls pci_enable_device(), reserves its register
4631 * regions, sets the dma mask, enables bus master mode, and calls
4632 * ata_device_add()
4633 *
1da177e4
LT
4634 * LOCKING:
4635 * Inherited from PCI layer (may sleep).
4636 *
4637 * RETURNS:
0cba632b 4638 * Zero on success, negative on errno-based value on error.
1da177e4
LT
4639 */
4640
4641int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4642 unsigned int n_ports)
4643{
47a86593 4644 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
1da177e4
LT
4645 struct ata_port_info *port[2];
4646 u8 tmp8, mask;
4647 unsigned int legacy_mode = 0;
4648 int disable_dev_on_err = 1;
4649 int rc;
4650
4651 DPRINTK("ENTER\n");
4652
4653 port[0] = port_info[0];
4654 if (n_ports > 1)
4655 port[1] = port_info[1];
4656 else
4657 port[1] = port[0];
4658
4659 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4660 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
47a86593 4661 /* TODO: What if one channel is in native mode ... */
1da177e4
LT
4662 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4663 mask = (1 << 2) | (1 << 0);
4664 if ((tmp8 & mask) != mask)
4665 legacy_mode = (1 << 3);
4666 }
4667
4668 /* FIXME... */
47a86593
AC
4669 if ((!legacy_mode) && (n_ports > 2)) {
4670 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4671 n_ports = 2;
4672 /* For now */
1da177e4
LT
4673 }
4674
47a86593
AC
4675 /* FIXME: Really for ATA it isn't safe because the device may be
4676 multi-purpose and we want to leave it alone if it was already
4677 enabled. Secondly for shared use as Arjan says we want refcounting
4678
4679 Checking dev->is_enabled is insufficient as this is not set at
4680 boot for the primary video which is BIOS enabled
4681 */
4682
1da177e4
LT
4683 rc = pci_enable_device(pdev);
4684 if (rc)
4685 return rc;
4686
4687 rc = pci_request_regions(pdev, DRV_NAME);
4688 if (rc) {
4689 disable_dev_on_err = 0;
4690 goto err_out;
4691 }
4692
47a86593 4693 /* FIXME: Should use platform specific mappers for legacy port ranges */
1da177e4
LT
4694 if (legacy_mode) {
4695 if (!request_region(0x1f0, 8, "libata")) {
4696 struct resource *conflict, res;
4697 res.start = 0x1f0;
4698 res.end = 0x1f0 + 8 - 1;
4699 conflict = ____request_resource(&ioport_resource, &res);
4700 if (!strcmp(conflict->name, "libata"))
4701 legacy_mode |= (1 << 0);
4702 else {
4703 disable_dev_on_err = 0;
4704 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4705 }
4706 } else
4707 legacy_mode |= (1 << 0);
4708
4709 if (!request_region(0x170, 8, "libata")) {
4710 struct resource *conflict, res;
4711 res.start = 0x170;
4712 res.end = 0x170 + 8 - 1;
4713 conflict = ____request_resource(&ioport_resource, &res);
4714 if (!strcmp(conflict->name, "libata"))
4715 legacy_mode |= (1 << 1);
4716 else {
4717 disable_dev_on_err = 0;
4718 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4719 }
4720 } else
4721 legacy_mode |= (1 << 1);
4722 }
4723
4724 /* we have legacy mode, but all ports are unavailable */
4725 if (legacy_mode == (1 << 3)) {
4726 rc = -EBUSY;
4727 goto err_out_regions;
4728 }
4729
4730 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4731 if (rc)
4732 goto err_out_regions;
4733 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4734 if (rc)
4735 goto err_out_regions;
4736
4737 if (legacy_mode) {
47a86593 4738 if (legacy_mode & (1 << 0))
0f0d5192 4739 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
47a86593 4740 if (legacy_mode & (1 << 1))
0f0d5192 4741 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
47a86593
AC
4742 } else {
4743 if (n_ports == 2)
4744 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4745 else
4746 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4747 }
4748 if (!probe_ent && !probe_ent2) {
1da177e4
LT
4749 rc = -ENOMEM;
4750 goto err_out_regions;
4751 }
4752
4753 pci_set_master(pdev);
4754
4755 /* FIXME: check ata_device_add return */
4756 if (legacy_mode) {
4757 if (legacy_mode & (1 << 0))
4758 ata_device_add(probe_ent);
4759 if (legacy_mode & (1 << 1))
4760 ata_device_add(probe_ent2);
4761 } else
4762 ata_device_add(probe_ent);
4763
4764 kfree(probe_ent);
4765 kfree(probe_ent2);
4766
4767 return 0;
4768
4769err_out_regions:
4770 if (legacy_mode & (1 << 0))
4771 release_region(0x1f0, 8);
4772 if (legacy_mode & (1 << 1))
4773 release_region(0x170, 8);
4774 pci_release_regions(pdev);
4775err_out:
4776 if (disable_dev_on_err)
4777 pci_disable_device(pdev);
4778 return rc;
4779}
4780
4781/**
4782 * ata_pci_remove_one - PCI layer callback for device removal
4783 * @pdev: PCI device that was removed
4784 *
4785 * PCI layer indicates to libata via this hook that
6f0ef4fa 4786 * hot-unplug or module unload event has occurred.
1da177e4
LT
4787 * Handle this by unregistering all objects associated
4788 * with this PCI device. Free those objects. Then finally
4789 * release PCI resources and disable device.
4790 *
4791 * LOCKING:
4792 * Inherited from PCI layer (may sleep).
4793 */
4794
4795void ata_pci_remove_one (struct pci_dev *pdev)
4796{
4797 struct device *dev = pci_dev_to_dev(pdev);
4798 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4799
17b14451 4800 ata_host_set_remove(host_set);
1da177e4
LT
4801 pci_release_regions(pdev);
4802 pci_disable_device(pdev);
4803 dev_set_drvdata(dev, NULL);
4804}
4805
4806/* move to PCI subsystem */
057ace5e 4807int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4808{
4809 unsigned long tmp = 0;
4810
4811 switch (bits->width) {
4812 case 1: {
4813 u8 tmp8 = 0;
4814 pci_read_config_byte(pdev, bits->reg, &tmp8);
4815 tmp = tmp8;
4816 break;
4817 }
4818 case 2: {
4819 u16 tmp16 = 0;
4820 pci_read_config_word(pdev, bits->reg, &tmp16);
4821 tmp = tmp16;
4822 break;
4823 }
4824 case 4: {
4825 u32 tmp32 = 0;
4826 pci_read_config_dword(pdev, bits->reg, &tmp32);
4827 tmp = tmp32;
4828 break;
4829 }
4830
4831 default:
4832 return -EINVAL;
4833 }
4834
4835 tmp &= bits->mask;
4836
4837 return (tmp == bits->val) ? 1 : 0;
4838}
4839#endif /* CONFIG_PCI */
4840
4841
1da177e4
LT
4842static int __init ata_init(void)
4843{
4844 ata_wq = create_workqueue("ata");
4845 if (!ata_wq)
4846 return -ENOMEM;
4847
4848 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4849 return 0;
4850}
4851
4852static void __exit ata_exit(void)
4853{
4854 destroy_workqueue(ata_wq);
4855}
4856
4857module_init(ata_init);
4858module_exit(ata_exit);
4859
67846b30
JG
4860static unsigned long ratelimit_time;
4861static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4862
4863int ata_ratelimit(void)
4864{
4865 int rc;
4866 unsigned long flags;
4867
4868 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4869
4870 if (time_after(jiffies, ratelimit_time)) {
4871 rc = 1;
4872 ratelimit_time = jiffies + (HZ/5);
4873 } else
4874 rc = 0;
4875
4876 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4877
4878 return rc;
4879}
4880
1da177e4
LT
4881/*
4882 * libata is essentially a library of internal helper functions for
4883 * low-level ATA host controller drivers. As such, the API/ABI is
4884 * likely to change as new drivers are added and updated.
4885 * Do not depend on ABI/API stability.
4886 */
4887
4888EXPORT_SYMBOL_GPL(ata_std_bios_param);
4889EXPORT_SYMBOL_GPL(ata_std_ports);
4890EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4891EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4892EXPORT_SYMBOL_GPL(ata_sg_init);
4893EXPORT_SYMBOL_GPL(ata_sg_init_one);
4894EXPORT_SYMBOL_GPL(ata_qc_complete);
4895EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4896EXPORT_SYMBOL_GPL(ata_eng_timeout);
4897EXPORT_SYMBOL_GPL(ata_tf_load);
4898EXPORT_SYMBOL_GPL(ata_tf_read);
4899EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4900EXPORT_SYMBOL_GPL(ata_std_dev_select);
4901EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4902EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4903EXPORT_SYMBOL_GPL(ata_check_status);
4904EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
4905EXPORT_SYMBOL_GPL(ata_exec_command);
4906EXPORT_SYMBOL_GPL(ata_port_start);
4907EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4908EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4909EXPORT_SYMBOL_GPL(ata_interrupt);
4910EXPORT_SYMBOL_GPL(ata_qc_prep);
4911EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4912EXPORT_SYMBOL_GPL(ata_bmdma_start);
4913EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4914EXPORT_SYMBOL_GPL(ata_bmdma_status);
4915EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4916EXPORT_SYMBOL_GPL(ata_port_probe);
4917EXPORT_SYMBOL_GPL(sata_phy_reset);
4918EXPORT_SYMBOL_GPL(__sata_phy_reset);
4919EXPORT_SYMBOL_GPL(ata_bus_reset);
4920EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 4921EXPORT_SYMBOL_GPL(ata_ratelimit);
1da177e4
LT
4922EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4923EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4924EXPORT_SYMBOL_GPL(ata_scsi_error);
4925EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4926EXPORT_SYMBOL_GPL(ata_scsi_release);
4927EXPORT_SYMBOL_GPL(ata_host_intr);
4928EXPORT_SYMBOL_GPL(ata_dev_classify);
4929EXPORT_SYMBOL_GPL(ata_dev_id_string);
6f2f3812 4930EXPORT_SYMBOL_GPL(ata_dev_config);
1da177e4
LT
4931EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4932
452503f9
AC
4933EXPORT_SYMBOL_GPL(ata_timing_compute);
4934EXPORT_SYMBOL_GPL(ata_timing_merge);
4935
1da177e4
LT
4936#ifdef CONFIG_PCI
4937EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 4938EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
4939EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4940EXPORT_SYMBOL_GPL(ata_pci_init_one);
4941EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4942#endif /* CONFIG_PCI */