mpt3sas - remove unused fw_event_work elements
[linux-2.6-block.git] / drivers / scsi / hpsa.c
CommitLineData
edd16368
SC
1/*
2 * Disk Array driver for HP Smart Array SAS controllers
94c7bc31 3 * Copyright 2016 Microsemi Corporation
1358f6dc
DB
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
edd16368
SC
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 *
94c7bc31 16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
edd16368
SC
17 *
18 */
19
20#include <linux/module.h>
21#include <linux/interrupt.h>
22#include <linux/types.h>
23#include <linux/pci.h>
e5a44df8 24#include <linux/pci-aspm.h>
edd16368
SC
25#include <linux/kernel.h>
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/fs.h>
29#include <linux/timer.h>
edd16368
SC
30#include <linux/init.h>
31#include <linux/spinlock.h>
edd16368
SC
32#include <linux/compat.h>
33#include <linux/blktrace_api.h>
34#include <linux/uaccess.h>
35#include <linux/io.h>
36#include <linux/dma-mapping.h>
37#include <linux/completion.h>
38#include <linux/moduleparam.h>
39#include <scsi/scsi.h>
40#include <scsi/scsi_cmnd.h>
41#include <scsi/scsi_device.h>
42#include <scsi/scsi_host.h>
667e23d4 43#include <scsi/scsi_tcq.h>
9437ac43 44#include <scsi/scsi_eh.h>
d04e62b9 45#include <scsi/scsi_transport_sas.h>
73153fe5 46#include <scsi/scsi_dbg.h>
edd16368
SC
47#include <linux/cciss_ioctl.h>
48#include <linux/string.h>
49#include <linux/bitmap.h>
60063497 50#include <linux/atomic.h>
a0c12413 51#include <linux/jiffies.h>
42a91641 52#include <linux/percpu-defs.h>
094963da 53#include <linux/percpu.h>
2b08b3e9 54#include <asm/unaligned.h>
283b4a9b 55#include <asm/div64.h>
edd16368
SC
56#include "hpsa_cmd.h"
57#include "hpsa.h"
58
ec2c3aa9
DB
59/*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
63#define HPSA_DRIVER_VERSION "3.4.14-0"
edd16368 64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
f79cfec6 65#define HPSA "hpsa"
edd16368 66
007e7aa9
RE
67/* How long to wait for CISS doorbell communication */
68#define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69#define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70#define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71#define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
edd16368
SC
72#define MAX_IOCTL_CONFIG_WAIT 1000
73
74/*define how many times we will try a command because of bus resets */
75#define MAX_CMD_RETRIES 3
76
77/* Embedded module documentation macros - see modules.h */
78MODULE_AUTHOR("Hewlett-Packard Company");
79MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82MODULE_VERSION(HPSA_DRIVER_VERSION);
83MODULE_LICENSE("GPL");
84
85static int hpsa_allow_any;
86module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87MODULE_PARM_DESC(hpsa_allow_any,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
02ec19c8
SC
89static int hpsa_simple_mode;
90module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91MODULE_PARM_DESC(hpsa_simple_mode,
92 "Use 'simple mode' rather than 'performant mode'");
edd16368
SC
93
94/* define the PCI info for the cards we can control */
95static const struct pci_device_id hpsa_pci_device_id[] = {
edd16368
SC
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
163dbcd8
MM
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
f8b01eb9 103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
9143a961 104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
fe0c9610
MM
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
fe0c9610
MM
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
97b9f53d
MM
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
3b7a45e5 127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
97b9f53d
MM
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
3b7a45e5
JH
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
fdfa4b6d 136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
cbb47dcb
DB
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
8e616a5e
SC
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
7c03b870 147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
6798cc0a 148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
edd16368
SC
149 {0,}
150};
151
152MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154/* board_id = Subsystem Device ID & Vendor ID
155 * product = Marketing Name for the board
156 * access = Address of the struct of function pointers
157 */
158static struct board_type products[] = {
edd16368
SC
159 {0x3241103C, "Smart Array P212", &SA5_access},
160 {0x3243103C, "Smart Array P410", &SA5_access},
161 {0x3245103C, "Smart Array P410i", &SA5_access},
162 {0x3247103C, "Smart Array P411", &SA5_access},
163 {0x3249103C, "Smart Array P812", &SA5_access},
163dbcd8
MM
164 {0x324A103C, "Smart Array P712m", &SA5_access},
165 {0x324B103C, "Smart Array P711m", &SA5_access},
7d2cce58 166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
fe0c9610
MM
167 {0x3350103C, "Smart Array P222", &SA5_access},
168 {0x3351103C, "Smart Array P420", &SA5_access},
169 {0x3352103C, "Smart Array P421", &SA5_access},
170 {0x3353103C, "Smart Array P822", &SA5_access},
171 {0x3354103C, "Smart Array P420i", &SA5_access},
172 {0x3355103C, "Smart Array P220i", &SA5_access},
173 {0x3356103C, "Smart Array P721m", &SA5_access},
1fd6c8e3
MM
174 {0x1921103C, "Smart Array P830i", &SA5_access},
175 {0x1922103C, "Smart Array P430", &SA5_access},
176 {0x1923103C, "Smart Array P431", &SA5_access},
177 {0x1924103C, "Smart Array P830", &SA5_access},
178 {0x1926103C, "Smart Array P731m", &SA5_access},
179 {0x1928103C, "Smart Array P230i", &SA5_access},
180 {0x1929103C, "Smart Array P530", &SA5_access},
27fb8137
DB
181 {0x21BD103C, "Smart Array P244br", &SA5_access},
182 {0x21BE103C, "Smart Array P741m", &SA5_access},
183 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 {0x21C0103C, "Smart Array P440ar", &SA5_access},
c8ae0ab1 185 {0x21C1103C, "Smart Array P840ar", &SA5_access},
27fb8137
DB
186 {0x21C2103C, "Smart Array P440", &SA5_access},
187 {0x21C3103C, "Smart Array P441", &SA5_access},
97b9f53d 188 {0x21C4103C, "Smart Array", &SA5_access},
27fb8137
DB
189 {0x21C5103C, "Smart Array P841", &SA5_access},
190 {0x21C6103C, "Smart HBA H244br", &SA5_access},
191 {0x21C7103C, "Smart HBA H240", &SA5_access},
192 {0x21C8103C, "Smart HBA H241", &SA5_access},
97b9f53d 193 {0x21C9103C, "Smart Array", &SA5_access},
27fb8137
DB
194 {0x21CA103C, "Smart Array P246br", &SA5_access},
195 {0x21CB103C, "Smart Array P840", &SA5_access},
3b7a45e5
JH
196 {0x21CC103C, "Smart Array", &SA5_access},
197 {0x21CD103C, "Smart Array", &SA5_access},
27fb8137 198 {0x21CE103C, "Smart HBA", &SA5_access},
fdfa4b6d 199 {0x05809005, "SmartHBA-SA", &SA5_access},
cbb47dcb
DB
200 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
8e616a5e
SC
205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
edd16368
SC
210 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211};
212
d04e62b9
KB
213static struct scsi_transport_template *hpsa_sas_transport_template;
214static int hpsa_add_sas_host(struct ctlr_info *h);
215static void hpsa_delete_sas_host(struct ctlr_info *h);
216static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 struct hpsa_scsi_dev_t *device);
218static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219static struct hpsa_scsi_dev_t
220 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 struct sas_rphy *rphy);
222
a58e7e53
WS
223#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224static const struct scsi_cmnd hpsa_cmd_busy;
225#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226static const struct scsi_cmnd hpsa_cmd_idle;
edd16368
SC
227static int number_of_controllers;
228
10f66018
SC
229static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
42a91641 231static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
edd16368
SC
232
233#ifdef CONFIG_COMPAT
42a91641
DB
234static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 void __user *arg);
edd16368
SC
236#endif
237
238static void cmd_free(struct ctlr_info *h, struct CommandList *c);
edd16368 239static struct CommandList *cmd_alloc(struct ctlr_info *h);
73153fe5
WS
240static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 struct scsi_cmnd *scmd);
a2dac136 243static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 244 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368 245 int cmd_type);
2c143342 246static void hpsa_free_cmd_pool(struct ctlr_info *h);
b7bb24eb 247#define VPD_PAGE (1 << 8)
b48d9804 248#define HPSA_SIMPLE_ERROR_BITS 0x03
edd16368 249
f281233d 250static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
a08a8471
SC
251static void hpsa_scan_start(struct Scsi_Host *);
252static int hpsa_scan_finished(struct Scsi_Host *sh,
253 unsigned long elapsed_time);
7c0a0229 254static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
edd16368
SC
255
256static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
75167d2c 257static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
edd16368 258static int hpsa_slave_alloc(struct scsi_device *sdev);
41ce4c35 259static int hpsa_slave_configure(struct scsi_device *sdev);
edd16368
SC
260static void hpsa_slave_destroy(struct scsi_device *sdev);
261
8aa60681 262static void hpsa_update_scsi_devices(struct ctlr_info *h);
edd16368
SC
263static int check_for_unit_attention(struct ctlr_info *h,
264 struct CommandList *c);
265static void check_ioctl_unit_attention(struct ctlr_info *h,
266 struct CommandList *c);
303932fd
DB
267/* performant mode helper functions */
268static void calc_bucket_map(int *bucket, int num_buckets,
2b08b3e9 269 int nsgs, int min_blocks, u32 *bucket_map);
105a3dbc
RE
270static void hpsa_free_performant_mode(struct ctlr_info *h);
271static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
254f796b 272static inline u32 next_command(struct ctlr_info *h, u8 q);
6f039790
GKH
273static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 u64 *cfg_offset);
276static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 unsigned long *memory_bar);
278static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280 int wait_for_ready);
75167d2c 281static inline void finish_cmd(struct CommandList *c);
c706a795 282static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
fe5389c8
SC
283#define BOARD_NOT_READY 0
284#define BOARD_READY 1
23100dd9 285static void hpsa_drain_accel_commands(struct ctlr_info *h);
76438d08 286static void hpsa_flush_cache(struct ctlr_info *h);
c349775e
ST
287static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 289 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
080ef1cc 290static void hpsa_command_resubmit_worker(struct work_struct *work);
25163bd5
WS
291static u32 lockup_detected(struct ctlr_info *h);
292static int detect_controller_lockup(struct ctlr_info *h);
c2adae44 293static void hpsa_disable_rld_caching(struct ctlr_info *h);
d04e62b9
KB
294static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295 struct ReportExtendedLUNdata *buf, int bufsize);
34592254 296static int hpsa_luns_changed(struct ctlr_info *h);
edd16368 297
edd16368
SC
298static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
299{
300 unsigned long *priv = shost_priv(sdev->host);
301 return (struct ctlr_info *) *priv;
302}
303
a23513e8
SC
304static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
305{
306 unsigned long *priv = shost_priv(sh);
307 return (struct ctlr_info *) *priv;
308}
309
a58e7e53
WS
310static inline bool hpsa_is_cmd_idle(struct CommandList *c)
311{
312 return c->scsi_cmd == SCSI_CMD_IDLE;
313}
314
d604f533
WS
315static inline bool hpsa_is_pending_event(struct CommandList *c)
316{
317 return c->abort_pending || c->reset_pending;
318}
319
9437ac43
SC
320/* extract sense key, asc, and ascq from sense data. -1 means invalid. */
321static void decode_sense_data(const u8 *sense_data, int sense_data_len,
322 u8 *sense_key, u8 *asc, u8 *ascq)
323{
324 struct scsi_sense_hdr sshdr;
325 bool rc;
326
327 *sense_key = -1;
328 *asc = -1;
329 *ascq = -1;
330
331 if (sense_data_len < 1)
332 return;
333
334 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
335 if (rc) {
336 *sense_key = sshdr.sense_key;
337 *asc = sshdr.asc;
338 *ascq = sshdr.ascq;
339 }
340}
341
edd16368
SC
342static int check_for_unit_attention(struct ctlr_info *h,
343 struct CommandList *c)
344{
9437ac43
SC
345 u8 sense_key, asc, ascq;
346 int sense_len;
347
348 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
349 sense_len = sizeof(c->err_info->SenseInfo);
350 else
351 sense_len = c->err_info->SenseLen;
352
353 decode_sense_data(c->err_info->SenseInfo, sense_len,
354 &sense_key, &asc, &ascq);
81c27557 355 if (sense_key != UNIT_ATTENTION || asc == 0xff)
edd16368
SC
356 return 0;
357
9437ac43 358 switch (asc) {
edd16368 359 case STATE_CHANGED:
9437ac43 360 dev_warn(&h->pdev->dev,
2946e82b
RE
361 "%s: a state change detected, command retried\n",
362 h->devname);
edd16368
SC
363 break;
364 case LUN_FAILED:
7f73695a 365 dev_warn(&h->pdev->dev,
2946e82b 366 "%s: LUN failure detected\n", h->devname);
edd16368
SC
367 break;
368 case REPORT_LUNS_CHANGED:
7f73695a 369 dev_warn(&h->pdev->dev,
2946e82b 370 "%s: report LUN data changed\n", h->devname);
edd16368 371 /*
4f4eb9f1
ST
372 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
373 * target (array) devices.
edd16368
SC
374 */
375 break;
376 case POWER_OR_RESET:
2946e82b
RE
377 dev_warn(&h->pdev->dev,
378 "%s: a power on or device reset detected\n",
379 h->devname);
edd16368
SC
380 break;
381 case UNIT_ATTENTION_CLEARED:
2946e82b
RE
382 dev_warn(&h->pdev->dev,
383 "%s: unit attention cleared by another initiator\n",
384 h->devname);
edd16368
SC
385 break;
386 default:
2946e82b
RE
387 dev_warn(&h->pdev->dev,
388 "%s: unknown unit attention detected\n",
389 h->devname);
edd16368
SC
390 break;
391 }
392 return 1;
393}
394
852af20a
MB
395static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
396{
397 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
398 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
399 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
400 return 0;
401 dev_warn(&h->pdev->dev, HPSA "device busy");
402 return 1;
403}
404
e985c58f
SC
405static u32 lockup_detected(struct ctlr_info *h);
406static ssize_t host_show_lockup_detected(struct device *dev,
407 struct device_attribute *attr, char *buf)
408{
409 int ld;
410 struct ctlr_info *h;
411 struct Scsi_Host *shost = class_to_shost(dev);
412
413 h = shost_to_hba(shost);
414 ld = lockup_detected(h);
415
416 return sprintf(buf, "ld=%d\n", ld);
417}
418
da0697bd
ST
419static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
420 struct device_attribute *attr,
421 const char *buf, size_t count)
422{
423 int status, len;
424 struct ctlr_info *h;
425 struct Scsi_Host *shost = class_to_shost(dev);
426 char tmpbuf[10];
427
428 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
429 return -EACCES;
430 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
431 strncpy(tmpbuf, buf, len);
432 tmpbuf[len] = '\0';
433 if (sscanf(tmpbuf, "%d", &status) != 1)
434 return -EINVAL;
435 h = shost_to_hba(shost);
436 h->acciopath_status = !!status;
437 dev_warn(&h->pdev->dev,
438 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
439 h->acciopath_status ? "enabled" : "disabled");
440 return count;
441}
442
2ba8bfc8
SC
443static ssize_t host_store_raid_offload_debug(struct device *dev,
444 struct device_attribute *attr,
445 const char *buf, size_t count)
446{
447 int debug_level, len;
448 struct ctlr_info *h;
449 struct Scsi_Host *shost = class_to_shost(dev);
450 char tmpbuf[10];
451
452 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
453 return -EACCES;
454 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
455 strncpy(tmpbuf, buf, len);
456 tmpbuf[len] = '\0';
457 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
458 return -EINVAL;
459 if (debug_level < 0)
460 debug_level = 0;
461 h = shost_to_hba(shost);
462 h->raid_offload_debug = debug_level;
463 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
464 h->raid_offload_debug);
465 return count;
466}
467
edd16368
SC
468static ssize_t host_store_rescan(struct device *dev,
469 struct device_attribute *attr,
470 const char *buf, size_t count)
471{
472 struct ctlr_info *h;
473 struct Scsi_Host *shost = class_to_shost(dev);
a23513e8 474 h = shost_to_hba(shost);
31468401 475 hpsa_scan_start(h->scsi_host);
edd16368
SC
476 return count;
477}
478
d28ce020
SC
479static ssize_t host_show_firmware_revision(struct device *dev,
480 struct device_attribute *attr, char *buf)
481{
482 struct ctlr_info *h;
483 struct Scsi_Host *shost = class_to_shost(dev);
484 unsigned char *fwrev;
485
486 h = shost_to_hba(shost);
487 if (!h->hba_inquiry_data)
488 return 0;
489 fwrev = &h->hba_inquiry_data[32];
490 return snprintf(buf, 20, "%c%c%c%c\n",
491 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
492}
493
94a13649
SC
494static ssize_t host_show_commands_outstanding(struct device *dev,
495 struct device_attribute *attr, char *buf)
496{
497 struct Scsi_Host *shost = class_to_shost(dev);
498 struct ctlr_info *h = shost_to_hba(shost);
499
0cbf768e
SC
500 return snprintf(buf, 20, "%d\n",
501 atomic_read(&h->commands_outstanding));
94a13649
SC
502}
503
745a7a25
SC
504static ssize_t host_show_transport_mode(struct device *dev,
505 struct device_attribute *attr, char *buf)
506{
507 struct ctlr_info *h;
508 struct Scsi_Host *shost = class_to_shost(dev);
509
510 h = shost_to_hba(shost);
511 return snprintf(buf, 20, "%s\n",
960a30e7 512 h->transMethod & CFGTBL_Trans_Performant ?
745a7a25
SC
513 "performant" : "simple");
514}
515
da0697bd
ST
516static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
517 struct device_attribute *attr, char *buf)
518{
519 struct ctlr_info *h;
520 struct Scsi_Host *shost = class_to_shost(dev);
521
522 h = shost_to_hba(shost);
523 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
524 (h->acciopath_status == 1) ? "enabled" : "disabled");
525}
526
46380786 527/* List of controllers which cannot be hard reset on kexec with reset_devices */
941b1cda
SC
528static u32 unresettable_controller[] = {
529 0x324a103C, /* Smart Array P712m */
9b5c48c2 530 0x324b103C, /* Smart Array P711m */
941b1cda
SC
531 0x3223103C, /* Smart Array P800 */
532 0x3234103C, /* Smart Array P400 */
533 0x3235103C, /* Smart Array P400i */
534 0x3211103C, /* Smart Array E200i */
535 0x3212103C, /* Smart Array E200 */
536 0x3213103C, /* Smart Array E200i */
537 0x3214103C, /* Smart Array E200i */
538 0x3215103C, /* Smart Array E200i */
539 0x3237103C, /* Smart Array E500 */
540 0x323D103C, /* Smart Array P700m */
7af0abbc 541 0x40800E11, /* Smart Array 5i */
941b1cda
SC
542 0x409C0E11, /* Smart Array 6400 */
543 0x409D0E11, /* Smart Array 6400 EM */
5a4f934e
TH
544 0x40700E11, /* Smart Array 5300 */
545 0x40820E11, /* Smart Array 532 */
546 0x40830E11, /* Smart Array 5312 */
547 0x409A0E11, /* Smart Array 641 */
548 0x409B0E11, /* Smart Array 642 */
549 0x40910E11, /* Smart Array 6i */
941b1cda
SC
550};
551
46380786
SC
552/* List of controllers which cannot even be soft reset */
553static u32 soft_unresettable_controller[] = {
7af0abbc 554 0x40800E11, /* Smart Array 5i */
5a4f934e
TH
555 0x40700E11, /* Smart Array 5300 */
556 0x40820E11, /* Smart Array 532 */
557 0x40830E11, /* Smart Array 5312 */
558 0x409A0E11, /* Smart Array 641 */
559 0x409B0E11, /* Smart Array 642 */
560 0x40910E11, /* Smart Array 6i */
46380786
SC
561 /* Exclude 640x boards. These are two pci devices in one slot
562 * which share a battery backed cache module. One controls the
563 * cache, the other accesses the cache through the one that controls
564 * it. If we reset the one controlling the cache, the other will
565 * likely not be happy. Just forbid resetting this conjoined mess.
566 * The 640x isn't really supported by hpsa anyway.
567 */
568 0x409C0E11, /* Smart Array 6400 */
569 0x409D0E11, /* Smart Array 6400 EM */
570};
571
9b5c48c2
SC
572static u32 needs_abort_tags_swizzled[] = {
573 0x323D103C, /* Smart Array P700m */
574 0x324a103C, /* Smart Array P712m */
575 0x324b103C, /* SmartArray P711m */
576};
577
578static int board_id_in_array(u32 a[], int nelems, u32 board_id)
941b1cda
SC
579{
580 int i;
581
9b5c48c2
SC
582 for (i = 0; i < nelems; i++)
583 if (a[i] == board_id)
584 return 1;
585 return 0;
46380786
SC
586}
587
9b5c48c2 588static int ctlr_is_hard_resettable(u32 board_id)
46380786 589{
9b5c48c2
SC
590 return !board_id_in_array(unresettable_controller,
591 ARRAY_SIZE(unresettable_controller), board_id);
592}
46380786 593
9b5c48c2
SC
594static int ctlr_is_soft_resettable(u32 board_id)
595{
596 return !board_id_in_array(soft_unresettable_controller,
597 ARRAY_SIZE(soft_unresettable_controller), board_id);
941b1cda
SC
598}
599
46380786
SC
600static int ctlr_is_resettable(u32 board_id)
601{
602 return ctlr_is_hard_resettable(board_id) ||
603 ctlr_is_soft_resettable(board_id);
604}
605
9b5c48c2
SC
606static int ctlr_needs_abort_tags_swizzled(u32 board_id)
607{
608 return board_id_in_array(needs_abort_tags_swizzled,
609 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
610}
611
941b1cda
SC
612static ssize_t host_show_resettable(struct device *dev,
613 struct device_attribute *attr, char *buf)
614{
615 struct ctlr_info *h;
616 struct Scsi_Host *shost = class_to_shost(dev);
617
618 h = shost_to_hba(shost);
46380786 619 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
941b1cda
SC
620}
621
edd16368
SC
622static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
623{
624 return (scsi3addr[3] & 0xC0) == 0x40;
625}
626
f2ef0ce7 627static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
7c59a0d4 628 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
edd16368 629};
6b80b18f
ST
630#define HPSA_RAID_0 0
631#define HPSA_RAID_4 1
632#define HPSA_RAID_1 2 /* also used for RAID 10 */
633#define HPSA_RAID_5 3 /* also used for RAID 50 */
634#define HPSA_RAID_51 4
635#define HPSA_RAID_6 5 /* also used for RAID 60 */
636#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
7c59a0d4
DB
637#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
638#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
edd16368 639
f3f01730
KB
640static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
641{
642 return !device->physical_device;
643}
edd16368
SC
644
645static ssize_t raid_level_show(struct device *dev,
646 struct device_attribute *attr, char *buf)
647{
648 ssize_t l = 0;
82a72c0a 649 unsigned char rlevel;
edd16368
SC
650 struct ctlr_info *h;
651 struct scsi_device *sdev;
652 struct hpsa_scsi_dev_t *hdev;
653 unsigned long flags;
654
655 sdev = to_scsi_device(dev);
656 h = sdev_to_hba(sdev);
657 spin_lock_irqsave(&h->lock, flags);
658 hdev = sdev->hostdata;
659 if (!hdev) {
660 spin_unlock_irqrestore(&h->lock, flags);
661 return -ENODEV;
662 }
663
664 /* Is this even a logical drive? */
f3f01730 665 if (!is_logical_device(hdev)) {
edd16368
SC
666 spin_unlock_irqrestore(&h->lock, flags);
667 l = snprintf(buf, PAGE_SIZE, "N/A\n");
668 return l;
669 }
670
671 rlevel = hdev->raid_level;
672 spin_unlock_irqrestore(&h->lock, flags);
82a72c0a 673 if (rlevel > RAID_UNKNOWN)
edd16368
SC
674 rlevel = RAID_UNKNOWN;
675 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
676 return l;
677}
678
679static ssize_t lunid_show(struct device *dev,
680 struct device_attribute *attr, char *buf)
681{
682 struct ctlr_info *h;
683 struct scsi_device *sdev;
684 struct hpsa_scsi_dev_t *hdev;
685 unsigned long flags;
686 unsigned char lunid[8];
687
688 sdev = to_scsi_device(dev);
689 h = sdev_to_hba(sdev);
690 spin_lock_irqsave(&h->lock, flags);
691 hdev = sdev->hostdata;
692 if (!hdev) {
693 spin_unlock_irqrestore(&h->lock, flags);
694 return -ENODEV;
695 }
696 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
697 spin_unlock_irqrestore(&h->lock, flags);
698 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
699 lunid[0], lunid[1], lunid[2], lunid[3],
700 lunid[4], lunid[5], lunid[6], lunid[7]);
701}
702
703static ssize_t unique_id_show(struct device *dev,
704 struct device_attribute *attr, char *buf)
705{
706 struct ctlr_info *h;
707 struct scsi_device *sdev;
708 struct hpsa_scsi_dev_t *hdev;
709 unsigned long flags;
710 unsigned char sn[16];
711
712 sdev = to_scsi_device(dev);
713 h = sdev_to_hba(sdev);
714 spin_lock_irqsave(&h->lock, flags);
715 hdev = sdev->hostdata;
716 if (!hdev) {
717 spin_unlock_irqrestore(&h->lock, flags);
718 return -ENODEV;
719 }
720 memcpy(sn, hdev->device_id, sizeof(sn));
721 spin_unlock_irqrestore(&h->lock, flags);
722 return snprintf(buf, 16 * 2 + 2,
723 "%02X%02X%02X%02X%02X%02X%02X%02X"
724 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
725 sn[0], sn[1], sn[2], sn[3],
726 sn[4], sn[5], sn[6], sn[7],
727 sn[8], sn[9], sn[10], sn[11],
728 sn[12], sn[13], sn[14], sn[15]);
729}
730
c1988684
ST
731static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
732 struct device_attribute *attr, char *buf)
733{
734 struct ctlr_info *h;
735 struct scsi_device *sdev;
736 struct hpsa_scsi_dev_t *hdev;
737 unsigned long flags;
738 int offload_enabled;
739
740 sdev = to_scsi_device(dev);
741 h = sdev_to_hba(sdev);
742 spin_lock_irqsave(&h->lock, flags);
743 hdev = sdev->hostdata;
744 if (!hdev) {
745 spin_unlock_irqrestore(&h->lock, flags);
746 return -ENODEV;
747 }
748 offload_enabled = hdev->offload_enabled;
749 spin_unlock_irqrestore(&h->lock, flags);
750 return snprintf(buf, 20, "%d\n", offload_enabled);
751}
752
8270b862 753#define MAX_PATHS 8
8270b862
JH
754static ssize_t path_info_show(struct device *dev,
755 struct device_attribute *attr, char *buf)
756{
757 struct ctlr_info *h;
758 struct scsi_device *sdev;
759 struct hpsa_scsi_dev_t *hdev;
760 unsigned long flags;
761 int i;
762 int output_len = 0;
763 u8 box;
764 u8 bay;
765 u8 path_map_index = 0;
766 char *active;
767 unsigned char phys_connector[2];
8270b862 768
8270b862
JH
769 sdev = to_scsi_device(dev);
770 h = sdev_to_hba(sdev);
771 spin_lock_irqsave(&h->devlock, flags);
772 hdev = sdev->hostdata;
773 if (!hdev) {
774 spin_unlock_irqrestore(&h->devlock, flags);
775 return -ENODEV;
776 }
777
778 bay = hdev->bay;
779 for (i = 0; i < MAX_PATHS; i++) {
780 path_map_index = 1<<i;
781 if (i == hdev->active_path_index)
782 active = "Active";
783 else if (hdev->path_map & path_map_index)
784 active = "Inactive";
785 else
786 continue;
787
1faf072c
RV
788 output_len += scnprintf(buf + output_len,
789 PAGE_SIZE - output_len,
790 "[%d:%d:%d:%d] %20.20s ",
8270b862
JH
791 h->scsi_host->host_no,
792 hdev->bus, hdev->target, hdev->lun,
793 scsi_device_type(hdev->devtype));
794
cca8f13b 795 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
2708f295 796 output_len += scnprintf(buf + output_len,
1faf072c
RV
797 PAGE_SIZE - output_len,
798 "%s\n", active);
8270b862
JH
799 continue;
800 }
801
802 box = hdev->box[i];
803 memcpy(&phys_connector, &hdev->phys_connector[i],
804 sizeof(phys_connector));
805 if (phys_connector[0] < '0')
806 phys_connector[0] = '0';
807 if (phys_connector[1] < '0')
808 phys_connector[1] = '0';
cca8f13b 809 output_len += scnprintf(buf + output_len,
1faf072c 810 PAGE_SIZE - output_len,
8270b862
JH
811 "PORT: %.2s ",
812 phys_connector);
af15ed36
DB
813 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
814 hdev->expose_device) {
8270b862 815 if (box == 0 || box == 0xFF) {
2708f295 816 output_len += scnprintf(buf + output_len,
1faf072c 817 PAGE_SIZE - output_len,
8270b862
JH
818 "BAY: %hhu %s\n",
819 bay, active);
820 } else {
2708f295 821 output_len += scnprintf(buf + output_len,
1faf072c 822 PAGE_SIZE - output_len,
8270b862
JH
823 "BOX: %hhu BAY: %hhu %s\n",
824 box, bay, active);
825 }
826 } else if (box != 0 && box != 0xFF) {
2708f295 827 output_len += scnprintf(buf + output_len,
1faf072c 828 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
8270b862
JH
829 box, active);
830 } else
2708f295 831 output_len += scnprintf(buf + output_len,
1faf072c 832 PAGE_SIZE - output_len, "%s\n", active);
8270b862
JH
833 }
834
835 spin_unlock_irqrestore(&h->devlock, flags);
1faf072c 836 return output_len;
8270b862
JH
837}
838
3f5eac3a
SC
839static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
840static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
841static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
842static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
c1988684
ST
843static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
844 host_show_hp_ssd_smart_path_enabled, NULL);
8270b862 845static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
da0697bd
ST
846static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
847 host_show_hp_ssd_smart_path_status,
848 host_store_hp_ssd_smart_path_status);
2ba8bfc8
SC
849static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
850 host_store_raid_offload_debug);
3f5eac3a
SC
851static DEVICE_ATTR(firmware_revision, S_IRUGO,
852 host_show_firmware_revision, NULL);
853static DEVICE_ATTR(commands_outstanding, S_IRUGO,
854 host_show_commands_outstanding, NULL);
855static DEVICE_ATTR(transport_mode, S_IRUGO,
856 host_show_transport_mode, NULL);
941b1cda
SC
857static DEVICE_ATTR(resettable, S_IRUGO,
858 host_show_resettable, NULL);
e985c58f
SC
859static DEVICE_ATTR(lockup_detected, S_IRUGO,
860 host_show_lockup_detected, NULL);
3f5eac3a
SC
861
862static struct device_attribute *hpsa_sdev_attrs[] = {
863 &dev_attr_raid_level,
864 &dev_attr_lunid,
865 &dev_attr_unique_id,
c1988684 866 &dev_attr_hp_ssd_smart_path_enabled,
8270b862 867 &dev_attr_path_info,
3f5eac3a
SC
868 NULL,
869};
870
871static struct device_attribute *hpsa_shost_attrs[] = {
872 &dev_attr_rescan,
873 &dev_attr_firmware_revision,
874 &dev_attr_commands_outstanding,
875 &dev_attr_transport_mode,
941b1cda 876 &dev_attr_resettable,
da0697bd 877 &dev_attr_hp_ssd_smart_path_status,
2ba8bfc8 878 &dev_attr_raid_offload_debug,
fb53c439 879 &dev_attr_lockup_detected,
3f5eac3a
SC
880 NULL,
881};
882
41ce4c35
SC
883#define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
884 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
885
3f5eac3a
SC
886static struct scsi_host_template hpsa_driver_template = {
887 .module = THIS_MODULE,
f79cfec6
SC
888 .name = HPSA,
889 .proc_name = HPSA,
3f5eac3a
SC
890 .queuecommand = hpsa_scsi_queue_command,
891 .scan_start = hpsa_scan_start,
892 .scan_finished = hpsa_scan_finished,
7c0a0229 893 .change_queue_depth = hpsa_change_queue_depth,
3f5eac3a
SC
894 .this_id = -1,
895 .use_clustering = ENABLE_CLUSTERING,
75167d2c 896 .eh_abort_handler = hpsa_eh_abort_handler,
3f5eac3a
SC
897 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
898 .ioctl = hpsa_ioctl,
899 .slave_alloc = hpsa_slave_alloc,
41ce4c35 900 .slave_configure = hpsa_slave_configure,
3f5eac3a
SC
901 .slave_destroy = hpsa_slave_destroy,
902#ifdef CONFIG_COMPAT
903 .compat_ioctl = hpsa_compat_ioctl,
904#endif
905 .sdev_attrs = hpsa_sdev_attrs,
906 .shost_attrs = hpsa_shost_attrs,
c0d6a4d1 907 .max_sectors = 8192,
54b2b50c 908 .no_write_same = 1,
3f5eac3a
SC
909};
910
254f796b 911static inline u32 next_command(struct ctlr_info *h, u8 q)
3f5eac3a
SC
912{
913 u32 a;
072b0518 914 struct reply_queue_buffer *rq = &h->reply_queue[q];
3f5eac3a 915
e1f7de0c
MG
916 if (h->transMethod & CFGTBL_Trans_io_accel1)
917 return h->access.command_completed(h, q);
918
3f5eac3a 919 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
254f796b 920 return h->access.command_completed(h, q);
3f5eac3a 921
254f796b
MG
922 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
923 a = rq->head[rq->current_entry];
924 rq->current_entry++;
0cbf768e 925 atomic_dec(&h->commands_outstanding);
3f5eac3a
SC
926 } else {
927 a = FIFO_EMPTY;
928 }
929 /* Check for wraparound */
254f796b
MG
930 if (rq->current_entry == h->max_commands) {
931 rq->current_entry = 0;
932 rq->wraparound ^= 1;
3f5eac3a
SC
933 }
934 return a;
935}
936
c349775e
ST
937/*
938 * There are some special bits in the bus address of the
939 * command that we have to set for the controller to know
940 * how to process the command:
941 *
942 * Normal performant mode:
943 * bit 0: 1 means performant mode, 0 means simple mode.
944 * bits 1-3 = block fetch table entry
945 * bits 4-6 = command type (== 0)
946 *
947 * ioaccel1 mode:
948 * bit 0 = "performant mode" bit.
949 * bits 1-3 = block fetch table entry
950 * bits 4-6 = command type (== 110)
951 * (command type is needed because ioaccel1 mode
952 * commands are submitted through the same register as normal
953 * mode commands, so this is how the controller knows whether
954 * the command is normal mode or ioaccel1 mode.)
955 *
956 * ioaccel2 mode:
957 * bit 0 = "performant mode" bit.
958 * bits 1-4 = block fetch table entry (note extra bit)
959 * bits 4-6 = not needed, because ioaccel2 mode has
960 * a separate special register for submitting commands.
961 */
962
25163bd5
WS
963/*
964 * set_performant_mode: Modify the tag for cciss performant
3f5eac3a
SC
965 * set bit 0 for pull model, bits 3-1 for block fetch
966 * register number
967 */
25163bd5
WS
968#define DEFAULT_REPLY_QUEUE (-1)
969static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
970 int reply_queue)
3f5eac3a 971{
254f796b 972 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
3f5eac3a 973 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
25163bd5
WS
974 if (unlikely(!h->msix_vector))
975 return;
976 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
254f796b 977 c->Header.ReplyQueue =
804a5cb5 978 raw_smp_processor_id() % h->nreply_queues;
25163bd5
WS
979 else
980 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
254f796b 981 }
3f5eac3a
SC
982}
983
c349775e 984static void set_ioaccel1_performant_mode(struct ctlr_info *h,
25163bd5
WS
985 struct CommandList *c,
986 int reply_queue)
c349775e
ST
987{
988 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
989
25163bd5
WS
990 /*
991 * Tell the controller to post the reply to the queue for this
c349775e
ST
992 * processor. This seems to give the best I/O throughput.
993 */
25163bd5
WS
994 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
995 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
996 else
997 cp->ReplyQueue = reply_queue % h->nreply_queues;
998 /*
999 * Set the bits in the address sent down to include:
c349775e
ST
1000 * - performant mode bit (bit 0)
1001 * - pull count (bits 1-3)
1002 * - command type (bits 4-6)
1003 */
1004 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1005 IOACCEL1_BUSADDR_CMDTYPE;
1006}
1007
8be986cc
SC
1008static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1009 struct CommandList *c,
1010 int reply_queue)
1011{
1012 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1013 &h->ioaccel2_cmd_pool[c->cmdindex];
1014
1015 /* Tell the controller to post the reply to the queue for this
1016 * processor. This seems to give the best I/O throughput.
1017 */
1018 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1019 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1020 else
1021 cp->reply_queue = reply_queue % h->nreply_queues;
1022 /* Set the bits in the address sent down to include:
1023 * - performant mode bit not used in ioaccel mode 2
1024 * - pull count (bits 0-3)
1025 * - command type isn't needed for ioaccel2
1026 */
1027 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1028}
1029
c349775e 1030static void set_ioaccel2_performant_mode(struct ctlr_info *h,
25163bd5
WS
1031 struct CommandList *c,
1032 int reply_queue)
c349775e
ST
1033{
1034 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1035
25163bd5
WS
1036 /*
1037 * Tell the controller to post the reply to the queue for this
c349775e
ST
1038 * processor. This seems to give the best I/O throughput.
1039 */
25163bd5
WS
1040 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1041 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1042 else
1043 cp->reply_queue = reply_queue % h->nreply_queues;
1044 /*
1045 * Set the bits in the address sent down to include:
c349775e
ST
1046 * - performant mode bit not used in ioaccel mode 2
1047 * - pull count (bits 0-3)
1048 * - command type isn't needed for ioaccel2
1049 */
1050 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1051}
1052
e85c5974
SC
1053static int is_firmware_flash_cmd(u8 *cdb)
1054{
1055 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1056}
1057
1058/*
1059 * During firmware flash, the heartbeat register may not update as frequently
1060 * as it should. So we dial down lockup detection during firmware flash. and
1061 * dial it back up when firmware flash completes.
1062 */
1063#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1064#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1065static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1066 struct CommandList *c)
1067{
1068 if (!is_firmware_flash_cmd(c->Request.CDB))
1069 return;
1070 atomic_inc(&h->firmware_flash_in_progress);
1071 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1072}
1073
1074static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1075 struct CommandList *c)
1076{
1077 if (is_firmware_flash_cmd(c->Request.CDB) &&
1078 atomic_dec_and_test(&h->firmware_flash_in_progress))
1079 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1080}
1081
25163bd5
WS
1082static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1083 struct CommandList *c, int reply_queue)
3f5eac3a 1084{
c05e8866
SC
1085 dial_down_lockup_detection_during_fw_flash(h, c);
1086 atomic_inc(&h->commands_outstanding);
c349775e
ST
1087 switch (c->cmd_type) {
1088 case CMD_IOACCEL1:
25163bd5 1089 set_ioaccel1_performant_mode(h, c, reply_queue);
c05e8866 1090 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
c349775e
ST
1091 break;
1092 case CMD_IOACCEL2:
25163bd5 1093 set_ioaccel2_performant_mode(h, c, reply_queue);
c05e8866 1094 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
c349775e 1095 break;
8be986cc
SC
1096 case IOACCEL2_TMF:
1097 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1098 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1099 break;
c349775e 1100 default:
25163bd5 1101 set_performant_mode(h, c, reply_queue);
c05e8866 1102 h->access.submit_command(h, c);
c349775e 1103 }
3f5eac3a
SC
1104}
1105
a58e7e53 1106static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
25163bd5 1107{
d604f533 1108 if (unlikely(hpsa_is_pending_event(c)))
a58e7e53
WS
1109 return finish_cmd(c);
1110
25163bd5
WS
1111 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1112}
1113
3f5eac3a
SC
1114static inline int is_hba_lunid(unsigned char scsi3addr[])
1115{
1116 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1117}
1118
1119static inline int is_scsi_rev_5(struct ctlr_info *h)
1120{
1121 if (!h->hba_inquiry_data)
1122 return 0;
1123 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1124 return 1;
1125 return 0;
1126}
1127
edd16368
SC
1128static int hpsa_find_target_lun(struct ctlr_info *h,
1129 unsigned char scsi3addr[], int bus, int *target, int *lun)
1130{
1131 /* finds an unused bus, target, lun for a new physical device
1132 * assumes h->devlock is held
1133 */
1134 int i, found = 0;
cfe5badc 1135 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
edd16368 1136
263d9401 1137 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
edd16368
SC
1138
1139 for (i = 0; i < h->ndevices; i++) {
1140 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
263d9401 1141 __set_bit(h->dev[i]->target, lun_taken);
edd16368
SC
1142 }
1143
263d9401
AM
1144 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1145 if (i < HPSA_MAX_DEVICES) {
1146 /* *bus = 1; */
1147 *target = i;
1148 *lun = 0;
1149 found = 1;
edd16368
SC
1150 }
1151 return !found;
1152}
1153
1d33d85d 1154static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
0d96ef5f
WS
1155 struct hpsa_scsi_dev_t *dev, char *description)
1156{
7c59a0d4
DB
1157#define LABEL_SIZE 25
1158 char label[LABEL_SIZE];
1159
9975ec9d
DB
1160 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1161 return;
1162
7c59a0d4
DB
1163 switch (dev->devtype) {
1164 case TYPE_RAID:
1165 snprintf(label, LABEL_SIZE, "controller");
1166 break;
1167 case TYPE_ENCLOSURE:
1168 snprintf(label, LABEL_SIZE, "enclosure");
1169 break;
1170 case TYPE_DISK:
af15ed36 1171 case TYPE_ZBC:
7c59a0d4
DB
1172 if (dev->external)
1173 snprintf(label, LABEL_SIZE, "external");
1174 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1175 snprintf(label, LABEL_SIZE, "%s",
1176 raid_label[PHYSICAL_DRIVE]);
1177 else
1178 snprintf(label, LABEL_SIZE, "RAID-%s",
1179 dev->raid_level > RAID_UNKNOWN ? "?" :
1180 raid_label[dev->raid_level]);
1181 break;
1182 case TYPE_ROM:
1183 snprintf(label, LABEL_SIZE, "rom");
1184 break;
1185 case TYPE_TAPE:
1186 snprintf(label, LABEL_SIZE, "tape");
1187 break;
1188 case TYPE_MEDIUM_CHANGER:
1189 snprintf(label, LABEL_SIZE, "changer");
1190 break;
1191 default:
1192 snprintf(label, LABEL_SIZE, "UNKNOWN");
1193 break;
1194 }
1195
0d96ef5f 1196 dev_printk(level, &h->pdev->dev,
7c59a0d4 1197 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
0d96ef5f
WS
1198 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1199 description,
1200 scsi_device_type(dev->devtype),
1201 dev->vendor,
1202 dev->model,
7c59a0d4 1203 label,
0d96ef5f
WS
1204 dev->offload_config ? '+' : '-',
1205 dev->offload_enabled ? '+' : '-',
2a168208 1206 dev->expose_device);
0d96ef5f
WS
1207}
1208
edd16368 1209/* Add an entry into h->dev[] array. */
8aa60681 1210static int hpsa_scsi_add_entry(struct ctlr_info *h,
edd16368
SC
1211 struct hpsa_scsi_dev_t *device,
1212 struct hpsa_scsi_dev_t *added[], int *nadded)
1213{
1214 /* assumes h->devlock is held */
1215 int n = h->ndevices;
1216 int i;
1217 unsigned char addr1[8], addr2[8];
1218 struct hpsa_scsi_dev_t *sd;
1219
cfe5badc 1220 if (n >= HPSA_MAX_DEVICES) {
edd16368
SC
1221 dev_err(&h->pdev->dev, "too many devices, some will be "
1222 "inaccessible.\n");
1223 return -1;
1224 }
1225
1226 /* physical devices do not have lun or target assigned until now. */
1227 if (device->lun != -1)
1228 /* Logical device, lun is already assigned. */
1229 goto lun_assigned;
1230
1231 /* If this device a non-zero lun of a multi-lun device
1232 * byte 4 of the 8-byte LUN addr will contain the logical
2b08b3e9 1233 * unit no, zero otherwise.
edd16368
SC
1234 */
1235 if (device->scsi3addr[4] == 0) {
1236 /* This is not a non-zero lun of a multi-lun device */
1237 if (hpsa_find_target_lun(h, device->scsi3addr,
1238 device->bus, &device->target, &device->lun) != 0)
1239 return -1;
1240 goto lun_assigned;
1241 }
1242
1243 /* This is a non-zero lun of a multi-lun device.
1244 * Search through our list and find the device which
9a4178b7 1245 * has the same 8 byte LUN address, excepting byte 4 and 5.
edd16368
SC
1246 * Assign the same bus and target for this new LUN.
1247 * Use the logical unit number from the firmware.
1248 */
1249 memcpy(addr1, device->scsi3addr, 8);
1250 addr1[4] = 0;
9a4178b7 1251 addr1[5] = 0;
edd16368
SC
1252 for (i = 0; i < n; i++) {
1253 sd = h->dev[i];
1254 memcpy(addr2, sd->scsi3addr, 8);
1255 addr2[4] = 0;
9a4178b7 1256 addr2[5] = 0;
1257 /* differ only in byte 4 and 5? */
edd16368
SC
1258 if (memcmp(addr1, addr2, 8) == 0) {
1259 device->bus = sd->bus;
1260 device->target = sd->target;
1261 device->lun = device->scsi3addr[4];
1262 break;
1263 }
1264 }
1265 if (device->lun == -1) {
1266 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1267 " suspect firmware bug or unsupported hardware "
1268 "configuration.\n");
1269 return -1;
1270 }
1271
1272lun_assigned:
1273
1274 h->dev[n] = device;
1275 h->ndevices++;
1276 added[*nadded] = device;
1277 (*nadded)++;
0d96ef5f 1278 hpsa_show_dev_msg(KERN_INFO, h, device,
2a168208 1279 device->expose_device ? "added" : "masked");
a473d86c
RE
1280 device->offload_to_be_enabled = device->offload_enabled;
1281 device->offload_enabled = 0;
edd16368
SC
1282 return 0;
1283}
1284
bd9244f7 1285/* Update an entry in h->dev[] array. */
8aa60681 1286static void hpsa_scsi_update_entry(struct ctlr_info *h,
bd9244f7
ST
1287 int entry, struct hpsa_scsi_dev_t *new_entry)
1288{
a473d86c 1289 int offload_enabled;
bd9244f7
ST
1290 /* assumes h->devlock is held */
1291 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1292
1293 /* Raid level changed. */
1294 h->dev[entry]->raid_level = new_entry->raid_level;
250fb125 1295
03383736
DB
1296 /* Raid offload parameters changed. Careful about the ordering. */
1297 if (new_entry->offload_config && new_entry->offload_enabled) {
1298 /*
1299 * if drive is newly offload_enabled, we want to copy the
1300 * raid map data first. If previously offload_enabled and
1301 * offload_config were set, raid map data had better be
1302 * the same as it was before. if raid map data is changed
1303 * then it had better be the case that
1304 * h->dev[entry]->offload_enabled is currently 0.
1305 */
1306 h->dev[entry]->raid_map = new_entry->raid_map;
1307 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
03383736 1308 }
a3144e0b
JH
1309 if (new_entry->hba_ioaccel_enabled) {
1310 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1311 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1312 }
1313 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
250fb125 1314 h->dev[entry]->offload_config = new_entry->offload_config;
9fb0de2d 1315 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
03383736 1316 h->dev[entry]->queue_depth = new_entry->queue_depth;
250fb125 1317
41ce4c35
SC
1318 /*
1319 * We can turn off ioaccel offload now, but need to delay turning
1320 * it on until we can update h->dev[entry]->phys_disk[], but we
1321 * can't do that until all the devices are updated.
1322 */
1323 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1324 if (!new_entry->offload_enabled)
1325 h->dev[entry]->offload_enabled = 0;
1326
a473d86c
RE
1327 offload_enabled = h->dev[entry]->offload_enabled;
1328 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
0d96ef5f 1329 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
a473d86c 1330 h->dev[entry]->offload_enabled = offload_enabled;
bd9244f7
ST
1331}
1332
2a8ccf31 1333/* Replace an entry from h->dev[] array. */
8aa60681 1334static void hpsa_scsi_replace_entry(struct ctlr_info *h,
2a8ccf31
SC
1335 int entry, struct hpsa_scsi_dev_t *new_entry,
1336 struct hpsa_scsi_dev_t *added[], int *nadded,
1337 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1338{
1339 /* assumes h->devlock is held */
cfe5badc 1340 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
2a8ccf31
SC
1341 removed[*nremoved] = h->dev[entry];
1342 (*nremoved)++;
01350d05
SC
1343
1344 /*
1345 * New physical devices won't have target/lun assigned yet
1346 * so we need to preserve the values in the slot we are replacing.
1347 */
1348 if (new_entry->target == -1) {
1349 new_entry->target = h->dev[entry]->target;
1350 new_entry->lun = h->dev[entry]->lun;
1351 }
1352
2a8ccf31
SC
1353 h->dev[entry] = new_entry;
1354 added[*nadded] = new_entry;
1355 (*nadded)++;
0d96ef5f 1356 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
a473d86c
RE
1357 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1358 new_entry->offload_enabled = 0;
2a8ccf31
SC
1359}
1360
edd16368 1361/* Remove an entry from h->dev[] array. */
8aa60681 1362static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
edd16368
SC
1363 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1364{
1365 /* assumes h->devlock is held */
1366 int i;
1367 struct hpsa_scsi_dev_t *sd;
1368
cfe5badc 1369 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
edd16368
SC
1370
1371 sd = h->dev[entry];
1372 removed[*nremoved] = h->dev[entry];
1373 (*nremoved)++;
1374
1375 for (i = entry; i < h->ndevices-1; i++)
1376 h->dev[i] = h->dev[i+1];
1377 h->ndevices--;
0d96ef5f 1378 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
edd16368
SC
1379}
1380
1381#define SCSI3ADDR_EQ(a, b) ( \
1382 (a)[7] == (b)[7] && \
1383 (a)[6] == (b)[6] && \
1384 (a)[5] == (b)[5] && \
1385 (a)[4] == (b)[4] && \
1386 (a)[3] == (b)[3] && \
1387 (a)[2] == (b)[2] && \
1388 (a)[1] == (b)[1] && \
1389 (a)[0] == (b)[0])
1390
1391static void fixup_botched_add(struct ctlr_info *h,
1392 struct hpsa_scsi_dev_t *added)
1393{
1394 /* called when scsi_add_device fails in order to re-adjust
1395 * h->dev[] to match the mid layer's view.
1396 */
1397 unsigned long flags;
1398 int i, j;
1399
1400 spin_lock_irqsave(&h->lock, flags);
1401 for (i = 0; i < h->ndevices; i++) {
1402 if (h->dev[i] == added) {
1403 for (j = i; j < h->ndevices-1; j++)
1404 h->dev[j] = h->dev[j+1];
1405 h->ndevices--;
1406 break;
1407 }
1408 }
1409 spin_unlock_irqrestore(&h->lock, flags);
1410 kfree(added);
1411}
1412
1413static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1414 struct hpsa_scsi_dev_t *dev2)
1415{
edd16368
SC
1416 /* we compare everything except lun and target as these
1417 * are not yet assigned. Compare parts likely
1418 * to differ first
1419 */
1420 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1421 sizeof(dev1->scsi3addr)) != 0)
1422 return 0;
1423 if (memcmp(dev1->device_id, dev2->device_id,
1424 sizeof(dev1->device_id)) != 0)
1425 return 0;
1426 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1427 return 0;
1428 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1429 return 0;
edd16368
SC
1430 if (dev1->devtype != dev2->devtype)
1431 return 0;
edd16368
SC
1432 if (dev1->bus != dev2->bus)
1433 return 0;
1434 return 1;
1435}
1436
bd9244f7
ST
1437static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1438 struct hpsa_scsi_dev_t *dev2)
1439{
1440 /* Device attributes that can change, but don't mean
1441 * that the device is a different device, nor that the OS
1442 * needs to be told anything about the change.
1443 */
1444 if (dev1->raid_level != dev2->raid_level)
1445 return 1;
250fb125
SC
1446 if (dev1->offload_config != dev2->offload_config)
1447 return 1;
1448 if (dev1->offload_enabled != dev2->offload_enabled)
1449 return 1;
93849508
DB
1450 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1451 if (dev1->queue_depth != dev2->queue_depth)
1452 return 1;
bd9244f7
ST
1453 return 0;
1454}
1455
edd16368
SC
1456/* Find needle in haystack. If exact match found, return DEVICE_SAME,
1457 * and return needle location in *index. If scsi3addr matches, but not
1458 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
bd9244f7
ST
1459 * location in *index.
1460 * In the case of a minor device attribute change, such as RAID level, just
1461 * return DEVICE_UPDATED, along with the updated device's location in index.
1462 * If needle not found, return DEVICE_NOT_FOUND.
edd16368
SC
1463 */
1464static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1465 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1466 int *index)
1467{
1468 int i;
1469#define DEVICE_NOT_FOUND 0
1470#define DEVICE_CHANGED 1
1471#define DEVICE_SAME 2
bd9244f7 1472#define DEVICE_UPDATED 3
1d33d85d
DB
1473 if (needle == NULL)
1474 return DEVICE_NOT_FOUND;
1475
edd16368 1476 for (i = 0; i < haystack_size; i++) {
23231048
SC
1477 if (haystack[i] == NULL) /* previously removed. */
1478 continue;
edd16368
SC
1479 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1480 *index = i;
bd9244f7
ST
1481 if (device_is_the_same(needle, haystack[i])) {
1482 if (device_updated(needle, haystack[i]))
1483 return DEVICE_UPDATED;
edd16368 1484 return DEVICE_SAME;
bd9244f7 1485 } else {
9846590e
SC
1486 /* Keep offline devices offline */
1487 if (needle->volume_offline)
1488 return DEVICE_NOT_FOUND;
edd16368 1489 return DEVICE_CHANGED;
bd9244f7 1490 }
edd16368
SC
1491 }
1492 }
1493 *index = -1;
1494 return DEVICE_NOT_FOUND;
1495}
1496
9846590e
SC
1497static void hpsa_monitor_offline_device(struct ctlr_info *h,
1498 unsigned char scsi3addr[])
1499{
1500 struct offline_device_entry *device;
1501 unsigned long flags;
1502
1503 /* Check to see if device is already on the list */
1504 spin_lock_irqsave(&h->offline_device_lock, flags);
1505 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1506 if (memcmp(device->scsi3addr, scsi3addr,
1507 sizeof(device->scsi3addr)) == 0) {
1508 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1509 return;
1510 }
1511 }
1512 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1513
1514 /* Device is not on the list, add it. */
1515 device = kmalloc(sizeof(*device), GFP_KERNEL);
1516 if (!device) {
1517 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1518 return;
1519 }
1520 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1521 spin_lock_irqsave(&h->offline_device_lock, flags);
1522 list_add_tail(&device->offline_list, &h->offline_device_list);
1523 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1524}
1525
1526/* Print a message explaining various offline volume states */
1527static void hpsa_show_volume_status(struct ctlr_info *h,
1528 struct hpsa_scsi_dev_t *sd)
1529{
1530 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1531 dev_info(&h->pdev->dev,
1532 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1533 h->scsi_host->host_no,
1534 sd->bus, sd->target, sd->lun);
1535 switch (sd->volume_offline) {
1536 case HPSA_LV_OK:
1537 break;
1538 case HPSA_LV_UNDERGOING_ERASE:
1539 dev_info(&h->pdev->dev,
1540 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1541 h->scsi_host->host_no,
1542 sd->bus, sd->target, sd->lun);
1543 break;
5ca01204
SB
1544 case HPSA_LV_NOT_AVAILABLE:
1545 dev_info(&h->pdev->dev,
1546 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1547 h->scsi_host->host_no,
1548 sd->bus, sd->target, sd->lun);
1549 break;
9846590e
SC
1550 case HPSA_LV_UNDERGOING_RPI:
1551 dev_info(&h->pdev->dev,
5ca01204 1552 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
9846590e
SC
1553 h->scsi_host->host_no,
1554 sd->bus, sd->target, sd->lun);
1555 break;
1556 case HPSA_LV_PENDING_RPI:
1557 dev_info(&h->pdev->dev,
5ca01204
SB
1558 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1559 h->scsi_host->host_no,
1560 sd->bus, sd->target, sd->lun);
9846590e
SC
1561 break;
1562 case HPSA_LV_ENCRYPTED_NO_KEY:
1563 dev_info(&h->pdev->dev,
1564 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1565 h->scsi_host->host_no,
1566 sd->bus, sd->target, sd->lun);
1567 break;
1568 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1569 dev_info(&h->pdev->dev,
1570 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1571 h->scsi_host->host_no,
1572 sd->bus, sd->target, sd->lun);
1573 break;
1574 case HPSA_LV_UNDERGOING_ENCRYPTION:
1575 dev_info(&h->pdev->dev,
1576 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1577 h->scsi_host->host_no,
1578 sd->bus, sd->target, sd->lun);
1579 break;
1580 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1581 dev_info(&h->pdev->dev,
1582 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1583 h->scsi_host->host_no,
1584 sd->bus, sd->target, sd->lun);
1585 break;
1586 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1587 dev_info(&h->pdev->dev,
1588 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1589 h->scsi_host->host_no,
1590 sd->bus, sd->target, sd->lun);
1591 break;
1592 case HPSA_LV_PENDING_ENCRYPTION:
1593 dev_info(&h->pdev->dev,
1594 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1595 h->scsi_host->host_no,
1596 sd->bus, sd->target, sd->lun);
1597 break;
1598 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1599 dev_info(&h->pdev->dev,
1600 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1601 h->scsi_host->host_no,
1602 sd->bus, sd->target, sd->lun);
1603 break;
1604 }
1605}
1606
03383736
DB
1607/*
1608 * Figure the list of physical drive pointers for a logical drive with
1609 * raid offload configured.
1610 */
1611static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1612 struct hpsa_scsi_dev_t *dev[], int ndevices,
1613 struct hpsa_scsi_dev_t *logical_drive)
1614{
1615 struct raid_map_data *map = &logical_drive->raid_map;
1616 struct raid_map_disk_data *dd = &map->data[0];
1617 int i, j;
1618 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1619 le16_to_cpu(map->metadata_disks_per_row);
1620 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1621 le16_to_cpu(map->layout_map_count) *
1622 total_disks_per_row;
1623 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1624 total_disks_per_row;
1625 int qdepth;
1626
1627 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1628 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1629
d604f533
WS
1630 logical_drive->nphysical_disks = nraid_map_entries;
1631
03383736
DB
1632 qdepth = 0;
1633 for (i = 0; i < nraid_map_entries; i++) {
1634 logical_drive->phys_disk[i] = NULL;
1635 if (!logical_drive->offload_config)
1636 continue;
1637 for (j = 0; j < ndevices; j++) {
1d33d85d
DB
1638 if (dev[j] == NULL)
1639 continue;
03383736
DB
1640 if (dev[j]->devtype != TYPE_DISK)
1641 continue;
af15ed36
DB
1642 if (dev[j]->devtype != TYPE_ZBC)
1643 continue;
f3f01730 1644 if (is_logical_device(dev[j]))
03383736
DB
1645 continue;
1646 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1647 continue;
1648
1649 logical_drive->phys_disk[i] = dev[j];
1650 if (i < nphys_disk)
1651 qdepth = min(h->nr_cmds, qdepth +
1652 logical_drive->phys_disk[i]->queue_depth);
1653 break;
1654 }
1655
1656 /*
1657 * This can happen if a physical drive is removed and
1658 * the logical drive is degraded. In that case, the RAID
1659 * map data will refer to a physical disk which isn't actually
1660 * present. And in that case offload_enabled should already
1661 * be 0, but we'll turn it off here just in case
1662 */
1663 if (!logical_drive->phys_disk[i]) {
1664 logical_drive->offload_enabled = 0;
41ce4c35
SC
1665 logical_drive->offload_to_be_enabled = 0;
1666 logical_drive->queue_depth = 8;
03383736
DB
1667 }
1668 }
1669 if (nraid_map_entries)
1670 /*
1671 * This is correct for reads, too high for full stripe writes,
1672 * way too high for partial stripe writes
1673 */
1674 logical_drive->queue_depth = qdepth;
1675 else
1676 logical_drive->queue_depth = h->nr_cmds;
1677}
1678
1679static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1680 struct hpsa_scsi_dev_t *dev[], int ndevices)
1681{
1682 int i;
1683
1684 for (i = 0; i < ndevices; i++) {
1d33d85d
DB
1685 if (dev[i] == NULL)
1686 continue;
03383736
DB
1687 if (dev[i]->devtype != TYPE_DISK)
1688 continue;
af15ed36
DB
1689 if (dev[i]->devtype != TYPE_ZBC)
1690 continue;
f3f01730 1691 if (!is_logical_device(dev[i]))
03383736 1692 continue;
41ce4c35
SC
1693
1694 /*
1695 * If offload is currently enabled, the RAID map and
1696 * phys_disk[] assignment *better* not be changing
1697 * and since it isn't changing, we do not need to
1698 * update it.
1699 */
1700 if (dev[i]->offload_enabled)
1701 continue;
1702
03383736
DB
1703 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1704 }
1705}
1706
096ccff4
KB
1707static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1708{
1709 int rc = 0;
1710
1711 if (!h->scsi_host)
1712 return 1;
1713
d04e62b9
KB
1714 if (is_logical_device(device)) /* RAID */
1715 rc = scsi_add_device(h->scsi_host, device->bus,
096ccff4 1716 device->target, device->lun);
d04e62b9
KB
1717 else /* HBA */
1718 rc = hpsa_add_sas_device(h->sas_host, device);
1719
096ccff4
KB
1720 return rc;
1721}
1722
1723static void hpsa_remove_device(struct ctlr_info *h,
1724 struct hpsa_scsi_dev_t *device)
1725{
1726 struct scsi_device *sdev = NULL;
1727
1728 if (!h->scsi_host)
1729 return;
1730
d04e62b9
KB
1731 if (is_logical_device(device)) { /* RAID */
1732 sdev = scsi_device_lookup(h->scsi_host, device->bus,
096ccff4 1733 device->target, device->lun);
d04e62b9
KB
1734 if (sdev) {
1735 scsi_remove_device(sdev);
1736 scsi_device_put(sdev);
1737 } else {
1738 /*
1739 * We don't expect to get here. Future commands
1740 * to this device will get a selection timeout as
1741 * if the device were gone.
1742 */
1743 hpsa_show_dev_msg(KERN_WARNING, h, device,
096ccff4 1744 "didn't find device for removal.");
d04e62b9
KB
1745 }
1746 } else /* HBA */
1747 hpsa_remove_sas_device(device);
096ccff4
KB
1748}
1749
8aa60681 1750static void adjust_hpsa_scsi_table(struct ctlr_info *h,
edd16368
SC
1751 struct hpsa_scsi_dev_t *sd[], int nsds)
1752{
1753 /* sd contains scsi3 addresses and devtypes, and inquiry
1754 * data. This function takes what's in sd to be the current
1755 * reality and updates h->dev[] to reflect that reality.
1756 */
1757 int i, entry, device_change, changes = 0;
1758 struct hpsa_scsi_dev_t *csd;
1759 unsigned long flags;
1760 struct hpsa_scsi_dev_t **added, **removed;
1761 int nadded, nremoved;
edd16368 1762
da03ded0
DB
1763 /*
1764 * A reset can cause a device status to change
1765 * re-schedule the scan to see what happened.
1766 */
1767 if (h->reset_in_progress) {
1768 h->drv_req_rescan = 1;
1769 return;
1770 }
edd16368 1771
cfe5badc
ST
1772 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1773 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
edd16368
SC
1774
1775 if (!added || !removed) {
1776 dev_warn(&h->pdev->dev, "out of memory in "
1777 "adjust_hpsa_scsi_table\n");
1778 goto free_and_out;
1779 }
1780
1781 spin_lock_irqsave(&h->devlock, flags);
1782
1783 /* find any devices in h->dev[] that are not in
1784 * sd[] and remove them from h->dev[], and for any
1785 * devices which have changed, remove the old device
1786 * info and add the new device info.
bd9244f7
ST
1787 * If minor device attributes change, just update
1788 * the existing device structure.
edd16368
SC
1789 */
1790 i = 0;
1791 nremoved = 0;
1792 nadded = 0;
1793 while (i < h->ndevices) {
1794 csd = h->dev[i];
1795 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1796 if (device_change == DEVICE_NOT_FOUND) {
1797 changes++;
8aa60681 1798 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
edd16368
SC
1799 continue; /* remove ^^^, hence i not incremented */
1800 } else if (device_change == DEVICE_CHANGED) {
1801 changes++;
8aa60681 1802 hpsa_scsi_replace_entry(h, i, sd[entry],
2a8ccf31 1803 added, &nadded, removed, &nremoved);
c7f172dc
SC
1804 /* Set it to NULL to prevent it from being freed
1805 * at the bottom of hpsa_update_scsi_devices()
1806 */
1807 sd[entry] = NULL;
bd9244f7 1808 } else if (device_change == DEVICE_UPDATED) {
8aa60681 1809 hpsa_scsi_update_entry(h, i, sd[entry]);
edd16368
SC
1810 }
1811 i++;
1812 }
1813
1814 /* Now, make sure every device listed in sd[] is also
1815 * listed in h->dev[], adding them if they aren't found
1816 */
1817
1818 for (i = 0; i < nsds; i++) {
1819 if (!sd[i]) /* if already added above. */
1820 continue;
9846590e
SC
1821
1822 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1823 * as the SCSI mid-layer does not handle such devices well.
1824 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1825 * at 160Hz, and prevents the system from coming up.
1826 */
1827 if (sd[i]->volume_offline) {
1828 hpsa_show_volume_status(h, sd[i]);
0d96ef5f 1829 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
9846590e
SC
1830 continue;
1831 }
1832
edd16368
SC
1833 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1834 h->ndevices, &entry);
1835 if (device_change == DEVICE_NOT_FOUND) {
1836 changes++;
8aa60681 1837 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
edd16368
SC
1838 break;
1839 sd[i] = NULL; /* prevent from being freed later. */
1840 } else if (device_change == DEVICE_CHANGED) {
1841 /* should never happen... */
1842 changes++;
1843 dev_warn(&h->pdev->dev,
1844 "device unexpectedly changed.\n");
1845 /* but if it does happen, we just ignore that device */
1846 }
1847 }
41ce4c35
SC
1848 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1849
1850 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1851 * any logical drives that need it enabled.
1852 */
1d33d85d
DB
1853 for (i = 0; i < h->ndevices; i++) {
1854 if (h->dev[i] == NULL)
1855 continue;
41ce4c35 1856 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1d33d85d 1857 }
41ce4c35 1858
edd16368
SC
1859 spin_unlock_irqrestore(&h->devlock, flags);
1860
9846590e
SC
1861 /* Monitor devices which are in one of several NOT READY states to be
1862 * brought online later. This must be done without holding h->devlock,
1863 * so don't touch h->dev[]
1864 */
1865 for (i = 0; i < nsds; i++) {
1866 if (!sd[i]) /* if already added above. */
1867 continue;
1868 if (sd[i]->volume_offline)
1869 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1870 }
1871
edd16368
SC
1872 /* Don't notify scsi mid layer of any changes the first time through
1873 * (or if there are no changes) scsi_scan_host will do it later the
1874 * first time through.
1875 */
8aa60681 1876 if (!changes)
edd16368
SC
1877 goto free_and_out;
1878
edd16368
SC
1879 /* Notify scsi mid layer of any removed devices */
1880 for (i = 0; i < nremoved; i++) {
1d33d85d
DB
1881 if (removed[i] == NULL)
1882 continue;
096ccff4
KB
1883 if (removed[i]->expose_device)
1884 hpsa_remove_device(h, removed[i]);
edd16368
SC
1885 kfree(removed[i]);
1886 removed[i] = NULL;
1887 }
1888
1889 /* Notify scsi mid layer of any added devices */
1890 for (i = 0; i < nadded; i++) {
096ccff4
KB
1891 int rc = 0;
1892
1d33d85d
DB
1893 if (added[i] == NULL)
1894 continue;
2a168208 1895 if (!(added[i]->expose_device))
41ce4c35 1896 continue;
096ccff4
KB
1897 rc = hpsa_add_device(h, added[i]);
1898 if (!rc)
edd16368 1899 continue;
096ccff4
KB
1900 dev_warn(&h->pdev->dev,
1901 "addition failed %d, device not added.", rc);
edd16368
SC
1902 /* now we have to remove it from h->dev,
1903 * since it didn't get added to scsi mid layer
1904 */
1905 fixup_botched_add(h, added[i]);
853633e8 1906 h->drv_req_rescan = 1;
edd16368
SC
1907 }
1908
1909free_and_out:
1910 kfree(added);
1911 kfree(removed);
edd16368
SC
1912}
1913
1914/*
9e03aa2f 1915 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
edd16368
SC
1916 * Assume's h->devlock is held.
1917 */
1918static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1919 int bus, int target, int lun)
1920{
1921 int i;
1922 struct hpsa_scsi_dev_t *sd;
1923
1924 for (i = 0; i < h->ndevices; i++) {
1925 sd = h->dev[i];
1926 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1927 return sd;
1928 }
1929 return NULL;
1930}
1931
edd16368
SC
1932static int hpsa_slave_alloc(struct scsi_device *sdev)
1933{
1934 struct hpsa_scsi_dev_t *sd;
1935 unsigned long flags;
1936 struct ctlr_info *h;
1937
1938 h = sdev_to_hba(sdev);
1939 spin_lock_irqsave(&h->devlock, flags);
d04e62b9
KB
1940 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1941 struct scsi_target *starget;
1942 struct sas_rphy *rphy;
1943
1944 starget = scsi_target(sdev);
1945 rphy = target_to_rphy(starget);
1946 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1947 if (sd) {
1948 sd->target = sdev_id(sdev);
1949 sd->lun = sdev->lun;
1950 }
1951 } else
1952 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1953 sdev_id(sdev), sdev->lun);
1954
1955 if (sd && sd->expose_device) {
03383736 1956 atomic_set(&sd->ioaccel_cmds_out, 0);
d04e62b9 1957 sdev->hostdata = sd;
41ce4c35
SC
1958 } else
1959 sdev->hostdata = NULL;
edd16368
SC
1960 spin_unlock_irqrestore(&h->devlock, flags);
1961 return 0;
1962}
1963
41ce4c35
SC
1964/* configure scsi device based on internal per-device structure */
1965static int hpsa_slave_configure(struct scsi_device *sdev)
1966{
1967 struct hpsa_scsi_dev_t *sd;
1968 int queue_depth;
1969
1970 sd = sdev->hostdata;
2a168208 1971 sdev->no_uld_attach = !sd || !sd->expose_device;
41ce4c35
SC
1972
1973 if (sd)
1974 queue_depth = sd->queue_depth != 0 ?
1975 sd->queue_depth : sdev->host->can_queue;
1976 else
1977 queue_depth = sdev->host->can_queue;
1978
1979 scsi_change_queue_depth(sdev, queue_depth);
1980
1981 return 0;
1982}
1983
edd16368
SC
1984static void hpsa_slave_destroy(struct scsi_device *sdev)
1985{
bcc44255 1986 /* nothing to do. */
edd16368
SC
1987}
1988
d9a729f3
WS
1989static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1990{
1991 int i;
1992
1993 if (!h->ioaccel2_cmd_sg_list)
1994 return;
1995 for (i = 0; i < h->nr_cmds; i++) {
1996 kfree(h->ioaccel2_cmd_sg_list[i]);
1997 h->ioaccel2_cmd_sg_list[i] = NULL;
1998 }
1999 kfree(h->ioaccel2_cmd_sg_list);
2000 h->ioaccel2_cmd_sg_list = NULL;
2001}
2002
2003static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2004{
2005 int i;
2006
2007 if (h->chainsize <= 0)
2008 return 0;
2009
2010 h->ioaccel2_cmd_sg_list =
2011 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2012 GFP_KERNEL);
2013 if (!h->ioaccel2_cmd_sg_list)
2014 return -ENOMEM;
2015 for (i = 0; i < h->nr_cmds; i++) {
2016 h->ioaccel2_cmd_sg_list[i] =
2017 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2018 h->maxsgentries, GFP_KERNEL);
2019 if (!h->ioaccel2_cmd_sg_list[i])
2020 goto clean;
2021 }
2022 return 0;
2023
2024clean:
2025 hpsa_free_ioaccel2_sg_chain_blocks(h);
2026 return -ENOMEM;
2027}
2028
33a2ffce
SC
2029static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2030{
2031 int i;
2032
2033 if (!h->cmd_sg_list)
2034 return;
2035 for (i = 0; i < h->nr_cmds; i++) {
2036 kfree(h->cmd_sg_list[i]);
2037 h->cmd_sg_list[i] = NULL;
2038 }
2039 kfree(h->cmd_sg_list);
2040 h->cmd_sg_list = NULL;
2041}
2042
105a3dbc 2043static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
33a2ffce
SC
2044{
2045 int i;
2046
2047 if (h->chainsize <= 0)
2048 return 0;
2049
2050 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2051 GFP_KERNEL);
3d4e6af8
RE
2052 if (!h->cmd_sg_list) {
2053 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
33a2ffce 2054 return -ENOMEM;
3d4e6af8 2055 }
33a2ffce
SC
2056 for (i = 0; i < h->nr_cmds; i++) {
2057 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2058 h->chainsize, GFP_KERNEL);
3d4e6af8
RE
2059 if (!h->cmd_sg_list[i]) {
2060 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
33a2ffce 2061 goto clean;
3d4e6af8 2062 }
33a2ffce
SC
2063 }
2064 return 0;
2065
2066clean:
2067 hpsa_free_sg_chain_blocks(h);
2068 return -ENOMEM;
2069}
2070
d9a729f3
WS
2071static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2072 struct io_accel2_cmd *cp, struct CommandList *c)
2073{
2074 struct ioaccel2_sg_element *chain_block;
2075 u64 temp64;
2076 u32 chain_size;
2077
2078 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
a736e9b6 2079 chain_size = le32_to_cpu(cp->sg[0].length);
d9a729f3
WS
2080 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2081 PCI_DMA_TODEVICE);
2082 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2083 /* prevent subsequent unmapping */
2084 cp->sg->address = 0;
2085 return -1;
2086 }
2087 cp->sg->address = cpu_to_le64(temp64);
2088 return 0;
2089}
2090
2091static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2092 struct io_accel2_cmd *cp)
2093{
2094 struct ioaccel2_sg_element *chain_sg;
2095 u64 temp64;
2096 u32 chain_size;
2097
2098 chain_sg = cp->sg;
2099 temp64 = le64_to_cpu(chain_sg->address);
a736e9b6 2100 chain_size = le32_to_cpu(cp->sg[0].length);
d9a729f3
WS
2101 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2102}
2103
e2bea6df 2104static int hpsa_map_sg_chain_block(struct ctlr_info *h,
33a2ffce
SC
2105 struct CommandList *c)
2106{
2107 struct SGDescriptor *chain_sg, *chain_block;
2108 u64 temp64;
50a0decf 2109 u32 chain_len;
33a2ffce
SC
2110
2111 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2112 chain_block = h->cmd_sg_list[c->cmdindex];
50a0decf
SC
2113 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2114 chain_len = sizeof(*chain_sg) *
2b08b3e9 2115 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
50a0decf
SC
2116 chain_sg->Len = cpu_to_le32(chain_len);
2117 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
33a2ffce 2118 PCI_DMA_TODEVICE);
e2bea6df
SC
2119 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2120 /* prevent subsequent unmapping */
50a0decf 2121 chain_sg->Addr = cpu_to_le64(0);
e2bea6df
SC
2122 return -1;
2123 }
50a0decf 2124 chain_sg->Addr = cpu_to_le64(temp64);
e2bea6df 2125 return 0;
33a2ffce
SC
2126}
2127
2128static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2129 struct CommandList *c)
2130{
2131 struct SGDescriptor *chain_sg;
33a2ffce 2132
50a0decf 2133 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
33a2ffce
SC
2134 return;
2135
2136 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
50a0decf
SC
2137 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2138 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
33a2ffce
SC
2139}
2140
a09c1441
ST
2141
2142/* Decode the various types of errors on ioaccel2 path.
2143 * Return 1 for any error that should generate a RAID path retry.
2144 * Return 0 for errors that don't require a RAID path retry.
2145 */
2146static int handle_ioaccel_mode2_error(struct ctlr_info *h,
c349775e
ST
2147 struct CommandList *c,
2148 struct scsi_cmnd *cmd,
2149 struct io_accel2_cmd *c2)
2150{
2151 int data_len;
a09c1441 2152 int retry = 0;
c40820d5 2153 u32 ioaccel2_resid = 0;
c349775e
ST
2154
2155 switch (c2->error_data.serv_response) {
2156 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2157 switch (c2->error_data.status) {
2158 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2159 break;
2160 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
ee6b1889 2161 cmd->result |= SAM_STAT_CHECK_CONDITION;
c349775e 2162 if (c2->error_data.data_present !=
ee6b1889
SC
2163 IOACCEL2_SENSE_DATA_PRESENT) {
2164 memset(cmd->sense_buffer, 0,
2165 SCSI_SENSE_BUFFERSIZE);
c349775e 2166 break;
ee6b1889 2167 }
c349775e
ST
2168 /* copy the sense data */
2169 data_len = c2->error_data.sense_data_len;
2170 if (data_len > SCSI_SENSE_BUFFERSIZE)
2171 data_len = SCSI_SENSE_BUFFERSIZE;
2172 if (data_len > sizeof(c2->error_data.sense_data_buff))
2173 data_len =
2174 sizeof(c2->error_data.sense_data_buff);
2175 memcpy(cmd->sense_buffer,
2176 c2->error_data.sense_data_buff, data_len);
a09c1441 2177 retry = 1;
c349775e
ST
2178 break;
2179 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
a09c1441 2180 retry = 1;
c349775e
ST
2181 break;
2182 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
a09c1441 2183 retry = 1;
c349775e
ST
2184 break;
2185 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
4a8da22b 2186 retry = 1;
c349775e
ST
2187 break;
2188 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
a09c1441 2189 retry = 1;
c349775e
ST
2190 break;
2191 default:
a09c1441 2192 retry = 1;
c349775e
ST
2193 break;
2194 }
2195 break;
2196 case IOACCEL2_SERV_RESPONSE_FAILURE:
c40820d5
JH
2197 switch (c2->error_data.status) {
2198 case IOACCEL2_STATUS_SR_IO_ERROR:
2199 case IOACCEL2_STATUS_SR_IO_ABORTED:
2200 case IOACCEL2_STATUS_SR_OVERRUN:
2201 retry = 1;
2202 break;
2203 case IOACCEL2_STATUS_SR_UNDERRUN:
2204 cmd->result = (DID_OK << 16); /* host byte */
2205 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2206 ioaccel2_resid = get_unaligned_le32(
2207 &c2->error_data.resid_cnt[0]);
2208 scsi_set_resid(cmd, ioaccel2_resid);
2209 break;
2210 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2211 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2212 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2213 /* We will get an event from ctlr to trigger rescan */
2214 retry = 1;
2215 break;
2216 default:
2217 retry = 1;
c40820d5 2218 }
c349775e
ST
2219 break;
2220 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2221 break;
2222 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2223 break;
2224 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
a09c1441 2225 retry = 1;
c349775e
ST
2226 break;
2227 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
c349775e
ST
2228 break;
2229 default:
a09c1441 2230 retry = 1;
c349775e
ST
2231 break;
2232 }
a09c1441
ST
2233
2234 return retry; /* retry on raid path? */
c349775e
ST
2235}
2236
a58e7e53
WS
2237static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2238 struct CommandList *c)
2239{
d604f533
WS
2240 bool do_wake = false;
2241
a58e7e53
WS
2242 /*
2243 * Prevent the following race in the abort handler:
2244 *
2245 * 1. LLD is requested to abort a SCSI command
2246 * 2. The SCSI command completes
2247 * 3. The struct CommandList associated with step 2 is made available
2248 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2249 * 5. Abort handler follows scsi_cmnd->host_scribble and
2250 * finds struct CommandList and tries to aborts it
2251 * Now we have aborted the wrong command.
2252 *
d604f533
WS
2253 * Reset c->scsi_cmd here so that the abort or reset handler will know
2254 * this command has completed. Then, check to see if the handler is
a58e7e53
WS
2255 * waiting for this command, and, if so, wake it.
2256 */
2257 c->scsi_cmd = SCSI_CMD_IDLE;
d604f533 2258 mb(); /* Declare command idle before checking for pending events. */
a58e7e53 2259 if (c->abort_pending) {
d604f533 2260 do_wake = true;
a58e7e53 2261 c->abort_pending = false;
a58e7e53 2262 }
d604f533
WS
2263 if (c->reset_pending) {
2264 unsigned long flags;
2265 struct hpsa_scsi_dev_t *dev;
2266
2267 /*
2268 * There appears to be a reset pending; lock the lock and
2269 * reconfirm. If so, then decrement the count of outstanding
2270 * commands and wake the reset command if this is the last one.
2271 */
2272 spin_lock_irqsave(&h->lock, flags);
2273 dev = c->reset_pending; /* Re-fetch under the lock. */
2274 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2275 do_wake = true;
2276 c->reset_pending = NULL;
2277 spin_unlock_irqrestore(&h->lock, flags);
2278 }
2279
2280 if (do_wake)
2281 wake_up_all(&h->event_sync_wait_queue);
a58e7e53
WS
2282}
2283
73153fe5
WS
2284static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2285 struct CommandList *c)
2286{
2287 hpsa_cmd_resolve_events(h, c);
2288 cmd_tagged_free(h, c);
2289}
2290
8a0ff92c
WS
2291static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2292 struct CommandList *c, struct scsi_cmnd *cmd)
2293{
73153fe5 2294 hpsa_cmd_resolve_and_free(h, c);
8a0ff92c
WS
2295 cmd->scsi_done(cmd);
2296}
2297
2298static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2299{
2300 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2301 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2302}
2303
a58e7e53
WS
2304static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2305{
2306 cmd->result = DID_ABORT << 16;
2307}
2308
2309static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2310 struct scsi_cmnd *cmd)
2311{
2312 hpsa_set_scsi_cmd_aborted(cmd);
2313 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2314 c->Request.CDB, c->err_info->ScsiStatus);
73153fe5 2315 hpsa_cmd_resolve_and_free(h, c);
a58e7e53
WS
2316}
2317
c349775e
ST
2318static void process_ioaccel2_completion(struct ctlr_info *h,
2319 struct CommandList *c, struct scsi_cmnd *cmd,
2320 struct hpsa_scsi_dev_t *dev)
2321{
2322 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2323
2324 /* check for good status */
2325 if (likely(c2->error_data.serv_response == 0 &&
8a0ff92c
WS
2326 c2->error_data.status == 0))
2327 return hpsa_cmd_free_and_done(h, c, cmd);
c349775e 2328
8a0ff92c
WS
2329 /*
2330 * Any RAID offload error results in retry which will use
c349775e
ST
2331 * the normal I/O path so the controller can handle whatever's
2332 * wrong.
2333 */
f3f01730 2334 if (is_logical_device(dev) &&
c349775e
ST
2335 c2->error_data.serv_response ==
2336 IOACCEL2_SERV_RESPONSE_FAILURE) {
080ef1cc
DB
2337 if (c2->error_data.status ==
2338 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2339 dev->offload_enabled = 0;
8a0ff92c
WS
2340
2341 return hpsa_retry_cmd(h, c);
a09c1441 2342 }
080ef1cc
DB
2343
2344 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
8a0ff92c 2345 return hpsa_retry_cmd(h, c);
080ef1cc 2346
8a0ff92c 2347 return hpsa_cmd_free_and_done(h, c, cmd);
c349775e
ST
2348}
2349
9437ac43
SC
2350/* Returns 0 on success, < 0 otherwise. */
2351static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2352 struct CommandList *cp)
2353{
2354 u8 tmf_status = cp->err_info->ScsiStatus;
2355
2356 switch (tmf_status) {
2357 case CISS_TMF_COMPLETE:
2358 /*
2359 * CISS_TMF_COMPLETE never happens, instead,
2360 * ei->CommandStatus == 0 for this case.
2361 */
2362 case CISS_TMF_SUCCESS:
2363 return 0;
2364 case CISS_TMF_INVALID_FRAME:
2365 case CISS_TMF_NOT_SUPPORTED:
2366 case CISS_TMF_FAILED:
2367 case CISS_TMF_WRONG_LUN:
2368 case CISS_TMF_OVERLAPPED_TAG:
2369 break;
2370 default:
2371 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2372 tmf_status);
2373 break;
2374 }
2375 return -tmf_status;
2376}
2377
1fb011fb 2378static void complete_scsi_command(struct CommandList *cp)
edd16368
SC
2379{
2380 struct scsi_cmnd *cmd;
2381 struct ctlr_info *h;
2382 struct ErrorInfo *ei;
283b4a9b 2383 struct hpsa_scsi_dev_t *dev;
d9a729f3 2384 struct io_accel2_cmd *c2;
edd16368 2385
9437ac43
SC
2386 u8 sense_key;
2387 u8 asc; /* additional sense code */
2388 u8 ascq; /* additional sense code qualifier */
db111e18 2389 unsigned long sense_data_size;
edd16368
SC
2390
2391 ei = cp->err_info;
7fa3030c 2392 cmd = cp->scsi_cmd;
edd16368 2393 h = cp->h;
283b4a9b 2394 dev = cmd->device->hostdata;
d9a729f3 2395 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
edd16368
SC
2396
2397 scsi_dma_unmap(cmd); /* undo the DMA mappings */
e1f7de0c 2398 if ((cp->cmd_type == CMD_SCSI) &&
2b08b3e9 2399 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
33a2ffce 2400 hpsa_unmap_sg_chain_block(h, cp);
edd16368 2401
d9a729f3
WS
2402 if ((cp->cmd_type == CMD_IOACCEL2) &&
2403 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2404 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2405
edd16368
SC
2406 cmd->result = (DID_OK << 16); /* host byte */
2407 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
c349775e 2408
03383736
DB
2409 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2410 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2411
25163bd5
WS
2412 /*
2413 * We check for lockup status here as it may be set for
2414 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2415 * fail_all_oustanding_cmds()
2416 */
2417 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2418 /* DID_NO_CONNECT will prevent a retry */
2419 cmd->result = DID_NO_CONNECT << 16;
8a0ff92c 2420 return hpsa_cmd_free_and_done(h, cp, cmd);
25163bd5
WS
2421 }
2422
d604f533
WS
2423 if ((unlikely(hpsa_is_pending_event(cp)))) {
2424 if (cp->reset_pending)
2425 return hpsa_cmd_resolve_and_free(h, cp);
2426 if (cp->abort_pending)
2427 return hpsa_cmd_abort_and_free(h, cp, cmd);
2428 }
2429
c349775e
ST
2430 if (cp->cmd_type == CMD_IOACCEL2)
2431 return process_ioaccel2_completion(h, cp, cmd, dev);
2432
6aa4c361 2433 scsi_set_resid(cmd, ei->ResidualCnt);
8a0ff92c
WS
2434 if (ei->CommandStatus == 0)
2435 return hpsa_cmd_free_and_done(h, cp, cmd);
6aa4c361 2436
e1f7de0c
MG
2437 /* For I/O accelerator commands, copy over some fields to the normal
2438 * CISS header used below for error handling.
2439 */
2440 if (cp->cmd_type == CMD_IOACCEL1) {
2441 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2b08b3e9
DB
2442 cp->Header.SGList = scsi_sg_count(cmd);
2443 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2444 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2445 IOACCEL1_IOFLAGS_CDBLEN_MASK;
50a0decf 2446 cp->Header.tag = c->tag;
e1f7de0c
MG
2447 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2448 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
283b4a9b
SC
2449
2450 /* Any RAID offload error results in retry which will use
2451 * the normal I/O path so the controller can handle whatever's
2452 * wrong.
2453 */
f3f01730 2454 if (is_logical_device(dev)) {
283b4a9b
SC
2455 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2456 dev->offload_enabled = 0;
d604f533 2457 return hpsa_retry_cmd(h, cp);
283b4a9b 2458 }
e1f7de0c
MG
2459 }
2460
edd16368
SC
2461 /* an error has occurred */
2462 switch (ei->CommandStatus) {
2463
2464 case CMD_TARGET_STATUS:
9437ac43
SC
2465 cmd->result |= ei->ScsiStatus;
2466 /* copy the sense data */
2467 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2468 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2469 else
2470 sense_data_size = sizeof(ei->SenseInfo);
2471 if (ei->SenseLen < sense_data_size)
2472 sense_data_size = ei->SenseLen;
2473 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2474 if (ei->ScsiStatus)
2475 decode_sense_data(ei->SenseInfo, sense_data_size,
2476 &sense_key, &asc, &ascq);
edd16368 2477 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1d3b3609 2478 if (sense_key == ABORTED_COMMAND) {
2e311fba 2479 cmd->result |= DID_SOFT_ERROR << 16;
1d3b3609
MG
2480 break;
2481 }
edd16368
SC
2482 break;
2483 }
edd16368
SC
2484 /* Problem was not a check condition
2485 * Pass it up to the upper layers...
2486 */
2487 if (ei->ScsiStatus) {
2488 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2489 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2490 "Returning result: 0x%x\n",
2491 cp, ei->ScsiStatus,
2492 sense_key, asc, ascq,
2493 cmd->result);
2494 } else { /* scsi status is zero??? How??? */
2495 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2496 "Returning no connection.\n", cp),
2497
2498 /* Ordinarily, this case should never happen,
2499 * but there is a bug in some released firmware
2500 * revisions that allows it to happen if, for
2501 * example, a 4100 backplane loses power and
2502 * the tape drive is in it. We assume that
2503 * it's a fatal error of some kind because we
2504 * can't show that it wasn't. We will make it
2505 * look like selection timeout since that is
2506 * the most common reason for this to occur,
2507 * and it's severe enough.
2508 */
2509
2510 cmd->result = DID_NO_CONNECT << 16;
2511 }
2512 break;
2513
2514 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2515 break;
2516 case CMD_DATA_OVERRUN:
f42e81e1
SC
2517 dev_warn(&h->pdev->dev,
2518 "CDB %16phN data overrun\n", cp->Request.CDB);
edd16368
SC
2519 break;
2520 case CMD_INVALID: {
2521 /* print_bytes(cp, sizeof(*cp), 1, 0);
2522 print_cmd(cp); */
2523 /* We get CMD_INVALID if you address a non-existent device
2524 * instead of a selection timeout (no response). You will
2525 * see this if you yank out a drive, then try to access it.
2526 * This is kind of a shame because it means that any other
2527 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2528 * missing target. */
2529 cmd->result = DID_NO_CONNECT << 16;
2530 }
2531 break;
2532 case CMD_PROTOCOL_ERR:
256d0eaa 2533 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2534 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2535 cp->Request.CDB);
edd16368
SC
2536 break;
2537 case CMD_HARDWARE_ERR:
2538 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2539 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2540 cp->Request.CDB);
edd16368
SC
2541 break;
2542 case CMD_CONNECTION_LOST:
2543 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2544 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2545 cp->Request.CDB);
edd16368
SC
2546 break;
2547 case CMD_ABORTED:
a58e7e53
WS
2548 /* Return now to avoid calling scsi_done(). */
2549 return hpsa_cmd_abort_and_free(h, cp, cmd);
edd16368
SC
2550 case CMD_ABORT_FAILED:
2551 cmd->result = DID_ERROR << 16;
f42e81e1
SC
2552 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2553 cp->Request.CDB);
edd16368
SC
2554 break;
2555 case CMD_UNSOLICITED_ABORT:
f6e76055 2556 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
f42e81e1
SC
2557 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2558 cp->Request.CDB);
edd16368
SC
2559 break;
2560 case CMD_TIMEOUT:
2561 cmd->result = DID_TIME_OUT << 16;
f42e81e1
SC
2562 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2563 cp->Request.CDB);
edd16368 2564 break;
1d5e2ed0
SC
2565 case CMD_UNABORTABLE:
2566 cmd->result = DID_ERROR << 16;
2567 dev_warn(&h->pdev->dev, "Command unabortable\n");
2568 break;
9437ac43
SC
2569 case CMD_TMF_STATUS:
2570 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2571 cmd->result = DID_ERROR << 16;
2572 break;
283b4a9b
SC
2573 case CMD_IOACCEL_DISABLED:
2574 /* This only handles the direct pass-through case since RAID
2575 * offload is handled above. Just attempt a retry.
2576 */
2577 cmd->result = DID_SOFT_ERROR << 16;
2578 dev_warn(&h->pdev->dev,
2579 "cp %p had HP SSD Smart Path error\n", cp);
2580 break;
edd16368
SC
2581 default:
2582 cmd->result = DID_ERROR << 16;
2583 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2584 cp, ei->CommandStatus);
2585 }
8a0ff92c
WS
2586
2587 return hpsa_cmd_free_and_done(h, cp, cmd);
edd16368
SC
2588}
2589
edd16368
SC
2590static void hpsa_pci_unmap(struct pci_dev *pdev,
2591 struct CommandList *c, int sg_used, int data_direction)
2592{
2593 int i;
edd16368 2594
50a0decf
SC
2595 for (i = 0; i < sg_used; i++)
2596 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2597 le32_to_cpu(c->SG[i].Len),
2598 data_direction);
edd16368
SC
2599}
2600
a2dac136 2601static int hpsa_map_one(struct pci_dev *pdev,
edd16368
SC
2602 struct CommandList *cp,
2603 unsigned char *buf,
2604 size_t buflen,
2605 int data_direction)
2606{
01a02ffc 2607 u64 addr64;
edd16368
SC
2608
2609 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2610 cp->Header.SGList = 0;
50a0decf 2611 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 2612 return 0;
edd16368
SC
2613 }
2614
50a0decf 2615 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
eceaae18 2616 if (dma_mapping_error(&pdev->dev, addr64)) {
a2dac136 2617 /* Prevent subsequent unmap of something never mapped */
eceaae18 2618 cp->Header.SGList = 0;
50a0decf 2619 cp->Header.SGTotal = cpu_to_le16(0);
a2dac136 2620 return -1;
eceaae18 2621 }
50a0decf
SC
2622 cp->SG[0].Addr = cpu_to_le64(addr64);
2623 cp->SG[0].Len = cpu_to_le32(buflen);
2624 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2625 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2626 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
a2dac136 2627 return 0;
edd16368
SC
2628}
2629
25163bd5
WS
2630#define NO_TIMEOUT ((unsigned long) -1)
2631#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2632static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2633 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
edd16368
SC
2634{
2635 DECLARE_COMPLETION_ONSTACK(wait);
2636
2637 c->waiting = &wait;
25163bd5
WS
2638 __enqueue_cmd_and_start_io(h, c, reply_queue);
2639 if (timeout_msecs == NO_TIMEOUT) {
2640 /* TODO: get rid of this no-timeout thing */
2641 wait_for_completion_io(&wait);
2642 return IO_OK;
2643 }
2644 if (!wait_for_completion_io_timeout(&wait,
2645 msecs_to_jiffies(timeout_msecs))) {
2646 dev_warn(&h->pdev->dev, "Command timed out.\n");
2647 return -ETIMEDOUT;
2648 }
2649 return IO_OK;
2650}
2651
2652static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2653 int reply_queue, unsigned long timeout_msecs)
2654{
2655 if (unlikely(lockup_detected(h))) {
2656 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2657 return IO_OK;
2658 }
2659 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
edd16368
SC
2660}
2661
094963da
SC
2662static u32 lockup_detected(struct ctlr_info *h)
2663{
2664 int cpu;
2665 u32 rc, *lockup_detected;
2666
2667 cpu = get_cpu();
2668 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2669 rc = *lockup_detected;
2670 put_cpu();
2671 return rc;
2672}
2673
9c2fc160 2674#define MAX_DRIVER_CMD_RETRIES 25
25163bd5
WS
2675static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2676 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
edd16368 2677{
9c2fc160 2678 int backoff_time = 10, retry_count = 0;
25163bd5 2679 int rc;
edd16368
SC
2680
2681 do {
7630abd0 2682 memset(c->err_info, 0, sizeof(*c->err_info));
25163bd5
WS
2683 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2684 timeout_msecs);
2685 if (rc)
2686 break;
edd16368 2687 retry_count++;
9c2fc160
SC
2688 if (retry_count > 3) {
2689 msleep(backoff_time);
2690 if (backoff_time < 1000)
2691 backoff_time *= 2;
2692 }
852af20a 2693 } while ((check_for_unit_attention(h, c) ||
9c2fc160
SC
2694 check_for_busy(h, c)) &&
2695 retry_count <= MAX_DRIVER_CMD_RETRIES);
edd16368 2696 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
25163bd5
WS
2697 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2698 rc = -EIO;
2699 return rc;
edd16368
SC
2700}
2701
d1e8beac
SC
2702static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2703 struct CommandList *c)
edd16368 2704{
d1e8beac
SC
2705 const u8 *cdb = c->Request.CDB;
2706 const u8 *lun = c->Header.LUN.LunAddrBytes;
2707
2708 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2709 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2710 txt, lun[0], lun[1], lun[2], lun[3],
2711 lun[4], lun[5], lun[6], lun[7],
2712 cdb[0], cdb[1], cdb[2], cdb[3],
2713 cdb[4], cdb[5], cdb[6], cdb[7],
2714 cdb[8], cdb[9], cdb[10], cdb[11],
2715 cdb[12], cdb[13], cdb[14], cdb[15]);
2716}
2717
2718static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2719 struct CommandList *cp)
2720{
2721 const struct ErrorInfo *ei = cp->err_info;
edd16368 2722 struct device *d = &cp->h->pdev->dev;
9437ac43
SC
2723 u8 sense_key, asc, ascq;
2724 int sense_len;
edd16368 2725
edd16368
SC
2726 switch (ei->CommandStatus) {
2727 case CMD_TARGET_STATUS:
9437ac43
SC
2728 if (ei->SenseLen > sizeof(ei->SenseInfo))
2729 sense_len = sizeof(ei->SenseInfo);
2730 else
2731 sense_len = ei->SenseLen;
2732 decode_sense_data(ei->SenseInfo, sense_len,
2733 &sense_key, &asc, &ascq);
d1e8beac
SC
2734 hpsa_print_cmd(h, "SCSI status", cp);
2735 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
9437ac43
SC
2736 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2737 sense_key, asc, ascq);
d1e8beac 2738 else
9437ac43 2739 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
edd16368
SC
2740 if (ei->ScsiStatus == 0)
2741 dev_warn(d, "SCSI status is abnormally zero. "
2742 "(probably indicates selection timeout "
2743 "reported incorrectly due to a known "
2744 "firmware bug, circa July, 2001.)\n");
2745 break;
2746 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
edd16368
SC
2747 break;
2748 case CMD_DATA_OVERRUN:
d1e8beac 2749 hpsa_print_cmd(h, "overrun condition", cp);
edd16368
SC
2750 break;
2751 case CMD_INVALID: {
2752 /* controller unfortunately reports SCSI passthru's
2753 * to non-existent targets as invalid commands.
2754 */
d1e8beac
SC
2755 hpsa_print_cmd(h, "invalid command", cp);
2756 dev_warn(d, "probably means device no longer present\n");
edd16368
SC
2757 }
2758 break;
2759 case CMD_PROTOCOL_ERR:
d1e8beac 2760 hpsa_print_cmd(h, "protocol error", cp);
edd16368
SC
2761 break;
2762 case CMD_HARDWARE_ERR:
d1e8beac 2763 hpsa_print_cmd(h, "hardware error", cp);
edd16368
SC
2764 break;
2765 case CMD_CONNECTION_LOST:
d1e8beac 2766 hpsa_print_cmd(h, "connection lost", cp);
edd16368
SC
2767 break;
2768 case CMD_ABORTED:
d1e8beac 2769 hpsa_print_cmd(h, "aborted", cp);
edd16368
SC
2770 break;
2771 case CMD_ABORT_FAILED:
d1e8beac 2772 hpsa_print_cmd(h, "abort failed", cp);
edd16368
SC
2773 break;
2774 case CMD_UNSOLICITED_ABORT:
d1e8beac 2775 hpsa_print_cmd(h, "unsolicited abort", cp);
edd16368
SC
2776 break;
2777 case CMD_TIMEOUT:
d1e8beac 2778 hpsa_print_cmd(h, "timed out", cp);
edd16368 2779 break;
1d5e2ed0 2780 case CMD_UNABORTABLE:
d1e8beac 2781 hpsa_print_cmd(h, "unabortable", cp);
1d5e2ed0 2782 break;
25163bd5
WS
2783 case CMD_CTLR_LOCKUP:
2784 hpsa_print_cmd(h, "controller lockup detected", cp);
2785 break;
edd16368 2786 default:
d1e8beac
SC
2787 hpsa_print_cmd(h, "unknown status", cp);
2788 dev_warn(d, "Unknown command status %x\n",
edd16368
SC
2789 ei->CommandStatus);
2790 }
2791}
2792
2793static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
b7bb24eb 2794 u16 page, unsigned char *buf,
edd16368
SC
2795 unsigned char bufsize)
2796{
2797 int rc = IO_OK;
2798 struct CommandList *c;
2799 struct ErrorInfo *ei;
2800
45fcb86e 2801 c = cmd_alloc(h);
edd16368 2802
a2dac136
SC
2803 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2804 page, scsi3addr, TYPE_CMD)) {
2805 rc = -1;
2806 goto out;
2807 }
25163bd5
WS
2808 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2809 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2810 if (rc)
2811 goto out;
edd16368
SC
2812 ei = c->err_info;
2813 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 2814 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2815 rc = -1;
2816 }
a2dac136 2817out:
45fcb86e 2818 cmd_free(h, c);
edd16368
SC
2819 return rc;
2820}
2821
bf711ac6 2822static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
25163bd5 2823 u8 reset_type, int reply_queue)
edd16368
SC
2824{
2825 int rc = IO_OK;
2826 struct CommandList *c;
2827 struct ErrorInfo *ei;
2828
45fcb86e 2829 c = cmd_alloc(h);
edd16368 2830
edd16368 2831
a2dac136 2832 /* fill_cmd can't fail here, no data buffer to map. */
0b9b7b6e 2833 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
bf711ac6 2834 scsi3addr, TYPE_MSG);
25163bd5
WS
2835 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2836 if (rc) {
2837 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2838 goto out;
2839 }
edd16368
SC
2840 /* no unmap needed here because no data xfer. */
2841
2842 ei = c->err_info;
2843 if (ei->CommandStatus != 0) {
d1e8beac 2844 hpsa_scsi_interpret_error(h, c);
edd16368
SC
2845 rc = -1;
2846 }
25163bd5 2847out:
45fcb86e 2848 cmd_free(h, c);
edd16368
SC
2849 return rc;
2850}
2851
d604f533
WS
2852static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2853 struct hpsa_scsi_dev_t *dev,
2854 unsigned char *scsi3addr)
2855{
2856 int i;
2857 bool match = false;
2858 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2859 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2860
2861 if (hpsa_is_cmd_idle(c))
2862 return false;
2863
2864 switch (c->cmd_type) {
2865 case CMD_SCSI:
2866 case CMD_IOCTL_PEND:
2867 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2868 sizeof(c->Header.LUN.LunAddrBytes));
2869 break;
2870
2871 case CMD_IOACCEL1:
2872 case CMD_IOACCEL2:
2873 if (c->phys_disk == dev) {
2874 /* HBA mode match */
2875 match = true;
2876 } else {
2877 /* Possible RAID mode -- check each phys dev. */
2878 /* FIXME: Do we need to take out a lock here? If
2879 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2880 * instead. */
2881 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2882 /* FIXME: an alternate test might be
2883 *
2884 * match = dev->phys_disk[i]->ioaccel_handle
2885 * == c2->scsi_nexus; */
2886 match = dev->phys_disk[i] == c->phys_disk;
2887 }
2888 }
2889 break;
2890
2891 case IOACCEL2_TMF:
2892 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2893 match = dev->phys_disk[i]->ioaccel_handle ==
2894 le32_to_cpu(ac->it_nexus);
2895 }
2896 break;
2897
2898 case 0: /* The command is in the middle of being initialized. */
2899 match = false;
2900 break;
2901
2902 default:
2903 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2904 c->cmd_type);
2905 BUG();
2906 }
2907
2908 return match;
2909}
2910
2911static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2912 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2913{
2914 int i;
2915 int rc = 0;
2916
2917 /* We can really only handle one reset at a time */
2918 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2919 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2920 return -EINTR;
2921 }
2922
2923 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2924
2925 for (i = 0; i < h->nr_cmds; i++) {
2926 struct CommandList *c = h->cmd_pool + i;
2927 int refcount = atomic_inc_return(&c->refcount);
2928
2929 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2930 unsigned long flags;
2931
2932 /*
2933 * Mark the target command as having a reset pending,
2934 * then lock a lock so that the command cannot complete
2935 * while we're considering it. If the command is not
2936 * idle then count it; otherwise revoke the event.
2937 */
2938 c->reset_pending = dev;
2939 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
2940 if (!hpsa_is_cmd_idle(c))
2941 atomic_inc(&dev->reset_cmds_out);
2942 else
2943 c->reset_pending = NULL;
2944 spin_unlock_irqrestore(&h->lock, flags);
2945 }
2946
2947 cmd_free(h, c);
2948 }
2949
2950 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2951 if (!rc)
2952 wait_event(h->event_sync_wait_queue,
2953 atomic_read(&dev->reset_cmds_out) == 0 ||
2954 lockup_detected(h));
2955
2956 if (unlikely(lockup_detected(h))) {
77678d3a
DB
2957 dev_warn(&h->pdev->dev,
2958 "Controller lockup detected during reset wait\n");
2959 rc = -ENODEV;
2960 }
d604f533
WS
2961
2962 if (unlikely(rc))
2963 atomic_set(&dev->reset_cmds_out, 0);
2964
2965 mutex_unlock(&h->reset_mutex);
2966 return rc;
2967}
2968
edd16368
SC
2969static void hpsa_get_raid_level(struct ctlr_info *h,
2970 unsigned char *scsi3addr, unsigned char *raid_level)
2971{
2972 int rc;
2973 unsigned char *buf;
2974
2975 *raid_level = RAID_UNKNOWN;
2976 buf = kzalloc(64, GFP_KERNEL);
2977 if (!buf)
2978 return;
b7bb24eb 2979 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
edd16368
SC
2980 if (rc == 0)
2981 *raid_level = buf[8];
2982 if (*raid_level > RAID_UNKNOWN)
2983 *raid_level = RAID_UNKNOWN;
2984 kfree(buf);
2985 return;
2986}
2987
283b4a9b
SC
2988#define HPSA_MAP_DEBUG
2989#ifdef HPSA_MAP_DEBUG
2990static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2991 struct raid_map_data *map_buff)
2992{
2993 struct raid_map_disk_data *dd = &map_buff->data[0];
2994 int map, row, col;
2995 u16 map_cnt, row_cnt, disks_per_row;
2996
2997 if (rc != 0)
2998 return;
2999
2ba8bfc8
SC
3000 /* Show details only if debugging has been activated. */
3001 if (h->raid_offload_debug < 2)
3002 return;
3003
283b4a9b
SC
3004 dev_info(&h->pdev->dev, "structure_size = %u\n",
3005 le32_to_cpu(map_buff->structure_size));
3006 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3007 le32_to_cpu(map_buff->volume_blk_size));
3008 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3009 le64_to_cpu(map_buff->volume_blk_cnt));
3010 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3011 map_buff->phys_blk_shift);
3012 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3013 map_buff->parity_rotation_shift);
3014 dev_info(&h->pdev->dev, "strip_size = %u\n",
3015 le16_to_cpu(map_buff->strip_size));
3016 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3017 le64_to_cpu(map_buff->disk_starting_blk));
3018 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3019 le64_to_cpu(map_buff->disk_blk_cnt));
3020 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3021 le16_to_cpu(map_buff->data_disks_per_row));
3022 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3023 le16_to_cpu(map_buff->metadata_disks_per_row));
3024 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3025 le16_to_cpu(map_buff->row_cnt));
3026 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3027 le16_to_cpu(map_buff->layout_map_count));
2b08b3e9 3028 dev_info(&h->pdev->dev, "flags = 0x%x\n",
dd0e19f3 3029 le16_to_cpu(map_buff->flags));
2b08b3e9
DB
3030 dev_info(&h->pdev->dev, "encrypytion = %s\n",
3031 le16_to_cpu(map_buff->flags) &
3032 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
dd0e19f3
ST
3033 dev_info(&h->pdev->dev, "dekindex = %u\n",
3034 le16_to_cpu(map_buff->dekindex));
283b4a9b
SC
3035 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3036 for (map = 0; map < map_cnt; map++) {
3037 dev_info(&h->pdev->dev, "Map%u:\n", map);
3038 row_cnt = le16_to_cpu(map_buff->row_cnt);
3039 for (row = 0; row < row_cnt; row++) {
3040 dev_info(&h->pdev->dev, " Row%u:\n", row);
3041 disks_per_row =
3042 le16_to_cpu(map_buff->data_disks_per_row);
3043 for (col = 0; col < disks_per_row; col++, dd++)
3044 dev_info(&h->pdev->dev,
3045 " D%02u: h=0x%04x xor=%u,%u\n",
3046 col, dd->ioaccel_handle,
3047 dd->xor_mult[0], dd->xor_mult[1]);
3048 disks_per_row =
3049 le16_to_cpu(map_buff->metadata_disks_per_row);
3050 for (col = 0; col < disks_per_row; col++, dd++)
3051 dev_info(&h->pdev->dev,
3052 " M%02u: h=0x%04x xor=%u,%u\n",
3053 col, dd->ioaccel_handle,
3054 dd->xor_mult[0], dd->xor_mult[1]);
3055 }
3056 }
3057}
3058#else
3059static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3060 __attribute__((unused)) int rc,
3061 __attribute__((unused)) struct raid_map_data *map_buff)
3062{
3063}
3064#endif
3065
3066static int hpsa_get_raid_map(struct ctlr_info *h,
3067 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3068{
3069 int rc = 0;
3070 struct CommandList *c;
3071 struct ErrorInfo *ei;
3072
45fcb86e 3073 c = cmd_alloc(h);
bf43caf3 3074
283b4a9b
SC
3075 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3076 sizeof(this_device->raid_map), 0,
3077 scsi3addr, TYPE_CMD)) {
2dd02d74
RE
3078 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3079 cmd_free(h, c);
3080 return -1;
283b4a9b 3081 }
25163bd5
WS
3082 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3083 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3084 if (rc)
3085 goto out;
283b4a9b
SC
3086 ei = c->err_info;
3087 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 3088 hpsa_scsi_interpret_error(h, c);
25163bd5
WS
3089 rc = -1;
3090 goto out;
283b4a9b 3091 }
45fcb86e 3092 cmd_free(h, c);
283b4a9b
SC
3093
3094 /* @todo in the future, dynamically allocate RAID map memory */
3095 if (le32_to_cpu(this_device->raid_map.structure_size) >
3096 sizeof(this_device->raid_map)) {
3097 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3098 rc = -1;
3099 }
3100 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3101 return rc;
25163bd5
WS
3102out:
3103 cmd_free(h, c);
3104 return rc;
283b4a9b
SC
3105}
3106
d04e62b9
KB
3107static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3108 unsigned char scsi3addr[], u16 bmic_device_index,
3109 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3110{
3111 int rc = IO_OK;
3112 struct CommandList *c;
3113 struct ErrorInfo *ei;
3114
3115 c = cmd_alloc(h);
3116
3117 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3118 0, RAID_CTLR_LUNID, TYPE_CMD);
3119 if (rc)
3120 goto out;
3121
3122 c->Request.CDB[2] = bmic_device_index & 0xff;
3123 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3124
3125 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3126 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3127 if (rc)
3128 goto out;
3129 ei = c->err_info;
3130 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3131 hpsa_scsi_interpret_error(h, c);
3132 rc = -1;
3133 }
3134out:
3135 cmd_free(h, c);
3136 return rc;
3137}
3138
66749d0d
ST
3139static int hpsa_bmic_id_controller(struct ctlr_info *h,
3140 struct bmic_identify_controller *buf, size_t bufsize)
3141{
3142 int rc = IO_OK;
3143 struct CommandList *c;
3144 struct ErrorInfo *ei;
3145
3146 c = cmd_alloc(h);
3147
3148 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3149 0, RAID_CTLR_LUNID, TYPE_CMD);
3150 if (rc)
3151 goto out;
3152
3153 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3154 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3155 if (rc)
3156 goto out;
3157 ei = c->err_info;
3158 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3159 hpsa_scsi_interpret_error(h, c);
3160 rc = -1;
3161 }
3162out:
3163 cmd_free(h, c);
3164 return rc;
3165}
3166
03383736
DB
3167static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3168 unsigned char scsi3addr[], u16 bmic_device_index,
3169 struct bmic_identify_physical_device *buf, size_t bufsize)
3170{
3171 int rc = IO_OK;
3172 struct CommandList *c;
3173 struct ErrorInfo *ei;
3174
3175 c = cmd_alloc(h);
3176 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3177 0, RAID_CTLR_LUNID, TYPE_CMD);
3178 if (rc)
3179 goto out;
3180
3181 c->Request.CDB[2] = bmic_device_index & 0xff;
3182 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3183
25163bd5
WS
3184 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3185 NO_TIMEOUT);
03383736
DB
3186 ei = c->err_info;
3187 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3188 hpsa_scsi_interpret_error(h, c);
3189 rc = -1;
3190 }
3191out:
3192 cmd_free(h, c);
d04e62b9 3193
03383736
DB
3194 return rc;
3195}
3196
cca8f13b
DB
3197/*
3198 * get enclosure information
3199 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3200 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3201 * Uses id_physical_device to determine the box_index.
3202 */
3203static void hpsa_get_enclosure_info(struct ctlr_info *h,
3204 unsigned char *scsi3addr,
3205 struct ReportExtendedLUNdata *rlep, int rle_index,
3206 struct hpsa_scsi_dev_t *encl_dev)
3207{
3208 int rc = -1;
3209 struct CommandList *c = NULL;
3210 struct ErrorInfo *ei = NULL;
3211 struct bmic_sense_storage_box_params *bssbp = NULL;
3212 struct bmic_identify_physical_device *id_phys = NULL;
3213 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3214 u16 bmic_device_index = 0;
3215
3216 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3217
17a9e54a
DB
3218 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3219 rc = IO_OK;
cca8f13b 3220 goto out;
17a9e54a 3221 }
cca8f13b
DB
3222
3223 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3224 if (!bssbp)
3225 goto out;
3226
3227 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3228 if (!id_phys)
3229 goto out;
3230
3231 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3232 id_phys, sizeof(*id_phys));
3233 if (rc) {
3234 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3235 __func__, encl_dev->external, bmic_device_index);
3236 goto out;
3237 }
3238
3239 c = cmd_alloc(h);
3240
3241 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3242 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3243
3244 if (rc)
3245 goto out;
3246
3247 if (id_phys->phys_connector[1] == 'E')
3248 c->Request.CDB[5] = id_phys->box_index;
3249 else
3250 c->Request.CDB[5] = 0;
3251
3252 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3253 NO_TIMEOUT);
3254 if (rc)
3255 goto out;
3256
3257 ei = c->err_info;
3258 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3259 rc = -1;
3260 goto out;
3261 }
3262
3263 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3264 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3265 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3266
3267 rc = IO_OK;
3268out:
3269 kfree(bssbp);
3270 kfree(id_phys);
3271
3272 if (c)
3273 cmd_free(h, c);
3274
3275 if (rc != IO_OK)
3276 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3277 "Error, could not get enclosure information\n");
3278}
3279
d04e62b9
KB
3280static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3281 unsigned char *scsi3addr)
3282{
3283 struct ReportExtendedLUNdata *physdev;
3284 u32 nphysicals;
3285 u64 sa = 0;
3286 int i;
3287
3288 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3289 if (!physdev)
3290 return 0;
3291
3292 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3293 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3294 kfree(physdev);
3295 return 0;
3296 }
3297 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3298
3299 for (i = 0; i < nphysicals; i++)
3300 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3301 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3302 break;
3303 }
3304
3305 kfree(physdev);
3306
3307 return sa;
3308}
3309
3310static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3311 struct hpsa_scsi_dev_t *dev)
3312{
3313 int rc;
3314 u64 sa = 0;
3315
3316 if (is_hba_lunid(scsi3addr)) {
3317 struct bmic_sense_subsystem_info *ssi;
3318
3319 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3320 if (ssi == NULL) {
3321 dev_warn(&h->pdev->dev,
3322 "%s: out of memory\n", __func__);
3323 return;
3324 }
3325
3326 rc = hpsa_bmic_sense_subsystem_information(h,
3327 scsi3addr, 0, ssi, sizeof(*ssi));
3328 if (rc == 0) {
3329 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3330 h->sas_address = sa;
3331 }
3332
3333 kfree(ssi);
3334 } else
3335 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3336
3337 dev->sas_address = sa;
3338}
3339
3340/* Get a device id from inquiry page 0x83 */
1b70150a
SC
3341static int hpsa_vpd_page_supported(struct ctlr_info *h,
3342 unsigned char scsi3addr[], u8 page)
3343{
3344 int rc;
3345 int i;
3346 int pages;
3347 unsigned char *buf, bufsize;
3348
3349 buf = kzalloc(256, GFP_KERNEL);
3350 if (!buf)
3351 return 0;
3352
3353 /* Get the size of the page list first */
3354 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3355 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3356 buf, HPSA_VPD_HEADER_SZ);
3357 if (rc != 0)
3358 goto exit_unsupported;
3359 pages = buf[3];
3360 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3361 bufsize = pages + HPSA_VPD_HEADER_SZ;
3362 else
3363 bufsize = 255;
3364
3365 /* Get the whole VPD page list */
3366 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3367 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3368 buf, bufsize);
3369 if (rc != 0)
3370 goto exit_unsupported;
3371
3372 pages = buf[3];
3373 for (i = 1; i <= pages; i++)
3374 if (buf[3 + i] == page)
3375 goto exit_supported;
3376exit_unsupported:
3377 kfree(buf);
3378 return 0;
3379exit_supported:
3380 kfree(buf);
3381 return 1;
3382}
3383
283b4a9b
SC
3384static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3385 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3386{
3387 int rc;
3388 unsigned char *buf;
3389 u8 ioaccel_status;
3390
3391 this_device->offload_config = 0;
3392 this_device->offload_enabled = 0;
41ce4c35 3393 this_device->offload_to_be_enabled = 0;
283b4a9b
SC
3394
3395 buf = kzalloc(64, GFP_KERNEL);
3396 if (!buf)
3397 return;
1b70150a
SC
3398 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3399 goto out;
283b4a9b 3400 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
b7bb24eb 3401 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
283b4a9b
SC
3402 if (rc != 0)
3403 goto out;
3404
3405#define IOACCEL_STATUS_BYTE 4
3406#define OFFLOAD_CONFIGURED_BIT 0x01
3407#define OFFLOAD_ENABLED_BIT 0x02
3408 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3409 this_device->offload_config =
3410 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3411 if (this_device->offload_config) {
3412 this_device->offload_enabled =
3413 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3414 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3415 this_device->offload_enabled = 0;
3416 }
41ce4c35 3417 this_device->offload_to_be_enabled = this_device->offload_enabled;
283b4a9b
SC
3418out:
3419 kfree(buf);
3420 return;
3421}
3422
edd16368
SC
3423/* Get the device id from inquiry page 0x83 */
3424static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
75d23d89 3425 unsigned char *device_id, int index, int buflen)
edd16368
SC
3426{
3427 int rc;
3428 unsigned char *buf;
3429
3430 if (buflen > 16)
3431 buflen = 16;
3432 buf = kzalloc(64, GFP_KERNEL);
3433 if (!buf)
a84d794d 3434 return -ENOMEM;
b7bb24eb 3435 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
edd16368 3436 if (rc == 0)
75d23d89
DB
3437 memcpy(device_id, &buf[index], buflen);
3438
edd16368 3439 kfree(buf);
75d23d89 3440
edd16368
SC
3441 return rc != 0;
3442}
3443
3444static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
03383736 3445 void *buf, int bufsize,
edd16368
SC
3446 int extended_response)
3447{
3448 int rc = IO_OK;
3449 struct CommandList *c;
3450 unsigned char scsi3addr[8];
3451 struct ErrorInfo *ei;
3452
45fcb86e 3453 c = cmd_alloc(h);
bf43caf3 3454
e89c0ae7
SC
3455 /* address the controller */
3456 memset(scsi3addr, 0, sizeof(scsi3addr));
a2dac136
SC
3457 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3458 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3459 rc = -1;
3460 goto out;
3461 }
edd16368
SC
3462 if (extended_response)
3463 c->Request.CDB[1] = extended_response;
25163bd5
WS
3464 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3465 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3466 if (rc)
3467 goto out;
edd16368
SC
3468 ei = c->err_info;
3469 if (ei->CommandStatus != 0 &&
3470 ei->CommandStatus != CMD_DATA_UNDERRUN) {
d1e8beac 3471 hpsa_scsi_interpret_error(h, c);
edd16368 3472 rc = -1;
283b4a9b 3473 } else {
03383736
DB
3474 struct ReportLUNdata *rld = buf;
3475
3476 if (rld->extended_response_flag != extended_response) {
283b4a9b
SC
3477 dev_err(&h->pdev->dev,
3478 "report luns requested format %u, got %u\n",
3479 extended_response,
03383736 3480 rld->extended_response_flag);
283b4a9b
SC
3481 rc = -1;
3482 }
edd16368 3483 }
a2dac136 3484out:
45fcb86e 3485 cmd_free(h, c);
edd16368
SC
3486 return rc;
3487}
3488
3489static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
03383736 3490 struct ReportExtendedLUNdata *buf, int bufsize)
edd16368 3491{
03383736
DB
3492 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3493 HPSA_REPORT_PHYS_EXTENDED);
edd16368
SC
3494}
3495
3496static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3497 struct ReportLUNdata *buf, int bufsize)
3498{
3499 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3500}
3501
3502static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3503 int bus, int target, int lun)
3504{
3505 device->bus = bus;
3506 device->target = target;
3507 device->lun = lun;
3508}
3509
9846590e
SC
3510/* Use VPD inquiry to get details of volume status */
3511static int hpsa_get_volume_status(struct ctlr_info *h,
3512 unsigned char scsi3addr[])
3513{
3514 int rc;
3515 int status;
3516 int size;
3517 unsigned char *buf;
3518
3519 buf = kzalloc(64, GFP_KERNEL);
3520 if (!buf)
3521 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3522
3523 /* Does controller have VPD for logical volume status? */
24a4b078 3524 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
9846590e 3525 goto exit_failed;
9846590e
SC
3526
3527 /* Get the size of the VPD return buffer */
3528 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3529 buf, HPSA_VPD_HEADER_SZ);
24a4b078 3530 if (rc != 0)
9846590e 3531 goto exit_failed;
9846590e
SC
3532 size = buf[3];
3533
3534 /* Now get the whole VPD buffer */
3535 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3536 buf, size + HPSA_VPD_HEADER_SZ);
24a4b078 3537 if (rc != 0)
9846590e 3538 goto exit_failed;
9846590e
SC
3539 status = buf[4]; /* status byte */
3540
3541 kfree(buf);
3542 return status;
3543exit_failed:
3544 kfree(buf);
3545 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3546}
3547
3548/* Determine offline status of a volume.
3549 * Return either:
3550 * 0 (not offline)
67955ba3 3551 * 0xff (offline for unknown reasons)
9846590e
SC
3552 * # (integer code indicating one of several NOT READY states
3553 * describing why a volume is to be kept offline)
3554 */
67955ba3 3555static int hpsa_volume_offline(struct ctlr_info *h,
9846590e
SC
3556 unsigned char scsi3addr[])
3557{
3558 struct CommandList *c;
9437ac43
SC
3559 unsigned char *sense;
3560 u8 sense_key, asc, ascq;
3561 int sense_len;
25163bd5 3562 int rc, ldstat = 0;
9846590e
SC
3563 u16 cmd_status;
3564 u8 scsi_status;
3565#define ASC_LUN_NOT_READY 0x04
3566#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3567#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3568
3569 c = cmd_alloc(h);
bf43caf3 3570
9846590e 3571 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
25163bd5
WS
3572 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3573 if (rc) {
3574 cmd_free(h, c);
3575 return 0;
3576 }
9846590e 3577 sense = c->err_info->SenseInfo;
9437ac43
SC
3578 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3579 sense_len = sizeof(c->err_info->SenseInfo);
3580 else
3581 sense_len = c->err_info->SenseLen;
3582 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
9846590e
SC
3583 cmd_status = c->err_info->CommandStatus;
3584 scsi_status = c->err_info->ScsiStatus;
3585 cmd_free(h, c);
3586 /* Is the volume 'not ready'? */
3587 if (cmd_status != CMD_TARGET_STATUS ||
3588 scsi_status != SAM_STAT_CHECK_CONDITION ||
3589 sense_key != NOT_READY ||
3590 asc != ASC_LUN_NOT_READY) {
3591 return 0;
3592 }
3593
3594 /* Determine the reason for not ready state */
3595 ldstat = hpsa_get_volume_status(h, scsi3addr);
3596
3597 /* Keep volume offline in certain cases: */
3598 switch (ldstat) {
3599 case HPSA_LV_UNDERGOING_ERASE:
5ca01204 3600 case HPSA_LV_NOT_AVAILABLE:
9846590e
SC
3601 case HPSA_LV_UNDERGOING_RPI:
3602 case HPSA_LV_PENDING_RPI:
3603 case HPSA_LV_ENCRYPTED_NO_KEY:
3604 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3605 case HPSA_LV_UNDERGOING_ENCRYPTION:
3606 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3607 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3608 return ldstat;
3609 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3610 /* If VPD status page isn't available,
3611 * use ASC/ASCQ to determine state
3612 */
3613 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3614 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3615 return ldstat;
3616 break;
3617 default:
3618 break;
3619 }
3620 return 0;
3621}
3622
9b5c48c2
SC
3623/*
3624 * Find out if a logical device supports aborts by simply trying one.
3625 * Smart Array may claim not to support aborts on logical drives, but
3626 * if a MSA2000 * is connected, the drives on that will be presented
3627 * by the Smart Array as logical drives, and aborts may be sent to
3628 * those devices successfully. So the simplest way to find out is
3629 * to simply try an abort and see how the device responds.
3630 */
3631static int hpsa_device_supports_aborts(struct ctlr_info *h,
3632 unsigned char *scsi3addr)
3633{
3634 struct CommandList *c;
3635 struct ErrorInfo *ei;
3636 int rc = 0;
3637
3638 u64 tag = (u64) -1; /* bogus tag */
3639
3640 /* Assume that physical devices support aborts */
3641 if (!is_logical_dev_addr_mode(scsi3addr))
3642 return 1;
3643
3644 c = cmd_alloc(h);
bf43caf3 3645
9b5c48c2
SC
3646 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3647 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3648 /* no unmap needed here because no data xfer. */
3649 ei = c->err_info;
3650 switch (ei->CommandStatus) {
3651 case CMD_INVALID:
3652 rc = 0;
3653 break;
3654 case CMD_UNABORTABLE:
3655 case CMD_ABORT_FAILED:
3656 rc = 1;
3657 break;
9437ac43
SC
3658 case CMD_TMF_STATUS:
3659 rc = hpsa_evaluate_tmf_status(h, c);
3660 break;
9b5c48c2
SC
3661 default:
3662 rc = 0;
3663 break;
3664 }
3665 cmd_free(h, c);
3666 return rc;
3667}
3668
edd16368 3669static int hpsa_update_device_info(struct ctlr_info *h,
0b0e1d6c
SC
3670 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3671 unsigned char *is_OBDR_device)
edd16368 3672{
0b0e1d6c
SC
3673
3674#define OBDR_SIG_OFFSET 43
3675#define OBDR_TAPE_SIG "$DR-10"
3676#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3677#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3678
ea6d3bc3 3679 unsigned char *inq_buff;
0b0e1d6c 3680 unsigned char *obdr_sig;
683fc444 3681 int rc = 0;
edd16368 3682
ea6d3bc3 3683 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
683fc444
DB
3684 if (!inq_buff) {
3685 rc = -ENOMEM;
edd16368 3686 goto bail_out;
683fc444 3687 }
edd16368 3688
edd16368
SC
3689 /* Do an inquiry to the device to see what it is. */
3690 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3691 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3692 /* Inquiry failed (msg printed already) */
3693 dev_err(&h->pdev->dev,
3694 "hpsa_update_device_info: inquiry failed\n");
683fc444 3695 rc = -EIO;
edd16368
SC
3696 goto bail_out;
3697 }
3698
4af61e4f
DB
3699 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3700 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
75d23d89 3701
edd16368
SC
3702 this_device->devtype = (inq_buff[0] & 0x1f);
3703 memcpy(this_device->scsi3addr, scsi3addr, 8);
3704 memcpy(this_device->vendor, &inq_buff[8],
3705 sizeof(this_device->vendor));
3706 memcpy(this_device->model, &inq_buff[16],
3707 sizeof(this_device->model));
edd16368
SC
3708 memset(this_device->device_id, 0,
3709 sizeof(this_device->device_id));
75d23d89 3710 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
edd16368
SC
3711 sizeof(this_device->device_id));
3712
af15ed36
DB
3713 if ((this_device->devtype == TYPE_DISK ||
3714 this_device->devtype == TYPE_ZBC) &&
283b4a9b 3715 is_logical_dev_addr_mode(scsi3addr)) {
67955ba3
SC
3716 int volume_offline;
3717
edd16368 3718 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
283b4a9b
SC
3719 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3720 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
67955ba3
SC
3721 volume_offline = hpsa_volume_offline(h, scsi3addr);
3722 if (volume_offline < 0 || volume_offline > 0xff)
3723 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3724 this_device->volume_offline = volume_offline & 0xff;
283b4a9b 3725 } else {
edd16368 3726 this_device->raid_level = RAID_UNKNOWN;
283b4a9b
SC
3727 this_device->offload_config = 0;
3728 this_device->offload_enabled = 0;
41ce4c35 3729 this_device->offload_to_be_enabled = 0;
a3144e0b 3730 this_device->hba_ioaccel_enabled = 0;
9846590e 3731 this_device->volume_offline = 0;
03383736 3732 this_device->queue_depth = h->nr_cmds;
283b4a9b 3733 }
edd16368 3734
0b0e1d6c
SC
3735 if (is_OBDR_device) {
3736 /* See if this is a One-Button-Disaster-Recovery device
3737 * by looking for "$DR-10" at offset 43 in inquiry data.
3738 */
3739 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3740 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3741 strncmp(obdr_sig, OBDR_TAPE_SIG,
3742 OBDR_SIG_LEN) == 0);
3743 }
edd16368
SC
3744 kfree(inq_buff);
3745 return 0;
3746
3747bail_out:
3748 kfree(inq_buff);
683fc444 3749 return rc;
edd16368
SC
3750}
3751
9b5c48c2
SC
3752static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3753 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3754{
3755 unsigned long flags;
3756 int rc, entry;
3757 /*
3758 * See if this device supports aborts. If we already know
3759 * the device, we already know if it supports aborts, otherwise
3760 * we have to find out if it supports aborts by trying one.
3761 */
3762 spin_lock_irqsave(&h->devlock, flags);
3763 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3764 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3765 entry >= 0 && entry < h->ndevices) {
3766 dev->supports_aborts = h->dev[entry]->supports_aborts;
3767 spin_unlock_irqrestore(&h->devlock, flags);
3768 } else {
3769 spin_unlock_irqrestore(&h->devlock, flags);
3770 dev->supports_aborts =
3771 hpsa_device_supports_aborts(h, scsi3addr);
3772 if (dev->supports_aborts < 0)
3773 dev->supports_aborts = 0;
3774 }
3775}
3776
c795505a
KB
3777/*
3778 * Helper function to assign bus, target, lun mapping of devices.
edd16368
SC
3779 * Logical drive target and lun are assigned at this time, but
3780 * physical device lun and target assignment are deferred (assigned
3781 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
c795505a 3782*/
edd16368 3783static void figure_bus_target_lun(struct ctlr_info *h,
1f310bde 3784 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
edd16368 3785{
c795505a 3786 u32 lunid = get_unaligned_le32(lunaddrbytes);
1f310bde
SC
3787
3788 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3789 /* physical device, target and lun filled in later */
edd16368 3790 if (is_hba_lunid(lunaddrbytes))
c795505a
KB
3791 hpsa_set_bus_target_lun(device,
3792 HPSA_HBA_BUS, 0, lunid & 0x3fff);
edd16368 3793 else
1f310bde 3794 /* defer target, lun assignment for physical devices */
c795505a
KB
3795 hpsa_set_bus_target_lun(device,
3796 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
1f310bde
SC
3797 return;
3798 }
3799 /* It's a logical device */
66749d0d 3800 if (device->external) {
1f310bde 3801 hpsa_set_bus_target_lun(device,
c795505a
KB
3802 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3803 lunid & 0x00ff);
1f310bde 3804 return;
edd16368 3805 }
c795505a
KB
3806 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3807 0, lunid & 0x3fff);
edd16368
SC
3808}
3809
edd16368 3810
54b6e9e9
ST
3811/*
3812 * Get address of physical disk used for an ioaccel2 mode command:
3813 * 1. Extract ioaccel2 handle from the command.
3814 * 2. Find a matching ioaccel2 handle from list of physical disks.
3815 * 3. Return:
3816 * 1 and set scsi3addr to address of matching physical
3817 * 0 if no matching physical disk was found.
3818 */
3819static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3820 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3821{
41ce4c35
SC
3822 struct io_accel2_cmd *c2 =
3823 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3824 unsigned long flags;
54b6e9e9 3825 int i;
54b6e9e9 3826
41ce4c35
SC
3827 spin_lock_irqsave(&h->devlock, flags);
3828 for (i = 0; i < h->ndevices; i++)
3829 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3830 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3831 sizeof(h->dev[i]->scsi3addr));
3832 spin_unlock_irqrestore(&h->devlock, flags);
3833 return 1;
3834 }
3835 spin_unlock_irqrestore(&h->devlock, flags);
3836 return 0;
54b6e9e9 3837}
41ce4c35 3838
66749d0d
ST
3839static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3840 int i, int nphysicals, int nlocal_logicals)
3841{
3842 /* In report logicals, local logicals are listed first,
3843 * then any externals.
3844 */
3845 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3846
3847 if (i == raid_ctlr_position)
3848 return 0;
3849
3850 if (i < logicals_start)
3851 return 0;
3852
3853 /* i is in logicals range, but still within local logicals */
3854 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3855 return 0;
3856
3857 return 1; /* it's an external lun */
3858}
3859
edd16368
SC
3860/*
3861 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3862 * logdev. The number of luns in physdev and logdev are returned in
3863 * *nphysicals and *nlogicals, respectively.
3864 * Returns 0 on success, -1 otherwise.
3865 */
3866static int hpsa_gather_lun_info(struct ctlr_info *h,
03383736 3867 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
01a02ffc 3868 struct ReportLUNdata *logdev, u32 *nlogicals)
edd16368 3869{
03383736 3870 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
edd16368
SC
3871 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3872 return -1;
3873 }
03383736 3874 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
edd16368 3875 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
03383736
DB
3876 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3877 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
edd16368
SC
3878 *nphysicals = HPSA_MAX_PHYS_LUN;
3879 }
03383736 3880 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
edd16368
SC
3881 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3882 return -1;
3883 }
6df1e954 3884 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
edd16368
SC
3885 /* Reject Logicals in excess of our max capability. */
3886 if (*nlogicals > HPSA_MAX_LUN) {
3887 dev_warn(&h->pdev->dev,
3888 "maximum logical LUNs (%d) exceeded. "
3889 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3890 *nlogicals - HPSA_MAX_LUN);
3891 *nlogicals = HPSA_MAX_LUN;
3892 }
3893 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3894 dev_warn(&h->pdev->dev,
3895 "maximum logical + physical LUNs (%d) exceeded. "
3896 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3897 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3898 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3899 }
3900 return 0;
3901}
3902
42a91641
DB
3903static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3904 int i, int nphysicals, int nlogicals,
a93aa1fe 3905 struct ReportExtendedLUNdata *physdev_list,
339b2b14
SC
3906 struct ReportLUNdata *logdev_list)
3907{
3908 /* Helper function, figure out where the LUN ID info is coming from
3909 * given index i, lists of physical and logical devices, where in
3910 * the list the raid controller is supposed to appear (first or last)
3911 */
3912
3913 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3914 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3915
3916 if (i == raid_ctlr_position)
3917 return RAID_CTLR_LUNID;
3918
3919 if (i < logicals_start)
d5b5d964
SC
3920 return &physdev_list->LUN[i -
3921 (raid_ctlr_position == 0)].lunid[0];
339b2b14
SC
3922
3923 if (i < last_device)
3924 return &logdev_list->LUN[i - nphysicals -
3925 (raid_ctlr_position == 0)][0];
3926 BUG();
3927 return NULL;
3928}
3929
03383736
DB
3930/* get physical drive ioaccel handle and queue depth */
3931static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3932 struct hpsa_scsi_dev_t *dev,
f2039b03 3933 struct ReportExtendedLUNdata *rlep, int rle_index,
03383736
DB
3934 struct bmic_identify_physical_device *id_phys)
3935{
3936 int rc;
f2039b03 3937 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
03383736
DB
3938
3939 dev->ioaccel_handle = rle->ioaccel_handle;
f2039b03 3940 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
a3144e0b 3941 dev->hba_ioaccel_enabled = 1;
03383736 3942 memset(id_phys, 0, sizeof(*id_phys));
f2039b03
DB
3943 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3944 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
03383736
DB
3945 sizeof(*id_phys));
3946 if (!rc)
3947 /* Reserve space for FW operations */
3948#define DRIVE_CMDS_RESERVED_FOR_FW 2
3949#define DRIVE_QUEUE_DEPTH 7
3950 dev->queue_depth =
3951 le16_to_cpu(id_phys->current_queue_depth_limit) -
3952 DRIVE_CMDS_RESERVED_FOR_FW;
3953 else
3954 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
03383736
DB
3955}
3956
8270b862 3957static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
f2039b03 3958 struct ReportExtendedLUNdata *rlep, int rle_index,
8270b862
JH
3959 struct bmic_identify_physical_device *id_phys)
3960{
f2039b03
DB
3961 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3962
3963 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
8270b862
JH
3964 this_device->hba_ioaccel_enabled = 1;
3965
3966 memcpy(&this_device->active_path_index,
3967 &id_phys->active_path_number,
3968 sizeof(this_device->active_path_index));
3969 memcpy(&this_device->path_map,
3970 &id_phys->redundant_path_present_map,
3971 sizeof(this_device->path_map));
3972 memcpy(&this_device->box,
3973 &id_phys->alternate_paths_phys_box_on_port,
3974 sizeof(this_device->box));
3975 memcpy(&this_device->phys_connector,
3976 &id_phys->alternate_paths_phys_connector,
3977 sizeof(this_device->phys_connector));
3978 memcpy(&this_device->bay,
3979 &id_phys->phys_bay_in_box,
3980 sizeof(this_device->bay));
3981}
3982
66749d0d
ST
3983/* get number of local logical disks. */
3984static int hpsa_set_local_logical_count(struct ctlr_info *h,
3985 struct bmic_identify_controller *id_ctlr,
3986 u32 *nlocals)
3987{
3988 int rc;
3989
3990 if (!id_ctlr) {
3991 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3992 __func__);
3993 return -ENOMEM;
3994 }
3995 memset(id_ctlr, 0, sizeof(*id_ctlr));
3996 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3997 if (!rc)
3998 if (id_ctlr->configured_logical_drive_count < 256)
3999 *nlocals = id_ctlr->configured_logical_drive_count;
4000 else
4001 *nlocals = le16_to_cpu(
4002 id_ctlr->extended_logical_unit_count);
4003 else
4004 *nlocals = -1;
4005 return rc;
4006}
4007
4008
8aa60681 4009static void hpsa_update_scsi_devices(struct ctlr_info *h)
edd16368
SC
4010{
4011 /* the idea here is we could get notified
4012 * that some devices have changed, so we do a report
4013 * physical luns and report logical luns cmd, and adjust
4014 * our list of devices accordingly.
4015 *
4016 * The scsi3addr's of devices won't change so long as the
4017 * adapter is not reset. That means we can rescan and
4018 * tell which devices we already know about, vs. new
4019 * devices, vs. disappearing devices.
4020 */
a93aa1fe 4021 struct ReportExtendedLUNdata *physdev_list = NULL;
edd16368 4022 struct ReportLUNdata *logdev_list = NULL;
03383736 4023 struct bmic_identify_physical_device *id_phys = NULL;
66749d0d 4024 struct bmic_identify_controller *id_ctlr = NULL;
01a02ffc
SC
4025 u32 nphysicals = 0;
4026 u32 nlogicals = 0;
66749d0d 4027 u32 nlocal_logicals = 0;
01a02ffc 4028 u32 ndev_allocated = 0;
edd16368
SC
4029 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4030 int ncurrent = 0;
4f4eb9f1 4031 int i, n_ext_target_devs, ndevs_to_allocate;
339b2b14 4032 int raid_ctlr_position;
04fa2f44 4033 bool physical_device;
aca4a520 4034 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
edd16368 4035
cfe5badc 4036 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
92084715
SC
4037 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4038 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
edd16368 4039 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
03383736 4040 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
66749d0d 4041 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
edd16368 4042
03383736 4043 if (!currentsd || !physdev_list || !logdev_list ||
66749d0d 4044 !tmpdevice || !id_phys || !id_ctlr) {
edd16368
SC
4045 dev_err(&h->pdev->dev, "out of memory\n");
4046 goto out;
4047 }
4048 memset(lunzerobits, 0, sizeof(lunzerobits));
4049
853633e8
DB
4050 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4051
03383736 4052 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
853633e8
DB
4053 logdev_list, &nlogicals)) {
4054 h->drv_req_rescan = 1;
edd16368 4055 goto out;
853633e8 4056 }
edd16368 4057
66749d0d
ST
4058 /* Set number of local logicals (non PTRAID) */
4059 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4060 dev_warn(&h->pdev->dev,
4061 "%s: Can't determine number of local logical devices.\n",
4062 __func__);
4063 }
edd16368 4064
aca4a520
ST
4065 /* We might see up to the maximum number of logical and physical disks
4066 * plus external target devices, and a device for the local RAID
4067 * controller.
edd16368 4068 */
aca4a520 4069 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
edd16368
SC
4070
4071 /* Allocate the per device structures */
4072 for (i = 0; i < ndevs_to_allocate; i++) {
b7ec021f
ST
4073 if (i >= HPSA_MAX_DEVICES) {
4074 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4075 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4076 ndevs_to_allocate - HPSA_MAX_DEVICES);
4077 break;
4078 }
4079
edd16368
SC
4080 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4081 if (!currentsd[i]) {
4082 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4083 __FILE__, __LINE__);
853633e8 4084 h->drv_req_rescan = 1;
edd16368
SC
4085 goto out;
4086 }
4087 ndev_allocated++;
4088 }
4089
8645291b 4090 if (is_scsi_rev_5(h))
339b2b14
SC
4091 raid_ctlr_position = 0;
4092 else
4093 raid_ctlr_position = nphysicals + nlogicals;
4094
edd16368 4095 /* adjust our table of devices */
4f4eb9f1 4096 n_ext_target_devs = 0;
edd16368 4097 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
0b0e1d6c 4098 u8 *lunaddrbytes, is_OBDR = 0;
683fc444 4099 int rc = 0;
f2039b03 4100 int phys_dev_index = i - (raid_ctlr_position == 0);
edd16368 4101
04fa2f44 4102 physical_device = i < nphysicals + (raid_ctlr_position == 0);
edd16368
SC
4103
4104 /* Figure out where the LUN ID info is coming from */
339b2b14
SC
4105 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4106 i, nphysicals, nlogicals, physdev_list, logdev_list);
41ce4c35
SC
4107
4108 /* skip masked non-disk devices */
04fa2f44 4109 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
cca8f13b
DB
4110 (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4111 (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
04fa2f44 4112 continue;
edd16368
SC
4113
4114 /* Get device type, vendor, model, device id */
683fc444
DB
4115 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4116 &is_OBDR);
4117 if (rc == -ENOMEM) {
4118 dev_warn(&h->pdev->dev,
4119 "Out of memory, rescan deferred.\n");
853633e8 4120 h->drv_req_rescan = 1;
683fc444 4121 goto out;
853633e8 4122 }
683fc444
DB
4123 if (rc) {
4124 dev_warn(&h->pdev->dev,
4125 "Inquiry failed, skipping device.\n");
4126 continue;
4127 }
4128
66749d0d
ST
4129 /* Determine if this is a lun from an external target array */
4130 tmpdevice->external =
4131 figure_external_status(h, raid_ctlr_position, i,
4132 nphysicals, nlocal_logicals);
4133
1f310bde 4134 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
9b5c48c2 4135 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
edd16368
SC
4136 this_device = currentsd[ncurrent];
4137
34592254
ST
4138 /* Turn on discovery_polling if there are ext target devices.
4139 * Event-based change notification is unreliable for those.
edd16368 4140 */
34592254
ST
4141 if (!h->discovery_polling) {
4142 if (tmpdevice->external) {
4143 h->discovery_polling = 1;
4144 dev_info(&h->pdev->dev,
4145 "External target, activate discovery polling.\n");
4146 }
edd16368
SC
4147 }
4148
34592254 4149
edd16368 4150 *this_device = *tmpdevice;
04fa2f44 4151 this_device->physical_device = physical_device;
edd16368 4152
04fa2f44
KB
4153 /*
4154 * Expose all devices except for physical devices that
4155 * are masked.
4156 */
4157 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
2a168208
KB
4158 this_device->expose_device = 0;
4159 else
4160 this_device->expose_device = 1;
41ce4c35 4161
d04e62b9
KB
4162
4163 /*
4164 * Get the SAS address for physical devices that are exposed.
4165 */
4166 if (this_device->physical_device && this_device->expose_device)
4167 hpsa_get_sas_address(h, lunaddrbytes, this_device);
41ce4c35 4168
edd16368 4169 switch (this_device->devtype) {
0b0e1d6c 4170 case TYPE_ROM:
edd16368
SC
4171 /* We don't *really* support actual CD-ROM devices,
4172 * just "One Button Disaster Recovery" tape drive
4173 * which temporarily pretends to be a CD-ROM drive.
4174 * So we check that the device is really an OBDR tape
4175 * device by checking for "$DR-10" in bytes 43-48 of
4176 * the inquiry data.
4177 */
0b0e1d6c
SC
4178 if (is_OBDR)
4179 ncurrent++;
edd16368
SC
4180 break;
4181 case TYPE_DISK:
af15ed36 4182 case TYPE_ZBC:
04fa2f44 4183 if (this_device->physical_device) {
b9092b79
KB
4184 /* The disk is in HBA mode. */
4185 /* Never use RAID mapper in HBA mode. */
ecf418d1 4186 this_device->offload_enabled = 0;
b9092b79 4187 hpsa_get_ioaccel_drive_info(h, this_device,
f2039b03
DB
4188 physdev_list, phys_dev_index, id_phys);
4189 hpsa_get_path_info(this_device,
4190 physdev_list, phys_dev_index, id_phys);
b9092b79 4191 }
ecf418d1 4192 ncurrent++;
edd16368
SC
4193 break;
4194 case TYPE_TAPE:
4195 case TYPE_MEDIUM_CHANGER:
cca8f13b
DB
4196 ncurrent++;
4197 break;
41ce4c35 4198 case TYPE_ENCLOSURE:
17a9e54a
DB
4199 if (!this_device->external)
4200 hpsa_get_enclosure_info(h, lunaddrbytes,
cca8f13b
DB
4201 physdev_list, phys_dev_index,
4202 this_device);
b9092b79 4203 ncurrent++;
41ce4c35 4204 break;
edd16368
SC
4205 case TYPE_RAID:
4206 /* Only present the Smartarray HBA as a RAID controller.
4207 * If it's a RAID controller other than the HBA itself
4208 * (an external RAID controller, MSA500 or similar)
4209 * don't present it.
4210 */
4211 if (!is_hba_lunid(lunaddrbytes))
4212 break;
4213 ncurrent++;
4214 break;
4215 default:
4216 break;
4217 }
cfe5badc 4218 if (ncurrent >= HPSA_MAX_DEVICES)
edd16368
SC
4219 break;
4220 }
d04e62b9
KB
4221
4222 if (h->sas_host == NULL) {
4223 int rc = 0;
4224
4225 rc = hpsa_add_sas_host(h);
4226 if (rc) {
4227 dev_warn(&h->pdev->dev,
4228 "Could not add sas host %d\n", rc);
4229 goto out;
4230 }
4231 }
4232
8aa60681 4233 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
edd16368
SC
4234out:
4235 kfree(tmpdevice);
4236 for (i = 0; i < ndev_allocated; i++)
4237 kfree(currentsd[i]);
4238 kfree(currentsd);
edd16368
SC
4239 kfree(physdev_list);
4240 kfree(logdev_list);
66749d0d 4241 kfree(id_ctlr);
03383736 4242 kfree(id_phys);
edd16368
SC
4243}
4244
ec5cbf04
WS
4245static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4246 struct scatterlist *sg)
4247{
4248 u64 addr64 = (u64) sg_dma_address(sg);
4249 unsigned int len = sg_dma_len(sg);
4250
4251 desc->Addr = cpu_to_le64(addr64);
4252 desc->Len = cpu_to_le32(len);
4253 desc->Ext = 0;
4254}
4255
c7ee65b3
WS
4256/*
4257 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
edd16368
SC
4258 * dma mapping and fills in the scatter gather entries of the
4259 * hpsa command, cp.
4260 */
33a2ffce 4261static int hpsa_scatter_gather(struct ctlr_info *h,
edd16368
SC
4262 struct CommandList *cp,
4263 struct scsi_cmnd *cmd)
4264{
edd16368 4265 struct scatterlist *sg;
b3a7ba7c 4266 int use_sg, i, sg_limit, chained, last_sg;
33a2ffce 4267 struct SGDescriptor *curr_sg;
edd16368 4268
33a2ffce 4269 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
edd16368
SC
4270
4271 use_sg = scsi_dma_map(cmd);
4272 if (use_sg < 0)
4273 return use_sg;
4274
4275 if (!use_sg)
4276 goto sglist_finished;
4277
b3a7ba7c
WS
4278 /*
4279 * If the number of entries is greater than the max for a single list,
4280 * then we have a chained list; we will set up all but one entry in the
4281 * first list (the last entry is saved for link information);
4282 * otherwise, we don't have a chained list and we'll set up at each of
4283 * the entries in the one list.
4284 */
33a2ffce 4285 curr_sg = cp->SG;
b3a7ba7c
WS
4286 chained = use_sg > h->max_cmd_sg_entries;
4287 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4288 last_sg = scsi_sg_count(cmd) - 1;
4289 scsi_for_each_sg(cmd, sg, sg_limit, i) {
ec5cbf04 4290 hpsa_set_sg_descriptor(curr_sg, sg);
33a2ffce
SC
4291 curr_sg++;
4292 }
ec5cbf04 4293
b3a7ba7c
WS
4294 if (chained) {
4295 /*
4296 * Continue with the chained list. Set curr_sg to the chained
4297 * list. Modify the limit to the total count less the entries
4298 * we've already set up. Resume the scan at the list entry
4299 * where the previous loop left off.
4300 */
4301 curr_sg = h->cmd_sg_list[cp->cmdindex];
4302 sg_limit = use_sg - sg_limit;
4303 for_each_sg(sg, sg, sg_limit, i) {
4304 hpsa_set_sg_descriptor(curr_sg, sg);
4305 curr_sg++;
4306 }
4307 }
4308
ec5cbf04 4309 /* Back the pointer up to the last entry and mark it as "last". */
b3a7ba7c 4310 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
33a2ffce
SC
4311
4312 if (use_sg + chained > h->maxSG)
4313 h->maxSG = use_sg + chained;
4314
4315 if (chained) {
4316 cp->Header.SGList = h->max_cmd_sg_entries;
50a0decf 4317 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
e2bea6df
SC
4318 if (hpsa_map_sg_chain_block(h, cp)) {
4319 scsi_dma_unmap(cmd);
4320 return -1;
4321 }
33a2ffce 4322 return 0;
edd16368
SC
4323 }
4324
4325sglist_finished:
4326
01a02ffc 4327 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
c7ee65b3 4328 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
edd16368
SC
4329 return 0;
4330}
4331
283b4a9b
SC
4332#define IO_ACCEL_INELIGIBLE (1)
4333static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4334{
4335 int is_write = 0;
4336 u32 block;
4337 u32 block_cnt;
4338
4339 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4340 switch (cdb[0]) {
4341 case WRITE_6:
4342 case WRITE_12:
4343 is_write = 1;
4344 case READ_6:
4345 case READ_12:
4346 if (*cdb_len == 6) {
c8a6c9a6 4347 block = get_unaligned_be16(&cdb[2]);
283b4a9b 4348 block_cnt = cdb[4];
c8a6c9a6
DB
4349 if (block_cnt == 0)
4350 block_cnt = 256;
283b4a9b
SC
4351 } else {
4352 BUG_ON(*cdb_len != 12);
c8a6c9a6
DB
4353 block = get_unaligned_be32(&cdb[2]);
4354 block_cnt = get_unaligned_be32(&cdb[6]);
283b4a9b
SC
4355 }
4356 if (block_cnt > 0xffff)
4357 return IO_ACCEL_INELIGIBLE;
4358
4359 cdb[0] = is_write ? WRITE_10 : READ_10;
4360 cdb[1] = 0;
4361 cdb[2] = (u8) (block >> 24);
4362 cdb[3] = (u8) (block >> 16);
4363 cdb[4] = (u8) (block >> 8);
4364 cdb[5] = (u8) (block);
4365 cdb[6] = 0;
4366 cdb[7] = (u8) (block_cnt >> 8);
4367 cdb[8] = (u8) (block_cnt);
4368 cdb[9] = 0;
4369 *cdb_len = 10;
4370 break;
4371 }
4372 return 0;
4373}
4374
c349775e 4375static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
283b4a9b 4376 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 4377 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
e1f7de0c
MG
4378{
4379 struct scsi_cmnd *cmd = c->scsi_cmd;
e1f7de0c
MG
4380 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4381 unsigned int len;
4382 unsigned int total_len = 0;
4383 struct scatterlist *sg;
4384 u64 addr64;
4385 int use_sg, i;
4386 struct SGDescriptor *curr_sg;
4387 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4388
283b4a9b 4389 /* TODO: implement chaining support */
03383736
DB
4390 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4391 atomic_dec(&phys_disk->ioaccel_cmds_out);
283b4a9b 4392 return IO_ACCEL_INELIGIBLE;
03383736 4393 }
283b4a9b 4394
e1f7de0c
MG
4395 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4396
03383736
DB
4397 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4398 atomic_dec(&phys_disk->ioaccel_cmds_out);
283b4a9b 4399 return IO_ACCEL_INELIGIBLE;
03383736 4400 }
283b4a9b 4401
e1f7de0c
MG
4402 c->cmd_type = CMD_IOACCEL1;
4403
4404 /* Adjust the DMA address to point to the accelerated command buffer */
4405 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4406 (c->cmdindex * sizeof(*cp));
4407 BUG_ON(c->busaddr & 0x0000007F);
4408
4409 use_sg = scsi_dma_map(cmd);
03383736
DB
4410 if (use_sg < 0) {
4411 atomic_dec(&phys_disk->ioaccel_cmds_out);
e1f7de0c 4412 return use_sg;
03383736 4413 }
e1f7de0c
MG
4414
4415 if (use_sg) {
4416 curr_sg = cp->SG;
4417 scsi_for_each_sg(cmd, sg, use_sg, i) {
4418 addr64 = (u64) sg_dma_address(sg);
4419 len = sg_dma_len(sg);
4420 total_len += len;
50a0decf
SC
4421 curr_sg->Addr = cpu_to_le64(addr64);
4422 curr_sg->Len = cpu_to_le32(len);
4423 curr_sg->Ext = cpu_to_le32(0);
e1f7de0c
MG
4424 curr_sg++;
4425 }
50a0decf 4426 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
e1f7de0c
MG
4427
4428 switch (cmd->sc_data_direction) {
4429 case DMA_TO_DEVICE:
4430 control |= IOACCEL1_CONTROL_DATA_OUT;
4431 break;
4432 case DMA_FROM_DEVICE:
4433 control |= IOACCEL1_CONTROL_DATA_IN;
4434 break;
4435 case DMA_NONE:
4436 control |= IOACCEL1_CONTROL_NODATAXFER;
4437 break;
4438 default:
4439 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4440 cmd->sc_data_direction);
4441 BUG();
4442 break;
4443 }
4444 } else {
4445 control |= IOACCEL1_CONTROL_NODATAXFER;
4446 }
4447
c349775e 4448 c->Header.SGList = use_sg;
e1f7de0c 4449 /* Fill out the command structure to submit */
2b08b3e9
DB
4450 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4451 cp->transfer_len = cpu_to_le32(total_len);
4452 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4453 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4454 cp->control = cpu_to_le32(control);
283b4a9b
SC
4455 memcpy(cp->CDB, cdb, cdb_len);
4456 memcpy(cp->CISS_LUN, scsi3addr, 8);
c349775e 4457 /* Tag was already set at init time. */
283b4a9b 4458 enqueue_cmd_and_start_io(h, c);
e1f7de0c
MG
4459 return 0;
4460}
edd16368 4461
283b4a9b
SC
4462/*
4463 * Queue a command directly to a device behind the controller using the
4464 * I/O accelerator path.
4465 */
4466static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4467 struct CommandList *c)
4468{
4469 struct scsi_cmnd *cmd = c->scsi_cmd;
4470 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4471
03383736
DB
4472 c->phys_disk = dev;
4473
283b4a9b 4474 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
03383736 4475 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
283b4a9b
SC
4476}
4477
dd0e19f3
ST
4478/*
4479 * Set encryption parameters for the ioaccel2 request
4480 */
4481static void set_encrypt_ioaccel2(struct ctlr_info *h,
4482 struct CommandList *c, struct io_accel2_cmd *cp)
4483{
4484 struct scsi_cmnd *cmd = c->scsi_cmd;
4485 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4486 struct raid_map_data *map = &dev->raid_map;
4487 u64 first_block;
4488
dd0e19f3 4489 /* Are we doing encryption on this device */
2b08b3e9 4490 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
dd0e19f3
ST
4491 return;
4492 /* Set the data encryption key index. */
4493 cp->dekindex = map->dekindex;
4494
4495 /* Set the encryption enable flag, encoded into direction field. */
4496 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4497
4498 /* Set encryption tweak values based on logical block address
4499 * If block size is 512, tweak value is LBA.
4500 * For other block sizes, tweak is (LBA * block size)/ 512)
4501 */
4502 switch (cmd->cmnd[0]) {
4503 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4504 case WRITE_6:
4505 case READ_6:
2b08b3e9 4506 first_block = get_unaligned_be16(&cmd->cmnd[2]);
dd0e19f3
ST
4507 break;
4508 case WRITE_10:
4509 case READ_10:
dd0e19f3
ST
4510 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4511 case WRITE_12:
4512 case READ_12:
2b08b3e9 4513 first_block = get_unaligned_be32(&cmd->cmnd[2]);
dd0e19f3
ST
4514 break;
4515 case WRITE_16:
4516 case READ_16:
2b08b3e9 4517 first_block = get_unaligned_be64(&cmd->cmnd[2]);
dd0e19f3
ST
4518 break;
4519 default:
4520 dev_err(&h->pdev->dev,
2b08b3e9
DB
4521 "ERROR: %s: size (0x%x) not supported for encryption\n",
4522 __func__, cmd->cmnd[0]);
dd0e19f3
ST
4523 BUG();
4524 break;
4525 }
2b08b3e9
DB
4526
4527 if (le32_to_cpu(map->volume_blk_size) != 512)
4528 first_block = first_block *
4529 le32_to_cpu(map->volume_blk_size)/512;
4530
4531 cp->tweak_lower = cpu_to_le32(first_block);
4532 cp->tweak_upper = cpu_to_le32(first_block >> 32);
dd0e19f3
ST
4533}
4534
c349775e
ST
4535static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4536 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 4537 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
c349775e
ST
4538{
4539 struct scsi_cmnd *cmd = c->scsi_cmd;
4540 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4541 struct ioaccel2_sg_element *curr_sg;
4542 int use_sg, i;
4543 struct scatterlist *sg;
4544 u64 addr64;
4545 u32 len;
4546 u32 total_len = 0;
4547
d9a729f3 4548 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
c349775e 4549
03383736
DB
4550 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4551 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 4552 return IO_ACCEL_INELIGIBLE;
03383736
DB
4553 }
4554
c349775e
ST
4555 c->cmd_type = CMD_IOACCEL2;
4556 /* Adjust the DMA address to point to the accelerated command buffer */
4557 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4558 (c->cmdindex * sizeof(*cp));
4559 BUG_ON(c->busaddr & 0x0000007F);
4560
4561 memset(cp, 0, sizeof(*cp));
4562 cp->IU_type = IOACCEL2_IU_TYPE;
4563
4564 use_sg = scsi_dma_map(cmd);
03383736
DB
4565 if (use_sg < 0) {
4566 atomic_dec(&phys_disk->ioaccel_cmds_out);
c349775e 4567 return use_sg;
03383736 4568 }
c349775e
ST
4569
4570 if (use_sg) {
c349775e 4571 curr_sg = cp->sg;
d9a729f3
WS
4572 if (use_sg > h->ioaccel_maxsg) {
4573 addr64 = le64_to_cpu(
4574 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4575 curr_sg->address = cpu_to_le64(addr64);
4576 curr_sg->length = 0;
4577 curr_sg->reserved[0] = 0;
4578 curr_sg->reserved[1] = 0;
4579 curr_sg->reserved[2] = 0;
4580 curr_sg->chain_indicator = 0x80;
4581
4582 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4583 }
c349775e
ST
4584 scsi_for_each_sg(cmd, sg, use_sg, i) {
4585 addr64 = (u64) sg_dma_address(sg);
4586 len = sg_dma_len(sg);
4587 total_len += len;
4588 curr_sg->address = cpu_to_le64(addr64);
4589 curr_sg->length = cpu_to_le32(len);
4590 curr_sg->reserved[0] = 0;
4591 curr_sg->reserved[1] = 0;
4592 curr_sg->reserved[2] = 0;
4593 curr_sg->chain_indicator = 0;
4594 curr_sg++;
4595 }
4596
4597 switch (cmd->sc_data_direction) {
4598 case DMA_TO_DEVICE:
dd0e19f3
ST
4599 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4600 cp->direction |= IOACCEL2_DIR_DATA_OUT;
c349775e
ST
4601 break;
4602 case DMA_FROM_DEVICE:
dd0e19f3
ST
4603 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4604 cp->direction |= IOACCEL2_DIR_DATA_IN;
c349775e
ST
4605 break;
4606 case DMA_NONE:
dd0e19f3
ST
4607 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4608 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e
ST
4609 break;
4610 default:
4611 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4612 cmd->sc_data_direction);
4613 BUG();
4614 break;
4615 }
4616 } else {
dd0e19f3
ST
4617 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4618 cp->direction |= IOACCEL2_DIR_NO_DATA;
c349775e 4619 }
dd0e19f3
ST
4620
4621 /* Set encryption parameters, if necessary */
4622 set_encrypt_ioaccel2(h, c, cp);
4623
2b08b3e9 4624 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
f2405db8 4625 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
c349775e 4626 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
c349775e 4627
c349775e
ST
4628 cp->data_len = cpu_to_le32(total_len);
4629 cp->err_ptr = cpu_to_le64(c->busaddr +
4630 offsetof(struct io_accel2_cmd, error_data));
50a0decf 4631 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
c349775e 4632
d9a729f3
WS
4633 /* fill in sg elements */
4634 if (use_sg > h->ioaccel_maxsg) {
4635 cp->sg_count = 1;
a736e9b6 4636 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
d9a729f3
WS
4637 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4638 atomic_dec(&phys_disk->ioaccel_cmds_out);
4639 scsi_dma_unmap(cmd);
4640 return -1;
4641 }
4642 } else
4643 cp->sg_count = (u8) use_sg;
4644
c349775e
ST
4645 enqueue_cmd_and_start_io(h, c);
4646 return 0;
4647}
4648
4649/*
4650 * Queue a command to the correct I/O accelerator path.
4651 */
4652static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4653 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
03383736 4654 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
c349775e 4655{
03383736
DB
4656 /* Try to honor the device's queue depth */
4657 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4658 phys_disk->queue_depth) {
4659 atomic_dec(&phys_disk->ioaccel_cmds_out);
4660 return IO_ACCEL_INELIGIBLE;
4661 }
c349775e
ST
4662 if (h->transMethod & CFGTBL_Trans_io_accel1)
4663 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
03383736
DB
4664 cdb, cdb_len, scsi3addr,
4665 phys_disk);
c349775e
ST
4666 else
4667 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
03383736
DB
4668 cdb, cdb_len, scsi3addr,
4669 phys_disk);
c349775e
ST
4670}
4671
6b80b18f
ST
4672static void raid_map_helper(struct raid_map_data *map,
4673 int offload_to_mirror, u32 *map_index, u32 *current_group)
4674{
4675 if (offload_to_mirror == 0) {
4676 /* use physical disk in the first mirrored group. */
2b08b3e9 4677 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4678 return;
4679 }
4680 do {
4681 /* determine mirror group that *map_index indicates */
2b08b3e9
DB
4682 *current_group = *map_index /
4683 le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4684 if (offload_to_mirror == *current_group)
4685 continue;
2b08b3e9 4686 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
6b80b18f 4687 /* select map index from next group */
2b08b3e9 4688 *map_index += le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4689 (*current_group)++;
4690 } else {
4691 /* select map index from first group */
2b08b3e9 4692 *map_index %= le16_to_cpu(map->data_disks_per_row);
6b80b18f
ST
4693 *current_group = 0;
4694 }
4695 } while (offload_to_mirror != *current_group);
4696}
4697
283b4a9b
SC
4698/*
4699 * Attempt to perform offload RAID mapping for a logical volume I/O.
4700 */
4701static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4702 struct CommandList *c)
4703{
4704 struct scsi_cmnd *cmd = c->scsi_cmd;
4705 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4706 struct raid_map_data *map = &dev->raid_map;
4707 struct raid_map_disk_data *dd = &map->data[0];
4708 int is_write = 0;
4709 u32 map_index;
4710 u64 first_block, last_block;
4711 u32 block_cnt;
4712 u32 blocks_per_row;
4713 u64 first_row, last_row;
4714 u32 first_row_offset, last_row_offset;
4715 u32 first_column, last_column;
6b80b18f
ST
4716 u64 r0_first_row, r0_last_row;
4717 u32 r5or6_blocks_per_row;
4718 u64 r5or6_first_row, r5or6_last_row;
4719 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4720 u32 r5or6_first_column, r5or6_last_column;
4721 u32 total_disks_per_row;
4722 u32 stripesize;
4723 u32 first_group, last_group, current_group;
283b4a9b
SC
4724 u32 map_row;
4725 u32 disk_handle;
4726 u64 disk_block;
4727 u32 disk_block_cnt;
4728 u8 cdb[16];
4729 u8 cdb_len;
2b08b3e9 4730 u16 strip_size;
283b4a9b
SC
4731#if BITS_PER_LONG == 32
4732 u64 tmpdiv;
4733#endif
6b80b18f 4734 int offload_to_mirror;
283b4a9b 4735
283b4a9b
SC
4736 /* check for valid opcode, get LBA and block count */
4737 switch (cmd->cmnd[0]) {
4738 case WRITE_6:
4739 is_write = 1;
4740 case READ_6:
c8a6c9a6 4741 first_block = get_unaligned_be16(&cmd->cmnd[2]);
283b4a9b 4742 block_cnt = cmd->cmnd[4];
3fa89a04
SC
4743 if (block_cnt == 0)
4744 block_cnt = 256;
283b4a9b
SC
4745 break;
4746 case WRITE_10:
4747 is_write = 1;
4748 case READ_10:
4749 first_block =
4750 (((u64) cmd->cmnd[2]) << 24) |
4751 (((u64) cmd->cmnd[3]) << 16) |
4752 (((u64) cmd->cmnd[4]) << 8) |
4753 cmd->cmnd[5];
4754 block_cnt =
4755 (((u32) cmd->cmnd[7]) << 8) |
4756 cmd->cmnd[8];
4757 break;
4758 case WRITE_12:
4759 is_write = 1;
4760 case READ_12:
4761 first_block =
4762 (((u64) cmd->cmnd[2]) << 24) |
4763 (((u64) cmd->cmnd[3]) << 16) |
4764 (((u64) cmd->cmnd[4]) << 8) |
4765 cmd->cmnd[5];
4766 block_cnt =
4767 (((u32) cmd->cmnd[6]) << 24) |
4768 (((u32) cmd->cmnd[7]) << 16) |
4769 (((u32) cmd->cmnd[8]) << 8) |
4770 cmd->cmnd[9];
4771 break;
4772 case WRITE_16:
4773 is_write = 1;
4774 case READ_16:
4775 first_block =
4776 (((u64) cmd->cmnd[2]) << 56) |
4777 (((u64) cmd->cmnd[3]) << 48) |
4778 (((u64) cmd->cmnd[4]) << 40) |
4779 (((u64) cmd->cmnd[5]) << 32) |
4780 (((u64) cmd->cmnd[6]) << 24) |
4781 (((u64) cmd->cmnd[7]) << 16) |
4782 (((u64) cmd->cmnd[8]) << 8) |
4783 cmd->cmnd[9];
4784 block_cnt =
4785 (((u32) cmd->cmnd[10]) << 24) |
4786 (((u32) cmd->cmnd[11]) << 16) |
4787 (((u32) cmd->cmnd[12]) << 8) |
4788 cmd->cmnd[13];
4789 break;
4790 default:
4791 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4792 }
283b4a9b
SC
4793 last_block = first_block + block_cnt - 1;
4794
4795 /* check for write to non-RAID-0 */
4796 if (is_write && dev->raid_level != 0)
4797 return IO_ACCEL_INELIGIBLE;
4798
4799 /* check for invalid block or wraparound */
2b08b3e9
DB
4800 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4801 last_block < first_block)
283b4a9b
SC
4802 return IO_ACCEL_INELIGIBLE;
4803
4804 /* calculate stripe information for the request */
2b08b3e9
DB
4805 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4806 le16_to_cpu(map->strip_size);
4807 strip_size = le16_to_cpu(map->strip_size);
283b4a9b
SC
4808#if BITS_PER_LONG == 32
4809 tmpdiv = first_block;
4810 (void) do_div(tmpdiv, blocks_per_row);
4811 first_row = tmpdiv;
4812 tmpdiv = last_block;
4813 (void) do_div(tmpdiv, blocks_per_row);
4814 last_row = tmpdiv;
4815 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4816 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4817 tmpdiv = first_row_offset;
2b08b3e9 4818 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
4819 first_column = tmpdiv;
4820 tmpdiv = last_row_offset;
2b08b3e9 4821 (void) do_div(tmpdiv, strip_size);
283b4a9b
SC
4822 last_column = tmpdiv;
4823#else
4824 first_row = first_block / blocks_per_row;
4825 last_row = last_block / blocks_per_row;
4826 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4827 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
2b08b3e9
DB
4828 first_column = first_row_offset / strip_size;
4829 last_column = last_row_offset / strip_size;
283b4a9b
SC
4830#endif
4831
4832 /* if this isn't a single row/column then give to the controller */
4833 if ((first_row != last_row) || (first_column != last_column))
4834 return IO_ACCEL_INELIGIBLE;
4835
4836 /* proceeding with driver mapping */
2b08b3e9
DB
4837 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4838 le16_to_cpu(map->metadata_disks_per_row);
283b4a9b 4839 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 4840 le16_to_cpu(map->row_cnt);
6b80b18f
ST
4841 map_index = (map_row * total_disks_per_row) + first_column;
4842
4843 switch (dev->raid_level) {
4844 case HPSA_RAID_0:
4845 break; /* nothing special to do */
4846 case HPSA_RAID_1:
4847 /* Handles load balance across RAID 1 members.
4848 * (2-drive R1 and R10 with even # of drives.)
4849 * Appropriate for SSDs, not optimal for HDDs
283b4a9b 4850 */
2b08b3e9 4851 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
283b4a9b 4852 if (dev->offload_to_mirror)
2b08b3e9 4853 map_index += le16_to_cpu(map->data_disks_per_row);
283b4a9b 4854 dev->offload_to_mirror = !dev->offload_to_mirror;
6b80b18f
ST
4855 break;
4856 case HPSA_RAID_ADM:
4857 /* Handles N-way mirrors (R1-ADM)
4858 * and R10 with # of drives divisible by 3.)
4859 */
2b08b3e9 4860 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
6b80b18f
ST
4861
4862 offload_to_mirror = dev->offload_to_mirror;
4863 raid_map_helper(map, offload_to_mirror,
4864 &map_index, &current_group);
4865 /* set mirror group to use next time */
4866 offload_to_mirror =
2b08b3e9
DB
4867 (offload_to_mirror >=
4868 le16_to_cpu(map->layout_map_count) - 1)
6b80b18f 4869 ? 0 : offload_to_mirror + 1;
6b80b18f
ST
4870 dev->offload_to_mirror = offload_to_mirror;
4871 /* Avoid direct use of dev->offload_to_mirror within this
4872 * function since multiple threads might simultaneously
4873 * increment it beyond the range of dev->layout_map_count -1.
4874 */
4875 break;
4876 case HPSA_RAID_5:
4877 case HPSA_RAID_6:
2b08b3e9 4878 if (le16_to_cpu(map->layout_map_count) <= 1)
6b80b18f
ST
4879 break;
4880
4881 /* Verify first and last block are in same RAID group */
4882 r5or6_blocks_per_row =
2b08b3e9
DB
4883 le16_to_cpu(map->strip_size) *
4884 le16_to_cpu(map->data_disks_per_row);
6b80b18f 4885 BUG_ON(r5or6_blocks_per_row == 0);
2b08b3e9
DB
4886 stripesize = r5or6_blocks_per_row *
4887 le16_to_cpu(map->layout_map_count);
6b80b18f
ST
4888#if BITS_PER_LONG == 32
4889 tmpdiv = first_block;
4890 first_group = do_div(tmpdiv, stripesize);
4891 tmpdiv = first_group;
4892 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4893 first_group = tmpdiv;
4894 tmpdiv = last_block;
4895 last_group = do_div(tmpdiv, stripesize);
4896 tmpdiv = last_group;
4897 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4898 last_group = tmpdiv;
4899#else
4900 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4901 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
6b80b18f 4902#endif
000ff7c2 4903 if (first_group != last_group)
6b80b18f
ST
4904 return IO_ACCEL_INELIGIBLE;
4905
4906 /* Verify request is in a single row of RAID 5/6 */
4907#if BITS_PER_LONG == 32
4908 tmpdiv = first_block;
4909 (void) do_div(tmpdiv, stripesize);
4910 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4911 tmpdiv = last_block;
4912 (void) do_div(tmpdiv, stripesize);
4913 r5or6_last_row = r0_last_row = tmpdiv;
4914#else
4915 first_row = r5or6_first_row = r0_first_row =
4916 first_block / stripesize;
4917 r5or6_last_row = r0_last_row = last_block / stripesize;
4918#endif
4919 if (r5or6_first_row != r5or6_last_row)
4920 return IO_ACCEL_INELIGIBLE;
4921
4922
4923 /* Verify request is in a single column */
4924#if BITS_PER_LONG == 32
4925 tmpdiv = first_block;
4926 first_row_offset = do_div(tmpdiv, stripesize);
4927 tmpdiv = first_row_offset;
4928 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4929 r5or6_first_row_offset = first_row_offset;
4930 tmpdiv = last_block;
4931 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4932 tmpdiv = r5or6_last_row_offset;
4933 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4934 tmpdiv = r5or6_first_row_offset;
4935 (void) do_div(tmpdiv, map->strip_size);
4936 first_column = r5or6_first_column = tmpdiv;
4937 tmpdiv = r5or6_last_row_offset;
4938 (void) do_div(tmpdiv, map->strip_size);
4939 r5or6_last_column = tmpdiv;
4940#else
4941 first_row_offset = r5or6_first_row_offset =
4942 (u32)((first_block % stripesize) %
4943 r5or6_blocks_per_row);
4944
4945 r5or6_last_row_offset =
4946 (u32)((last_block % stripesize) %
4947 r5or6_blocks_per_row);
4948
4949 first_column = r5or6_first_column =
2b08b3e9 4950 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
6b80b18f 4951 r5or6_last_column =
2b08b3e9 4952 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
6b80b18f
ST
4953#endif
4954 if (r5or6_first_column != r5or6_last_column)
4955 return IO_ACCEL_INELIGIBLE;
4956
4957 /* Request is eligible */
4958 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
2b08b3e9 4959 le16_to_cpu(map->row_cnt);
6b80b18f
ST
4960
4961 map_index = (first_group *
2b08b3e9 4962 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
6b80b18f
ST
4963 (map_row * total_disks_per_row) + first_column;
4964 break;
4965 default:
4966 return IO_ACCEL_INELIGIBLE;
283b4a9b 4967 }
6b80b18f 4968
07543e0c
SC
4969 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4970 return IO_ACCEL_INELIGIBLE;
4971
03383736 4972 c->phys_disk = dev->phys_disk[map_index];
c3390df4
DB
4973 if (!c->phys_disk)
4974 return IO_ACCEL_INELIGIBLE;
03383736 4975
283b4a9b 4976 disk_handle = dd[map_index].ioaccel_handle;
2b08b3e9
DB
4977 disk_block = le64_to_cpu(map->disk_starting_blk) +
4978 first_row * le16_to_cpu(map->strip_size) +
4979 (first_row_offset - first_column *
4980 le16_to_cpu(map->strip_size));
283b4a9b
SC
4981 disk_block_cnt = block_cnt;
4982
4983 /* handle differing logical/physical block sizes */
4984 if (map->phys_blk_shift) {
4985 disk_block <<= map->phys_blk_shift;
4986 disk_block_cnt <<= map->phys_blk_shift;
4987 }
4988 BUG_ON(disk_block_cnt > 0xffff);
4989
4990 /* build the new CDB for the physical disk I/O */
4991 if (disk_block > 0xffffffff) {
4992 cdb[0] = is_write ? WRITE_16 : READ_16;
4993 cdb[1] = 0;
4994 cdb[2] = (u8) (disk_block >> 56);
4995 cdb[3] = (u8) (disk_block >> 48);
4996 cdb[4] = (u8) (disk_block >> 40);
4997 cdb[5] = (u8) (disk_block >> 32);
4998 cdb[6] = (u8) (disk_block >> 24);
4999 cdb[7] = (u8) (disk_block >> 16);
5000 cdb[8] = (u8) (disk_block >> 8);
5001 cdb[9] = (u8) (disk_block);
5002 cdb[10] = (u8) (disk_block_cnt >> 24);
5003 cdb[11] = (u8) (disk_block_cnt >> 16);
5004 cdb[12] = (u8) (disk_block_cnt >> 8);
5005 cdb[13] = (u8) (disk_block_cnt);
5006 cdb[14] = 0;
5007 cdb[15] = 0;
5008 cdb_len = 16;
5009 } else {
5010 cdb[0] = is_write ? WRITE_10 : READ_10;
5011 cdb[1] = 0;
5012 cdb[2] = (u8) (disk_block >> 24);
5013 cdb[3] = (u8) (disk_block >> 16);
5014 cdb[4] = (u8) (disk_block >> 8);
5015 cdb[5] = (u8) (disk_block);
5016 cdb[6] = 0;
5017 cdb[7] = (u8) (disk_block_cnt >> 8);
5018 cdb[8] = (u8) (disk_block_cnt);
5019 cdb[9] = 0;
5020 cdb_len = 10;
5021 }
5022 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
03383736
DB
5023 dev->scsi3addr,
5024 dev->phys_disk[map_index]);
283b4a9b
SC
5025}
5026
25163bd5
WS
5027/*
5028 * Submit commands down the "normal" RAID stack path
5029 * All callers to hpsa_ciss_submit must check lockup_detected
5030 * beforehand, before (opt.) and after calling cmd_alloc
5031 */
574f05d3
SC
5032static int hpsa_ciss_submit(struct ctlr_info *h,
5033 struct CommandList *c, struct scsi_cmnd *cmd,
5034 unsigned char scsi3addr[])
edd16368 5035{
edd16368 5036 cmd->host_scribble = (unsigned char *) c;
edd16368
SC
5037 c->cmd_type = CMD_SCSI;
5038 c->scsi_cmd = cmd;
5039 c->Header.ReplyQueue = 0; /* unused in simple mode */
5040 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
f2405db8 5041 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
edd16368
SC
5042
5043 /* Fill in the request block... */
5044
5045 c->Request.Timeout = 0;
edd16368
SC
5046 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5047 c->Request.CDBLen = cmd->cmd_len;
5048 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
edd16368
SC
5049 switch (cmd->sc_data_direction) {
5050 case DMA_TO_DEVICE:
a505b86f
SC
5051 c->Request.type_attr_dir =
5052 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
5053 break;
5054 case DMA_FROM_DEVICE:
a505b86f
SC
5055 c->Request.type_attr_dir =
5056 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
edd16368
SC
5057 break;
5058 case DMA_NONE:
a505b86f
SC
5059 c->Request.type_attr_dir =
5060 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
5061 break;
5062 case DMA_BIDIRECTIONAL:
5063 /* This can happen if a buggy application does a scsi passthru
5064 * and sets both inlen and outlen to non-zero. ( see
5065 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5066 */
5067
a505b86f
SC
5068 c->Request.type_attr_dir =
5069 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
edd16368
SC
5070 /* This is technically wrong, and hpsa controllers should
5071 * reject it with CMD_INVALID, which is the most correct
5072 * response, but non-fibre backends appear to let it
5073 * slide by, and give the same results as if this field
5074 * were set correctly. Either way is acceptable for
5075 * our purposes here.
5076 */
5077
5078 break;
5079
5080 default:
5081 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5082 cmd->sc_data_direction);
5083 BUG();
5084 break;
5085 }
5086
33a2ffce 5087 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
73153fe5 5088 hpsa_cmd_resolve_and_free(h, c);
edd16368
SC
5089 return SCSI_MLQUEUE_HOST_BUSY;
5090 }
5091 enqueue_cmd_and_start_io(h, c);
5092 /* the cmd'll come back via intr handler in complete_scsi_command() */
5093 return 0;
5094}
5095
360c73bd
SC
5096static void hpsa_cmd_init(struct ctlr_info *h, int index,
5097 struct CommandList *c)
5098{
5099 dma_addr_t cmd_dma_handle, err_dma_handle;
5100
5101 /* Zero out all of commandlist except the last field, refcount */
5102 memset(c, 0, offsetof(struct CommandList, refcount));
5103 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5104 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5105 c->err_info = h->errinfo_pool + index;
5106 memset(c->err_info, 0, sizeof(*c->err_info));
5107 err_dma_handle = h->errinfo_pool_dhandle
5108 + index * sizeof(*c->err_info);
5109 c->cmdindex = index;
5110 c->busaddr = (u32) cmd_dma_handle;
5111 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5112 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5113 c->h = h;
a58e7e53 5114 c->scsi_cmd = SCSI_CMD_IDLE;
360c73bd
SC
5115}
5116
5117static void hpsa_preinitialize_commands(struct ctlr_info *h)
5118{
5119 int i;
5120
5121 for (i = 0; i < h->nr_cmds; i++) {
5122 struct CommandList *c = h->cmd_pool + i;
5123
5124 hpsa_cmd_init(h, i, c);
5125 atomic_set(&c->refcount, 0);
5126 }
5127}
5128
5129static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5130 struct CommandList *c)
5131{
5132 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5133
73153fe5
WS
5134 BUG_ON(c->cmdindex != index);
5135
360c73bd
SC
5136 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5137 memset(c->err_info, 0, sizeof(*c->err_info));
5138 c->busaddr = (u32) cmd_dma_handle;
5139}
5140
592a0ad5
WS
5141static int hpsa_ioaccel_submit(struct ctlr_info *h,
5142 struct CommandList *c, struct scsi_cmnd *cmd,
5143 unsigned char *scsi3addr)
5144{
5145 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5146 int rc = IO_ACCEL_INELIGIBLE;
5147
5148 cmd->host_scribble = (unsigned char *) c;
5149
5150 if (dev->offload_enabled) {
5151 hpsa_cmd_init(h, c->cmdindex, c);
5152 c->cmd_type = CMD_SCSI;
5153 c->scsi_cmd = cmd;
5154 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5155 if (rc < 0) /* scsi_dma_map failed. */
5156 rc = SCSI_MLQUEUE_HOST_BUSY;
a3144e0b 5157 } else if (dev->hba_ioaccel_enabled) {
592a0ad5
WS
5158 hpsa_cmd_init(h, c->cmdindex, c);
5159 c->cmd_type = CMD_SCSI;
5160 c->scsi_cmd = cmd;
5161 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5162 if (rc < 0) /* scsi_dma_map failed. */
5163 rc = SCSI_MLQUEUE_HOST_BUSY;
5164 }
5165 return rc;
5166}
5167
080ef1cc
DB
5168static void hpsa_command_resubmit_worker(struct work_struct *work)
5169{
5170 struct scsi_cmnd *cmd;
5171 struct hpsa_scsi_dev_t *dev;
8a0ff92c 5172 struct CommandList *c = container_of(work, struct CommandList, work);
080ef1cc
DB
5173
5174 cmd = c->scsi_cmd;
5175 dev = cmd->device->hostdata;
5176 if (!dev) {
5177 cmd->result = DID_NO_CONNECT << 16;
8a0ff92c 5178 return hpsa_cmd_free_and_done(c->h, c, cmd);
080ef1cc 5179 }
d604f533
WS
5180 if (c->reset_pending)
5181 return hpsa_cmd_resolve_and_free(c->h, c);
a58e7e53
WS
5182 if (c->abort_pending)
5183 return hpsa_cmd_abort_and_free(c->h, c, cmd);
592a0ad5
WS
5184 if (c->cmd_type == CMD_IOACCEL2) {
5185 struct ctlr_info *h = c->h;
5186 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5187 int rc;
5188
5189 if (c2->error_data.serv_response ==
5190 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5191 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5192 if (rc == 0)
5193 return;
5194 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5195 /*
5196 * If we get here, it means dma mapping failed.
5197 * Try again via scsi mid layer, which will
5198 * then get SCSI_MLQUEUE_HOST_BUSY.
5199 */
5200 cmd->result = DID_IMM_RETRY << 16;
8a0ff92c 5201 return hpsa_cmd_free_and_done(h, c, cmd);
592a0ad5
WS
5202 }
5203 /* else, fall thru and resubmit down CISS path */
5204 }
5205 }
360c73bd 5206 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
080ef1cc
DB
5207 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5208 /*
5209 * If we get here, it means dma mapping failed. Try
5210 * again via scsi mid layer, which will then get
5211 * SCSI_MLQUEUE_HOST_BUSY.
592a0ad5
WS
5212 *
5213 * hpsa_ciss_submit will have already freed c
5214 * if it encountered a dma mapping failure.
080ef1cc
DB
5215 */
5216 cmd->result = DID_IMM_RETRY << 16;
5217 cmd->scsi_done(cmd);
5218 }
5219}
5220
574f05d3
SC
5221/* Running in struct Scsi_Host->host_lock less mode */
5222static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5223{
5224 struct ctlr_info *h;
5225 struct hpsa_scsi_dev_t *dev;
5226 unsigned char scsi3addr[8];
5227 struct CommandList *c;
5228 int rc = 0;
5229
5230 /* Get the ptr to our adapter structure out of cmd->host. */
5231 h = sdev_to_hba(cmd->device);
73153fe5
WS
5232
5233 BUG_ON(cmd->request->tag < 0);
5234
574f05d3
SC
5235 dev = cmd->device->hostdata;
5236 if (!dev) {
5237 cmd->result = DID_NO_CONNECT << 16;
5238 cmd->scsi_done(cmd);
5239 return 0;
5240 }
574f05d3 5241
73153fe5 5242 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
bf43caf3 5243
407863cb 5244 if (unlikely(lockup_detected(h))) {
25163bd5 5245 cmd->result = DID_NO_CONNECT << 16;
407863cb
SC
5246 cmd->scsi_done(cmd);
5247 return 0;
5248 }
73153fe5 5249 c = cmd_tagged_alloc(h, cmd);
574f05d3 5250
407863cb
SC
5251 /*
5252 * Call alternate submit routine for I/O accelerated commands.
574f05d3
SC
5253 * Retries always go down the normal I/O path.
5254 */
5255 if (likely(cmd->retries == 0 &&
5256 cmd->request->cmd_type == REQ_TYPE_FS &&
5257 h->acciopath_status)) {
592a0ad5
WS
5258 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5259 if (rc == 0)
5260 return 0;
5261 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
73153fe5 5262 hpsa_cmd_resolve_and_free(h, c);
592a0ad5 5263 return SCSI_MLQUEUE_HOST_BUSY;
574f05d3
SC
5264 }
5265 }
5266 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5267}
5268
8ebc9248 5269static void hpsa_scan_complete(struct ctlr_info *h)
5f389360
SC
5270{
5271 unsigned long flags;
5272
8ebc9248
WS
5273 spin_lock_irqsave(&h->scan_lock, flags);
5274 h->scan_finished = 1;
5275 wake_up_all(&h->scan_wait_queue);
5276 spin_unlock_irqrestore(&h->scan_lock, flags);
5f389360
SC
5277}
5278
a08a8471
SC
5279static void hpsa_scan_start(struct Scsi_Host *sh)
5280{
5281 struct ctlr_info *h = shost_to_hba(sh);
5282 unsigned long flags;
5283
8ebc9248
WS
5284 /*
5285 * Don't let rescans be initiated on a controller known to be locked
5286 * up. If the controller locks up *during* a rescan, that thread is
5287 * probably hosed, but at least we can prevent new rescan threads from
5288 * piling up on a locked up controller.
5289 */
5290 if (unlikely(lockup_detected(h)))
5291 return hpsa_scan_complete(h);
5f389360 5292
a08a8471
SC
5293 /* wait until any scan already in progress is finished. */
5294 while (1) {
5295 spin_lock_irqsave(&h->scan_lock, flags);
5296 if (h->scan_finished)
5297 break;
5298 spin_unlock_irqrestore(&h->scan_lock, flags);
5299 wait_event(h->scan_wait_queue, h->scan_finished);
5300 /* Note: We don't need to worry about a race between this
5301 * thread and driver unload because the midlayer will
5302 * have incremented the reference count, so unload won't
5303 * happen if we're in here.
5304 */
5305 }
5306 h->scan_finished = 0; /* mark scan as in progress */
5307 spin_unlock_irqrestore(&h->scan_lock, flags);
5308
8ebc9248
WS
5309 if (unlikely(lockup_detected(h)))
5310 return hpsa_scan_complete(h);
5f389360 5311
8aa60681 5312 hpsa_update_scsi_devices(h);
a08a8471 5313
8ebc9248 5314 hpsa_scan_complete(h);
a08a8471
SC
5315}
5316
7c0a0229
DB
5317static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5318{
03383736
DB
5319 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5320
5321 if (!logical_drive)
5322 return -ENODEV;
7c0a0229
DB
5323
5324 if (qdepth < 1)
5325 qdepth = 1;
03383736
DB
5326 else if (qdepth > logical_drive->queue_depth)
5327 qdepth = logical_drive->queue_depth;
5328
5329 return scsi_change_queue_depth(sdev, qdepth);
7c0a0229
DB
5330}
5331
a08a8471
SC
5332static int hpsa_scan_finished(struct Scsi_Host *sh,
5333 unsigned long elapsed_time)
5334{
5335 struct ctlr_info *h = shost_to_hba(sh);
5336 unsigned long flags;
5337 int finished;
5338
5339 spin_lock_irqsave(&h->scan_lock, flags);
5340 finished = h->scan_finished;
5341 spin_unlock_irqrestore(&h->scan_lock, flags);
5342 return finished;
5343}
5344
2946e82b 5345static int hpsa_scsi_host_alloc(struct ctlr_info *h)
edd16368 5346{
b705690d 5347 struct Scsi_Host *sh;
edd16368 5348
b705690d 5349 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2946e82b
RE
5350 if (sh == NULL) {
5351 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5352 return -ENOMEM;
5353 }
b705690d
SC
5354
5355 sh->io_port = 0;
5356 sh->n_io_port = 0;
5357 sh->this_id = -1;
5358 sh->max_channel = 3;
5359 sh->max_cmd_len = MAX_COMMAND_SIZE;
5360 sh->max_lun = HPSA_MAX_LUN;
5361 sh->max_id = HPSA_MAX_LUN;
41ce4c35 5362 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
03383736 5363 sh->cmd_per_lun = sh->can_queue;
b705690d 5364 sh->sg_tablesize = h->maxsgentries;
d04e62b9 5365 sh->transportt = hpsa_sas_transport_template;
b705690d
SC
5366 sh->hostdata[0] = (unsigned long) h;
5367 sh->irq = h->intr[h->intr_mode];
5368 sh->unique_id = sh->irq;
64d513ac 5369
2946e82b 5370 h->scsi_host = sh;
b705690d 5371 return 0;
2946e82b 5372}
b705690d 5373
2946e82b
RE
5374static int hpsa_scsi_add_host(struct ctlr_info *h)
5375{
5376 int rv;
5377
5378 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5379 if (rv) {
5380 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5381 return rv;
5382 }
5383 scsi_scan_host(h->scsi_host);
5384 return 0;
edd16368
SC
5385}
5386
73153fe5
WS
5387/*
5388 * The block layer has already gone to the trouble of picking out a unique,
5389 * small-integer tag for this request. We use an offset from that value as
5390 * an index to select our command block. (The offset allows us to reserve the
5391 * low-numbered entries for our own uses.)
5392 */
5393static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5394{
5395 int idx = scmd->request->tag;
5396
5397 if (idx < 0)
5398 return idx;
5399
5400 /* Offset to leave space for internal cmds. */
5401 return idx += HPSA_NRESERVED_CMDS;
5402}
5403
b69324ff
WS
5404/*
5405 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5406 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5407 */
5408static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5409 struct CommandList *c, unsigned char lunaddr[],
5410 int reply_queue)
5411{
5412 int rc;
5413
5414 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5415 (void) fill_cmd(c, TEST_UNIT_READY, h,
5416 NULL, 0, 0, lunaddr, TYPE_CMD);
5417 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5418 if (rc)
5419 return rc;
5420 /* no unmap needed here because no data xfer. */
5421
5422 /* Check if the unit is already ready. */
5423 if (c->err_info->CommandStatus == CMD_SUCCESS)
5424 return 0;
5425
5426 /*
5427 * The first command sent after reset will receive "unit attention" to
5428 * indicate that the LUN has been reset...this is actually what we're
5429 * looking for (but, success is good too).
5430 */
5431 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5432 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5433 (c->err_info->SenseInfo[2] == NO_SENSE ||
5434 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5435 return 0;
5436
5437 return 1;
5438}
5439
5440/*
5441 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5442 * returns zero when the unit is ready, and non-zero when giving up.
5443 */
5444static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5445 struct CommandList *c,
5446 unsigned char lunaddr[], int reply_queue)
edd16368 5447{
8919358e 5448 int rc;
edd16368
SC
5449 int count = 0;
5450 int waittime = 1; /* seconds */
edd16368
SC
5451
5452 /* Send test unit ready until device ready, or give up. */
b69324ff 5453 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
edd16368 5454
b69324ff
WS
5455 /*
5456 * Wait for a bit. do this first, because if we send
edd16368
SC
5457 * the TUR right away, the reset will just abort it.
5458 */
5459 msleep(1000 * waittime);
b69324ff
WS
5460
5461 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5462 if (!rc)
5463 break;
edd16368
SC
5464
5465 /* Increase wait time with each try, up to a point. */
5466 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
b69324ff 5467 waittime *= 2;
edd16368 5468
b69324ff
WS
5469 dev_warn(&h->pdev->dev,
5470 "waiting %d secs for device to become ready.\n",
5471 waittime);
5472 }
edd16368 5473
b69324ff
WS
5474 return rc;
5475}
edd16368 5476
b69324ff
WS
5477static int wait_for_device_to_become_ready(struct ctlr_info *h,
5478 unsigned char lunaddr[],
5479 int reply_queue)
5480{
5481 int first_queue;
5482 int last_queue;
5483 int rq;
5484 int rc = 0;
5485 struct CommandList *c;
5486
5487 c = cmd_alloc(h);
5488
5489 /*
5490 * If no specific reply queue was requested, then send the TUR
5491 * repeatedly, requesting a reply on each reply queue; otherwise execute
5492 * the loop exactly once using only the specified queue.
5493 */
5494 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5495 first_queue = 0;
5496 last_queue = h->nreply_queues - 1;
5497 } else {
5498 first_queue = reply_queue;
5499 last_queue = reply_queue;
5500 }
5501
5502 for (rq = first_queue; rq <= last_queue; rq++) {
5503 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5504 if (rc)
edd16368 5505 break;
edd16368
SC
5506 }
5507
5508 if (rc)
5509 dev_warn(&h->pdev->dev, "giving up on device.\n");
5510 else
5511 dev_warn(&h->pdev->dev, "device is ready.\n");
5512
45fcb86e 5513 cmd_free(h, c);
edd16368
SC
5514 return rc;
5515}
5516
5517/* Need at least one of these error handlers to keep ../scsi/hosts.c from
5518 * complaining. Doing a host- or bus-reset can't do anything good here.
5519 */
5520static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5521{
5522 int rc;
5523 struct ctlr_info *h;
5524 struct hpsa_scsi_dev_t *dev;
0b9b7b6e 5525 u8 reset_type;
2dc127bb 5526 char msg[48];
edd16368
SC
5527
5528 /* find the controller to which the command to be aborted was sent */
5529 h = sdev_to_hba(scsicmd->device);
5530 if (h == NULL) /* paranoia */
5531 return FAILED;
e345893b
DB
5532
5533 if (lockup_detected(h))
5534 return FAILED;
5535
edd16368
SC
5536 dev = scsicmd->device->hostdata;
5537 if (!dev) {
d604f533 5538 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
edd16368
SC
5539 return FAILED;
5540 }
25163bd5
WS
5541
5542 /* if controller locked up, we can guarantee command won't complete */
5543 if (lockup_detected(h)) {
2dc127bb
DC
5544 snprintf(msg, sizeof(msg),
5545 "cmd %d RESET FAILED, lockup detected",
5546 hpsa_get_cmd_index(scsicmd));
73153fe5 5547 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
25163bd5
WS
5548 return FAILED;
5549 }
5550
5551 /* this reset request might be the result of a lockup; check */
5552 if (detect_controller_lockup(h)) {
2dc127bb
DC
5553 snprintf(msg, sizeof(msg),
5554 "cmd %d RESET FAILED, new lockup detected",
5555 hpsa_get_cmd_index(scsicmd));
73153fe5 5556 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
25163bd5
WS
5557 return FAILED;
5558 }
5559
d604f533
WS
5560 /* Do not attempt on controller */
5561 if (is_hba_lunid(dev->scsi3addr))
5562 return SUCCESS;
5563
0b9b7b6e
ST
5564 if (is_logical_dev_addr_mode(dev->scsi3addr))
5565 reset_type = HPSA_DEVICE_RESET_MSG;
5566 else
5567 reset_type = HPSA_PHYS_TARGET_RESET;
5568
5569 sprintf(msg, "resetting %s",
5570 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5571 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
25163bd5 5572
da03ded0 5573 h->reset_in_progress = 1;
25163bd5 5574
edd16368 5575 /* send a reset to the SCSI LUN which the command was sent to */
0b9b7b6e 5576 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
d604f533 5577 DEFAULT_REPLY_QUEUE);
0b9b7b6e
ST
5578 sprintf(msg, "reset %s %s",
5579 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5580 rc == 0 ? "completed successfully" : "failed");
d604f533 5581 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
da03ded0 5582 h->reset_in_progress = 0;
d604f533 5583 return rc == 0 ? SUCCESS : FAILED;
edd16368
SC
5584}
5585
6cba3f19
SC
5586static void swizzle_abort_tag(u8 *tag)
5587{
5588 u8 original_tag[8];
5589
5590 memcpy(original_tag, tag, 8);
5591 tag[0] = original_tag[3];
5592 tag[1] = original_tag[2];
5593 tag[2] = original_tag[1];
5594 tag[3] = original_tag[0];
5595 tag[4] = original_tag[7];
5596 tag[5] = original_tag[6];
5597 tag[6] = original_tag[5];
5598 tag[7] = original_tag[4];
5599}
5600
17eb87d2 5601static void hpsa_get_tag(struct ctlr_info *h,
2b08b3e9 5602 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
17eb87d2 5603{
2b08b3e9 5604 u64 tag;
17eb87d2
ST
5605 if (c->cmd_type == CMD_IOACCEL1) {
5606 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5607 &h->ioaccel_cmd_pool[c->cmdindex];
2b08b3e9
DB
5608 tag = le64_to_cpu(cm1->tag);
5609 *tagupper = cpu_to_le32(tag >> 32);
5610 *taglower = cpu_to_le32(tag);
54b6e9e9
ST
5611 return;
5612 }
5613 if (c->cmd_type == CMD_IOACCEL2) {
5614 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5615 &h->ioaccel2_cmd_pool[c->cmdindex];
dd0e19f3
ST
5616 /* upper tag not used in ioaccel2 mode */
5617 memset(tagupper, 0, sizeof(*tagupper));
5618 *taglower = cm2->Tag;
54b6e9e9 5619 return;
17eb87d2 5620 }
2b08b3e9
DB
5621 tag = le64_to_cpu(c->Header.tag);
5622 *tagupper = cpu_to_le32(tag >> 32);
5623 *taglower = cpu_to_le32(tag);
17eb87d2
ST
5624}
5625
75167d2c 5626static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
9b5c48c2 5627 struct CommandList *abort, int reply_queue)
75167d2c
SC
5628{
5629 int rc = IO_OK;
5630 struct CommandList *c;
5631 struct ErrorInfo *ei;
2b08b3e9 5632 __le32 tagupper, taglower;
75167d2c 5633
45fcb86e 5634 c = cmd_alloc(h);
75167d2c 5635
a2dac136 5636 /* fill_cmd can't fail here, no buffer to map */
9b5c48c2 5637 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
a2dac136 5638 0, 0, scsi3addr, TYPE_MSG);
9b5c48c2 5639 if (h->needs_abort_tags_swizzled)
6cba3f19 5640 swizzle_abort_tag(&c->Request.CDB[4]);
25163bd5 5641 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
17eb87d2 5642 hpsa_get_tag(h, abort, &taglower, &tagupper);
25163bd5 5643 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
17eb87d2 5644 __func__, tagupper, taglower);
75167d2c
SC
5645 /* no unmap needed here because no data xfer. */
5646
5647 ei = c->err_info;
5648 switch (ei->CommandStatus) {
5649 case CMD_SUCCESS:
5650 break;
9437ac43
SC
5651 case CMD_TMF_STATUS:
5652 rc = hpsa_evaluate_tmf_status(h, c);
5653 break;
75167d2c
SC
5654 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5655 rc = -1;
5656 break;
5657 default:
5658 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
17eb87d2 5659 __func__, tagupper, taglower);
d1e8beac 5660 hpsa_scsi_interpret_error(h, c);
75167d2c
SC
5661 rc = -1;
5662 break;
5663 }
45fcb86e 5664 cmd_free(h, c);
dd0e19f3
ST
5665 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5666 __func__, tagupper, taglower);
75167d2c
SC
5667 return rc;
5668}
5669
8be986cc
SC
5670static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5671 struct CommandList *command_to_abort, int reply_queue)
5672{
5673 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5674 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5675 struct io_accel2_cmd *c2a =
5676 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
a58e7e53 5677 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
8be986cc
SC
5678 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5679
5680 /*
5681 * We're overlaying struct hpsa_tmf_struct on top of something which
5682 * was allocated as a struct io_accel2_cmd, so we better be sure it
5683 * actually fits, and doesn't overrun the error info space.
5684 */
5685 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5686 sizeof(struct io_accel2_cmd));
5687 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5688 offsetof(struct hpsa_tmf_struct, error_len) +
5689 sizeof(ac->error_len));
5690
5691 c->cmd_type = IOACCEL2_TMF;
a58e7e53
WS
5692 c->scsi_cmd = SCSI_CMD_BUSY;
5693
8be986cc
SC
5694 /* Adjust the DMA address to point to the accelerated command buffer */
5695 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5696 (c->cmdindex * sizeof(struct io_accel2_cmd));
5697 BUG_ON(c->busaddr & 0x0000007F);
5698
5699 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5700 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5701 ac->reply_queue = reply_queue;
5702 ac->tmf = IOACCEL2_TMF_ABORT;
5703 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5704 memset(ac->lun_id, 0, sizeof(ac->lun_id));
5705 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5706 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5707 ac->error_ptr = cpu_to_le64(c->busaddr +
5708 offsetof(struct io_accel2_cmd, error_data));
5709 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5710}
5711
54b6e9e9
ST
5712/* ioaccel2 path firmware cannot handle abort task requests.
5713 * Change abort requests to physical target reset, and send to the
5714 * address of the physical disk used for the ioaccel 2 command.
5715 * Return 0 on success (IO_OK)
5716 * -1 on failure
5717 */
5718
5719static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
25163bd5 5720 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
54b6e9e9
ST
5721{
5722 int rc = IO_OK;
5723 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5724 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5725 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5726 unsigned char *psa = &phys_scsi3addr[0];
5727
5728 /* Get a pointer to the hpsa logical device. */
7fa3030c 5729 scmd = abort->scsi_cmd;
54b6e9e9
ST
5730 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5731 if (dev == NULL) {
5732 dev_warn(&h->pdev->dev,
5733 "Cannot abort: no device pointer for command.\n");
5734 return -1; /* not abortable */
5735 }
5736
2ba8bfc8
SC
5737 if (h->raid_offload_debug > 0)
5738 dev_info(&h->pdev->dev,
0d96ef5f 5739 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2ba8bfc8 5740 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
0d96ef5f 5741 "Reset as abort",
2ba8bfc8
SC
5742 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5743 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5744
54b6e9e9
ST
5745 if (!dev->offload_enabled) {
5746 dev_warn(&h->pdev->dev,
5747 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5748 return -1; /* not abortable */
5749 }
5750
5751 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5752 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5753 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5754 return -1; /* not abortable */
5755 }
5756
5757 /* send the reset */
2ba8bfc8
SC
5758 if (h->raid_offload_debug > 0)
5759 dev_info(&h->pdev->dev,
5760 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5761 psa[0], psa[1], psa[2], psa[3],
5762 psa[4], psa[5], psa[6], psa[7]);
d604f533 5763 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
54b6e9e9
ST
5764 if (rc != 0) {
5765 dev_warn(&h->pdev->dev,
5766 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5767 psa[0], psa[1], psa[2], psa[3],
5768 psa[4], psa[5], psa[6], psa[7]);
5769 return rc; /* failed to reset */
5770 }
5771
5772 /* wait for device to recover */
b69324ff 5773 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
54b6e9e9
ST
5774 dev_warn(&h->pdev->dev,
5775 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5776 psa[0], psa[1], psa[2], psa[3],
5777 psa[4], psa[5], psa[6], psa[7]);
5778 return -1; /* failed to recover */
5779 }
5780
5781 /* device recovered */
5782 dev_info(&h->pdev->dev,
5783 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5784 psa[0], psa[1], psa[2], psa[3],
5785 psa[4], psa[5], psa[6], psa[7]);
5786
5787 return rc; /* success */
5788}
5789
8be986cc
SC
5790static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5791 struct CommandList *abort, int reply_queue)
5792{
5793 int rc = IO_OK;
5794 struct CommandList *c;
5795 __le32 taglower, tagupper;
5796 struct hpsa_scsi_dev_t *dev;
5797 struct io_accel2_cmd *c2;
5798
5799 dev = abort->scsi_cmd->device->hostdata;
5800 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5801 return -1;
5802
5803 c = cmd_alloc(h);
5804 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5805 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5806 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5807 hpsa_get_tag(h, abort, &taglower, &tagupper);
5808 dev_dbg(&h->pdev->dev,
5809 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5810 __func__, tagupper, taglower);
5811 /* no unmap needed here because no data xfer. */
5812
5813 dev_dbg(&h->pdev->dev,
5814 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5815 __func__, tagupper, taglower, c2->error_data.serv_response);
5816 switch (c2->error_data.serv_response) {
5817 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5818 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5819 rc = 0;
5820 break;
5821 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5822 case IOACCEL2_SERV_RESPONSE_FAILURE:
5823 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5824 rc = -1;
5825 break;
5826 default:
5827 dev_warn(&h->pdev->dev,
5828 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5829 __func__, tagupper, taglower,
5830 c2->error_data.serv_response);
5831 rc = -1;
5832 }
5833 cmd_free(h, c);
5834 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5835 tagupper, taglower);
5836 return rc;
5837}
5838
6cba3f19 5839static int hpsa_send_abort_both_ways(struct ctlr_info *h,
39f3deb2 5840 struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6cba3f19 5841{
8be986cc
SC
5842 /*
5843 * ioccelerator mode 2 commands should be aborted via the
54b6e9e9 5844 * accelerated path, since RAID path is unaware of these commands,
8be986cc
SC
5845 * but not all underlying firmware can handle abort TMF.
5846 * Change abort to physical device reset when abort TMF is unsupported.
54b6e9e9 5847 */
8be986cc 5848 if (abort->cmd_type == CMD_IOACCEL2) {
39f3deb2
DB
5849 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
5850 dev->physical_device)
8be986cc
SC
5851 return hpsa_send_abort_ioaccel2(h, abort,
5852 reply_queue);
5853 else
39f3deb2
DB
5854 return hpsa_send_reset_as_abort_ioaccel2(h,
5855 dev->scsi3addr,
25163bd5 5856 abort, reply_queue);
8be986cc 5857 }
39f3deb2 5858 return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
25163bd5 5859}
54b6e9e9 5860
25163bd5
WS
5861/* Find out which reply queue a command was meant to return on */
5862static int hpsa_extract_reply_queue(struct ctlr_info *h,
5863 struct CommandList *c)
5864{
5865 if (c->cmd_type == CMD_IOACCEL2)
5866 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5867 return c->Header.ReplyQueue;
6cba3f19
SC
5868}
5869
9b5c48c2
SC
5870/*
5871 * Limit concurrency of abort commands to prevent
5872 * over-subscription of commands
5873 */
5874static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5875{
5876#define ABORT_CMD_WAIT_MSECS 5000
5877 return !wait_event_timeout(h->abort_cmd_wait_queue,
5878 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5879 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5880}
5881
75167d2c
SC
5882/* Send an abort for the specified command.
5883 * If the device and controller support it,
5884 * send a task abort request.
5885 */
5886static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5887{
5888
a58e7e53 5889 int rc;
75167d2c
SC
5890 struct ctlr_info *h;
5891 struct hpsa_scsi_dev_t *dev;
5892 struct CommandList *abort; /* pointer to command to be aborted */
75167d2c
SC
5893 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
5894 char msg[256]; /* For debug messaging. */
5895 int ml = 0;
2b08b3e9 5896 __le32 tagupper, taglower;
25163bd5
WS
5897 int refcount, reply_queue;
5898
5899 if (sc == NULL)
5900 return FAILED;
75167d2c 5901
9b5c48c2
SC
5902 if (sc->device == NULL)
5903 return FAILED;
5904
75167d2c
SC
5905 /* Find the controller of the command to be aborted */
5906 h = sdev_to_hba(sc->device);
9b5c48c2 5907 if (h == NULL)
75167d2c
SC
5908 return FAILED;
5909
25163bd5
WS
5910 /* Find the device of the command to be aborted */
5911 dev = sc->device->hostdata;
5912 if (!dev) {
5913 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5914 msg);
e345893b 5915 return FAILED;
25163bd5
WS
5916 }
5917
5918 /* If controller locked up, we can guarantee command won't complete */
5919 if (lockup_detected(h)) {
5920 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5921 "ABORT FAILED, lockup detected");
5922 return FAILED;
5923 }
5924
5925 /* This is a good time to check if controller lockup has occurred */
5926 if (detect_controller_lockup(h)) {
5927 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5928 "ABORT FAILED, new lockup detected");
5929 return FAILED;
5930 }
e345893b 5931
75167d2c
SC
5932 /* Check that controller supports some kind of task abort */
5933 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5934 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5935 return FAILED;
5936
5937 memset(msg, 0, sizeof(msg));
4b761557 5938 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
75167d2c 5939 h->scsi_host->host_no, sc->device->channel,
0d96ef5f 5940 sc->device->id, sc->device->lun,
4b761557 5941 "Aborting command", sc);
75167d2c 5942
75167d2c
SC
5943 /* Get SCSI command to be aborted */
5944 abort = (struct CommandList *) sc->host_scribble;
5945 if (abort == NULL) {
281a7fd0
WS
5946 /* This can happen if the command already completed. */
5947 return SUCCESS;
5948 }
5949 refcount = atomic_inc_return(&abort->refcount);
5950 if (refcount == 1) { /* Command is done already. */
5951 cmd_free(h, abort);
5952 return SUCCESS;
75167d2c 5953 }
9b5c48c2
SC
5954
5955 /* Don't bother trying the abort if we know it won't work. */
5956 if (abort->cmd_type != CMD_IOACCEL2 &&
5957 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5958 cmd_free(h, abort);
5959 return FAILED;
5960 }
5961
a58e7e53
WS
5962 /*
5963 * Check that we're aborting the right command.
5964 * It's possible the CommandList already completed and got re-used.
5965 */
5966 if (abort->scsi_cmd != sc) {
5967 cmd_free(h, abort);
5968 return SUCCESS;
5969 }
5970
5971 abort->abort_pending = true;
17eb87d2 5972 hpsa_get_tag(h, abort, &taglower, &tagupper);
25163bd5 5973 reply_queue = hpsa_extract_reply_queue(h, abort);
17eb87d2 5974 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
7fa3030c 5975 as = abort->scsi_cmd;
75167d2c 5976 if (as != NULL)
4b761557
RE
5977 ml += sprintf(msg+ml,
5978 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5979 as->cmd_len, as->cmnd[0], as->cmnd[1],
5980 as->serial_number);
5981 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
0d96ef5f 5982 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
4b761557 5983
75167d2c
SC
5984 /*
5985 * Command is in flight, or possibly already completed
5986 * by the firmware (but not to the scsi mid layer) but we can't
5987 * distinguish which. Send the abort down.
5988 */
9b5c48c2
SC
5989 if (wait_for_available_abort_cmd(h)) {
5990 dev_warn(&h->pdev->dev,
4b761557
RE
5991 "%s FAILED, timeout waiting for an abort command to become available.\n",
5992 msg);
9b5c48c2
SC
5993 cmd_free(h, abort);
5994 return FAILED;
5995 }
39f3deb2 5996 rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
9b5c48c2
SC
5997 atomic_inc(&h->abort_cmds_available);
5998 wake_up_all(&h->abort_cmd_wait_queue);
75167d2c 5999 if (rc != 0) {
4b761557 6000 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
0d96ef5f 6001 hpsa_show_dev_msg(KERN_WARNING, h, dev,
4b761557 6002 "FAILED to abort command");
281a7fd0 6003 cmd_free(h, abort);
75167d2c
SC
6004 return FAILED;
6005 }
4b761557 6006 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
d604f533 6007 wait_event(h->event_sync_wait_queue,
a58e7e53 6008 abort->scsi_cmd != sc || lockup_detected(h));
281a7fd0 6009 cmd_free(h, abort);
a58e7e53 6010 return !lockup_detected(h) ? SUCCESS : FAILED;
75167d2c
SC
6011}
6012
73153fe5
WS
6013/*
6014 * For operations with an associated SCSI command, a command block is allocated
6015 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6016 * block request tag as an index into a table of entries. cmd_tagged_free() is
6017 * the complement, although cmd_free() may be called instead.
6018 */
6019static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6020 struct scsi_cmnd *scmd)
6021{
6022 int idx = hpsa_get_cmd_index(scmd);
6023 struct CommandList *c = h->cmd_pool + idx;
6024
6025 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6026 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6027 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6028 /* The index value comes from the block layer, so if it's out of
6029 * bounds, it's probably not our bug.
6030 */
6031 BUG();
6032 }
6033
6034 atomic_inc(&c->refcount);
6035 if (unlikely(!hpsa_is_cmd_idle(c))) {
6036 /*
6037 * We expect that the SCSI layer will hand us a unique tag
6038 * value. Thus, there should never be a collision here between
6039 * two requests...because if the selected command isn't idle
6040 * then someone is going to be very disappointed.
6041 */
6042 dev_err(&h->pdev->dev,
6043 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6044 idx);
6045 if (c->scsi_cmd != NULL)
6046 scsi_print_command(c->scsi_cmd);
6047 scsi_print_command(scmd);
6048 }
6049
6050 hpsa_cmd_partial_init(h, idx, c);
6051 return c;
6052}
6053
6054static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6055{
6056 /*
6057 * Release our reference to the block. We don't need to do anything
6058 * else to free it, because it is accessed by index. (There's no point
6059 * in checking the result of the decrement, since we cannot guarantee
6060 * that there isn't a concurrent abort which is also accessing it.)
6061 */
6062 (void)atomic_dec(&c->refcount);
6063}
6064
edd16368
SC
6065/*
6066 * For operations that cannot sleep, a command block is allocated at init,
6067 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6068 * which ones are free or in use. Lock must be held when calling this.
6069 * cmd_free() is the complement.
bf43caf3
RE
6070 * This function never gives up and returns NULL. If it hangs,
6071 * another thread must call cmd_free() to free some tags.
edd16368 6072 */
281a7fd0 6073
edd16368
SC
6074static struct CommandList *cmd_alloc(struct ctlr_info *h)
6075{
6076 struct CommandList *c;
360c73bd 6077 int refcount, i;
73153fe5 6078 int offset = 0;
4c413128 6079
33811026
RE
6080 /*
6081 * There is some *extremely* small but non-zero chance that that
4c413128
SC
6082 * multiple threads could get in here, and one thread could
6083 * be scanning through the list of bits looking for a free
6084 * one, but the free ones are always behind him, and other
6085 * threads sneak in behind him and eat them before he can
6086 * get to them, so that while there is always a free one, a
6087 * very unlucky thread might be starved anyway, never able to
6088 * beat the other threads. In reality, this happens so
6089 * infrequently as to be indistinguishable from never.
73153fe5
WS
6090 *
6091 * Note that we start allocating commands before the SCSI host structure
6092 * is initialized. Since the search starts at bit zero, this
6093 * all works, since we have at least one command structure available;
6094 * however, it means that the structures with the low indexes have to be
6095 * reserved for driver-initiated requests, while requests from the block
6096 * layer will use the higher indexes.
4c413128 6097 */
edd16368 6098
281a7fd0 6099 for (;;) {
73153fe5
WS
6100 i = find_next_zero_bit(h->cmd_pool_bits,
6101 HPSA_NRESERVED_CMDS,
6102 offset);
6103 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
281a7fd0
WS
6104 offset = 0;
6105 continue;
6106 }
6107 c = h->cmd_pool + i;
6108 refcount = atomic_inc_return(&c->refcount);
6109 if (unlikely(refcount > 1)) {
6110 cmd_free(h, c); /* already in use */
73153fe5 6111 offset = (i + 1) % HPSA_NRESERVED_CMDS;
281a7fd0
WS
6112 continue;
6113 }
6114 set_bit(i & (BITS_PER_LONG - 1),
6115 h->cmd_pool_bits + (i / BITS_PER_LONG));
6116 break; /* it's ours now. */
6117 }
360c73bd 6118 hpsa_cmd_partial_init(h, i, c);
edd16368
SC
6119 return c;
6120}
6121
73153fe5
WS
6122/*
6123 * This is the complementary operation to cmd_alloc(). Note, however, in some
6124 * corner cases it may also be used to free blocks allocated by
6125 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6126 * the clear-bit is harmless.
6127 */
edd16368
SC
6128static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6129{
281a7fd0
WS
6130 if (atomic_dec_and_test(&c->refcount)) {
6131 int i;
edd16368 6132
281a7fd0
WS
6133 i = c - h->cmd_pool;
6134 clear_bit(i & (BITS_PER_LONG - 1),
6135 h->cmd_pool_bits + (i / BITS_PER_LONG));
6136 }
edd16368
SC
6137}
6138
edd16368
SC
6139#ifdef CONFIG_COMPAT
6140
42a91641
DB
6141static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6142 void __user *arg)
edd16368
SC
6143{
6144 IOCTL32_Command_struct __user *arg32 =
6145 (IOCTL32_Command_struct __user *) arg;
6146 IOCTL_Command_struct arg64;
6147 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6148 int err;
6149 u32 cp;
6150
938abd84 6151 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
6152 err = 0;
6153 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6154 sizeof(arg64.LUN_info));
6155 err |= copy_from_user(&arg64.Request, &arg32->Request,
6156 sizeof(arg64.Request));
6157 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6158 sizeof(arg64.error_info));
6159 err |= get_user(arg64.buf_size, &arg32->buf_size);
6160 err |= get_user(cp, &arg32->buf);
6161 arg64.buf = compat_ptr(cp);
6162 err |= copy_to_user(p, &arg64, sizeof(arg64));
6163
6164 if (err)
6165 return -EFAULT;
6166
42a91641 6167 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
edd16368
SC
6168 if (err)
6169 return err;
6170 err |= copy_in_user(&arg32->error_info, &p->error_info,
6171 sizeof(arg32->error_info));
6172 if (err)
6173 return -EFAULT;
6174 return err;
6175}
6176
6177static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
42a91641 6178 int cmd, void __user *arg)
edd16368
SC
6179{
6180 BIG_IOCTL32_Command_struct __user *arg32 =
6181 (BIG_IOCTL32_Command_struct __user *) arg;
6182 BIG_IOCTL_Command_struct arg64;
6183 BIG_IOCTL_Command_struct __user *p =
6184 compat_alloc_user_space(sizeof(arg64));
6185 int err;
6186 u32 cp;
6187
938abd84 6188 memset(&arg64, 0, sizeof(arg64));
edd16368
SC
6189 err = 0;
6190 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6191 sizeof(arg64.LUN_info));
6192 err |= copy_from_user(&arg64.Request, &arg32->Request,
6193 sizeof(arg64.Request));
6194 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6195 sizeof(arg64.error_info));
6196 err |= get_user(arg64.buf_size, &arg32->buf_size);
6197 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6198 err |= get_user(cp, &arg32->buf);
6199 arg64.buf = compat_ptr(cp);
6200 err |= copy_to_user(p, &arg64, sizeof(arg64));
6201
6202 if (err)
6203 return -EFAULT;
6204
42a91641 6205 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
edd16368
SC
6206 if (err)
6207 return err;
6208 err |= copy_in_user(&arg32->error_info, &p->error_info,
6209 sizeof(arg32->error_info));
6210 if (err)
6211 return -EFAULT;
6212 return err;
6213}
71fe75a7 6214
42a91641 6215static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
71fe75a7
SC
6216{
6217 switch (cmd) {
6218 case CCISS_GETPCIINFO:
6219 case CCISS_GETINTINFO:
6220 case CCISS_SETINTINFO:
6221 case CCISS_GETNODENAME:
6222 case CCISS_SETNODENAME:
6223 case CCISS_GETHEARTBEAT:
6224 case CCISS_GETBUSTYPES:
6225 case CCISS_GETFIRMVER:
6226 case CCISS_GETDRIVVER:
6227 case CCISS_REVALIDVOLS:
6228 case CCISS_DEREGDISK:
6229 case CCISS_REGNEWDISK:
6230 case CCISS_REGNEWD:
6231 case CCISS_RESCANDISK:
6232 case CCISS_GETLUNINFO:
6233 return hpsa_ioctl(dev, cmd, arg);
6234
6235 case CCISS_PASSTHRU32:
6236 return hpsa_ioctl32_passthru(dev, cmd, arg);
6237 case CCISS_BIG_PASSTHRU32:
6238 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6239
6240 default:
6241 return -ENOIOCTLCMD;
6242 }
6243}
edd16368
SC
6244#endif
6245
6246static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6247{
6248 struct hpsa_pci_info pciinfo;
6249
6250 if (!argp)
6251 return -EINVAL;
6252 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6253 pciinfo.bus = h->pdev->bus->number;
6254 pciinfo.dev_fn = h->pdev->devfn;
6255 pciinfo.board_id = h->board_id;
6256 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6257 return -EFAULT;
6258 return 0;
6259}
6260
6261static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6262{
6263 DriverVer_type DriverVer;
6264 unsigned char vmaj, vmin, vsubmin;
6265 int rc;
6266
6267 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6268 &vmaj, &vmin, &vsubmin);
6269 if (rc != 3) {
6270 dev_info(&h->pdev->dev, "driver version string '%s' "
6271 "unrecognized.", HPSA_DRIVER_VERSION);
6272 vmaj = 0;
6273 vmin = 0;
6274 vsubmin = 0;
6275 }
6276 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6277 if (!argp)
6278 return -EINVAL;
6279 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6280 return -EFAULT;
6281 return 0;
6282}
6283
6284static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6285{
6286 IOCTL_Command_struct iocommand;
6287 struct CommandList *c;
6288 char *buff = NULL;
50a0decf 6289 u64 temp64;
c1f63c8f 6290 int rc = 0;
edd16368
SC
6291
6292 if (!argp)
6293 return -EINVAL;
6294 if (!capable(CAP_SYS_RAWIO))
6295 return -EPERM;
6296 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6297 return -EFAULT;
6298 if ((iocommand.buf_size < 1) &&
6299 (iocommand.Request.Type.Direction != XFER_NONE)) {
6300 return -EINVAL;
6301 }
6302 if (iocommand.buf_size > 0) {
6303 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6304 if (buff == NULL)
2dd02d74 6305 return -ENOMEM;
9233fb10 6306 if (iocommand.Request.Type.Direction & XFER_WRITE) {
b03a7771
SC
6307 /* Copy the data into the buffer we created */
6308 if (copy_from_user(buff, iocommand.buf,
6309 iocommand.buf_size)) {
c1f63c8f
SC
6310 rc = -EFAULT;
6311 goto out_kfree;
b03a7771
SC
6312 }
6313 } else {
6314 memset(buff, 0, iocommand.buf_size);
edd16368 6315 }
b03a7771 6316 }
45fcb86e 6317 c = cmd_alloc(h);
bf43caf3 6318
edd16368
SC
6319 /* Fill in the command type */
6320 c->cmd_type = CMD_IOCTL_PEND;
a58e7e53 6321 c->scsi_cmd = SCSI_CMD_BUSY;
edd16368
SC
6322 /* Fill in Command Header */
6323 c->Header.ReplyQueue = 0; /* unused in simple mode */
6324 if (iocommand.buf_size > 0) { /* buffer to fill */
6325 c->Header.SGList = 1;
50a0decf 6326 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
6327 } else { /* no buffers to fill */
6328 c->Header.SGList = 0;
50a0decf 6329 c->Header.SGTotal = cpu_to_le16(0);
edd16368
SC
6330 }
6331 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
edd16368
SC
6332
6333 /* Fill in Request block */
6334 memcpy(&c->Request, &iocommand.Request,
6335 sizeof(c->Request));
6336
6337 /* Fill in the scatter gather information */
6338 if (iocommand.buf_size > 0) {
50a0decf 6339 temp64 = pci_map_single(h->pdev, buff,
edd16368 6340 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
6341 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6342 c->SG[0].Addr = cpu_to_le64(0);
6343 c->SG[0].Len = cpu_to_le32(0);
bcc48ffa
SC
6344 rc = -ENOMEM;
6345 goto out;
6346 }
50a0decf
SC
6347 c->SG[0].Addr = cpu_to_le64(temp64);
6348 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6349 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
edd16368 6350 }
25163bd5 6351 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
c2dd32e0
SC
6352 if (iocommand.buf_size > 0)
6353 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
edd16368 6354 check_ioctl_unit_attention(h, c);
25163bd5
WS
6355 if (rc) {
6356 rc = -EIO;
6357 goto out;
6358 }
edd16368
SC
6359
6360 /* Copy the error information out */
6361 memcpy(&iocommand.error_info, c->err_info,
6362 sizeof(iocommand.error_info));
6363 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
c1f63c8f
SC
6364 rc = -EFAULT;
6365 goto out;
edd16368 6366 }
9233fb10 6367 if ((iocommand.Request.Type.Direction & XFER_READ) &&
b03a7771 6368 iocommand.buf_size > 0) {
edd16368
SC
6369 /* Copy the data out of the buffer we created */
6370 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
c1f63c8f
SC
6371 rc = -EFAULT;
6372 goto out;
edd16368
SC
6373 }
6374 }
c1f63c8f 6375out:
45fcb86e 6376 cmd_free(h, c);
c1f63c8f
SC
6377out_kfree:
6378 kfree(buff);
6379 return rc;
edd16368
SC
6380}
6381
6382static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6383{
6384 BIG_IOCTL_Command_struct *ioc;
6385 struct CommandList *c;
6386 unsigned char **buff = NULL;
6387 int *buff_size = NULL;
50a0decf 6388 u64 temp64;
edd16368
SC
6389 BYTE sg_used = 0;
6390 int status = 0;
01a02ffc
SC
6391 u32 left;
6392 u32 sz;
edd16368
SC
6393 BYTE __user *data_ptr;
6394
6395 if (!argp)
6396 return -EINVAL;
6397 if (!capable(CAP_SYS_RAWIO))
6398 return -EPERM;
6399 ioc = (BIG_IOCTL_Command_struct *)
6400 kmalloc(sizeof(*ioc), GFP_KERNEL);
6401 if (!ioc) {
6402 status = -ENOMEM;
6403 goto cleanup1;
6404 }
6405 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6406 status = -EFAULT;
6407 goto cleanup1;
6408 }
6409 if ((ioc->buf_size < 1) &&
6410 (ioc->Request.Type.Direction != XFER_NONE)) {
6411 status = -EINVAL;
6412 goto cleanup1;
6413 }
6414 /* Check kmalloc limits using all SGs */
6415 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6416 status = -EINVAL;
6417 goto cleanup1;
6418 }
d66ae08b 6419 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
edd16368
SC
6420 status = -EINVAL;
6421 goto cleanup1;
6422 }
d66ae08b 6423 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
edd16368
SC
6424 if (!buff) {
6425 status = -ENOMEM;
6426 goto cleanup1;
6427 }
d66ae08b 6428 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
edd16368
SC
6429 if (!buff_size) {
6430 status = -ENOMEM;
6431 goto cleanup1;
6432 }
6433 left = ioc->buf_size;
6434 data_ptr = ioc->buf;
6435 while (left) {
6436 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6437 buff_size[sg_used] = sz;
6438 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6439 if (buff[sg_used] == NULL) {
6440 status = -ENOMEM;
6441 goto cleanup1;
6442 }
9233fb10 6443 if (ioc->Request.Type.Direction & XFER_WRITE) {
edd16368 6444 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
0758f4f7 6445 status = -EFAULT;
edd16368
SC
6446 goto cleanup1;
6447 }
6448 } else
6449 memset(buff[sg_used], 0, sz);
6450 left -= sz;
6451 data_ptr += sz;
6452 sg_used++;
6453 }
45fcb86e 6454 c = cmd_alloc(h);
bf43caf3 6455
edd16368 6456 c->cmd_type = CMD_IOCTL_PEND;
a58e7e53 6457 c->scsi_cmd = SCSI_CMD_BUSY;
edd16368 6458 c->Header.ReplyQueue = 0;
50a0decf
SC
6459 c->Header.SGList = (u8) sg_used;
6460 c->Header.SGTotal = cpu_to_le16(sg_used);
edd16368 6461 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
edd16368
SC
6462 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6463 if (ioc->buf_size > 0) {
6464 int i;
6465 for (i = 0; i < sg_used; i++) {
50a0decf 6466 temp64 = pci_map_single(h->pdev, buff[i],
edd16368 6467 buff_size[i], PCI_DMA_BIDIRECTIONAL);
50a0decf
SC
6468 if (dma_mapping_error(&h->pdev->dev,
6469 (dma_addr_t) temp64)) {
6470 c->SG[i].Addr = cpu_to_le64(0);
6471 c->SG[i].Len = cpu_to_le32(0);
bcc48ffa
SC
6472 hpsa_pci_unmap(h->pdev, c, i,
6473 PCI_DMA_BIDIRECTIONAL);
6474 status = -ENOMEM;
e2d4a1f6 6475 goto cleanup0;
bcc48ffa 6476 }
50a0decf
SC
6477 c->SG[i].Addr = cpu_to_le64(temp64);
6478 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6479 c->SG[i].Ext = cpu_to_le32(0);
edd16368 6480 }
50a0decf 6481 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
edd16368 6482 }
25163bd5 6483 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
b03a7771
SC
6484 if (sg_used)
6485 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
edd16368 6486 check_ioctl_unit_attention(h, c);
25163bd5
WS
6487 if (status) {
6488 status = -EIO;
6489 goto cleanup0;
6490 }
6491
edd16368
SC
6492 /* Copy the error information out */
6493 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6494 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
edd16368 6495 status = -EFAULT;
e2d4a1f6 6496 goto cleanup0;
edd16368 6497 }
9233fb10 6498 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
2b08b3e9
DB
6499 int i;
6500
edd16368
SC
6501 /* Copy the data out of the buffer we created */
6502 BYTE __user *ptr = ioc->buf;
6503 for (i = 0; i < sg_used; i++) {
6504 if (copy_to_user(ptr, buff[i], buff_size[i])) {
edd16368 6505 status = -EFAULT;
e2d4a1f6 6506 goto cleanup0;
edd16368
SC
6507 }
6508 ptr += buff_size[i];
6509 }
6510 }
edd16368 6511 status = 0;
e2d4a1f6 6512cleanup0:
45fcb86e 6513 cmd_free(h, c);
edd16368
SC
6514cleanup1:
6515 if (buff) {
2b08b3e9
DB
6516 int i;
6517
edd16368
SC
6518 for (i = 0; i < sg_used; i++)
6519 kfree(buff[i]);
6520 kfree(buff);
6521 }
6522 kfree(buff_size);
6523 kfree(ioc);
6524 return status;
6525}
6526
6527static void check_ioctl_unit_attention(struct ctlr_info *h,
6528 struct CommandList *c)
6529{
6530 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6531 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6532 (void) check_for_unit_attention(h, c);
6533}
0390f0c0 6534
edd16368
SC
6535/*
6536 * ioctl
6537 */
42a91641 6538static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
edd16368
SC
6539{
6540 struct ctlr_info *h;
6541 void __user *argp = (void __user *)arg;
0390f0c0 6542 int rc;
edd16368
SC
6543
6544 h = sdev_to_hba(dev);
6545
6546 switch (cmd) {
6547 case CCISS_DEREGDISK:
6548 case CCISS_REGNEWDISK:
6549 case CCISS_REGNEWD:
a08a8471 6550 hpsa_scan_start(h->scsi_host);
edd16368
SC
6551 return 0;
6552 case CCISS_GETPCIINFO:
6553 return hpsa_getpciinfo_ioctl(h, argp);
6554 case CCISS_GETDRIVVER:
6555 return hpsa_getdrivver_ioctl(h, argp);
6556 case CCISS_PASSTHRU:
34f0c627 6557 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
0390f0c0
SC
6558 return -EAGAIN;
6559 rc = hpsa_passthru_ioctl(h, argp);
34f0c627 6560 atomic_inc(&h->passthru_cmds_avail);
0390f0c0 6561 return rc;
edd16368 6562 case CCISS_BIG_PASSTHRU:
34f0c627 6563 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
0390f0c0
SC
6564 return -EAGAIN;
6565 rc = hpsa_big_passthru_ioctl(h, argp);
34f0c627 6566 atomic_inc(&h->passthru_cmds_avail);
0390f0c0 6567 return rc;
edd16368
SC
6568 default:
6569 return -ENOTTY;
6570 }
6571}
6572
bf43caf3 6573static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6f039790 6574 u8 reset_type)
64670ac8
SC
6575{
6576 struct CommandList *c;
6577
6578 c = cmd_alloc(h);
bf43caf3 6579
a2dac136
SC
6580 /* fill_cmd can't fail here, no data buffer to map */
6581 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
64670ac8
SC
6582 RAID_CTLR_LUNID, TYPE_MSG);
6583 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6584 c->waiting = NULL;
6585 enqueue_cmd_and_start_io(h, c);
6586 /* Don't wait for completion, the reset won't complete. Don't free
6587 * the command either. This is the last command we will send before
6588 * re-initializing everything, so it doesn't matter and won't leak.
6589 */
bf43caf3 6590 return;
64670ac8
SC
6591}
6592
a2dac136 6593static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
b7bb24eb 6594 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
edd16368
SC
6595 int cmd_type)
6596{
6597 int pci_dir = XFER_NONE;
9b5c48c2 6598 u64 tag; /* for commands to be aborted */
edd16368
SC
6599
6600 c->cmd_type = CMD_IOCTL_PEND;
a58e7e53 6601 c->scsi_cmd = SCSI_CMD_BUSY;
edd16368
SC
6602 c->Header.ReplyQueue = 0;
6603 if (buff != NULL && size > 0) {
6604 c->Header.SGList = 1;
50a0decf 6605 c->Header.SGTotal = cpu_to_le16(1);
edd16368
SC
6606 } else {
6607 c->Header.SGList = 0;
50a0decf 6608 c->Header.SGTotal = cpu_to_le16(0);
edd16368 6609 }
edd16368
SC
6610 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6611
edd16368
SC
6612 if (cmd_type == TYPE_CMD) {
6613 switch (cmd) {
6614 case HPSA_INQUIRY:
6615 /* are we trying to read a vital product page */
b7bb24eb 6616 if (page_code & VPD_PAGE) {
edd16368 6617 c->Request.CDB[1] = 0x01;
b7bb24eb 6618 c->Request.CDB[2] = (page_code & 0xff);
edd16368
SC
6619 }
6620 c->Request.CDBLen = 6;
a505b86f
SC
6621 c->Request.type_attr_dir =
6622 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
6623 c->Request.Timeout = 0;
6624 c->Request.CDB[0] = HPSA_INQUIRY;
6625 c->Request.CDB[4] = size & 0xFF;
6626 break;
6627 case HPSA_REPORT_LOG:
6628 case HPSA_REPORT_PHYS:
6629 /* Talking to controller so It's a physical command
6630 mode = 00 target = 0. Nothing to write.
6631 */
6632 c->Request.CDBLen = 12;
a505b86f
SC
6633 c->Request.type_attr_dir =
6634 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
edd16368
SC
6635 c->Request.Timeout = 0;
6636 c->Request.CDB[0] = cmd;
6637 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6638 c->Request.CDB[7] = (size >> 16) & 0xFF;
6639 c->Request.CDB[8] = (size >> 8) & 0xFF;
6640 c->Request.CDB[9] = size & 0xFF;
6641 break;
c2adae44
ST
6642 case BMIC_SENSE_DIAG_OPTIONS:
6643 c->Request.CDBLen = 16;
6644 c->Request.type_attr_dir =
6645 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6646 c->Request.Timeout = 0;
6647 /* Spec says this should be BMIC_WRITE */
6648 c->Request.CDB[0] = BMIC_READ;
6649 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6650 break;
6651 case BMIC_SET_DIAG_OPTIONS:
6652 c->Request.CDBLen = 16;
6653 c->Request.type_attr_dir =
6654 TYPE_ATTR_DIR(cmd_type,
6655 ATTR_SIMPLE, XFER_WRITE);
6656 c->Request.Timeout = 0;
6657 c->Request.CDB[0] = BMIC_WRITE;
6658 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6659 break;
edd16368
SC
6660 case HPSA_CACHE_FLUSH:
6661 c->Request.CDBLen = 12;
a505b86f
SC
6662 c->Request.type_attr_dir =
6663 TYPE_ATTR_DIR(cmd_type,
6664 ATTR_SIMPLE, XFER_WRITE);
edd16368
SC
6665 c->Request.Timeout = 0;
6666 c->Request.CDB[0] = BMIC_WRITE;
6667 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
bb158eab
SC
6668 c->Request.CDB[7] = (size >> 8) & 0xFF;
6669 c->Request.CDB[8] = size & 0xFF;
edd16368
SC
6670 break;
6671 case TEST_UNIT_READY:
6672 c->Request.CDBLen = 6;
a505b86f
SC
6673 c->Request.type_attr_dir =
6674 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368
SC
6675 c->Request.Timeout = 0;
6676 break;
283b4a9b
SC
6677 case HPSA_GET_RAID_MAP:
6678 c->Request.CDBLen = 12;
a505b86f
SC
6679 c->Request.type_attr_dir =
6680 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
283b4a9b
SC
6681 c->Request.Timeout = 0;
6682 c->Request.CDB[0] = HPSA_CISS_READ;
6683 c->Request.CDB[1] = cmd;
6684 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6685 c->Request.CDB[7] = (size >> 16) & 0xFF;
6686 c->Request.CDB[8] = (size >> 8) & 0xFF;
6687 c->Request.CDB[9] = size & 0xFF;
6688 break;
316b221a
SC
6689 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6690 c->Request.CDBLen = 10;
a505b86f
SC
6691 c->Request.type_attr_dir =
6692 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
316b221a
SC
6693 c->Request.Timeout = 0;
6694 c->Request.CDB[0] = BMIC_READ;
6695 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6696 c->Request.CDB[7] = (size >> 16) & 0xFF;
6697 c->Request.CDB[8] = (size >> 8) & 0xFF;
6698 break;
03383736
DB
6699 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6700 c->Request.CDBLen = 10;
6701 c->Request.type_attr_dir =
6702 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6703 c->Request.Timeout = 0;
6704 c->Request.CDB[0] = BMIC_READ;
6705 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6706 c->Request.CDB[7] = (size >> 16) & 0xFF;
6707 c->Request.CDB[8] = (size >> 8) & 0XFF;
6708 break;
d04e62b9
KB
6709 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6710 c->Request.CDBLen = 10;
6711 c->Request.type_attr_dir =
6712 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6713 c->Request.Timeout = 0;
6714 c->Request.CDB[0] = BMIC_READ;
6715 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6716 c->Request.CDB[7] = (size >> 16) & 0xFF;
6717 c->Request.CDB[8] = (size >> 8) & 0XFF;
6718 break;
cca8f13b
DB
6719 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6720 c->Request.CDBLen = 10;
6721 c->Request.type_attr_dir =
6722 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6723 c->Request.Timeout = 0;
6724 c->Request.CDB[0] = BMIC_READ;
6725 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6726 c->Request.CDB[7] = (size >> 16) & 0xFF;
6727 c->Request.CDB[8] = (size >> 8) & 0XFF;
6728 break;
66749d0d
ST
6729 case BMIC_IDENTIFY_CONTROLLER:
6730 c->Request.CDBLen = 10;
6731 c->Request.type_attr_dir =
6732 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733 c->Request.Timeout = 0;
6734 c->Request.CDB[0] = BMIC_READ;
6735 c->Request.CDB[1] = 0;
6736 c->Request.CDB[2] = 0;
6737 c->Request.CDB[3] = 0;
6738 c->Request.CDB[4] = 0;
6739 c->Request.CDB[5] = 0;
6740 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6741 c->Request.CDB[7] = (size >> 16) & 0xFF;
6742 c->Request.CDB[8] = (size >> 8) & 0XFF;
6743 c->Request.CDB[9] = 0;
6744 break;
edd16368
SC
6745 default:
6746 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6747 BUG();
a2dac136 6748 return -1;
edd16368
SC
6749 }
6750 } else if (cmd_type == TYPE_MSG) {
6751 switch (cmd) {
6752
0b9b7b6e
ST
6753 case HPSA_PHYS_TARGET_RESET:
6754 c->Request.CDBLen = 16;
6755 c->Request.type_attr_dir =
6756 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6757 c->Request.Timeout = 0; /* Don't time out */
6758 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6759 c->Request.CDB[0] = HPSA_RESET;
6760 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6761 /* Physical target reset needs no control bytes 4-7*/
6762 c->Request.CDB[4] = 0x00;
6763 c->Request.CDB[5] = 0x00;
6764 c->Request.CDB[6] = 0x00;
6765 c->Request.CDB[7] = 0x00;
6766 break;
edd16368
SC
6767 case HPSA_DEVICE_RESET_MSG:
6768 c->Request.CDBLen = 16;
a505b86f
SC
6769 c->Request.type_attr_dir =
6770 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
edd16368 6771 c->Request.Timeout = 0; /* Don't time out */
64670ac8
SC
6772 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6773 c->Request.CDB[0] = cmd;
21e89afd 6774 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
edd16368
SC
6775 /* If bytes 4-7 are zero, it means reset the */
6776 /* LunID device */
6777 c->Request.CDB[4] = 0x00;
6778 c->Request.CDB[5] = 0x00;
6779 c->Request.CDB[6] = 0x00;
6780 c->Request.CDB[7] = 0x00;
75167d2c
SC
6781 break;
6782 case HPSA_ABORT_MSG:
9b5c48c2 6783 memcpy(&tag, buff, sizeof(tag));
2b08b3e9 6784 dev_dbg(&h->pdev->dev,
9b5c48c2
SC
6785 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6786 tag, c->Header.tag);
75167d2c 6787 c->Request.CDBLen = 16;
a505b86f
SC
6788 c->Request.type_attr_dir =
6789 TYPE_ATTR_DIR(cmd_type,
6790 ATTR_SIMPLE, XFER_WRITE);
75167d2c
SC
6791 c->Request.Timeout = 0; /* Don't time out */
6792 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6793 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6794 c->Request.CDB[2] = 0x00; /* reserved */
6795 c->Request.CDB[3] = 0x00; /* reserved */
6796 /* Tag to abort goes in CDB[4]-CDB[11] */
9b5c48c2 6797 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
75167d2c
SC
6798 c->Request.CDB[12] = 0x00; /* reserved */
6799 c->Request.CDB[13] = 0x00; /* reserved */
6800 c->Request.CDB[14] = 0x00; /* reserved */
6801 c->Request.CDB[15] = 0x00; /* reserved */
edd16368 6802 break;
edd16368
SC
6803 default:
6804 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6805 cmd);
6806 BUG();
6807 }
6808 } else {
6809 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6810 BUG();
6811 }
6812
a505b86f 6813 switch (GET_DIR(c->Request.type_attr_dir)) {
edd16368
SC
6814 case XFER_READ:
6815 pci_dir = PCI_DMA_FROMDEVICE;
6816 break;
6817 case XFER_WRITE:
6818 pci_dir = PCI_DMA_TODEVICE;
6819 break;
6820 case XFER_NONE:
6821 pci_dir = PCI_DMA_NONE;
6822 break;
6823 default:
6824 pci_dir = PCI_DMA_BIDIRECTIONAL;
6825 }
a2dac136
SC
6826 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6827 return -1;
6828 return 0;
edd16368
SC
6829}
6830
6831/*
6832 * Map (physical) PCI mem into (virtual) kernel space
6833 */
6834static void __iomem *remap_pci_mem(ulong base, ulong size)
6835{
6836 ulong page_base = ((ulong) base) & PAGE_MASK;
6837 ulong page_offs = ((ulong) base) - page_base;
088ba34c
SC
6838 void __iomem *page_remapped = ioremap_nocache(page_base,
6839 page_offs + size);
edd16368
SC
6840
6841 return page_remapped ? (page_remapped + page_offs) : NULL;
6842}
6843
254f796b 6844static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
edd16368 6845{
254f796b 6846 return h->access.command_completed(h, q);
edd16368
SC
6847}
6848
900c5440 6849static inline bool interrupt_pending(struct ctlr_info *h)
edd16368
SC
6850{
6851 return h->access.intr_pending(h);
6852}
6853
6854static inline long interrupt_not_for_us(struct ctlr_info *h)
6855{
10f66018
SC
6856 return (h->access.intr_pending(h) == 0) ||
6857 (h->interrupts_enabled == 0);
edd16368
SC
6858}
6859
01a02ffc
SC
6860static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6861 u32 raw_tag)
edd16368
SC
6862{
6863 if (unlikely(tag_index >= h->nr_cmds)) {
6864 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6865 return 1;
6866 }
6867 return 0;
6868}
6869
5a3d16f5 6870static inline void finish_cmd(struct CommandList *c)
edd16368 6871{
e85c5974 6872 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
c349775e
ST
6873 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6874 || c->cmd_type == CMD_IOACCEL2))
1fb011fb 6875 complete_scsi_command(c);
8be986cc 6876 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
edd16368 6877 complete(c->waiting);
a104c99f
SC
6878}
6879
303932fd 6880/* process completion of an indexed ("direct lookup") command */
1d94f94d 6881static inline void process_indexed_cmd(struct ctlr_info *h,
303932fd
DB
6882 u32 raw_tag)
6883{
6884 u32 tag_index;
6885 struct CommandList *c;
6886
f2405db8 6887 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
1d94f94d
SC
6888 if (!bad_tag(h, tag_index, raw_tag)) {
6889 c = h->cmd_pool + tag_index;
6890 finish_cmd(c);
6891 }
303932fd
DB
6892}
6893
64670ac8
SC
6894/* Some controllers, like p400, will give us one interrupt
6895 * after a soft reset, even if we turned interrupts off.
6896 * Only need to check for this in the hpsa_xxx_discard_completions
6897 * functions.
6898 */
6899static int ignore_bogus_interrupt(struct ctlr_info *h)
6900{
6901 if (likely(!reset_devices))
6902 return 0;
6903
6904 if (likely(h->interrupts_enabled))
6905 return 0;
6906
6907 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6908 "(known firmware bug.) Ignoring.\n");
6909
6910 return 1;
6911}
6912
254f796b
MG
6913/*
6914 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6915 * Relies on (h-q[x] == x) being true for x such that
6916 * 0 <= x < MAX_REPLY_QUEUES.
6917 */
6918static struct ctlr_info *queue_to_hba(u8 *queue)
64670ac8 6919{
254f796b
MG
6920 return container_of((queue - *queue), struct ctlr_info, q[0]);
6921}
6922
6923static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6924{
6925 struct ctlr_info *h = queue_to_hba(queue);
6926 u8 q = *(u8 *) queue;
64670ac8
SC
6927 u32 raw_tag;
6928
6929 if (ignore_bogus_interrupt(h))
6930 return IRQ_NONE;
6931
6932 if (interrupt_not_for_us(h))
6933 return IRQ_NONE;
a0c12413 6934 h->last_intr_timestamp = get_jiffies_64();
64670ac8 6935 while (interrupt_pending(h)) {
254f796b 6936 raw_tag = get_next_completion(h, q);
64670ac8 6937 while (raw_tag != FIFO_EMPTY)
254f796b 6938 raw_tag = next_command(h, q);
64670ac8 6939 }
64670ac8
SC
6940 return IRQ_HANDLED;
6941}
6942
254f796b 6943static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
64670ac8 6944{
254f796b 6945 struct ctlr_info *h = queue_to_hba(queue);
64670ac8 6946 u32 raw_tag;
254f796b 6947 u8 q = *(u8 *) queue;
64670ac8
SC
6948
6949 if (ignore_bogus_interrupt(h))
6950 return IRQ_NONE;
6951
a0c12413 6952 h->last_intr_timestamp = get_jiffies_64();
254f796b 6953 raw_tag = get_next_completion(h, q);
64670ac8 6954 while (raw_tag != FIFO_EMPTY)
254f796b 6955 raw_tag = next_command(h, q);
64670ac8
SC
6956 return IRQ_HANDLED;
6957}
6958
254f796b 6959static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
edd16368 6960{
254f796b 6961 struct ctlr_info *h = queue_to_hba((u8 *) queue);
303932fd 6962 u32 raw_tag;
254f796b 6963 u8 q = *(u8 *) queue;
edd16368
SC
6964
6965 if (interrupt_not_for_us(h))
6966 return IRQ_NONE;
a0c12413 6967 h->last_intr_timestamp = get_jiffies_64();
10f66018 6968 while (interrupt_pending(h)) {
254f796b 6969 raw_tag = get_next_completion(h, q);
10f66018 6970 while (raw_tag != FIFO_EMPTY) {
f2405db8 6971 process_indexed_cmd(h, raw_tag);
254f796b 6972 raw_tag = next_command(h, q);
10f66018
SC
6973 }
6974 }
10f66018
SC
6975 return IRQ_HANDLED;
6976}
6977
254f796b 6978static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
10f66018 6979{
254f796b 6980 struct ctlr_info *h = queue_to_hba(queue);
10f66018 6981 u32 raw_tag;
254f796b 6982 u8 q = *(u8 *) queue;
10f66018 6983
a0c12413 6984 h->last_intr_timestamp = get_jiffies_64();
254f796b 6985 raw_tag = get_next_completion(h, q);
303932fd 6986 while (raw_tag != FIFO_EMPTY) {
f2405db8 6987 process_indexed_cmd(h, raw_tag);
254f796b 6988 raw_tag = next_command(h, q);
edd16368 6989 }
edd16368
SC
6990 return IRQ_HANDLED;
6991}
6992
a9a3a273
SC
6993/* Send a message CDB to the firmware. Careful, this only works
6994 * in simple mode, not performant mode due to the tag lookup.
6995 * We only ever use this immediately after a controller reset.
6996 */
6f039790
GKH
6997static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6998 unsigned char type)
edd16368
SC
6999{
7000 struct Command {
7001 struct CommandListHeader CommandHeader;
7002 struct RequestBlock Request;
7003 struct ErrDescriptor ErrorDescriptor;
7004 };
7005 struct Command *cmd;
7006 static const size_t cmd_sz = sizeof(*cmd) +
7007 sizeof(cmd->ErrorDescriptor);
7008 dma_addr_t paddr64;
2b08b3e9
DB
7009 __le32 paddr32;
7010 u32 tag;
edd16368
SC
7011 void __iomem *vaddr;
7012 int i, err;
7013
7014 vaddr = pci_ioremap_bar(pdev, 0);
7015 if (vaddr == NULL)
7016 return -ENOMEM;
7017
7018 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7019 * CCISS commands, so they must be allocated from the lower 4GiB of
7020 * memory.
7021 */
7022 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7023 if (err) {
7024 iounmap(vaddr);
1eaec8f3 7025 return err;
edd16368
SC
7026 }
7027
7028 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7029 if (cmd == NULL) {
7030 iounmap(vaddr);
7031 return -ENOMEM;
7032 }
7033
7034 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7035 * although there's no guarantee, we assume that the address is at
7036 * least 4-byte aligned (most likely, it's page-aligned).
7037 */
2b08b3e9 7038 paddr32 = cpu_to_le32(paddr64);
edd16368
SC
7039
7040 cmd->CommandHeader.ReplyQueue = 0;
7041 cmd->CommandHeader.SGList = 0;
50a0decf 7042 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
2b08b3e9 7043 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
edd16368
SC
7044 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7045
7046 cmd->Request.CDBLen = 16;
a505b86f
SC
7047 cmd->Request.type_attr_dir =
7048 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
edd16368
SC
7049 cmd->Request.Timeout = 0; /* Don't time out */
7050 cmd->Request.CDB[0] = opcode;
7051 cmd->Request.CDB[1] = type;
7052 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
50a0decf 7053 cmd->ErrorDescriptor.Addr =
2b08b3e9 7054 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
50a0decf 7055 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
edd16368 7056
2b08b3e9 7057 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
edd16368
SC
7058
7059 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7060 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2b08b3e9 7061 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
edd16368
SC
7062 break;
7063 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7064 }
7065
7066 iounmap(vaddr);
7067
7068 /* we leak the DMA buffer here ... no choice since the controller could
7069 * still complete the command.
7070 */
7071 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7072 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7073 opcode, type);
7074 return -ETIMEDOUT;
7075 }
7076
7077 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7078
7079 if (tag & HPSA_ERROR_BIT) {
7080 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7081 opcode, type);
7082 return -EIO;
7083 }
7084
7085 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7086 opcode, type);
7087 return 0;
7088}
7089
edd16368
SC
7090#define hpsa_noop(p) hpsa_message(p, 3, 0)
7091
1df8552a 7092static int hpsa_controller_hard_reset(struct pci_dev *pdev,
42a91641 7093 void __iomem *vaddr, u32 use_doorbell)
1df8552a 7094{
1df8552a
SC
7095
7096 if (use_doorbell) {
7097 /* For everything after the P600, the PCI power state method
7098 * of resetting the controller doesn't work, so we have this
7099 * other way using the doorbell register.
7100 */
7101 dev_info(&pdev->dev, "using doorbell to reset controller\n");
cf0b08d0 7102 writel(use_doorbell, vaddr + SA5_DOORBELL);
85009239 7103
00701a96 7104 /* PMC hardware guys tell us we need a 10 second delay after
85009239
SC
7105 * doorbell reset and before any attempt to talk to the board
7106 * at all to ensure that this actually works and doesn't fall
7107 * over in some weird corner cases.
7108 */
00701a96 7109 msleep(10000);
1df8552a
SC
7110 } else { /* Try to do it the PCI power state way */
7111
7112 /* Quoting from the Open CISS Specification: "The Power
7113 * Management Control/Status Register (CSR) controls the power
7114 * state of the device. The normal operating state is D0,
7115 * CSR=00h. The software off state is D3, CSR=03h. To reset
7116 * the controller, place the interface device in D3 then to D0,
7117 * this causes a secondary PCI reset which will reset the
7118 * controller." */
2662cab8
DB
7119
7120 int rc = 0;
7121
1df8552a 7122 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2662cab8 7123
1df8552a 7124 /* enter the D3hot power management state */
2662cab8
DB
7125 rc = pci_set_power_state(pdev, PCI_D3hot);
7126 if (rc)
7127 return rc;
1df8552a
SC
7128
7129 msleep(500);
7130
7131 /* enter the D0 power management state */
2662cab8
DB
7132 rc = pci_set_power_state(pdev, PCI_D0);
7133 if (rc)
7134 return rc;
c4853efe
MM
7135
7136 /*
7137 * The P600 requires a small delay when changing states.
7138 * Otherwise we may think the board did not reset and we bail.
7139 * This for kdump only and is particular to the P600.
7140 */
7141 msleep(500);
1df8552a
SC
7142 }
7143 return 0;
7144}
7145
6f039790 7146static void init_driver_version(char *driver_version, int len)
580ada3c
SC
7147{
7148 memset(driver_version, 0, len);
f79cfec6 7149 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
580ada3c
SC
7150}
7151
6f039790 7152static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
580ada3c
SC
7153{
7154 char *driver_version;
7155 int i, size = sizeof(cfgtable->driver_version);
7156
7157 driver_version = kmalloc(size, GFP_KERNEL);
7158 if (!driver_version)
7159 return -ENOMEM;
7160
7161 init_driver_version(driver_version, size);
7162 for (i = 0; i < size; i++)
7163 writeb(driver_version[i], &cfgtable->driver_version[i]);
7164 kfree(driver_version);
7165 return 0;
7166}
7167
6f039790
GKH
7168static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7169 unsigned char *driver_ver)
580ada3c
SC
7170{
7171 int i;
7172
7173 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7174 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7175}
7176
6f039790 7177static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
580ada3c
SC
7178{
7179
7180 char *driver_ver, *old_driver_ver;
7181 int rc, size = sizeof(cfgtable->driver_version);
7182
7183 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7184 if (!old_driver_ver)
7185 return -ENOMEM;
7186 driver_ver = old_driver_ver + size;
7187
7188 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7189 * should have been changed, otherwise we know the reset failed.
7190 */
7191 init_driver_version(old_driver_ver, size);
7192 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7193 rc = !memcmp(driver_ver, old_driver_ver, size);
7194 kfree(old_driver_ver);
7195 return rc;
7196}
edd16368 7197/* This does a hard reset of the controller using PCI power management
1df8552a 7198 * states or the using the doorbell register.
edd16368 7199 */
6b6c1cd7 7200static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
edd16368 7201{
1df8552a
SC
7202 u64 cfg_offset;
7203 u32 cfg_base_addr;
7204 u64 cfg_base_addr_index;
7205 void __iomem *vaddr;
7206 unsigned long paddr;
580ada3c 7207 u32 misc_fw_support;
270d05de 7208 int rc;
1df8552a 7209 struct CfgTable __iomem *cfgtable;
cf0b08d0 7210 u32 use_doorbell;
270d05de 7211 u16 command_register;
edd16368 7212
1df8552a
SC
7213 /* For controllers as old as the P600, this is very nearly
7214 * the same thing as
edd16368
SC
7215 *
7216 * pci_save_state(pci_dev);
7217 * pci_set_power_state(pci_dev, PCI_D3hot);
7218 * pci_set_power_state(pci_dev, PCI_D0);
7219 * pci_restore_state(pci_dev);
7220 *
1df8552a
SC
7221 * For controllers newer than the P600, the pci power state
7222 * method of resetting doesn't work so we have another way
7223 * using the doorbell register.
edd16368 7224 */
18867659 7225
60f923b9
RE
7226 if (!ctlr_is_resettable(board_id)) {
7227 dev_warn(&pdev->dev, "Controller not resettable\n");
25c1e56a
SC
7228 return -ENODEV;
7229 }
46380786
SC
7230
7231 /* if controller is soft- but not hard resettable... */
7232 if (!ctlr_is_hard_resettable(board_id))
7233 return -ENOTSUPP; /* try soft reset later. */
18867659 7234
270d05de
SC
7235 /* Save the PCI command register */
7236 pci_read_config_word(pdev, 4, &command_register);
270d05de 7237 pci_save_state(pdev);
edd16368 7238
1df8552a
SC
7239 /* find the first memory BAR, so we can find the cfg table */
7240 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7241 if (rc)
7242 return rc;
7243 vaddr = remap_pci_mem(paddr, 0x250);
7244 if (!vaddr)
7245 return -ENOMEM;
edd16368 7246
1df8552a
SC
7247 /* find cfgtable in order to check if reset via doorbell is supported */
7248 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7249 &cfg_base_addr_index, &cfg_offset);
7250 if (rc)
7251 goto unmap_vaddr;
7252 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7253 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7254 if (!cfgtable) {
7255 rc = -ENOMEM;
7256 goto unmap_vaddr;
7257 }
580ada3c
SC
7258 rc = write_driver_ver_to_cfgtable(cfgtable);
7259 if (rc)
03741d95 7260 goto unmap_cfgtable;
edd16368 7261
cf0b08d0
SC
7262 /* If reset via doorbell register is supported, use that.
7263 * There are two such methods. Favor the newest method.
7264 */
1df8552a 7265 misc_fw_support = readl(&cfgtable->misc_fw_support);
cf0b08d0
SC
7266 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7267 if (use_doorbell) {
7268 use_doorbell = DOORBELL_CTLR_RESET2;
7269 } else {
7270 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7271 if (use_doorbell) {
050f7147
SC
7272 dev_warn(&pdev->dev,
7273 "Soft reset not supported. Firmware update is required.\n");
64670ac8 7274 rc = -ENOTSUPP; /* try soft reset */
cf0b08d0
SC
7275 goto unmap_cfgtable;
7276 }
7277 }
edd16368 7278
1df8552a
SC
7279 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7280 if (rc)
7281 goto unmap_cfgtable;
edd16368 7282
270d05de 7283 pci_restore_state(pdev);
270d05de 7284 pci_write_config_word(pdev, 4, command_register);
edd16368 7285
1df8552a
SC
7286 /* Some devices (notably the HP Smart Array 5i Controller)
7287 need a little pause here */
7288 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7289
fe5389c8
SC
7290 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7291 if (rc) {
7292 dev_warn(&pdev->dev,
050f7147 7293 "Failed waiting for board to become ready after hard reset\n");
fe5389c8
SC
7294 goto unmap_cfgtable;
7295 }
fe5389c8 7296
580ada3c
SC
7297 rc = controller_reset_failed(vaddr);
7298 if (rc < 0)
7299 goto unmap_cfgtable;
7300 if (rc) {
64670ac8
SC
7301 dev_warn(&pdev->dev, "Unable to successfully reset "
7302 "controller. Will try soft reset.\n");
7303 rc = -ENOTSUPP;
580ada3c 7304 } else {
64670ac8 7305 dev_info(&pdev->dev, "board ready after hard reset.\n");
1df8552a
SC
7306 }
7307
7308unmap_cfgtable:
7309 iounmap(cfgtable);
7310
7311unmap_vaddr:
7312 iounmap(vaddr);
7313 return rc;
edd16368
SC
7314}
7315
7316/*
7317 * We cannot read the structure directly, for portability we must use
7318 * the io functions.
7319 * This is for debug only.
7320 */
42a91641 7321static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
edd16368 7322{
58f8665c 7323#ifdef HPSA_DEBUG
edd16368
SC
7324 int i;
7325 char temp_name[17];
7326
7327 dev_info(dev, "Controller Configuration information\n");
7328 dev_info(dev, "------------------------------------\n");
7329 for (i = 0; i < 4; i++)
7330 temp_name[i] = readb(&(tb->Signature[i]));
7331 temp_name[4] = '\0';
7332 dev_info(dev, " Signature = %s\n", temp_name);
7333 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7334 dev_info(dev, " Transport methods supported = 0x%x\n",
7335 readl(&(tb->TransportSupport)));
7336 dev_info(dev, " Transport methods active = 0x%x\n",
7337 readl(&(tb->TransportActive)));
7338 dev_info(dev, " Requested transport Method = 0x%x\n",
7339 readl(&(tb->HostWrite.TransportRequest)));
7340 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7341 readl(&(tb->HostWrite.CoalIntDelay)));
7342 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7343 readl(&(tb->HostWrite.CoalIntCount)));
69d6e33d 7344 dev_info(dev, " Max outstanding commands = %d\n",
edd16368
SC
7345 readl(&(tb->CmdsOutMax)));
7346 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7347 for (i = 0; i < 16; i++)
7348 temp_name[i] = readb(&(tb->ServerName[i]));
7349 temp_name[16] = '\0';
7350 dev_info(dev, " Server Name = %s\n", temp_name);
7351 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7352 readl(&(tb->HeartBeat)));
edd16368 7353#endif /* HPSA_DEBUG */
58f8665c 7354}
edd16368
SC
7355
7356static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7357{
7358 int i, offset, mem_type, bar_type;
7359
7360 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7361 return 0;
7362 offset = 0;
7363 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7364 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7365 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7366 offset += 4;
7367 else {
7368 mem_type = pci_resource_flags(pdev, i) &
7369 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7370 switch (mem_type) {
7371 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7372 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7373 offset += 4; /* 32 bit */
7374 break;
7375 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7376 offset += 8;
7377 break;
7378 default: /* reserved in PCI 2.2 */
7379 dev_warn(&pdev->dev,
7380 "base address is invalid\n");
7381 return -1;
7382 break;
7383 }
7384 }
7385 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7386 return i + 1;
7387 }
7388 return -1;
7389}
7390
cc64c817
RE
7391static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7392{
7393 if (h->msix_vector) {
7394 if (h->pdev->msix_enabled)
7395 pci_disable_msix(h->pdev);
105a3dbc 7396 h->msix_vector = 0;
cc64c817
RE
7397 } else if (h->msi_vector) {
7398 if (h->pdev->msi_enabled)
7399 pci_disable_msi(h->pdev);
105a3dbc 7400 h->msi_vector = 0;
cc64c817
RE
7401 }
7402}
7403
edd16368 7404/* If MSI/MSI-X is supported by the kernel we will try to enable it on
050f7147 7405 * controllers that are capable. If not, we use legacy INTx mode.
edd16368 7406 */
6f039790 7407static void hpsa_interrupt_mode(struct ctlr_info *h)
edd16368
SC
7408{
7409#ifdef CONFIG_PCI_MSI
254f796b
MG
7410 int err, i;
7411 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7412
7413 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7414 hpsa_msix_entries[i].vector = 0;
7415 hpsa_msix_entries[i].entry = i;
7416 }
edd16368
SC
7417
7418 /* Some boards advertise MSI but don't really support it */
6b3f4c52
SC
7419 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7420 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
edd16368 7421 goto default_int_mode;
55c06c71 7422 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
050f7147 7423 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
eee0f03a 7424 h->msix_vector = MAX_REPLY_QUEUES;
f89439bc
SC
7425 if (h->msix_vector > num_online_cpus())
7426 h->msix_vector = num_online_cpus();
18fce3c4
AG
7427 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7428 1, h->msix_vector);
7429 if (err < 0) {
7430 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7431 h->msix_vector = 0;
7432 goto single_msi_mode;
7433 } else if (err < h->msix_vector) {
55c06c71 7434 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
edd16368 7435 "available\n", err);
edd16368 7436 }
18fce3c4
AG
7437 h->msix_vector = err;
7438 for (i = 0; i < h->msix_vector; i++)
7439 h->intr[i] = hpsa_msix_entries[i].vector;
7440 return;
edd16368 7441 }
18fce3c4 7442single_msi_mode:
55c06c71 7443 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
050f7147 7444 dev_info(&h->pdev->dev, "MSI capable controller\n");
55c06c71 7445 if (!pci_enable_msi(h->pdev))
edd16368
SC
7446 h->msi_vector = 1;
7447 else
55c06c71 7448 dev_warn(&h->pdev->dev, "MSI init failed\n");
edd16368
SC
7449 }
7450default_int_mode:
7451#endif /* CONFIG_PCI_MSI */
7452 /* if we get here we're going to use the default interrupt mode */
a9a3a273 7453 h->intr[h->intr_mode] = h->pdev->irq;
edd16368
SC
7454}
7455
6f039790 7456static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
e5c880d1
SC
7457{
7458 int i;
7459 u32 subsystem_vendor_id, subsystem_device_id;
7460
7461 subsystem_vendor_id = pdev->subsystem_vendor;
7462 subsystem_device_id = pdev->subsystem_device;
7463 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7464 subsystem_vendor_id;
7465
7466 for (i = 0; i < ARRAY_SIZE(products); i++)
7467 if (*board_id == products[i].board_id)
7468 return i;
7469
6798cc0a
SC
7470 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7471 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7472 !hpsa_allow_any) {
e5c880d1
SC
7473 dev_warn(&pdev->dev, "unrecognized board ID: "
7474 "0x%08x, ignoring.\n", *board_id);
7475 return -ENODEV;
7476 }
7477 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7478}
7479
6f039790
GKH
7480static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7481 unsigned long *memory_bar)
3a7774ce
SC
7482{
7483 int i;
7484
7485 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
12d2cd47 7486 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3a7774ce 7487 /* addressing mode bits already removed */
12d2cd47
SC
7488 *memory_bar = pci_resource_start(pdev, i);
7489 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3a7774ce
SC
7490 *memory_bar);
7491 return 0;
7492 }
12d2cd47 7493 dev_warn(&pdev->dev, "no memory BAR found\n");
3a7774ce
SC
7494 return -ENODEV;
7495}
7496
6f039790
GKH
7497static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7498 int wait_for_ready)
2c4c8c8b 7499{
fe5389c8 7500 int i, iterations;
2c4c8c8b 7501 u32 scratchpad;
fe5389c8
SC
7502 if (wait_for_ready)
7503 iterations = HPSA_BOARD_READY_ITERATIONS;
7504 else
7505 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
2c4c8c8b 7506
fe5389c8
SC
7507 for (i = 0; i < iterations; i++) {
7508 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7509 if (wait_for_ready) {
7510 if (scratchpad == HPSA_FIRMWARE_READY)
7511 return 0;
7512 } else {
7513 if (scratchpad != HPSA_FIRMWARE_READY)
7514 return 0;
7515 }
2c4c8c8b
SC
7516 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7517 }
fe5389c8 7518 dev_warn(&pdev->dev, "board not ready, timed out.\n");
2c4c8c8b
SC
7519 return -ENODEV;
7520}
7521
6f039790
GKH
7522static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7523 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7524 u64 *cfg_offset)
a51fd47f
SC
7525{
7526 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7527 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7528 *cfg_base_addr &= (u32) 0x0000ffff;
7529 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7530 if (*cfg_base_addr_index == -1) {
7531 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7532 return -ENODEV;
7533 }
7534 return 0;
7535}
7536
195f2c65
RE
7537static void hpsa_free_cfgtables(struct ctlr_info *h)
7538{
105a3dbc 7539 if (h->transtable) {
195f2c65 7540 iounmap(h->transtable);
105a3dbc
RE
7541 h->transtable = NULL;
7542 }
7543 if (h->cfgtable) {
195f2c65 7544 iounmap(h->cfgtable);
105a3dbc
RE
7545 h->cfgtable = NULL;
7546 }
195f2c65
RE
7547}
7548
7549/* Find and map CISS config table and transfer table
7550+ * several items must be unmapped (freed) later
7551+ * */
6f039790 7552static int hpsa_find_cfgtables(struct ctlr_info *h)
edd16368 7553{
01a02ffc
SC
7554 u64 cfg_offset;
7555 u32 cfg_base_addr;
7556 u64 cfg_base_addr_index;
303932fd 7557 u32 trans_offset;
a51fd47f 7558 int rc;
77c4495c 7559
a51fd47f
SC
7560 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7561 &cfg_base_addr_index, &cfg_offset);
7562 if (rc)
7563 return rc;
77c4495c 7564 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
a51fd47f 7565 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
cd3c81c4
RE
7566 if (!h->cfgtable) {
7567 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
77c4495c 7568 return -ENOMEM;
cd3c81c4 7569 }
580ada3c
SC
7570 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7571 if (rc)
7572 return rc;
77c4495c 7573 /* Find performant mode table. */
a51fd47f 7574 trans_offset = readl(&h->cfgtable->TransMethodOffset);
77c4495c
SC
7575 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7576 cfg_base_addr_index)+cfg_offset+trans_offset,
7577 sizeof(*h->transtable));
195f2c65
RE
7578 if (!h->transtable) {
7579 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7580 hpsa_free_cfgtables(h);
77c4495c 7581 return -ENOMEM;
195f2c65 7582 }
77c4495c
SC
7583 return 0;
7584}
7585
6f039790 7586static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
cba3d38b 7587{
41ce4c35
SC
7588#define MIN_MAX_COMMANDS 16
7589 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7590
7591 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
72ceeaec
SC
7592
7593 /* Limit commands in memory limited kdump scenario. */
7594 if (reset_devices && h->max_commands > 32)
7595 h->max_commands = 32;
7596
41ce4c35
SC
7597 if (h->max_commands < MIN_MAX_COMMANDS) {
7598 dev_warn(&h->pdev->dev,
7599 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7600 h->max_commands,
7601 MIN_MAX_COMMANDS);
7602 h->max_commands = MIN_MAX_COMMANDS;
cba3d38b
SC
7603 }
7604}
7605
c7ee65b3
WS
7606/* If the controller reports that the total max sg entries is greater than 512,
7607 * then we know that chained SG blocks work. (Original smart arrays did not
7608 * support chained SG blocks and would return zero for max sg entries.)
7609 */
7610static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7611{
7612 return h->maxsgentries > 512;
7613}
7614
b93d7536
SC
7615/* Interrogate the hardware for some limits:
7616 * max commands, max SG elements without chaining, and with chaining,
7617 * SG chain block size, etc.
7618 */
6f039790 7619static void hpsa_find_board_params(struct ctlr_info *h)
b93d7536 7620{
cba3d38b 7621 hpsa_get_max_perf_mode_cmds(h);
45fcb86e 7622 h->nr_cmds = h->max_commands;
b93d7536 7623 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
283b4a9b 7624 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
c7ee65b3
WS
7625 if (hpsa_supports_chained_sg_blocks(h)) {
7626 /* Limit in-command s/g elements to 32 save dma'able memory. */
b93d7536 7627 h->max_cmd_sg_entries = 32;
1a63ea6f 7628 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
b93d7536
SC
7629 h->maxsgentries--; /* save one for chain pointer */
7630 } else {
c7ee65b3
WS
7631 /*
7632 * Original smart arrays supported at most 31 s/g entries
7633 * embedded inline in the command (trying to use more
7634 * would lock up the controller)
7635 */
7636 h->max_cmd_sg_entries = 31;
1a63ea6f 7637 h->maxsgentries = 31; /* default to traditional values */
c7ee65b3 7638 h->chainsize = 0;
b93d7536 7639 }
75167d2c
SC
7640
7641 /* Find out what task management functions are supported and cache */
7642 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
0e7a7fce
ST
7643 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7644 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7645 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7646 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
8be986cc
SC
7647 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7648 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
b93d7536
SC
7649}
7650
76c46e49
SC
7651static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7652{
0fc9fd40 7653 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
050f7147 7654 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
76c46e49
SC
7655 return false;
7656 }
7657 return true;
7658}
7659
97a5e98c 7660static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
f7c39101 7661{
97a5e98c 7662 u32 driver_support;
f7c39101 7663
97a5e98c 7664 driver_support = readl(&(h->cfgtable->driver_support));
0b9e7b74
AB
7665 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7666#ifdef CONFIG_X86
97a5e98c 7667 driver_support |= ENABLE_SCSI_PREFETCH;
f7c39101 7668#endif
28e13446
SC
7669 driver_support |= ENABLE_UNIT_ATTN;
7670 writel(driver_support, &(h->cfgtable->driver_support));
f7c39101
SC
7671}
7672
3d0eab67
SC
7673/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7674 * in a prefetch beyond physical memory.
7675 */
7676static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7677{
7678 u32 dma_prefetch;
7679
7680 if (h->board_id != 0x3225103C)
7681 return;
7682 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7683 dma_prefetch |= 0x8000;
7684 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7685}
7686
c706a795 7687static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
76438d08
SC
7688{
7689 int i;
7690 u32 doorbell_value;
7691 unsigned long flags;
7692 /* wait until the clear_event_notify bit 6 is cleared by controller. */
007e7aa9 7693 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
76438d08
SC
7694 spin_lock_irqsave(&h->lock, flags);
7695 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7696 spin_unlock_irqrestore(&h->lock, flags);
7697 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
c706a795 7698 goto done;
76438d08 7699 /* delay and try again */
007e7aa9 7700 msleep(CLEAR_EVENT_WAIT_INTERVAL);
76438d08 7701 }
c706a795
RE
7702 return -ENODEV;
7703done:
7704 return 0;
76438d08
SC
7705}
7706
c706a795 7707static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
eb6b2ae9
SC
7708{
7709 int i;
6eaf46fd
SC
7710 u32 doorbell_value;
7711 unsigned long flags;
eb6b2ae9
SC
7712
7713 /* under certain very rare conditions, this can take awhile.
7714 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7715 * as we enter this code.)
7716 */
007e7aa9 7717 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
25163bd5
WS
7718 if (h->remove_in_progress)
7719 goto done;
6eaf46fd
SC
7720 spin_lock_irqsave(&h->lock, flags);
7721 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7722 spin_unlock_irqrestore(&h->lock, flags);
382be668 7723 if (!(doorbell_value & CFGTBL_ChangeReq))
c706a795 7724 goto done;
eb6b2ae9 7725 /* delay and try again */
007e7aa9 7726 msleep(MODE_CHANGE_WAIT_INTERVAL);
eb6b2ae9 7727 }
c706a795
RE
7728 return -ENODEV;
7729done:
7730 return 0;
3f4336f3
SC
7731}
7732
c706a795 7733/* return -ENODEV or other reason on error, 0 on success */
6f039790 7734static int hpsa_enter_simple_mode(struct ctlr_info *h)
3f4336f3
SC
7735{
7736 u32 trans_support;
7737
7738 trans_support = readl(&(h->cfgtable->TransportSupport));
7739 if (!(trans_support & SIMPLE_MODE))
7740 return -ENOTSUPP;
7741
7742 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
283b4a9b 7743
3f4336f3
SC
7744 /* Update the field, and then ring the doorbell */
7745 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
b9af4937 7746 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
3f4336f3 7747 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
7748 if (hpsa_wait_for_mode_change_ack(h))
7749 goto error;
eb6b2ae9 7750 print_cfg_table(&h->pdev->dev, h->cfgtable);
283b4a9b
SC
7751 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7752 goto error;
960a30e7 7753 h->transMethod = CFGTBL_Trans_Simple;
eb6b2ae9 7754 return 0;
283b4a9b 7755error:
050f7147 7756 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
283b4a9b 7757 return -ENODEV;
eb6b2ae9
SC
7758}
7759
195f2c65
RE
7760/* free items allocated or mapped by hpsa_pci_init */
7761static void hpsa_free_pci_init(struct ctlr_info *h)
7762{
7763 hpsa_free_cfgtables(h); /* pci_init 4 */
7764 iounmap(h->vaddr); /* pci_init 3 */
105a3dbc 7765 h->vaddr = NULL;
195f2c65 7766 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
943a7021
RE
7767 /*
7768 * call pci_disable_device before pci_release_regions per
7769 * Documentation/PCI/pci.txt
7770 */
195f2c65 7771 pci_disable_device(h->pdev); /* pci_init 1 */
943a7021 7772 pci_release_regions(h->pdev); /* pci_init 2 */
195f2c65
RE
7773}
7774
7775/* several items must be freed later */
6f039790 7776static int hpsa_pci_init(struct ctlr_info *h)
77c4495c 7777{
eb6b2ae9 7778 int prod_index, err;
edd16368 7779
e5c880d1
SC
7780 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7781 if (prod_index < 0)
60f923b9 7782 return prod_index;
e5c880d1
SC
7783 h->product_name = products[prod_index].product_name;
7784 h->access = *(products[prod_index].access);
edd16368 7785
9b5c48c2
SC
7786 h->needs_abort_tags_swizzled =
7787 ctlr_needs_abort_tags_swizzled(h->board_id);
7788
e5a44df8
MG
7789 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7790 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7791
55c06c71 7792 err = pci_enable_device(h->pdev);
edd16368 7793 if (err) {
195f2c65 7794 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
943a7021 7795 pci_disable_device(h->pdev);
edd16368
SC
7796 return err;
7797 }
7798
f79cfec6 7799 err = pci_request_regions(h->pdev, HPSA);
edd16368 7800 if (err) {
55c06c71 7801 dev_err(&h->pdev->dev,
195f2c65 7802 "failed to obtain PCI resources\n");
943a7021
RE
7803 pci_disable_device(h->pdev);
7804 return err;
edd16368 7805 }
4fa604e1
RE
7806
7807 pci_set_master(h->pdev);
7808
6b3f4c52 7809 hpsa_interrupt_mode(h);
12d2cd47 7810 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3a7774ce 7811 if (err)
195f2c65 7812 goto clean2; /* intmode+region, pci */
edd16368 7813 h->vaddr = remap_pci_mem(h->paddr, 0x250);
204892e9 7814 if (!h->vaddr) {
195f2c65 7815 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
204892e9 7816 err = -ENOMEM;
195f2c65 7817 goto clean2; /* intmode+region, pci */
204892e9 7818 }
fe5389c8 7819 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
2c4c8c8b 7820 if (err)
195f2c65 7821 goto clean3; /* vaddr, intmode+region, pci */
77c4495c
SC
7822 err = hpsa_find_cfgtables(h);
7823 if (err)
195f2c65 7824 goto clean3; /* vaddr, intmode+region, pci */
b93d7536 7825 hpsa_find_board_params(h);
edd16368 7826
76c46e49 7827 if (!hpsa_CISS_signature_present(h)) {
edd16368 7828 err = -ENODEV;
195f2c65 7829 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
edd16368 7830 }
97a5e98c 7831 hpsa_set_driver_support_bits(h);
3d0eab67 7832 hpsa_p600_dma_prefetch_quirk(h);
eb6b2ae9
SC
7833 err = hpsa_enter_simple_mode(h);
7834 if (err)
195f2c65 7835 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
edd16368
SC
7836 return 0;
7837
195f2c65
RE
7838clean4: /* cfgtables, vaddr, intmode+region, pci */
7839 hpsa_free_cfgtables(h);
7840clean3: /* vaddr, intmode+region, pci */
7841 iounmap(h->vaddr);
105a3dbc 7842 h->vaddr = NULL;
195f2c65
RE
7843clean2: /* intmode+region, pci */
7844 hpsa_disable_interrupt_mode(h);
943a7021
RE
7845 /*
7846 * call pci_disable_device before pci_release_regions per
7847 * Documentation/PCI/pci.txt
7848 */
195f2c65 7849 pci_disable_device(h->pdev);
943a7021 7850 pci_release_regions(h->pdev);
edd16368
SC
7851 return err;
7852}
7853
6f039790 7854static void hpsa_hba_inquiry(struct ctlr_info *h)
339b2b14
SC
7855{
7856 int rc;
7857
7858#define HBA_INQUIRY_BYTE_COUNT 64
7859 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7860 if (!h->hba_inquiry_data)
7861 return;
7862 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7863 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7864 if (rc != 0) {
7865 kfree(h->hba_inquiry_data);
7866 h->hba_inquiry_data = NULL;
7867 }
7868}
7869
6b6c1cd7 7870static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
4c2a8c40 7871{
1df8552a 7872 int rc, i;
3b747298 7873 void __iomem *vaddr;
4c2a8c40
SC
7874
7875 if (!reset_devices)
7876 return 0;
7877
132aa220
TH
7878 /* kdump kernel is loading, we don't know in which state is
7879 * the pci interface. The dev->enable_cnt is equal zero
7880 * so we call enable+disable, wait a while and switch it on.
7881 */
7882 rc = pci_enable_device(pdev);
7883 if (rc) {
7884 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7885 return -ENODEV;
7886 }
7887 pci_disable_device(pdev);
7888 msleep(260); /* a randomly chosen number */
7889 rc = pci_enable_device(pdev);
7890 if (rc) {
7891 dev_warn(&pdev->dev, "failed to enable device.\n");
7892 return -ENODEV;
7893 }
4fa604e1 7894
859c75ab 7895 pci_set_master(pdev);
4fa604e1 7896
3b747298
TH
7897 vaddr = pci_ioremap_bar(pdev, 0);
7898 if (vaddr == NULL) {
7899 rc = -ENOMEM;
7900 goto out_disable;
7901 }
7902 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7903 iounmap(vaddr);
7904
1df8552a 7905 /* Reset the controller with a PCI power-cycle or via doorbell */
6b6c1cd7 7906 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
4c2a8c40 7907
1df8552a
SC
7908 /* -ENOTSUPP here means we cannot reset the controller
7909 * but it's already (and still) up and running in
18867659
SC
7910 * "performant mode". Or, it might be 640x, which can't reset
7911 * due to concerns about shared bbwc between 6402/6404 pair.
1df8552a 7912 */
adf1b3a3 7913 if (rc)
132aa220 7914 goto out_disable;
4c2a8c40
SC
7915
7916 /* Now try to get the controller to respond to a no-op */
1ba66c9c 7917 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
4c2a8c40
SC
7918 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7919 if (hpsa_noop(pdev) == 0)
7920 break;
7921 else
7922 dev_warn(&pdev->dev, "no-op failed%s\n",
7923 (i < 11 ? "; re-trying" : ""));
7924 }
132aa220
TH
7925
7926out_disable:
7927
7928 pci_disable_device(pdev);
7929 return rc;
4c2a8c40
SC
7930}
7931
1fb7c98a
RE
7932static void hpsa_free_cmd_pool(struct ctlr_info *h)
7933{
7934 kfree(h->cmd_pool_bits);
105a3dbc
RE
7935 h->cmd_pool_bits = NULL;
7936 if (h->cmd_pool) {
1fb7c98a
RE
7937 pci_free_consistent(h->pdev,
7938 h->nr_cmds * sizeof(struct CommandList),
7939 h->cmd_pool,
7940 h->cmd_pool_dhandle);
105a3dbc
RE
7941 h->cmd_pool = NULL;
7942 h->cmd_pool_dhandle = 0;
7943 }
7944 if (h->errinfo_pool) {
1fb7c98a
RE
7945 pci_free_consistent(h->pdev,
7946 h->nr_cmds * sizeof(struct ErrorInfo),
7947 h->errinfo_pool,
7948 h->errinfo_pool_dhandle);
105a3dbc
RE
7949 h->errinfo_pool = NULL;
7950 h->errinfo_pool_dhandle = 0;
7951 }
1fb7c98a
RE
7952}
7953
d37ffbe4 7954static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
2e9d1b36
SC
7955{
7956 h->cmd_pool_bits = kzalloc(
7957 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7958 sizeof(unsigned long), GFP_KERNEL);
7959 h->cmd_pool = pci_alloc_consistent(h->pdev,
7960 h->nr_cmds * sizeof(*h->cmd_pool),
7961 &(h->cmd_pool_dhandle));
7962 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7963 h->nr_cmds * sizeof(*h->errinfo_pool),
7964 &(h->errinfo_pool_dhandle));
7965 if ((h->cmd_pool_bits == NULL)
7966 || (h->cmd_pool == NULL)
7967 || (h->errinfo_pool == NULL)) {
7968 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
2c143342 7969 goto clean_up;
2e9d1b36 7970 }
360c73bd 7971 hpsa_preinitialize_commands(h);
2e9d1b36 7972 return 0;
2c143342
RE
7973clean_up:
7974 hpsa_free_cmd_pool(h);
7975 return -ENOMEM;
2e9d1b36
SC
7976}
7977
41b3cf08
SC
7978static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7979{
ec429952 7980 int i, cpu;
41b3cf08
SC
7981
7982 cpu = cpumask_first(cpu_online_mask);
7983 for (i = 0; i < h->msix_vector; i++) {
ec429952 7984 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
41b3cf08
SC
7985 cpu = cpumask_next(cpu, cpu_online_mask);
7986 }
7987}
7988
ec501a18
RE
7989/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7990static void hpsa_free_irqs(struct ctlr_info *h)
7991{
7992 int i;
7993
7994 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7995 /* Single reply queue, only one irq to free */
7996 i = h->intr_mode;
7997 irq_set_affinity_hint(h->intr[i], NULL);
7998 free_irq(h->intr[i], &h->q[i]);
105a3dbc 7999 h->q[i] = 0;
ec501a18
RE
8000 return;
8001 }
8002
8003 for (i = 0; i < h->msix_vector; i++) {
8004 irq_set_affinity_hint(h->intr[i], NULL);
8005 free_irq(h->intr[i], &h->q[i]);
105a3dbc 8006 h->q[i] = 0;
ec501a18 8007 }
a4e17fc1
RE
8008 for (; i < MAX_REPLY_QUEUES; i++)
8009 h->q[i] = 0;
ec501a18
RE
8010}
8011
9ee61794
RE
8012/* returns 0 on success; cleans up and returns -Enn on error */
8013static int hpsa_request_irqs(struct ctlr_info *h,
0ae01a32
SC
8014 irqreturn_t (*msixhandler)(int, void *),
8015 irqreturn_t (*intxhandler)(int, void *))
8016{
254f796b 8017 int rc, i;
0ae01a32 8018
254f796b
MG
8019 /*
8020 * initialize h->q[x] = x so that interrupt handlers know which
8021 * queue to process.
8022 */
8023 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8024 h->q[i] = (u8) i;
8025
eee0f03a 8026 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
254f796b 8027 /* If performant mode and MSI-X, use multiple reply queues */
a4e17fc1 8028 for (i = 0; i < h->msix_vector; i++) {
8b47004a 8029 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
254f796b 8030 rc = request_irq(h->intr[i], msixhandler,
8b47004a 8031 0, h->intrname[i],
254f796b 8032 &h->q[i]);
a4e17fc1
RE
8033 if (rc) {
8034 int j;
8035
8036 dev_err(&h->pdev->dev,
8037 "failed to get irq %d for %s\n",
8038 h->intr[i], h->devname);
8039 for (j = 0; j < i; j++) {
8040 free_irq(h->intr[j], &h->q[j]);
8041 h->q[j] = 0;
8042 }
8043 for (; j < MAX_REPLY_QUEUES; j++)
8044 h->q[j] = 0;
8045 return rc;
8046 }
8047 }
41b3cf08 8048 hpsa_irq_affinity_hints(h);
254f796b
MG
8049 } else {
8050 /* Use single reply pool */
eee0f03a 8051 if (h->msix_vector > 0 || h->msi_vector) {
8b47004a
RE
8052 if (h->msix_vector)
8053 sprintf(h->intrname[h->intr_mode],
8054 "%s-msix", h->devname);
8055 else
8056 sprintf(h->intrname[h->intr_mode],
8057 "%s-msi", h->devname);
254f796b 8058 rc = request_irq(h->intr[h->intr_mode],
8b47004a
RE
8059 msixhandler, 0,
8060 h->intrname[h->intr_mode],
254f796b
MG
8061 &h->q[h->intr_mode]);
8062 } else {
8b47004a
RE
8063 sprintf(h->intrname[h->intr_mode],
8064 "%s-intx", h->devname);
254f796b 8065 rc = request_irq(h->intr[h->intr_mode],
8b47004a
RE
8066 intxhandler, IRQF_SHARED,
8067 h->intrname[h->intr_mode],
254f796b
MG
8068 &h->q[h->intr_mode]);
8069 }
105a3dbc 8070 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
254f796b 8071 }
0ae01a32 8072 if (rc) {
195f2c65 8073 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
0ae01a32 8074 h->intr[h->intr_mode], h->devname);
195f2c65 8075 hpsa_free_irqs(h);
0ae01a32
SC
8076 return -ENODEV;
8077 }
8078 return 0;
8079}
8080
6f039790 8081static int hpsa_kdump_soft_reset(struct ctlr_info *h)
64670ac8 8082{
39c53f55 8083 int rc;
bf43caf3 8084 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
64670ac8
SC
8085
8086 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
39c53f55
RE
8087 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8088 if (rc) {
64670ac8 8089 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
39c53f55 8090 return rc;
64670ac8
SC
8091 }
8092
8093 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
39c53f55
RE
8094 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8095 if (rc) {
64670ac8
SC
8096 dev_warn(&h->pdev->dev, "Board failed to become ready "
8097 "after soft reset.\n");
39c53f55 8098 return rc;
64670ac8
SC
8099 }
8100
8101 return 0;
8102}
8103
072b0518
SC
8104static void hpsa_free_reply_queues(struct ctlr_info *h)
8105{
8106 int i;
8107
8108 for (i = 0; i < h->nreply_queues; i++) {
8109 if (!h->reply_queue[i].head)
8110 continue;
1fb7c98a
RE
8111 pci_free_consistent(h->pdev,
8112 h->reply_queue_size,
8113 h->reply_queue[i].head,
8114 h->reply_queue[i].busaddr);
072b0518
SC
8115 h->reply_queue[i].head = NULL;
8116 h->reply_queue[i].busaddr = 0;
8117 }
105a3dbc 8118 h->reply_queue_size = 0;
072b0518
SC
8119}
8120
0097f0f4
SC
8121static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8122{
105a3dbc
RE
8123 hpsa_free_performant_mode(h); /* init_one 7 */
8124 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8125 hpsa_free_cmd_pool(h); /* init_one 5 */
8126 hpsa_free_irqs(h); /* init_one 4 */
2946e82b
RE
8127 scsi_host_put(h->scsi_host); /* init_one 3 */
8128 h->scsi_host = NULL; /* init_one 3 */
8129 hpsa_free_pci_init(h); /* init_one 2_5 */
9ecd953a
RE
8130 free_percpu(h->lockup_detected); /* init_one 2 */
8131 h->lockup_detected = NULL; /* init_one 2 */
8132 if (h->resubmit_wq) {
8133 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8134 h->resubmit_wq = NULL;
8135 }
8136 if (h->rescan_ctlr_wq) {
8137 destroy_workqueue(h->rescan_ctlr_wq);
8138 h->rescan_ctlr_wq = NULL;
8139 }
105a3dbc 8140 kfree(h); /* init_one 1 */
64670ac8
SC
8141}
8142
a0c12413 8143/* Called when controller lockup detected. */
f2405db8 8144static void fail_all_outstanding_cmds(struct ctlr_info *h)
a0c12413 8145{
281a7fd0
WS
8146 int i, refcount;
8147 struct CommandList *c;
25163bd5 8148 int failcount = 0;
a0c12413 8149
080ef1cc 8150 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
f2405db8 8151 for (i = 0; i < h->nr_cmds; i++) {
f2405db8 8152 c = h->cmd_pool + i;
281a7fd0
WS
8153 refcount = atomic_inc_return(&c->refcount);
8154 if (refcount > 1) {
25163bd5 8155 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
281a7fd0 8156 finish_cmd(c);
433b5f4d 8157 atomic_dec(&h->commands_outstanding);
25163bd5 8158 failcount++;
281a7fd0
WS
8159 }
8160 cmd_free(h, c);
a0c12413 8161 }
25163bd5
WS
8162 dev_warn(&h->pdev->dev,
8163 "failed %d commands in fail_all\n", failcount);
a0c12413
SC
8164}
8165
094963da
SC
8166static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8167{
c8ed0010 8168 int cpu;
094963da 8169
c8ed0010 8170 for_each_online_cpu(cpu) {
094963da
SC
8171 u32 *lockup_detected;
8172 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8173 *lockup_detected = value;
094963da
SC
8174 }
8175 wmb(); /* be sure the per-cpu variables are out to memory */
8176}
8177
a0c12413
SC
8178static void controller_lockup_detected(struct ctlr_info *h)
8179{
8180 unsigned long flags;
094963da 8181 u32 lockup_detected;
a0c12413 8182
a0c12413
SC
8183 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8184 spin_lock_irqsave(&h->lock, flags);
094963da
SC
8185 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8186 if (!lockup_detected) {
8187 /* no heartbeat, but controller gave us a zero. */
8188 dev_warn(&h->pdev->dev,
25163bd5
WS
8189 "lockup detected after %d but scratchpad register is zero\n",
8190 h->heartbeat_sample_interval / HZ);
094963da
SC
8191 lockup_detected = 0xffffffff;
8192 }
8193 set_lockup_detected_for_all_cpus(h, lockup_detected);
a0c12413 8194 spin_unlock_irqrestore(&h->lock, flags);
25163bd5
WS
8195 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8196 lockup_detected, h->heartbeat_sample_interval / HZ);
a0c12413 8197 pci_disable_device(h->pdev);
f2405db8 8198 fail_all_outstanding_cmds(h);
a0c12413
SC
8199}
8200
25163bd5 8201static int detect_controller_lockup(struct ctlr_info *h)
a0c12413
SC
8202{
8203 u64 now;
8204 u32 heartbeat;
8205 unsigned long flags;
8206
a0c12413
SC
8207 now = get_jiffies_64();
8208 /* If we've received an interrupt recently, we're ok. */
8209 if (time_after64(h->last_intr_timestamp +
e85c5974 8210 (h->heartbeat_sample_interval), now))
25163bd5 8211 return false;
a0c12413
SC
8212
8213 /*
8214 * If we've already checked the heartbeat recently, we're ok.
8215 * This could happen if someone sends us a signal. We
8216 * otherwise don't care about signals in this thread.
8217 */
8218 if (time_after64(h->last_heartbeat_timestamp +
e85c5974 8219 (h->heartbeat_sample_interval), now))
25163bd5 8220 return false;
a0c12413
SC
8221
8222 /* If heartbeat has not changed since we last looked, we're not ok. */
8223 spin_lock_irqsave(&h->lock, flags);
8224 heartbeat = readl(&h->cfgtable->HeartBeat);
8225 spin_unlock_irqrestore(&h->lock, flags);
8226 if (h->last_heartbeat == heartbeat) {
8227 controller_lockup_detected(h);
25163bd5 8228 return true;
a0c12413
SC
8229 }
8230
8231 /* We're ok. */
8232 h->last_heartbeat = heartbeat;
8233 h->last_heartbeat_timestamp = now;
25163bd5 8234 return false;
a0c12413
SC
8235}
8236
9846590e 8237static void hpsa_ack_ctlr_events(struct ctlr_info *h)
76438d08
SC
8238{
8239 int i;
8240 char *event_type;
8241
e4aa3e6a
SC
8242 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8243 return;
8244
76438d08 8245 /* Ask the controller to clear the events we're handling. */
1f7cee8c
SC
8246 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8247 | CFGTBL_Trans_io_accel2)) &&
76438d08
SC
8248 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8249 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8250
8251 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8252 event_type = "state change";
8253 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8254 event_type = "configuration change";
8255 /* Stop sending new RAID offload reqs via the IO accelerator */
8256 scsi_block_requests(h->scsi_host);
8257 for (i = 0; i < h->ndevices; i++)
8258 h->dev[i]->offload_enabled = 0;
23100dd9 8259 hpsa_drain_accel_commands(h);
76438d08
SC
8260 /* Set 'accelerator path config change' bit */
8261 dev_warn(&h->pdev->dev,
8262 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8263 h->events, event_type);
8264 writel(h->events, &(h->cfgtable->clear_event_notify));
8265 /* Set the "clear event notify field update" bit 6 */
8266 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8267 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8268 hpsa_wait_for_clear_event_notify_ack(h);
8269 scsi_unblock_requests(h->scsi_host);
8270 } else {
8271 /* Acknowledge controller notification events. */
8272 writel(h->events, &(h->cfgtable->clear_event_notify));
8273 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8274 hpsa_wait_for_clear_event_notify_ack(h);
8275#if 0
8276 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8277 hpsa_wait_for_mode_change_ack(h);
8278#endif
8279 }
9846590e 8280 return;
76438d08
SC
8281}
8282
8283/* Check a register on the controller to see if there are configuration
8284 * changes (added/changed/removed logical drives, etc.) which mean that
e863d68e
ST
8285 * we should rescan the controller for devices.
8286 * Also check flag for driver-initiated rescan.
76438d08 8287 */
9846590e 8288static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
76438d08 8289{
853633e8
DB
8290 if (h->drv_req_rescan) {
8291 h->drv_req_rescan = 0;
8292 return 1;
8293 }
8294
76438d08 8295 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
9846590e 8296 return 0;
76438d08
SC
8297
8298 h->events = readl(&(h->cfgtable->event_notify));
9846590e
SC
8299 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8300}
76438d08 8301
9846590e
SC
8302/*
8303 * Check if any of the offline devices have become ready
8304 */
8305static int hpsa_offline_devices_ready(struct ctlr_info *h)
8306{
8307 unsigned long flags;
8308 struct offline_device_entry *d;
8309 struct list_head *this, *tmp;
8310
8311 spin_lock_irqsave(&h->offline_device_lock, flags);
8312 list_for_each_safe(this, tmp, &h->offline_device_list) {
8313 d = list_entry(this, struct offline_device_entry,
8314 offline_list);
8315 spin_unlock_irqrestore(&h->offline_device_lock, flags);
d1fea47c
SC
8316 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8317 spin_lock_irqsave(&h->offline_device_lock, flags);
8318 list_del(&d->offline_list);
8319 spin_unlock_irqrestore(&h->offline_device_lock, flags);
9846590e 8320 return 1;
d1fea47c 8321 }
9846590e
SC
8322 spin_lock_irqsave(&h->offline_device_lock, flags);
8323 }
8324 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8325 return 0;
76438d08
SC
8326}
8327
34592254
ST
8328static int hpsa_luns_changed(struct ctlr_info *h)
8329{
8330 int rc = 1; /* assume there are changes */
8331 struct ReportLUNdata *logdev = NULL;
8332
8333 /* if we can't find out if lun data has changed,
8334 * assume that it has.
8335 */
8336
8337 if (!h->lastlogicals)
8338 goto out;
8339
8340 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8341 if (!logdev) {
8342 dev_warn(&h->pdev->dev,
8343 "Out of memory, can't track lun changes.\n");
8344 goto out;
8345 }
8346 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8347 dev_warn(&h->pdev->dev,
8348 "report luns failed, can't track lun changes.\n");
8349 goto out;
8350 }
8351 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8352 dev_info(&h->pdev->dev,
8353 "Lun changes detected.\n");
8354 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8355 goto out;
8356 } else
8357 rc = 0; /* no changes detected. */
8358out:
8359 kfree(logdev);
8360 return rc;
8361}
8362
6636e7f4 8363static void hpsa_rescan_ctlr_worker(struct work_struct *work)
a0c12413
SC
8364{
8365 unsigned long flags;
8a98db73 8366 struct ctlr_info *h = container_of(to_delayed_work(work),
6636e7f4
DB
8367 struct ctlr_info, rescan_ctlr_work);
8368
8369
8370 if (h->remove_in_progress)
8a98db73 8371 return;
9846590e
SC
8372
8373 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8374 scsi_host_get(h->scsi_host);
9846590e
SC
8375 hpsa_ack_ctlr_events(h);
8376 hpsa_scan_start(h->scsi_host);
8377 scsi_host_put(h->scsi_host);
34592254 8378 } else if (h->discovery_polling) {
c2adae44 8379 hpsa_disable_rld_caching(h);
34592254
ST
8380 if (hpsa_luns_changed(h)) {
8381 struct Scsi_Host *sh = NULL;
8382
8383 dev_info(&h->pdev->dev,
8384 "driver discovery polling rescan.\n");
8385 sh = scsi_host_get(h->scsi_host);
8386 if (sh != NULL) {
8387 hpsa_scan_start(sh);
8388 scsi_host_put(sh);
8389 }
8390 }
9846590e 8391 }
8a98db73 8392 spin_lock_irqsave(&h->lock, flags);
6636e7f4
DB
8393 if (!h->remove_in_progress)
8394 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8395 h->heartbeat_sample_interval);
8396 spin_unlock_irqrestore(&h->lock, flags);
8397}
8398
8399static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8400{
8401 unsigned long flags;
8402 struct ctlr_info *h = container_of(to_delayed_work(work),
8403 struct ctlr_info, monitor_ctlr_work);
8404
8405 detect_controller_lockup(h);
8406 if (lockup_detected(h))
a0c12413 8407 return;
6636e7f4
DB
8408
8409 spin_lock_irqsave(&h->lock, flags);
8410 if (!h->remove_in_progress)
8411 schedule_delayed_work(&h->monitor_ctlr_work,
8a98db73
SC
8412 h->heartbeat_sample_interval);
8413 spin_unlock_irqrestore(&h->lock, flags);
a0c12413
SC
8414}
8415
6636e7f4
DB
8416static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8417 char *name)
8418{
8419 struct workqueue_struct *wq = NULL;
6636e7f4 8420
397ea9cb 8421 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
6636e7f4
DB
8422 if (!wq)
8423 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8424
8425 return wq;
8426}
8427
6f039790 8428static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
edd16368 8429{
4c2a8c40 8430 int dac, rc;
edd16368 8431 struct ctlr_info *h;
64670ac8
SC
8432 int try_soft_reset = 0;
8433 unsigned long flags;
6b6c1cd7 8434 u32 board_id;
edd16368
SC
8435
8436 if (number_of_controllers == 0)
8437 printk(KERN_INFO DRIVER_NAME "\n");
edd16368 8438
6b6c1cd7
TH
8439 rc = hpsa_lookup_board_id(pdev, &board_id);
8440 if (rc < 0) {
8441 dev_warn(&pdev->dev, "Board ID not found\n");
8442 return rc;
8443 }
8444
8445 rc = hpsa_init_reset_devices(pdev, board_id);
64670ac8
SC
8446 if (rc) {
8447 if (rc != -ENOTSUPP)
8448 return rc;
8449 /* If the reset fails in a particular way (it has no way to do
8450 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8451 * a soft reset once we get the controller configured up to the
8452 * point that it can accept a command.
8453 */
8454 try_soft_reset = 1;
8455 rc = 0;
8456 }
8457
8458reinit_after_soft_reset:
edd16368 8459
303932fd
DB
8460 /* Command structures must be aligned on a 32-byte boundary because
8461 * the 5 lower bits of the address are used by the hardware. and by
8462 * the driver. See comments in hpsa.h for more info.
8463 */
303932fd 8464 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
edd16368 8465 h = kzalloc(sizeof(*h), GFP_KERNEL);
105a3dbc
RE
8466 if (!h) {
8467 dev_err(&pdev->dev, "Failed to allocate controller head\n");
ecd9aad4 8468 return -ENOMEM;
105a3dbc 8469 }
edd16368 8470
55c06c71 8471 h->pdev = pdev;
105a3dbc 8472
a9a3a273 8473 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
9846590e 8474 INIT_LIST_HEAD(&h->offline_device_list);
6eaf46fd 8475 spin_lock_init(&h->lock);
9846590e 8476 spin_lock_init(&h->offline_device_lock);
6eaf46fd 8477 spin_lock_init(&h->scan_lock);
34f0c627 8478 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
9b5c48c2 8479 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
094963da
SC
8480
8481 /* Allocate and clear per-cpu variable lockup_detected */
8482 h->lockup_detected = alloc_percpu(u32);
2a5ac326 8483 if (!h->lockup_detected) {
105a3dbc 8484 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
2a5ac326 8485 rc = -ENOMEM;
2efa5929 8486 goto clean1; /* aer/h */
2a5ac326 8487 }
094963da
SC
8488 set_lockup_detected_for_all_cpus(h, 0);
8489
55c06c71 8490 rc = hpsa_pci_init(h);
105a3dbc 8491 if (rc)
2946e82b
RE
8492 goto clean2; /* lu, aer/h */
8493
8494 /* relies on h-> settings made by hpsa_pci_init, including
8495 * interrupt_mode h->intr */
8496 rc = hpsa_scsi_host_alloc(h);
8497 if (rc)
8498 goto clean2_5; /* pci, lu, aer/h */
edd16368 8499
2946e82b 8500 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
edd16368
SC
8501 h->ctlr = number_of_controllers;
8502 number_of_controllers++;
edd16368
SC
8503
8504 /* configure PCI DMA stuff */
ecd9aad4
SC
8505 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8506 if (rc == 0) {
edd16368 8507 dac = 1;
ecd9aad4
SC
8508 } else {
8509 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8510 if (rc == 0) {
8511 dac = 0;
8512 } else {
8513 dev_err(&pdev->dev, "no suitable DMA available\n");
2946e82b 8514 goto clean3; /* shost, pci, lu, aer/h */
ecd9aad4 8515 }
edd16368
SC
8516 }
8517
8518 /* make sure the board interrupts are off */
8519 h->access.set_intr_mask(h, HPSA_INTR_OFF);
10f66018 8520
105a3dbc
RE
8521 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8522 if (rc)
2946e82b 8523 goto clean3; /* shost, pci, lu, aer/h */
d37ffbe4 8524 rc = hpsa_alloc_cmd_pool(h);
8947fd10 8525 if (rc)
2946e82b 8526 goto clean4; /* irq, shost, pci, lu, aer/h */
105a3dbc
RE
8527 rc = hpsa_alloc_sg_chain_blocks(h);
8528 if (rc)
2946e82b 8529 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
a08a8471 8530 init_waitqueue_head(&h->scan_wait_queue);
9b5c48c2 8531 init_waitqueue_head(&h->abort_cmd_wait_queue);
d604f533
WS
8532 init_waitqueue_head(&h->event_sync_wait_queue);
8533 mutex_init(&h->reset_mutex);
a08a8471 8534 h->scan_finished = 1; /* no scan currently in progress */
edd16368
SC
8535
8536 pci_set_drvdata(pdev, h);
9a41338e 8537 h->ndevices = 0;
2946e82b 8538
9a41338e 8539 spin_lock_init(&h->devlock);
105a3dbc
RE
8540 rc = hpsa_put_ctlr_into_performant_mode(h);
8541 if (rc)
2946e82b
RE
8542 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8543
8544 /* hook into SCSI subsystem */
8545 rc = hpsa_scsi_add_host(h);
8546 if (rc)
8547 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
2efa5929
RE
8548
8549 /* create the resubmit workqueue */
8550 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8551 if (!h->rescan_ctlr_wq) {
8552 rc = -ENOMEM;
8553 goto clean7;
8554 }
8555
8556 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8557 if (!h->resubmit_wq) {
8558 rc = -ENOMEM;
8559 goto clean7; /* aer/h */
8560 }
64670ac8 8561
105a3dbc
RE
8562 /*
8563 * At this point, the controller is ready to take commands.
64670ac8
SC
8564 * Now, if reset_devices and the hard reset didn't work, try
8565 * the soft reset and see if that works.
8566 */
8567 if (try_soft_reset) {
8568
8569 /* This is kind of gross. We may or may not get a completion
8570 * from the soft reset command, and if we do, then the value
8571 * from the fifo may or may not be valid. So, we wait 10 secs
8572 * after the reset throwing away any completions we get during
8573 * that time. Unregister the interrupt handler and register
8574 * fake ones to scoop up any residual completions.
8575 */
8576 spin_lock_irqsave(&h->lock, flags);
8577 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8578 spin_unlock_irqrestore(&h->lock, flags);
ec501a18 8579 hpsa_free_irqs(h);
9ee61794 8580 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
64670ac8
SC
8581 hpsa_intx_discard_completions);
8582 if (rc) {
9ee61794
RE
8583 dev_warn(&h->pdev->dev,
8584 "Failed to request_irq after soft reset.\n");
d498757c 8585 /*
b2ef480c
RE
8586 * cannot goto clean7 or free_irqs will be called
8587 * again. Instead, do its work
8588 */
8589 hpsa_free_performant_mode(h); /* clean7 */
8590 hpsa_free_sg_chain_blocks(h); /* clean6 */
8591 hpsa_free_cmd_pool(h); /* clean5 */
8592 /*
8593 * skip hpsa_free_irqs(h) clean4 since that
8594 * was just called before request_irqs failed
d498757c
RE
8595 */
8596 goto clean3;
64670ac8
SC
8597 }
8598
8599 rc = hpsa_kdump_soft_reset(h);
8600 if (rc)
8601 /* Neither hard nor soft reset worked, we're hosed. */
7ef7323f 8602 goto clean7;
64670ac8
SC
8603
8604 dev_info(&h->pdev->dev, "Board READY.\n");
8605 dev_info(&h->pdev->dev,
8606 "Waiting for stale completions to drain.\n");
8607 h->access.set_intr_mask(h, HPSA_INTR_ON);
8608 msleep(10000);
8609 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8610
8611 rc = controller_reset_failed(h->cfgtable);
8612 if (rc)
8613 dev_info(&h->pdev->dev,
8614 "Soft reset appears to have failed.\n");
8615
8616 /* since the controller's reset, we have to go back and re-init
8617 * everything. Easiest to just forget what we've done and do it
8618 * all over again.
8619 */
8620 hpsa_undo_allocations_after_kdump_soft_reset(h);
8621 try_soft_reset = 0;
8622 if (rc)
b2ef480c 8623 /* don't goto clean, we already unallocated */
64670ac8
SC
8624 return -ENODEV;
8625
8626 goto reinit_after_soft_reset;
8627 }
edd16368 8628
105a3dbc
RE
8629 /* Enable Accelerated IO path at driver layer */
8630 h->acciopath_status = 1;
34592254
ST
8631 /* Disable discovery polling.*/
8632 h->discovery_polling = 0;
da0697bd 8633
e863d68e 8634
edd16368
SC
8635 /* Turn the interrupts on so we can service requests */
8636 h->access.set_intr_mask(h, HPSA_INTR_ON);
8637
339b2b14 8638 hpsa_hba_inquiry(h);
8a98db73 8639
34592254
ST
8640 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8641 if (!h->lastlogicals)
8642 dev_info(&h->pdev->dev,
8643 "Can't track change to report lun data\n");
8644
8a98db73
SC
8645 /* Monitor the controller for firmware lockups */
8646 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8647 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8648 schedule_delayed_work(&h->monitor_ctlr_work,
8649 h->heartbeat_sample_interval);
6636e7f4
DB
8650 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8651 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8652 h->heartbeat_sample_interval);
88bf6d62 8653 return 0;
edd16368 8654
2946e82b 8655clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
105a3dbc
RE
8656 hpsa_free_performant_mode(h);
8657 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8658clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
33a2ffce 8659 hpsa_free_sg_chain_blocks(h);
2946e82b 8660clean5: /* cmd, irq, shost, pci, lu, aer/h */
2e9d1b36 8661 hpsa_free_cmd_pool(h);
2946e82b 8662clean4: /* irq, shost, pci, lu, aer/h */
ec501a18 8663 hpsa_free_irqs(h);
2946e82b
RE
8664clean3: /* shost, pci, lu, aer/h */
8665 scsi_host_put(h->scsi_host);
8666 h->scsi_host = NULL;
8667clean2_5: /* pci, lu, aer/h */
195f2c65 8668 hpsa_free_pci_init(h);
2946e82b 8669clean2: /* lu, aer/h */
105a3dbc
RE
8670 if (h->lockup_detected) {
8671 free_percpu(h->lockup_detected);
8672 h->lockup_detected = NULL;
8673 }
8674clean1: /* wq/aer/h */
8675 if (h->resubmit_wq) {
080ef1cc 8676 destroy_workqueue(h->resubmit_wq);
105a3dbc
RE
8677 h->resubmit_wq = NULL;
8678 }
8679 if (h->rescan_ctlr_wq) {
6636e7f4 8680 destroy_workqueue(h->rescan_ctlr_wq);
105a3dbc
RE
8681 h->rescan_ctlr_wq = NULL;
8682 }
edd16368 8683 kfree(h);
ecd9aad4 8684 return rc;
edd16368
SC
8685}
8686
8687static void hpsa_flush_cache(struct ctlr_info *h)
8688{
8689 char *flush_buf;
8690 struct CommandList *c;
25163bd5 8691 int rc;
702890e3 8692
094963da 8693 if (unlikely(lockup_detected(h)))
702890e3 8694 return;
edd16368
SC
8695 flush_buf = kzalloc(4, GFP_KERNEL);
8696 if (!flush_buf)
8697 return;
8698
45fcb86e 8699 c = cmd_alloc(h);
bf43caf3 8700
a2dac136
SC
8701 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8702 RAID_CTLR_LUNID, TYPE_CMD)) {
8703 goto out;
8704 }
25163bd5
WS
8705 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8706 PCI_DMA_TODEVICE, NO_TIMEOUT);
8707 if (rc)
8708 goto out;
edd16368 8709 if (c->err_info->CommandStatus != 0)
a2dac136 8710out:
edd16368
SC
8711 dev_warn(&h->pdev->dev,
8712 "error flushing cache on controller\n");
45fcb86e 8713 cmd_free(h, c);
edd16368
SC
8714 kfree(flush_buf);
8715}
8716
c2adae44
ST
8717/* Make controller gather fresh report lun data each time we
8718 * send down a report luns request
8719 */
8720static void hpsa_disable_rld_caching(struct ctlr_info *h)
8721{
8722 u32 *options;
8723 struct CommandList *c;
8724 int rc;
8725
8726 /* Don't bother trying to set diag options if locked up */
8727 if (unlikely(h->lockup_detected))
8728 return;
8729
8730 options = kzalloc(sizeof(*options), GFP_KERNEL);
8731 if (!options) {
8732 dev_err(&h->pdev->dev,
8733 "Error: failed to disable rld caching, during alloc.\n");
8734 return;
8735 }
8736
8737 c = cmd_alloc(h);
8738
8739 /* first, get the current diag options settings */
8740 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8741 RAID_CTLR_LUNID, TYPE_CMD))
8742 goto errout;
8743
8744 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8745 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8746 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8747 goto errout;
8748
8749 /* Now, set the bit for disabling the RLD caching */
8750 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8751
8752 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8753 RAID_CTLR_LUNID, TYPE_CMD))
8754 goto errout;
8755
8756 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8757 PCI_DMA_TODEVICE, NO_TIMEOUT);
8758 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8759 goto errout;
8760
8761 /* Now verify that it got set: */
8762 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8763 RAID_CTLR_LUNID, TYPE_CMD))
8764 goto errout;
8765
8766 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8767 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8768 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8769 goto errout;
8770
d8a080c3 8771 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
c2adae44
ST
8772 goto out;
8773
8774errout:
8775 dev_err(&h->pdev->dev,
8776 "Error: failed to disable report lun data caching.\n");
8777out:
8778 cmd_free(h, c);
8779 kfree(options);
8780}
8781
edd16368
SC
8782static void hpsa_shutdown(struct pci_dev *pdev)
8783{
8784 struct ctlr_info *h;
8785
8786 h = pci_get_drvdata(pdev);
8787 /* Turn board interrupts off and send the flush cache command
8788 * sendcmd will turn off interrupt, and send the flush...
8789 * To write all data in the battery backed cache to disks
8790 */
8791 hpsa_flush_cache(h);
8792 h->access.set_intr_mask(h, HPSA_INTR_OFF);
105a3dbc 8793 hpsa_free_irqs(h); /* init_one 4 */
cc64c817 8794 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
edd16368
SC
8795}
8796
6f039790 8797static void hpsa_free_device_info(struct ctlr_info *h)
55e14e76
SC
8798{
8799 int i;
8800
105a3dbc 8801 for (i = 0; i < h->ndevices; i++) {
55e14e76 8802 kfree(h->dev[i]);
105a3dbc
RE
8803 h->dev[i] = NULL;
8804 }
55e14e76
SC
8805}
8806
6f039790 8807static void hpsa_remove_one(struct pci_dev *pdev)
edd16368
SC
8808{
8809 struct ctlr_info *h;
8a98db73 8810 unsigned long flags;
edd16368
SC
8811
8812 if (pci_get_drvdata(pdev) == NULL) {
a0c12413 8813 dev_err(&pdev->dev, "unable to remove device\n");
edd16368
SC
8814 return;
8815 }
8816 h = pci_get_drvdata(pdev);
8a98db73
SC
8817
8818 /* Get rid of any controller monitoring work items */
8819 spin_lock_irqsave(&h->lock, flags);
8820 h->remove_in_progress = 1;
8a98db73 8821 spin_unlock_irqrestore(&h->lock, flags);
6636e7f4
DB
8822 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8823 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8824 destroy_workqueue(h->rescan_ctlr_wq);
8825 destroy_workqueue(h->resubmit_wq);
cc64c817 8826
2d041306
DB
8827 /*
8828 * Call before disabling interrupts.
8829 * scsi_remove_host can trigger I/O operations especially
8830 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8831 * operations which cannot complete and will hang the system.
8832 */
8833 if (h->scsi_host)
8834 scsi_remove_host(h->scsi_host); /* init_one 8 */
105a3dbc 8835 /* includes hpsa_free_irqs - init_one 4 */
195f2c65 8836 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
edd16368 8837 hpsa_shutdown(pdev);
cc64c817 8838
105a3dbc
RE
8839 hpsa_free_device_info(h); /* scan */
8840
2946e82b
RE
8841 kfree(h->hba_inquiry_data); /* init_one 10 */
8842 h->hba_inquiry_data = NULL; /* init_one 10 */
2946e82b 8843 hpsa_free_ioaccel2_sg_chain_blocks(h);
105a3dbc
RE
8844 hpsa_free_performant_mode(h); /* init_one 7 */
8845 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8846 hpsa_free_cmd_pool(h); /* init_one 5 */
34592254 8847 kfree(h->lastlogicals);
105a3dbc
RE
8848
8849 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
195f2c65 8850
2946e82b
RE
8851 scsi_host_put(h->scsi_host); /* init_one 3 */
8852 h->scsi_host = NULL; /* init_one 3 */
8853
195f2c65 8854 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
2946e82b 8855 hpsa_free_pci_init(h); /* init_one 2.5 */
195f2c65 8856
105a3dbc
RE
8857 free_percpu(h->lockup_detected); /* init_one 2 */
8858 h->lockup_detected = NULL; /* init_one 2 */
8859 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
d04e62b9
KB
8860
8861 hpsa_delete_sas_host(h);
8862
105a3dbc 8863 kfree(h); /* init_one 1 */
edd16368
SC
8864}
8865
8866static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8867 __attribute__((unused)) pm_message_t state)
8868{
8869 return -ENOSYS;
8870}
8871
8872static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8873{
8874 return -ENOSYS;
8875}
8876
8877static struct pci_driver hpsa_pci_driver = {
f79cfec6 8878 .name = HPSA,
edd16368 8879 .probe = hpsa_init_one,
6f039790 8880 .remove = hpsa_remove_one,
edd16368
SC
8881 .id_table = hpsa_pci_device_id, /* id_table */
8882 .shutdown = hpsa_shutdown,
8883 .suspend = hpsa_suspend,
8884 .resume = hpsa_resume,
8885};
8886
303932fd
DB
8887/* Fill in bucket_map[], given nsgs (the max number of
8888 * scatter gather elements supported) and bucket[],
8889 * which is an array of 8 integers. The bucket[] array
8890 * contains 8 different DMA transfer sizes (in 16
8891 * byte increments) which the controller uses to fetch
8892 * commands. This function fills in bucket_map[], which
8893 * maps a given number of scatter gather elements to one of
8894 * the 8 DMA transfer sizes. The point of it is to allow the
8895 * controller to only do as much DMA as needed to fetch the
8896 * command, with the DMA transfer size encoded in the lower
8897 * bits of the command address.
8898 */
8899static void calc_bucket_map(int bucket[], int num_buckets,
2b08b3e9 8900 int nsgs, int min_blocks, u32 *bucket_map)
303932fd
DB
8901{
8902 int i, j, b, size;
8903
303932fd
DB
8904 /* Note, bucket_map must have nsgs+1 entries. */
8905 for (i = 0; i <= nsgs; i++) {
8906 /* Compute size of a command with i SG entries */
e1f7de0c 8907 size = i + min_blocks;
303932fd
DB
8908 b = num_buckets; /* Assume the biggest bucket */
8909 /* Find the bucket that is just big enough */
e1f7de0c 8910 for (j = 0; j < num_buckets; j++) {
303932fd
DB
8911 if (bucket[j] >= size) {
8912 b = j;
8913 break;
8914 }
8915 }
8916 /* for a command with i SG entries, use bucket b. */
8917 bucket_map[i] = b;
8918 }
8919}
8920
105a3dbc
RE
8921/*
8922 * return -ENODEV on err, 0 on success (or no action)
8923 * allocates numerous items that must be freed later
8924 */
c706a795 8925static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
303932fd 8926{
6c311b57
SC
8927 int i;
8928 unsigned long register_value;
e1f7de0c
MG
8929 unsigned long transMethod = CFGTBL_Trans_Performant |
8930 (trans_support & CFGTBL_Trans_use_short_tags) |
b9af4937
SC
8931 CFGTBL_Trans_enable_directed_msix |
8932 (trans_support & (CFGTBL_Trans_io_accel1 |
8933 CFGTBL_Trans_io_accel2));
e1f7de0c 8934 struct access_method access = SA5_performant_access;
def342bd
SC
8935
8936 /* This is a bit complicated. There are 8 registers on
8937 * the controller which we write to to tell it 8 different
8938 * sizes of commands which there may be. It's a way of
8939 * reducing the DMA done to fetch each command. Encoded into
8940 * each command's tag are 3 bits which communicate to the controller
8941 * which of the eight sizes that command fits within. The size of
8942 * each command depends on how many scatter gather entries there are.
8943 * Each SG entry requires 16 bytes. The eight registers are programmed
8944 * with the number of 16-byte blocks a command of that size requires.
8945 * The smallest command possible requires 5 such 16 byte blocks.
d66ae08b 8946 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
def342bd
SC
8947 * blocks. Note, this only extends to the SG entries contained
8948 * within the command block, and does not extend to chained blocks
8949 * of SG elements. bft[] contains the eight values we write to
8950 * the registers. They are not evenly distributed, but have more
8951 * sizes for small commands, and fewer sizes for larger commands.
8952 */
d66ae08b 8953 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
b9af4937
SC
8954#define MIN_IOACCEL2_BFT_ENTRY 5
8955#define HPSA_IOACCEL2_HEADER_SZ 4
8956 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8957 13, 14, 15, 16, 17, 18, 19,
8958 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8959 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8960 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8961 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8962 16 * MIN_IOACCEL2_BFT_ENTRY);
8963 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
d66ae08b 8964 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
303932fd
DB
8965 /* 5 = 1 s/g entry or 4k
8966 * 6 = 2 s/g entry or 8k
8967 * 8 = 4 s/g entry or 16k
8968 * 10 = 6 s/g entry or 24k
8969 */
303932fd 8970
b3a52e79
SC
8971 /* If the controller supports either ioaccel method then
8972 * we can also use the RAID stack submit path that does not
8973 * perform the superfluous readl() after each command submission.
8974 */
8975 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8976 access = SA5_performant_access_no_read;
8977
303932fd 8978 /* Controller spec: zero out this buffer. */
072b0518
SC
8979 for (i = 0; i < h->nreply_queues; i++)
8980 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
303932fd 8981
d66ae08b
SC
8982 bft[7] = SG_ENTRIES_IN_CMD + 4;
8983 calc_bucket_map(bft, ARRAY_SIZE(bft),
e1f7de0c 8984 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
303932fd
DB
8985 for (i = 0; i < 8; i++)
8986 writel(bft[i], &h->transtable->BlockFetch[i]);
8987
8988 /* size of controller ring buffer */
8989 writel(h->max_commands, &h->transtable->RepQSize);
254f796b 8990 writel(h->nreply_queues, &h->transtable->RepQCount);
303932fd
DB
8991 writel(0, &h->transtable->RepQCtrAddrLow32);
8992 writel(0, &h->transtable->RepQCtrAddrHigh32);
254f796b
MG
8993
8994 for (i = 0; i < h->nreply_queues; i++) {
8995 writel(0, &h->transtable->RepQAddr[i].upper);
072b0518 8996 writel(h->reply_queue[i].busaddr,
254f796b
MG
8997 &h->transtable->RepQAddr[i].lower);
8998 }
8999
b9af4937 9000 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
e1f7de0c
MG
9001 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9002 /*
9003 * enable outbound interrupt coalescing in accelerator mode;
9004 */
9005 if (trans_support & CFGTBL_Trans_io_accel1) {
9006 access = SA5_ioaccel_mode1_access;
9007 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9008 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
c349775e
ST
9009 } else {
9010 if (trans_support & CFGTBL_Trans_io_accel2) {
9011 access = SA5_ioaccel_mode2_access;
9012 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9013 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9014 }
e1f7de0c 9015 }
303932fd 9016 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
9017 if (hpsa_wait_for_mode_change_ack(h)) {
9018 dev_err(&h->pdev->dev,
9019 "performant mode problem - doorbell timeout\n");
9020 return -ENODEV;
9021 }
303932fd
DB
9022 register_value = readl(&(h->cfgtable->TransportActive));
9023 if (!(register_value & CFGTBL_Trans_Performant)) {
050f7147
SC
9024 dev_err(&h->pdev->dev,
9025 "performant mode problem - transport not active\n");
c706a795 9026 return -ENODEV;
303932fd 9027 }
960a30e7 9028 /* Change the access methods to the performant access methods */
e1f7de0c
MG
9029 h->access = access;
9030 h->transMethod = transMethod;
9031
b9af4937
SC
9032 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9033 (trans_support & CFGTBL_Trans_io_accel2)))
c706a795 9034 return 0;
e1f7de0c 9035
b9af4937
SC
9036 if (trans_support & CFGTBL_Trans_io_accel1) {
9037 /* Set up I/O accelerator mode */
9038 for (i = 0; i < h->nreply_queues; i++) {
9039 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9040 h->reply_queue[i].current_entry =
9041 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9042 }
9043 bft[7] = h->ioaccel_maxsg + 8;
9044 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9045 h->ioaccel1_blockFetchTable);
e1f7de0c 9046
b9af4937 9047 /* initialize all reply queue entries to unused */
072b0518
SC
9048 for (i = 0; i < h->nreply_queues; i++)
9049 memset(h->reply_queue[i].head,
9050 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9051 h->reply_queue_size);
e1f7de0c 9052
b9af4937
SC
9053 /* set all the constant fields in the accelerator command
9054 * frames once at init time to save CPU cycles later.
9055 */
9056 for (i = 0; i < h->nr_cmds; i++) {
9057 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9058
9059 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9060 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9061 (i * sizeof(struct ErrorInfo)));
9062 cp->err_info_len = sizeof(struct ErrorInfo);
9063 cp->sgl_offset = IOACCEL1_SGLOFFSET;
2b08b3e9
DB
9064 cp->host_context_flags =
9065 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
b9af4937
SC
9066 cp->timeout_sec = 0;
9067 cp->ReplyQueue = 0;
50a0decf 9068 cp->tag =
f2405db8 9069 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
50a0decf
SC
9070 cp->host_addr =
9071 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
b9af4937 9072 (i * sizeof(struct io_accel1_cmd)));
b9af4937
SC
9073 }
9074 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9075 u64 cfg_offset, cfg_base_addr_index;
9076 u32 bft2_offset, cfg_base_addr;
9077 int rc;
9078
9079 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9080 &cfg_base_addr_index, &cfg_offset);
9081 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9082 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9083 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9084 4, h->ioaccel2_blockFetchTable);
9085 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9086 BUILD_BUG_ON(offsetof(struct CfgTable,
9087 io_accel_request_size_offset) != 0xb8);
9088 h->ioaccel2_bft2_regs =
9089 remap_pci_mem(pci_resource_start(h->pdev,
9090 cfg_base_addr_index) +
9091 cfg_offset + bft2_offset,
9092 ARRAY_SIZE(bft2) *
9093 sizeof(*h->ioaccel2_bft2_regs));
9094 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9095 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
e1f7de0c 9096 }
b9af4937 9097 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
c706a795
RE
9098 if (hpsa_wait_for_mode_change_ack(h)) {
9099 dev_err(&h->pdev->dev,
9100 "performant mode problem - enabling ioaccel mode\n");
9101 return -ENODEV;
9102 }
9103 return 0;
e1f7de0c
MG
9104}
9105
1fb7c98a
RE
9106/* Free ioaccel1 mode command blocks and block fetch table */
9107static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9108{
105a3dbc 9109 if (h->ioaccel_cmd_pool) {
1fb7c98a
RE
9110 pci_free_consistent(h->pdev,
9111 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9112 h->ioaccel_cmd_pool,
9113 h->ioaccel_cmd_pool_dhandle);
105a3dbc
RE
9114 h->ioaccel_cmd_pool = NULL;
9115 h->ioaccel_cmd_pool_dhandle = 0;
9116 }
1fb7c98a 9117 kfree(h->ioaccel1_blockFetchTable);
105a3dbc 9118 h->ioaccel1_blockFetchTable = NULL;
1fb7c98a
RE
9119}
9120
d37ffbe4
RE
9121/* Allocate ioaccel1 mode command blocks and block fetch table */
9122static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
e1f7de0c 9123{
283b4a9b
SC
9124 h->ioaccel_maxsg =
9125 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9126 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9127 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9128
e1f7de0c
MG
9129 /* Command structures must be aligned on a 128-byte boundary
9130 * because the 7 lower bits of the address are used by the
9131 * hardware.
9132 */
e1f7de0c
MG
9133 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9134 IOACCEL1_COMMANDLIST_ALIGNMENT);
9135 h->ioaccel_cmd_pool =
9136 pci_alloc_consistent(h->pdev,
9137 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9138 &(h->ioaccel_cmd_pool_dhandle));
9139
9140 h->ioaccel1_blockFetchTable =
283b4a9b 9141 kmalloc(((h->ioaccel_maxsg + 1) *
e1f7de0c
MG
9142 sizeof(u32)), GFP_KERNEL);
9143
9144 if ((h->ioaccel_cmd_pool == NULL) ||
9145 (h->ioaccel1_blockFetchTable == NULL))
9146 goto clean_up;
9147
9148 memset(h->ioaccel_cmd_pool, 0,
9149 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9150 return 0;
9151
9152clean_up:
1fb7c98a 9153 hpsa_free_ioaccel1_cmd_and_bft(h);
2dd02d74 9154 return -ENOMEM;
6c311b57
SC
9155}
9156
1fb7c98a
RE
9157/* Free ioaccel2 mode command blocks and block fetch table */
9158static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9159{
d9a729f3
WS
9160 hpsa_free_ioaccel2_sg_chain_blocks(h);
9161
105a3dbc 9162 if (h->ioaccel2_cmd_pool) {
1fb7c98a
RE
9163 pci_free_consistent(h->pdev,
9164 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9165 h->ioaccel2_cmd_pool,
9166 h->ioaccel2_cmd_pool_dhandle);
105a3dbc
RE
9167 h->ioaccel2_cmd_pool = NULL;
9168 h->ioaccel2_cmd_pool_dhandle = 0;
9169 }
1fb7c98a 9170 kfree(h->ioaccel2_blockFetchTable);
105a3dbc 9171 h->ioaccel2_blockFetchTable = NULL;
1fb7c98a
RE
9172}
9173
d37ffbe4
RE
9174/* Allocate ioaccel2 mode command blocks and block fetch table */
9175static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
aca9012a 9176{
d9a729f3
WS
9177 int rc;
9178
aca9012a
SC
9179 /* Allocate ioaccel2 mode command blocks and block fetch table */
9180
9181 h->ioaccel_maxsg =
9182 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9183 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9184 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9185
aca9012a
SC
9186 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9187 IOACCEL2_COMMANDLIST_ALIGNMENT);
9188 h->ioaccel2_cmd_pool =
9189 pci_alloc_consistent(h->pdev,
9190 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9191 &(h->ioaccel2_cmd_pool_dhandle));
9192
9193 h->ioaccel2_blockFetchTable =
9194 kmalloc(((h->ioaccel_maxsg + 1) *
9195 sizeof(u32)), GFP_KERNEL);
9196
9197 if ((h->ioaccel2_cmd_pool == NULL) ||
d9a729f3
WS
9198 (h->ioaccel2_blockFetchTable == NULL)) {
9199 rc = -ENOMEM;
9200 goto clean_up;
9201 }
9202
9203 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9204 if (rc)
aca9012a
SC
9205 goto clean_up;
9206
9207 memset(h->ioaccel2_cmd_pool, 0,
9208 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9209 return 0;
9210
9211clean_up:
1fb7c98a 9212 hpsa_free_ioaccel2_cmd_and_bft(h);
d9a729f3 9213 return rc;
aca9012a
SC
9214}
9215
105a3dbc
RE
9216/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9217static void hpsa_free_performant_mode(struct ctlr_info *h)
9218{
9219 kfree(h->blockFetchTable);
9220 h->blockFetchTable = NULL;
9221 hpsa_free_reply_queues(h);
9222 hpsa_free_ioaccel1_cmd_and_bft(h);
9223 hpsa_free_ioaccel2_cmd_and_bft(h);
9224}
9225
9226/* return -ENODEV on error, 0 on success (or no action)
9227 * allocates numerous items that must be freed later
9228 */
9229static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
6c311b57
SC
9230{
9231 u32 trans_support;
e1f7de0c
MG
9232 unsigned long transMethod = CFGTBL_Trans_Performant |
9233 CFGTBL_Trans_use_short_tags;
105a3dbc 9234 int i, rc;
6c311b57 9235
02ec19c8 9236 if (hpsa_simple_mode)
105a3dbc 9237 return 0;
02ec19c8 9238
67c99a72 9239 trans_support = readl(&(h->cfgtable->TransportSupport));
9240 if (!(trans_support & PERFORMANT_MODE))
105a3dbc 9241 return 0;
67c99a72 9242
e1f7de0c
MG
9243 /* Check for I/O accelerator mode support */
9244 if (trans_support & CFGTBL_Trans_io_accel1) {
9245 transMethod |= CFGTBL_Trans_io_accel1 |
9246 CFGTBL_Trans_enable_directed_msix;
105a3dbc
RE
9247 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9248 if (rc)
9249 return rc;
9250 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9251 transMethod |= CFGTBL_Trans_io_accel2 |
aca9012a 9252 CFGTBL_Trans_enable_directed_msix;
105a3dbc
RE
9253 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9254 if (rc)
9255 return rc;
e1f7de0c
MG
9256 }
9257
eee0f03a 9258 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
cba3d38b 9259 hpsa_get_max_perf_mode_cmds(h);
6c311b57 9260 /* Performant mode ring buffer and supporting data structures */
072b0518 9261 h->reply_queue_size = h->max_commands * sizeof(u64);
6c311b57 9262
254f796b 9263 for (i = 0; i < h->nreply_queues; i++) {
072b0518
SC
9264 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9265 h->reply_queue_size,
9266 &(h->reply_queue[i].busaddr));
105a3dbc
RE
9267 if (!h->reply_queue[i].head) {
9268 rc = -ENOMEM;
9269 goto clean1; /* rq, ioaccel */
9270 }
254f796b
MG
9271 h->reply_queue[i].size = h->max_commands;
9272 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9273 h->reply_queue[i].current_entry = 0;
9274 }
9275
6c311b57 9276 /* Need a block fetch table for performant mode */
d66ae08b 9277 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
6c311b57 9278 sizeof(u32)), GFP_KERNEL);
105a3dbc
RE
9279 if (!h->blockFetchTable) {
9280 rc = -ENOMEM;
9281 goto clean1; /* rq, ioaccel */
9282 }
6c311b57 9283
105a3dbc
RE
9284 rc = hpsa_enter_performant_mode(h, trans_support);
9285 if (rc)
9286 goto clean2; /* bft, rq, ioaccel */
9287 return 0;
303932fd 9288
105a3dbc 9289clean2: /* bft, rq, ioaccel */
303932fd 9290 kfree(h->blockFetchTable);
105a3dbc
RE
9291 h->blockFetchTable = NULL;
9292clean1: /* rq, ioaccel */
9293 hpsa_free_reply_queues(h);
9294 hpsa_free_ioaccel1_cmd_and_bft(h);
9295 hpsa_free_ioaccel2_cmd_and_bft(h);
9296 return rc;
303932fd
DB
9297}
9298
23100dd9 9299static int is_accelerated_cmd(struct CommandList *c)
76438d08 9300{
23100dd9
SC
9301 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9302}
9303
9304static void hpsa_drain_accel_commands(struct ctlr_info *h)
9305{
9306 struct CommandList *c = NULL;
f2405db8 9307 int i, accel_cmds_out;
281a7fd0 9308 int refcount;
76438d08 9309
f2405db8 9310 do { /* wait for all outstanding ioaccel commands to drain out */
23100dd9 9311 accel_cmds_out = 0;
f2405db8 9312 for (i = 0; i < h->nr_cmds; i++) {
f2405db8 9313 c = h->cmd_pool + i;
281a7fd0
WS
9314 refcount = atomic_inc_return(&c->refcount);
9315 if (refcount > 1) /* Command is allocated */
9316 accel_cmds_out += is_accelerated_cmd(c);
9317 cmd_free(h, c);
f2405db8 9318 }
23100dd9 9319 if (accel_cmds_out <= 0)
281a7fd0 9320 break;
76438d08
SC
9321 msleep(100);
9322 } while (1);
9323}
9324
d04e62b9
KB
9325static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9326 struct hpsa_sas_port *hpsa_sas_port)
9327{
9328 struct hpsa_sas_phy *hpsa_sas_phy;
9329 struct sas_phy *phy;
9330
9331 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9332 if (!hpsa_sas_phy)
9333 return NULL;
9334
9335 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9336 hpsa_sas_port->next_phy_index);
9337 if (!phy) {
9338 kfree(hpsa_sas_phy);
9339 return NULL;
9340 }
9341
9342 hpsa_sas_port->next_phy_index++;
9343 hpsa_sas_phy->phy = phy;
9344 hpsa_sas_phy->parent_port = hpsa_sas_port;
9345
9346 return hpsa_sas_phy;
9347}
9348
9349static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9350{
9351 struct sas_phy *phy = hpsa_sas_phy->phy;
9352
9353 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9354 sas_phy_free(phy);
9355 if (hpsa_sas_phy->added_to_port)
9356 list_del(&hpsa_sas_phy->phy_list_entry);
9357 kfree(hpsa_sas_phy);
9358}
9359
9360static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9361{
9362 int rc;
9363 struct hpsa_sas_port *hpsa_sas_port;
9364 struct sas_phy *phy;
9365 struct sas_identify *identify;
9366
9367 hpsa_sas_port = hpsa_sas_phy->parent_port;
9368 phy = hpsa_sas_phy->phy;
9369
9370 identify = &phy->identify;
9371 memset(identify, 0, sizeof(*identify));
9372 identify->sas_address = hpsa_sas_port->sas_address;
9373 identify->device_type = SAS_END_DEVICE;
9374 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9375 identify->target_port_protocols = SAS_PROTOCOL_STP;
9376 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9377 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9378 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9379 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9380 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9381
9382 rc = sas_phy_add(hpsa_sas_phy->phy);
9383 if (rc)
9384 return rc;
9385
9386 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9387 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9388 &hpsa_sas_port->phy_list_head);
9389 hpsa_sas_phy->added_to_port = true;
9390
9391 return 0;
9392}
9393
9394static int
9395 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9396 struct sas_rphy *rphy)
9397{
9398 struct sas_identify *identify;
9399
9400 identify = &rphy->identify;
9401 identify->sas_address = hpsa_sas_port->sas_address;
9402 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9403 identify->target_port_protocols = SAS_PROTOCOL_STP;
9404
9405 return sas_rphy_add(rphy);
9406}
9407
9408static struct hpsa_sas_port
9409 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9410 u64 sas_address)
9411{
9412 int rc;
9413 struct hpsa_sas_port *hpsa_sas_port;
9414 struct sas_port *port;
9415
9416 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9417 if (!hpsa_sas_port)
9418 return NULL;
9419
9420 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9421 hpsa_sas_port->parent_node = hpsa_sas_node;
9422
9423 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9424 if (!port)
9425 goto free_hpsa_port;
9426
9427 rc = sas_port_add(port);
9428 if (rc)
9429 goto free_sas_port;
9430
9431 hpsa_sas_port->port = port;
9432 hpsa_sas_port->sas_address = sas_address;
9433 list_add_tail(&hpsa_sas_port->port_list_entry,
9434 &hpsa_sas_node->port_list_head);
9435
9436 return hpsa_sas_port;
9437
9438free_sas_port:
9439 sas_port_free(port);
9440free_hpsa_port:
9441 kfree(hpsa_sas_port);
9442
9443 return NULL;
9444}
9445
9446static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9447{
9448 struct hpsa_sas_phy *hpsa_sas_phy;
9449 struct hpsa_sas_phy *next;
9450
9451 list_for_each_entry_safe(hpsa_sas_phy, next,
9452 &hpsa_sas_port->phy_list_head, phy_list_entry)
9453 hpsa_free_sas_phy(hpsa_sas_phy);
9454
9455 sas_port_delete(hpsa_sas_port->port);
9456 list_del(&hpsa_sas_port->port_list_entry);
9457 kfree(hpsa_sas_port);
9458}
9459
9460static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9461{
9462 struct hpsa_sas_node *hpsa_sas_node;
9463
9464 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9465 if (hpsa_sas_node) {
9466 hpsa_sas_node->parent_dev = parent_dev;
9467 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9468 }
9469
9470 return hpsa_sas_node;
9471}
9472
9473static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9474{
9475 struct hpsa_sas_port *hpsa_sas_port;
9476 struct hpsa_sas_port *next;
9477
9478 if (!hpsa_sas_node)
9479 return;
9480
9481 list_for_each_entry_safe(hpsa_sas_port, next,
9482 &hpsa_sas_node->port_list_head, port_list_entry)
9483 hpsa_free_sas_port(hpsa_sas_port);
9484
9485 kfree(hpsa_sas_node);
9486}
9487
9488static struct hpsa_scsi_dev_t
9489 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9490 struct sas_rphy *rphy)
9491{
9492 int i;
9493 struct hpsa_scsi_dev_t *device;
9494
9495 for (i = 0; i < h->ndevices; i++) {
9496 device = h->dev[i];
9497 if (!device->sas_port)
9498 continue;
9499 if (device->sas_port->rphy == rphy)
9500 return device;
9501 }
9502
9503 return NULL;
9504}
9505
9506static int hpsa_add_sas_host(struct ctlr_info *h)
9507{
9508 int rc;
9509 struct device *parent_dev;
9510 struct hpsa_sas_node *hpsa_sas_node;
9511 struct hpsa_sas_port *hpsa_sas_port;
9512 struct hpsa_sas_phy *hpsa_sas_phy;
9513
9514 parent_dev = &h->scsi_host->shost_gendev;
9515
9516 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9517 if (!hpsa_sas_node)
9518 return -ENOMEM;
9519
9520 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9521 if (!hpsa_sas_port) {
9522 rc = -ENODEV;
9523 goto free_sas_node;
9524 }
9525
9526 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9527 if (!hpsa_sas_phy) {
9528 rc = -ENODEV;
9529 goto free_sas_port;
9530 }
9531
9532 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9533 if (rc)
9534 goto free_sas_phy;
9535
9536 h->sas_host = hpsa_sas_node;
9537
9538 return 0;
9539
9540free_sas_phy:
9541 hpsa_free_sas_phy(hpsa_sas_phy);
9542free_sas_port:
9543 hpsa_free_sas_port(hpsa_sas_port);
9544free_sas_node:
9545 hpsa_free_sas_node(hpsa_sas_node);
9546
9547 return rc;
9548}
9549
9550static void hpsa_delete_sas_host(struct ctlr_info *h)
9551{
9552 hpsa_free_sas_node(h->sas_host);
9553}
9554
9555static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9556 struct hpsa_scsi_dev_t *device)
9557{
9558 int rc;
9559 struct hpsa_sas_port *hpsa_sas_port;
9560 struct sas_rphy *rphy;
9561
9562 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9563 if (!hpsa_sas_port)
9564 return -ENOMEM;
9565
9566 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9567 if (!rphy) {
9568 rc = -ENODEV;
9569 goto free_sas_port;
9570 }
9571
9572 hpsa_sas_port->rphy = rphy;
9573 device->sas_port = hpsa_sas_port;
9574
9575 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9576 if (rc)
9577 goto free_sas_port;
9578
9579 return 0;
9580
9581free_sas_port:
9582 hpsa_free_sas_port(hpsa_sas_port);
9583 device->sas_port = NULL;
9584
9585 return rc;
9586}
9587
9588static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9589{
9590 if (device->sas_port) {
9591 hpsa_free_sas_port(device->sas_port);
9592 device->sas_port = NULL;
9593 }
9594}
9595
9596static int
9597hpsa_sas_get_linkerrors(struct sas_phy *phy)
9598{
9599 return 0;
9600}
9601
9602static int
9603hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9604{
9605 return 0;
9606}
9607
9608static int
9609hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9610{
9611 return -ENXIO;
9612}
9613
9614static int
9615hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9616{
9617 return 0;
9618}
9619
9620static int
9621hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9622{
9623 return 0;
9624}
9625
9626static int
9627hpsa_sas_phy_setup(struct sas_phy *phy)
9628{
9629 return 0;
9630}
9631
9632static void
9633hpsa_sas_phy_release(struct sas_phy *phy)
9634{
9635}
9636
9637static int
9638hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9639{
9640 return -EINVAL;
9641}
9642
9643/* SMP = Serial Management Protocol */
9644static int
9645hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9646struct request *req)
9647{
9648 return -EINVAL;
9649}
9650
9651static struct sas_function_template hpsa_sas_transport_functions = {
9652 .get_linkerrors = hpsa_sas_get_linkerrors,
9653 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9654 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9655 .phy_reset = hpsa_sas_phy_reset,
9656 .phy_enable = hpsa_sas_phy_enable,
9657 .phy_setup = hpsa_sas_phy_setup,
9658 .phy_release = hpsa_sas_phy_release,
9659 .set_phy_speed = hpsa_sas_phy_speed,
9660 .smp_handler = hpsa_sas_smp_handler,
9661};
9662
edd16368
SC
9663/*
9664 * This is it. Register the PCI driver information for the cards we control
9665 * the OS will call our registered routines when it finds one of our cards.
9666 */
9667static int __init hpsa_init(void)
9668{
d04e62b9
KB
9669 int rc;
9670
9671 hpsa_sas_transport_template =
9672 sas_attach_transport(&hpsa_sas_transport_functions);
9673 if (!hpsa_sas_transport_template)
9674 return -ENODEV;
9675
9676 rc = pci_register_driver(&hpsa_pci_driver);
9677
9678 if (rc)
9679 sas_release_transport(hpsa_sas_transport_template);
9680
9681 return rc;
edd16368
SC
9682}
9683
9684static void __exit hpsa_cleanup(void)
9685{
9686 pci_unregister_driver(&hpsa_pci_driver);
d04e62b9 9687 sas_release_transport(hpsa_sas_transport_template);
edd16368
SC
9688}
9689
e1f7de0c
MG
9690static void __attribute__((unused)) verify_offsets(void)
9691{
dd0e19f3
ST
9692#define VERIFY_OFFSET(member, offset) \
9693 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9694
9695 VERIFY_OFFSET(structure_size, 0);
9696 VERIFY_OFFSET(volume_blk_size, 4);
9697 VERIFY_OFFSET(volume_blk_cnt, 8);
9698 VERIFY_OFFSET(phys_blk_shift, 16);
9699 VERIFY_OFFSET(parity_rotation_shift, 17);
9700 VERIFY_OFFSET(strip_size, 18);
9701 VERIFY_OFFSET(disk_starting_blk, 20);
9702 VERIFY_OFFSET(disk_blk_cnt, 28);
9703 VERIFY_OFFSET(data_disks_per_row, 36);
9704 VERIFY_OFFSET(metadata_disks_per_row, 38);
9705 VERIFY_OFFSET(row_cnt, 40);
9706 VERIFY_OFFSET(layout_map_count, 42);
9707 VERIFY_OFFSET(flags, 44);
9708 VERIFY_OFFSET(dekindex, 46);
9709 /* VERIFY_OFFSET(reserved, 48 */
9710 VERIFY_OFFSET(data, 64);
9711
9712#undef VERIFY_OFFSET
9713
b66cc250
MM
9714#define VERIFY_OFFSET(member, offset) \
9715 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9716
9717 VERIFY_OFFSET(IU_type, 0);
9718 VERIFY_OFFSET(direction, 1);
9719 VERIFY_OFFSET(reply_queue, 2);
9720 /* VERIFY_OFFSET(reserved1, 3); */
9721 VERIFY_OFFSET(scsi_nexus, 4);
9722 VERIFY_OFFSET(Tag, 8);
9723 VERIFY_OFFSET(cdb, 16);
9724 VERIFY_OFFSET(cciss_lun, 32);
9725 VERIFY_OFFSET(data_len, 40);
9726 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9727 VERIFY_OFFSET(sg_count, 45);
9728 /* VERIFY_OFFSET(reserved3 */
9729 VERIFY_OFFSET(err_ptr, 48);
9730 VERIFY_OFFSET(err_len, 56);
9731 /* VERIFY_OFFSET(reserved4 */
9732 VERIFY_OFFSET(sg, 64);
9733
9734#undef VERIFY_OFFSET
9735
e1f7de0c
MG
9736#define VERIFY_OFFSET(member, offset) \
9737 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9738
9739 VERIFY_OFFSET(dev_handle, 0x00);
9740 VERIFY_OFFSET(reserved1, 0x02);
9741 VERIFY_OFFSET(function, 0x03);
9742 VERIFY_OFFSET(reserved2, 0x04);
9743 VERIFY_OFFSET(err_info, 0x0C);
9744 VERIFY_OFFSET(reserved3, 0x10);
9745 VERIFY_OFFSET(err_info_len, 0x12);
9746 VERIFY_OFFSET(reserved4, 0x13);
9747 VERIFY_OFFSET(sgl_offset, 0x14);
9748 VERIFY_OFFSET(reserved5, 0x15);
9749 VERIFY_OFFSET(transfer_len, 0x1C);
9750 VERIFY_OFFSET(reserved6, 0x20);
9751 VERIFY_OFFSET(io_flags, 0x24);
9752 VERIFY_OFFSET(reserved7, 0x26);
9753 VERIFY_OFFSET(LUN, 0x34);
9754 VERIFY_OFFSET(control, 0x3C);
9755 VERIFY_OFFSET(CDB, 0x40);
9756 VERIFY_OFFSET(reserved8, 0x50);
9757 VERIFY_OFFSET(host_context_flags, 0x60);
9758 VERIFY_OFFSET(timeout_sec, 0x62);
9759 VERIFY_OFFSET(ReplyQueue, 0x64);
9760 VERIFY_OFFSET(reserved9, 0x65);
50a0decf 9761 VERIFY_OFFSET(tag, 0x68);
e1f7de0c
MG
9762 VERIFY_OFFSET(host_addr, 0x70);
9763 VERIFY_OFFSET(CISS_LUN, 0x78);
9764 VERIFY_OFFSET(SG, 0x78 + 8);
9765#undef VERIFY_OFFSET
9766}
9767
edd16368
SC
9768module_init(hpsa_init);
9769module_exit(hpsa_cleanup);