Merge tag 'probes-fixes-v6.16-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / rtc / interface.c
CommitLineData
cdf7545a 1// SPDX-License-Identifier: GPL-2.0
0c86edc0
AZ
2/*
3 * RTC subsystem, interface functions
4 *
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 *
8 * based on arch/arm/common/rtctime.c
cdf7545a 9 */
0c86edc0
AZ
10
11#include <linux/rtc.h>
d43c36dc 12#include <linux/sched.h>
2113852b 13#include <linux/module.h>
97144c67 14#include <linux/log2.h>
6610e089 15#include <linux/workqueue.h>
0c86edc0 16
29a1f599
BW
17#define CREATE_TRACE_POINTS
18#include <trace/events/rtc.h>
19
aa0be0f4
JS
20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
98951564
BW
23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
24{
25 time64_t secs;
26
27 if (!rtc->offset_secs)
28 return;
29
30 secs = rtc_tm_to_time64(tm);
31
32 /*
33 * Since the reading time values from RTC device are always in the RTC
34 * original valid range, but we need to skip the overlapped region
35 * between expanded range and original range, which is no need to add
36 * the offset.
37 */
38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 (rtc->start_secs < rtc->range_min &&
40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 return;
42
43 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
44}
45
46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
47{
48 time64_t secs;
49
50 if (!rtc->offset_secs)
51 return;
52
53 secs = rtc_tm_to_time64(tm);
54
55 /*
56 * If the setting time values are in the valid range of RTC hardware
57 * device, then no need to subtract the offset when setting time to RTC
58 * device. Otherwise we need to subtract the offset to make the time
59 * values are valid for RTC hardware device.
60 */
61 if (secs >= rtc->range_min && secs <= rtc->range_max)
62 return;
63
64 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
65}
66
4c4e5df1
BW
67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
68{
69 if (rtc->range_min != rtc->range_max) {
70 time64_t time = rtc_tm_to_time64(tm);
98951564
BW
71 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 rtc->range_min;
eaa6ef56 73 timeu64_t range_max = rtc->set_start_time ?
98951564
BW
74 (rtc->start_secs + rtc->range_max - rtc->range_min) :
75 rtc->range_max;
4c4e5df1 76
98951564 77 if (time < range_min || time > range_max)
4c4e5df1
BW
78 return -ERANGE;
79 }
80
81 return 0;
82}
83
6610e089 84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
0c86edc0
AZ
85{
86 int err;
606cc43c
AB
87
88 if (!rtc->ops) {
0c86edc0 89 err = -ENODEV;
606cc43c 90 } else if (!rtc->ops->read_time) {
0c86edc0 91 err = -EINVAL;
606cc43c 92 } else {
0c86edc0 93 memset(tm, 0, sizeof(struct rtc_time));
cd966209 94 err = rtc->ops->read_time(rtc->dev.parent, tm);
16682c86 95 if (err < 0) {
d0bddb51
AK
96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 err);
16682c86
HG
98 return err;
99 }
100
98951564
BW
101 rtc_add_offset(rtc, tm);
102
16682c86
HG
103 err = rtc_valid_tm(tm);
104 if (err < 0)
d0bddb51 105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
0c86edc0 106 }
6610e089
JS
107 return err;
108}
109
110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
111{
112 int err;
0c86edc0 113
6610e089
JS
114 err = mutex_lock_interruptible(&rtc->ops_lock);
115 if (err)
116 return err;
117
118 err = __rtc_read_time(rtc, tm);
0c86edc0 119 mutex_unlock(&rtc->ops_lock);
29a1f599
BW
120
121 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
0c86edc0
AZ
122 return err;
123}
124EXPORT_SYMBOL_GPL(rtc_read_time);
125
ab6a2d70 126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
0c86edc0 127{
7e7c005b 128 int err, uie;
0c86edc0
AZ
129
130 err = rtc_valid_tm(tm);
131 if (err != 0)
132 return err;
133
4c4e5df1
BW
134 err = rtc_valid_range(rtc, tm);
135 if (err)
136 return err;
71db049e 137
98951564
BW
138 rtc_subtract_offset(rtc, tm);
139
7e7c005b
AB
140#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
141 uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
142#else
143 uie = rtc->uie_rtctimer.enabled;
144#endif
145 if (uie) {
146 err = rtc_update_irq_enable(rtc, 0);
147 if (err)
148 return err;
149 }
150
0c86edc0
AZ
151 err = mutex_lock_interruptible(&rtc->ops_lock);
152 if (err)
b68bb263 153 return err;
0c86edc0
AZ
154
155 if (!rtc->ops)
156 err = -ENODEV;
bbccf83f 157 else if (rtc->ops->set_time)
cd966209 158 err = rtc->ops->set_time(rtc->dev.parent, tm);
606cc43c 159 else
bbccf83f 160 err = -EINVAL;
0c86edc0 161
14d0e347 162 pm_stay_awake(rtc->dev.parent);
0c86edc0 163 mutex_unlock(&rtc->ops_lock);
5f9679d2
N
164 /* A timer might have just expired */
165 schedule_work(&rtc->irqwork);
29a1f599 166
7e7c005b
AB
167 if (uie) {
168 err = rtc_update_irq_enable(rtc, 1);
169 if (err)
170 return err;
171 }
172
29a1f599 173 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
0c86edc0
AZ
174 return err;
175}
176EXPORT_SYMBOL_GPL(rtc_set_time);
177
606cc43c
AB
178static int rtc_read_alarm_internal(struct rtc_device *rtc,
179 struct rtc_wkalrm *alarm)
f44f7f96
JS
180{
181 int err;
182
183 err = mutex_lock_interruptible(&rtc->ops_lock);
184 if (err)
185 return err;
186
606cc43c 187 if (!rtc->ops) {
f44f7f96 188 err = -ENODEV;
7ae41220 189 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
f44f7f96 190 err = -EINVAL;
606cc43c 191 } else {
d68778b8
UKK
192 alarm->enabled = 0;
193 alarm->pending = 0;
194 alarm->time.tm_sec = -1;
195 alarm->time.tm_min = -1;
196 alarm->time.tm_hour = -1;
197 alarm->time.tm_mday = -1;
198 alarm->time.tm_mon = -1;
199 alarm->time.tm_year = -1;
200 alarm->time.tm_wday = -1;
201 alarm->time.tm_yday = -1;
202 alarm->time.tm_isdst = -1;
f44f7f96
JS
203 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
204 }
205
206 mutex_unlock(&rtc->ops_lock);
29a1f599 207
d8a0f6af 208 trace_rtc_read_alarm(err?0:rtc_tm_to_time64(&alarm->time), err);
f44f7f96
JS
209 return err;
210}
211
212int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
213{
214 int err;
215 struct rtc_time before, now;
216 int first_time = 1;
bc10aa93 217 time64_t t_now, t_alm;
f44f7f96 218 enum { none, day, month, year } missing = none;
606cc43c 219 unsigned int days;
f44f7f96
JS
220
221 /* The lower level RTC driver may return -1 in some fields,
222 * creating invalid alarm->time values, for reasons like:
223 *
224 * - The hardware may not be capable of filling them in;
225 * many alarms match only on time-of-day fields, not
226 * day/month/year calendar data.
227 *
228 * - Some hardware uses illegal values as "wildcard" match
229 * values, which non-Linux firmware (like a BIOS) may try
230 * to set up as e.g. "alarm 15 minutes after each hour".
231 * Linux uses only oneshot alarms.
232 *
233 * When we see that here, we deal with it by using values from
234 * a current RTC timestamp for any missing (-1) values. The
235 * RTC driver prevents "periodic alarm" modes.
236 *
237 * But this can be racey, because some fields of the RTC timestamp
238 * may have wrapped in the interval since we read the RTC alarm,
239 * which would lead to us inserting inconsistent values in place
240 * of the -1 fields.
241 *
242 * Reading the alarm and timestamp in the reverse sequence
243 * would have the same race condition, and not solve the issue.
244 *
245 * So, we must first read the RTC timestamp,
246 * then read the RTC alarm value,
247 * and then read a second RTC timestamp.
248 *
249 * If any fields of the second timestamp have changed
250 * when compared with the first timestamp, then we know
251 * our timestamp may be inconsistent with that used by
252 * the low-level rtc_read_alarm_internal() function.
253 *
254 * So, when the two timestamps disagree, we just loop and do
255 * the process again to get a fully consistent set of values.
256 *
257 * This could all instead be done in the lower level driver,
258 * but since more than one lower level RTC implementation needs it,
b9354487 259 * then it's probably best to do it here instead of there..
f44f7f96
JS
260 */
261
262 /* Get the "before" timestamp */
263 err = rtc_read_time(rtc, &before);
264 if (err < 0)
265 return err;
266 do {
267 if (!first_time)
268 memcpy(&before, &now, sizeof(struct rtc_time));
269 first_time = 0;
270
271 /* get the RTC alarm values, which may be incomplete */
272 err = rtc_read_alarm_internal(rtc, alarm);
273 if (err)
274 return err;
275
276 /* full-function RTCs won't have such missing fields */
463927a8
CB
277 err = rtc_valid_tm(&alarm->time);
278 if (!err)
279 goto done;
f44f7f96
JS
280
281 /* get the "after" timestamp, to detect wrapped fields */
282 err = rtc_read_time(rtc, &now);
283 if (err < 0)
284 return err;
285
286 /* note that tm_sec is a "don't care" value here: */
606cc43c
AB
287 } while (before.tm_min != now.tm_min ||
288 before.tm_hour != now.tm_hour ||
289 before.tm_mon != now.tm_mon ||
290 before.tm_year != now.tm_year);
f44f7f96
JS
291
292 /* Fill in the missing alarm fields using the timestamp; we
293 * know there's at least one since alarm->time is invalid.
294 */
295 if (alarm->time.tm_sec == -1)
296 alarm->time.tm_sec = now.tm_sec;
297 if (alarm->time.tm_min == -1)
298 alarm->time.tm_min = now.tm_min;
299 if (alarm->time.tm_hour == -1)
300 alarm->time.tm_hour = now.tm_hour;
301
302 /* For simplicity, only support date rollover for now */
e74a8f2e 303 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
f44f7f96
JS
304 alarm->time.tm_mday = now.tm_mday;
305 missing = day;
306 }
606cc43c 307 if ((unsigned int)alarm->time.tm_mon >= 12) {
f44f7f96
JS
308 alarm->time.tm_mon = now.tm_mon;
309 if (missing == none)
310 missing = month;
311 }
312 if (alarm->time.tm_year == -1) {
313 alarm->time.tm_year = now.tm_year;
314 if (missing == none)
315 missing = year;
316 }
317
da96aea0
VJ
318 /* Can't proceed if alarm is still invalid after replacing
319 * missing fields.
320 */
321 err = rtc_valid_tm(&alarm->time);
322 if (err)
323 goto done;
324
f44f7f96 325 /* with luck, no rollover is needed */
bc10aa93
XP
326 t_now = rtc_tm_to_time64(&now);
327 t_alm = rtc_tm_to_time64(&alarm->time);
f44f7f96
JS
328 if (t_now < t_alm)
329 goto done;
330
331 switch (missing) {
f44f7f96
JS
332 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
333 * that will trigger at 5am will do so at 5am Tuesday, which
334 * could also be in the next month or year. This is a common
335 * case, especially for PCs.
336 */
337 case day:
338 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
339 t_alm += 24 * 60 * 60;
bc10aa93 340 rtc_time64_to_tm(t_alm, &alarm->time);
f44f7f96
JS
341 break;
342
343 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
344 * be next month. An alarm matching on the 30th, 29th, or 28th
345 * may end up in the month after that! Many newer PCs support
346 * this type of alarm.
347 */
348 case month:
349 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
350 do {
606cc43c 351 if (alarm->time.tm_mon < 11) {
f44f7f96 352 alarm->time.tm_mon++;
606cc43c 353 } else {
f44f7f96
JS
354 alarm->time.tm_mon = 0;
355 alarm->time.tm_year++;
356 }
357 days = rtc_month_days(alarm->time.tm_mon,
606cc43c 358 alarm->time.tm_year);
f44f7f96
JS
359 } while (days < alarm->time.tm_mday);
360 break;
361
362 /* Year rollover ... easy except for leap years! */
363 case year:
364 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
365 do {
366 alarm->time.tm_year++;
606cc43c
AB
367 } while (!is_leap_year(alarm->time.tm_year + 1900) &&
368 rtc_valid_tm(&alarm->time) != 0);
f44f7f96
JS
369 break;
370
371 default:
372 dev_warn(&rtc->dev, "alarm rollover not handled\n");
373 }
374
ee1d9014
AN
375 err = rtc_valid_tm(&alarm->time);
376
da96aea0 377done:
348c11a7 378 if (err && alarm->enabled)
606cc43c
AB
379 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
380 &alarm->time);
463927a8
CB
381 else
382 rtc_add_offset(rtc, &alarm->time);
ee1d9014
AN
383
384 return err;
f44f7f96
JS
385}
386
6610e089 387int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
0c86edc0
AZ
388{
389 int err;
0c86edc0
AZ
390
391 err = mutex_lock_interruptible(&rtc->ops_lock);
392 if (err)
b68bb263 393 return err;
606cc43c 394 if (!rtc->ops) {
d5553a55 395 err = -ENODEV;
a783c962 396 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) {
d5553a55 397 err = -EINVAL;
606cc43c 398 } else {
d5553a55
JS
399 memset(alarm, 0, sizeof(struct rtc_wkalrm));
400 alarm->enabled = rtc->aie_timer.enabled;
6610e089 401 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
d5553a55 402 }
0c86edc0 403 mutex_unlock(&rtc->ops_lock);
6610e089 404
29a1f599 405 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
d5553a55 406 return err;
0c86edc0 407}
6610e089 408EXPORT_SYMBOL_GPL(rtc_read_alarm);
0e36a9a4 409
d576fe49 410static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
0e36a9a4 411{
6610e089 412 struct rtc_time tm;
bc10aa93 413 time64_t now, scheduled;
0e36a9a4 414 int err;
0e36a9a4 415
6610e089
JS
416 err = rtc_valid_tm(&alarm->time);
417 if (err)
0e36a9a4 418 return err;
98951564 419
bc10aa93 420 scheduled = rtc_tm_to_time64(&alarm->time);
a01cc657 421
6610e089
JS
422 /* Make sure we're not setting alarms in the past */
423 err = __rtc_read_time(rtc, &tm);
ca6dc2da
HG
424 if (err)
425 return err;
bc10aa93 426 now = rtc_tm_to_time64(&tm);
d87f741d 427
6610e089
JS
428 if (scheduled <= now)
429 return -ETIME;
430 /*
431 * XXX - We just checked to make sure the alarm time is not
432 * in the past, but there is still a race window where if
433 * the is alarm set for the next second and the second ticks
434 * over right here, before we set the alarm.
a01cc657 435 */
a01cc657 436
fd6792bb
AB
437 rtc_subtract_offset(rtc, &alarm->time);
438
157e8bf8
LT
439 if (!rtc->ops)
440 err = -ENODEV;
7ae41220 441 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
157e8bf8
LT
442 err = -EINVAL;
443 else
444 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
445
29a1f599 446 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
157e8bf8 447 return err;
0e36a9a4 448}
0c86edc0 449
ab6a2d70 450int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
0c86edc0 451{
d87f741d 452 ktime_t alarm_time;
0c86edc0 453 int err;
0c86edc0 454
abfdff44
AB
455 if (!rtc->ops)
456 return -ENODEV;
7ae41220 457 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
abfdff44
AB
458 return -EINVAL;
459
f8245c26
DB
460 err = rtc_valid_tm(&alarm->time);
461 if (err != 0)
462 return err;
463
4c4e5df1
BW
464 err = rtc_valid_range(rtc, &alarm->time);
465 if (err)
466 return err;
71db049e 467
0c86edc0
AZ
468 err = mutex_lock_interruptible(&rtc->ops_lock);
469 if (err)
b68bb263 470 return err;
3ff2e13c 471 if (rtc->aie_timer.enabled)
96c8f06a 472 rtc_timer_remove(rtc, &rtc->aie_timer);
3ff2e13c 473
d87f741d
AB
474 alarm_time = rtc_tm_to_ktime(alarm->time);
475 /*
476 * Round down so we never miss a deadline, checking for past deadline is
477 * done in __rtc_set_alarm
478 */
479 if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features))
480 alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC);
481
482 rtc->aie_timer.node.expires = alarm_time;
8b0e1953 483 rtc->aie_timer.period = 0;
3ff2e13c 484 if (alarm->enabled)
aa0be0f4 485 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
3ff2e13c 486
0c86edc0 487 mutex_unlock(&rtc->ops_lock);
98951564 488
aa0be0f4 489 return err;
0c86edc0
AZ
490}
491EXPORT_SYMBOL_GPL(rtc_set_alarm);
492
f6d5b331
JS
493/* Called once per device from rtc_device_register */
494int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
495{
496 int err;
bd729d72 497 struct rtc_time now;
f6d5b331
JS
498
499 err = rtc_valid_tm(&alarm->time);
500 if (err != 0)
501 return err;
502
bd729d72
JS
503 err = rtc_read_time(rtc, &now);
504 if (err)
505 return err;
506
f6d5b331
JS
507 err = mutex_lock_interruptible(&rtc->ops_lock);
508 if (err)
509 return err;
510
511 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
8b0e1953 512 rtc->aie_timer.period = 0;
bd729d72 513
6785b3b6 514 /* Alarm has to be enabled & in the future for us to enqueue it */
2456e855
TG
515 if (alarm->enabled && (rtc_tm_to_ktime(now) <
516 rtc->aie_timer.node.expires)) {
f6d5b331
JS
517 rtc->aie_timer.enabled = 1;
518 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
29a1f599 519 trace_rtc_timer_enqueue(&rtc->aie_timer);
f6d5b331
JS
520 }
521 mutex_unlock(&rtc->ops_lock);
522 return err;
523}
524EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
525
099e6576
AZ
526int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
527{
606cc43c
AB
528 int err;
529
530 err = mutex_lock_interruptible(&rtc->ops_lock);
099e6576
AZ
531 if (err)
532 return err;
533
6610e089 534 if (rtc->aie_timer.enabled != enabled) {
aa0be0f4
JS
535 if (enabled)
536 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
537 else
96c8f06a 538 rtc_timer_remove(rtc, &rtc->aie_timer);
6610e089
JS
539 }
540
aa0be0f4 541 if (err)
516373b8
UKK
542 /* nothing */;
543 else if (!rtc->ops)
099e6576 544 err = -ENODEV;
7ae41220 545 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
099e6576
AZ
546 err = -EINVAL;
547 else
548 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
549
550 mutex_unlock(&rtc->ops_lock);
29a1f599
BW
551
552 trace_rtc_alarm_irq_enable(enabled, err);
099e6576
AZ
553 return err;
554}
555EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
556
557int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
558{
c55c3a51 559 int err;
606cc43c
AB
560
561 err = mutex_lock_interruptible(&rtc->ops_lock);
099e6576
AZ
562 if (err)
563 return err;
564
456d66ec
JS
565#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
566 if (enabled == 0 && rtc->uie_irq_active) {
567 mutex_unlock(&rtc->ops_lock);
568 return rtc_dev_update_irq_enable_emul(rtc, 0);
569 }
570#endif
6610e089
JS
571 /* make sure we're changing state */
572 if (rtc->uie_rtctimer.enabled == enabled)
573 goto out;
574
adb17a05
AB
575 if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) ||
576 !test_bit(RTC_FEATURE_ALARM, rtc->features)) {
c55c3a51
AB
577 mutex_unlock(&rtc->ops_lock);
578#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
579 return rtc_dev_update_irq_enable_emul(rtc, enabled);
580#else
581 return -EINVAL;
582#endif
4a649903
JS
583 }
584
6610e089
JS
585 if (enabled) {
586 struct rtc_time tm;
587 ktime_t now, onesec;
588
c55c3a51
AB
589 err = __rtc_read_time(rtc, &tm);
590 if (err)
3e74ddaa 591 goto out;
6610e089
JS
592 onesec = ktime_set(1, 0);
593 now = rtc_tm_to_ktime(tm);
594 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
595 rtc->uie_rtctimer.period = ktime_set(1, 0);
aa0be0f4 596 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
606cc43c 597 } else {
96c8f06a 598 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
606cc43c 599 }
099e6576 600
6610e089 601out:
099e6576 602 mutex_unlock(&rtc->ops_lock);
3e74ddaa 603
099e6576
AZ
604 return err;
605}
606EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
607
d728b1e6 608/**
6610e089
JS
609 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
610 * @rtc: pointer to the rtc device
55dcf7a2
AB
611 * @num: number of occurence of the event
612 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
6610e089
JS
613 *
614 * This function is called when an AIE, UIE or PIE mode interrupt
25985edc 615 * has occurred (or been emulated).
6610e089 616 *
d728b1e6 617 */
456d66ec 618void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
0c86edc0 619{
e6229bec
AN
620 unsigned long flags;
621
6610e089 622 /* mark one irq of the appropriate mode */
e6229bec 623 spin_lock_irqsave(&rtc->irq_lock, flags);
606cc43c 624 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
e6229bec 625 spin_unlock_irqrestore(&rtc->irq_lock, flags);
0c86edc0 626
0c86edc0
AZ
627 wake_up_interruptible(&rtc->irq_queue);
628 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
629}
6610e089 630
6610e089
JS
631/**
632 * rtc_aie_update_irq - AIE mode rtctimer hook
9a032011 633 * @rtc: pointer to the rtc_device
6610e089
JS
634 *
635 * This functions is called when the aie_timer expires.
636 */
9a032011 637void rtc_aie_update_irq(struct rtc_device *rtc)
6610e089 638{
6610e089
JS
639 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
640}
641
6610e089
JS
642/**
643 * rtc_uie_update_irq - UIE mode rtctimer hook
9a032011 644 * @rtc: pointer to the rtc_device
6610e089
JS
645 *
646 * This functions is called when the uie_timer expires.
647 */
9a032011 648void rtc_uie_update_irq(struct rtc_device *rtc)
6610e089 649{
6610e089
JS
650 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
651}
652
6610e089
JS
653/**
654 * rtc_pie_update_irq - PIE mode hrtimer hook
655 * @timer: pointer to the pie mode hrtimer
656 *
657 * This function is used to emulate PIE mode interrupts
658 * using an hrtimer. This function is called when the periodic
659 * hrtimer expires.
660 */
661enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
662{
663 struct rtc_device *rtc;
664 ktime_t period;
3126790d 665 u64 count;
606cc43c 666
6610e089
JS
667 rtc = container_of(timer, struct rtc_device, pie_timer);
668
8b0e1953 669 period = NSEC_PER_SEC / rtc->irq_freq;
6610e089
JS
670 count = hrtimer_forward_now(timer, period);
671
672 rtc_handle_legacy_irq(rtc, count, RTC_PF);
673
674 return HRTIMER_RESTART;
675}
676
677/**
678 * rtc_update_irq - Triggered when a RTC interrupt occurs.
679 * @rtc: the rtc device
680 * @num: how many irqs are being reported (usually one)
681 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
682 * Context: any
683 */
684void rtc_update_irq(struct rtc_device *rtc,
606cc43c 685 unsigned long num, unsigned long events)
6610e089 686{
e7cba884 687 if (IS_ERR_OR_NULL(rtc))
131c9cc8
AZ
688 return;
689
7523ceed 690 pm_stay_awake(rtc->dev.parent);
6610e089
JS
691 schedule_work(&rtc->irqwork);
692}
0c86edc0
AZ
693EXPORT_SYMBOL_GPL(rtc_update_irq);
694
9f3b795a 695struct rtc_device *rtc_class_open(const char *name)
0c86edc0 696{
cd966209 697 struct device *dev;
ab6a2d70 698 struct rtc_device *rtc = NULL;
0c86edc0 699
6b6ca096 700 dev = class_find_device_by_name(&rtc_class, name);
71da8905
DY
701 if (dev)
702 rtc = to_rtc_device(dev);
0c86edc0 703
ab6a2d70
DB
704 if (rtc) {
705 if (!try_module_get(rtc->owner)) {
cd966209 706 put_device(dev);
ab6a2d70
DB
707 rtc = NULL;
708 }
0c86edc0 709 }
0c86edc0 710
ab6a2d70 711 return rtc;
0c86edc0
AZ
712}
713EXPORT_SYMBOL_GPL(rtc_class_open);
714
ab6a2d70 715void rtc_class_close(struct rtc_device *rtc)
0c86edc0 716{
ab6a2d70 717 module_put(rtc->owner);
cd966209 718 put_device(&rtc->dev);
0c86edc0
AZ
719}
720EXPORT_SYMBOL_GPL(rtc_class_close);
721
3c8bb90e
TG
722static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
723{
724 /*
725 * We always cancel the timer here first, because otherwise
726 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
727 * when we manage to start the timer before the callback
728 * returns HRTIMER_RESTART.
729 *
730 * We cannot use hrtimer_cancel() here as a running callback
731 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
732 * would spin forever.
733 */
734 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
735 return -1;
736
737 if (enabled) {
8b0e1953 738 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
3c8bb90e
TG
739
740 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
741 }
742 return 0;
743}
744
97144c67
DB
745/**
746 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
747 * @rtc: the rtc device
97144c67
DB
748 * @enabled: true to enable periodic IRQs
749 * Context: any
750 *
751 * Note that rtc_irq_set_freq() should previously have been used to
acecb3ad 752 * specify the desired frequency of periodic IRQ.
97144c67 753 */
8719d3c9 754int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
0c86edc0
AZ
755{
756 int err = 0;
0c86edc0 757
acecb3ad
AB
758 while (rtc_update_hrtimer(rtc, enabled) < 0)
759 cpu_relax();
760
761 rtc->pie_enabled = enabled;
29a1f599
BW
762
763 trace_rtc_irq_set_state(enabled, err);
0c86edc0
AZ
764 return err;
765}
0c86edc0 766
97144c67
DB
767/**
768 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
769 * @rtc: the rtc device
acecb3ad 770 * @freq: positive frequency
97144c67
DB
771 * Context: any
772 *
773 * Note that rtc_irq_set_state() is used to enable or disable the
774 * periodic IRQs.
775 */
8719d3c9 776int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
0c86edc0 777{
56f10c63 778 int err = 0;
0c86edc0 779
6e7a333e 780 if (freq <= 0 || freq > RTC_MAX_FREQ)
83a06bf5 781 return -EINVAL;
acecb3ad
AB
782
783 rtc->irq_freq = freq;
784 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
785 cpu_relax();
29a1f599
BW
786
787 trace_rtc_irq_set_freq(freq, err);
0c86edc0
AZ
788 return err;
789}
6610e089
JS
790
791/**
96c8f06a 792 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
55dcf7a2
AB
793 * @rtc: rtc device
794 * @timer: timer being added.
6610e089
JS
795 *
796 * Enqueues a timer onto the rtc devices timerqueue and sets
797 * the next alarm event appropriately.
798 *
aa0be0f4
JS
799 * Sets the enabled bit on the added timer.
800 *
6610e089
JS
801 * Must hold ops_lock for proper serialization of timerqueue
802 */
aa0be0f4 803static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
6610e089 804{
2b2f5ff0
CIK
805 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
806 struct rtc_time tm;
807 ktime_t now;
915593a7
TR
808 int err;
809
810 err = __rtc_read_time(rtc, &tm);
811 if (err)
812 return err;
2b2f5ff0 813
aa0be0f4 814 timer->enabled = 1;
2b2f5ff0
CIK
815 now = rtc_tm_to_ktime(tm);
816
817 /* Skip over expired timers */
818 while (next) {
2456e855 819 if (next->expires >= now)
2b2f5ff0
CIK
820 break;
821 next = timerqueue_iterate_next(next);
822 }
823
6610e089 824 timerqueue_add(&rtc->timerqueue, &timer->node);
29a1f599 825 trace_rtc_timer_enqueue(timer);
74717b28 826 if (!next || ktime_before(timer->node.expires, next->expires)) {
6610e089 827 struct rtc_wkalrm alarm;
606cc43c 828
6610e089
JS
829 alarm.time = rtc_ktime_to_tm(timer->node.expires);
830 alarm.enabled = 1;
831 err = __rtc_set_alarm(rtc, &alarm);
14d0e347
ZM
832 if (err == -ETIME) {
833 pm_stay_awake(rtc->dev.parent);
6610e089 834 schedule_work(&rtc->irqwork);
14d0e347 835 } else if (err) {
aa0be0f4 836 timerqueue_del(&rtc->timerqueue, &timer->node);
29a1f599 837 trace_rtc_timer_dequeue(timer);
aa0be0f4
JS
838 timer->enabled = 0;
839 return err;
840 }
6610e089 841 }
aa0be0f4 842 return 0;
6610e089
JS
843}
844
41c7f742
RV
845static void rtc_alarm_disable(struct rtc_device *rtc)
846{
7ae41220 847 if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
41c7f742
RV
848 return;
849
850 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
29a1f599 851 trace_rtc_alarm_irq_enable(0, 0);
41c7f742
RV
852}
853
6610e089 854/**
96c8f06a 855 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
55dcf7a2
AB
856 * @rtc: rtc device
857 * @timer: timer being removed.
6610e089
JS
858 *
859 * Removes a timer onto the rtc devices timerqueue and sets
860 * the next alarm event appropriately.
861 *
aa0be0f4
JS
862 * Clears the enabled bit on the removed timer.
863 *
6610e089
JS
864 * Must hold ops_lock for proper serialization of timerqueue
865 */
aa0be0f4 866static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
6610e089
JS
867{
868 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
606cc43c 869
6610e089 870 timerqueue_del(&rtc->timerqueue, &timer->node);
29a1f599 871 trace_rtc_timer_dequeue(timer);
aa0be0f4 872 timer->enabled = 0;
6610e089
JS
873 if (next == &timer->node) {
874 struct rtc_wkalrm alarm;
875 int err;
606cc43c 876
6610e089 877 next = timerqueue_getnext(&rtc->timerqueue);
41c7f742
RV
878 if (!next) {
879 rtc_alarm_disable(rtc);
6610e089 880 return;
41c7f742 881 }
6610e089
JS
882 alarm.time = rtc_ktime_to_tm(next->expires);
883 alarm.enabled = 1;
884 err = __rtc_set_alarm(rtc, &alarm);
14d0e347
ZM
885 if (err == -ETIME) {
886 pm_stay_awake(rtc->dev.parent);
6610e089 887 schedule_work(&rtc->irqwork);
14d0e347 888 }
6610e089
JS
889 }
890}
891
892/**
96c8f06a 893 * rtc_timer_do_work - Expires rtc timers
55dcf7a2 894 * @work: work item
6610e089
JS
895 *
896 * Expires rtc timers. Reprograms next alarm event if needed.
897 * Called via worktask.
898 *
899 * Serializes access to timerqueue via ops_lock mutex
900 */
96c8f06a 901void rtc_timer_do_work(struct work_struct *work)
6610e089
JS
902{
903 struct rtc_timer *timer;
904 struct timerqueue_node *next;
905 ktime_t now;
906 struct rtc_time tm;
e8ba8a2b 907 int err;
6610e089
JS
908
909 struct rtc_device *rtc =
910 container_of(work, struct rtc_device, irqwork);
911
912 mutex_lock(&rtc->ops_lock);
913again:
e8ba8a2b
YG
914 err = __rtc_read_time(rtc, &tm);
915 if (err) {
916 mutex_unlock(&rtc->ops_lock);
917 return;
918 }
6610e089
JS
919 now = rtc_tm_to_ktime(tm);
920 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
2456e855 921 if (next->expires > now)
6610e089
JS
922 break;
923
924 /* expire timer */
925 timer = container_of(next, struct rtc_timer, node);
926 timerqueue_del(&rtc->timerqueue, &timer->node);
29a1f599 927 trace_rtc_timer_dequeue(timer);
6610e089 928 timer->enabled = 0;
5a5ba10f 929 if (timer->func)
9a032011 930 timer->func(timer->rtc);
6610e089 931
29a1f599 932 trace_rtc_timer_fired(timer);
6610e089
JS
933 /* Re-add/fwd periodic timers */
934 if (ktime_to_ns(timer->period)) {
935 timer->node.expires = ktime_add(timer->node.expires,
936 timer->period);
937 timer->enabled = 1;
938 timerqueue_add(&rtc->timerqueue, &timer->node);
29a1f599 939 trace_rtc_timer_enqueue(timer);
6610e089
JS
940 }
941 }
942
943 /* Set next alarm */
944 if (next) {
945 struct rtc_wkalrm alarm;
946 int err;
6528b889
XP
947 int retry = 3;
948
6610e089
JS
949 alarm.time = rtc_ktime_to_tm(next->expires);
950 alarm.enabled = 1;
6528b889 951reprogram:
6610e089 952 err = __rtc_set_alarm(rtc, &alarm);
606cc43c 953 if (err == -ETIME) {
6610e089 954 goto again;
606cc43c 955 } else if (err) {
6528b889
XP
956 if (retry-- > 0)
957 goto reprogram;
958
959 timer = container_of(next, struct rtc_timer, node);
960 timerqueue_del(&rtc->timerqueue, &timer->node);
29a1f599 961 trace_rtc_timer_dequeue(timer);
6528b889
XP
962 timer->enabled = 0;
963 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
964 goto again;
965 }
606cc43c 966 } else {
41c7f742 967 rtc_alarm_disable(rtc);
606cc43c 968 }
6610e089 969
14d0e347 970 pm_relax(rtc->dev.parent);
6610e089
JS
971 mutex_unlock(&rtc->ops_lock);
972}
973
96c8f06a 974/* rtc_timer_init - Initializes an rtc_timer
6610e089
JS
975 * @timer: timer to be intiialized
976 * @f: function pointer to be called when timer fires
9a032011 977 * @rtc: pointer to the rtc_device
6610e089
JS
978 *
979 * Kernel interface to initializing an rtc_timer.
980 */
9a032011
AB
981void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
982 struct rtc_device *rtc)
6610e089
JS
983{
984 timerqueue_init(&timer->node);
985 timer->enabled = 0;
5a5ba10f 986 timer->func = f;
9a032011 987 timer->rtc = rtc;
6610e089
JS
988}
989
96c8f06a 990/* rtc_timer_start - Sets an rtc_timer to fire in the future
6610e089
JS
991 * @ rtc: rtc device to be used
992 * @ timer: timer being set
993 * @ expires: time at which to expire the timer
994 * @ period: period that the timer will recur
995 *
996 * Kernel interface to set an rtc_timer
997 */
3ff2e13c 998int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
606cc43c 999 ktime_t expires, ktime_t period)
6610e089
JS
1000{
1001 int ret = 0;
606cc43c 1002
6610e089
JS
1003 mutex_lock(&rtc->ops_lock);
1004 if (timer->enabled)
96c8f06a 1005 rtc_timer_remove(rtc, timer);
6610e089
JS
1006
1007 timer->node.expires = expires;
1008 timer->period = period;
1009
aa0be0f4 1010 ret = rtc_timer_enqueue(rtc, timer);
6610e089
JS
1011
1012 mutex_unlock(&rtc->ops_lock);
1013 return ret;
1014}
1015
96c8f06a 1016/* rtc_timer_cancel - Stops an rtc_timer
6610e089
JS
1017 * @ rtc: rtc device to be used
1018 * @ timer: timer being set
1019 *
1020 * Kernel interface to cancel an rtc_timer
1021 */
73744a64 1022void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
6610e089 1023{
6610e089
JS
1024 mutex_lock(&rtc->ops_lock);
1025 if (timer->enabled)
96c8f06a 1026 rtc_timer_remove(rtc, timer);
6610e089 1027 mutex_unlock(&rtc->ops_lock);
6610e089
JS
1028}
1029
b3967067
JC
1030/**
1031 * rtc_read_offset - Read the amount of rtc offset in parts per billion
55dcf7a2
AB
1032 * @rtc: rtc device to be used
1033 * @offset: the offset in parts per billion
b3967067
JC
1034 *
1035 * see below for details.
1036 *
1037 * Kernel interface to read rtc clock offset
1038 * Returns 0 on success, or a negative number on error.
1039 * If read_offset() is not implemented for the rtc, return -EINVAL
1040 */
1041int rtc_read_offset(struct rtc_device *rtc, long *offset)
1042{
1043 int ret;
1044
1045 if (!rtc->ops)
1046 return -ENODEV;
1047
1048 if (!rtc->ops->read_offset)
1049 return -EINVAL;
1050
1051 mutex_lock(&rtc->ops_lock);
1052 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1053 mutex_unlock(&rtc->ops_lock);
29a1f599
BW
1054
1055 trace_rtc_read_offset(*offset, ret);
b3967067
JC
1056 return ret;
1057}
6610e089 1058
b3967067
JC
1059/**
1060 * rtc_set_offset - Adjusts the duration of the average second
55dcf7a2
AB
1061 * @rtc: rtc device to be used
1062 * @offset: the offset in parts per billion
b3967067
JC
1063 *
1064 * Some rtc's allow an adjustment to the average duration of a second
1065 * to compensate for differences in the actual clock rate due to temperature,
1066 * the crystal, capacitor, etc.
1067 *
8a25c8f6
RK
1068 * The adjustment applied is as follows:
1069 * t = t0 * (1 + offset * 1e-9)
1070 * where t0 is the measured length of 1 RTC second with offset = 0
1071 *
b3967067
JC
1072 * Kernel interface to adjust an rtc clock offset.
1073 * Return 0 on success, or a negative number on error.
1074 * If the rtc offset is not setable (or not implemented), return -EINVAL
1075 */
1076int rtc_set_offset(struct rtc_device *rtc, long offset)
1077{
1078 int ret;
1079
1080 if (!rtc->ops)
1081 return -ENODEV;
1082
1083 if (!rtc->ops->set_offset)
1084 return -EINVAL;
1085
1086 mutex_lock(&rtc->ops_lock);
1087 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1088 mutex_unlock(&rtc->ops_lock);
29a1f599
BW
1089
1090 trace_rtc_set_offset(offset, ret);
b3967067
JC
1091 return ret;
1092}