Merge remote-tracking branches 'asoc/fix/arizona', 'asoc/fix/cs35l32', 'asoc/fix...
[linux-2.6-block.git] / drivers / scsi / in2000.c
CommitLineData
1da177e4
LT
1/*
2 * in2000.c - Linux device driver for the
3 * Always IN2000 ISA SCSI card.
4 *
5 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
6 * john@geolog.com
7 * jshiffle@netcom.com
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 *
25 * Drew Eckhardt's excellent 'Generic NCR5380' sources provided
26 * much of the inspiration and some of the code for this driver.
27 * The Linux IN2000 driver distributed in the Linux kernels through
28 * version 1.2.13 was an extremely valuable reference on the arcane
29 * (and still mysterious) workings of the IN2000's fifo. It also
30 * is where I lifted in2000_biosparam(), the gist of the card
31 * detection scheme, and other bits of code. Many thanks to the
32 * talented and courageous people who wrote, contributed to, and
33 * maintained that driver (including Brad McLean, Shaun Savage,
34 * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey,
35 * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric
36 * Youngdale). I should also mention the driver written by
37 * Hamish Macdonald for the (GASP!) Amiga A2091 card, included
38 * in the Linux-m68k distribution; it gave me a good initial
39 * understanding of the proper way to run a WD33c93 chip, and I
40 * ended up stealing lots of code from it.
41 *
42 * _This_ driver is (I feel) an improvement over the old one in
43 * several respects:
44 * - All problems relating to the data size of a SCSI request are
45 * gone (as far as I know). The old driver couldn't handle
46 * swapping to partitions because that involved 4k blocks, nor
47 * could it deal with the st.c tape driver unmodified, because
48 * that usually involved 4k - 32k blocks. The old driver never
49 * quite got away from a morbid dependence on 2k block sizes -
50 * which of course is the size of the card's fifo.
51 *
52 * - Target Disconnection/Reconnection is now supported. Any
53 * system with more than one device active on the SCSI bus
54 * will benefit from this. The driver defaults to what I'm
55 * calling 'adaptive disconnect' - meaning that each command
56 * is evaluated individually as to whether or not it should
57 * be run with the option to disconnect/reselect (if the
58 * device chooses), or as a "SCSI-bus-hog".
59 *
60 * - Synchronous data transfers are now supported. Because there
61 * are a few devices (and many improperly terminated systems)
62 * that choke when doing sync, the default is sync DISABLED
63 * for all devices. This faster protocol can (and should!)
64 * be enabled on selected devices via the command-line.
65 *
66 * - Runtime operating parameters can now be specified through
67 * either the LILO or the 'insmod' command line. For LILO do:
68 * "in2000=blah,blah,blah"
69 * and with insmod go like:
70 * "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah"
71 * The defaults should be good for most people. See the comment
72 * for 'setup_strings' below for more details.
73 *
74 * - The old driver relied exclusively on what the Western Digital
75 * docs call "Combination Level 2 Commands", which are a great
76 * idea in that the CPU is relieved of a lot of interrupt
77 * overhead. However, by accepting a certain (user-settable)
78 * amount of additional interrupts, this driver achieves
79 * better control over the SCSI bus, and data transfers are
80 * almost as fast while being much easier to define, track,
81 * and debug.
82 *
83 * - You can force detection of a card whose BIOS has been disabled.
84 *
85 * - Multiple IN2000 cards might almost be supported. I've tried to
86 * keep it in mind, but have no way to test...
87 *
88 *
89 * TODO:
90 * tagged queuing. multiple cards.
91 *
92 *
93 * NOTE:
94 * When using this or any other SCSI driver as a module, you'll
95 * find that with the stock kernel, at most _two_ SCSI hard
96 * drives will be linked into the device list (ie, usable).
97 * If your IN2000 card has more than 2 disks on its bus, you
98 * might want to change the define of 'SD_EXTRA_DEVS' in the
99 * 'hosts.h' file from 2 to whatever is appropriate. It took
100 * me a while to track down this surprisingly obscure and
101 * undocumented little "feature".
102 *
103 *
104 * People with bug reports, wish-lists, complaints, comments,
105 * or improvements are asked to pah-leeez email me (John Shifflett)
106 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
107 * this thing into as good a shape as possible, and I'm positive
108 * there are lots of lurking bugs and "Stupid Places".
109 *
fa195afe 110 * Updated for Linux 2.5 by Alan Cox <alan@lxorguk.ukuu.org.uk>
1da177e4
LT
111 * - Using new_eh handler
112 * - Hopefully got all the locking right again
113 * See "FIXME" notes for items that could do with more work
114 */
115
116#include <linux/module.h>
117#include <linux/blkdev.h>
118#include <linux/interrupt.h>
119#include <linux/string.h>
120#include <linux/delay.h>
121#include <linux/proc_fs.h>
122#include <linux/ioport.h>
123#include <linux/stat.h>
124
125#include <asm/io.h>
1da177e4
LT
126
127#include "scsi.h"
128#include <scsi/scsi_host.h>
129
130#define IN2000_VERSION "1.33-2.5"
131#define IN2000_DATE "2002/11/03"
132
133#include "in2000.h"
134
135
136/*
137 * 'setup_strings' is a single string used to pass operating parameters and
138 * settings from the kernel/module command-line to the driver. 'setup_args[]'
139 * is an array of strings that define the compile-time default values for
140 * these settings. If Linux boots with a LILO or insmod command-line, those
141 * settings are combined with 'setup_args[]'. Note that LILO command-lines
142 * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix.
143 * The driver recognizes the following keywords (lower case required) and
144 * arguments:
145 *
146 * - ioport:addr -Where addr is IO address of a (usually ROM-less) card.
147 * - noreset -No optional args. Prevents SCSI bus reset at boot time.
148 * - nosync:x -x is a bitmask where the 1st 7 bits correspond with
149 * the 7 possible SCSI devices (bit 0 for device #0, etc).
150 * Set a bit to PREVENT sync negotiation on that device.
151 * The driver default is sync DISABLED on all devices.
152 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
153 * period. Default is 500; acceptable values are 250 - 1000.
154 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
155 * x = 1 does 'adaptive' disconnects, which is the default
156 * and generally the best choice.
157 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bitmask that causes
158 * various types of debug output to printed - see the DB_xxx
159 * defines in in2000.h
160 * - proc:x -If 'PROC_INTERFACE' is defined, x is a bitmask that
161 * determines how the /proc interface works and what it
162 * does - see the PR_xxx defines in in2000.h
163 *
164 * Syntax Notes:
165 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
166 * _must_ be a colon between a keyword and its numeric argument, with no
167 * spaces.
168 * - Keywords are separated by commas, no spaces, in the standard kernel
169 * command-line manner.
170 * - A keyword in the 'nth' comma-separated command-line member will overwrite
171 * the 'nth' element of setup_args[]. A blank command-line member (in
172 * other words, a comma with no preceding keyword) will _not_ overwrite
173 * the corresponding setup_args[] element.
174 *
175 * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'):
176 * - in2000=ioport:0x220,noreset
177 * - in2000=period:250,disconnect:2,nosync:0x03
178 * - in2000=debug:0x1e
179 * - in2000=proc:3
180 */
181
182/* Normally, no defaults are specified... */
183static char *setup_args[] = { "", "", "", "", "", "", "", "", "" };
184
185/* filled in by 'insmod' */
186static char *setup_strings;
187
188module_param(setup_strings, charp, 0);
189
190static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num)
191{
192 write1_io(reg_num, IO_WD_ADDR);
193 return read1_io(IO_WD_DATA);
194}
195
196
197#define READ_AUX_STAT() read1_io(IO_WD_ASR)
198
199
200static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value)
201{
202 write1_io(reg_num, IO_WD_ADDR);
203 write1_io(value, IO_WD_DATA);
204}
205
206
207static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd)
208{
209/* while (READ_AUX_STAT() & ASR_CIP)
210 printk("|");*/
211 write1_io(WD_COMMAND, IO_WD_ADDR);
212 write1_io(cmd, IO_WD_DATA);
213}
214
215
216static uchar read_1_byte(struct IN2000_hostdata *hostdata)
217{
218 uchar asr, x = 0;
219
220 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
221 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO | 0x80);
222 do {
223 asr = READ_AUX_STAT();
224 if (asr & ASR_DBR)
225 x = read_3393(hostdata, WD_DATA);
226 } while (!(asr & ASR_INT));
227 return x;
228}
229
230
231static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value)
232{
233 write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
234 write1_io((value >> 16), IO_WD_DATA);
235 write1_io((value >> 8), IO_WD_DATA);
236 write1_io(value, IO_WD_DATA);
237}
238
239
240static unsigned long read_3393_count(struct IN2000_hostdata *hostdata)
241{
242 unsigned long value;
243
244 write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
245 value = read1_io(IO_WD_DATA) << 16;
246 value |= read1_io(IO_WD_DATA) << 8;
247 value |= read1_io(IO_WD_DATA);
248 return value;
249}
250
251
252/* The 33c93 needs to be told which direction a command transfers its
253 * data; we use this function to figure it out. Returns true if there
254 * will be a DATA_OUT phase with this command, false otherwise.
255 * (Thanks to Joerg Dorchain for the research and suggestion.)
256 */
257static int is_dir_out(Scsi_Cmnd * cmd)
258{
259 switch (cmd->cmnd[0]) {
260 case WRITE_6:
261 case WRITE_10:
262 case WRITE_12:
263 case WRITE_LONG:
264 case WRITE_SAME:
265 case WRITE_BUFFER:
266 case WRITE_VERIFY:
267 case WRITE_VERIFY_12:
268 case COMPARE:
269 case COPY:
270 case COPY_VERIFY:
271 case SEARCH_EQUAL:
272 case SEARCH_HIGH:
273 case SEARCH_LOW:
274 case SEARCH_EQUAL_12:
275 case SEARCH_HIGH_12:
276 case SEARCH_LOW_12:
277 case FORMAT_UNIT:
278 case REASSIGN_BLOCKS:
279 case RESERVE:
280 case MODE_SELECT:
281 case MODE_SELECT_10:
282 case LOG_SELECT:
283 case SEND_DIAGNOSTIC:
284 case CHANGE_DEFINITION:
285 case UPDATE_BLOCK:
286 case SET_WINDOW:
287 case MEDIUM_SCAN:
288 case SEND_VOLUME_TAG:
289 case 0xea:
290 return 1;
291 default:
292 return 0;
293 }
294}
295
296
297
298static struct sx_period sx_table[] = {
299 {1, 0x20},
300 {252, 0x20},
301 {376, 0x30},
302 {500, 0x40},
303 {624, 0x50},
304 {752, 0x60},
305 {876, 0x70},
306 {1000, 0x00},
307 {0, 0}
308};
309
310static int round_period(unsigned int period)
311{
312 int x;
313
314 for (x = 1; sx_table[x].period_ns; x++) {
315 if ((period <= sx_table[x - 0].period_ns) && (period > sx_table[x - 1].period_ns)) {
316 return x;
317 }
318 }
319 return 7;
320}
321
322static uchar calc_sync_xfer(unsigned int period, unsigned int offset)
323{
324 uchar result;
325
326 period *= 4; /* convert SDTR code to ns */
327 result = sx_table[round_period(period)].reg_value;
328 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
329 return result;
330}
331
332
333
334static void in2000_execute(struct Scsi_Host *instance);
335
f281233d 336static int in2000_queuecommand_lck(Scsi_Cmnd * cmd, void (*done) (Scsi_Cmnd *))
1da177e4
LT
337{
338 struct Scsi_Host *instance;
339 struct IN2000_hostdata *hostdata;
340 Scsi_Cmnd *tmp;
341
342 instance = cmd->device->host;
343 hostdata = (struct IN2000_hostdata *) instance->hostdata;
344
5cd049a5 345 DB(DB_QUEUE_COMMAND, scmd_printk(KERN_DEBUG, cmd, "Q-%02x(", cmd->cmnd[0]))
1da177e4
LT
346
347/* Set up a few fields in the Scsi_Cmnd structure for our own use:
348 * - host_scribble is the pointer to the next cmd in the input queue
349 * - scsi_done points to the routine we call when a cmd is finished
350 * - result is what you'd expect
351 */
352 cmd->host_scribble = NULL;
353 cmd->scsi_done = done;
354 cmd->result = 0;
355
356/* We use the Scsi_Pointer structure that's included with each command
357 * as a scratchpad (as it's intended to be used!). The handy thing about
358 * the SCp.xxx fields is that they're always associated with a given
359 * cmd, and are preserved across disconnect-reselect. This means we
360 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
361 * if we keep all the critical pointers and counters in SCp:
362 * - SCp.ptr is the pointer into the RAM buffer
363 * - SCp.this_residual is the size of that buffer
364 * - SCp.buffer points to the current scatter-gather buffer
365 * - SCp.buffers_residual tells us how many S.G. buffers there are
366 * - SCp.have_data_in helps keep track of >2048 byte transfers
367 * - SCp.sent_command is not used
368 * - SCp.phase records this command's SRCID_ER bit setting
369 */
370
53d2a885
BH
371 if (scsi_bufflen(cmd)) {
372 cmd->SCp.buffer = scsi_sglist(cmd);
373 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
45711f1a 374 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
1da177e4
LT
375 cmd->SCp.this_residual = cmd->SCp.buffer->length;
376 } else {
377 cmd->SCp.buffer = NULL;
378 cmd->SCp.buffers_residual = 0;
53d2a885
BH
379 cmd->SCp.ptr = NULL;
380 cmd->SCp.this_residual = 0;
1da177e4
LT
381 }
382 cmd->SCp.have_data_in = 0;
383
384/* We don't set SCp.phase here - that's done in in2000_execute() */
385
386/* WD docs state that at the conclusion of a "LEVEL2" command, the
387 * status byte can be retrieved from the LUN register. Apparently,
388 * this is the case only for *uninterrupted* LEVEL2 commands! If
389 * there are any unexpected phases entered, even if they are 100%
390 * legal (different devices may choose to do things differently),
391 * the LEVEL2 command sequence is exited. This often occurs prior
392 * to receiving the status byte, in which case the driver does a
393 * status phase interrupt and gets the status byte on its own.
394 * While such a command can then be "resumed" (ie restarted to
395 * finish up as a LEVEL2 command), the LUN register will NOT be
396 * a valid status byte at the command's conclusion, and we must
397 * use the byte obtained during the earlier interrupt. Here, we
398 * preset SCp.Status to an illegal value (0xff) so that when
399 * this command finally completes, we can tell where the actual
400 * status byte is stored.
401 */
402
403 cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
404
405/* We need to disable interrupts before messing with the input
406 * queue and calling in2000_execute().
407 */
408
409 /*
410 * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE
411 * commands are added to the head of the queue so that the desired
412 * sense data is not lost before REQUEST_SENSE executes.
413 */
414
415 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
416 cmd->host_scribble = (uchar *) hostdata->input_Q;
417 hostdata->input_Q = cmd;
418 } else { /* find the end of the queue */
419 for (tmp = (Scsi_Cmnd *) hostdata->input_Q; tmp->host_scribble; tmp = (Scsi_Cmnd *) tmp->host_scribble);
420 tmp->host_scribble = (uchar *) cmd;
421 }
422
423/* We know that there's at least one command in 'input_Q' now.
424 * Go see if any of them are runnable!
425 */
426
427 in2000_execute(cmd->device->host);
428
5cd049a5 429 DB(DB_QUEUE_COMMAND, printk(")Q "))
1da177e4
LT
430 return 0;
431}
432
f281233d
JG
433static DEF_SCSI_QCMD(in2000_queuecommand)
434
1da177e4
LT
435
436
437/*
438 * This routine attempts to start a scsi command. If the host_card is
439 * already connected, we give up immediately. Otherwise, look through
440 * the input_Q, using the first command we find that's intended
441 * for a currently non-busy target/lun.
442 * Note that this function is always called with interrupts already
443 * disabled (either from in2000_queuecommand() or in2000_intr()).
444 */
445static void in2000_execute(struct Scsi_Host *instance)
446{
447 struct IN2000_hostdata *hostdata;
448 Scsi_Cmnd *cmd, *prev;
449 int i;
450 unsigned short *sp;
451 unsigned short f;
452 unsigned short flushbuf[16];
453
454
455 hostdata = (struct IN2000_hostdata *) instance->hostdata;
456
457 DB(DB_EXECUTE, printk("EX("))
458
459 if (hostdata->selecting || hostdata->connected) {
460
461 DB(DB_EXECUTE, printk(")EX-0 "))
462
463 return;
464 }
465
466 /*
467 * Search through the input_Q for a command destined
468 * for an idle target/lun.
469 */
470
471 cmd = (Scsi_Cmnd *) hostdata->input_Q;
472 prev = NULL;
473 while (cmd) {
474 if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
475 break;
476 prev = cmd;
477 cmd = (Scsi_Cmnd *) cmd->host_scribble;
478 }
479
480 /* quit if queue empty or all possible targets are busy */
481
482 if (!cmd) {
483
484 DB(DB_EXECUTE, printk(")EX-1 "))
485
486 return;
487 }
488
489 /* remove command from queue */
490
491 if (prev)
492 prev->host_scribble = cmd->host_scribble;
493 else
494 hostdata->input_Q = (Scsi_Cmnd *) cmd->host_scribble;
495
496#ifdef PROC_STATISTICS
497 hostdata->cmd_cnt[cmd->device->id]++;
498#endif
499
500/*
501 * Start the selection process
502 */
503
504 if (is_dir_out(cmd))
505 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
506 else
507 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
508
509/* Now we need to figure out whether or not this command is a good
510 * candidate for disconnect/reselect. We guess to the best of our
511 * ability, based on a set of hierarchical rules. When several
512 * devices are operating simultaneously, disconnects are usually
513 * an advantage. In a single device system, or if only 1 device
514 * is being accessed, transfers usually go faster if disconnects
515 * are not allowed:
516 *
517 * + Commands should NEVER disconnect if hostdata->disconnect =
518 * DIS_NEVER (this holds for tape drives also), and ALWAYS
519 * disconnect if hostdata->disconnect = DIS_ALWAYS.
520 * + Tape drive commands should always be allowed to disconnect.
521 * + Disconnect should be allowed if disconnected_Q isn't empty.
522 * + Commands should NOT disconnect if input_Q is empty.
523 * + Disconnect should be allowed if there are commands in input_Q
524 * for a different target/lun. In this case, the other commands
525 * should be made disconnect-able, if not already.
526 *
527 * I know, I know - this code would flunk me out of any
528 * "C Programming 101" class ever offered. But it's easy
529 * to change around and experiment with for now.
530 */
531
532 cmd->SCp.phase = 0; /* assume no disconnect */
533 if (hostdata->disconnect == DIS_NEVER)
534 goto no;
535 if (hostdata->disconnect == DIS_ALWAYS)
536 goto yes;
537 if (cmd->device->type == 1) /* tape drive? */
538 goto yes;
539 if (hostdata->disconnected_Q) /* other commands disconnected? */
540 goto yes;
541 if (!(hostdata->input_Q)) /* input_Q empty? */
542 goto no;
543 for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) {
544 if ((prev->device->id != cmd->device->id) || (prev->device->lun != cmd->device->lun)) {
545 for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble)
546 prev->SCp.phase = 1;
547 goto yes;
548 }
549 }
550 goto no;
551
552 yes:
553 cmd->SCp.phase = 1;
554
555#ifdef PROC_STATISTICS
556 hostdata->disc_allowed_cnt[cmd->device->id]++;
557#endif
558
559 no:
560 write_3393(hostdata, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
561
562 write_3393(hostdata, WD_TARGET_LUN, cmd->device->lun);
563 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
564 hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
565
566 if ((hostdata->level2 <= L2_NONE) || (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
567
568 /*
569 * Do a 'Select-With-ATN' command. This will end with
570 * one of the following interrupts:
571 * CSR_RESEL_AM: failure - can try again later.
572 * CSR_TIMEOUT: failure - give up.
573 * CSR_SELECT: success - proceed.
574 */
575
576 hostdata->selecting = cmd;
577
578/* Every target has its own synchronous transfer setting, kept in
579 * the sync_xfer array, and a corresponding status byte in sync_stat[].
580 * Each target's sync_stat[] entry is initialized to SS_UNSET, and its
581 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
582 * means that the parameters are undetermined as yet, and that we
583 * need to send an SDTR message to this device after selection is
584 * complete. We set SS_FIRST to tell the interrupt routine to do so,
585 * unless we don't want to even _try_ synchronous transfers: In this
586 * case we set SS_SET to make the defaults final.
587 */
588 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) {
589 if (hostdata->sync_off & (1 << cmd->device->id))
590 hostdata->sync_stat[cmd->device->id] = SS_SET;
591 else
592 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
593 }
594 hostdata->state = S_SELECTING;
595 write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */
596 write_3393_cmd(hostdata, WD_CMD_SEL_ATN);
597 }
598
599 else {
600
601 /*
602 * Do a 'Select-With-ATN-Xfer' command. This will end with
603 * one of the following interrupts:
604 * CSR_RESEL_AM: failure - can try again later.
605 * CSR_TIMEOUT: failure - give up.
606 * anything else: success - proceed.
607 */
608
609 hostdata->connected = cmd;
610 write_3393(hostdata, WD_COMMAND_PHASE, 0);
611
612 /* copy command_descriptor_block into WD chip
613 * (take advantage of auto-incrementing)
614 */
615
616 write1_io(WD_CDB_1, IO_WD_ADDR);
617 for (i = 0; i < cmd->cmd_len; i++)
618 write1_io(cmd->cmnd[i], IO_WD_DATA);
619
620 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
621 * it's doing a 'select-and-transfer'. To be safe, we write the
622 * size of the CDB into the OWN_ID register for every case. This
623 * way there won't be problems with vendor-unique, audio, etc.
624 */
625
626 write_3393(hostdata, WD_OWN_ID, cmd->cmd_len);
627
628 /* When doing a non-disconnect command, we can save ourselves a DATA
629 * phase interrupt later by setting everything up now. With writes we
630 * need to pre-fill the fifo; if there's room for the 32 flush bytes,
631 * put them in there too - that'll avoid a fifo interrupt. Reads are
632 * somewhat simpler.
633 * KLUDGE NOTE: It seems that you can't completely fill the fifo here:
634 * This results in the IO_FIFO_COUNT register rolling over to zero,
635 * and apparently the gate array logic sees this as empty, not full,
636 * so the 3393 chip is never signalled to start reading from the
637 * fifo. Or maybe it's seen as a permanent fifo interrupt condition.
638 * Regardless, we fix this by temporarily pretending that the fifo
639 * is 16 bytes smaller. (I see now that the old driver has a comment
640 * about "don't fill completely" in an analogous place - must be the
641 * same deal.) This results in CDROM, swap partitions, and tape drives
642 * needing an extra interrupt per write command - I think we can live
643 * with that!
644 */
645
646 if (!(cmd->SCp.phase)) {
647 write_3393_count(hostdata, cmd->SCp.this_residual);
648 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
649 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter, write mode */
650
651 if (is_dir_out(cmd)) {
652 hostdata->fifo = FI_FIFO_WRITING;
653 if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16))
654 i = IN2000_FIFO_SIZE - 16;
655 cmd->SCp.have_data_in = i; /* this much data in fifo */
656 i >>= 1; /* Gulp. Assuming modulo 2. */
657 sp = (unsigned short *) cmd->SCp.ptr;
658 f = hostdata->io_base + IO_FIFO;
659
660#ifdef FAST_WRITE_IO
661
662 FAST_WRITE2_IO();
663#else
664 while (i--)
665 write2_io(*sp++, IO_FIFO);
666
667#endif
668
669 /* Is there room for the flush bytes? */
670
671 if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) {
672 sp = flushbuf;
673 i = 16;
674
675#ifdef FAST_WRITE_IO
676
677 FAST_WRITE2_IO();
678#else
679 while (i--)
680 write2_io(0, IO_FIFO);
681
682#endif
683
684 }
685 }
686
687 else {
688 write1_io(0, IO_FIFO_READ); /* put fifo in read mode */
689 hostdata->fifo = FI_FIFO_READING;
690 cmd->SCp.have_data_in = 0; /* nothing transferred yet */
691 }
692
693 } else {
694 write_3393_count(hostdata, 0); /* this guarantees a DATA_PHASE interrupt */
695 }
696 hostdata->state = S_RUNNING_LEVEL2;
697 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
698 }
699
700 /*
701 * Since the SCSI bus can handle only 1 connection at a time,
702 * we get out of here now. If the selection fails, or when
703 * the command disconnects, we'll come back to this routine
704 * to search the input_Q again...
705 */
706
5cd049a5 707 DB(DB_EXECUTE, printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : ""))
1da177e4
LT
708
709}
710
711
712
713static void transfer_pio(uchar * buf, int cnt, int data_in_dir, struct IN2000_hostdata *hostdata)
714{
715 uchar asr;
716
717 DB(DB_TRANSFER, printk("(%p,%d,%s)", buf, cnt, data_in_dir ? "in" : "out"))
718
719 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
720 write_3393_count(hostdata, cnt);
721 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
722 if (data_in_dir) {
723 do {
724 asr = READ_AUX_STAT();
725 if (asr & ASR_DBR)
726 *buf++ = read_3393(hostdata, WD_DATA);
727 } while (!(asr & ASR_INT));
728 } else {
729 do {
730 asr = READ_AUX_STAT();
731 if (asr & ASR_DBR)
732 write_3393(hostdata, WD_DATA, *buf++);
733 } while (!(asr & ASR_INT));
734 }
735
736 /* Note: we are returning with the interrupt UN-cleared.
737 * Since (presumably) an entire I/O operation has
738 * completed, the bus phase is probably different, and
739 * the interrupt routine will discover this when it
740 * responds to the uncleared int.
741 */
742
743}
744
745
746
747static void transfer_bytes(Scsi_Cmnd * cmd, int data_in_dir)
748{
749 struct IN2000_hostdata *hostdata;
750 unsigned short *sp;
751 unsigned short f;
752 int i;
753
754 hostdata = (struct IN2000_hostdata *) cmd->device->host->hostdata;
755
756/* Normally, you'd expect 'this_residual' to be non-zero here.
757 * In a series of scatter-gather transfers, however, this
758 * routine will usually be called with 'this_residual' equal
759 * to 0 and 'buffers_residual' non-zero. This means that a
760 * previous transfer completed, clearing 'this_residual', and
761 * now we need to setup the next scatter-gather buffer as the
762 * source or destination for THIS transfer.
763 */
764 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
765 ++cmd->SCp.buffer;
766 --cmd->SCp.buffers_residual;
767 cmd->SCp.this_residual = cmd->SCp.buffer->length;
45711f1a 768 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
1da177e4
LT
769 }
770
771/* Set up hardware registers */
772
773 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
774 write_3393_count(hostdata, cmd->SCp.this_residual);
775 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
776 write1_io(0, IO_FIFO_WRITE); /* zero counter, assume write */
777
778/* Reading is easy. Just issue the command and return - we'll
779 * get an interrupt later when we have actual data to worry about.
780 */
781
782 if (data_in_dir) {
783 write1_io(0, IO_FIFO_READ);
784 if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
785 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
786 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
787 hostdata->state = S_RUNNING_LEVEL2;
788 } else
789 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
790 hostdata->fifo = FI_FIFO_READING;
791 cmd->SCp.have_data_in = 0;
792 return;
793 }
794
795/* Writing is more involved - we'll start the WD chip and write as
796 * much data to the fifo as we can right now. Later interrupts will
797 * write any bytes that don't make it at this stage.
798 */
799
800 if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
801 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
802 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
803 hostdata->state = S_RUNNING_LEVEL2;
804 } else
805 write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
806 hostdata->fifo = FI_FIFO_WRITING;
807 sp = (unsigned short *) cmd->SCp.ptr;
808
809 if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE)
810 i = IN2000_FIFO_SIZE;
811 cmd->SCp.have_data_in = i;
812 i >>= 1; /* Gulp. We assume this_residual is modulo 2 */
813 f = hostdata->io_base + IO_FIFO;
814
815#ifdef FAST_WRITE_IO
816
817 FAST_WRITE2_IO();
818#else
819 while (i--)
820 write2_io(*sp++, IO_FIFO);
821
822#endif
823
824}
825
826
827/* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this
828 * function in order to work in an SMP environment. (I'd be surprised
829 * if the driver is ever used by anyone on a real multi-CPU motherboard,
830 * but it _does_ need to be able to compile and run in an SMP kernel.)
831 */
832
7d12e780 833static irqreturn_t in2000_intr(int irqnum, void *dev_id)
1da177e4
LT
834{
835 struct Scsi_Host *instance = dev_id;
836 struct IN2000_hostdata *hostdata;
837 Scsi_Cmnd *patch, *cmd;
838 uchar asr, sr, phs, id, lun, *ucp, msg;
839 int i, j;
840 unsigned long length;
841 unsigned short *sp;
842 unsigned short f;
843 unsigned long flags;
844
845 hostdata = (struct IN2000_hostdata *) instance->hostdata;
846
847/* Get the spin_lock and disable further ints, for SMP */
848
849 spin_lock_irqsave(instance->host_lock, flags);
850
851#ifdef PROC_STATISTICS
852 hostdata->int_cnt++;
853#endif
854
855/* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the
856 * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined
857 * with a big logic array, so it's a little different than what you might
858 * expect). As far as I know, there's no reason that BOTH can't be active
859 * at the same time, but there's a problem: while we can read the 3393
860 * to tell if _it_ wants an interrupt, I don't know of a way to ask the
861 * fifo the same question. The best we can do is check the 3393 and if
862 * it _isn't_ the source of the interrupt, then we can be pretty sure
863 * that the fifo is the culprit.
864 * UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the
865 * IO_FIFO_COUNT register mirrors the fifo interrupt state. I
866 * assume that bit clear means interrupt active. As it turns
867 * out, the driver really doesn't need to check for this after
868 * all, so my remarks above about a 'problem' can safely be
869 * ignored. The way the logic is set up, there's no advantage
870 * (that I can see) to worrying about it.
871 *
872 * It seems that the fifo interrupt signal is negated when we extract
873 * bytes during read or write bytes during write.
874 * - fifo will interrupt when data is moving from it to the 3393, and
875 * there are 31 (or less?) bytes left to go. This is sort of short-
876 * sighted: what if you don't WANT to do more? In any case, our
877 * response is to push more into the fifo - either actual data or
878 * dummy bytes if need be. Note that we apparently have to write at
879 * least 32 additional bytes to the fifo after an interrupt in order
880 * to get it to release the ones it was holding on to - writing fewer
881 * than 32 will result in another fifo int.
882 * UPDATE: Again, info from Bill Earnest makes this more understandable:
883 * 32 bytes = two counts of the fifo counter register. He tells
884 * me that the fifo interrupt is a non-latching signal derived
885 * from a straightforward boolean interpretation of the 7
886 * highest bits of the fifo counter and the fifo-read/fifo-write
887 * state. Who'd a thought?
888 */
889
890 write1_io(0, IO_LED_ON);
891 asr = READ_AUX_STAT();
892 if (!(asr & ASR_INT)) { /* no WD33c93 interrupt? */
893
894/* Ok. This is definitely a FIFO-only interrupt.
895 *
896 * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read,
897 * maybe more to come from the SCSI bus. Read as many as we can out of the
898 * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and
899 * update have_data_in afterwards.
900 *
901 * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move
902 * into the WD3393 chip (I think the interrupt happens when there are 31
903 * bytes left, but it may be fewer...). The 3393 is still waiting, so we
904 * shove some more into the fifo, which gets things moving again. If the
905 * original SCSI command specified more than 2048 bytes, there may still
906 * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]).
907 * Don't forget to update have_data_in. If we've already written out the
908 * entire buffer, feed 32 dummy bytes to the fifo - they're needed to
909 * push out the remaining real data.
910 * (Big thanks to Bill Earnest for getting me out of the mud in here.)
911 */
912
913 cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */
914 CHECK_NULL(cmd, "fifo_int")
915
916 if (hostdata->fifo == FI_FIFO_READING) {
917
918 DB(DB_FIFO, printk("{R:%02x} ", read1_io(IO_FIFO_COUNT)))
919
920 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
921 i = read1_io(IO_FIFO_COUNT) & 0xfe;
922 i <<= 2; /* # of words waiting in the fifo */
923 f = hostdata->io_base + IO_FIFO;
924
925#ifdef FAST_READ_IO
926
927 FAST_READ2_IO();
928#else
929 while (i--)
930 *sp++ = read2_io(IO_FIFO);
931
932#endif
933
934 i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
935 i <<= 1;
936 cmd->SCp.have_data_in += i;
937 }
938
939 else if (hostdata->fifo == FI_FIFO_WRITING) {
940
941 DB(DB_FIFO, printk("{W:%02x} ", read1_io(IO_FIFO_COUNT)))
942
943/* If all bytes have been written to the fifo, flush out the stragglers.
944 * Note that while writing 16 dummy words seems arbitrary, we don't
945 * have another choice that I can see. What we really want is to read
946 * the 3393 transfer count register (that would tell us how many bytes
947 * needed flushing), but the TRANSFER_INFO command hasn't completed
948 * yet (not enough bytes!) and that register won't be accessible. So,
949 * we use 16 words - a number obtained through trial and error.
950 * UPDATE: Bill says this is exactly what Always does, so there.
951 * More thanks due him for help in this section.
952 */
953 if (cmd->SCp.this_residual == cmd->SCp.have_data_in) {
954 i = 16;
955 while (i--) /* write 32 dummy bytes */
956 write2_io(0, IO_FIFO);
957 }
958
959/* If there are still bytes left in the SCSI buffer, write as many as we
960 * can out to the fifo.
961 */
962
963 else {
964 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
965 i = cmd->SCp.this_residual - cmd->SCp.have_data_in; /* bytes yet to go */
966 j = read1_io(IO_FIFO_COUNT) & 0xfe;
967 j <<= 2; /* how many words the fifo has room for */
968 if ((j << 1) > i)
969 j = (i >> 1);
970 while (j--)
971 write2_io(*sp++, IO_FIFO);
972
973 i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
974 i <<= 1;
975 cmd->SCp.have_data_in += i;
976 }
977 }
978
979 else {
980 printk("*** Spurious FIFO interrupt ***");
981 }
982
983 write1_io(0, IO_LED_OFF);
984
985/* release the SMP spin_lock and restore irq state */
986 spin_unlock_irqrestore(instance->host_lock, flags);
987 return IRQ_HANDLED;
988 }
989
990/* This interrupt was triggered by the WD33c93 chip. The fifo interrupt
991 * may also be asserted, but we don't bother to check it: we get more
992 * detailed info from FIFO_READING and FIFO_WRITING (see below).
993 */
994
995 cmd = (Scsi_Cmnd *) hostdata->connected; /* assume we're connected */
996 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear the interrupt */
997 phs = read_3393(hostdata, WD_COMMAND_PHASE);
998
999 if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) {
1000 printk("\nNR:wd-intr-1\n");
1001 write1_io(0, IO_LED_OFF);
1002
1003/* release the SMP spin_lock and restore irq state */
1004 spin_unlock_irqrestore(instance->host_lock, flags);
1005 return IRQ_HANDLED;
1006 }
1007
1008 DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
1009
1010/* After starting a FIFO-based transfer, the next _WD3393_ interrupt is
1011 * guaranteed to be in response to the completion of the transfer.
1012 * If we were reading, there's probably data in the fifo that needs
1013 * to be copied into RAM - do that here. Also, we have to update
1014 * 'this_residual' and 'ptr' based on the contents of the
1015 * TRANSFER_COUNT register, in case the device decided to do an
1016 * intermediate disconnect (a device may do this if it has to
1017 * do a seek, or just to be nice and let other devices have
1018 * some bus time during long transfers).
1019 * After doing whatever is necessary with the fifo, we go on and
1020 * service the WD3393 interrupt normally.
1021 */
1022 if (hostdata->fifo == FI_FIFO_READING) {
1023
1024/* buffer index = start-of-buffer + #-of-bytes-already-read */
1025
1026 sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
1027
1028/* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */
1029
1030 i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in;
1031 i >>= 1; /* Gulp. We assume this will always be modulo 2 */
1032 f = hostdata->io_base + IO_FIFO;
1033
1034#ifdef FAST_READ_IO
1035
1036 FAST_READ2_IO();
1037#else
1038 while (i--)
1039 *sp++ = read2_io(IO_FIFO);
1040
1041#endif
1042
1043 hostdata->fifo = FI_FIFO_UNUSED;
1044 length = cmd->SCp.this_residual;
1045 cmd->SCp.this_residual = read_3393_count(hostdata);
1046 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1047
1048 DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1049
1050 }
1051
1052 else if (hostdata->fifo == FI_FIFO_WRITING) {
1053 hostdata->fifo = FI_FIFO_UNUSED;
1054 length = cmd->SCp.this_residual;
1055 cmd->SCp.this_residual = read_3393_count(hostdata);
1056 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1057
1058 DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1059
1060 }
1061
1062/* Respond to the specific WD3393 interrupt - there are quite a few! */
1063
1064 switch (sr) {
1065
1066 case CSR_TIMEOUT:
1067 DB(DB_INTR, printk("TIMEOUT"))
1068
1069 if (hostdata->state == S_RUNNING_LEVEL2)
1070 hostdata->connected = NULL;
1071 else {
1072 cmd = (Scsi_Cmnd *) hostdata->selecting; /* get a valid cmd */
1073 CHECK_NULL(cmd, "csr_timeout")
1074 hostdata->selecting = NULL;
1075 }
1076
1077 cmd->result = DID_NO_CONNECT << 16;
1078 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1079 hostdata->state = S_UNCONNECTED;
1080 cmd->scsi_done(cmd);
1081
1082/* We are not connected to a target - check to see if there
1083 * are commands waiting to be executed.
1084 */
1085
1086 in2000_execute(instance);
1087 break;
1088
1089
1090/* Note: this interrupt should not occur in a LEVEL2 command */
1091
1092 case CSR_SELECT:
1093 DB(DB_INTR, printk("SELECT"))
1094 hostdata->connected = cmd = (Scsi_Cmnd *) hostdata->selecting;
1095 CHECK_NULL(cmd, "csr_select")
1096 hostdata->selecting = NULL;
1097
1098 /* construct an IDENTIFY message with correct disconnect bit */
1099
1100 hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
1101 if (cmd->SCp.phase)
1102 hostdata->outgoing_msg[0] |= 0x40;
1103
1104 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
1105#ifdef SYNC_DEBUG
1106 printk(" sending SDTR ");
1107#endif
1108
1109 hostdata->sync_stat[cmd->device->id] = SS_WAITING;
1110
1111 /* tack on a 2nd message to ask about synchronous transfers */
1112
1113 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
1114 hostdata->outgoing_msg[2] = 3;
1115 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
1116 hostdata->outgoing_msg[4] = OPTIMUM_SX_PER / 4;
1117 hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF;
1118 hostdata->outgoing_len = 6;
1119 } else
1120 hostdata->outgoing_len = 1;
1121
1122 hostdata->state = S_CONNECTED;
1123 break;
1124
1125
1126 case CSR_XFER_DONE | PHS_DATA_IN:
1127 case CSR_UNEXP | PHS_DATA_IN:
1128 case CSR_SRV_REQ | PHS_DATA_IN:
1129 DB(DB_INTR, printk("IN-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1130 transfer_bytes(cmd, DATA_IN_DIR);
1131 if (hostdata->state != S_RUNNING_LEVEL2)
1132 hostdata->state = S_CONNECTED;
1133 break;
1134
1135
1136 case CSR_XFER_DONE | PHS_DATA_OUT:
1137 case CSR_UNEXP | PHS_DATA_OUT:
1138 case CSR_SRV_REQ | PHS_DATA_OUT:
1139 DB(DB_INTR, printk("OUT-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1140 transfer_bytes(cmd, DATA_OUT_DIR);
1141 if (hostdata->state != S_RUNNING_LEVEL2)
1142 hostdata->state = S_CONNECTED;
1143 break;
1144
1145
1146/* Note: this interrupt should not occur in a LEVEL2 command */
1147
1148 case CSR_XFER_DONE | PHS_COMMAND:
1149 case CSR_UNEXP | PHS_COMMAND:
1150 case CSR_SRV_REQ | PHS_COMMAND:
5cd049a5 1151 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
1da177e4
LT
1152 transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata);
1153 hostdata->state = S_CONNECTED;
1154 break;
1155
1156
1157 case CSR_XFER_DONE | PHS_STATUS:
1158 case CSR_UNEXP | PHS_STATUS:
1159 case CSR_SRV_REQ | PHS_STATUS:
1160 DB(DB_INTR, printk("STATUS="))
1161
1162 cmd->SCp.Status = read_1_byte(hostdata);
1163 DB(DB_INTR, printk("%02x", cmd->SCp.Status))
1164 if (hostdata->level2 >= L2_BASIC) {
1165 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1166 hostdata->state = S_RUNNING_LEVEL2;
1167 write_3393(hostdata, WD_COMMAND_PHASE, 0x50);
1168 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1169 } else {
1170 hostdata->state = S_CONNECTED;
1171 }
1172 break;
1173
1174
1175 case CSR_XFER_DONE | PHS_MESS_IN:
1176 case CSR_UNEXP | PHS_MESS_IN:
1177 case CSR_SRV_REQ | PHS_MESS_IN:
1178 DB(DB_INTR, printk("MSG_IN="))
1179
1180 msg = read_1_byte(hostdata);
1181 sr = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1182
1183 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1184 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1185 msg = EXTENDED_MESSAGE;
1186 else
1187 hostdata->incoming_ptr = 0;
1188
1189 cmd->SCp.Message = msg;
1190 switch (msg) {
1191
1192 case COMMAND_COMPLETE:
5cd049a5 1193 DB(DB_INTR, printk("CCMP"))
1da177e4
LT
1194 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1195 hostdata->state = S_PRE_CMP_DISC;
1196 break;
1197
1198 case SAVE_POINTERS:
1199 DB(DB_INTR, printk("SDP"))
1200 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1201 hostdata->state = S_CONNECTED;
1202 break;
1203
1204 case RESTORE_POINTERS:
1205 DB(DB_INTR, printk("RDP"))
1206 if (hostdata->level2 >= L2_BASIC) {
1207 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1208 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1209 hostdata->state = S_RUNNING_LEVEL2;
1210 } else {
1211 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1212 hostdata->state = S_CONNECTED;
1213 }
1214 break;
1215
1216 case DISCONNECT:
1217 DB(DB_INTR, printk("DIS"))
1218 cmd->device->disconnect = 1;
1219 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1220 hostdata->state = S_PRE_TMP_DISC;
1221 break;
1222
1223 case MESSAGE_REJECT:
1224 DB(DB_INTR, printk("REJ"))
1225#ifdef SYNC_DEBUG
1226 printk("-REJ-");
1227#endif
1228 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING)
1229 hostdata->sync_stat[cmd->device->id] = SS_SET;
1230 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1231 hostdata->state = S_CONNECTED;
1232 break;
1233
1234 case EXTENDED_MESSAGE:
1235 DB(DB_INTR, printk("EXT"))
1236
1237 ucp = hostdata->incoming_msg;
1238
1239#ifdef SYNC_DEBUG
1240 printk("%02x", ucp[hostdata->incoming_ptr]);
1241#endif
1242 /* Is this the last byte of the extended message? */
1243
1244 if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) {
1245
1246 switch (ucp[2]) { /* what's the EXTENDED code? */
1247 case EXTENDED_SDTR:
1248 id = calc_sync_xfer(ucp[3], ucp[4]);
1249 if (hostdata->sync_stat[cmd->device->id] != SS_WAITING) {
1250
1251/* A device has sent an unsolicited SDTR message; rather than go
1252 * through the effort of decoding it and then figuring out what
1253 * our reply should be, we're just gonna say that we have a
1254 * synchronous fifo depth of 0. This will result in asynchronous
1255 * transfers - not ideal but so much easier.
1256 * Actually, this is OK because it assures us that if we don't
1257 * specifically ask for sync transfers, we won't do any.
1258 */
1259
1260 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1261 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1262 hostdata->outgoing_msg[1] = 3;
1263 hostdata->outgoing_msg[2] = EXTENDED_SDTR;
1264 hostdata->outgoing_msg[3] = hostdata->default_sx_per / 4;
1265 hostdata->outgoing_msg[4] = 0;
1266 hostdata->outgoing_len = 5;
1267 hostdata->sync_xfer[cmd->device->id] = calc_sync_xfer(hostdata->default_sx_per / 4, 0);
1268 } else {
1269 hostdata->sync_xfer[cmd->device->id] = id;
1270 }
1271#ifdef SYNC_DEBUG
1272 printk("sync_xfer=%02x", hostdata->sync_xfer[cmd->device->id]);
1273#endif
1274 hostdata->sync_stat[cmd->device->id] = SS_SET;
1275 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1276 hostdata->state = S_CONNECTED;
1277 break;
1278 case EXTENDED_WDTR:
1279 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1280 printk("sending WDTR ");
1281 hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1282 hostdata->outgoing_msg[1] = 2;
1283 hostdata->outgoing_msg[2] = EXTENDED_WDTR;
1284 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1285 hostdata->outgoing_len = 4;
1286 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1287 hostdata->state = S_CONNECTED;
1288 break;
1289 default:
1290 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1291 printk("Rejecting Unknown Extended Message(%02x). ", ucp[2]);
1292 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1293 hostdata->outgoing_len = 1;
1294 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1295 hostdata->state = S_CONNECTED;
1296 break;
1297 }
1298 hostdata->incoming_ptr = 0;
1299 }
1300
1301 /* We need to read more MESS_IN bytes for the extended message */
1302
1303 else {
1304 hostdata->incoming_ptr++;
1305 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1306 hostdata->state = S_CONNECTED;
1307 }
1308 break;
1309
1310 default:
1311 printk("Rejecting Unknown Message(%02x) ", msg);
1312 write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1313 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1314 hostdata->outgoing_len = 1;
1315 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1316 hostdata->state = S_CONNECTED;
1317 }
1318 break;
1319
1320
1321/* Note: this interrupt will occur only after a LEVEL2 command */
1322
1323 case CSR_SEL_XFER_DONE:
1324
1325/* Make sure that reselection is enabled at this point - it may
1326 * have been turned off for the command that just completed.
1327 */
1328
1329 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1330 if (phs == 0x60) {
5cd049a5 1331 DB(DB_INTR, printk("SX-DONE"))
1da177e4
LT
1332 cmd->SCp.Message = COMMAND_COMPLETE;
1333 lun = read_3393(hostdata, WD_TARGET_LUN);
1334 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1335 hostdata->connected = NULL;
1336 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1337 hostdata->state = S_UNCONNECTED;
1338 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1339 cmd->SCp.Status = lun;
1340 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1341 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1342 else
1343 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1344 cmd->scsi_done(cmd);
1345
1346/* We are no longer connected to a target - check to see if
1347 * there are commands waiting to be executed.
1348 */
1349
1350 in2000_execute(instance);
1351 } else {
5cd049a5 1352 printk("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---", asr, sr, phs);
1da177e4
LT
1353 }
1354 break;
1355
1356
1357/* Note: this interrupt will occur only after a LEVEL2 command */
1358
1359 case CSR_SDP:
1360 DB(DB_INTR, printk("SDP"))
1361 hostdata->state = S_RUNNING_LEVEL2;
1362 write_3393(hostdata, WD_COMMAND_PHASE, 0x41);
1363 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1364 break;
1365
1366
1367 case CSR_XFER_DONE | PHS_MESS_OUT:
1368 case CSR_UNEXP | PHS_MESS_OUT:
1369 case CSR_SRV_REQ | PHS_MESS_OUT:
1370 DB(DB_INTR, printk("MSG_OUT="))
1371
1372/* To get here, we've probably requested MESSAGE_OUT and have
1373 * already put the correct bytes in outgoing_msg[] and filled
1374 * in outgoing_len. We simply send them out to the SCSI bus.
1375 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1376 * it - like when our SDTR message is rejected by a target. Some
1377 * targets send the REJECT before receiving all of the extended
1378 * message, and then seem to go back to MESSAGE_OUT for a byte
1379 * or two. Not sure why, or if I'm doing something wrong to
1380 * cause this to happen. Regardless, it seems that sending
1381 * NOP messages in these situations results in no harm and
1382 * makes everyone happy.
1383 */
1384 if (hostdata->outgoing_len == 0) {
1385 hostdata->outgoing_len = 1;
1386 hostdata->outgoing_msg[0] = NOP;
1387 }
1388 transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1389 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1390 hostdata->outgoing_len = 0;
1391 hostdata->state = S_CONNECTED;
1392 break;
1393
1394
1395 case CSR_UNEXP_DISC:
1396
1397/* I think I've seen this after a request-sense that was in response
1398 * to an error condition, but not sure. We certainly need to do
1399 * something when we get this interrupt - the question is 'what?'.
1400 * Let's think positively, and assume some command has finished
1401 * in a legal manner (like a command that provokes a request-sense),
1402 * so we treat it as a normal command-complete-disconnect.
1403 */
1404
1405
1406/* Make sure that reselection is enabled at this point - it may
1407 * have been turned off for the command that just completed.
1408 */
1409
1410 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1411 if (cmd == NULL) {
1412 printk(" - Already disconnected! ");
1413 hostdata->state = S_UNCONNECTED;
1414
1415/* release the SMP spin_lock and restore irq state */
1416 spin_unlock_irqrestore(instance->host_lock, flags);
1417 return IRQ_HANDLED;
1418 }
5cd049a5 1419 DB(DB_INTR, printk("UNEXP_DISC"))
1da177e4
LT
1420 hostdata->connected = NULL;
1421 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1422 hostdata->state = S_UNCONNECTED;
1423 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1424 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1425 else
1426 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1427 cmd->scsi_done(cmd);
1428
1429/* We are no longer connected to a target - check to see if
1430 * there are commands waiting to be executed.
1431 */
1432
1433 in2000_execute(instance);
1434 break;
1435
1436
1437 case CSR_DISC:
1438
1439/* Make sure that reselection is enabled at this point - it may
1440 * have been turned off for the command that just completed.
1441 */
1442
1443 write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
5cd049a5 1444 DB(DB_INTR, printk("DISC"))
1da177e4
LT
1445 if (cmd == NULL) {
1446 printk(" - Already disconnected! ");
1447 hostdata->state = S_UNCONNECTED;
1448 }
1449 switch (hostdata->state) {
1450 case S_PRE_CMP_DISC:
1451 hostdata->connected = NULL;
1452 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1453 hostdata->state = S_UNCONNECTED;
1454 DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1455 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1456 cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1457 else
1458 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1459 cmd->scsi_done(cmd);
1460 break;
1461 case S_PRE_TMP_DISC:
1462 case S_RUNNING_LEVEL2:
1463 cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1464 hostdata->disconnected_Q = cmd;
1465 hostdata->connected = NULL;
1466 hostdata->state = S_UNCONNECTED;
1467
1468#ifdef PROC_STATISTICS
1469 hostdata->disc_done_cnt[cmd->device->id]++;
1470#endif
1471
1472 break;
1473 default:
1474 printk("*** Unexpected DISCONNECT interrupt! ***");
1475 hostdata->state = S_UNCONNECTED;
1476 }
1477
1478/* We are no longer connected to a target - check to see if
1479 * there are commands waiting to be executed.
1480 */
1481
1482 in2000_execute(instance);
1483 break;
1484
1485
1486 case CSR_RESEL_AM:
1487 DB(DB_INTR, printk("RESEL"))
1488
1489 /* First we have to make sure this reselection didn't */
1490 /* happen during Arbitration/Selection of some other device. */
1491 /* If yes, put losing command back on top of input_Q. */
1492 if (hostdata->level2 <= L2_NONE) {
1493
1494 if (hostdata->selecting) {
1495 cmd = (Scsi_Cmnd *) hostdata->selecting;
1496 hostdata->selecting = NULL;
1497 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1498 cmd->host_scribble = (uchar *) hostdata->input_Q;
1499 hostdata->input_Q = cmd;
1500 }
1501 }
1502
1503 else {
1504
1505 if (cmd) {
1506 if (phs == 0x00) {
1507 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1508 cmd->host_scribble = (uchar *) hostdata->input_Q;
1509 hostdata->input_Q = cmd;
1510 } else {
1511 printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", asr, sr, phs);
1512 while (1)
1513 printk("\r");
1514 }
1515 }
1516
1517 }
1518
1519 /* OK - find out which device reselected us. */
1520
1521 id = read_3393(hostdata, WD_SOURCE_ID);
1522 id &= SRCID_MASK;
1523
1524 /* and extract the lun from the ID message. (Note that we don't
1525 * bother to check for a valid message here - I guess this is
1526 * not the right way to go, but....)
1527 */
1528
1529 lun = read_3393(hostdata, WD_DATA);
1530 if (hostdata->level2 < L2_RESELECT)
1531 write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1532 lun &= 7;
1533
1534 /* Now we look for the command that's reconnecting. */
1535
1536 cmd = (Scsi_Cmnd *) hostdata->disconnected_Q;
1537 patch = NULL;
1538 while (cmd) {
1539 if (id == cmd->device->id && lun == cmd->device->lun)
1540 break;
1541 patch = cmd;
1542 cmd = (Scsi_Cmnd *) cmd->host_scribble;
1543 }
1544
1545 /* Hmm. Couldn't find a valid command.... What to do? */
1546
1547 if (!cmd) {
1548 printk("---TROUBLE: target %d.%d not in disconnect queue---", id, lun);
1549 break;
1550 }
1551
1552 /* Ok, found the command - now start it up again. */
1553
1554 if (patch)
1555 patch->host_scribble = cmd->host_scribble;
1556 else
1557 hostdata->disconnected_Q = (Scsi_Cmnd *) cmd->host_scribble;
1558 hostdata->connected = cmd;
1559
1560 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1561 * because these things are preserved over a disconnect.
1562 * But we DO need to fix the DPD bit so it's correct for this command.
1563 */
1564
1565 if (is_dir_out(cmd))
1566 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
1567 else
1568 write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
1569 if (hostdata->level2 >= L2_RESELECT) {
1570 write_3393_count(hostdata, 0); /* we want a DATA_PHASE interrupt */
1571 write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1572 write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1573 hostdata->state = S_RUNNING_LEVEL2;
1574 } else
1575 hostdata->state = S_CONNECTED;
1576
1da177e4
LT
1577 break;
1578
1579 default:
1580 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1581 }
1582
1583 write1_io(0, IO_LED_OFF);
1584
1585 DB(DB_INTR, printk("} "))
1586
1587/* release the SMP spin_lock and restore irq state */
1588 spin_unlock_irqrestore(instance->host_lock, flags);
1589 return IRQ_HANDLED;
1590}
1591
1592
1593
1594#define RESET_CARD 0
1595#define RESET_CARD_AND_BUS 1
1596#define B_FLAG 0x80
1597
1598/*
1599 * Caller must hold instance lock!
1600 */
1601
1602static int reset_hardware(struct Scsi_Host *instance, int type)
1603{
1604 struct IN2000_hostdata *hostdata;
1605 int qt, x;
1606
1607 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1608
1609 write1_io(0, IO_LED_ON);
1610 if (type == RESET_CARD_AND_BUS) {
1611 write1_io(0, IO_CARD_RESET);
1612 x = read1_io(IO_HARDWARE);
1613 }
1614 x = read_3393(hostdata, WD_SCSI_STATUS); /* clear any WD intrpt */
1615 write_3393(hostdata, WD_OWN_ID, instance->this_id | OWNID_EAF | OWNID_RAF | OWNID_FS_8);
1616 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1617 write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per / 4, DEFAULT_SX_OFF));
1618
1619 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */
1620 write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */
1621 write_3393(hostdata, WD_COMMAND, WD_CMD_RESET);
1622 /* FIXME: timeout ?? */
1623 while (!(READ_AUX_STAT() & ASR_INT))
1624 cpu_relax(); /* wait for RESET to complete */
1625
1626 x = read_3393(hostdata, WD_SCSI_STATUS); /* clear interrupt */
1627
1628 write_3393(hostdata, WD_QUEUE_TAG, 0xa5); /* any random number */
1629 qt = read_3393(hostdata, WD_QUEUE_TAG);
1630 if (qt == 0xa5) {
1631 x |= B_FLAG;
1632 write_3393(hostdata, WD_QUEUE_TAG, 0);
1633 }
1634 write_3393(hostdata, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1635 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1636 write1_io(0, IO_LED_OFF);
1637 return x;
1638}
1639
1640
1641
1642static int in2000_bus_reset(Scsi_Cmnd * cmd)
1643{
1644 struct Scsi_Host *instance;
1645 struct IN2000_hostdata *hostdata;
1646 int x;
68b3aa7c 1647 unsigned long flags;
1da177e4
LT
1648
1649 instance = cmd->device->host;
1650 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1651
1652 printk(KERN_WARNING "scsi%d: Reset. ", instance->host_no);
1653
68b3aa7c 1654 spin_lock_irqsave(instance->host_lock, flags);
1da177e4 1655
68b3aa7c 1656 /* do scsi-reset here */
1da177e4
LT
1657 reset_hardware(instance, RESET_CARD_AND_BUS);
1658 for (x = 0; x < 8; x++) {
1659 hostdata->busy[x] = 0;
1660 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
1661 hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
1662 }
1663 hostdata->input_Q = NULL;
1664 hostdata->selecting = NULL;
1665 hostdata->connected = NULL;
1666 hostdata->disconnected_Q = NULL;
1667 hostdata->state = S_UNCONNECTED;
1668 hostdata->fifo = FI_FIFO_UNUSED;
1669 hostdata->incoming_ptr = 0;
1670 hostdata->outgoing_len = 0;
1671
1672 cmd->result = DID_RESET << 16;
68b3aa7c
JG
1673
1674 spin_unlock_irqrestore(instance->host_lock, flags);
1da177e4
LT
1675 return SUCCESS;
1676}
1677
8fa728a2 1678static int __in2000_abort(Scsi_Cmnd * cmd)
1da177e4
LT
1679{
1680 struct Scsi_Host *instance;
1681 struct IN2000_hostdata *hostdata;
1682 Scsi_Cmnd *tmp, *prev;
1683 uchar sr, asr;
1684 unsigned long timeout;
1685
1686 instance = cmd->device->host;
1687 hostdata = (struct IN2000_hostdata *) instance->hostdata;
1688
1689 printk(KERN_DEBUG "scsi%d: Abort-", instance->host_no);
1690 printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ", READ_AUX_STAT(), read_3393_count(hostdata), cmd->SCp.this_residual, cmd->SCp.buffers_residual, cmd->SCp.have_data_in, read1_io(IO_FIFO_COUNT));
1691
1692/*
1693 * Case 1 : If the command hasn't been issued yet, we simply remove it
1694 * from the inout_Q.
1695 */
1696
1697 tmp = (Scsi_Cmnd *) hostdata->input_Q;
1698 prev = NULL;
1699 while (tmp) {
1700 if (tmp == cmd) {
1701 if (prev)
1702 prev->host_scribble = cmd->host_scribble;
1703 cmd->host_scribble = NULL;
1704 cmd->result = DID_ABORT << 16;
5cd049a5 1705 printk(KERN_WARNING "scsi%d: Abort - removing command from input_Q. ", instance->host_no);
1da177e4
LT
1706 cmd->scsi_done(cmd);
1707 return SUCCESS;
1708 }
1709 prev = tmp;
1710 tmp = (Scsi_Cmnd *) tmp->host_scribble;
1711 }
1712
1713/*
1714 * Case 2 : If the command is connected, we're going to fail the abort
1715 * and let the high level SCSI driver retry at a later time or
1716 * issue a reset.
1717 *
1718 * Timeouts, and therefore aborted commands, will be highly unlikely
1719 * and handling them cleanly in this situation would make the common
1720 * case of noresets less efficient, and would pollute our code. So,
1721 * we fail.
1722 */
1723
1724 if (hostdata->connected == cmd) {
1725
5cd049a5 1726 printk(KERN_WARNING "scsi%d: Aborting connected command - ", instance->host_no);
1da177e4
LT
1727
1728 printk("sending wd33c93 ABORT command - ");
1729 write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1730 write_3393_cmd(hostdata, WD_CMD_ABORT);
1731
1732/* Now we have to attempt to flush out the FIFO... */
1733
1734 printk("flushing fifo - ");
1735 timeout = 1000000;
1736 do {
1737 asr = READ_AUX_STAT();
1738 if (asr & ASR_DBR)
1739 read_3393(hostdata, WD_DATA);
1740 } while (!(asr & ASR_INT) && timeout-- > 0);
1741 sr = read_3393(hostdata, WD_SCSI_STATUS);
1742 printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_3393_count(hostdata), timeout);
1743
1744 /*
1745 * Abort command processed.
1746 * Still connected.
1747 * We must disconnect.
1748 */
1749
1750 printk("sending wd33c93 DISCONNECT command - ");
1751 write_3393_cmd(hostdata, WD_CMD_DISCONNECT);
1752
1753 timeout = 1000000;
1754 asr = READ_AUX_STAT();
1755 while ((asr & ASR_CIP) && timeout-- > 0)
1756 asr = READ_AUX_STAT();
1757 sr = read_3393(hostdata, WD_SCSI_STATUS);
1758 printk("asr=%02x, sr=%02x.", asr, sr);
1759
1760 hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1761 hostdata->connected = NULL;
1762 hostdata->state = S_UNCONNECTED;
1763 cmd->result = DID_ABORT << 16;
1764 cmd->scsi_done(cmd);
1765
1766 in2000_execute(instance);
1767
1768 return SUCCESS;
1769 }
1770
1771/*
1772 * Case 3: If the command is currently disconnected from the bus,
1773 * we're not going to expend much effort here: Let's just return
1774 * an ABORT_SNOOZE and hope for the best...
1775 */
1776
1777 for (tmp = (Scsi_Cmnd *) hostdata->disconnected_Q; tmp; tmp = (Scsi_Cmnd *) tmp->host_scribble)
1778 if (cmd == tmp) {
1779 printk(KERN_DEBUG "scsi%d: unable to abort disconnected command.\n", instance->host_no);
1780 return FAILED;
1781 }
1782
1783/*
1784 * Case 4 : If we reached this point, the command was not found in any of
1785 * the queues.
1786 *
1787 * We probably reached this point because of an unlikely race condition
1788 * between the command completing successfully and the abortion code,
1789 * so we won't panic, but we will notify the user in case something really
1790 * broke.
1791 */
1792
1793 in2000_execute(instance);
1794
1795 printk("scsi%d: warning : SCSI command probably completed successfully" " before abortion. ", instance->host_no);
1796 return SUCCESS;
1797}
1798
8fa728a2
JG
1799static int in2000_abort(Scsi_Cmnd * cmd)
1800{
1801 int rc;
1802
1803 spin_lock_irq(cmd->device->host->host_lock);
1804 rc = __in2000_abort(cmd);
1805 spin_unlock_irq(cmd->device->host->host_lock);
1806
1807 return rc;
1808}
1da177e4
LT
1809
1810
1811#define MAX_IN2000_HOSTS 3
6391a113 1812#define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1da177e4
LT
1813#define SETUP_BUFFER_SIZE 200
1814static char setup_buffer[SETUP_BUFFER_SIZE];
1815static char setup_used[MAX_SETUP_ARGS];
1816static int done_setup = 0;
1817
1818static void __init in2000_setup(char *str, int *ints)
1819{
1820 int i;
1821 char *p1, *p2;
1822
1823 strlcpy(setup_buffer, str, SETUP_BUFFER_SIZE);
1824 p1 = setup_buffer;
1825 i = 0;
1826 while (*p1 && (i < MAX_SETUP_ARGS)) {
1827 p2 = strchr(p1, ',');
1828 if (p2) {
1829 *p2 = '\0';
1830 if (p1 != p2)
1831 setup_args[i] = p1;
1832 p1 = p2 + 1;
1833 i++;
1834 } else {
1835 setup_args[i] = p1;
1836 break;
1837 }
1838 }
1839 for (i = 0; i < MAX_SETUP_ARGS; i++)
1840 setup_used[i] = 0;
1841 done_setup = 1;
1842}
1843
1844
1845/* check_setup_args() returns index if key found, 0 if not
1846 */
1847
1848static int __init check_setup_args(char *key, int *val, char *buf)
1849{
1850 int x;
1851 char *cp;
1852
1853 for (x = 0; x < MAX_SETUP_ARGS; x++) {
1854 if (setup_used[x])
1855 continue;
1856 if (!strncmp(setup_args[x], key, strlen(key)))
1857 break;
1858 }
1859 if (x == MAX_SETUP_ARGS)
1860 return 0;
1861 setup_used[x] = 1;
1862 cp = setup_args[x] + strlen(key);
1863 *val = -1;
1864 if (*cp != ':')
1865 return ++x;
1866 cp++;
1867 if ((*cp >= '0') && (*cp <= '9')) {
1868 *val = simple_strtoul(cp, NULL, 0);
1869 }
1870 return ++x;
1871}
1872
1873
1874
1875/* The "correct" (ie portable) way to access memory-mapped hardware
1876 * such as the IN2000 EPROM and dip switch is through the use of
1877 * special macros declared in 'asm/io.h'. We use readb() and readl()
1878 * when reading from the card's BIOS area in in2000_detect().
1879 */
1880static u32 bios_tab[] in2000__INITDATA = {
1881 0xc8000,
1882 0xd0000,
1883 0xd8000,
1884 0
1885};
1886
1887static unsigned short base_tab[] in2000__INITDATA = {
1888 0x220,
1889 0x200,
1890 0x110,
1891 0x100,
1892};
1893
1894static int int_tab[] in2000__INITDATA = {
1895 15,
1896 14,
1897 11,
1898 10
1899};
1900
22bc685f
AV
1901static int probe_bios(u32 addr, u32 *s1, uchar *switches)
1902{
1903 void __iomem *p = ioremap(addr, 0x34);
1904 if (!p)
1905 return 0;
1906 *s1 = readl(p + 0x10);
1907 if (*s1 == 0x41564f4e || readl(p + 0x30) == 0x61776c41) {
1908 /* Read the switch image that's mapped into EPROM space */
1909 *switches = ~readb(p + 0x20);
1910 iounmap(p);
1911 return 1;
1912 }
1913 iounmap(p);
1914 return 0;
1915}
1da177e4 1916
d0be4a7d 1917static int __init in2000_detect(struct scsi_host_template * tpnt)
1da177e4
LT
1918{
1919 struct Scsi_Host *instance;
1920 struct IN2000_hostdata *hostdata;
1921 int detect_count;
1922 int bios;
1923 int x;
1924 unsigned short base;
1925 uchar switches;
1926 uchar hrev;
1927 unsigned long flags;
1928 int val;
1929 char buf[32];
1930
1931/* Thanks to help from Bill Earnest, probing for IN2000 cards is a
1932 * pretty straightforward and fool-proof operation. There are 3
1933 * possible locations for the IN2000 EPROM in memory space - if we
1934 * find a BIOS signature, we can read the dip switch settings from
1935 * the byte at BIOS+32 (shadowed in by logic on the card). From 2
1936 * of the switch bits we get the card's address in IO space. There's
1937 * an image of the dip switch there, also, so we have a way to back-
1938 * check that this really is an IN2000 card. Very nifty. Use the
1939 * 'ioport:xx' command-line parameter if your BIOS EPROM is absent
1940 * or disabled.
1941 */
1942
1943 if (!done_setup && setup_strings)
1944 in2000_setup(setup_strings, NULL);
1945
1946 detect_count = 0;
1947 for (bios = 0; bios_tab[bios]; bios++) {
22bc685f 1948 u32 s1 = 0;
1da177e4
LT
1949 if (check_setup_args("ioport", &val, buf)) {
1950 base = val;
1951 switches = ~inb(base + IO_SWITCHES) & 0xff;
1952 printk("Forcing IN2000 detection at IOport 0x%x ", base);
1953 bios = 2;
1954 }
1955/*
1956 * There have been a couple of BIOS versions with different layouts
1957 * for the obvious ID strings. We look for the 2 most common ones and
1958 * hope that they cover all the cases...
1959 */
22bc685f 1960 else if (probe_bios(bios_tab[bios], &s1, &switches)) {
1da177e4
LT
1961 printk("Found IN2000 BIOS at 0x%x ", (unsigned int) bios_tab[bios]);
1962
1da177e4
LT
1963/* Find out where the IO space is */
1964
1965 x = switches & (SW_ADDR0 | SW_ADDR1);
1966 base = base_tab[x];
1967
1968/* Check for the IN2000 signature in IO space. */
1969
1970 x = ~inb(base + IO_SWITCHES) & 0xff;
1971 if (x != switches) {
1972 printk("Bad IO signature: %02x vs %02x.\n", x, switches);
1973 continue;
1974 }
1975 } else
1976 continue;
1977
1978/* OK. We have a base address for the IO ports - run a few safety checks */
1979
1980 if (!(switches & SW_BIT7)) { /* I _think_ all cards do this */
1981 printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n", base);
1982 continue;
1983 }
1984
1985/* Let's assume any hardware version will work, although the driver
1986 * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll
1987 * print out the rev number for reference later, but accept them all.
1988 */
1989
1990 hrev = inb(base + IO_HARDWARE);
1991
1992 /* Bit 2 tells us if interrupts are disabled */
1993 if (switches & SW_DISINT) {
1994 printk("The IN-2000 SCSI card at IOport 0x%03x ", base);
1995 printk("is not configured for interrupt operation!\n");
1996 printk("This driver requires an interrupt: cancelling detection.\n");
1997 continue;
1998 }
1999
2000/* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now
2001 * initialize it.
2002 */
2003
2004 tpnt->proc_name = "in2000";
2005 instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata));
2006 if (instance == NULL)
2007 continue;
2008 detect_count++;
2009 hostdata = (struct IN2000_hostdata *) instance->hostdata;
2010 instance->io_port = hostdata->io_base = base;
2011 hostdata->dip_switch = switches;
2012 hostdata->hrev = hrev;
2013
2014 write1_io(0, IO_FIFO_WRITE); /* clear fifo counter */
2015 write1_io(0, IO_FIFO_READ); /* start fifo out in read mode */
2016 write1_io(0, IO_INTR_MASK); /* allow all ints */
2017 x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT];
4909cc2b 2018 if (request_irq(x, in2000_intr, 0, "in2000", instance)) {
1da177e4
LT
2019 printk("in2000_detect: Unable to allocate IRQ.\n");
2020 detect_count--;
2021 continue;
2022 }
2023 instance->irq = x;
2024 instance->n_io_port = 13;
2025 request_region(base, 13, "in2000"); /* lock in this IO space for our use */
2026
2027 for (x = 0; x < 8; x++) {
2028 hostdata->busy[x] = 0;
2029 hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
2030 hostdata->sync_stat[x] = SS_UNSET; /* using default sync values */
2031#ifdef PROC_STATISTICS
2032 hostdata->cmd_cnt[x] = 0;
2033 hostdata->disc_allowed_cnt[x] = 0;
2034 hostdata->disc_done_cnt[x] = 0;
2035#endif
2036 }
2037 hostdata->input_Q = NULL;
2038 hostdata->selecting = NULL;
2039 hostdata->connected = NULL;
2040 hostdata->disconnected_Q = NULL;
2041 hostdata->state = S_UNCONNECTED;
2042 hostdata->fifo = FI_FIFO_UNUSED;
2043 hostdata->level2 = L2_BASIC;
2044 hostdata->disconnect = DIS_ADAPTIVE;
2045 hostdata->args = DEBUG_DEFAULTS;
2046 hostdata->incoming_ptr = 0;
2047 hostdata->outgoing_len = 0;
2048 hostdata->default_sx_per = DEFAULT_SX_PER;
2049
2050/* Older BIOS's had a 'sync on/off' switch - use its setting */
2051
22bc685f 2052 if (s1 == 0x41564f4e && (switches & SW_SYNC_DOS5))
1da177e4
LT
2053 hostdata->sync_off = 0x00; /* sync defaults to on */
2054 else
2055 hostdata->sync_off = 0xff; /* sync defaults to off */
2056
2057#ifdef PROC_INTERFACE
2058 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
2059#ifdef PROC_STATISTICS
2060 hostdata->int_cnt = 0;
2061#endif
2062#endif
2063
2064 if (check_setup_args("nosync", &val, buf))
2065 hostdata->sync_off = val;
2066
2067 if (check_setup_args("period", &val, buf))
2068 hostdata->default_sx_per = sx_table[round_period((unsigned int) val)].period_ns;
2069
2070 if (check_setup_args("disconnect", &val, buf)) {
2071 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2072 hostdata->disconnect = val;
2073 else
2074 hostdata->disconnect = DIS_ADAPTIVE;
2075 }
2076
2077 if (check_setup_args("noreset", &val, buf))
2078 hostdata->args ^= A_NO_SCSI_RESET;
2079
2080 if (check_setup_args("level2", &val, buf))
2081 hostdata->level2 = val;
2082
2083 if (check_setup_args("debug", &val, buf))
2084 hostdata->args = (val & DB_MASK);
2085
2086#ifdef PROC_INTERFACE
2087 if (check_setup_args("proc", &val, buf))
2088 hostdata->proc = val;
2089#endif
2090
2091
2092 /* FIXME: not strictly needed I think but the called code expects
2093 to be locked */
2094 spin_lock_irqsave(instance->host_lock, flags);
2095 x = reset_hardware(instance, (hostdata->args & A_NO_SCSI_RESET) ? RESET_CARD : RESET_CARD_AND_BUS);
2096 spin_unlock_irqrestore(instance->host_lock, flags);
2097
2098 hostdata->microcode = read_3393(hostdata, WD_CDB_1);
2099 if (x & 0x01) {
2100 if (x & B_FLAG)
2101 hostdata->chip = C_WD33C93B;
2102 else
2103 hostdata->chip = C_WD33C93A;
2104 } else
2105 hostdata->chip = C_WD33C93;
2106
2107 printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ", (switches & 0x7f), instance->irq, hostdata->io_base, (switches & SW_FLOPPY) ? "Yes" : "No", (switches & SW_SYNC_DOS5) ? "Yes" : "No");
2108 printk("hardware_ver=%02x chip=%s microcode=%02x\n", hrev, (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == C_WD33C93A) ? "WD33c93A" : (hostdata->chip == C_WD33C93B) ? "WD33c93B" : "unknown", hostdata->microcode);
2109#ifdef DEBUGGING_ON
2110 printk("setup_args = ");
2111 for (x = 0; x < MAX_SETUP_ARGS; x++)
2112 printk("%s,", setup_args[x]);
2113 printk("\n");
2114#endif
2115 if (hostdata->sync_off == 0xff)
2116 printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n");
2117 printk("IN2000 driver version %s - %s\n", IN2000_VERSION, IN2000_DATE);
2118 }
2119
2120 return detect_count;
2121}
2122
2123static int in2000_release(struct Scsi_Host *shost)
2124{
2125 if (shost->irq)
2126 free_irq(shost->irq, shost);
2127 if (shost->io_port && shost->n_io_port)
2128 release_region(shost->io_port, shost->n_io_port);
2129 return 0;
2130}
2131
2132/* NOTE: I lifted this function straight out of the old driver,
2133 * and have not tested it. Presumably it does what it's
2134 * supposed to do...
2135 */
2136
2137static int in2000_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *iinfo)
2138{
2139 int size;
2140
2141 size = capacity;
2142 iinfo[0] = 64;
2143 iinfo[1] = 32;
2144 iinfo[2] = size >> 11;
2145
2146/* This should approximate the large drive handling that the DOS ASPI manager
2147 uses. Drives very near the boundaries may not be handled correctly (i.e.
2148 near 2.0 Gb and 4.0 Gb) */
2149
2150 if (iinfo[2] > 1024) {
2151 iinfo[0] = 64;
2152 iinfo[1] = 63;
2153 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2154 }
2155 if (iinfo[2] > 1024) {
2156 iinfo[0] = 128;
2157 iinfo[1] = 63;
2158 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2159 }
2160 if (iinfo[2] > 1024) {
2161 iinfo[0] = 255;
2162 iinfo[1] = 63;
2163 iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2164 }
2165 return 0;
2166}
2167
2168
887fc88e 2169static int in2000_write_info(struct Scsi_Host *instance, char *buf, int len)
1da177e4
LT
2170{
2171
2172#ifdef PROC_INTERFACE
2173
2174 char *bp;
1da177e4 2175 struct IN2000_hostdata *hd;
1da177e4 2176 int x, i;
1da177e4
LT
2177
2178 hd = (struct IN2000_hostdata *) instance->hostdata;
2179
887fc88e
AV
2180 buf[len] = '\0';
2181 bp = buf;
2182 if (!strncmp(bp, "debug:", 6)) {
2183 bp += 6;
2184 hd->args = simple_strtoul(bp, NULL, 0) & DB_MASK;
2185 } else if (!strncmp(bp, "disconnect:", 11)) {
2186 bp += 11;
2187 x = simple_strtoul(bp, NULL, 0);
2188 if (x < DIS_NEVER || x > DIS_ALWAYS)
2189 x = DIS_ADAPTIVE;
2190 hd->disconnect = x;
2191 } else if (!strncmp(bp, "period:", 7)) {
2192 bp += 7;
2193 x = simple_strtoul(bp, NULL, 0);
2194 hd->default_sx_per = sx_table[round_period((unsigned int) x)].period_ns;
2195 } else if (!strncmp(bp, "resync:", 7)) {
2196 bp += 7;
2197 x = simple_strtoul(bp, NULL, 0);
2198 for (i = 0; i < 7; i++)
2199 if (x & (1 << i))
2200 hd->sync_stat[i] = SS_UNSET;
2201 } else if (!strncmp(bp, "proc:", 5)) {
2202 bp += 5;
2203 hd->proc = simple_strtoul(bp, NULL, 0);
2204 } else if (!strncmp(bp, "level2:", 7)) {
2205 bp += 7;
2206 hd->level2 = simple_strtoul(bp, NULL, 0);
1da177e4 2207 }
887fc88e
AV
2208#endif
2209 return len;
2210}
2211
2212static int in2000_show_info(struct seq_file *m, struct Scsi_Host *instance)
2213{
2214
2215#ifdef PROC_INTERFACE
2216 unsigned long flags;
2217 struct IN2000_hostdata *hd;
2218 Scsi_Cmnd *cmd;
2219 int x;
2220
2221 hd = (struct IN2000_hostdata *) instance->hostdata;
1da177e4
LT
2222
2223 spin_lock_irqsave(instance->host_lock, flags);
887fc88e
AV
2224 if (hd->proc & PR_VERSION)
2225 seq_printf(m, "\nVersion %s - %s.", IN2000_VERSION, IN2000_DATE);
2226
1da177e4 2227 if (hd->proc & PR_INFO) {
887fc88e 2228 seq_printf(m, "\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s", (hd->dip_switch & 0x7f), instance->irq, hd->io_base, (hd->dip_switch & 0x40) ? "Yes" : "No", (hd->dip_switch & 0x20) ? "Yes" : "No");
91c40f24 2229 seq_puts(m, "\nsync_xfer[] = ");
887fc88e
AV
2230 for (x = 0; x < 7; x++)
2231 seq_printf(m, "\t%02x", hd->sync_xfer[x]);
91c40f24 2232 seq_puts(m, "\nsync_stat[] = ");
887fc88e
AV
2233 for (x = 0; x < 7; x++)
2234 seq_printf(m, "\t%02x", hd->sync_stat[x]);
1da177e4
LT
2235 }
2236#ifdef PROC_STATISTICS
2237 if (hd->proc & PR_STATISTICS) {
91c40f24 2238 seq_puts(m, "\ncommands issued: ");
887fc88e
AV
2239 for (x = 0; x < 7; x++)
2240 seq_printf(m, "\t%ld", hd->cmd_cnt[x]);
91c40f24 2241 seq_puts(m, "\ndisconnects allowed:");
887fc88e
AV
2242 for (x = 0; x < 7; x++)
2243 seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]);
91c40f24 2244 seq_puts(m, "\ndisconnects done: ");
887fc88e
AV
2245 for (x = 0; x < 7; x++)
2246 seq_printf(m, "\t%ld", hd->disc_done_cnt[x]);
2247 seq_printf(m, "\ninterrupts: \t%ld", hd->int_cnt);
1da177e4
LT
2248 }
2249#endif
2250 if (hd->proc & PR_CONNECTED) {
91c40f24 2251 seq_puts(m, "\nconnected: ");
1da177e4
LT
2252 if (hd->connected) {
2253 cmd = (Scsi_Cmnd *) hd->connected;
9cb78c16 2254 seq_printf(m, " %d:%llu(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
1da177e4
LT
2255 }
2256 }
2257 if (hd->proc & PR_INPUTQ) {
91c40f24 2258 seq_puts(m, "\ninput_Q: ");
1da177e4
LT
2259 cmd = (Scsi_Cmnd *) hd->input_Q;
2260 while (cmd) {
9cb78c16 2261 seq_printf(m, " %d:%llu(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
1da177e4
LT
2262 cmd = (Scsi_Cmnd *) cmd->host_scribble;
2263 }
2264 }
2265 if (hd->proc & PR_DISCQ) {
91c40f24 2266 seq_puts(m, "\ndisconnected_Q:");
1da177e4
LT
2267 cmd = (Scsi_Cmnd *) hd->disconnected_Q;
2268 while (cmd) {
9cb78c16 2269 seq_printf(m, " %d:%llu(%02x)", cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
1da177e4
LT
2270 cmd = (Scsi_Cmnd *) cmd->host_scribble;
2271 }
2272 }
2273 if (hd->proc & PR_TEST) {
2274 ; /* insert your own custom function here */
2275 }
f50332ff 2276 seq_putc(m, '\n');
1da177e4 2277 spin_unlock_irqrestore(instance->host_lock, flags);
1da177e4 2278#endif /* PROC_INTERFACE */
887fc88e 2279 return 0;
1da177e4
LT
2280}
2281
2282MODULE_LICENSE("GPL");
2283
2284
d0be4a7d 2285static struct scsi_host_template driver_template = {
1da177e4 2286 .proc_name = "in2000",
887fc88e
AV
2287 .write_info = in2000_write_info,
2288 .show_info = in2000_show_info,
1da177e4
LT
2289 .name = "Always IN2000",
2290 .detect = in2000_detect,
2291 .release = in2000_release,
2292 .queuecommand = in2000_queuecommand,
2293 .eh_abort_handler = in2000_abort,
2294 .eh_bus_reset_handler = in2000_bus_reset,
1da177e4
LT
2295 .bios_param = in2000_biosparam,
2296 .can_queue = IN2000_CAN_Q,
2297 .this_id = IN2000_HOST_ID,
2298 .sg_tablesize = IN2000_SG,
2299 .cmd_per_lun = IN2000_CPL,
2300 .use_clustering = DISABLE_CLUSTERING,
2301};
2302#include "scsi_module.c"