[SCSI] hpsa: Allow multiple command completions per interrupt.
[linux-2.6-block.git] / drivers / scsi / hpsa.c
CommitLineData
edd16368
SC
1/*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/types.h>
25#include <linux/pci.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/delay.h>
29#include <linux/fs.h>
30#include <linux/timer.h>
31#include <linux/seq_file.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp_lock.h>
35#include <linux/compat.h>
36#include <linux/blktrace_api.h>
37#include <linux/uaccess.h>
38#include <linux/io.h>
39#include <linux/dma-mapping.h>
40#include <linux/completion.h>
41#include <linux/moduleparam.h>
42#include <scsi/scsi.h>
43#include <scsi/scsi_cmnd.h>
44#include <scsi/scsi_device.h>
45#include <scsi/scsi_host.h>
46#include <linux/cciss_ioctl.h>
47#include <linux/string.h>
48#include <linux/bitmap.h>
49#include <asm/atomic.h>
50#include <linux/kthread.h>
51#include "hpsa_cmd.h"
52#include "hpsa.h"
53
54/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55#define HPSA_DRIVER_VERSION "1.0.0"
56#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58/* How long to wait (in milliseconds) for board to go into simple mode */
59#define MAX_CONFIG_WAIT 30000
60#define MAX_IOCTL_CONFIG_WAIT 1000
61
62/*define how many times we will try a command because of bus resets */
63#define MAX_CMD_RETRIES 3
64
65/* Embedded module documentation macros - see modules.h */
66MODULE_AUTHOR("Hewlett-Packard Company");
67MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 HPSA_DRIVER_VERSION);
69MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70MODULE_VERSION(HPSA_DRIVER_VERSION);
71MODULE_LICENSE("GPL");
72
73static int hpsa_allow_any;
74module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75MODULE_PARM_DESC(hpsa_allow_any,
76 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78/* define the PCI info for the cards we can control */
79static const struct pci_device_id hpsa_pci_device_id[] = {
80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
90 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
91 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92 {0,}
93};
94
95MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96
97/* board_id = Subsystem Device ID & Vendor ID
98 * product = Marketing Name for the board
99 * access = Address of the struct of function pointers
100 */
101static struct board_type products[] = {
102 {0x3223103C, "Smart Array P800", &SA5_access},
103 {0x3234103C, "Smart Array P400", &SA5_access},
104 {0x323d103c, "Smart Array P700M", &SA5_access},
105 {0x3241103C, "Smart Array P212", &SA5_access},
106 {0x3243103C, "Smart Array P410", &SA5_access},
107 {0x3245103C, "Smart Array P410i", &SA5_access},
108 {0x3247103C, "Smart Array P411", &SA5_access},
109 {0x3249103C, "Smart Array P812", &SA5_access},
110 {0x324a103C, "Smart Array P712m", &SA5_access},
111 {0x324b103C, "Smart Array P711m", &SA5_access},
112 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
113};
114
115static int number_of_controllers;
116
117static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
118static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
119static void start_io(struct ctlr_info *h);
120
121#ifdef CONFIG_COMPAT
122static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
123#endif
124
125static void cmd_free(struct ctlr_info *h, struct CommandList *c);
126static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
127static struct CommandList *cmd_alloc(struct ctlr_info *h);
128static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
01a02ffc
SC
129static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
130 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
edd16368
SC
131 int cmd_type);
132
133static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
134 void (*done)(struct scsi_cmnd *));
135
136static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
137static int hpsa_slave_alloc(struct scsi_device *sdev);
138static void hpsa_slave_destroy(struct scsi_device *sdev);
139
140static ssize_t raid_level_show(struct device *dev,
141 struct device_attribute *attr, char *buf);
142static ssize_t lunid_show(struct device *dev,
143 struct device_attribute *attr, char *buf);
144static ssize_t unique_id_show(struct device *dev,
145 struct device_attribute *attr, char *buf);
146static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
147static ssize_t host_store_rescan(struct device *dev,
148 struct device_attribute *attr, const char *buf, size_t count);
149static int check_for_unit_attention(struct ctlr_info *h,
150 struct CommandList *c);
151static void check_ioctl_unit_attention(struct ctlr_info *h,
152 struct CommandList *c);
303932fd
DB
153/* performant mode helper functions */
154static void calc_bucket_map(int *bucket, int num_buckets,
155 int nsgs, int *bucket_map);
156static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
157static inline u32 next_command(struct ctlr_info *h);
edd16368
SC
158
159static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
160static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
161static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
162static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
163
164static struct device_attribute *hpsa_sdev_attrs[] = {
165 &dev_attr_raid_level,
166 &dev_attr_lunid,
167 &dev_attr_unique_id,
168 NULL,
169};
170
171static struct device_attribute *hpsa_shost_attrs[] = {
172 &dev_attr_rescan,
173 NULL,
174};
175
176static struct scsi_host_template hpsa_driver_template = {
177 .module = THIS_MODULE,
178 .name = "hpsa",
179 .proc_name = "hpsa",
180 .queuecommand = hpsa_scsi_queue_command,
edd16368
SC
181 .this_id = -1,
182 .sg_tablesize = MAXSGENTRIES,
edd16368
SC
183 .use_clustering = ENABLE_CLUSTERING,
184 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
185 .ioctl = hpsa_ioctl,
186 .slave_alloc = hpsa_slave_alloc,
187 .slave_destroy = hpsa_slave_destroy,
188#ifdef CONFIG_COMPAT
189 .compat_ioctl = hpsa_compat_ioctl,
190#endif
191 .sdev_attrs = hpsa_sdev_attrs,
192 .shost_attrs = hpsa_shost_attrs,
193};
194
195static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
196{
197 unsigned long *priv = shost_priv(sdev->host);
198 return (struct ctlr_info *) *priv;
199}
200
201static struct task_struct *hpsa_scan_thread;
202static DEFINE_MUTEX(hpsa_scan_mutex);
203static LIST_HEAD(hpsa_scan_q);
204static int hpsa_scan_func(void *data);
205
206/**
207 * add_to_scan_list() - add controller to rescan queue
208 * @h: Pointer to the controller.
209 *
210 * Adds the controller to the rescan queue if not already on the queue.
211 *
212 * returns 1 if added to the queue, 0 if skipped (could be on the
213 * queue already, or the controller could be initializing or shutting
214 * down).
215 **/
216static int add_to_scan_list(struct ctlr_info *h)
217{
218 struct ctlr_info *test_h;
219 int found = 0;
220 int ret = 0;
221
222 if (h->busy_initializing)
223 return 0;
224
225 /*
226 * If we don't get the lock, it means the driver is unloading
227 * and there's no point in scheduling a new scan.
228 */
229 if (!mutex_trylock(&h->busy_shutting_down))
230 return 0;
231
232 mutex_lock(&hpsa_scan_mutex);
233 list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
234 if (test_h == h) {
235 found = 1;
236 break;
237 }
238 }
239 if (!found && !h->busy_scanning) {
240 INIT_COMPLETION(h->scan_wait);
241 list_add_tail(&h->scan_list, &hpsa_scan_q);
242 ret = 1;
243 }
244 mutex_unlock(&hpsa_scan_mutex);
245 mutex_unlock(&h->busy_shutting_down);
246
247 return ret;
248}
249
250/**
251 * remove_from_scan_list() - remove controller from rescan queue
252 * @h: Pointer to the controller.
253 *
254 * Removes the controller from the rescan queue if present. Blocks if
255 * the controller is currently conducting a rescan. The controller
256 * can be in one of three states:
257 * 1. Doesn't need a scan
258 * 2. On the scan list, but not scanning yet (we remove it)
259 * 3. Busy scanning (and not on the list). In this case we want to wait for
260 * the scan to complete to make sure the scanning thread for this
261 * controller is completely idle.
262 **/
263static void remove_from_scan_list(struct ctlr_info *h)
264{
265 struct ctlr_info *test_h, *tmp_h;
266
267 mutex_lock(&hpsa_scan_mutex);
268 list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
269 if (test_h == h) { /* state 2. */
270 list_del(&h->scan_list);
271 complete_all(&h->scan_wait);
272 mutex_unlock(&hpsa_scan_mutex);
273 return;
274 }
275 }
276 if (h->busy_scanning) { /* state 3. */
277 mutex_unlock(&hpsa_scan_mutex);
278 wait_for_completion(&h->scan_wait);
279 } else { /* state 1, nothing to do. */
280 mutex_unlock(&hpsa_scan_mutex);
281 }
282}
283
284/* hpsa_scan_func() - kernel thread used to rescan controllers
285 * @data: Ignored.
286 *
287 * A kernel thread used scan for drive topology changes on
288 * controllers. The thread processes only one controller at a time
289 * using a queue. Controllers are added to the queue using
290 * add_to_scan_list() and removed from the queue either after done
291 * processing or using remove_from_scan_list().
292 *
293 * returns 0.
294 **/
295static int hpsa_scan_func(__attribute__((unused)) void *data)
296{
297 struct ctlr_info *h;
298 int host_no;
299
300 while (1) {
301 set_current_state(TASK_INTERRUPTIBLE);
302 schedule();
303 if (kthread_should_stop())
304 break;
305
306 while (1) {
307 mutex_lock(&hpsa_scan_mutex);
308 if (list_empty(&hpsa_scan_q)) {
309 mutex_unlock(&hpsa_scan_mutex);
310 break;
311 }
312 h = list_entry(hpsa_scan_q.next, struct ctlr_info,
313 scan_list);
314 list_del(&h->scan_list);
315 h->busy_scanning = 1;
316 mutex_unlock(&hpsa_scan_mutex);
317 host_no = h->scsi_host ? h->scsi_host->host_no : -1;
318 hpsa_update_scsi_devices(h, host_no);
319 complete_all(&h->scan_wait);
320 mutex_lock(&hpsa_scan_mutex);
321 h->busy_scanning = 0;
322 mutex_unlock(&hpsa_scan_mutex);
323 }
324 }
325 return 0;
326}
327
328static int check_for_unit_attention(struct ctlr_info *h,
329 struct CommandList *c)
330{
331 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
332 return 0;
333
334 switch (c->err_info->SenseInfo[12]) {
335 case STATE_CHANGED:
336 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
337 "detected, command retried\n", h->ctlr);
338 break;
339 case LUN_FAILED:
340 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
341 "detected, action required\n", h->ctlr);
342 break;
343 case REPORT_LUNS_CHANGED:
344 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
345 "changed\n", h->ctlr);
346 /*
347 * Here, we could call add_to_scan_list and wake up the scan thread,
348 * except that it's quite likely that we will get more than one
349 * REPORT_LUNS_CHANGED condition in quick succession, which means
350 * that those which occur after the first one will likely happen
351 * *during* the hpsa_scan_thread's rescan. And the rescan code is not
352 * robust enough to restart in the middle, undoing what it has already
353 * done, and it's not clear that it's even possible to do this, since
354 * part of what it does is notify the SCSI mid layer, which starts
355 * doing it's own i/o to read partition tables and so on, and the
356 * driver doesn't have visibility to know what might need undoing.
357 * In any event, if possible, it is horribly complicated to get right
358 * so we just don't do it for now.
359 *
360 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
361 */
362 break;
363 case POWER_OR_RESET:
364 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
365 "or device reset detected\n", h->ctlr);
366 break;
367 case UNIT_ATTENTION_CLEARED:
368 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
369 "cleared by another initiator\n", h->ctlr);
370 break;
371 default:
372 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
373 "unit attention detected\n", h->ctlr);
374 break;
375 }
376 return 1;
377}
378
379static ssize_t host_store_rescan(struct device *dev,
380 struct device_attribute *attr,
381 const char *buf, size_t count)
382{
383 struct ctlr_info *h;
384 struct Scsi_Host *shost = class_to_shost(dev);
385 unsigned long *priv = shost_priv(shost);
386 h = (struct ctlr_info *) *priv;
387 if (add_to_scan_list(h)) {
388 wake_up_process(hpsa_scan_thread);
389 wait_for_completion_interruptible(&h->scan_wait);
390 }
391 return count;
392}
393
394/* Enqueuing and dequeuing functions for cmdlists. */
395static inline void addQ(struct hlist_head *list, struct CommandList *c)
396{
397 hlist_add_head(&c->list, list);
398}
399
303932fd
DB
400static inline u32 next_command(struct ctlr_info *h)
401{
402 u32 a;
403
404 if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
405 return h->access.command_completed(h);
406
407 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
408 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
409 (h->reply_pool_head)++;
410 h->commands_outstanding--;
411 } else {
412 a = FIFO_EMPTY;
413 }
414 /* Check for wraparound */
415 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
416 h->reply_pool_head = h->reply_pool;
417 h->reply_pool_wraparound ^= 1;
418 }
419 return a;
420}
421
422/* set_performant_mode: Modify the tag for cciss performant
423 * set bit 0 for pull model, bits 3-1 for block fetch
424 * register number
425 */
426static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
427{
428 if (likely(h->transMethod == CFGTBL_Trans_Performant))
429 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
430}
431
edd16368
SC
432static void enqueue_cmd_and_start_io(struct ctlr_info *h,
433 struct CommandList *c)
434{
435 unsigned long flags;
303932fd
DB
436
437 set_performant_mode(h, c);
edd16368
SC
438 spin_lock_irqsave(&h->lock, flags);
439 addQ(&h->reqQ, c);
440 h->Qdepth++;
441 start_io(h);
442 spin_unlock_irqrestore(&h->lock, flags);
443}
444
445static inline void removeQ(struct CommandList *c)
446{
447 if (WARN_ON(hlist_unhashed(&c->list)))
448 return;
449 hlist_del_init(&c->list);
450}
451
452static inline int is_hba_lunid(unsigned char scsi3addr[])
453{
454 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
455}
456
457static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
458{
459 return (scsi3addr[3] & 0xC0) == 0x40;
460}
461
462static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
463 "UNKNOWN"
464};
465#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
466
467static ssize_t raid_level_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469{
470 ssize_t l = 0;
82a72c0a 471 unsigned char rlevel;
edd16368
SC
472 struct ctlr_info *h;
473 struct scsi_device *sdev;
474 struct hpsa_scsi_dev_t *hdev;
475 unsigned long flags;
476
477 sdev = to_scsi_device(dev);
478 h = sdev_to_hba(sdev);
479 spin_lock_irqsave(&h->lock, flags);
480 hdev = sdev->hostdata;
481 if (!hdev) {
482 spin_unlock_irqrestore(&h->lock, flags);
483 return -ENODEV;
484 }
485
486 /* Is this even a logical drive? */
487 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
488 spin_unlock_irqrestore(&h->lock, flags);
489 l = snprintf(buf, PAGE_SIZE, "N/A\n");
490 return l;
491 }
492
493 rlevel = hdev->raid_level;
494 spin_unlock_irqrestore(&h->lock, flags);
82a72c0a 495 if (rlevel > RAID_UNKNOWN)
edd16368
SC
496 rlevel = RAID_UNKNOWN;
497 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
498 return l;
499}
500
501static ssize_t lunid_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503{
504 struct ctlr_info *h;
505 struct scsi_device *sdev;
506 struct hpsa_scsi_dev_t *hdev;
507 unsigned long flags;
508 unsigned char lunid[8];
509
510 sdev = to_scsi_device(dev);
511 h = sdev_to_hba(sdev);
512 spin_lock_irqsave(&h->lock, flags);
513 hdev = sdev->hostdata;
514 if (!hdev) {
515 spin_unlock_irqrestore(&h->lock, flags);
516 return -ENODEV;
517 }
518 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
519 spin_unlock_irqrestore(&h->lock, flags);
520 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
521 lunid[0], lunid[1], lunid[2], lunid[3],
522 lunid[4], lunid[5], lunid[6], lunid[7]);
523}
524
525static ssize_t unique_id_show(struct device *dev,
526 struct device_attribute *attr, char *buf)
527{
528 struct ctlr_info *h;
529 struct scsi_device *sdev;
530 struct hpsa_scsi_dev_t *hdev;
531 unsigned long flags;
532 unsigned char sn[16];
533
534 sdev = to_scsi_device(dev);
535 h = sdev_to_hba(sdev);
536 spin_lock_irqsave(&h->lock, flags);
537 hdev = sdev->hostdata;
538 if (!hdev) {
539 spin_unlock_irqrestore(&h->lock, flags);
540 return -ENODEV;
541 }
542 memcpy(sn, hdev->device_id, sizeof(sn));
543 spin_unlock_irqrestore(&h->lock, flags);
544 return snprintf(buf, 16 * 2 + 2,
545 "%02X%02X%02X%02X%02X%02X%02X%02X"
546 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
547 sn[0], sn[1], sn[2], sn[3],
548 sn[4], sn[5], sn[6], sn[7],
549 sn[8], sn[9], sn[10], sn[11],
550 sn[12], sn[13], sn[14], sn[15]);
551}
552
553static int hpsa_find_target_lun(struct ctlr_info *h,
554 unsigned char scsi3addr[], int bus, int *target, int *lun)
555{
556 /* finds an unused bus, target, lun for a new physical device
557 * assumes h->devlock is held
558 */
559 int i, found = 0;
560 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
561
562 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
563
564 for (i = 0; i < h->ndevices; i++) {
565 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
566 set_bit(h->dev[i]->target, lun_taken);
567 }
568
569 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
570 if (!test_bit(i, lun_taken)) {
571 /* *bus = 1; */
572 *target = i;
573 *lun = 0;
574 found = 1;
575 break;
576 }
577 }
578 return !found;
579}
580
581/* Add an entry into h->dev[] array. */
582static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
583 struct hpsa_scsi_dev_t *device,
584 struct hpsa_scsi_dev_t *added[], int *nadded)
585{
586 /* assumes h->devlock is held */
587 int n = h->ndevices;
588 int i;
589 unsigned char addr1[8], addr2[8];
590 struct hpsa_scsi_dev_t *sd;
591
592 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
593 dev_err(&h->pdev->dev, "too many devices, some will be "
594 "inaccessible.\n");
595 return -1;
596 }
597
598 /* physical devices do not have lun or target assigned until now. */
599 if (device->lun != -1)
600 /* Logical device, lun is already assigned. */
601 goto lun_assigned;
602
603 /* If this device a non-zero lun of a multi-lun device
604 * byte 4 of the 8-byte LUN addr will contain the logical
605 * unit no, zero otherise.
606 */
607 if (device->scsi3addr[4] == 0) {
608 /* This is not a non-zero lun of a multi-lun device */
609 if (hpsa_find_target_lun(h, device->scsi3addr,
610 device->bus, &device->target, &device->lun) != 0)
611 return -1;
612 goto lun_assigned;
613 }
614
615 /* This is a non-zero lun of a multi-lun device.
616 * Search through our list and find the device which
617 * has the same 8 byte LUN address, excepting byte 4.
618 * Assign the same bus and target for this new LUN.
619 * Use the logical unit number from the firmware.
620 */
621 memcpy(addr1, device->scsi3addr, 8);
622 addr1[4] = 0;
623 for (i = 0; i < n; i++) {
624 sd = h->dev[i];
625 memcpy(addr2, sd->scsi3addr, 8);
626 addr2[4] = 0;
627 /* differ only in byte 4? */
628 if (memcmp(addr1, addr2, 8) == 0) {
629 device->bus = sd->bus;
630 device->target = sd->target;
631 device->lun = device->scsi3addr[4];
632 break;
633 }
634 }
635 if (device->lun == -1) {
636 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
637 " suspect firmware bug or unsupported hardware "
638 "configuration.\n");
639 return -1;
640 }
641
642lun_assigned:
643
644 h->dev[n] = device;
645 h->ndevices++;
646 added[*nadded] = device;
647 (*nadded)++;
648
649 /* initially, (before registering with scsi layer) we don't
650 * know our hostno and we don't want to print anything first
651 * time anyway (the scsi layer's inquiries will show that info)
652 */
653 /* if (hostno != -1) */
654 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
655 scsi_device_type(device->devtype), hostno,
656 device->bus, device->target, device->lun);
657 return 0;
658}
659
660/* Remove an entry from h->dev[] array. */
661static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
662 struct hpsa_scsi_dev_t *removed[], int *nremoved)
663{
664 /* assumes h->devlock is held */
665 int i;
666 struct hpsa_scsi_dev_t *sd;
667
b2ed4f79 668 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
edd16368
SC
669
670 sd = h->dev[entry];
671 removed[*nremoved] = h->dev[entry];
672 (*nremoved)++;
673
674 for (i = entry; i < h->ndevices-1; i++)
675 h->dev[i] = h->dev[i+1];
676 h->ndevices--;
677 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
678 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
679 sd->lun);
680}
681
682#define SCSI3ADDR_EQ(a, b) ( \
683 (a)[7] == (b)[7] && \
684 (a)[6] == (b)[6] && \
685 (a)[5] == (b)[5] && \
686 (a)[4] == (b)[4] && \
687 (a)[3] == (b)[3] && \
688 (a)[2] == (b)[2] && \
689 (a)[1] == (b)[1] && \
690 (a)[0] == (b)[0])
691
692static void fixup_botched_add(struct ctlr_info *h,
693 struct hpsa_scsi_dev_t *added)
694{
695 /* called when scsi_add_device fails in order to re-adjust
696 * h->dev[] to match the mid layer's view.
697 */
698 unsigned long flags;
699 int i, j;
700
701 spin_lock_irqsave(&h->lock, flags);
702 for (i = 0; i < h->ndevices; i++) {
703 if (h->dev[i] == added) {
704 for (j = i; j < h->ndevices-1; j++)
705 h->dev[j] = h->dev[j+1];
706 h->ndevices--;
707 break;
708 }
709 }
710 spin_unlock_irqrestore(&h->lock, flags);
711 kfree(added);
712}
713
714static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
715 struct hpsa_scsi_dev_t *dev2)
716{
717 if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
718 (dev1->lun != -1 && dev2->lun != -1)) &&
719 dev1->devtype != 0x0C)
720 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
721
722 /* we compare everything except lun and target as these
723 * are not yet assigned. Compare parts likely
724 * to differ first
725 */
726 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
727 sizeof(dev1->scsi3addr)) != 0)
728 return 0;
729 if (memcmp(dev1->device_id, dev2->device_id,
730 sizeof(dev1->device_id)) != 0)
731 return 0;
732 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
733 return 0;
734 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
735 return 0;
736 if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
737 return 0;
738 if (dev1->devtype != dev2->devtype)
739 return 0;
740 if (dev1->raid_level != dev2->raid_level)
741 return 0;
742 if (dev1->bus != dev2->bus)
743 return 0;
744 return 1;
745}
746
747/* Find needle in haystack. If exact match found, return DEVICE_SAME,
748 * and return needle location in *index. If scsi3addr matches, but not
749 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
750 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
751 */
752static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
753 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
754 int *index)
755{
756 int i;
757#define DEVICE_NOT_FOUND 0
758#define DEVICE_CHANGED 1
759#define DEVICE_SAME 2
760 for (i = 0; i < haystack_size; i++) {
761 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
762 *index = i;
763 if (device_is_the_same(needle, haystack[i]))
764 return DEVICE_SAME;
765 else
766 return DEVICE_CHANGED;
767 }
768 }
769 *index = -1;
770 return DEVICE_NOT_FOUND;
771}
772
4967bd3e 773static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
edd16368
SC
774 struct hpsa_scsi_dev_t *sd[], int nsds)
775{
776 /* sd contains scsi3 addresses and devtypes, and inquiry
777 * data. This function takes what's in sd to be the current
778 * reality and updates h->dev[] to reflect that reality.
779 */
780 int i, entry, device_change, changes = 0;
781 struct hpsa_scsi_dev_t *csd;
782 unsigned long flags;
783 struct hpsa_scsi_dev_t **added, **removed;
784 int nadded, nremoved;
785 struct Scsi_Host *sh = NULL;
786
787 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
788 GFP_KERNEL);
789 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
790 GFP_KERNEL);
791
792 if (!added || !removed) {
793 dev_warn(&h->pdev->dev, "out of memory in "
794 "adjust_hpsa_scsi_table\n");
795 goto free_and_out;
796 }
797
798 spin_lock_irqsave(&h->devlock, flags);
799
800 /* find any devices in h->dev[] that are not in
801 * sd[] and remove them from h->dev[], and for any
802 * devices which have changed, remove the old device
803 * info and add the new device info.
804 */
805 i = 0;
806 nremoved = 0;
807 nadded = 0;
808 while (i < h->ndevices) {
809 csd = h->dev[i];
810 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
811 if (device_change == DEVICE_NOT_FOUND) {
812 changes++;
813 hpsa_scsi_remove_entry(h, hostno, i,
814 removed, &nremoved);
815 continue; /* remove ^^^, hence i not incremented */
816 } else if (device_change == DEVICE_CHANGED) {
817 changes++;
818 hpsa_scsi_remove_entry(h, hostno, i,
819 removed, &nremoved);
820 (void) hpsa_scsi_add_entry(h, hostno, sd[entry],
821 added, &nadded);
822 /* add can't fail, we just removed one. */
823 sd[entry] = NULL; /* prevent it from being freed */
824 }
825 i++;
826 }
827
828 /* Now, make sure every device listed in sd[] is also
829 * listed in h->dev[], adding them if they aren't found
830 */
831
832 for (i = 0; i < nsds; i++) {
833 if (!sd[i]) /* if already added above. */
834 continue;
835 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
836 h->ndevices, &entry);
837 if (device_change == DEVICE_NOT_FOUND) {
838 changes++;
839 if (hpsa_scsi_add_entry(h, hostno, sd[i],
840 added, &nadded) != 0)
841 break;
842 sd[i] = NULL; /* prevent from being freed later. */
843 } else if (device_change == DEVICE_CHANGED) {
844 /* should never happen... */
845 changes++;
846 dev_warn(&h->pdev->dev,
847 "device unexpectedly changed.\n");
848 /* but if it does happen, we just ignore that device */
849 }
850 }
851 spin_unlock_irqrestore(&h->devlock, flags);
852
853 /* Don't notify scsi mid layer of any changes the first time through
854 * (or if there are no changes) scsi_scan_host will do it later the
855 * first time through.
856 */
857 if (hostno == -1 || !changes)
858 goto free_and_out;
859
860 sh = h->scsi_host;
861 /* Notify scsi mid layer of any removed devices */
862 for (i = 0; i < nremoved; i++) {
863 struct scsi_device *sdev =
864 scsi_device_lookup(sh, removed[i]->bus,
865 removed[i]->target, removed[i]->lun);
866 if (sdev != NULL) {
867 scsi_remove_device(sdev);
868 scsi_device_put(sdev);
869 } else {
870 /* We don't expect to get here.
871 * future cmds to this device will get selection
872 * timeout as if the device was gone.
873 */
874 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
875 " for removal.", hostno, removed[i]->bus,
876 removed[i]->target, removed[i]->lun);
877 }
878 kfree(removed[i]);
879 removed[i] = NULL;
880 }
881
882 /* Notify scsi mid layer of any added devices */
883 for (i = 0; i < nadded; i++) {
884 if (scsi_add_device(sh, added[i]->bus,
885 added[i]->target, added[i]->lun) == 0)
886 continue;
887 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
888 "device not added.\n", hostno, added[i]->bus,
889 added[i]->target, added[i]->lun);
890 /* now we have to remove it from h->dev,
891 * since it didn't get added to scsi mid layer
892 */
893 fixup_botched_add(h, added[i]);
894 }
895
896free_and_out:
897 kfree(added);
898 kfree(removed);
edd16368
SC
899}
900
901/*
902 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
903 * Assume's h->devlock is held.
904 */
905static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
906 int bus, int target, int lun)
907{
908 int i;
909 struct hpsa_scsi_dev_t *sd;
910
911 for (i = 0; i < h->ndevices; i++) {
912 sd = h->dev[i];
913 if (sd->bus == bus && sd->target == target && sd->lun == lun)
914 return sd;
915 }
916 return NULL;
917}
918
919/* link sdev->hostdata to our per-device structure. */
920static int hpsa_slave_alloc(struct scsi_device *sdev)
921{
922 struct hpsa_scsi_dev_t *sd;
923 unsigned long flags;
924 struct ctlr_info *h;
925
926 h = sdev_to_hba(sdev);
927 spin_lock_irqsave(&h->devlock, flags);
928 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
929 sdev_id(sdev), sdev->lun);
930 if (sd != NULL)
931 sdev->hostdata = sd;
932 spin_unlock_irqrestore(&h->devlock, flags);
933 return 0;
934}
935
936static void hpsa_slave_destroy(struct scsi_device *sdev)
937{
bcc44255 938 /* nothing to do. */
edd16368
SC
939}
940
941static void hpsa_scsi_setup(struct ctlr_info *h)
942{
943 h->ndevices = 0;
944 h->scsi_host = NULL;
945 spin_lock_init(&h->devlock);
edd16368
SC
946}
947
948static void complete_scsi_command(struct CommandList *cp,
01a02ffc 949 int timeout, u32 tag)
edd16368
SC
950{
951 struct scsi_cmnd *cmd;
952 struct ctlr_info *h;
953 struct ErrorInfo *ei;
954
955 unsigned char sense_key;
956 unsigned char asc; /* additional sense code */
957 unsigned char ascq; /* additional sense code qualifier */
958
959 ei = cp->err_info;
960 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
961 h = cp->h;
962
963 scsi_dma_unmap(cmd); /* undo the DMA mappings */
964
965 cmd->result = (DID_OK << 16); /* host byte */
966 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
967 cmd->result |= (ei->ScsiStatus << 1);
968
969 /* copy the sense data whether we need to or not. */
970 memcpy(cmd->sense_buffer, ei->SenseInfo,
971 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
972 SCSI_SENSE_BUFFERSIZE :
973 ei->SenseLen);
974 scsi_set_resid(cmd, ei->ResidualCnt);
975
976 if (ei->CommandStatus == 0) {
977 cmd->scsi_done(cmd);
978 cmd_free(h, cp);
979 return;
980 }
981
982 /* an error has occurred */
983 switch (ei->CommandStatus) {
984
985 case CMD_TARGET_STATUS:
986 if (ei->ScsiStatus) {
987 /* Get sense key */
988 sense_key = 0xf & ei->SenseInfo[2];
989 /* Get additional sense code */
990 asc = ei->SenseInfo[12];
991 /* Get addition sense code qualifier */
992 ascq = ei->SenseInfo[13];
993 }
994
995 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
996 if (check_for_unit_attention(h, cp)) {
997 cmd->result = DID_SOFT_ERROR << 16;
998 break;
999 }
1000 if (sense_key == ILLEGAL_REQUEST) {
1001 /*
1002 * SCSI REPORT_LUNS is commonly unsupported on
1003 * Smart Array. Suppress noisy complaint.
1004 */
1005 if (cp->Request.CDB[0] == REPORT_LUNS)
1006 break;
1007
1008 /* If ASC/ASCQ indicate Logical Unit
1009 * Not Supported condition,
1010 */
1011 if ((asc == 0x25) && (ascq == 0x0)) {
1012 dev_warn(&h->pdev->dev, "cp %p "
1013 "has check condition\n", cp);
1014 break;
1015 }
1016 }
1017
1018 if (sense_key == NOT_READY) {
1019 /* If Sense is Not Ready, Logical Unit
1020 * Not ready, Manual Intervention
1021 * required
1022 */
1023 if ((asc == 0x04) && (ascq == 0x03)) {
1024 cmd->result = DID_NO_CONNECT << 16;
1025 dev_warn(&h->pdev->dev, "cp %p "
1026 "has check condition: unit "
1027 "not ready, manual "
1028 "intervention required\n", cp);
1029 break;
1030 }
1031 }
1032
1033
1034 /* Must be some other type of check condition */
1035 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1036 "unknown type: "
1037 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1038 "Returning result: 0x%x, "
1039 "cmd=[%02x %02x %02x %02x %02x "
1040 "%02x %02x %02x %02x %02x]\n",
1041 cp, sense_key, asc, ascq,
1042 cmd->result,
1043 cmd->cmnd[0], cmd->cmnd[1],
1044 cmd->cmnd[2], cmd->cmnd[3],
1045 cmd->cmnd[4], cmd->cmnd[5],
1046 cmd->cmnd[6], cmd->cmnd[7],
1047 cmd->cmnd[8], cmd->cmnd[9]);
1048 break;
1049 }
1050
1051
1052 /* Problem was not a check condition
1053 * Pass it up to the upper layers...
1054 */
1055 if (ei->ScsiStatus) {
1056 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1057 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1058 "Returning result: 0x%x\n",
1059 cp, ei->ScsiStatus,
1060 sense_key, asc, ascq,
1061 cmd->result);
1062 } else { /* scsi status is zero??? How??? */
1063 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1064 "Returning no connection.\n", cp),
1065
1066 /* Ordinarily, this case should never happen,
1067 * but there is a bug in some released firmware
1068 * revisions that allows it to happen if, for
1069 * example, a 4100 backplane loses power and
1070 * the tape drive is in it. We assume that
1071 * it's a fatal error of some kind because we
1072 * can't show that it wasn't. We will make it
1073 * look like selection timeout since that is
1074 * the most common reason for this to occur,
1075 * and it's severe enough.
1076 */
1077
1078 cmd->result = DID_NO_CONNECT << 16;
1079 }
1080 break;
1081
1082 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1083 break;
1084 case CMD_DATA_OVERRUN:
1085 dev_warn(&h->pdev->dev, "cp %p has"
1086 " completed with data overrun "
1087 "reported\n", cp);
1088 break;
1089 case CMD_INVALID: {
1090 /* print_bytes(cp, sizeof(*cp), 1, 0);
1091 print_cmd(cp); */
1092 /* We get CMD_INVALID if you address a non-existent device
1093 * instead of a selection timeout (no response). You will
1094 * see this if you yank out a drive, then try to access it.
1095 * This is kind of a shame because it means that any other
1096 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1097 * missing target. */
1098 cmd->result = DID_NO_CONNECT << 16;
1099 }
1100 break;
1101 case CMD_PROTOCOL_ERR:
1102 dev_warn(&h->pdev->dev, "cp %p has "
1103 "protocol error \n", cp);
1104 break;
1105 case CMD_HARDWARE_ERR:
1106 cmd->result = DID_ERROR << 16;
1107 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1108 break;
1109 case CMD_CONNECTION_LOST:
1110 cmd->result = DID_ERROR << 16;
1111 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1112 break;
1113 case CMD_ABORTED:
1114 cmd->result = DID_ABORT << 16;
1115 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1116 cp, ei->ScsiStatus);
1117 break;
1118 case CMD_ABORT_FAILED:
1119 cmd->result = DID_ERROR << 16;
1120 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1121 break;
1122 case CMD_UNSOLICITED_ABORT:
1123 cmd->result = DID_ABORT << 16;
1124 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1125 "abort\n", cp);
1126 break;
1127 case CMD_TIMEOUT:
1128 cmd->result = DID_TIME_OUT << 16;
1129 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1130 break;
1131 default:
1132 cmd->result = DID_ERROR << 16;
1133 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1134 cp, ei->CommandStatus);
1135 }
1136 cmd->scsi_done(cmd);
1137 cmd_free(h, cp);
1138}
1139
1140static int hpsa_scsi_detect(struct ctlr_info *h)
1141{
1142 struct Scsi_Host *sh;
1143 int error;
1144
1145 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1146 if (sh == NULL)
1147 goto fail;
1148
1149 sh->io_port = 0;
1150 sh->n_io_port = 0;
1151 sh->this_id = -1;
1152 sh->max_channel = 3;
1153 sh->max_cmd_len = MAX_COMMAND_SIZE;
1154 sh->max_lun = HPSA_MAX_LUN;
1155 sh->max_id = HPSA_MAX_LUN;
303932fd
DB
1156 sh->can_queue = h->nr_cmds;
1157 sh->cmd_per_lun = h->nr_cmds;
edd16368
SC
1158 h->scsi_host = sh;
1159 sh->hostdata[0] = (unsigned long) h;
303932fd 1160 sh->irq = h->intr[PERF_MODE_INT];
edd16368
SC
1161 sh->unique_id = sh->irq;
1162 error = scsi_add_host(sh, &h->pdev->dev);
1163 if (error)
1164 goto fail_host_put;
1165 scsi_scan_host(sh);
1166 return 0;
1167
1168 fail_host_put:
1169 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1170 " failed for controller %d\n", h->ctlr);
1171 scsi_host_put(sh);
ecd9aad4 1172 return error;
edd16368
SC
1173 fail:
1174 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1175 " failed for controller %d\n", h->ctlr);
ecd9aad4 1176 return -ENOMEM;
edd16368
SC
1177}
1178
1179static void hpsa_pci_unmap(struct pci_dev *pdev,
1180 struct CommandList *c, int sg_used, int data_direction)
1181{
1182 int i;
1183 union u64bit addr64;
1184
1185 for (i = 0; i < sg_used; i++) {
1186 addr64.val32.lower = c->SG[i].Addr.lower;
1187 addr64.val32.upper = c->SG[i].Addr.upper;
1188 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1189 data_direction);
1190 }
1191}
1192
1193static void hpsa_map_one(struct pci_dev *pdev,
1194 struct CommandList *cp,
1195 unsigned char *buf,
1196 size_t buflen,
1197 int data_direction)
1198{
01a02ffc 1199 u64 addr64;
edd16368
SC
1200
1201 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1202 cp->Header.SGList = 0;
1203 cp->Header.SGTotal = 0;
1204 return;
1205 }
1206
01a02ffc 1207 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
edd16368 1208 cp->SG[0].Addr.lower =
01a02ffc 1209 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
edd16368 1210 cp->SG[0].Addr.upper =
01a02ffc 1211 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
edd16368 1212 cp->SG[0].Len = buflen;
01a02ffc
SC
1213 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1214 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
edd16368
SC
1215}
1216
1217static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1218 struct CommandList *c)
1219{
1220 DECLARE_COMPLETION_ONSTACK(wait);
1221
1222 c->waiting = &wait;
1223 enqueue_cmd_and_start_io(h, c);
1224 wait_for_completion(&wait);
1225}
1226
1227static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1228 struct CommandList *c, int data_direction)
1229{
1230 int retry_count = 0;
1231
1232 do {
1233 memset(c->err_info, 0, sizeof(c->err_info));
1234 hpsa_scsi_do_simple_cmd_core(h, c);
1235 retry_count++;
1236 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1237 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1238}
1239
1240static void hpsa_scsi_interpret_error(struct CommandList *cp)
1241{
1242 struct ErrorInfo *ei;
1243 struct device *d = &cp->h->pdev->dev;
1244
1245 ei = cp->err_info;
1246 switch (ei->CommandStatus) {
1247 case CMD_TARGET_STATUS:
1248 dev_warn(d, "cmd %p has completed with errors\n", cp);
1249 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1250 ei->ScsiStatus);
1251 if (ei->ScsiStatus == 0)
1252 dev_warn(d, "SCSI status is abnormally zero. "
1253 "(probably indicates selection timeout "
1254 "reported incorrectly due to a known "
1255 "firmware bug, circa July, 2001.)\n");
1256 break;
1257 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1258 dev_info(d, "UNDERRUN\n");
1259 break;
1260 case CMD_DATA_OVERRUN:
1261 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1262 break;
1263 case CMD_INVALID: {
1264 /* controller unfortunately reports SCSI passthru's
1265 * to non-existent targets as invalid commands.
1266 */
1267 dev_warn(d, "cp %p is reported invalid (probably means "
1268 "target device no longer present)\n", cp);
1269 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1270 print_cmd(cp); */
1271 }
1272 break;
1273 case CMD_PROTOCOL_ERR:
1274 dev_warn(d, "cp %p has protocol error \n", cp);
1275 break;
1276 case CMD_HARDWARE_ERR:
1277 /* cmd->result = DID_ERROR << 16; */
1278 dev_warn(d, "cp %p had hardware error\n", cp);
1279 break;
1280 case CMD_CONNECTION_LOST:
1281 dev_warn(d, "cp %p had connection lost\n", cp);
1282 break;
1283 case CMD_ABORTED:
1284 dev_warn(d, "cp %p was aborted\n", cp);
1285 break;
1286 case CMD_ABORT_FAILED:
1287 dev_warn(d, "cp %p reports abort failed\n", cp);
1288 break;
1289 case CMD_UNSOLICITED_ABORT:
1290 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1291 break;
1292 case CMD_TIMEOUT:
1293 dev_warn(d, "cp %p timed out\n", cp);
1294 break;
1295 default:
1296 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1297 ei->CommandStatus);
1298 }
1299}
1300
1301static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1302 unsigned char page, unsigned char *buf,
1303 unsigned char bufsize)
1304{
1305 int rc = IO_OK;
1306 struct CommandList *c;
1307 struct ErrorInfo *ei;
1308
1309 c = cmd_special_alloc(h);
1310
1311 if (c == NULL) { /* trouble... */
1312 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
ecd9aad4 1313 return -ENOMEM;
edd16368
SC
1314 }
1315
1316 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1317 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1318 ei = c->err_info;
1319 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1320 hpsa_scsi_interpret_error(c);
1321 rc = -1;
1322 }
1323 cmd_special_free(h, c);
1324 return rc;
1325}
1326
1327static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1328{
1329 int rc = IO_OK;
1330 struct CommandList *c;
1331 struct ErrorInfo *ei;
1332
1333 c = cmd_special_alloc(h);
1334
1335 if (c == NULL) { /* trouble... */
1336 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1337 return -1;
1338 }
1339
1340 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1341 hpsa_scsi_do_simple_cmd_core(h, c);
1342 /* no unmap needed here because no data xfer. */
1343
1344 ei = c->err_info;
1345 if (ei->CommandStatus != 0) {
1346 hpsa_scsi_interpret_error(c);
1347 rc = -1;
1348 }
1349 cmd_special_free(h, c);
1350 return rc;
1351}
1352
1353static void hpsa_get_raid_level(struct ctlr_info *h,
1354 unsigned char *scsi3addr, unsigned char *raid_level)
1355{
1356 int rc;
1357 unsigned char *buf;
1358
1359 *raid_level = RAID_UNKNOWN;
1360 buf = kzalloc(64, GFP_KERNEL);
1361 if (!buf)
1362 return;
1363 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1364 if (rc == 0)
1365 *raid_level = buf[8];
1366 if (*raid_level > RAID_UNKNOWN)
1367 *raid_level = RAID_UNKNOWN;
1368 kfree(buf);
1369 return;
1370}
1371
1372/* Get the device id from inquiry page 0x83 */
1373static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1374 unsigned char *device_id, int buflen)
1375{
1376 int rc;
1377 unsigned char *buf;
1378
1379 if (buflen > 16)
1380 buflen = 16;
1381 buf = kzalloc(64, GFP_KERNEL);
1382 if (!buf)
1383 return -1;
1384 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1385 if (rc == 0)
1386 memcpy(device_id, &buf[8], buflen);
1387 kfree(buf);
1388 return rc != 0;
1389}
1390
1391static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1392 struct ReportLUNdata *buf, int bufsize,
1393 int extended_response)
1394{
1395 int rc = IO_OK;
1396 struct CommandList *c;
1397 unsigned char scsi3addr[8];
1398 struct ErrorInfo *ei;
1399
1400 c = cmd_special_alloc(h);
1401 if (c == NULL) { /* trouble... */
1402 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1403 return -1;
1404 }
e89c0ae7
SC
1405 /* address the controller */
1406 memset(scsi3addr, 0, sizeof(scsi3addr));
edd16368
SC
1407 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1408 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1409 if (extended_response)
1410 c->Request.CDB[1] = extended_response;
1411 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1412 ei = c->err_info;
1413 if (ei->CommandStatus != 0 &&
1414 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1415 hpsa_scsi_interpret_error(c);
1416 rc = -1;
1417 }
1418 cmd_special_free(h, c);
1419 return rc;
1420}
1421
1422static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1423 struct ReportLUNdata *buf,
1424 int bufsize, int extended_response)
1425{
1426 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1427}
1428
1429static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1430 struct ReportLUNdata *buf, int bufsize)
1431{
1432 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1433}
1434
1435static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1436 int bus, int target, int lun)
1437{
1438 device->bus = bus;
1439 device->target = target;
1440 device->lun = lun;
1441}
1442
1443static int hpsa_update_device_info(struct ctlr_info *h,
1444 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1445{
1446#define OBDR_TAPE_INQ_SIZE 49
ea6d3bc3 1447 unsigned char *inq_buff;
edd16368 1448
ea6d3bc3 1449 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
edd16368
SC
1450 if (!inq_buff)
1451 goto bail_out;
1452
edd16368
SC
1453 /* Do an inquiry to the device to see what it is. */
1454 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1455 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1456 /* Inquiry failed (msg printed already) */
1457 dev_err(&h->pdev->dev,
1458 "hpsa_update_device_info: inquiry failed\n");
1459 goto bail_out;
1460 }
1461
1462 /* As a side effect, record the firmware version number
1463 * if we happen to be talking to the RAID controller.
1464 */
1465 if (is_hba_lunid(scsi3addr))
1466 memcpy(h->firm_ver, &inq_buff[32], 4);
1467
1468 this_device->devtype = (inq_buff[0] & 0x1f);
1469 memcpy(this_device->scsi3addr, scsi3addr, 8);
1470 memcpy(this_device->vendor, &inq_buff[8],
1471 sizeof(this_device->vendor));
1472 memcpy(this_device->model, &inq_buff[16],
1473 sizeof(this_device->model));
1474 memcpy(this_device->revision, &inq_buff[32],
1475 sizeof(this_device->revision));
1476 memset(this_device->device_id, 0,
1477 sizeof(this_device->device_id));
1478 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1479 sizeof(this_device->device_id));
1480
1481 if (this_device->devtype == TYPE_DISK &&
1482 is_logical_dev_addr_mode(scsi3addr))
1483 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1484 else
1485 this_device->raid_level = RAID_UNKNOWN;
1486
1487 kfree(inq_buff);
1488 return 0;
1489
1490bail_out:
1491 kfree(inq_buff);
1492 return 1;
1493}
1494
1495static unsigned char *msa2xxx_model[] = {
1496 "MSA2012",
1497 "MSA2024",
1498 "MSA2312",
1499 "MSA2324",
1500 NULL,
1501};
1502
1503static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1504{
1505 int i;
1506
1507 for (i = 0; msa2xxx_model[i]; i++)
1508 if (strncmp(device->model, msa2xxx_model[i],
1509 strlen(msa2xxx_model[i])) == 0)
1510 return 1;
1511 return 0;
1512}
1513
1514/* Helper function to assign bus, target, lun mapping of devices.
1515 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1516 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1517 * Logical drive target and lun are assigned at this time, but
1518 * physical device lun and target assignment are deferred (assigned
1519 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1520 */
1521static void figure_bus_target_lun(struct ctlr_info *h,
01a02ffc 1522 u8 *lunaddrbytes, int *bus, int *target, int *lun,
edd16368
SC
1523 struct hpsa_scsi_dev_t *device)
1524{
01a02ffc 1525 u32 lunid;
edd16368
SC
1526
1527 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1528 /* logical device */
6df1e954 1529 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
edd16368
SC
1530 if (is_msa2xxx(h, device)) {
1531 *bus = 1;
1532 *target = (lunid >> 16) & 0x3fff;
1533 *lun = lunid & 0x00ff;
1534 } else {
1535 *bus = 0;
1536 *lun = 0;
1537 *target = lunid & 0x3fff;
1538 }
1539 } else {
1540 /* physical device */
1541 if (is_hba_lunid(lunaddrbytes))
1542 *bus = 3;
1543 else
1544 *bus = 2;
1545 *target = -1;
1546 *lun = -1; /* we will fill these in later. */
1547 }
1548}
1549
1550/*
1551 * If there is no lun 0 on a target, linux won't find any devices.
1552 * For the MSA2xxx boxes, we have to manually detect the enclosure
1553 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1554 * it for some reason. *tmpdevice is the target we're adding,
1555 * this_device is a pointer into the current element of currentsd[]
1556 * that we're building up in update_scsi_devices(), below.
1557 * lunzerobits is a bitmap that tracks which targets already have a
1558 * lun 0 assigned.
1559 * Returns 1 if an enclosure was added, 0 if not.
1560 */
1561static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1562 struct hpsa_scsi_dev_t *tmpdevice,
01a02ffc 1563 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
edd16368
SC
1564 int bus, int target, int lun, unsigned long lunzerobits[],
1565 int *nmsa2xxx_enclosures)
1566{
1567 unsigned char scsi3addr[8];
1568
1569 if (test_bit(target, lunzerobits))
1570 return 0; /* There is already a lun 0 on this target. */
1571
1572 if (!is_logical_dev_addr_mode(lunaddrbytes))
1573 return 0; /* It's the logical targets that may lack lun 0. */
1574
1575 if (!is_msa2xxx(h, tmpdevice))
1576 return 0; /* It's only the MSA2xxx that have this problem. */
1577
1578 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1579 return 0;
1580
1581 if (is_hba_lunid(scsi3addr))
1582 return 0; /* Don't add the RAID controller here. */
1583
1584#define MAX_MSA2XXX_ENCLOSURES 32
1585 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1586 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1587 "enclosures exceeded. Check your hardware "
1588 "configuration.");
1589 return 0;
1590 }
1591
1592 memset(scsi3addr, 0, 8);
1593 scsi3addr[3] = target;
1594 if (hpsa_update_device_info(h, scsi3addr, this_device))
1595 return 0;
1596 (*nmsa2xxx_enclosures)++;
1597 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1598 set_bit(target, lunzerobits);
1599 return 1;
1600}
1601
1602/*
1603 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1604 * logdev. The number of luns in physdev and logdev are returned in
1605 * *nphysicals and *nlogicals, respectively.
1606 * Returns 0 on success, -1 otherwise.
1607 */
1608static int hpsa_gather_lun_info(struct ctlr_info *h,
1609 int reportlunsize,
01a02ffc
SC
1610 struct ReportLUNdata *physdev, u32 *nphysicals,
1611 struct ReportLUNdata *logdev, u32 *nlogicals)
edd16368
SC
1612{
1613 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1614 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1615 return -1;
1616 }
6df1e954 1617 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
edd16368
SC
1618 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1619 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1620 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1621 *nphysicals - HPSA_MAX_PHYS_LUN);
1622 *nphysicals = HPSA_MAX_PHYS_LUN;
1623 }
1624 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1625 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1626 return -1;
1627 }
6df1e954 1628 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
edd16368
SC
1629 /* Reject Logicals in excess of our max capability. */
1630 if (*nlogicals > HPSA_MAX_LUN) {
1631 dev_warn(&h->pdev->dev,
1632 "maximum logical LUNs (%d) exceeded. "
1633 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1634 *nlogicals - HPSA_MAX_LUN);
1635 *nlogicals = HPSA_MAX_LUN;
1636 }
1637 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1638 dev_warn(&h->pdev->dev,
1639 "maximum logical + physical LUNs (%d) exceeded. "
1640 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1641 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1642 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1643 }
1644 return 0;
1645}
1646
1647static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1648{
1649 /* the idea here is we could get notified
1650 * that some devices have changed, so we do a report
1651 * physical luns and report logical luns cmd, and adjust
1652 * our list of devices accordingly.
1653 *
1654 * The scsi3addr's of devices won't change so long as the
1655 * adapter is not reset. That means we can rescan and
1656 * tell which devices we already know about, vs. new
1657 * devices, vs. disappearing devices.
1658 */
1659 struct ReportLUNdata *physdev_list = NULL;
1660 struct ReportLUNdata *logdev_list = NULL;
1661 unsigned char *inq_buff = NULL;
01a02ffc
SC
1662 u32 nphysicals = 0;
1663 u32 nlogicals = 0;
1664 u32 ndev_allocated = 0;
edd16368
SC
1665 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1666 int ncurrent = 0;
1667 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1668 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1669 int bus, target, lun;
1670 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1671
1672 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1673 GFP_KERNEL);
1674 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1675 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1676 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1677 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1678
1679 if (!currentsd || !physdev_list || !logdev_list ||
1680 !inq_buff || !tmpdevice) {
1681 dev_err(&h->pdev->dev, "out of memory\n");
1682 goto out;
1683 }
1684 memset(lunzerobits, 0, sizeof(lunzerobits));
1685
1686 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1687 logdev_list, &nlogicals))
1688 goto out;
1689
1690 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1691 * but each of them 4 times through different paths. The plus 1
1692 * is for the RAID controller.
1693 */
1694 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1695
1696 /* Allocate the per device structures */
1697 for (i = 0; i < ndevs_to_allocate; i++) {
1698 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1699 if (!currentsd[i]) {
1700 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1701 __FILE__, __LINE__);
1702 goto out;
1703 }
1704 ndev_allocated++;
1705 }
1706
1707 /* adjust our table of devices */
1708 nmsa2xxx_enclosures = 0;
1709 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
01a02ffc 1710 u8 *lunaddrbytes;
edd16368
SC
1711
1712 /* Figure out where the LUN ID info is coming from */
1713 if (i < nphysicals)
1714 lunaddrbytes = &physdev_list->LUN[i][0];
1715 else
1716 if (i < nphysicals + nlogicals)
1717 lunaddrbytes =
1718 &logdev_list->LUN[i-nphysicals][0];
1719 else /* jam in the RAID controller at the end */
1720 lunaddrbytes = RAID_CTLR_LUNID;
1721
1722 /* skip masked physical devices. */
1723 if (lunaddrbytes[3] & 0xC0 && i < nphysicals)
1724 continue;
1725
1726 /* Get device type, vendor, model, device id */
1727 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1728 continue; /* skip it if we can't talk to it. */
1729 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1730 tmpdevice);
1731 this_device = currentsd[ncurrent];
1732
1733 /*
1734 * For the msa2xxx boxes, we have to insert a LUN 0 which
1735 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1736 * is nonetheless an enclosure device there. We have to
1737 * present that otherwise linux won't find anything if
1738 * there is no lun 0.
1739 */
1740 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1741 lunaddrbytes, bus, target, lun, lunzerobits,
1742 &nmsa2xxx_enclosures)) {
1743 ncurrent++;
1744 this_device = currentsd[ncurrent];
1745 }
1746
1747 *this_device = *tmpdevice;
1748 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1749
1750 switch (this_device->devtype) {
1751 case TYPE_ROM: {
1752 /* We don't *really* support actual CD-ROM devices,
1753 * just "One Button Disaster Recovery" tape drive
1754 * which temporarily pretends to be a CD-ROM drive.
1755 * So we check that the device is really an OBDR tape
1756 * device by checking for "$DR-10" in bytes 43-48 of
1757 * the inquiry data.
1758 */
1759 char obdr_sig[7];
1760#define OBDR_TAPE_SIG "$DR-10"
1761 strncpy(obdr_sig, &inq_buff[43], 6);
1762 obdr_sig[6] = '\0';
1763 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1764 /* Not OBDR device, ignore it. */
1765 break;
1766 }
1767 ncurrent++;
1768 break;
1769 case TYPE_DISK:
1770 if (i < nphysicals)
1771 break;
1772 ncurrent++;
1773 break;
1774 case TYPE_TAPE:
1775 case TYPE_MEDIUM_CHANGER:
1776 ncurrent++;
1777 break;
1778 case TYPE_RAID:
1779 /* Only present the Smartarray HBA as a RAID controller.
1780 * If it's a RAID controller other than the HBA itself
1781 * (an external RAID controller, MSA500 or similar)
1782 * don't present it.
1783 */
1784 if (!is_hba_lunid(lunaddrbytes))
1785 break;
1786 ncurrent++;
1787 break;
1788 default:
1789 break;
1790 }
1791 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1792 break;
1793 }
1794 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1795out:
1796 kfree(tmpdevice);
1797 for (i = 0; i < ndev_allocated; i++)
1798 kfree(currentsd[i]);
1799 kfree(currentsd);
1800 kfree(inq_buff);
1801 kfree(physdev_list);
1802 kfree(logdev_list);
edd16368
SC
1803}
1804
1805/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1806 * dma mapping and fills in the scatter gather entries of the
1807 * hpsa command, cp.
1808 */
1809static int hpsa_scatter_gather(struct pci_dev *pdev,
1810 struct CommandList *cp,
1811 struct scsi_cmnd *cmd)
1812{
1813 unsigned int len;
1814 struct scatterlist *sg;
01a02ffc 1815 u64 addr64;
edd16368
SC
1816 int use_sg, i;
1817
1818 BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1819
1820 use_sg = scsi_dma_map(cmd);
1821 if (use_sg < 0)
1822 return use_sg;
1823
1824 if (!use_sg)
1825 goto sglist_finished;
1826
1827 scsi_for_each_sg(cmd, sg, use_sg, i) {
01a02ffc 1828 addr64 = (u64) sg_dma_address(sg);
edd16368
SC
1829 len = sg_dma_len(sg);
1830 cp->SG[i].Addr.lower =
01a02ffc 1831 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
edd16368 1832 cp->SG[i].Addr.upper =
01a02ffc 1833 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
edd16368
SC
1834 cp->SG[i].Len = len;
1835 cp->SG[i].Ext = 0; /* we are not chaining */
1836 }
1837
1838sglist_finished:
1839
01a02ffc
SC
1840 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
1841 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
edd16368
SC
1842 return 0;
1843}
1844
1845
1846static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1847 void (*done)(struct scsi_cmnd *))
1848{
1849 struct ctlr_info *h;
1850 struct hpsa_scsi_dev_t *dev;
1851 unsigned char scsi3addr[8];
1852 struct CommandList *c;
1853 unsigned long flags;
1854
1855 /* Get the ptr to our adapter structure out of cmd->host. */
1856 h = sdev_to_hba(cmd->device);
1857 dev = cmd->device->hostdata;
1858 if (!dev) {
1859 cmd->result = DID_NO_CONNECT << 16;
1860 done(cmd);
1861 return 0;
1862 }
1863 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1864
1865 /* Need a lock as this is being allocated from the pool */
1866 spin_lock_irqsave(&h->lock, flags);
1867 c = cmd_alloc(h);
1868 spin_unlock_irqrestore(&h->lock, flags);
1869 if (c == NULL) { /* trouble... */
1870 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1871 return SCSI_MLQUEUE_HOST_BUSY;
1872 }
1873
1874 /* Fill in the command list header */
1875
1876 cmd->scsi_done = done; /* save this for use by completion code */
1877
1878 /* save c in case we have to abort it */
1879 cmd->host_scribble = (unsigned char *) c;
1880
1881 c->cmd_type = CMD_SCSI;
1882 c->scsi_cmd = cmd;
1883 c->Header.ReplyQueue = 0; /* unused in simple mode */
1884 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
303932fd
DB
1885 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1886 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
edd16368
SC
1887
1888 /* Fill in the request block... */
1889
1890 c->Request.Timeout = 0;
1891 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1892 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1893 c->Request.CDBLen = cmd->cmd_len;
1894 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1895 c->Request.Type.Type = TYPE_CMD;
1896 c->Request.Type.Attribute = ATTR_SIMPLE;
1897 switch (cmd->sc_data_direction) {
1898 case DMA_TO_DEVICE:
1899 c->Request.Type.Direction = XFER_WRITE;
1900 break;
1901 case DMA_FROM_DEVICE:
1902 c->Request.Type.Direction = XFER_READ;
1903 break;
1904 case DMA_NONE:
1905 c->Request.Type.Direction = XFER_NONE;
1906 break;
1907 case DMA_BIDIRECTIONAL:
1908 /* This can happen if a buggy application does a scsi passthru
1909 * and sets both inlen and outlen to non-zero. ( see
1910 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1911 */
1912
1913 c->Request.Type.Direction = XFER_RSVD;
1914 /* This is technically wrong, and hpsa controllers should
1915 * reject it with CMD_INVALID, which is the most correct
1916 * response, but non-fibre backends appear to let it
1917 * slide by, and give the same results as if this field
1918 * were set correctly. Either way is acceptable for
1919 * our purposes here.
1920 */
1921
1922 break;
1923
1924 default:
1925 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1926 cmd->sc_data_direction);
1927 BUG();
1928 break;
1929 }
1930
1931 if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
1932 cmd_free(h, c);
1933 return SCSI_MLQUEUE_HOST_BUSY;
1934 }
1935 enqueue_cmd_and_start_io(h, c);
1936 /* the cmd'll come back via intr handler in complete_scsi_command() */
1937 return 0;
1938}
1939
1940static void hpsa_unregister_scsi(struct ctlr_info *h)
1941{
1942 /* we are being forcibly unloaded, and may not refuse. */
1943 scsi_remove_host(h->scsi_host);
1944 scsi_host_put(h->scsi_host);
1945 h->scsi_host = NULL;
1946}
1947
1948static int hpsa_register_scsi(struct ctlr_info *h)
1949{
1950 int rc;
1951
1952 hpsa_update_scsi_devices(h, -1);
1953 rc = hpsa_scsi_detect(h);
1954 if (rc != 0)
1955 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
1956 " hpsa_scsi_detect(), rc is %d\n", rc);
1957 return rc;
1958}
1959
1960static int wait_for_device_to_become_ready(struct ctlr_info *h,
1961 unsigned char lunaddr[])
1962{
1963 int rc = 0;
1964 int count = 0;
1965 int waittime = 1; /* seconds */
1966 struct CommandList *c;
1967
1968 c = cmd_special_alloc(h);
1969 if (!c) {
1970 dev_warn(&h->pdev->dev, "out of memory in "
1971 "wait_for_device_to_become_ready.\n");
1972 return IO_ERROR;
1973 }
1974
1975 /* Send test unit ready until device ready, or give up. */
1976 while (count < HPSA_TUR_RETRY_LIMIT) {
1977
1978 /* Wait for a bit. do this first, because if we send
1979 * the TUR right away, the reset will just abort it.
1980 */
1981 msleep(1000 * waittime);
1982 count++;
1983
1984 /* Increase wait time with each try, up to a point. */
1985 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
1986 waittime = waittime * 2;
1987
1988 /* Send the Test Unit Ready */
1989 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
1990 hpsa_scsi_do_simple_cmd_core(h, c);
1991 /* no unmap needed here because no data xfer. */
1992
1993 if (c->err_info->CommandStatus == CMD_SUCCESS)
1994 break;
1995
1996 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1997 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
1998 (c->err_info->SenseInfo[2] == NO_SENSE ||
1999 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2000 break;
2001
2002 dev_warn(&h->pdev->dev, "waiting %d secs "
2003 "for device to become ready.\n", waittime);
2004 rc = 1; /* device not ready. */
2005 }
2006
2007 if (rc)
2008 dev_warn(&h->pdev->dev, "giving up on device.\n");
2009 else
2010 dev_warn(&h->pdev->dev, "device is ready.\n");
2011
2012 cmd_special_free(h, c);
2013 return rc;
2014}
2015
2016/* Need at least one of these error handlers to keep ../scsi/hosts.c from
2017 * complaining. Doing a host- or bus-reset can't do anything good here.
2018 */
2019static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2020{
2021 int rc;
2022 struct ctlr_info *h;
2023 struct hpsa_scsi_dev_t *dev;
2024
2025 /* find the controller to which the command to be aborted was sent */
2026 h = sdev_to_hba(scsicmd->device);
2027 if (h == NULL) /* paranoia */
2028 return FAILED;
2029 dev_warn(&h->pdev->dev, "resetting drive\n");
2030
2031 dev = scsicmd->device->hostdata;
2032 if (!dev) {
2033 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2034 "device lookup failed.\n");
2035 return FAILED;
2036 }
2037 /* send a reset to the SCSI LUN which the command was sent to */
2038 rc = hpsa_send_reset(h, dev->scsi3addr);
2039 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2040 return SUCCESS;
2041
2042 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2043 return FAILED;
2044}
2045
2046/*
2047 * For operations that cannot sleep, a command block is allocated at init,
2048 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2049 * which ones are free or in use. Lock must be held when calling this.
2050 * cmd_free() is the complement.
2051 */
2052static struct CommandList *cmd_alloc(struct ctlr_info *h)
2053{
2054 struct CommandList *c;
2055 int i;
2056 union u64bit temp64;
2057 dma_addr_t cmd_dma_handle, err_dma_handle;
2058
2059 do {
2060 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2061 if (i == h->nr_cmds)
2062 return NULL;
2063 } while (test_and_set_bit
2064 (i & (BITS_PER_LONG - 1),
2065 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2066 c = h->cmd_pool + i;
2067 memset(c, 0, sizeof(*c));
2068 cmd_dma_handle = h->cmd_pool_dhandle
2069 + i * sizeof(*c);
2070 c->err_info = h->errinfo_pool + i;
2071 memset(c->err_info, 0, sizeof(*c->err_info));
2072 err_dma_handle = h->errinfo_pool_dhandle
2073 + i * sizeof(*c->err_info);
2074 h->nr_allocs++;
2075
2076 c->cmdindex = i;
2077
2078 INIT_HLIST_NODE(&c->list);
01a02ffc
SC
2079 c->busaddr = (u32) cmd_dma_handle;
2080 temp64.val = (u64) err_dma_handle;
edd16368
SC
2081 c->ErrDesc.Addr.lower = temp64.val32.lower;
2082 c->ErrDesc.Addr.upper = temp64.val32.upper;
2083 c->ErrDesc.Len = sizeof(*c->err_info);
2084
2085 c->h = h;
2086 return c;
2087}
2088
2089/* For operations that can wait for kmalloc to possibly sleep,
2090 * this routine can be called. Lock need not be held to call
2091 * cmd_special_alloc. cmd_special_free() is the complement.
2092 */
2093static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2094{
2095 struct CommandList *c;
2096 union u64bit temp64;
2097 dma_addr_t cmd_dma_handle, err_dma_handle;
2098
2099 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2100 if (c == NULL)
2101 return NULL;
2102 memset(c, 0, sizeof(*c));
2103
2104 c->cmdindex = -1;
2105
2106 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2107 &err_dma_handle);
2108
2109 if (c->err_info == NULL) {
2110 pci_free_consistent(h->pdev,
2111 sizeof(*c), c, cmd_dma_handle);
2112 return NULL;
2113 }
2114 memset(c->err_info, 0, sizeof(*c->err_info));
2115
2116 INIT_HLIST_NODE(&c->list);
01a02ffc
SC
2117 c->busaddr = (u32) cmd_dma_handle;
2118 temp64.val = (u64) err_dma_handle;
edd16368
SC
2119 c->ErrDesc.Addr.lower = temp64.val32.lower;
2120 c->ErrDesc.Addr.upper = temp64.val32.upper;
2121 c->ErrDesc.Len = sizeof(*c->err_info);
2122
2123 c->h = h;
2124 return c;
2125}
2126
2127static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2128{
2129 int i;
2130
2131 i = c - h->cmd_pool;
2132 clear_bit(i & (BITS_PER_LONG - 1),
2133 h->cmd_pool_bits + (i / BITS_PER_LONG));
2134 h->nr_frees++;
2135}
2136
2137static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2138{
2139 union u64bit temp64;
2140
2141 temp64.val32.lower = c->ErrDesc.Addr.lower;
2142 temp64.val32.upper = c->ErrDesc.Addr.upper;
2143 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2144 c->err_info, (dma_addr_t) temp64.val);
2145 pci_free_consistent(h->pdev, sizeof(*c),
2146 c, (dma_addr_t) c->busaddr);
2147}
2148
2149#ifdef CONFIG_COMPAT
2150
2151static int do_ioctl(struct scsi_device *dev, int cmd, void *arg)
2152{
2153 int ret;
2154
2155 lock_kernel();
2156 ret = hpsa_ioctl(dev, cmd, arg);
2157 unlock_kernel();
2158 return ret;
2159}
2160
2161static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg);
2162static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2163 int cmd, void *arg);
2164
2165static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2166{
2167 switch (cmd) {
2168 case CCISS_GETPCIINFO:
2169 case CCISS_GETINTINFO:
2170 case CCISS_SETINTINFO:
2171 case CCISS_GETNODENAME:
2172 case CCISS_SETNODENAME:
2173 case CCISS_GETHEARTBEAT:
2174 case CCISS_GETBUSTYPES:
2175 case CCISS_GETFIRMVER:
2176 case CCISS_GETDRIVVER:
2177 case CCISS_REVALIDVOLS:
2178 case CCISS_DEREGDISK:
2179 case CCISS_REGNEWDISK:
2180 case CCISS_REGNEWD:
2181 case CCISS_RESCANDISK:
2182 case CCISS_GETLUNINFO:
2183 return do_ioctl(dev, cmd, arg);
2184
2185 case CCISS_PASSTHRU32:
2186 return hpsa_ioctl32_passthru(dev, cmd, arg);
2187 case CCISS_BIG_PASSTHRU32:
2188 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2189
2190 default:
2191 return -ENOIOCTLCMD;
2192 }
2193}
2194
2195static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2196{
2197 IOCTL32_Command_struct __user *arg32 =
2198 (IOCTL32_Command_struct __user *) arg;
2199 IOCTL_Command_struct arg64;
2200 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2201 int err;
2202 u32 cp;
2203
2204 err = 0;
2205 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2206 sizeof(arg64.LUN_info));
2207 err |= copy_from_user(&arg64.Request, &arg32->Request,
2208 sizeof(arg64.Request));
2209 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2210 sizeof(arg64.error_info));
2211 err |= get_user(arg64.buf_size, &arg32->buf_size);
2212 err |= get_user(cp, &arg32->buf);
2213 arg64.buf = compat_ptr(cp);
2214 err |= copy_to_user(p, &arg64, sizeof(arg64));
2215
2216 if (err)
2217 return -EFAULT;
2218
2219 err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2220 if (err)
2221 return err;
2222 err |= copy_in_user(&arg32->error_info, &p->error_info,
2223 sizeof(arg32->error_info));
2224 if (err)
2225 return -EFAULT;
2226 return err;
2227}
2228
2229static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2230 int cmd, void *arg)
2231{
2232 BIG_IOCTL32_Command_struct __user *arg32 =
2233 (BIG_IOCTL32_Command_struct __user *) arg;
2234 BIG_IOCTL_Command_struct arg64;
2235 BIG_IOCTL_Command_struct __user *p =
2236 compat_alloc_user_space(sizeof(arg64));
2237 int err;
2238 u32 cp;
2239
2240 err = 0;
2241 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2242 sizeof(arg64.LUN_info));
2243 err |= copy_from_user(&arg64.Request, &arg32->Request,
2244 sizeof(arg64.Request));
2245 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2246 sizeof(arg64.error_info));
2247 err |= get_user(arg64.buf_size, &arg32->buf_size);
2248 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2249 err |= get_user(cp, &arg32->buf);
2250 arg64.buf = compat_ptr(cp);
2251 err |= copy_to_user(p, &arg64, sizeof(arg64));
2252
2253 if (err)
2254 return -EFAULT;
2255
2256 err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2257 if (err)
2258 return err;
2259 err |= copy_in_user(&arg32->error_info, &p->error_info,
2260 sizeof(arg32->error_info));
2261 if (err)
2262 return -EFAULT;
2263 return err;
2264}
2265#endif
2266
2267static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2268{
2269 struct hpsa_pci_info pciinfo;
2270
2271 if (!argp)
2272 return -EINVAL;
2273 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2274 pciinfo.bus = h->pdev->bus->number;
2275 pciinfo.dev_fn = h->pdev->devfn;
2276 pciinfo.board_id = h->board_id;
2277 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2278 return -EFAULT;
2279 return 0;
2280}
2281
2282static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2283{
2284 DriverVer_type DriverVer;
2285 unsigned char vmaj, vmin, vsubmin;
2286 int rc;
2287
2288 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2289 &vmaj, &vmin, &vsubmin);
2290 if (rc != 3) {
2291 dev_info(&h->pdev->dev, "driver version string '%s' "
2292 "unrecognized.", HPSA_DRIVER_VERSION);
2293 vmaj = 0;
2294 vmin = 0;
2295 vsubmin = 0;
2296 }
2297 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2298 if (!argp)
2299 return -EINVAL;
2300 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2301 return -EFAULT;
2302 return 0;
2303}
2304
2305static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2306{
2307 IOCTL_Command_struct iocommand;
2308 struct CommandList *c;
2309 char *buff = NULL;
2310 union u64bit temp64;
2311
2312 if (!argp)
2313 return -EINVAL;
2314 if (!capable(CAP_SYS_RAWIO))
2315 return -EPERM;
2316 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2317 return -EFAULT;
2318 if ((iocommand.buf_size < 1) &&
2319 (iocommand.Request.Type.Direction != XFER_NONE)) {
2320 return -EINVAL;
2321 }
2322 if (iocommand.buf_size > 0) {
2323 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2324 if (buff == NULL)
2325 return -EFAULT;
2326 }
2327 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2328 /* Copy the data into the buffer we created */
2329 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2330 kfree(buff);
2331 return -EFAULT;
2332 }
2333 } else
2334 memset(buff, 0, iocommand.buf_size);
2335 c = cmd_special_alloc(h);
2336 if (c == NULL) {
2337 kfree(buff);
2338 return -ENOMEM;
2339 }
2340 /* Fill in the command type */
2341 c->cmd_type = CMD_IOCTL_PEND;
2342 /* Fill in Command Header */
2343 c->Header.ReplyQueue = 0; /* unused in simple mode */
2344 if (iocommand.buf_size > 0) { /* buffer to fill */
2345 c->Header.SGList = 1;
2346 c->Header.SGTotal = 1;
2347 } else { /* no buffers to fill */
2348 c->Header.SGList = 0;
2349 c->Header.SGTotal = 0;
2350 }
2351 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2352 /* use the kernel address the cmd block for tag */
2353 c->Header.Tag.lower = c->busaddr;
2354
2355 /* Fill in Request block */
2356 memcpy(&c->Request, &iocommand.Request,
2357 sizeof(c->Request));
2358
2359 /* Fill in the scatter gather information */
2360 if (iocommand.buf_size > 0) {
2361 temp64.val = pci_map_single(h->pdev, buff,
2362 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2363 c->SG[0].Addr.lower = temp64.val32.lower;
2364 c->SG[0].Addr.upper = temp64.val32.upper;
2365 c->SG[0].Len = iocommand.buf_size;
2366 c->SG[0].Ext = 0; /* we are not chaining*/
2367 }
2368 hpsa_scsi_do_simple_cmd_core(h, c);
2369 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2370 check_ioctl_unit_attention(h, c);
2371
2372 /* Copy the error information out */
2373 memcpy(&iocommand.error_info, c->err_info,
2374 sizeof(iocommand.error_info));
2375 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2376 kfree(buff);
2377 cmd_special_free(h, c);
2378 return -EFAULT;
2379 }
2380
2381 if (iocommand.Request.Type.Direction == XFER_READ) {
2382 /* Copy the data out of the buffer we created */
2383 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2384 kfree(buff);
2385 cmd_special_free(h, c);
2386 return -EFAULT;
2387 }
2388 }
2389 kfree(buff);
2390 cmd_special_free(h, c);
2391 return 0;
2392}
2393
2394static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2395{
2396 BIG_IOCTL_Command_struct *ioc;
2397 struct CommandList *c;
2398 unsigned char **buff = NULL;
2399 int *buff_size = NULL;
2400 union u64bit temp64;
2401 BYTE sg_used = 0;
2402 int status = 0;
2403 int i;
01a02ffc
SC
2404 u32 left;
2405 u32 sz;
edd16368
SC
2406 BYTE __user *data_ptr;
2407
2408 if (!argp)
2409 return -EINVAL;
2410 if (!capable(CAP_SYS_RAWIO))
2411 return -EPERM;
2412 ioc = (BIG_IOCTL_Command_struct *)
2413 kmalloc(sizeof(*ioc), GFP_KERNEL);
2414 if (!ioc) {
2415 status = -ENOMEM;
2416 goto cleanup1;
2417 }
2418 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2419 status = -EFAULT;
2420 goto cleanup1;
2421 }
2422 if ((ioc->buf_size < 1) &&
2423 (ioc->Request.Type.Direction != XFER_NONE)) {
2424 status = -EINVAL;
2425 goto cleanup1;
2426 }
2427 /* Check kmalloc limits using all SGs */
2428 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2429 status = -EINVAL;
2430 goto cleanup1;
2431 }
2432 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2433 status = -EINVAL;
2434 goto cleanup1;
2435 }
2436 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2437 if (!buff) {
2438 status = -ENOMEM;
2439 goto cleanup1;
2440 }
2441 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2442 if (!buff_size) {
2443 status = -ENOMEM;
2444 goto cleanup1;
2445 }
2446 left = ioc->buf_size;
2447 data_ptr = ioc->buf;
2448 while (left) {
2449 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2450 buff_size[sg_used] = sz;
2451 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2452 if (buff[sg_used] == NULL) {
2453 status = -ENOMEM;
2454 goto cleanup1;
2455 }
2456 if (ioc->Request.Type.Direction == XFER_WRITE) {
2457 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2458 status = -ENOMEM;
2459 goto cleanup1;
2460 }
2461 } else
2462 memset(buff[sg_used], 0, sz);
2463 left -= sz;
2464 data_ptr += sz;
2465 sg_used++;
2466 }
2467 c = cmd_special_alloc(h);
2468 if (c == NULL) {
2469 status = -ENOMEM;
2470 goto cleanup1;
2471 }
2472 c->cmd_type = CMD_IOCTL_PEND;
2473 c->Header.ReplyQueue = 0;
2474
2475 if (ioc->buf_size > 0) {
2476 c->Header.SGList = sg_used;
2477 c->Header.SGTotal = sg_used;
2478 } else {
2479 c->Header.SGList = 0;
2480 c->Header.SGTotal = 0;
2481 }
2482 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2483 c->Header.Tag.lower = c->busaddr;
2484 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2485 if (ioc->buf_size > 0) {
2486 int i;
2487 for (i = 0; i < sg_used; i++) {
2488 temp64.val = pci_map_single(h->pdev, buff[i],
2489 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2490 c->SG[i].Addr.lower = temp64.val32.lower;
2491 c->SG[i].Addr.upper = temp64.val32.upper;
2492 c->SG[i].Len = buff_size[i];
2493 /* we are not chaining */
2494 c->SG[i].Ext = 0;
2495 }
2496 }
2497 hpsa_scsi_do_simple_cmd_core(h, c);
2498 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2499 check_ioctl_unit_attention(h, c);
2500 /* Copy the error information out */
2501 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2502 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2503 cmd_special_free(h, c);
2504 status = -EFAULT;
2505 goto cleanup1;
2506 }
2507 if (ioc->Request.Type.Direction == XFER_READ) {
2508 /* Copy the data out of the buffer we created */
2509 BYTE __user *ptr = ioc->buf;
2510 for (i = 0; i < sg_used; i++) {
2511 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2512 cmd_special_free(h, c);
2513 status = -EFAULT;
2514 goto cleanup1;
2515 }
2516 ptr += buff_size[i];
2517 }
2518 }
2519 cmd_special_free(h, c);
2520 status = 0;
2521cleanup1:
2522 if (buff) {
2523 for (i = 0; i < sg_used; i++)
2524 kfree(buff[i]);
2525 kfree(buff);
2526 }
2527 kfree(buff_size);
2528 kfree(ioc);
2529 return status;
2530}
2531
2532static void check_ioctl_unit_attention(struct ctlr_info *h,
2533 struct CommandList *c)
2534{
2535 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2536 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2537 (void) check_for_unit_attention(h, c);
2538}
2539/*
2540 * ioctl
2541 */
2542static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2543{
2544 struct ctlr_info *h;
2545 void __user *argp = (void __user *)arg;
2546
2547 h = sdev_to_hba(dev);
2548
2549 switch (cmd) {
2550 case CCISS_DEREGDISK:
2551 case CCISS_REGNEWDISK:
2552 case CCISS_REGNEWD:
2553 hpsa_update_scsi_devices(h, dev->host->host_no);
2554 return 0;
2555 case CCISS_GETPCIINFO:
2556 return hpsa_getpciinfo_ioctl(h, argp);
2557 case CCISS_GETDRIVVER:
2558 return hpsa_getdrivver_ioctl(h, argp);
2559 case CCISS_PASSTHRU:
2560 return hpsa_passthru_ioctl(h, argp);
2561 case CCISS_BIG_PASSTHRU:
2562 return hpsa_big_passthru_ioctl(h, argp);
2563 default:
2564 return -ENOTTY;
2565 }
2566}
2567
01a02ffc
SC
2568static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2569 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
edd16368
SC
2570 int cmd_type)
2571{
2572 int pci_dir = XFER_NONE;
2573
2574 c->cmd_type = CMD_IOCTL_PEND;
2575 c->Header.ReplyQueue = 0;
2576 if (buff != NULL && size > 0) {
2577 c->Header.SGList = 1;
2578 c->Header.SGTotal = 1;
2579 } else {
2580 c->Header.SGList = 0;
2581 c->Header.SGTotal = 0;
2582 }
2583 c->Header.Tag.lower = c->busaddr;
2584 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2585
2586 c->Request.Type.Type = cmd_type;
2587 if (cmd_type == TYPE_CMD) {
2588 switch (cmd) {
2589 case HPSA_INQUIRY:
2590 /* are we trying to read a vital product page */
2591 if (page_code != 0) {
2592 c->Request.CDB[1] = 0x01;
2593 c->Request.CDB[2] = page_code;
2594 }
2595 c->Request.CDBLen = 6;
2596 c->Request.Type.Attribute = ATTR_SIMPLE;
2597 c->Request.Type.Direction = XFER_READ;
2598 c->Request.Timeout = 0;
2599 c->Request.CDB[0] = HPSA_INQUIRY;
2600 c->Request.CDB[4] = size & 0xFF;
2601 break;
2602 case HPSA_REPORT_LOG:
2603 case HPSA_REPORT_PHYS:
2604 /* Talking to controller so It's a physical command
2605 mode = 00 target = 0. Nothing to write.
2606 */
2607 c->Request.CDBLen = 12;
2608 c->Request.Type.Attribute = ATTR_SIMPLE;
2609 c->Request.Type.Direction = XFER_READ;
2610 c->Request.Timeout = 0;
2611 c->Request.CDB[0] = cmd;
2612 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2613 c->Request.CDB[7] = (size >> 16) & 0xFF;
2614 c->Request.CDB[8] = (size >> 8) & 0xFF;
2615 c->Request.CDB[9] = size & 0xFF;
2616 break;
2617
2618 case HPSA_READ_CAPACITY:
2619 c->Request.CDBLen = 10;
2620 c->Request.Type.Attribute = ATTR_SIMPLE;
2621 c->Request.Type.Direction = XFER_READ;
2622 c->Request.Timeout = 0;
2623 c->Request.CDB[0] = cmd;
2624 break;
2625 case HPSA_CACHE_FLUSH:
2626 c->Request.CDBLen = 12;
2627 c->Request.Type.Attribute = ATTR_SIMPLE;
2628 c->Request.Type.Direction = XFER_WRITE;
2629 c->Request.Timeout = 0;
2630 c->Request.CDB[0] = BMIC_WRITE;
2631 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2632 break;
2633 case TEST_UNIT_READY:
2634 c->Request.CDBLen = 6;
2635 c->Request.Type.Attribute = ATTR_SIMPLE;
2636 c->Request.Type.Direction = XFER_NONE;
2637 c->Request.Timeout = 0;
2638 break;
2639 default:
2640 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2641 BUG();
2642 return;
2643 }
2644 } else if (cmd_type == TYPE_MSG) {
2645 switch (cmd) {
2646
2647 case HPSA_DEVICE_RESET_MSG:
2648 c->Request.CDBLen = 16;
2649 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2650 c->Request.Type.Attribute = ATTR_SIMPLE;
2651 c->Request.Type.Direction = XFER_NONE;
2652 c->Request.Timeout = 0; /* Don't time out */
2653 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */
2654 c->Request.CDB[1] = 0x03; /* Reset target above */
2655 /* If bytes 4-7 are zero, it means reset the */
2656 /* LunID device */
2657 c->Request.CDB[4] = 0x00;
2658 c->Request.CDB[5] = 0x00;
2659 c->Request.CDB[6] = 0x00;
2660 c->Request.CDB[7] = 0x00;
2661 break;
2662
2663 default:
2664 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2665 cmd);
2666 BUG();
2667 }
2668 } else {
2669 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2670 BUG();
2671 }
2672
2673 switch (c->Request.Type.Direction) {
2674 case XFER_READ:
2675 pci_dir = PCI_DMA_FROMDEVICE;
2676 break;
2677 case XFER_WRITE:
2678 pci_dir = PCI_DMA_TODEVICE;
2679 break;
2680 case XFER_NONE:
2681 pci_dir = PCI_DMA_NONE;
2682 break;
2683 default:
2684 pci_dir = PCI_DMA_BIDIRECTIONAL;
2685 }
2686
2687 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2688
2689 return;
2690}
2691
2692/*
2693 * Map (physical) PCI mem into (virtual) kernel space
2694 */
2695static void __iomem *remap_pci_mem(ulong base, ulong size)
2696{
2697 ulong page_base = ((ulong) base) & PAGE_MASK;
2698 ulong page_offs = ((ulong) base) - page_base;
2699 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2700
2701 return page_remapped ? (page_remapped + page_offs) : NULL;
2702}
2703
2704/* Takes cmds off the submission queue and sends them to the hardware,
2705 * then puts them on the queue of cmds waiting for completion.
2706 */
2707static void start_io(struct ctlr_info *h)
2708{
2709 struct CommandList *c;
2710
2711 while (!hlist_empty(&h->reqQ)) {
2712 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2713 /* can't do anything if fifo is full */
2714 if ((h->access.fifo_full(h))) {
2715 dev_warn(&h->pdev->dev, "fifo full\n");
2716 break;
2717 }
2718
2719 /* Get the first entry from the Request Q */
2720 removeQ(c);
2721 h->Qdepth--;
2722
2723 /* Tell the controller execute command */
2724 h->access.submit_command(h, c);
2725
2726 /* Put job onto the completed Q */
2727 addQ(&h->cmpQ, c);
2728 }
2729}
2730
2731static inline unsigned long get_next_completion(struct ctlr_info *h)
2732{
2733 return h->access.command_completed(h);
2734}
2735
900c5440 2736static inline bool interrupt_pending(struct ctlr_info *h)
edd16368
SC
2737{
2738 return h->access.intr_pending(h);
2739}
2740
2741static inline long interrupt_not_for_us(struct ctlr_info *h)
2742{
303932fd
DB
2743 return !(h->msi_vector || h->msix_vector) &&
2744 ((h->access.intr_pending(h) == 0) ||
2745 (h->interrupts_enabled == 0));
edd16368
SC
2746}
2747
01a02ffc
SC
2748static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2749 u32 raw_tag)
edd16368
SC
2750{
2751 if (unlikely(tag_index >= h->nr_cmds)) {
2752 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2753 return 1;
2754 }
2755 return 0;
2756}
2757
01a02ffc 2758static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
edd16368
SC
2759{
2760 removeQ(c);
2761 if (likely(c->cmd_type == CMD_SCSI))
2762 complete_scsi_command(c, 0, raw_tag);
2763 else if (c->cmd_type == CMD_IOCTL_PEND)
2764 complete(c->waiting);
2765}
2766
a104c99f
SC
2767static inline u32 hpsa_tag_contains_index(u32 tag)
2768{
303932fd 2769#define DIRECT_LOOKUP_BIT 0x10
a104c99f
SC
2770 return tag & DIRECT_LOOKUP_BIT;
2771}
2772
2773static inline u32 hpsa_tag_to_index(u32 tag)
2774{
303932fd 2775#define DIRECT_LOOKUP_SHIFT 5
a104c99f
SC
2776 return tag >> DIRECT_LOOKUP_SHIFT;
2777}
2778
2779static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2780{
2781#define HPSA_ERROR_BITS 0x03
2782 return tag & ~HPSA_ERROR_BITS;
2783}
2784
303932fd
DB
2785/* process completion of an indexed ("direct lookup") command */
2786static inline u32 process_indexed_cmd(struct ctlr_info *h,
2787 u32 raw_tag)
2788{
2789 u32 tag_index;
2790 struct CommandList *c;
2791
2792 tag_index = hpsa_tag_to_index(raw_tag);
2793 if (bad_tag(h, tag_index, raw_tag))
2794 return next_command(h);
2795 c = h->cmd_pool + tag_index;
2796 finish_cmd(c, raw_tag);
2797 return next_command(h);
2798}
2799
2800/* process completion of a non-indexed command */
2801static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2802 u32 raw_tag)
2803{
2804 u32 tag;
2805 struct CommandList *c = NULL;
2806 struct hlist_node *tmp;
2807
2808 tag = hpsa_tag_discard_error_bits(raw_tag);
2809 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2810 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2811 finish_cmd(c, raw_tag);
2812 return next_command(h);
2813 }
2814 }
2815 bad_tag(h, h->nr_cmds + 1, raw_tag);
2816 return next_command(h);
2817}
2818
edd16368
SC
2819static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2820{
2821 struct ctlr_info *h = dev_id;
edd16368 2822 unsigned long flags;
303932fd 2823 u32 raw_tag;
edd16368
SC
2824
2825 if (interrupt_not_for_us(h))
2826 return IRQ_NONE;
2827 spin_lock_irqsave(&h->lock, flags);
303932fd
DB
2828 raw_tag = get_next_completion(h);
2829 while (raw_tag != FIFO_EMPTY) {
2830 if (hpsa_tag_contains_index(raw_tag))
2831 raw_tag = process_indexed_cmd(h, raw_tag);
2832 else
2833 raw_tag = process_nonindexed_cmd(h, raw_tag);
edd16368
SC
2834 }
2835 spin_unlock_irqrestore(&h->lock, flags);
2836 return IRQ_HANDLED;
2837}
2838
303932fd 2839/* Send a message CDB to the firmwart. */
edd16368
SC
2840static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2841 unsigned char type)
2842{
2843 struct Command {
2844 struct CommandListHeader CommandHeader;
2845 struct RequestBlock Request;
2846 struct ErrDescriptor ErrorDescriptor;
2847 };
2848 struct Command *cmd;
2849 static const size_t cmd_sz = sizeof(*cmd) +
2850 sizeof(cmd->ErrorDescriptor);
2851 dma_addr_t paddr64;
2852 uint32_t paddr32, tag;
2853 void __iomem *vaddr;
2854 int i, err;
2855
2856 vaddr = pci_ioremap_bar(pdev, 0);
2857 if (vaddr == NULL)
2858 return -ENOMEM;
2859
2860 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2861 * CCISS commands, so they must be allocated from the lower 4GiB of
2862 * memory.
2863 */
2864 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2865 if (err) {
2866 iounmap(vaddr);
2867 return -ENOMEM;
2868 }
2869
2870 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2871 if (cmd == NULL) {
2872 iounmap(vaddr);
2873 return -ENOMEM;
2874 }
2875
2876 /* This must fit, because of the 32-bit consistent DMA mask. Also,
2877 * although there's no guarantee, we assume that the address is at
2878 * least 4-byte aligned (most likely, it's page-aligned).
2879 */
2880 paddr32 = paddr64;
2881
2882 cmd->CommandHeader.ReplyQueue = 0;
2883 cmd->CommandHeader.SGList = 0;
2884 cmd->CommandHeader.SGTotal = 0;
2885 cmd->CommandHeader.Tag.lower = paddr32;
2886 cmd->CommandHeader.Tag.upper = 0;
2887 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
2888
2889 cmd->Request.CDBLen = 16;
2890 cmd->Request.Type.Type = TYPE_MSG;
2891 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
2892 cmd->Request.Type.Direction = XFER_NONE;
2893 cmd->Request.Timeout = 0; /* Don't time out */
2894 cmd->Request.CDB[0] = opcode;
2895 cmd->Request.CDB[1] = type;
2896 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
2897 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
2898 cmd->ErrorDescriptor.Addr.upper = 0;
2899 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
2900
2901 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
2902
2903 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
2904 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
a104c99f 2905 if (hpsa_tag_discard_error_bits(tag) == paddr32)
edd16368
SC
2906 break;
2907 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
2908 }
2909
2910 iounmap(vaddr);
2911
2912 /* we leak the DMA buffer here ... no choice since the controller could
2913 * still complete the command.
2914 */
2915 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
2916 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
2917 opcode, type);
2918 return -ETIMEDOUT;
2919 }
2920
2921 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
2922
2923 if (tag & HPSA_ERROR_BIT) {
2924 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
2925 opcode, type);
2926 return -EIO;
2927 }
2928
2929 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
2930 opcode, type);
2931 return 0;
2932}
2933
2934#define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
2935#define hpsa_noop(p) hpsa_message(p, 3, 0)
2936
2937static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
2938{
2939/* the #defines are stolen from drivers/pci/msi.h. */
2940#define msi_control_reg(base) (base + PCI_MSI_FLAGS)
2941#define PCI_MSIX_FLAGS_ENABLE (1 << 15)
2942
2943 int pos;
2944 u16 control = 0;
2945
2946 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
2947 if (pos) {
2948 pci_read_config_word(pdev, msi_control_reg(pos), &control);
2949 if (control & PCI_MSI_FLAGS_ENABLE) {
2950 dev_info(&pdev->dev, "resetting MSI\n");
2951 pci_write_config_word(pdev, msi_control_reg(pos),
2952 control & ~PCI_MSI_FLAGS_ENABLE);
2953 }
2954 }
2955
2956 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
2957 if (pos) {
2958 pci_read_config_word(pdev, msi_control_reg(pos), &control);
2959 if (control & PCI_MSIX_FLAGS_ENABLE) {
2960 dev_info(&pdev->dev, "resetting MSI-X\n");
2961 pci_write_config_word(pdev, msi_control_reg(pos),
2962 control & ~PCI_MSIX_FLAGS_ENABLE);
2963 }
2964 }
2965
2966 return 0;
2967}
2968
2969/* This does a hard reset of the controller using PCI power management
2970 * states.
2971 */
2972static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
2973{
2974 u16 pmcsr, saved_config_space[32];
2975 int i, pos;
2976
2977 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2978
2979 /* This is very nearly the same thing as
2980 *
2981 * pci_save_state(pci_dev);
2982 * pci_set_power_state(pci_dev, PCI_D3hot);
2983 * pci_set_power_state(pci_dev, PCI_D0);
2984 * pci_restore_state(pci_dev);
2985 *
2986 * but we can't use these nice canned kernel routines on
2987 * kexec, because they also check the MSI/MSI-X state in PCI
2988 * configuration space and do the wrong thing when it is
2989 * set/cleared. Also, the pci_save/restore_state functions
2990 * violate the ordering requirements for restoring the
2991 * configuration space from the CCISS document (see the
2992 * comment below). So we roll our own ....
2993 */
2994
2995 for (i = 0; i < 32; i++)
2996 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
2997
2998 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
2999 if (pos == 0) {
3000 dev_err(&pdev->dev,
3001 "hpsa_reset_controller: PCI PM not supported\n");
3002 return -ENODEV;
3003 }
3004
3005 /* Quoting from the Open CISS Specification: "The Power
3006 * Management Control/Status Register (CSR) controls the power
3007 * state of the device. The normal operating state is D0,
3008 * CSR=00h. The software off state is D3, CSR=03h. To reset
3009 * the controller, place the interface device in D3 then to
3010 * D0, this causes a secondary PCI reset which will reset the
3011 * controller."
3012 */
3013
3014 /* enter the D3hot power management state */
3015 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3016 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3017 pmcsr |= PCI_D3hot;
3018 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3019
3020 msleep(500);
3021
3022 /* enter the D0 power management state */
3023 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3024 pmcsr |= PCI_D0;
3025 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3026
3027 msleep(500);
3028
3029 /* Restore the PCI configuration space. The Open CISS
3030 * Specification says, "Restore the PCI Configuration
3031 * Registers, offsets 00h through 60h. It is important to
3032 * restore the command register, 16-bits at offset 04h,
3033 * last. Do not restore the configuration status register,
3034 * 16-bits at offset 06h." Note that the offset is 2*i.
3035 */
3036 for (i = 0; i < 32; i++) {
3037 if (i == 2 || i == 3)
3038 continue;
3039 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3040 }
3041 wmb();
3042 pci_write_config_word(pdev, 4, saved_config_space[2]);
3043
3044 return 0;
3045}
3046
3047/*
3048 * We cannot read the structure directly, for portability we must use
3049 * the io functions.
3050 * This is for debug only.
3051 */
3052#ifdef HPSA_DEBUG
3053static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3054{
3055 int i;
3056 char temp_name[17];
3057
3058 dev_info(dev, "Controller Configuration information\n");
3059 dev_info(dev, "------------------------------------\n");
3060 for (i = 0; i < 4; i++)
3061 temp_name[i] = readb(&(tb->Signature[i]));
3062 temp_name[4] = '\0';
3063 dev_info(dev, " Signature = %s\n", temp_name);
3064 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3065 dev_info(dev, " Transport methods supported = 0x%x\n",
3066 readl(&(tb->TransportSupport)));
3067 dev_info(dev, " Transport methods active = 0x%x\n",
3068 readl(&(tb->TransportActive)));
3069 dev_info(dev, " Requested transport Method = 0x%x\n",
3070 readl(&(tb->HostWrite.TransportRequest)));
3071 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3072 readl(&(tb->HostWrite.CoalIntDelay)));
3073 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3074 readl(&(tb->HostWrite.CoalIntCount)));
3075 dev_info(dev, " Max outstanding commands = 0x%d\n",
3076 readl(&(tb->CmdsOutMax)));
3077 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3078 for (i = 0; i < 16; i++)
3079 temp_name[i] = readb(&(tb->ServerName[i]));
3080 temp_name[16] = '\0';
3081 dev_info(dev, " Server Name = %s\n", temp_name);
3082 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3083 readl(&(tb->HeartBeat)));
3084}
3085#endif /* HPSA_DEBUG */
3086
3087static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3088{
3089 int i, offset, mem_type, bar_type;
3090
3091 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3092 return 0;
3093 offset = 0;
3094 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3095 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3096 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3097 offset += 4;
3098 else {
3099 mem_type = pci_resource_flags(pdev, i) &
3100 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3101 switch (mem_type) {
3102 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3103 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3104 offset += 4; /* 32 bit */
3105 break;
3106 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3107 offset += 8;
3108 break;
3109 default: /* reserved in PCI 2.2 */
3110 dev_warn(&pdev->dev,
3111 "base address is invalid\n");
3112 return -1;
3113 break;
3114 }
3115 }
3116 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3117 return i + 1;
3118 }
3119 return -1;
3120}
3121
3122/* If MSI/MSI-X is supported by the kernel we will try to enable it on
3123 * controllers that are capable. If not, we use IO-APIC mode.
3124 */
3125
3126static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
01a02ffc 3127 struct pci_dev *pdev, u32 board_id)
edd16368
SC
3128{
3129#ifdef CONFIG_PCI_MSI
3130 int err;
3131 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3132 {0, 2}, {0, 3}
3133 };
3134
3135 /* Some boards advertise MSI but don't really support it */
3136 if ((board_id == 0x40700E11) ||
3137 (board_id == 0x40800E11) ||
3138 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3139 goto default_int_mode;
3140 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3141 dev_info(&pdev->dev, "MSIX\n");
3142 err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3143 if (!err) {
3144 h->intr[0] = hpsa_msix_entries[0].vector;
3145 h->intr[1] = hpsa_msix_entries[1].vector;
3146 h->intr[2] = hpsa_msix_entries[2].vector;
3147 h->intr[3] = hpsa_msix_entries[3].vector;
3148 h->msix_vector = 1;
3149 return;
3150 }
3151 if (err > 0) {
3152 dev_warn(&pdev->dev, "only %d MSI-X vectors "
3153 "available\n", err);
3154 goto default_int_mode;
3155 } else {
3156 dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3157 err);
3158 goto default_int_mode;
3159 }
3160 }
3161 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3162 dev_info(&pdev->dev, "MSI\n");
3163 if (!pci_enable_msi(pdev))
3164 h->msi_vector = 1;
3165 else
3166 dev_warn(&pdev->dev, "MSI init failed\n");
3167 }
3168default_int_mode:
3169#endif /* CONFIG_PCI_MSI */
3170 /* if we get here we're going to use the default interrupt mode */
303932fd 3171 h->intr[PERF_MODE_INT] = pdev->irq;
edd16368
SC
3172}
3173
3174static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3175{
3176 ushort subsystem_vendor_id, subsystem_device_id, command;
01a02ffc
SC
3177 u32 board_id, scratchpad = 0;
3178 u64 cfg_offset;
3179 u32 cfg_base_addr;
3180 u64 cfg_base_addr_index;
303932fd 3181 u32 trans_offset;
edd16368
SC
3182 int i, prod_index, err;
3183
3184 subsystem_vendor_id = pdev->subsystem_vendor;
3185 subsystem_device_id = pdev->subsystem_device;
01a02ffc 3186 board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
edd16368
SC
3187 subsystem_vendor_id);
3188
3189 for (i = 0; i < ARRAY_SIZE(products); i++)
3190 if (board_id == products[i].board_id)
3191 break;
3192
3193 prod_index = i;
3194
3195 if (prod_index == ARRAY_SIZE(products)) {
3196 prod_index--;
3197 if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3198 !hpsa_allow_any) {
3199 dev_warn(&pdev->dev, "unrecognized board ID:"
3200 " 0x%08lx, ignoring.\n",
3201 (unsigned long) board_id);
3202 return -ENODEV;
3203 }
3204 }
3205 /* check to see if controller has been disabled
3206 * BEFORE trying to enable it
3207 */
3208 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3209 if (!(command & 0x02)) {
3210 dev_warn(&pdev->dev, "controller appears to be disabled\n");
3211 return -ENODEV;
3212 }
3213
3214 err = pci_enable_device(pdev);
3215 if (err) {
3216 dev_warn(&pdev->dev, "unable to enable PCI device\n");
3217 return err;
3218 }
3219
3220 err = pci_request_regions(pdev, "hpsa");
3221 if (err) {
3222 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3223 return err;
3224 }
3225
3226 /* If the kernel supports MSI/MSI-X we will try to enable that,
3227 * else we use the IO-APIC interrupt assigned to us by system ROM.
3228 */
3229 hpsa_interrupt_mode(h, pdev, board_id);
3230
3231 /* find the memory BAR */
3232 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3233 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3234 break;
3235 }
3236 if (i == DEVICE_COUNT_RESOURCE) {
3237 dev_warn(&pdev->dev, "no memory BAR found\n");
3238 err = -ENODEV;
3239 goto err_out_free_res;
3240 }
3241
3242 h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3243 * already removed
3244 */
3245
3246 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3247
3248 /* Wait for the board to become ready. */
3249 for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3250 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3251 if (scratchpad == HPSA_FIRMWARE_READY)
3252 break;
3253 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3254 }
3255 if (scratchpad != HPSA_FIRMWARE_READY) {
3256 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3257 err = -ENODEV;
3258 goto err_out_free_res;
3259 }
3260
3261 /* get the address index number */
3262 cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
01a02ffc 3263 cfg_base_addr &= (u32) 0x0000ffff;
edd16368
SC
3264 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3265 if (cfg_base_addr_index == -1) {
3266 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3267 err = -ENODEV;
3268 goto err_out_free_res;
3269 }
3270
3271 cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3272 h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3273 cfg_base_addr_index) + cfg_offset,
3274 sizeof(h->cfgtable));
303932fd
DB
3275 /* Find performant mode table. */
3276 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3277 h->transtable = remap_pci_mem(pci_resource_start(pdev,
3278 cfg_base_addr_index)+cfg_offset+trans_offset,
3279 sizeof(*h->transtable));
edd16368 3280
303932fd
DB
3281 h->board_id = board_id;
3282 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
edd16368
SC
3283 h->product_name = products[prod_index].product_name;
3284 h->access = *(products[prod_index].access);
3285 /* Allow room for some ioctls */
3286 h->nr_cmds = h->max_commands - 4;
3287
3288 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3289 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3290 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3291 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3292 dev_warn(&pdev->dev, "not a valid CISS config table\n");
3293 err = -ENODEV;
3294 goto err_out_free_res;
3295 }
3296#ifdef CONFIG_X86
3297 {
3298 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
01a02ffc 3299 u32 prefetch;
edd16368
SC
3300 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3301 prefetch |= 0x100;
3302 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3303 }
3304#endif
3305
3306 /* Disabling DMA prefetch for the P600
3307 * An ASIC bug may result in a prefetch beyond
3308 * physical memory.
3309 */
3310 if (board_id == 0x3225103C) {
01a02ffc 3311 u32 dma_prefetch;
edd16368
SC
3312 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3313 dma_prefetch |= 0x8000;
3314 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3315 }
3316
3317 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3318 /* Update the field, and then ring the doorbell */
3319 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3320 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3321
3322 /* under certain very rare conditions, this can take awhile.
3323 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3324 * as we enter this code.)
3325 */
3326 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3327 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3328 break;
3329 /* delay and try again */
3330 msleep(10);
3331 }
3332
3333#ifdef HPSA_DEBUG
3334 print_cfg_table(&pdev->dev, h->cfgtable);
3335#endif /* HPSA_DEBUG */
3336
3337 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3338 dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3339 err = -ENODEV;
3340 goto err_out_free_res;
3341 }
3342 return 0;
3343
3344err_out_free_res:
3345 /*
3346 * Deliberately omit pci_disable_device(): it does something nasty to
3347 * Smart Array controllers that pci_enable_device does not undo
3348 */
3349 pci_release_regions(pdev);
3350 return err;
3351}
3352
3353static int __devinit hpsa_init_one(struct pci_dev *pdev,
3354 const struct pci_device_id *ent)
3355{
ecd9aad4 3356 int i, rc;
edd16368
SC
3357 int dac;
3358 struct ctlr_info *h;
3359
3360 if (number_of_controllers == 0)
3361 printk(KERN_INFO DRIVER_NAME "\n");
3362 if (reset_devices) {
3363 /* Reset the controller with a PCI power-cycle */
3364 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3365 return -ENODEV;
3366
3367 /* Some devices (notably the HP Smart Array 5i Controller)
3368 need a little pause here */
3369 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3370
3371 /* Now try to get the controller to respond to a no-op */
3372 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3373 if (hpsa_noop(pdev) == 0)
3374 break;
3375 else
3376 dev_warn(&pdev->dev, "no-op failed%s\n",
3377 (i < 11 ? "; re-trying" : ""));
3378 }
3379 }
3380
303932fd
DB
3381 /* Command structures must be aligned on a 32-byte boundary because
3382 * the 5 lower bits of the address are used by the hardware. and by
3383 * the driver. See comments in hpsa.h for more info.
3384 */
3385#define COMMANDLIST_ALIGNMENT 32
3386 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
edd16368
SC
3387 h = kzalloc(sizeof(*h), GFP_KERNEL);
3388 if (!h)
ecd9aad4 3389 return -ENOMEM;
edd16368
SC
3390
3391 h->busy_initializing = 1;
3392 INIT_HLIST_HEAD(&h->cmpQ);
3393 INIT_HLIST_HEAD(&h->reqQ);
3394 mutex_init(&h->busy_shutting_down);
3395 init_completion(&h->scan_wait);
ecd9aad4
SC
3396 rc = hpsa_pci_init(h, pdev);
3397 if (rc != 0)
edd16368
SC
3398 goto clean1;
3399
3400 sprintf(h->devname, "hpsa%d", number_of_controllers);
3401 h->ctlr = number_of_controllers;
3402 number_of_controllers++;
3403 h->pdev = pdev;
3404
3405 /* configure PCI DMA stuff */
ecd9aad4
SC
3406 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3407 if (rc == 0) {
edd16368 3408 dac = 1;
ecd9aad4
SC
3409 } else {
3410 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3411 if (rc == 0) {
3412 dac = 0;
3413 } else {
3414 dev_err(&pdev->dev, "no suitable DMA available\n");
3415 goto clean1;
3416 }
edd16368
SC
3417 }
3418
3419 /* make sure the board interrupts are off */
3420 h->access.set_intr_mask(h, HPSA_INTR_OFF);
303932fd
DB
3421 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3422 IRQF_DISABLED, h->devname, h);
ecd9aad4 3423 if (rc) {
edd16368 3424 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
303932fd 3425 h->intr[PERF_MODE_INT], h->devname);
edd16368
SC
3426 goto clean2;
3427 }
3428
303932fd
DB
3429 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3430 h->devname, pdev->device,
3431 h->intr[PERF_MODE_INT], dac ? "" : " not");
edd16368
SC
3432
3433 h->cmd_pool_bits =
3434 kmalloc(((h->nr_cmds + BITS_PER_LONG -
3435 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3436 h->cmd_pool = pci_alloc_consistent(h->pdev,
3437 h->nr_cmds * sizeof(*h->cmd_pool),
3438 &(h->cmd_pool_dhandle));
3439 h->errinfo_pool = pci_alloc_consistent(h->pdev,
3440 h->nr_cmds * sizeof(*h->errinfo_pool),
3441 &(h->errinfo_pool_dhandle));
3442 if ((h->cmd_pool_bits == NULL)
3443 || (h->cmd_pool == NULL)
3444 || (h->errinfo_pool == NULL)) {
3445 dev_err(&pdev->dev, "out of memory");
ecd9aad4 3446 rc = -ENOMEM;
edd16368
SC
3447 goto clean4;
3448 }
3449 spin_lock_init(&h->lock);
3450
3451 pci_set_drvdata(pdev, h);
3452 memset(h->cmd_pool_bits, 0,
3453 ((h->nr_cmds + BITS_PER_LONG -
3454 1) / BITS_PER_LONG) * sizeof(unsigned long));
3455
3456 hpsa_scsi_setup(h);
3457
3458 /* Turn the interrupts on so we can service requests */
3459 h->access.set_intr_mask(h, HPSA_INTR_ON);
3460
303932fd 3461 hpsa_put_ctlr_into_performant_mode(h);
edd16368
SC
3462 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
3463 h->busy_initializing = 0;
3464 return 1;
3465
3466clean4:
3467 kfree(h->cmd_pool_bits);
3468 if (h->cmd_pool)
3469 pci_free_consistent(h->pdev,
3470 h->nr_cmds * sizeof(struct CommandList),
3471 h->cmd_pool, h->cmd_pool_dhandle);
3472 if (h->errinfo_pool)
3473 pci_free_consistent(h->pdev,
3474 h->nr_cmds * sizeof(struct ErrorInfo),
3475 h->errinfo_pool,
3476 h->errinfo_pool_dhandle);
303932fd 3477 free_irq(h->intr[PERF_MODE_INT], h);
edd16368
SC
3478clean2:
3479clean1:
3480 h->busy_initializing = 0;
3481 kfree(h);
ecd9aad4 3482 return rc;
edd16368
SC
3483}
3484
3485static void hpsa_flush_cache(struct ctlr_info *h)
3486{
3487 char *flush_buf;
3488 struct CommandList *c;
3489
3490 flush_buf = kzalloc(4, GFP_KERNEL);
3491 if (!flush_buf)
3492 return;
3493
3494 c = cmd_special_alloc(h);
3495 if (!c) {
3496 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3497 goto out_of_memory;
3498 }
3499 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3500 RAID_CTLR_LUNID, TYPE_CMD);
3501 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3502 if (c->err_info->CommandStatus != 0)
3503 dev_warn(&h->pdev->dev,
3504 "error flushing cache on controller\n");
3505 cmd_special_free(h, c);
3506out_of_memory:
3507 kfree(flush_buf);
3508}
3509
3510static void hpsa_shutdown(struct pci_dev *pdev)
3511{
3512 struct ctlr_info *h;
3513
3514 h = pci_get_drvdata(pdev);
3515 /* Turn board interrupts off and send the flush cache command
3516 * sendcmd will turn off interrupt, and send the flush...
3517 * To write all data in the battery backed cache to disks
3518 */
3519 hpsa_flush_cache(h);
3520 h->access.set_intr_mask(h, HPSA_INTR_OFF);
303932fd 3521 free_irq(h->intr[PERF_MODE_INT], h);
edd16368
SC
3522#ifdef CONFIG_PCI_MSI
3523 if (h->msix_vector)
3524 pci_disable_msix(h->pdev);
3525 else if (h->msi_vector)
3526 pci_disable_msi(h->pdev);
3527#endif /* CONFIG_PCI_MSI */
3528}
3529
3530static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3531{
3532 struct ctlr_info *h;
3533
3534 if (pci_get_drvdata(pdev) == NULL) {
3535 dev_err(&pdev->dev, "unable to remove device \n");
3536 return;
3537 }
3538 h = pci_get_drvdata(pdev);
3539 mutex_lock(&h->busy_shutting_down);
3540 remove_from_scan_list(h);
3541 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
3542 hpsa_shutdown(pdev);
3543 iounmap(h->vaddr);
3544 pci_free_consistent(h->pdev,
3545 h->nr_cmds * sizeof(struct CommandList),
3546 h->cmd_pool, h->cmd_pool_dhandle);
3547 pci_free_consistent(h->pdev,
3548 h->nr_cmds * sizeof(struct ErrorInfo),
3549 h->errinfo_pool, h->errinfo_pool_dhandle);
303932fd
DB
3550 pci_free_consistent(h->pdev, h->reply_pool_size,
3551 h->reply_pool, h->reply_pool_dhandle);
edd16368 3552 kfree(h->cmd_pool_bits);
303932fd 3553 kfree(h->blockFetchTable);
edd16368
SC
3554 /*
3555 * Deliberately omit pci_disable_device(): it does something nasty to
3556 * Smart Array controllers that pci_enable_device does not undo
3557 */
3558 pci_release_regions(pdev);
3559 pci_set_drvdata(pdev, NULL);
3560 mutex_unlock(&h->busy_shutting_down);
3561 kfree(h);
3562}
3563
3564static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3565 __attribute__((unused)) pm_message_t state)
3566{
3567 return -ENOSYS;
3568}
3569
3570static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3571{
3572 return -ENOSYS;
3573}
3574
3575static struct pci_driver hpsa_pci_driver = {
3576 .name = "hpsa",
3577 .probe = hpsa_init_one,
3578 .remove = __devexit_p(hpsa_remove_one),
3579 .id_table = hpsa_pci_device_id, /* id_table */
3580 .shutdown = hpsa_shutdown,
3581 .suspend = hpsa_suspend,
3582 .resume = hpsa_resume,
3583};
3584
303932fd
DB
3585/* Fill in bucket_map[], given nsgs (the max number of
3586 * scatter gather elements supported) and bucket[],
3587 * which is an array of 8 integers. The bucket[] array
3588 * contains 8 different DMA transfer sizes (in 16
3589 * byte increments) which the controller uses to fetch
3590 * commands. This function fills in bucket_map[], which
3591 * maps a given number of scatter gather elements to one of
3592 * the 8 DMA transfer sizes. The point of it is to allow the
3593 * controller to only do as much DMA as needed to fetch the
3594 * command, with the DMA transfer size encoded in the lower
3595 * bits of the command address.
3596 */
3597static void calc_bucket_map(int bucket[], int num_buckets,
3598 int nsgs, int *bucket_map)
3599{
3600 int i, j, b, size;
3601
3602 /* even a command with 0 SGs requires 4 blocks */
3603#define MINIMUM_TRANSFER_BLOCKS 4
3604#define NUM_BUCKETS 8
3605 /* Note, bucket_map must have nsgs+1 entries. */
3606 for (i = 0; i <= nsgs; i++) {
3607 /* Compute size of a command with i SG entries */
3608 size = i + MINIMUM_TRANSFER_BLOCKS;
3609 b = num_buckets; /* Assume the biggest bucket */
3610 /* Find the bucket that is just big enough */
3611 for (j = 0; j < 8; j++) {
3612 if (bucket[j] >= size) {
3613 b = j;
3614 break;
3615 }
3616 }
3617 /* for a command with i SG entries, use bucket b. */
3618 bucket_map[i] = b;
3619 }
3620}
3621
3622static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3623{
3624 u32 trans_support;
3625 u64 trans_offset;
3626 /* 5 = 1 s/g entry or 4k
3627 * 6 = 2 s/g entry or 8k
3628 * 8 = 4 s/g entry or 16k
3629 * 10 = 6 s/g entry or 24k
3630 */
3631 int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
3632 int i = 0;
3633 int l = 0;
3634 unsigned long register_value;
3635
3636 trans_support = readl(&(h->cfgtable->TransportSupport));
3637 if (!(trans_support & PERFORMANT_MODE))
3638 return;
3639
3640 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3641 h->max_sg_entries = 32;
3642 /* Performant mode ring buffer and supporting data structures */
3643 h->reply_pool_size = h->max_commands * sizeof(u64);
3644 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3645 &(h->reply_pool_dhandle));
3646
3647 /* Need a block fetch table for performant mode */
3648 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3649 sizeof(u32)), GFP_KERNEL);
3650
3651 if ((h->reply_pool == NULL)
3652 || (h->blockFetchTable == NULL))
3653 goto clean_up;
3654
3655 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3656
3657 /* Controller spec: zero out this buffer. */
3658 memset(h->reply_pool, 0, h->reply_pool_size);
3659 h->reply_pool_head = h->reply_pool;
3660
3661 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3662 bft[7] = h->max_sg_entries + 4;
3663 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3664 for (i = 0; i < 8; i++)
3665 writel(bft[i], &h->transtable->BlockFetch[i]);
3666
3667 /* size of controller ring buffer */
3668 writel(h->max_commands, &h->transtable->RepQSize);
3669 writel(1, &h->transtable->RepQCount);
3670 writel(0, &h->transtable->RepQCtrAddrLow32);
3671 writel(0, &h->transtable->RepQCtrAddrHigh32);
3672 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3673 writel(0, &h->transtable->RepQAddr0High32);
3674 writel(CFGTBL_Trans_Performant,
3675 &(h->cfgtable->HostWrite.TransportRequest));
3676 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3677 /* under certain very rare conditions, this can take awhile.
3678 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3679 * as we enter this code.) */
3680 for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3681 register_value = readl(h->vaddr + SA5_DOORBELL);
3682 if (!(register_value & CFGTBL_ChangeReq))
3683 break;
3684 /* delay and try again */
3685 set_current_state(TASK_INTERRUPTIBLE);
3686 schedule_timeout(10);
3687 }
3688 register_value = readl(&(h->cfgtable->TransportActive));
3689 if (!(register_value & CFGTBL_Trans_Performant)) {
3690 dev_warn(&h->pdev->dev, "unable to get board into"
3691 " performant mode\n");
3692 return;
3693 }
3694
3695 /* Change the access methods to the performant access methods */
3696 h->access = SA5_performant_access;
3697 h->transMethod = CFGTBL_Trans_Performant;
3698
3699 return;
3700
3701clean_up:
3702 if (h->reply_pool)
3703 pci_free_consistent(h->pdev, h->reply_pool_size,
3704 h->reply_pool, h->reply_pool_dhandle);
3705 kfree(h->blockFetchTable);
3706}
3707
edd16368
SC
3708/*
3709 * This is it. Register the PCI driver information for the cards we control
3710 * the OS will call our registered routines when it finds one of our cards.
3711 */
3712static int __init hpsa_init(void)
3713{
3714 int err;
3715 /* Start the scan thread */
3716 hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3717 if (IS_ERR(hpsa_scan_thread)) {
3718 err = PTR_ERR(hpsa_scan_thread);
3719 return -ENODEV;
3720 }
3721 err = pci_register_driver(&hpsa_pci_driver);
3722 if (err)
3723 kthread_stop(hpsa_scan_thread);
3724 return err;
3725}
3726
3727static void __exit hpsa_cleanup(void)
3728{
3729 pci_unregister_driver(&hpsa_pci_driver);
3730 kthread_stop(hpsa_scan_thread);
3731}
3732
3733module_init(hpsa_init);
3734module_exit(hpsa_cleanup);