Merge branch 'parisc-4.17-4' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[linux-block.git] / drivers / rtc / rtc-cmos.c
CommitLineData
7be2c7c9
DB
1/*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13/*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
a737e835
JP
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
7be2c7c9
DB
34#include <linux/kernel.h>
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/interrupt.h>
38#include <linux/spinlock.h>
39#include <linux/platform_device.h>
5d2a5037 40#include <linux/log2.h>
2fb08e6c 41#include <linux/pm.h>
3bcbaf6e
SAS
42#include <linux/of.h>
43#include <linux/of_platform.h>
a1e23a42
HG
44#ifdef CONFIG_X86
45#include <asm/i8259.h>
46#endif
7be2c7c9
DB
47
48/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
5ab788d7 49#include <linux/mc146818rtc.h>
7be2c7c9 50
7be2c7c9
DB
51struct cmos_rtc {
52 struct rtc_device *rtc;
53 struct device *dev;
54 int irq;
55 struct resource *iomem;
88b8d33b 56 time64_t alarm_expires;
7be2c7c9 57
87ac84f4
DB
58 void (*wake_on)(struct device *);
59 void (*wake_off)(struct device *);
60
61 u8 enabled_wake;
7be2c7c9
DB
62 u8 suspend_ctrl;
63
64 /* newer hardware extends the original register set */
65 u8 day_alrm;
66 u8 mon_alrm;
67 u8 century;
68669d55
GM
68
69 struct rtc_wkalrm saved_wkalrm;
7be2c7c9
DB
70};
71
72/* both platform and pnp busses use negative numbers for invalid irqs */
2fac6674 73#define is_valid_irq(n) ((n) > 0)
7be2c7c9
DB
74
75static const char driver_name[] = "rtc_cmos";
76
bcd9b89c
DB
77/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
78 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
79 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
80 */
81#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
82
83static inline int is_intr(u8 rtc_intr)
84{
85 if (!(rtc_intr & RTC_IRQF))
86 return 0;
87 return rtc_intr & RTC_IRQMASK;
88}
89
7be2c7c9
DB
90/*----------------------------------------------------------------*/
91
35d3fdd5
DB
92/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
93 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
94 * used in a broken "legacy replacement" mode. The breakage includes
95 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
96 * other (better) use.
97 *
98 * When that broken mode is in use, platform glue provides a partial
99 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
100 * want to use HPET for anything except those IRQs though...
101 */
102#ifdef CONFIG_HPET_EMULATE_RTC
103#include <asm/hpet.h>
104#else
105
106static inline int is_hpet_enabled(void)
107{
108 return 0;
109}
110
111static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
112{
113 return 0;
114}
115
116static inline int hpet_set_rtc_irq_bit(unsigned long mask)
117{
118 return 0;
119}
120
121static inline int
122hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
123{
124 return 0;
125}
126
127static inline int hpet_set_periodic_freq(unsigned long freq)
128{
129 return 0;
130}
131
132static inline int hpet_rtc_dropped_irq(void)
133{
134 return 0;
135}
136
137static inline int hpet_rtc_timer_init(void)
138{
139 return 0;
140}
141
142extern irq_handler_t hpet_rtc_interrupt;
143
144static inline int hpet_register_irq_handler(irq_handler_t handler)
145{
146 return 0;
147}
148
149static inline int hpet_unregister_irq_handler(irq_handler_t handler)
150{
151 return 0;
152}
153
154#endif
155
156/*----------------------------------------------------------------*/
157
c8fc40cd
DB
158#ifdef RTC_PORT
159
160/* Most newer x86 systems have two register banks, the first used
161 * for RTC and NVRAM and the second only for NVRAM. Caller must
162 * own rtc_lock ... and we won't worry about access during NMI.
163 */
164#define can_bank2 true
165
166static inline unsigned char cmos_read_bank2(unsigned char addr)
167{
168 outb(addr, RTC_PORT(2));
169 return inb(RTC_PORT(3));
170}
171
172static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
173{
174 outb(addr, RTC_PORT(2));
b43c1ea4 175 outb(val, RTC_PORT(3));
c8fc40cd
DB
176}
177
178#else
179
180#define can_bank2 false
181
182static inline unsigned char cmos_read_bank2(unsigned char addr)
183{
184 return 0;
185}
186
187static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
188{
189}
190
191#endif
192
193/*----------------------------------------------------------------*/
194
7be2c7c9
DB
195static int cmos_read_time(struct device *dev, struct rtc_time *t)
196{
ba58d102
CY
197 /*
198 * If pm_trace abused the RTC for storage, set the timespec to 0,
199 * which tells the caller that this RTC value is unusable.
200 */
201 if (!pm_trace_rtc_valid())
202 return -EIO;
203
7be2c7c9 204 /* REVISIT: if the clock has a "century" register, use
5ab788d7 205 * that instead of the heuristic in mc146818_get_time().
7be2c7c9
DB
206 * That'll make Y3K compatility (year > 2070) easy!
207 */
5ab788d7 208 mc146818_get_time(t);
7be2c7c9
DB
209 return 0;
210}
211
212static int cmos_set_time(struct device *dev, struct rtc_time *t)
213{
214 /* REVISIT: set the "century" register if available
215 *
216 * NOTE: this ignores the issue whereby updating the seconds
217 * takes effect exactly 500ms after we write the register.
218 * (Also queueing and other delays before we get this far.)
219 */
5ab788d7 220 return mc146818_set_time(t);
7be2c7c9
DB
221}
222
223static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
224{
225 struct cmos_rtc *cmos = dev_get_drvdata(dev);
226 unsigned char rtc_control;
227
228 if (!is_valid_irq(cmos->irq))
229 return -EIO;
230
231 /* Basic alarms only support hour, minute, and seconds fields.
232 * Some also support day and month, for alarms up to a year in
233 * the future.
234 */
7be2c7c9
DB
235
236 spin_lock_irq(&rtc_lock);
237 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
238 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
239 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
240
241 if (cmos->day_alrm) {
615bb29c
ML
242 /* ignore upper bits on readback per ACPI spec */
243 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
7be2c7c9
DB
244 if (!t->time.tm_mday)
245 t->time.tm_mday = -1;
246
247 if (cmos->mon_alrm) {
248 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
249 if (!t->time.tm_mon)
250 t->time.tm_mon = -1;
251 }
252 }
253
254 rtc_control = CMOS_READ(RTC_CONTROL);
255 spin_unlock_irq(&rtc_lock);
256
3804a89b
AP
257 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
258 if (((unsigned)t->time.tm_sec) < 0x60)
259 t->time.tm_sec = bcd2bin(t->time.tm_sec);
7be2c7c9 260 else
3804a89b
AP
261 t->time.tm_sec = -1;
262 if (((unsigned)t->time.tm_min) < 0x60)
263 t->time.tm_min = bcd2bin(t->time.tm_min);
264 else
265 t->time.tm_min = -1;
266 if (((unsigned)t->time.tm_hour) < 0x24)
267 t->time.tm_hour = bcd2bin(t->time.tm_hour);
268 else
269 t->time.tm_hour = -1;
270
271 if (cmos->day_alrm) {
272 if (((unsigned)t->time.tm_mday) <= 0x31)
273 t->time.tm_mday = bcd2bin(t->time.tm_mday);
7be2c7c9 274 else
3804a89b
AP
275 t->time.tm_mday = -1;
276
277 if (cmos->mon_alrm) {
278 if (((unsigned)t->time.tm_mon) <= 0x12)
279 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
280 else
281 t->time.tm_mon = -1;
282 }
7be2c7c9
DB
283 }
284 }
7be2c7c9
DB
285
286 t->enabled = !!(rtc_control & RTC_AIE);
287 t->pending = 0;
288
289 return 0;
290}
291
7e2a31da
DB
292static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
293{
294 unsigned char rtc_intr;
295
296 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
297 * allegedly some older rtcs need that to handle irqs properly
298 */
299 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
300
301 if (is_hpet_enabled())
302 return;
303
304 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
305 if (is_intr(rtc_intr))
306 rtc_update_irq(cmos->rtc, 1, rtc_intr);
307}
308
309static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
310{
311 unsigned char rtc_control;
312
313 /* flush any pending IRQ status, notably for update irqs,
314 * before we enable new IRQs
315 */
316 rtc_control = CMOS_READ(RTC_CONTROL);
317 cmos_checkintr(cmos, rtc_control);
318
319 rtc_control |= mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_set_rtc_irq_bit(mask);
322
323 cmos_checkintr(cmos, rtc_control);
324}
325
326static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
327{
328 unsigned char rtc_control;
329
330 rtc_control = CMOS_READ(RTC_CONTROL);
331 rtc_control &= ~mask;
332 CMOS_WRITE(rtc_control, RTC_CONTROL);
333 hpet_mask_rtc_irq_bit(mask);
334
335 cmos_checkintr(cmos, rtc_control);
336}
337
6a6af3d0
GM
338static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
339{
340 struct cmos_rtc *cmos = dev_get_drvdata(dev);
341 struct rtc_time now;
342
343 cmos_read_time(dev, &now);
344
345 if (!cmos->day_alrm) {
346 time64_t t_max_date;
347 time64_t t_alrm;
348
349 t_max_date = rtc_tm_to_time64(&now);
350 t_max_date += 24 * 60 * 60 - 1;
351 t_alrm = rtc_tm_to_time64(&t->time);
352 if (t_alrm > t_max_date) {
353 dev_err(dev,
354 "Alarms can be up to one day in the future\n");
355 return -EINVAL;
356 }
357 } else if (!cmos->mon_alrm) {
358 struct rtc_time max_date = now;
359 time64_t t_max_date;
360 time64_t t_alrm;
361 int max_mday;
362
363 if (max_date.tm_mon == 11) {
364 max_date.tm_mon = 0;
365 max_date.tm_year += 1;
366 } else {
367 max_date.tm_mon += 1;
368 }
369 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
370 if (max_date.tm_mday > max_mday)
371 max_date.tm_mday = max_mday;
372
373 t_max_date = rtc_tm_to_time64(&max_date);
374 t_max_date -= 1;
375 t_alrm = rtc_tm_to_time64(&t->time);
376 if (t_alrm > t_max_date) {
377 dev_err(dev,
378 "Alarms can be up to one month in the future\n");
379 return -EINVAL;
380 }
381 } else {
382 struct rtc_time max_date = now;
383 time64_t t_max_date;
384 time64_t t_alrm;
385 int max_mday;
386
387 max_date.tm_year += 1;
388 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
389 if (max_date.tm_mday > max_mday)
390 max_date.tm_mday = max_mday;
391
392 t_max_date = rtc_tm_to_time64(&max_date);
393 t_max_date -= 1;
394 t_alrm = rtc_tm_to_time64(&t->time);
395 if (t_alrm > t_max_date) {
396 dev_err(dev,
397 "Alarms can be up to one year in the future\n");
398 return -EINVAL;
399 }
400 }
401
402 return 0;
403}
404
7be2c7c9
DB
405static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
406{
407 struct cmos_rtc *cmos = dev_get_drvdata(dev);
5e8599d2 408 unsigned char mon, mday, hrs, min, sec, rtc_control;
6a6af3d0 409 int ret;
7be2c7c9
DB
410
411 if (!is_valid_irq(cmos->irq))
412 return -EIO;
413
6a6af3d0
GM
414 ret = cmos_validate_alarm(dev, t);
415 if (ret < 0)
416 return ret;
417
2b653e06 418 mon = t->time.tm_mon + 1;
7be2c7c9 419 mday = t->time.tm_mday;
7be2c7c9 420 hrs = t->time.tm_hour;
7be2c7c9 421 min = t->time.tm_min;
7be2c7c9 422 sec = t->time.tm_sec;
3804a89b
AP
423
424 rtc_control = CMOS_READ(RTC_CONTROL);
425 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
426 /* Writing 0xff means "don't care" or "match all". */
427 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
428 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
429 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
430 min = (min < 60) ? bin2bcd(min) : 0xff;
431 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
432 }
7be2c7c9
DB
433
434 spin_lock_irq(&rtc_lock);
435
436 /* next rtc irq must not be from previous alarm setting */
7e2a31da 437 cmos_irq_disable(cmos, RTC_AIE);
7be2c7c9
DB
438
439 /* update alarm */
440 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
441 CMOS_WRITE(min, RTC_MINUTES_ALARM);
442 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
443
444 /* the system may support an "enhanced" alarm */
445 if (cmos->day_alrm) {
446 CMOS_WRITE(mday, cmos->day_alrm);
447 if (cmos->mon_alrm)
448 CMOS_WRITE(mon, cmos->mon_alrm);
449 }
450
35d3fdd5
DB
451 /* FIXME the HPET alarm glue currently ignores day_alrm
452 * and mon_alrm ...
453 */
454 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
455
7e2a31da
DB
456 if (t->enabled)
457 cmos_irq_enable(cmos, RTC_AIE);
7be2c7c9
DB
458
459 spin_unlock_irq(&rtc_lock);
460
88b8d33b
AH
461 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
462
7be2c7c9
DB
463 return 0;
464}
465
a8462ef6 466static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
7be2c7c9
DB
467{
468 struct cmos_rtc *cmos = dev_get_drvdata(dev);
7be2c7c9
DB
469 unsigned long flags;
470
a8462ef6
HRK
471 if (!is_valid_irq(cmos->irq))
472 return -EINVAL;
7be2c7c9
DB
473
474 spin_lock_irqsave(&rtc_lock, flags);
a8462ef6
HRK
475
476 if (enabled)
7e2a31da 477 cmos_irq_enable(cmos, RTC_AIE);
a8462ef6
HRK
478 else
479 cmos_irq_disable(cmos, RTC_AIE);
480
7be2c7c9
DB
481 spin_unlock_irqrestore(&rtc_lock, flags);
482 return 0;
483}
484
6fca3fc5 485#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
7be2c7c9
DB
486
487static int cmos_procfs(struct device *dev, struct seq_file *seq)
488{
489 struct cmos_rtc *cmos = dev_get_drvdata(dev);
490 unsigned char rtc_control, valid;
491
492 spin_lock_irq(&rtc_lock);
493 rtc_control = CMOS_READ(RTC_CONTROL);
494 valid = CMOS_READ(RTC_VALID);
495 spin_unlock_irq(&rtc_lock);
496
497 /* NOTE: at least ICH6 reports battery status using a different
498 * (non-RTC) bit; and SQWE is ignored on many current systems.
499 */
4395eb1f
JP
500 seq_printf(seq,
501 "periodic_IRQ\t: %s\n"
502 "update_IRQ\t: %s\n"
503 "HPET_emulated\t: %s\n"
504 // "square_wave\t: %s\n"
505 "BCD\t\t: %s\n"
506 "DST_enable\t: %s\n"
507 "periodic_freq\t: %d\n"
508 "batt_status\t: %s\n",
509 (rtc_control & RTC_PIE) ? "yes" : "no",
510 (rtc_control & RTC_UIE) ? "yes" : "no",
511 is_hpet_enabled() ? "yes" : "no",
512 // (rtc_control & RTC_SQWE) ? "yes" : "no",
513 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
514 (rtc_control & RTC_DST_EN) ? "yes" : "no",
515 cmos->rtc->irq_freq,
516 (valid & RTC_VRT) ? "okay" : "dead");
517
518 return 0;
7be2c7c9
DB
519}
520
521#else
522#define cmos_procfs NULL
523#endif
524
525static const struct rtc_class_ops cmos_rtc_ops = {
a8462ef6
HRK
526 .read_time = cmos_read_time,
527 .set_time = cmos_set_time,
528 .read_alarm = cmos_read_alarm,
529 .set_alarm = cmos_set_alarm,
530 .proc = cmos_procfs,
a8462ef6 531 .alarm_irq_enable = cmos_alarm_irq_enable,
7be2c7c9
DB
532};
533
534/*----------------------------------------------------------------*/
535
e07e232c
DB
536/*
537 * All these chips have at least 64 bytes of address space, shared by
538 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
539 * by boot firmware. Modern chips have 128 or 256 bytes.
540 */
541
542#define NVRAM_OFFSET (RTC_REG_D + 1)
543
8b5b7958
AB
544static int cmos_nvram_read(void *priv, unsigned int off, void *val,
545 size_t count)
e07e232c 546{
8b5b7958 547 unsigned char *buf = val;
e07e232c
DB
548 int retval;
549
c8fc40cd 550 off += NVRAM_OFFSET;
e07e232c 551 spin_lock_irq(&rtc_lock);
c8fc40cd
DB
552 for (retval = 0; count; count--, off++, retval++) {
553 if (off < 128)
554 *buf++ = CMOS_READ(off);
555 else if (can_bank2)
556 *buf++ = cmos_read_bank2(off);
557 else
558 break;
559 }
e07e232c
DB
560 spin_unlock_irq(&rtc_lock);
561
562 return retval;
563}
564
8b5b7958
AB
565static int cmos_nvram_write(void *priv, unsigned int off, void *val,
566 size_t count)
e07e232c 567{
8b5b7958
AB
568 struct cmos_rtc *cmos = priv;
569 unsigned char *buf = val;
e07e232c
DB
570 int retval;
571
e07e232c
DB
572 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
573 * checksum on part of the NVRAM data. That's currently ignored
574 * here. If userspace is smart enough to know what fields of
575 * NVRAM to update, updating checksums is also part of its job.
576 */
c8fc40cd 577 off += NVRAM_OFFSET;
e07e232c 578 spin_lock_irq(&rtc_lock);
c8fc40cd 579 for (retval = 0; count; count--, off++, retval++) {
e07e232c
DB
580 /* don't trash RTC registers */
581 if (off == cmos->day_alrm
582 || off == cmos->mon_alrm
583 || off == cmos->century)
584 buf++;
c8fc40cd 585 else if (off < 128)
e07e232c 586 CMOS_WRITE(*buf++, off);
c8fc40cd
DB
587 else if (can_bank2)
588 cmos_write_bank2(*buf++, off);
589 else
590 break;
e07e232c
DB
591 }
592 spin_unlock_irq(&rtc_lock);
593
594 return retval;
595}
596
e07e232c
DB
597/*----------------------------------------------------------------*/
598
7be2c7c9
DB
599static struct cmos_rtc cmos_rtc;
600
601static irqreturn_t cmos_interrupt(int irq, void *p)
602{
603 u8 irqstat;
8a0bdfd7 604 u8 rtc_control;
7be2c7c9
DB
605
606 spin_lock(&rtc_lock);
35d3fdd5
DB
607
608 /* When the HPET interrupt handler calls us, the interrupt
609 * status is passed as arg1 instead of the irq number. But
610 * always clear irq status, even when HPET is in the way.
611 *
612 * Note that HPET and RTC are almost certainly out of phase,
613 * giving different IRQ status ...
9d8af78b 614 */
35d3fdd5
DB
615 irqstat = CMOS_READ(RTC_INTR_FLAGS);
616 rtc_control = CMOS_READ(RTC_CONTROL);
9d8af78b
BW
617 if (is_hpet_enabled())
618 irqstat = (unsigned long)irq & 0xF0;
998a0605
DB
619
620 /* If we were suspended, RTC_CONTROL may not be accurate since the
621 * bios may have cleared it.
622 */
623 if (!cmos_rtc.suspend_ctrl)
624 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
625 else
626 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
8a0bdfd7
DB
627
628 /* All Linux RTC alarms should be treated as if they were oneshot.
629 * Similar code may be needed in system wakeup paths, in case the
630 * alarm woke the system.
631 */
632 if (irqstat & RTC_AIE) {
998a0605 633 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
8a0bdfd7
DB
634 rtc_control &= ~RTC_AIE;
635 CMOS_WRITE(rtc_control, RTC_CONTROL);
35d3fdd5 636 hpet_mask_rtc_irq_bit(RTC_AIE);
8a0bdfd7
DB
637 CMOS_READ(RTC_INTR_FLAGS);
638 }
7be2c7c9
DB
639 spin_unlock(&rtc_lock);
640
bcd9b89c 641 if (is_intr(irqstat)) {
7be2c7c9
DB
642 rtc_update_irq(p, 1, irqstat);
643 return IRQ_HANDLED;
644 } else
645 return IRQ_NONE;
646}
647
41ac8df9 648#ifdef CONFIG_PNP
7be2c7c9
DB
649#define INITSECTION
650
651#else
7be2c7c9
DB
652#define INITSECTION __init
653#endif
654
655static int INITSECTION
656cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
657{
97a92e77 658 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
7be2c7c9
DB
659 int retval = 0;
660 unsigned char rtc_control;
e07e232c 661 unsigned address_space;
31632dbd 662 u32 flags = 0;
8b5b7958
AB
663 struct nvmem_config nvmem_cfg = {
664 .name = "cmos_nvram",
665 .word_size = 1,
666 .stride = 1,
667 .reg_read = cmos_nvram_read,
668 .reg_write = cmos_nvram_write,
669 .priv = &cmos_rtc,
670 };
7be2c7c9
DB
671
672 /* there can be only one ... */
673 if (cmos_rtc.dev)
674 return -EBUSY;
675
676 if (!ports)
677 return -ENODEV;
678
05440dfc
DB
679 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
680 *
681 * REVISIT non-x86 systems may instead use memory space resources
682 * (needing ioremap etc), not i/o space resources like this ...
683 */
31632dbd
MR
684 if (RTC_IOMAPPED)
685 ports = request_region(ports->start, resource_size(ports),
686 driver_name);
687 else
688 ports = request_mem_region(ports->start, resource_size(ports),
689 driver_name);
05440dfc
DB
690 if (!ports) {
691 dev_dbg(dev, "i/o registers already in use\n");
692 return -EBUSY;
693 }
694
7be2c7c9
DB
695 cmos_rtc.irq = rtc_irq;
696 cmos_rtc.iomem = ports;
697
e07e232c
DB
698 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
699 * driver did, but don't reject unknown configs. Old hardware
c8fc40cd
DB
700 * won't address 128 bytes. Newer chips have multiple banks,
701 * though they may not be listed in one I/O resource.
e07e232c
DB
702 */
703#if defined(CONFIG_ATARI)
704 address_space = 64;
95abd0df 705#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
8cb7c71b 706 || defined(__sparc__) || defined(__mips__) \
739d875d 707 || defined(__powerpc__)
e07e232c
DB
708 address_space = 128;
709#else
710#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
711 address_space = 128;
712#endif
c8fc40cd
DB
713 if (can_bank2 && ports->end > (ports->start + 1))
714 address_space = 256;
e07e232c 715
87ac84f4
DB
716 /* For ACPI systems extension info comes from the FADT. On others,
717 * board specific setup provides it as appropriate. Systems where
718 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
719 * some almost-clones) can provide hooks to make that behave.
e07e232c
DB
720 *
721 * Note that ACPI doesn't preclude putting these registers into
722 * "extended" areas of the chip, including some that we won't yet
723 * expect CMOS_READ and friends to handle.
7be2c7c9
DB
724 */
725 if (info) {
31632dbd
MR
726 if (info->flags)
727 flags = info->flags;
728 if (info->address_space)
729 address_space = info->address_space;
730
e07e232c
DB
731 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
732 cmos_rtc.day_alrm = info->rtc_day_alarm;
733 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
734 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
735 if (info->rtc_century && info->rtc_century < 128)
736 cmos_rtc.century = info->rtc_century;
87ac84f4
DB
737
738 if (info->wake_on && info->wake_off) {
739 cmos_rtc.wake_on = info->wake_on;
740 cmos_rtc.wake_off = info->wake_off;
741 }
7be2c7c9
DB
742 }
743
6ba8bcd4
DC
744 cmos_rtc.dev = dev;
745 dev_set_drvdata(dev, &cmos_rtc);
746
53d29e0a 747 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
05440dfc
DB
748 if (IS_ERR(cmos_rtc.rtc)) {
749 retval = PTR_ERR(cmos_rtc.rtc);
750 goto cleanup0;
751 }
7be2c7c9 752
d4afc76c 753 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
7be2c7c9
DB
754
755 spin_lock_irq(&rtc_lock);
756
31632dbd
MR
757 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
758 /* force periodic irq to CMOS reset default of 1024Hz;
759 *
760 * REVISIT it's been reported that at least one x86_64 ALI
761 * mobo doesn't use 32KHz here ... for portability we might
762 * need to do something about other clock frequencies.
763 */
764 cmos_rtc.rtc->irq_freq = 1024;
765 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
766 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
767 }
7be2c7c9 768
7e2a31da 769 /* disable irqs */
31632dbd
MR
770 if (is_valid_irq(rtc_irq))
771 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
35d3fdd5 772
7e2a31da 773 rtc_control = CMOS_READ(RTC_CONTROL);
7be2c7c9
DB
774
775 spin_unlock_irq(&rtc_lock);
776
5e8599d2 777 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
3804a89b 778 dev_warn(dev, "only 24-hr supported\n");
7be2c7c9
DB
779 retval = -ENXIO;
780 goto cleanup1;
781 }
782
970fc7f4
PA
783 hpet_rtc_timer_init();
784
9d8af78b
BW
785 if (is_valid_irq(rtc_irq)) {
786 irq_handler_t rtc_cmos_int_handler;
787
788 if (is_hpet_enabled()) {
9d8af78b 789 rtc_cmos_int_handler = hpet_rtc_interrupt;
24b34472
AM
790 retval = hpet_register_irq_handler(cmos_interrupt);
791 if (retval) {
970fc7f4 792 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
ee443357 793 dev_warn(dev, "hpet_register_irq_handler "
9d8af78b
BW
794 " failed in rtc_init().");
795 goto cleanup1;
796 }
797 } else
798 rtc_cmos_int_handler = cmos_interrupt;
799
800 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
079062b2 801 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
ab6a2d70 802 cmos_rtc.rtc);
9d8af78b
BW
803 if (retval < 0) {
804 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
805 goto cleanup1;
806 }
7be2c7c9
DB
807 }
808
53d29e0a 809 cmos_rtc.rtc->ops = &cmos_rtc_ops;
8b5b7958 810 cmos_rtc.rtc->nvram_old_abi = true;
53d29e0a
AB
811 retval = rtc_register_device(cmos_rtc.rtc);
812 if (retval)
e07e232c 813 goto cleanup2;
7be2c7c9 814
8b5b7958
AB
815 /* export at least the first block of NVRAM */
816 nvmem_cfg.size = address_space - NVRAM_OFFSET;
817 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
818 dev_err(dev, "nvmem registration failed\n");
819
820 dev_info(dev, "%s%s, %d bytes nvram%s\n",
821 !is_valid_irq(rtc_irq) ? "no alarms" :
822 cmos_rtc.mon_alrm ? "alarms up to one year" :
823 cmos_rtc.day_alrm ? "alarms up to one month" :
824 "alarms up to one day",
825 cmos_rtc.century ? ", y3k" : "",
826 nvmem_cfg.size,
827 is_hpet_enabled() ? ", hpet irqs" : "");
7be2c7c9
DB
828
829 return 0;
830
e07e232c
DB
831cleanup2:
832 if (is_valid_irq(rtc_irq))
833 free_irq(rtc_irq, cmos_rtc.rtc);
7be2c7c9 834cleanup1:
05440dfc 835 cmos_rtc.dev = NULL;
05440dfc 836cleanup0:
31632dbd
MR
837 if (RTC_IOMAPPED)
838 release_region(ports->start, resource_size(ports));
839 else
840 release_mem_region(ports->start, resource_size(ports));
7be2c7c9
DB
841 return retval;
842}
843
31632dbd 844static void cmos_do_shutdown(int rtc_irq)
7be2c7c9 845{
7be2c7c9 846 spin_lock_irq(&rtc_lock);
31632dbd
MR
847 if (is_valid_irq(rtc_irq))
848 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
7be2c7c9
DB
849 spin_unlock_irq(&rtc_lock);
850}
851
a3a0673b 852static void cmos_do_remove(struct device *dev)
7be2c7c9
DB
853{
854 struct cmos_rtc *cmos = dev_get_drvdata(dev);
05440dfc 855 struct resource *ports;
7be2c7c9 856
31632dbd 857 cmos_do_shutdown(cmos->irq);
7be2c7c9 858
9d8af78b 859 if (is_valid_irq(cmos->irq)) {
05440dfc 860 free_irq(cmos->irq, cmos->rtc);
9d8af78b
BW
861 hpet_unregister_irq_handler(cmos_interrupt);
862 }
7be2c7c9 863
05440dfc 864 cmos->rtc = NULL;
7be2c7c9 865
05440dfc 866 ports = cmos->iomem;
31632dbd
MR
867 if (RTC_IOMAPPED)
868 release_region(ports->start, resource_size(ports));
869 else
870 release_mem_region(ports->start, resource_size(ports));
05440dfc
DB
871 cmos->iomem = NULL;
872
873 cmos->dev = NULL;
7be2c7c9
DB
874}
875
88b8d33b
AH
876static int cmos_aie_poweroff(struct device *dev)
877{
878 struct cmos_rtc *cmos = dev_get_drvdata(dev);
879 struct rtc_time now;
880 time64_t t_now;
881 int retval = 0;
882 unsigned char rtc_control;
883
884 if (!cmos->alarm_expires)
885 return -EINVAL;
886
887 spin_lock_irq(&rtc_lock);
888 rtc_control = CMOS_READ(RTC_CONTROL);
889 spin_unlock_irq(&rtc_lock);
890
891 /* We only care about the situation where AIE is disabled. */
892 if (rtc_control & RTC_AIE)
893 return -EBUSY;
894
895 cmos_read_time(dev, &now);
896 t_now = rtc_tm_to_time64(&now);
897
898 /*
899 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
900 * automatically right after shutdown on some buggy boxes.
901 * This automatic rebooting issue won't happen when the alarm
902 * time is larger than now+1 seconds.
903 *
904 * If the alarm time is equal to now+1 seconds, the issue can be
905 * prevented by cancelling the alarm.
906 */
907 if (cmos->alarm_expires == t_now + 1) {
908 struct rtc_wkalrm alarm;
909
910 /* Cancel the AIE timer by configuring the past time. */
911 rtc_time64_to_tm(t_now - 1, &alarm.time);
912 alarm.enabled = 0;
913 retval = cmos_set_alarm(dev, &alarm);
914 } else if (cmos->alarm_expires > t_now + 1) {
915 retval = -EBUSY;
916 }
917
918 return retval;
919}
920
2fb08e6c 921static int cmos_suspend(struct device *dev)
7be2c7c9
DB
922{
923 struct cmos_rtc *cmos = dev_get_drvdata(dev);
bcd9b89c 924 unsigned char tmp;
7be2c7c9
DB
925
926 /* only the alarm might be a wakeup event source */
927 spin_lock_irq(&rtc_lock);
928 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
929 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
35d3fdd5 930 unsigned char mask;
bcd9b89c 931
74c4633d 932 if (device_may_wakeup(dev))
35d3fdd5 933 mask = RTC_IRQMASK & ~RTC_AIE;
7be2c7c9 934 else
35d3fdd5
DB
935 mask = RTC_IRQMASK;
936 tmp &= ~mask;
7be2c7c9 937 CMOS_WRITE(tmp, RTC_CONTROL);
e005715e 938 hpet_mask_rtc_irq_bit(mask);
35d3fdd5 939
7e2a31da 940 cmos_checkintr(cmos, tmp);
bcd9b89c 941 }
7be2c7c9
DB
942 spin_unlock_irq(&rtc_lock);
943
87ac84f4
DB
944 if (tmp & RTC_AIE) {
945 cmos->enabled_wake = 1;
946 if (cmos->wake_on)
947 cmos->wake_on(dev);
948 else
949 enable_irq_wake(cmos->irq);
950 }
7be2c7c9 951
68669d55
GM
952 cmos_read_alarm(dev, &cmos->saved_wkalrm);
953
ee443357 954 dev_dbg(dev, "suspend%s, ctrl %02x\n",
7be2c7c9
DB
955 (tmp & RTC_AIE) ? ", alarm may wake" : "",
956 tmp);
957
958 return 0;
959}
960
74c4633d
RW
961/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
962 * after a detour through G3 "mechanical off", although the ACPI spec
963 * says wakeup should only work from G1/S4 "hibernate". To most users,
964 * distinctions between S4 and S5 are pointless. So when the hardware
965 * allows, don't draw that distinction.
966 */
967static inline int cmos_poweroff(struct device *dev)
968{
00f7f90c
AB
969 if (!IS_ENABLED(CONFIG_PM))
970 return -ENOSYS;
971
2fb08e6c 972 return cmos_suspend(dev);
74c4633d
RW
973}
974
68669d55
GM
975static void cmos_check_wkalrm(struct device *dev)
976{
977 struct cmos_rtc *cmos = dev_get_drvdata(dev);
978 struct rtc_wkalrm current_alarm;
979 time64_t t_current_expires;
980 time64_t t_saved_expires;
981
982 cmos_read_alarm(dev, &current_alarm);
983 t_current_expires = rtc_tm_to_time64(&current_alarm.time);
984 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
985 if (t_current_expires != t_saved_expires ||
986 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
987 cmos_set_alarm(dev, &cmos->saved_wkalrm);
988 }
989}
990
983bf125
GM
991static void cmos_check_acpi_rtc_status(struct device *dev,
992 unsigned char *rtc_control);
993
00f7f90c 994static int __maybe_unused cmos_resume(struct device *dev)
7be2c7c9
DB
995{
996 struct cmos_rtc *cmos = dev_get_drvdata(dev);
998a0605
DB
997 unsigned char tmp;
998
999 if (cmos->enabled_wake) {
1000 if (cmos->wake_off)
1001 cmos->wake_off(dev);
1002 else
1003 disable_irq_wake(cmos->irq);
1004 cmos->enabled_wake = 0;
1005 }
7be2c7c9 1006
68669d55
GM
1007 /* The BIOS might have changed the alarm, restore it */
1008 cmos_check_wkalrm(dev);
1009
998a0605
DB
1010 spin_lock_irq(&rtc_lock);
1011 tmp = cmos->suspend_ctrl;
1012 cmos->suspend_ctrl = 0;
7be2c7c9 1013 /* re-enable any irqs previously active */
35d3fdd5
DB
1014 if (tmp & RTC_IRQMASK) {
1015 unsigned char mask;
7be2c7c9 1016
ebf8d6c8
DB
1017 if (device_may_wakeup(dev))
1018 hpet_rtc_timer_init();
1019
35d3fdd5
DB
1020 do {
1021 CMOS_WRITE(tmp, RTC_CONTROL);
1022 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1023
1024 mask = CMOS_READ(RTC_INTR_FLAGS);
1025 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
7e2a31da 1026 if (!is_hpet_enabled() || !is_intr(mask))
35d3fdd5
DB
1027 break;
1028
1029 /* force one-shot behavior if HPET blocked
1030 * the wake alarm's irq
1031 */
1032 rtc_update_irq(cmos->rtc, 1, mask);
1033 tmp &= ~RTC_AIE;
1034 hpet_mask_rtc_irq_bit(RTC_AIE);
1035 } while (mask & RTC_AIE);
983bf125
GM
1036
1037 if (tmp & RTC_AIE)
1038 cmos_check_acpi_rtc_status(dev, &tmp);
7be2c7c9 1039 }
998a0605 1040 spin_unlock_irq(&rtc_lock);
7be2c7c9 1041
ee443357 1042 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
7be2c7c9
DB
1043
1044 return 0;
1045}
1046
b5ada460
MW
1047static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1048
7be2c7c9
DB
1049/*----------------------------------------------------------------*/
1050
e07e232c
DB
1051/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1052 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1053 * probably list them in similar PNPBIOS tables; so PNP is more common.
1054 *
1055 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1056 * predate even PNPBIOS should set up platform_bus devices.
7be2c7c9
DB
1057 */
1058
a474aaed
BH
1059#ifdef CONFIG_ACPI
1060
1061#include <linux/acpi.h>
1062
a474aaed
BH
1063static u32 rtc_handler(void *context)
1064{
b2201e54 1065 struct device *dev = context;
983bf125
GM
1066 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1067 unsigned char rtc_control = 0;
1068 unsigned char rtc_intr;
368e21ae 1069 unsigned long flags;
983bf125 1070
368e21ae 1071 spin_lock_irqsave(&rtc_lock, flags);
983bf125
GM
1072 if (cmos_rtc.suspend_ctrl)
1073 rtc_control = CMOS_READ(RTC_CONTROL);
1074 if (rtc_control & RTC_AIE) {
1075 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1076 CMOS_WRITE(rtc_control, RTC_CONTROL);
1077 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1078 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1079 }
368e21ae 1080 spin_unlock_irqrestore(&rtc_lock, flags);
b2201e54 1081
967b08c2 1082 pm_wakeup_hard_event(dev);
a474aaed
BH
1083 acpi_clear_event(ACPI_EVENT_RTC);
1084 acpi_disable_event(ACPI_EVENT_RTC, 0);
1085 return ACPI_INTERRUPT_HANDLED;
1086}
1087
b2201e54 1088static inline void rtc_wake_setup(struct device *dev)
a474aaed 1089{
b2201e54 1090 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
a474aaed
BH
1091 /*
1092 * After the RTC handler is installed, the Fixed_RTC event should
1093 * be disabled. Only when the RTC alarm is set will it be enabled.
1094 */
1095 acpi_clear_event(ACPI_EVENT_RTC);
1096 acpi_disable_event(ACPI_EVENT_RTC, 0);
1097}
1098
1099static void rtc_wake_on(struct device *dev)
1100{
1101 acpi_clear_event(ACPI_EVENT_RTC);
1102 acpi_enable_event(ACPI_EVENT_RTC, 0);
1103}
1104
1105static void rtc_wake_off(struct device *dev)
1106{
1107 acpi_disable_event(ACPI_EVENT_RTC, 0);
1108}
a474aaed
BH
1109
1110/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1111 * its device node and pass extra config data. This helps its driver use
1112 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1113 * that this board's RTC is wakeup-capable (per ACPI spec).
1114 */
1115static struct cmos_rtc_board_info acpi_rtc_info;
1116
5a167f45 1117static void cmos_wake_setup(struct device *dev)
a474aaed
BH
1118{
1119 if (acpi_disabled)
1120 return;
1121
b2201e54 1122 rtc_wake_setup(dev);
a474aaed
BH
1123 acpi_rtc_info.wake_on = rtc_wake_on;
1124 acpi_rtc_info.wake_off = rtc_wake_off;
1125
1126 /* workaround bug in some ACPI tables */
1127 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1128 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1129 acpi_gbl_FADT.month_alarm);
1130 acpi_gbl_FADT.month_alarm = 0;
1131 }
1132
1133 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1134 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1135 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1136
1137 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1138 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1139 dev_info(dev, "RTC can wake from S4\n");
1140
1141 dev->platform_data = &acpi_rtc_info;
1142
1143 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1144 device_init_wakeup(dev, 1);
1145}
1146
983bf125
GM
1147static void cmos_check_acpi_rtc_status(struct device *dev,
1148 unsigned char *rtc_control)
1149{
1150 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1151 acpi_event_status rtc_status;
1152 acpi_status status;
1153
1154 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1155 return;
1156
1157 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1158 if (ACPI_FAILURE(status)) {
1159 dev_err(dev, "Could not get RTC status\n");
1160 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1161 unsigned char mask;
1162 *rtc_control &= ~RTC_AIE;
1163 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1164 mask = CMOS_READ(RTC_INTR_FLAGS);
1165 rtc_update_irq(cmos->rtc, 1, mask);
1166 }
1167}
1168
a474aaed
BH
1169#else
1170
5a167f45 1171static void cmos_wake_setup(struct device *dev)
a474aaed
BH
1172{
1173}
1174
983bf125
GM
1175static void cmos_check_acpi_rtc_status(struct device *dev,
1176 unsigned char *rtc_control)
1177{
1178}
1179
a474aaed
BH
1180#endif
1181
41ac8df9 1182#ifdef CONFIG_PNP
7be2c7c9
DB
1183
1184#include <linux/pnp.h>
1185
5a167f45 1186static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
7be2c7c9 1187{
a474aaed
BH
1188 cmos_wake_setup(&pnp->dev);
1189
a1e23a42
HG
1190 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1191 unsigned int irq = 0;
1192#ifdef CONFIG_X86
6cd8fa87
MG
1193 /* Some machines contain a PNP entry for the RTC, but
1194 * don't define the IRQ. It should always be safe to
a1e23a42 1195 * hardcode it on systems with a legacy PIC.
6cd8fa87 1196 */
a1e23a42
HG
1197 if (nr_legacy_irqs())
1198 irq = 8;
1199#endif
8766ad0c 1200 return cmos_do_probe(&pnp->dev,
a1e23a42
HG
1201 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1202 } else {
6cd8fa87 1203 return cmos_do_probe(&pnp->dev,
8766ad0c
BH
1204 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1205 pnp_irq(pnp, 0));
a1e23a42 1206 }
7be2c7c9
DB
1207}
1208
a3a0673b 1209static void cmos_pnp_remove(struct pnp_dev *pnp)
7be2c7c9
DB
1210{
1211 cmos_do_remove(&pnp->dev);
1212}
1213
004731b2 1214static void cmos_pnp_shutdown(struct pnp_dev *pnp)
74c4633d 1215{
31632dbd
MR
1216 struct device *dev = &pnp->dev;
1217 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1218
88b8d33b
AH
1219 if (system_state == SYSTEM_POWER_OFF) {
1220 int retval = cmos_poweroff(dev);
1221
1222 if (cmos_aie_poweroff(dev) < 0 && !retval)
1223 return;
1224 }
74c4633d 1225
31632dbd 1226 cmos_do_shutdown(cmos->irq);
74c4633d 1227}
7be2c7c9
DB
1228
1229static const struct pnp_device_id rtc_ids[] = {
1230 { .id = "PNP0b00", },
1231 { .id = "PNP0b01", },
1232 { .id = "PNP0b02", },
1233 { },
1234};
1235MODULE_DEVICE_TABLE(pnp, rtc_ids);
1236
1237static struct pnp_driver cmos_pnp_driver = {
1238 .name = (char *) driver_name,
1239 .id_table = rtc_ids,
1240 .probe = cmos_pnp_probe,
a3a0673b 1241 .remove = cmos_pnp_remove,
004731b2 1242 .shutdown = cmos_pnp_shutdown,
7be2c7c9
DB
1243
1244 /* flag ensures resume() gets called, and stops syslog spam */
1245 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
a8a3808b
SK
1246 .driver = {
1247 .pm = &cmos_pm_ops,
1248 },
7be2c7c9
DB
1249};
1250
1da2e3d6 1251#endif /* CONFIG_PNP */
7be2c7c9 1252
3bcbaf6e
SAS
1253#ifdef CONFIG_OF
1254static const struct of_device_id of_cmos_match[] = {
1255 {
1256 .compatible = "motorola,mc146818",
1257 },
1258 { },
1259};
1260MODULE_DEVICE_TABLE(of, of_cmos_match);
1261
1262static __init void cmos_of_init(struct platform_device *pdev)
1263{
1264 struct device_node *node = pdev->dev.of_node;
3bcbaf6e
SAS
1265 const __be32 *val;
1266
1267 if (!node)
1268 return;
1269
1270 val = of_get_property(node, "ctrl-reg", NULL);
1271 if (val)
1272 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1273
1274 val = of_get_property(node, "freq-reg", NULL);
1275 if (val)
1276 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
3bcbaf6e
SAS
1277}
1278#else
1279static inline void cmos_of_init(struct platform_device *pdev) {}
3bcbaf6e 1280#endif
7be2c7c9
DB
1281/*----------------------------------------------------------------*/
1282
41ac8df9 1283/* Platform setup should have set up an RTC device, when PNP is
bcd9b89c 1284 * unavailable ... this could happen even on (older) PCs.
7be2c7c9
DB
1285 */
1286
1287static int __init cmos_platform_probe(struct platform_device *pdev)
1288{
31632dbd
MR
1289 struct resource *resource;
1290 int irq;
1291
3bcbaf6e 1292 cmos_of_init(pdev);
a474aaed 1293 cmos_wake_setup(&pdev->dev);
31632dbd
MR
1294
1295 if (RTC_IOMAPPED)
1296 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1297 else
1298 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1299 irq = platform_get_irq(pdev, 0);
1300 if (irq < 0)
1301 irq = -1;
1302
1303 return cmos_do_probe(&pdev->dev, resource, irq);
7be2c7c9
DB
1304}
1305
a3a0673b 1306static int cmos_platform_remove(struct platform_device *pdev)
7be2c7c9
DB
1307{
1308 cmos_do_remove(&pdev->dev);
1309 return 0;
1310}
1311
1312static void cmos_platform_shutdown(struct platform_device *pdev)
1313{
31632dbd
MR
1314 struct device *dev = &pdev->dev;
1315 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1316
88b8d33b
AH
1317 if (system_state == SYSTEM_POWER_OFF) {
1318 int retval = cmos_poweroff(dev);
1319
1320 if (cmos_aie_poweroff(dev) < 0 && !retval)
1321 return;
1322 }
74c4633d 1323
31632dbd 1324 cmos_do_shutdown(cmos->irq);
7be2c7c9
DB
1325}
1326
ad28a07b
KS
1327/* work with hotplug and coldplug */
1328MODULE_ALIAS("platform:rtc_cmos");
1329
7be2c7c9 1330static struct platform_driver cmos_platform_driver = {
a3a0673b 1331 .remove = cmos_platform_remove,
7be2c7c9
DB
1332 .shutdown = cmos_platform_shutdown,
1333 .driver = {
c823a202 1334 .name = driver_name,
2fb08e6c 1335 .pm = &cmos_pm_ops,
c8a6046e 1336 .of_match_table = of_match_ptr(of_cmos_match),
7be2c7c9
DB
1337 }
1338};
1339
65909814
TLSC
1340#ifdef CONFIG_PNP
1341static bool pnp_driver_registered;
1342#endif
1343static bool platform_driver_registered;
1344
7be2c7c9
DB
1345static int __init cmos_init(void)
1346{
72f22b1e
BH
1347 int retval = 0;
1348
1da2e3d6 1349#ifdef CONFIG_PNP
65909814
TLSC
1350 retval = pnp_register_driver(&cmos_pnp_driver);
1351 if (retval == 0)
1352 pnp_driver_registered = true;
72f22b1e
BH
1353#endif
1354
65909814 1355 if (!cmos_rtc.dev) {
72f22b1e
BH
1356 retval = platform_driver_probe(&cmos_platform_driver,
1357 cmos_platform_probe);
65909814
TLSC
1358 if (retval == 0)
1359 platform_driver_registered = true;
1360 }
72f22b1e
BH
1361
1362 if (retval == 0)
1363 return 0;
1364
1365#ifdef CONFIG_PNP
65909814
TLSC
1366 if (pnp_driver_registered)
1367 pnp_unregister_driver(&cmos_pnp_driver);
72f22b1e
BH
1368#endif
1369 return retval;
7be2c7c9
DB
1370}
1371module_init(cmos_init);
1372
1373static void __exit cmos_exit(void)
1374{
1da2e3d6 1375#ifdef CONFIG_PNP
65909814
TLSC
1376 if (pnp_driver_registered)
1377 pnp_unregister_driver(&cmos_pnp_driver);
72f22b1e 1378#endif
65909814
TLSC
1379 if (platform_driver_registered)
1380 platform_driver_unregister(&cmos_platform_driver);
7be2c7c9
DB
1381}
1382module_exit(cmos_exit);
1383
1384
7be2c7c9
DB
1385MODULE_AUTHOR("David Brownell");
1386MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1387MODULE_LICENSE("GPL");