Merge tag 'pci-v6.16-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
[linux-2.6-block.git] / drivers / rtc / rtc-cmos.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
7be2c7c9
DB
2/*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7be2c7c9
DB
7 */
8
9/*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
a737e835
JP
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
7be2c7c9
DB
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/spinlock.h>
35#include <linux/platform_device.h>
5d2a5037 36#include <linux/log2.h>
2fb08e6c 37#include <linux/pm.h>
3bcbaf6e
SAS
38#include <linux/of.h>
39#include <linux/of_platform.h>
a1e23a42
HG
40#ifdef CONFIG_X86
41#include <asm/i8259.h>
36d91a4d
ZR
42#include <asm/processor.h>
43#include <linux/dmi.h>
a1e23a42 44#endif
7be2c7c9
DB
45
46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
5ab788d7 47#include <linux/mc146818rtc.h>
7be2c7c9 48
bc51098c 49#ifdef CONFIG_ACPI
311ee9c1
ZR
50/*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58static bool use_acpi_alarm;
59module_param(use_acpi_alarm, bool, 0444);
60
bc51098c
MR
61static inline int cmos_use_acpi_alarm(void)
62{
63 return use_acpi_alarm;
64}
65#else /* !CONFIG_ACPI */
66
67static inline int cmos_use_acpi_alarm(void)
68{
69 return 0;
70}
71#endif
72
7be2c7c9
DB
73struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
88b8d33b 78 time64_t alarm_expires;
7be2c7c9 79
87ac84f4
DB
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
7be2c7c9
DB
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
68669d55
GM
90
91 struct rtc_wkalrm saved_wkalrm;
7be2c7c9
DB
92};
93
94/* both platform and pnp busses use negative numbers for invalid irqs */
2fac6674 95#define is_valid_irq(n) ((n) > 0)
7be2c7c9
DB
96
97static const char driver_name[] = "rtc_cmos";
98
bcd9b89c
DB
99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
105static inline int is_intr(u8 rtc_intr)
106{
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110}
111
7be2c7c9
DB
112/*----------------------------------------------------------------*/
113
35d3fdd5
DB
114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124#ifdef CONFIG_HPET_EMULATE_RTC
125#include <asm/hpet.h>
126#else
127
128static inline int is_hpet_enabled(void)
129{
130 return 0;
131}
132
133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134{
135 return 0;
136}
137
138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139{
140 return 0;
141}
142
143static inline int
144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145{
146 return 0;
147}
148
149static inline int hpet_set_periodic_freq(unsigned long freq)
150{
151 return 0;
152}
153
35d3fdd5
DB
154static inline int hpet_rtc_timer_init(void)
155{
156 return 0;
157}
158
159extern irq_handler_t hpet_rtc_interrupt;
160
161static inline int hpet_register_irq_handler(irq_handler_t handler)
162{
163 return 0;
164}
165
166static inline int hpet_unregister_irq_handler(irq_handler_t handler)
167{
168 return 0;
169}
170
171#endif
172
311ee9c1 173/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
d197a253 174static inline int use_hpet_alarm(void)
311ee9c1 175{
bc51098c 176 return is_hpet_enabled() && !cmos_use_acpi_alarm();
311ee9c1
ZR
177}
178
35d3fdd5
DB
179/*----------------------------------------------------------------*/
180
c8fc40cd
DB
181#ifdef RTC_PORT
182
183/* Most newer x86 systems have two register banks, the first used
184 * for RTC and NVRAM and the second only for NVRAM. Caller must
185 * own rtc_lock ... and we won't worry about access during NMI.
186 */
187#define can_bank2 true
188
189static inline unsigned char cmos_read_bank2(unsigned char addr)
190{
191 outb(addr, RTC_PORT(2));
192 return inb(RTC_PORT(3));
193}
194
195static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
196{
197 outb(addr, RTC_PORT(2));
b43c1ea4 198 outb(val, RTC_PORT(3));
c8fc40cd
DB
199}
200
201#else
202
203#define can_bank2 false
204
205static inline unsigned char cmos_read_bank2(unsigned char addr)
206{
207 return 0;
208}
209
210static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
211{
212}
213
214#endif
215
216/*----------------------------------------------------------------*/
217
7be2c7c9
DB
218static int cmos_read_time(struct device *dev, struct rtc_time *t)
219{
0dd8d6cb
MJ
220 int ret;
221
ba58d102
CY
222 /*
223 * If pm_trace abused the RTC for storage, set the timespec to 0,
224 * which tells the caller that this RTC value is unusable.
225 */
226 if (!pm_trace_rtc_valid())
227 return -EIO;
228
cef9ecc8 229 ret = mc146818_get_time(t, 1000);
0dd8d6cb
MJ
230 if (ret < 0) {
231 dev_err_ratelimited(dev, "unable to read current time\n");
232 return ret;
233 }
234
7be2c7c9
DB
235 return 0;
236}
237
238static int cmos_set_time(struct device *dev, struct rtc_time *t)
239{
e1aba375 240 /* NOTE: this ignores the issue whereby updating the seconds
7be2c7c9
DB
241 * takes effect exactly 500ms after we write the register.
242 * (Also queueing and other delays before we get this far.)
243 */
5ab788d7 244 return mc146818_set_time(t);
7be2c7c9
DB
245}
246
cdedc45c
MJ
247struct cmos_read_alarm_callback_param {
248 struct cmos_rtc *cmos;
249 struct rtc_time *time;
250 unsigned char rtc_control;
251};
252
253static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
254 void *param_in)
255{
256 struct cmos_read_alarm_callback_param *p =
257 (struct cmos_read_alarm_callback_param *)param_in;
258 struct rtc_time *time = p->time;
259
260 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
261 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
262 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
263
264 if (p->cmos->day_alrm) {
265 /* ignore upper bits on readback per ACPI spec */
266 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
267 if (!time->tm_mday)
268 time->tm_mday = -1;
269
270 if (p->cmos->mon_alrm) {
271 time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
272 if (!time->tm_mon)
273 time->tm_mon = -1;
274 }
275 }
276
277 p->rtc_control = CMOS_READ(RTC_CONTROL);
278}
279
7be2c7c9
DB
280static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
281{
282 struct cmos_rtc *cmos = dev_get_drvdata(dev);
cdedc45c
MJ
283 struct cmos_read_alarm_callback_param p = {
284 .cmos = cmos,
285 .time = &t->time,
286 };
7be2c7c9 287
fbb974ba 288 /* This not only a rtc_op, but also called directly */
7be2c7c9 289 if (!is_valid_irq(cmos->irq))
1311a8f0 290 return -ETIMEDOUT;
7be2c7c9
DB
291
292 /* Basic alarms only support hour, minute, and seconds fields.
293 * Some also support day and month, for alarms up to a year in
294 * the future.
295 */
7be2c7c9 296
cdedc45c
MJ
297 /* Some Intel chipsets disconnect the alarm registers when the clock
298 * update is in progress - during this time reads return bogus values
299 * and writes may fail silently. See for example "7th Generation Intel®
300 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
301 * 27.7.1
302 *
303 * Use the mc146818_avoid_UIP() function to avoid this.
304 */
120931db 305 if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
cdedc45c 306 return -EIO;
7be2c7c9 307
cdedc45c 308 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
3804a89b
AP
309 if (((unsigned)t->time.tm_sec) < 0x60)
310 t->time.tm_sec = bcd2bin(t->time.tm_sec);
7be2c7c9 311 else
3804a89b
AP
312 t->time.tm_sec = -1;
313 if (((unsigned)t->time.tm_min) < 0x60)
314 t->time.tm_min = bcd2bin(t->time.tm_min);
315 else
316 t->time.tm_min = -1;
317 if (((unsigned)t->time.tm_hour) < 0x24)
318 t->time.tm_hour = bcd2bin(t->time.tm_hour);
319 else
320 t->time.tm_hour = -1;
321
322 if (cmos->day_alrm) {
323 if (((unsigned)t->time.tm_mday) <= 0x31)
324 t->time.tm_mday = bcd2bin(t->time.tm_mday);
7be2c7c9 325 else
3804a89b
AP
326 t->time.tm_mday = -1;
327
328 if (cmos->mon_alrm) {
329 if (((unsigned)t->time.tm_mon) <= 0x12)
330 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
331 else
332 t->time.tm_mon = -1;
333 }
7be2c7c9
DB
334 }
335 }
7be2c7c9 336
cdedc45c 337 t->enabled = !!(p.rtc_control & RTC_AIE);
7be2c7c9
DB
338 t->pending = 0;
339
340 return 0;
341}
342
7e2a31da
DB
343static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
344{
345 unsigned char rtc_intr;
346
347 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
348 * allegedly some older rtcs need that to handle irqs properly
349 */
350 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
351
311ee9c1 352 if (use_hpet_alarm())
7e2a31da
DB
353 return;
354
355 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
356 if (is_intr(rtc_intr))
357 rtc_update_irq(cmos->rtc, 1, rtc_intr);
358}
359
360static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
361{
362 unsigned char rtc_control;
363
364 /* flush any pending IRQ status, notably for update irqs,
365 * before we enable new IRQs
366 */
367 rtc_control = CMOS_READ(RTC_CONTROL);
368 cmos_checkintr(cmos, rtc_control);
369
370 rtc_control |= mask;
371 CMOS_WRITE(rtc_control, RTC_CONTROL);
311ee9c1
ZR
372 if (use_hpet_alarm())
373 hpet_set_rtc_irq_bit(mask);
374
bc51098c 375 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
311ee9c1
ZR
376 if (cmos->wake_on)
377 cmos->wake_on(cmos->dev);
378 }
7e2a31da
DB
379
380 cmos_checkintr(cmos, rtc_control);
381}
382
383static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
384{
385 unsigned char rtc_control;
386
387 rtc_control = CMOS_READ(RTC_CONTROL);
388 rtc_control &= ~mask;
389 CMOS_WRITE(rtc_control, RTC_CONTROL);
311ee9c1
ZR
390 if (use_hpet_alarm())
391 hpet_mask_rtc_irq_bit(mask);
392
bc51098c 393 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
311ee9c1
ZR
394 if (cmos->wake_off)
395 cmos->wake_off(cmos->dev);
396 }
7e2a31da
DB
397
398 cmos_checkintr(cmos, rtc_control);
399}
400
6a6af3d0
GM
401static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
402{
403 struct cmos_rtc *cmos = dev_get_drvdata(dev);
404 struct rtc_time now;
405
406 cmos_read_time(dev, &now);
407
408 if (!cmos->day_alrm) {
409 time64_t t_max_date;
410 time64_t t_alrm;
411
412 t_max_date = rtc_tm_to_time64(&now);
413 t_max_date += 24 * 60 * 60 - 1;
414 t_alrm = rtc_tm_to_time64(&t->time);
415 if (t_alrm > t_max_date) {
416 dev_err(dev,
417 "Alarms can be up to one day in the future\n");
418 return -EINVAL;
419 }
420 } else if (!cmos->mon_alrm) {
421 struct rtc_time max_date = now;
422 time64_t t_max_date;
423 time64_t t_alrm;
424 int max_mday;
425
426 if (max_date.tm_mon == 11) {
427 max_date.tm_mon = 0;
428 max_date.tm_year += 1;
429 } else {
430 max_date.tm_mon += 1;
431 }
432 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
433 if (max_date.tm_mday > max_mday)
434 max_date.tm_mday = max_mday;
435
436 t_max_date = rtc_tm_to_time64(&max_date);
437 t_max_date -= 1;
438 t_alrm = rtc_tm_to_time64(&t->time);
439 if (t_alrm > t_max_date) {
440 dev_err(dev,
441 "Alarms can be up to one month in the future\n");
442 return -EINVAL;
443 }
444 } else {
445 struct rtc_time max_date = now;
446 time64_t t_max_date;
447 time64_t t_alrm;
448 int max_mday;
449
450 max_date.tm_year += 1;
451 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
452 if (max_date.tm_mday > max_mday)
453 max_date.tm_mday = max_mday;
454
455 t_max_date = rtc_tm_to_time64(&max_date);
456 t_max_date -= 1;
457 t_alrm = rtc_tm_to_time64(&t->time);
458 if (t_alrm > t_max_date) {
459 dev_err(dev,
460 "Alarms can be up to one year in the future\n");
461 return -EINVAL;
462 }
463 }
464
465 return 0;
466}
467
cd17420e
MJ
468struct cmos_set_alarm_callback_param {
469 struct cmos_rtc *cmos;
470 unsigned char mon, mday, hrs, min, sec;
471 struct rtc_wkalrm *t;
472};
473
474/* Note: this function may be executed by mc146818_avoid_UIP() more then
475 * once
476 */
477static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
478 void *param_in)
479{
480 struct cmos_set_alarm_callback_param *p =
481 (struct cmos_set_alarm_callback_param *)param_in;
482
483 /* next rtc irq must not be from previous alarm setting */
484 cmos_irq_disable(p->cmos, RTC_AIE);
485
486 /* update alarm */
487 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
488 CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
489 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
490
491 /* the system may support an "enhanced" alarm */
492 if (p->cmos->day_alrm) {
493 CMOS_WRITE(p->mday, p->cmos->day_alrm);
494 if (p->cmos->mon_alrm)
495 CMOS_WRITE(p->mon, p->cmos->mon_alrm);
496 }
497
498 if (use_hpet_alarm()) {
499 /*
500 * FIXME the HPET alarm glue currently ignores day_alrm
501 * and mon_alrm ...
502 */
503 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
504 p->t->time.tm_sec);
505 }
506
507 if (p->t->enabled)
508 cmos_irq_enable(p->cmos, RTC_AIE);
509}
510
7be2c7c9
DB
511static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
512{
513 struct cmos_rtc *cmos = dev_get_drvdata(dev);
cd17420e
MJ
514 struct cmos_set_alarm_callback_param p = {
515 .cmos = cmos,
516 .t = t
517 };
518 unsigned char rtc_control;
6a6af3d0 519 int ret;
7be2c7c9 520
fbb974ba 521 /* This not only a rtc_op, but also called directly */
7be2c7c9
DB
522 if (!is_valid_irq(cmos->irq))
523 return -EIO;
524
6a6af3d0
GM
525 ret = cmos_validate_alarm(dev, t);
526 if (ret < 0)
527 return ret;
528
cd17420e
MJ
529 p.mon = t->time.tm_mon + 1;
530 p.mday = t->time.tm_mday;
531 p.hrs = t->time.tm_hour;
532 p.min = t->time.tm_min;
533 p.sec = t->time.tm_sec;
3804a89b 534
454f47ff 535 spin_lock_irq(&rtc_lock);
3804a89b 536 rtc_control = CMOS_READ(RTC_CONTROL);
454f47ff
MJ
537 spin_unlock_irq(&rtc_lock);
538
3804a89b
AP
539 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
540 /* Writing 0xff means "don't care" or "match all". */
cd17420e
MJ
541 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
542 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
543 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
544 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
545 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
311ee9c1 546 }
35d3fdd5 547
cd17420e
MJ
548 /*
549 * Some Intel chipsets disconnect the alarm registers when the clock
550 * update is in progress - during this time writes fail silently.
551 *
552 * Use mc146818_avoid_UIP() to avoid this.
553 */
120931db 554 if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
1311a8f0 555 return -ETIMEDOUT;
7be2c7c9 556
88b8d33b
AH
557 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
558
7be2c7c9
DB
559 return 0;
560}
561
a8462ef6 562static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
7be2c7c9
DB
563{
564 struct cmos_rtc *cmos = dev_get_drvdata(dev);
7be2c7c9
DB
565 unsigned long flags;
566
7be2c7c9 567 spin_lock_irqsave(&rtc_lock, flags);
a8462ef6
HRK
568
569 if (enabled)
7e2a31da 570 cmos_irq_enable(cmos, RTC_AIE);
a8462ef6
HRK
571 else
572 cmos_irq_disable(cmos, RTC_AIE);
573
7be2c7c9
DB
574 spin_unlock_irqrestore(&rtc_lock, flags);
575 return 0;
576}
577
6fca3fc5 578#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
7be2c7c9
DB
579
580static int cmos_procfs(struct device *dev, struct seq_file *seq)
581{
582 struct cmos_rtc *cmos = dev_get_drvdata(dev);
583 unsigned char rtc_control, valid;
584
585 spin_lock_irq(&rtc_lock);
586 rtc_control = CMOS_READ(RTC_CONTROL);
587 valid = CMOS_READ(RTC_VALID);
588 spin_unlock_irq(&rtc_lock);
589
590 /* NOTE: at least ICH6 reports battery status using a different
591 * (non-RTC) bit; and SQWE is ignored on many current systems.
592 */
4395eb1f
JP
593 seq_printf(seq,
594 "periodic_IRQ\t: %s\n"
595 "update_IRQ\t: %s\n"
596 "HPET_emulated\t: %s\n"
597 // "square_wave\t: %s\n"
598 "BCD\t\t: %s\n"
599 "DST_enable\t: %s\n"
600 "periodic_freq\t: %d\n"
601 "batt_status\t: %s\n",
602 (rtc_control & RTC_PIE) ? "yes" : "no",
603 (rtc_control & RTC_UIE) ? "yes" : "no",
311ee9c1 604 use_hpet_alarm() ? "yes" : "no",
4395eb1f
JP
605 // (rtc_control & RTC_SQWE) ? "yes" : "no",
606 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
607 (rtc_control & RTC_DST_EN) ? "yes" : "no",
608 cmos->rtc->irq_freq,
609 (valid & RTC_VRT) ? "okay" : "dead");
610
611 return 0;
7be2c7c9
DB
612}
613
614#else
615#define cmos_procfs NULL
616#endif
617
618static const struct rtc_class_ops cmos_rtc_ops = {
a8462ef6
HRK
619 .read_time = cmos_read_time,
620 .set_time = cmos_set_time,
621 .read_alarm = cmos_read_alarm,
622 .set_alarm = cmos_set_alarm,
623 .proc = cmos_procfs,
a8462ef6 624 .alarm_irq_enable = cmos_alarm_irq_enable,
7be2c7c9
DB
625};
626
627/*----------------------------------------------------------------*/
628
e07e232c
DB
629/*
630 * All these chips have at least 64 bytes of address space, shared by
631 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
632 * by boot firmware. Modern chips have 128 or 256 bytes.
633 */
634
635#define NVRAM_OFFSET (RTC_REG_D + 1)
636
8b5b7958
AB
637static int cmos_nvram_read(void *priv, unsigned int off, void *val,
638 size_t count)
e07e232c 639{
8b5b7958 640 unsigned char *buf = val;
e07e232c 641
c8fc40cd 642 off += NVRAM_OFFSET;
0a6efab3
DT
643 for (; count; count--, off++, buf++) {
644 guard(spinlock_irq)(&rtc_lock);
c8fc40cd 645 if (off < 128)
0a6efab3 646 *buf = CMOS_READ(off);
c8fc40cd 647 else if (can_bank2)
0a6efab3 648 *buf = cmos_read_bank2(off);
c8fc40cd 649 else
0a6efab3 650 return -EIO;
c8fc40cd 651 }
e07e232c 652
0a6efab3 653 return 0;
e07e232c
DB
654}
655
8b5b7958
AB
656static int cmos_nvram_write(void *priv, unsigned int off, void *val,
657 size_t count)
e07e232c 658{
8b5b7958
AB
659 struct cmos_rtc *cmos = priv;
660 unsigned char *buf = val;
e07e232c 661
e07e232c
DB
662 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
663 * checksum on part of the NVRAM data. That's currently ignored
664 * here. If userspace is smart enough to know what fields of
665 * NVRAM to update, updating checksums is also part of its job.
666 */
c8fc40cd 667 off += NVRAM_OFFSET;
0a6efab3 668 for (; count; count--, off++, buf++) {
e07e232c
DB
669 /* don't trash RTC registers */
670 if (off == cmos->day_alrm
671 || off == cmos->mon_alrm
672 || off == cmos->century)
0a6efab3
DT
673 continue;
674
675 guard(spinlock_irq)(&rtc_lock);
676 if (off < 128)
677 CMOS_WRITE(*buf, off);
c8fc40cd 678 else if (can_bank2)
0a6efab3 679 cmos_write_bank2(*buf, off);
c8fc40cd 680 else
0a6efab3 681 return -EIO;
e07e232c 682 }
e07e232c 683
0a6efab3 684 return 0;
e07e232c
DB
685}
686
e07e232c
DB
687/*----------------------------------------------------------------*/
688
7be2c7c9
DB
689static struct cmos_rtc cmos_rtc;
690
691static irqreturn_t cmos_interrupt(int irq, void *p)
692{
693 u8 irqstat;
8a0bdfd7 694 u8 rtc_control;
00a39d86 695 unsigned long flags;
7be2c7c9 696
00a39d86
MJ
697 /* We cannot use spin_lock() here, as cmos_interrupt() is also called
698 * in a non-irq context.
699 */
700 spin_lock_irqsave(&rtc_lock, flags);
35d3fdd5
DB
701
702 /* When the HPET interrupt handler calls us, the interrupt
703 * status is passed as arg1 instead of the irq number. But
704 * always clear irq status, even when HPET is in the way.
705 *
706 * Note that HPET and RTC are almost certainly out of phase,
707 * giving different IRQ status ...
9d8af78b 708 */
35d3fdd5
DB
709 irqstat = CMOS_READ(RTC_INTR_FLAGS);
710 rtc_control = CMOS_READ(RTC_CONTROL);
311ee9c1 711 if (use_hpet_alarm())
9d8af78b 712 irqstat = (unsigned long)irq & 0xF0;
998a0605
DB
713
714 /* If we were suspended, RTC_CONTROL may not be accurate since the
715 * bios may have cleared it.
716 */
717 if (!cmos_rtc.suspend_ctrl)
718 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
719 else
720 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
8a0bdfd7
DB
721
722 /* All Linux RTC alarms should be treated as if they were oneshot.
723 * Similar code may be needed in system wakeup paths, in case the
724 * alarm woke the system.
725 */
726 if (irqstat & RTC_AIE) {
998a0605 727 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
8a0bdfd7
DB
728 rtc_control &= ~RTC_AIE;
729 CMOS_WRITE(rtc_control, RTC_CONTROL);
311ee9c1
ZR
730 if (use_hpet_alarm())
731 hpet_mask_rtc_irq_bit(RTC_AIE);
8a0bdfd7
DB
732 CMOS_READ(RTC_INTR_FLAGS);
733 }
00a39d86 734 spin_unlock_irqrestore(&rtc_lock, flags);
7be2c7c9 735
bcd9b89c 736 if (is_intr(irqstat)) {
7be2c7c9
DB
737 rtc_update_irq(p, 1, irqstat);
738 return IRQ_HANDLED;
739 } else
740 return IRQ_NONE;
741}
742
dca4d3b7
RW
743#ifdef CONFIG_ACPI
744
745#include <linux/acpi.h>
746
747static u32 rtc_handler(void *context)
748{
749 struct device *dev = context;
750 struct cmos_rtc *cmos = dev_get_drvdata(dev);
751 unsigned char rtc_control = 0;
752 unsigned char rtc_intr;
753 unsigned long flags;
754
755
756 /*
757 * Always update rtc irq when ACPI is used as RTC Alarm.
758 * Or else, ACPI SCI is enabled during suspend/resume only,
759 * update rtc irq in that case.
760 */
761 if (cmos_use_acpi_alarm())
762 cmos_interrupt(0, (void *)cmos->rtc);
763 else {
764 /* Fix me: can we use cmos_interrupt() here as well? */
765 spin_lock_irqsave(&rtc_lock, flags);
766 if (cmos_rtc.suspend_ctrl)
767 rtc_control = CMOS_READ(RTC_CONTROL);
768 if (rtc_control & RTC_AIE) {
769 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
770 CMOS_WRITE(rtc_control, RTC_CONTROL);
771 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
772 rtc_update_irq(cmos->rtc, 1, rtc_intr);
773 }
774 spin_unlock_irqrestore(&rtc_lock, flags);
775 }
776
777 pm_wakeup_hard_event(dev);
778 acpi_clear_event(ACPI_EVENT_RTC);
779 acpi_disable_event(ACPI_EVENT_RTC, 0);
780 return ACPI_INTERRUPT_HANDLED;
781}
782
d13e9ad9 783static void acpi_rtc_event_setup(struct device *dev)
dca4d3b7
RW
784{
785 if (acpi_disabled)
786 return;
787
788 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
789 /*
790 * After the RTC handler is installed, the Fixed_RTC event should
791 * be disabled. Only when the RTC alarm is set will it be enabled.
792 */
793 acpi_clear_event(ACPI_EVENT_RTC);
794 acpi_disable_event(ACPI_EVENT_RTC, 0);
795}
796
83ebb7b3
RW
797static void acpi_rtc_event_cleanup(void)
798{
799 if (acpi_disabled)
800 return;
801
802 acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
803}
804
dca4d3b7
RW
805static void rtc_wake_on(struct device *dev)
806{
807 acpi_clear_event(ACPI_EVENT_RTC);
808 acpi_enable_event(ACPI_EVENT_RTC, 0);
809}
810
811static void rtc_wake_off(struct device *dev)
812{
813 acpi_disable_event(ACPI_EVENT_RTC, 0);
814}
815
816#ifdef CONFIG_X86
dca4d3b7
RW
817static void use_acpi_alarm_quirks(void)
818{
3d762e21
ML
819 switch (boot_cpu_data.x86_vendor) {
820 case X86_VENDOR_INTEL:
821 if (dmi_get_bios_year() < 2015)
822 return;
823 break;
824 case X86_VENDOR_AMD:
825 case X86_VENDOR_HYGON:
826 if (dmi_get_bios_year() < 2021)
827 return;
828 break;
829 default:
dca4d3b7 830 return;
3d762e21 831 }
dca4d3b7 832 if (!is_hpet_enabled())
dca4d3b7
RW
833 return;
834
835 use_acpi_alarm = true;
836}
837#else
838static inline void use_acpi_alarm_quirks(void) { }
839#endif
840
d13e9ad9 841static void acpi_cmos_wake_setup(struct device *dev)
dca4d3b7
RW
842{
843 if (acpi_disabled)
844 return;
845
846 use_acpi_alarm_quirks();
847
848 cmos_rtc.wake_on = rtc_wake_on;
849 cmos_rtc.wake_off = rtc_wake_off;
850
851 /* ACPI tables bug workaround. */
852 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
853 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
854 acpi_gbl_FADT.month_alarm);
855 acpi_gbl_FADT.month_alarm = 0;
856 }
857
858 cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
859 cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
860 cmos_rtc.century = acpi_gbl_FADT.century;
861
862 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
863 dev_info(dev, "RTC can wake from S4\n");
864
865 /* RTC always wakes from S1/S2/S3, and often S4/STD */
8c28c499 866 device_init_wakeup(dev, true);
dca4d3b7
RW
867}
868
869static void cmos_check_acpi_rtc_status(struct device *dev,
870 unsigned char *rtc_control)
871{
872 struct cmos_rtc *cmos = dev_get_drvdata(dev);
873 acpi_event_status rtc_status;
874 acpi_status status;
875
876 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
877 return;
878
879 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
880 if (ACPI_FAILURE(status)) {
881 dev_err(dev, "Could not get RTC status\n");
882 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
883 unsigned char mask;
884 *rtc_control &= ~RTC_AIE;
885 CMOS_WRITE(*rtc_control, RTC_CONTROL);
886 mask = CMOS_READ(RTC_INTR_FLAGS);
887 rtc_update_irq(cmos->rtc, 1, mask);
888 }
889}
890
891#else /* !CONFIG_ACPI */
892
d13e9ad9 893static inline void acpi_rtc_event_setup(struct device *dev)
dca4d3b7
RW
894{
895}
896
83ebb7b3
RW
897static inline void acpi_rtc_event_cleanup(void)
898{
899}
900
d13e9ad9 901static inline void acpi_cmos_wake_setup(struct device *dev)
dca4d3b7
RW
902{
903}
904
905static inline void cmos_check_acpi_rtc_status(struct device *dev,
906 unsigned char *rtc_control)
907{
908}
909#endif /* CONFIG_ACPI */
508ccdfb 910
41ac8df9 911#ifdef CONFIG_PNP
7be2c7c9
DB
912#define INITSECTION
913
914#else
7be2c7c9
DB
915#define INITSECTION __init
916#endif
917
2546e708
GR
918#define SECS_PER_DAY (24 * 60 * 60)
919#define SECS_PER_MONTH (28 * SECS_PER_DAY)
920#define SECS_PER_YEAR (365 * SECS_PER_DAY)
921
7be2c7c9
DB
922static int INITSECTION
923cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
924{
97a92e77 925 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
7be2c7c9
DB
926 int retval = 0;
927 unsigned char rtc_control;
e07e232c 928 unsigned address_space;
31632dbd 929 u32 flags = 0;
8b5b7958
AB
930 struct nvmem_config nvmem_cfg = {
931 .name = "cmos_nvram",
932 .word_size = 1,
933 .stride = 1,
934 .reg_read = cmos_nvram_read,
935 .reg_write = cmos_nvram_write,
936 .priv = &cmos_rtc,
937 };
7be2c7c9
DB
938
939 /* there can be only one ... */
940 if (cmos_rtc.dev)
941 return -EBUSY;
942
943 if (!ports)
944 return -ENODEV;
945
05440dfc
DB
946 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
947 *
948 * REVISIT non-x86 systems may instead use memory space resources
949 * (needing ioremap etc), not i/o space resources like this ...
950 */
31632dbd
MR
951 if (RTC_IOMAPPED)
952 ports = request_region(ports->start, resource_size(ports),
953 driver_name);
954 else
955 ports = request_mem_region(ports->start, resource_size(ports),
956 driver_name);
05440dfc
DB
957 if (!ports) {
958 dev_dbg(dev, "i/o registers already in use\n");
959 return -EBUSY;
960 }
961
7be2c7c9
DB
962 cmos_rtc.irq = rtc_irq;
963 cmos_rtc.iomem = ports;
964
e07e232c
DB
965 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
966 * driver did, but don't reject unknown configs. Old hardware
c8fc40cd
DB
967 * won't address 128 bytes. Newer chips have multiple banks,
968 * though they may not be listed in one I/O resource.
e07e232c
DB
969 */
970#if defined(CONFIG_ATARI)
971 address_space = 64;
95abd0df 972#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
8cb7c71b 973 || defined(__sparc__) || defined(__mips__) \
739d875d 974 || defined(__powerpc__)
e07e232c
DB
975 address_space = 128;
976#else
977#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
978 address_space = 128;
979#endif
c8fc40cd
DB
980 if (can_bank2 && ports->end > (ports->start + 1))
981 address_space = 256;
e07e232c 982
87ac84f4
DB
983 /* For ACPI systems extension info comes from the FADT. On others,
984 * board specific setup provides it as appropriate. Systems where
985 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
986 * some almost-clones) can provide hooks to make that behave.
e07e232c
DB
987 *
988 * Note that ACPI doesn't preclude putting these registers into
989 * "extended" areas of the chip, including some that we won't yet
990 * expect CMOS_READ and friends to handle.
7be2c7c9
DB
991 */
992 if (info) {
31632dbd
MR
993 if (info->flags)
994 flags = info->flags;
995 if (info->address_space)
996 address_space = info->address_space;
997
508ccdfb
RW
998 cmos_rtc.day_alrm = info->rtc_day_alarm;
999 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1000 cmos_rtc.century = info->rtc_century;
87ac84f4
DB
1001
1002 if (info->wake_on && info->wake_off) {
1003 cmos_rtc.wake_on = info->wake_on;
1004 cmos_rtc.wake_off = info->wake_off;
1005 }
508ccdfb 1006 } else {
d13e9ad9 1007 acpi_cmos_wake_setup(dev);
7be2c7c9
DB
1008 }
1009
508ccdfb
RW
1010 if (cmos_rtc.day_alrm >= 128)
1011 cmos_rtc.day_alrm = 0;
1012
1013 if (cmos_rtc.mon_alrm >= 128)
1014 cmos_rtc.mon_alrm = 0;
1015
1016 if (cmos_rtc.century >= 128)
1017 cmos_rtc.century = 0;
1018
6ba8bcd4
DC
1019 cmos_rtc.dev = dev;
1020 dev_set_drvdata(dev, &cmos_rtc);
1021
53d29e0a 1022 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
05440dfc
DB
1023 if (IS_ERR(cmos_rtc.rtc)) {
1024 retval = PTR_ERR(cmos_rtc.rtc);
1025 goto cleanup0;
1026 }
7be2c7c9 1027
2546e708
GR
1028 if (cmos_rtc.mon_alrm)
1029 cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1030 else if (cmos_rtc.day_alrm)
1031 cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1032 else
1033 cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1034
d4afc76c 1035 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
7be2c7c9 1036
ea6fa496
MJ
1037 if (!mc146818_does_rtc_work()) {
1038 dev_warn(dev, "broken or not accessible\n");
211e5db1
TG
1039 retval = -ENXIO;
1040 goto cleanup1;
1041 }
1042
ea6fa496
MJ
1043 spin_lock_irq(&rtc_lock);
1044
31632dbd
MR
1045 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1046 /* force periodic irq to CMOS reset default of 1024Hz;
1047 *
1048 * REVISIT it's been reported that at least one x86_64 ALI
1049 * mobo doesn't use 32KHz here ... for portability we might
1050 * need to do something about other clock frequencies.
1051 */
1052 cmos_rtc.rtc->irq_freq = 1024;
311ee9c1
ZR
1053 if (use_hpet_alarm())
1054 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
31632dbd
MR
1055 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1056 }
7be2c7c9 1057
7e2a31da 1058 /* disable irqs */
31632dbd
MR
1059 if (is_valid_irq(rtc_irq))
1060 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
35d3fdd5 1061
7e2a31da 1062 rtc_control = CMOS_READ(RTC_CONTROL);
7be2c7c9
DB
1063
1064 spin_unlock_irq(&rtc_lock);
1065
5e8599d2 1066 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
3804a89b 1067 dev_warn(dev, "only 24-hr supported\n");
7be2c7c9
DB
1068 retval = -ENXIO;
1069 goto cleanup1;
1070 }
1071
311ee9c1
ZR
1072 if (use_hpet_alarm())
1073 hpet_rtc_timer_init();
970fc7f4 1074
9d8af78b
BW
1075 if (is_valid_irq(rtc_irq)) {
1076 irq_handler_t rtc_cmos_int_handler;
1077
311ee9c1 1078 if (use_hpet_alarm()) {
9d8af78b 1079 rtc_cmos_int_handler = hpet_rtc_interrupt;
24b34472
AM
1080 retval = hpet_register_irq_handler(cmos_interrupt);
1081 if (retval) {
970fc7f4 1082 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
ee443357 1083 dev_warn(dev, "hpet_register_irq_handler "
9d8af78b
BW
1084 " failed in rtc_init().");
1085 goto cleanup1;
1086 }
1087 } else
1088 rtc_cmos_int_handler = cmos_interrupt;
1089
1090 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
b6da197a 1091 0, dev_name(&cmos_rtc.rtc->dev),
ab6a2d70 1092 cmos_rtc.rtc);
9d8af78b
BW
1093 if (retval < 0) {
1094 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1095 goto cleanup1;
1096 }
fbb974ba 1097 } else {
30f5bd53 1098 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
7be2c7c9
DB
1099 }
1100
30f5bd53
AB
1101 cmos_rtc.rtc->ops = &cmos_rtc_ops;
1102
fdcfd854 1103 retval = devm_rtc_register_device(cmos_rtc.rtc);
53d29e0a 1104 if (retval)
e07e232c 1105 goto cleanup2;
7be2c7c9 1106
b0ecd8e8 1107 /* Set the sync offset for the periodic 11min update correct */
69eca258 1108 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
b0ecd8e8 1109
8b5b7958
AB
1110 /* export at least the first block of NVRAM */
1111 nvmem_cfg.size = address_space - NVRAM_OFFSET;
6746bc09 1112 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
8b5b7958 1113
375bbba0
RW
1114 /*
1115 * Everything has gone well so far, so by default register a handler for
1116 * the ACPI RTC fixed event.
1117 */
1118 if (!info)
d13e9ad9 1119 acpi_rtc_event_setup(dev);
375bbba0 1120
8b5b7958
AB
1121 dev_info(dev, "%s%s, %d bytes nvram%s\n",
1122 !is_valid_irq(rtc_irq) ? "no alarms" :
1123 cmos_rtc.mon_alrm ? "alarms up to one year" :
1124 cmos_rtc.day_alrm ? "alarms up to one month" :
1125 "alarms up to one day",
1126 cmos_rtc.century ? ", y3k" : "",
1127 nvmem_cfg.size,
311ee9c1 1128 use_hpet_alarm() ? ", hpet irqs" : "");
7be2c7c9
DB
1129
1130 return 0;
1131
e07e232c
DB
1132cleanup2:
1133 if (is_valid_irq(rtc_irq))
1134 free_irq(rtc_irq, cmos_rtc.rtc);
7be2c7c9 1135cleanup1:
05440dfc 1136 cmos_rtc.dev = NULL;
05440dfc 1137cleanup0:
31632dbd
MR
1138 if (RTC_IOMAPPED)
1139 release_region(ports->start, resource_size(ports));
1140 else
1141 release_mem_region(ports->start, resource_size(ports));
7be2c7c9
DB
1142 return retval;
1143}
1144
31632dbd 1145static void cmos_do_shutdown(int rtc_irq)
7be2c7c9 1146{
7be2c7c9 1147 spin_lock_irq(&rtc_lock);
31632dbd
MR
1148 if (is_valid_irq(rtc_irq))
1149 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
7be2c7c9
DB
1150 spin_unlock_irq(&rtc_lock);
1151}
1152
a3a0673b 1153static void cmos_do_remove(struct device *dev)
7be2c7c9
DB
1154{
1155 struct cmos_rtc *cmos = dev_get_drvdata(dev);
05440dfc 1156 struct resource *ports;
7be2c7c9 1157
31632dbd 1158 cmos_do_shutdown(cmos->irq);
7be2c7c9 1159
9d8af78b 1160 if (is_valid_irq(cmos->irq)) {
05440dfc 1161 free_irq(cmos->irq, cmos->rtc);
311ee9c1
ZR
1162 if (use_hpet_alarm())
1163 hpet_unregister_irq_handler(cmos_interrupt);
9d8af78b 1164 }
7be2c7c9 1165
83ebb7b3
RW
1166 if (!dev_get_platdata(dev))
1167 acpi_rtc_event_cleanup();
1168
05440dfc 1169 cmos->rtc = NULL;
7be2c7c9 1170
05440dfc 1171 ports = cmos->iomem;
31632dbd
MR
1172 if (RTC_IOMAPPED)
1173 release_region(ports->start, resource_size(ports));
1174 else
1175 release_mem_region(ports->start, resource_size(ports));
05440dfc
DB
1176 cmos->iomem = NULL;
1177
1178 cmos->dev = NULL;
7be2c7c9
DB
1179}
1180
88b8d33b
AH
1181static int cmos_aie_poweroff(struct device *dev)
1182{
1183 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1184 struct rtc_time now;
1185 time64_t t_now;
1186 int retval = 0;
1187 unsigned char rtc_control;
1188
1189 if (!cmos->alarm_expires)
1190 return -EINVAL;
1191
1192 spin_lock_irq(&rtc_lock);
1193 rtc_control = CMOS_READ(RTC_CONTROL);
1194 spin_unlock_irq(&rtc_lock);
1195
1196 /* We only care about the situation where AIE is disabled. */
1197 if (rtc_control & RTC_AIE)
1198 return -EBUSY;
1199
1200 cmos_read_time(dev, &now);
1201 t_now = rtc_tm_to_time64(&now);
1202
1203 /*
1204 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1205 * automatically right after shutdown on some buggy boxes.
1206 * This automatic rebooting issue won't happen when the alarm
1207 * time is larger than now+1 seconds.
1208 *
1209 * If the alarm time is equal to now+1 seconds, the issue can be
1210 * prevented by cancelling the alarm.
1211 */
1212 if (cmos->alarm_expires == t_now + 1) {
1213 struct rtc_wkalrm alarm;
1214
1215 /* Cancel the AIE timer by configuring the past time. */
1216 rtc_time64_to_tm(t_now - 1, &alarm.time);
1217 alarm.enabled = 0;
1218 retval = cmos_set_alarm(dev, &alarm);
1219 } else if (cmos->alarm_expires > t_now + 1) {
1220 retval = -EBUSY;
1221 }
1222
1223 return retval;
1224}
1225
2fb08e6c 1226static int cmos_suspend(struct device *dev)
7be2c7c9
DB
1227{
1228 struct cmos_rtc *cmos = dev_get_drvdata(dev);
bcd9b89c 1229 unsigned char tmp;
7be2c7c9
DB
1230
1231 /* only the alarm might be a wakeup event source */
1232 spin_lock_irq(&rtc_lock);
1233 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1234 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
35d3fdd5 1235 unsigned char mask;
bcd9b89c 1236
74c4633d 1237 if (device_may_wakeup(dev))
35d3fdd5 1238 mask = RTC_IRQMASK & ~RTC_AIE;
7be2c7c9 1239 else
35d3fdd5
DB
1240 mask = RTC_IRQMASK;
1241 tmp &= ~mask;
7be2c7c9 1242 CMOS_WRITE(tmp, RTC_CONTROL);
311ee9c1
ZR
1243 if (use_hpet_alarm())
1244 hpet_mask_rtc_irq_bit(mask);
7e2a31da 1245 cmos_checkintr(cmos, tmp);
bcd9b89c 1246 }
7be2c7c9
DB
1247 spin_unlock_irq(&rtc_lock);
1248
bc51098c 1249 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
87ac84f4
DB
1250 cmos->enabled_wake = 1;
1251 if (cmos->wake_on)
1252 cmos->wake_on(dev);
1253 else
1254 enable_irq_wake(cmos->irq);
1255 }
7be2c7c9 1256
c254bcd7 1257 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
68669d55
GM
1258 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1259
ee443357 1260 dev_dbg(dev, "suspend%s, ctrl %02x\n",
7be2c7c9
DB
1261 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1262 tmp);
1263
1264 return 0;
1265}
1266
74c4633d
RW
1267/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1268 * after a detour through G3 "mechanical off", although the ACPI spec
1269 * says wakeup should only work from G1/S4 "hibernate". To most users,
1270 * distinctions between S4 and S5 are pointless. So when the hardware
1271 * allows, don't draw that distinction.
1272 */
1273static inline int cmos_poweroff(struct device *dev)
1274{
00f7f90c
AB
1275 if (!IS_ENABLED(CONFIG_PM))
1276 return -ENOSYS;
1277
2fb08e6c 1278 return cmos_suspend(dev);
74c4633d
RW
1279}
1280
68669d55
GM
1281static void cmos_check_wkalrm(struct device *dev)
1282{
1283 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1284 struct rtc_wkalrm current_alarm;
c6d3a278 1285 time64_t t_now;
68669d55
GM
1286 time64_t t_current_expires;
1287 time64_t t_saved_expires;
c6d3a278
ZR
1288 struct rtc_time now;
1289
1290 /* Check if we have RTC Alarm armed */
1291 if (!(cmos->suspend_ctrl & RTC_AIE))
1292 return;
1293
1294 cmos_read_time(dev, &now);
1295 t_now = rtc_tm_to_time64(&now);
1296
1297 /*
1298 * ACPI RTC wake event is cleared after resume from STR,
1299 * ACK the rtc irq here
1300 */
bc51098c 1301 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
c6d3a278
ZR
1302 cmos_interrupt(0, (void *)cmos->rtc);
1303 return;
1304 }
68669d55 1305
c254bcd7 1306 memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
68669d55
GM
1307 cmos_read_alarm(dev, &current_alarm);
1308 t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1309 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1310 if (t_current_expires != t_saved_expires ||
1311 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1312 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1313 }
1314}
1315
00f7f90c 1316static int __maybe_unused cmos_resume(struct device *dev)
7be2c7c9
DB
1317{
1318 struct cmos_rtc *cmos = dev_get_drvdata(dev);
998a0605
DB
1319 unsigned char tmp;
1320
bc51098c 1321 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
998a0605
DB
1322 if (cmos->wake_off)
1323 cmos->wake_off(dev);
1324 else
1325 disable_irq_wake(cmos->irq);
1326 cmos->enabled_wake = 0;
1327 }
7be2c7c9 1328
68669d55
GM
1329 /* The BIOS might have changed the alarm, restore it */
1330 cmos_check_wkalrm(dev);
1331
998a0605
DB
1332 spin_lock_irq(&rtc_lock);
1333 tmp = cmos->suspend_ctrl;
1334 cmos->suspend_ctrl = 0;
7be2c7c9 1335 /* re-enable any irqs previously active */
35d3fdd5
DB
1336 if (tmp & RTC_IRQMASK) {
1337 unsigned char mask;
7be2c7c9 1338
311ee9c1 1339 if (device_may_wakeup(dev) && use_hpet_alarm())
ebf8d6c8
DB
1340 hpet_rtc_timer_init();
1341
35d3fdd5
DB
1342 do {
1343 CMOS_WRITE(tmp, RTC_CONTROL);
311ee9c1
ZR
1344 if (use_hpet_alarm())
1345 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
35d3fdd5
DB
1346
1347 mask = CMOS_READ(RTC_INTR_FLAGS);
1348 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
311ee9c1 1349 if (!use_hpet_alarm() || !is_intr(mask))
35d3fdd5
DB
1350 break;
1351
1352 /* force one-shot behavior if HPET blocked
1353 * the wake alarm's irq
1354 */
1355 rtc_update_irq(cmos->rtc, 1, mask);
1356 tmp &= ~RTC_AIE;
1357 hpet_mask_rtc_irq_bit(RTC_AIE);
1358 } while (mask & RTC_AIE);
983bf125
GM
1359
1360 if (tmp & RTC_AIE)
1361 cmos_check_acpi_rtc_status(dev, &tmp);
7be2c7c9 1362 }
998a0605 1363 spin_unlock_irq(&rtc_lock);
7be2c7c9 1364
ee443357 1365 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
7be2c7c9
DB
1366
1367 return 0;
1368}
1369
b5ada460
MW
1370static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1371
7be2c7c9
DB
1372/*----------------------------------------------------------------*/
1373
e07e232c
DB
1374/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1375 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1376 * probably list them in similar PNPBIOS tables; so PNP is more common.
1377 *
1378 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1379 * predate even PNPBIOS should set up platform_bus devices.
7be2c7c9
DB
1380 */
1381
41ac8df9 1382#ifdef CONFIG_PNP
7be2c7c9
DB
1383
1384#include <linux/pnp.h>
1385
5a167f45 1386static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
7be2c7c9 1387{
375bbba0 1388 int irq;
a474aaed 1389
a1e23a42 1390 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
4919d3eb 1391 irq = 0;
a1e23a42 1392#ifdef CONFIG_X86
6cd8fa87
MG
1393 /* Some machines contain a PNP entry for the RTC, but
1394 * don't define the IRQ. It should always be safe to
a1e23a42 1395 * hardcode it on systems with a legacy PIC.
6cd8fa87 1396 */
a1e23a42 1397 if (nr_legacy_irqs())
5848ad2f 1398 irq = RTC_IRQ;
a1e23a42 1399#endif
a1e23a42 1400 } else {
4919d3eb 1401 irq = pnp_irq(pnp, 0);
a1e23a42 1402 }
4919d3eb 1403
375bbba0 1404 return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
7be2c7c9
DB
1405}
1406
a3a0673b 1407static void cmos_pnp_remove(struct pnp_dev *pnp)
7be2c7c9
DB
1408{
1409 cmos_do_remove(&pnp->dev);
1410}
1411
004731b2 1412static void cmos_pnp_shutdown(struct pnp_dev *pnp)
74c4633d 1413{
31632dbd
MR
1414 struct device *dev = &pnp->dev;
1415 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1416
88b8d33b
AH
1417 if (system_state == SYSTEM_POWER_OFF) {
1418 int retval = cmos_poweroff(dev);
1419
1420 if (cmos_aie_poweroff(dev) < 0 && !retval)
1421 return;
1422 }
74c4633d 1423
31632dbd 1424 cmos_do_shutdown(cmos->irq);
74c4633d 1425}
7be2c7c9
DB
1426
1427static const struct pnp_device_id rtc_ids[] = {
1428 { .id = "PNP0b00", },
1429 { .id = "PNP0b01", },
1430 { .id = "PNP0b02", },
1431 { },
1432};
1433MODULE_DEVICE_TABLE(pnp, rtc_ids);
1434
1435static struct pnp_driver cmos_pnp_driver = {
8d4e59ec 1436 .name = driver_name,
7be2c7c9
DB
1437 .id_table = rtc_ids,
1438 .probe = cmos_pnp_probe,
a3a0673b 1439 .remove = cmos_pnp_remove,
004731b2 1440 .shutdown = cmos_pnp_shutdown,
7be2c7c9
DB
1441
1442 /* flag ensures resume() gets called, and stops syslog spam */
1443 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
a8a3808b
SK
1444 .driver = {
1445 .pm = &cmos_pm_ops,
1446 },
7be2c7c9
DB
1447};
1448
1da2e3d6 1449#endif /* CONFIG_PNP */
7be2c7c9 1450
3bcbaf6e
SAS
1451#ifdef CONFIG_OF
1452static const struct of_device_id of_cmos_match[] = {
1453 {
1454 .compatible = "motorola,mc146818",
1455 },
1456 { },
1457};
1458MODULE_DEVICE_TABLE(of, of_cmos_match);
1459
1460static __init void cmos_of_init(struct platform_device *pdev)
1461{
1462 struct device_node *node = pdev->dev.of_node;
3bcbaf6e
SAS
1463 const __be32 *val;
1464
1465 if (!node)
1466 return;
1467
1468 val = of_get_property(node, "ctrl-reg", NULL);
1469 if (val)
1470 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1471
1472 val = of_get_property(node, "freq-reg", NULL);
1473 if (val)
1474 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
3bcbaf6e
SAS
1475}
1476#else
1477static inline void cmos_of_init(struct platform_device *pdev) {}
3bcbaf6e 1478#endif
7be2c7c9
DB
1479/*----------------------------------------------------------------*/
1480
41ac8df9 1481/* Platform setup should have set up an RTC device, when PNP is
bcd9b89c 1482 * unavailable ... this could happen even on (older) PCs.
7be2c7c9
DB
1483 */
1484
1485static int __init cmos_platform_probe(struct platform_device *pdev)
1486{
31632dbd 1487 struct resource *resource;
375bbba0 1488 int irq;
31632dbd 1489
3bcbaf6e 1490 cmos_of_init(pdev);
31632dbd
MR
1491
1492 if (RTC_IOMAPPED)
1493 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1494 else
1495 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1496 irq = platform_get_irq(pdev, 0);
1497 if (irq < 0)
1498 irq = -1;
1499
375bbba0 1500 return cmos_do_probe(&pdev->dev, resource, irq);
7be2c7c9
DB
1501}
1502
63c18a07 1503static void cmos_platform_remove(struct platform_device *pdev)
7be2c7c9
DB
1504{
1505 cmos_do_remove(&pdev->dev);
7be2c7c9
DB
1506}
1507
1508static void cmos_platform_shutdown(struct platform_device *pdev)
1509{
31632dbd
MR
1510 struct device *dev = &pdev->dev;
1511 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1512
88b8d33b
AH
1513 if (system_state == SYSTEM_POWER_OFF) {
1514 int retval = cmos_poweroff(dev);
1515
1516 if (cmos_aie_poweroff(dev) < 0 && !retval)
1517 return;
1518 }
74c4633d 1519
31632dbd 1520 cmos_do_shutdown(cmos->irq);
7be2c7c9
DB
1521}
1522
ad28a07b
KS
1523/* work with hotplug and coldplug */
1524MODULE_ALIAS("platform:rtc_cmos");
1525
7be2c7c9 1526static struct platform_driver cmos_platform_driver = {
e5eab1ae 1527 .remove = cmos_platform_remove,
7be2c7c9
DB
1528 .shutdown = cmos_platform_shutdown,
1529 .driver = {
c823a202 1530 .name = driver_name,
2fb08e6c 1531 .pm = &cmos_pm_ops,
c8a6046e 1532 .of_match_table = of_match_ptr(of_cmos_match),
7be2c7c9
DB
1533 }
1534};
1535
65909814
TLSC
1536#ifdef CONFIG_PNP
1537static bool pnp_driver_registered;
1538#endif
1539static bool platform_driver_registered;
1540
7be2c7c9
DB
1541static int __init cmos_init(void)
1542{
72f22b1e
BH
1543 int retval = 0;
1544
1da2e3d6 1545#ifdef CONFIG_PNP
65909814
TLSC
1546 retval = pnp_register_driver(&cmos_pnp_driver);
1547 if (retval == 0)
1548 pnp_driver_registered = true;
72f22b1e
BH
1549#endif
1550
65909814 1551 if (!cmos_rtc.dev) {
72f22b1e
BH
1552 retval = platform_driver_probe(&cmos_platform_driver,
1553 cmos_platform_probe);
65909814
TLSC
1554 if (retval == 0)
1555 platform_driver_registered = true;
1556 }
72f22b1e
BH
1557
1558 if (retval == 0)
1559 return 0;
1560
1561#ifdef CONFIG_PNP
65909814
TLSC
1562 if (pnp_driver_registered)
1563 pnp_unregister_driver(&cmos_pnp_driver);
72f22b1e
BH
1564#endif
1565 return retval;
7be2c7c9
DB
1566}
1567module_init(cmos_init);
1568
1569static void __exit cmos_exit(void)
1570{
1da2e3d6 1571#ifdef CONFIG_PNP
65909814
TLSC
1572 if (pnp_driver_registered)
1573 pnp_unregister_driver(&cmos_pnp_driver);
72f22b1e 1574#endif
65909814
TLSC
1575 if (platform_driver_registered)
1576 platform_driver_unregister(&cmos_platform_driver);
7be2c7c9
DB
1577}
1578module_exit(cmos_exit);
1579
1580
7be2c7c9
DB
1581MODULE_AUTHOR("David Brownell");
1582MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1583MODULE_LICENSE("GPL");