remoteproc: Calculate max_notifyid during load
[linux-2.6-block.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
b5ab5e24 38#include <linux/idr.h>
400e64df 39#include <linux/elf.h>
a2b950ac 40#include <linux/crc32.h>
400e64df
OBC
41#include <linux/virtio_ids.h>
42#include <linux/virtio_ring.h>
cf59d3e9 43#include <asm/byteorder.h>
400e64df
OBC
44
45#include "remoteproc_internal.h"
46
fec47d86
DG
47static DEFINE_MUTEX(rproc_list_mutex);
48static LIST_HEAD(rproc_list);
49
400e64df 50typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec 51 struct resource_table *table, int len);
a2b950ac
OBC
52typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
400e64df 54
b5ab5e24
OBC
55/* Unique indices for remoteproc devices */
56static DEFINE_IDA(rproc_dev_index);
57
8afd519c
FGL
58static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
b3d39032
BA
60 [RPROC_WATCHDOG] = "watchdog",
61 [RPROC_FATAL_ERROR] = "fatal error",
8afd519c
FGL
62};
63
64/* translate rproc_crash_type to string */
65static const char *rproc_crash_to_string(enum rproc_crash_type type)
66{
67 if (type < ARRAY_SIZE(rproc_crash_names))
68 return rproc_crash_names[type];
b23f7a09 69 return "unknown";
8afd519c
FGL
70}
71
400e64df
OBC
72/*
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
75 * an IOMMU).
76 *
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
400e64df
OBC
79 */
80static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
730f84ce 81 unsigned long iova, int flags, void *token)
400e64df 82{
8afd519c
FGL
83 struct rproc *rproc = token;
84
400e64df
OBC
85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
86
8afd519c
FGL
87 rproc_report_crash(rproc, RPROC_MMUFAULT);
88
400e64df
OBC
89 /*
90 * Let the iommu core know we're not really handling this fault;
8afd519c 91 * we just used it as a recovery trigger.
400e64df
OBC
92 */
93 return -ENOSYS;
94}
95
96static int rproc_enable_iommu(struct rproc *rproc)
97{
98 struct iommu_domain *domain;
b5ab5e24 99 struct device *dev = rproc->dev.parent;
400e64df
OBC
100 int ret;
101
315491e5
SA
102 if (!rproc->has_iommu) {
103 dev_dbg(dev, "iommu not present\n");
0798e1da 104 return 0;
400e64df
OBC
105 }
106
107 domain = iommu_domain_alloc(dev->bus);
108 if (!domain) {
109 dev_err(dev, "can't alloc iommu domain\n");
110 return -ENOMEM;
111 }
112
77ca2332 113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
114
115 ret = iommu_attach_device(domain, dev);
116 if (ret) {
117 dev_err(dev, "can't attach iommu device: %d\n", ret);
118 goto free_domain;
119 }
120
121 rproc->domain = domain;
122
123 return 0;
124
125free_domain:
126 iommu_domain_free(domain);
127 return ret;
128}
129
130static void rproc_disable_iommu(struct rproc *rproc)
131{
132 struct iommu_domain *domain = rproc->domain;
b5ab5e24 133 struct device *dev = rproc->dev.parent;
400e64df
OBC
134
135 if (!domain)
136 return;
137
138 iommu_detach_device(domain, dev);
139 iommu_domain_free(domain);
400e64df
OBC
140}
141
a01f7cd6
SA
142/**
143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144 * @rproc: handle of a remote processor
145 * @da: remoteproc device address to translate
146 * @len: length of the memory region @da is pointing to
147 *
400e64df
OBC
148 * Some remote processors will ask us to allocate them physically contiguous
149 * memory regions (which we call "carveouts"), and map them to specific
a01f7cd6
SA
150 * device addresses (which are hardcoded in the firmware). They may also have
151 * dedicated memory regions internal to the processors, and use them either
152 * exclusively or alongside carveouts.
400e64df
OBC
153 *
154 * They may then ask us to copy objects into specific device addresses (e.g.
155 * code/data sections) or expose us certain symbols in other device address
156 * (e.g. their trace buffer).
157 *
a01f7cd6
SA
158 * This function is a helper function with which we can go over the allocated
159 * carveouts and translate specific device addresses to kernel virtual addresses
160 * so we can access the referenced memory. This function also allows to perform
161 * translations on the internal remoteproc memory regions through a platform
162 * implementation specific da_to_va ops, if present.
163 *
164 * The function returns a valid kernel address on success or NULL on failure.
400e64df
OBC
165 *
166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167 * but only on kernel direct mapped RAM memory. Instead, we're just using
a01f7cd6
SA
168 * here the output of the DMA API for the carveouts, which should be more
169 * correct.
400e64df 170 */
72854fb0 171void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
172{
173 struct rproc_mem_entry *carveout;
174 void *ptr = NULL;
175
a01f7cd6
SA
176 if (rproc->ops->da_to_va) {
177 ptr = rproc->ops->da_to_va(rproc, da, len);
178 if (ptr)
179 goto out;
180 }
181
400e64df
OBC
182 list_for_each_entry(carveout, &rproc->carveouts, node) {
183 int offset = da - carveout->da;
184
185 /* try next carveout if da is too small */
186 if (offset < 0)
187 continue;
188
189 /* try next carveout if da is too large */
190 if (offset + len > carveout->len)
191 continue;
192
193 ptr = carveout->va + offset;
194
195 break;
196 }
197
a01f7cd6 198out:
400e64df
OBC
199 return ptr;
200}
4afc89d6 201EXPORT_SYMBOL(rproc_da_to_va);
400e64df 202
6db20ea8 203int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 204{
7a186941 205 struct rproc *rproc = rvdev->rproc;
b5ab5e24 206 struct device *dev = &rproc->dev;
6db20ea8 207 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 208 struct fw_rsc_vdev *rsc;
7a186941
OBC
209 dma_addr_t dma;
210 void *va;
211 int ret, size, notifyid;
400e64df 212
7a186941 213 /* actual size of vring (in bytes) */
6db20ea8 214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 215
7a186941
OBC
216 /*
217 * Allocate non-cacheable memory for the vring. In the future
218 * this call will also configure the IOMMU for us
219 */
b5ab5e24 220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
7a186941 221 if (!va) {
b5ab5e24 222 dev_err(dev->parent, "dma_alloc_coherent failed\n");
400e64df
OBC
223 return -EINVAL;
224 }
225
6db20ea8
OBC
226 /*
227 * Assign an rproc-wide unique index for this vring
228 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
229 * TODO: support predefined notifyids (via resource table)
230 */
15fc6110 231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 232 if (ret < 0) {
15fc6110 233 dev_err(dev, "idr_alloc failed: %d\n", ret);
b5ab5e24 234 dma_free_coherent(dev->parent, size, va, dma);
7a186941
OBC
235 return ret;
236 }
15fc6110 237 notifyid = ret;
400e64df 238
9d7814a9 239 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
b605ed8b 240 i, va, &dma, size, notifyid);
7a186941 241
6db20ea8
OBC
242 rvring->va = va;
243 rvring->dma = dma;
244 rvring->notifyid = notifyid;
400e64df 245
c0d63157
SB
246 /*
247 * Let the rproc know the notifyid and da of this vring.
248 * Not all platforms use dma_alloc_coherent to automatically
249 * set up the iommu. In this case the device address (da) will
250 * hold the physical address and not the device address.
251 */
252 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
253 rsc->vring[i].da = dma;
254 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
255 return 0;
256}
257
6db20ea8
OBC
258static int
259rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
260{
261 struct rproc *rproc = rvdev->rproc;
b5ab5e24 262 struct device *dev = &rproc->dev;
6db20ea8
OBC
263 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
264 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 265
9d7814a9 266 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
730f84ce 267 i, vring->da, vring->num, vring->align);
7a186941 268
6db20ea8
OBC
269 /* make sure reserved bytes are zeroes */
270 if (vring->reserved) {
271 dev_err(dev, "vring rsc has non zero reserved bytes\n");
272 return -EINVAL;
273 }
7a186941 274
6db20ea8
OBC
275 /* verify queue size and vring alignment are sane */
276 if (!vring->num || !vring->align) {
277 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
730f84ce 278 vring->num, vring->align);
6db20ea8 279 return -EINVAL;
7a186941 280 }
6db20ea8
OBC
281
282 rvring->len = vring->num;
283 rvring->align = vring->align;
284 rvring->rvdev = rvdev;
285
286 return 0;
287}
288
289void rproc_free_vring(struct rproc_vring *rvring)
290{
291 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
292 struct rproc *rproc = rvring->rvdev->rproc;
c0d63157
SB
293 int idx = rvring->rvdev->vring - rvring;
294 struct fw_rsc_vdev *rsc;
6db20ea8 295
b5ab5e24 296 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
6db20ea8 297 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 298
c0d63157
SB
299 /* reset resource entry info */
300 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
301 rsc->vring[idx].da = 0;
302 rsc->vring[idx].notifyid = -1;
7a186941
OBC
303}
304
400e64df 305/**
fd2c15ec 306 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
307 * @rproc: the remote processor
308 * @rsc: the vring resource descriptor
fd2c15ec 309 * @avail: size of available data (for sanity checking the image)
400e64df 310 *
7a186941
OBC
311 * This resource entry requests the host to statically register a virtio
312 * device (vdev), and setup everything needed to support it. It contains
313 * everything needed to make it possible: the virtio device id, virtio
314 * device features, vrings information, virtio config space, etc...
315 *
316 * Before registering the vdev, the vrings are allocated from non-cacheable
317 * physically contiguous memory. Currently we only support two vrings per
318 * remote processor (temporary limitation). We might also want to consider
319 * doing the vring allocation only later when ->find_vqs() is invoked, and
320 * then release them upon ->del_vqs().
321 *
322 * Note: @da is currently not really handled correctly: we dynamically
323 * allocate it using the DMA API, ignoring requested hard coded addresses,
324 * and we don't take care of any required IOMMU programming. This is all
325 * going to be taken care of when the generic iommu-based DMA API will be
326 * merged. Meanwhile, statically-addressed iommu-based firmware images should
327 * use RSC_DEVMEM resource entries to map their required @da to the physical
328 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
329 *
330 * Returns 0 on success, or an appropriate error code otherwise
331 */
fd2c15ec 332static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
730f84ce 333 int offset, int avail)
400e64df 334{
b5ab5e24 335 struct device *dev = &rproc->dev;
7a186941
OBC
336 struct rproc_vdev *rvdev;
337 int i, ret;
400e64df 338
fd2c15ec
OBC
339 /* make sure resource isn't truncated */
340 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
341 + rsc->config_len > avail) {
b5ab5e24 342 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
343 return -EINVAL;
344 }
345
fd2c15ec
OBC
346 /* make sure reserved bytes are zeroes */
347 if (rsc->reserved[0] || rsc->reserved[1]) {
348 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
349 return -EINVAL;
350 }
351
9d7814a9 352 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
fd2c15ec
OBC
353 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
354
7a186941
OBC
355 /* we currently support only two vrings per rvdev */
356 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 357 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
358 return -EINVAL;
359 }
360
899585ad 361 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
7a186941
OBC
362 if (!rvdev)
363 return -ENOMEM;
400e64df 364
7a186941 365 rvdev->rproc = rproc;
400e64df 366
6db20ea8 367 /* parse the vrings */
7a186941 368 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 369 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 370 if (ret)
6db20ea8 371 goto free_rvdev;
7a186941 372 }
400e64df 373
a2b950ac
OBC
374 /* remember the resource offset*/
375 rvdev->rsc_offset = offset;
fd2c15ec 376
7a186941 377 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 378
7a186941
OBC
379 /* it is now safe to add the virtio device */
380 ret = rproc_add_virtio_dev(rvdev, rsc->id);
381 if (ret)
cde42e07 382 goto remove_rvdev;
400e64df
OBC
383
384 return 0;
7a186941 385
cde42e07
SB
386remove_rvdev:
387 list_del(&rvdev->node);
6db20ea8 388free_rvdev:
7a186941
OBC
389 kfree(rvdev);
390 return ret;
400e64df
OBC
391}
392
393/**
394 * rproc_handle_trace() - handle a shared trace buffer resource
395 * @rproc: the remote processor
396 * @rsc: the trace resource descriptor
fd2c15ec 397 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
398 *
399 * In case the remote processor dumps trace logs into memory,
400 * export it via debugfs.
401 *
402 * Currently, the 'da' member of @rsc should contain the device address
403 * where the remote processor is dumping the traces. Later we could also
404 * support dynamically allocating this address using the generic
405 * DMA API (but currently there isn't a use case for that).
406 *
407 * Returns 0 on success, or an appropriate error code otherwise
408 */
fd2c15ec 409static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
730f84ce 410 int offset, int avail)
400e64df
OBC
411{
412 struct rproc_mem_entry *trace;
b5ab5e24 413 struct device *dev = &rproc->dev;
400e64df
OBC
414 void *ptr;
415 char name[15];
416
fd2c15ec 417 if (sizeof(*rsc) > avail) {
b5ab5e24 418 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
419 return -EINVAL;
420 }
421
422 /* make sure reserved bytes are zeroes */
423 if (rsc->reserved) {
424 dev_err(dev, "trace rsc has non zero reserved bytes\n");
425 return -EINVAL;
426 }
427
400e64df
OBC
428 /* what's the kernel address of this resource ? */
429 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
430 if (!ptr) {
431 dev_err(dev, "erroneous trace resource entry\n");
432 return -EINVAL;
433 }
434
435 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 436 if (!trace)
400e64df 437 return -ENOMEM;
400e64df
OBC
438
439 /* set the trace buffer dma properties */
440 trace->len = rsc->len;
441 trace->va = ptr;
442
443 /* make sure snprintf always null terminates, even if truncating */
444 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
445
446 /* create the debugfs entry */
447 trace->priv = rproc_create_trace_file(name, rproc, trace);
448 if (!trace->priv) {
449 trace->va = NULL;
450 kfree(trace);
451 return -EINVAL;
452 }
453
454 list_add_tail(&trace->node, &rproc->traces);
455
456 rproc->num_traces++;
457
35386166
LJ
458 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
459 name, ptr, rsc->da, rsc->len);
400e64df
OBC
460
461 return 0;
462}
463
464/**
465 * rproc_handle_devmem() - handle devmem resource entry
466 * @rproc: remote processor handle
467 * @rsc: the devmem resource entry
fd2c15ec 468 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
469 *
470 * Remote processors commonly need to access certain on-chip peripherals.
471 *
472 * Some of these remote processors access memory via an iommu device,
473 * and might require us to configure their iommu before they can access
474 * the on-chip peripherals they need.
475 *
476 * This resource entry is a request to map such a peripheral device.
477 *
478 * These devmem entries will contain the physical address of the device in
479 * the 'pa' member. If a specific device address is expected, then 'da' will
480 * contain it (currently this is the only use case supported). 'len' will
481 * contain the size of the physical region we need to map.
482 *
483 * Currently we just "trust" those devmem entries to contain valid physical
484 * addresses, but this is going to change: we want the implementations to
485 * tell us ranges of physical addresses the firmware is allowed to request,
486 * and not allow firmwares to request access to physical addresses that
487 * are outside those ranges.
488 */
fd2c15ec 489static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
730f84ce 490 int offset, int avail)
400e64df
OBC
491{
492 struct rproc_mem_entry *mapping;
b5ab5e24 493 struct device *dev = &rproc->dev;
400e64df
OBC
494 int ret;
495
496 /* no point in handling this resource without a valid iommu domain */
497 if (!rproc->domain)
498 return -EINVAL;
499
fd2c15ec 500 if (sizeof(*rsc) > avail) {
b5ab5e24 501 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
502 return -EINVAL;
503 }
504
505 /* make sure reserved bytes are zeroes */
506 if (rsc->reserved) {
b5ab5e24 507 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
508 return -EINVAL;
509 }
510
400e64df 511 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 512 if (!mapping)
400e64df 513 return -ENOMEM;
400e64df
OBC
514
515 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
516 if (ret) {
b5ab5e24 517 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
518 goto out;
519 }
520
521 /*
522 * We'll need this info later when we'll want to unmap everything
523 * (e.g. on shutdown).
524 *
525 * We can't trust the remote processor not to change the resource
526 * table, so we must maintain this info independently.
527 */
528 mapping->da = rsc->da;
529 mapping->len = rsc->len;
530 list_add_tail(&mapping->node, &rproc->mappings);
531
b5ab5e24 532 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
730f84ce 533 rsc->pa, rsc->da, rsc->len);
400e64df
OBC
534
535 return 0;
536
537out:
538 kfree(mapping);
539 return ret;
540}
541
542/**
543 * rproc_handle_carveout() - handle phys contig memory allocation requests
544 * @rproc: rproc handle
545 * @rsc: the resource entry
fd2c15ec 546 * @avail: size of available data (for image validation)
400e64df
OBC
547 *
548 * This function will handle firmware requests for allocation of physically
549 * contiguous memory regions.
550 *
551 * These request entries should come first in the firmware's resource table,
552 * as other firmware entries might request placing other data objects inside
553 * these memory regions (e.g. data/code segments, trace resource entries, ...).
554 *
555 * Allocating memory this way helps utilizing the reserved physical memory
556 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
557 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
558 * pressure is important; it may have a substantial impact on performance.
559 */
fd2c15ec 560static int rproc_handle_carveout(struct rproc *rproc,
730f84ce
AS
561 struct fw_rsc_carveout *rsc,
562 int offset, int avail)
400e64df
OBC
563{
564 struct rproc_mem_entry *carveout, *mapping;
b5ab5e24 565 struct device *dev = &rproc->dev;
400e64df
OBC
566 dma_addr_t dma;
567 void *va;
568 int ret;
569
fd2c15ec 570 if (sizeof(*rsc) > avail) {
b5ab5e24 571 dev_err(dev, "carveout rsc is truncated\n");
fd2c15ec
OBC
572 return -EINVAL;
573 }
574
575 /* make sure reserved bytes are zeroes */
576 if (rsc->reserved) {
577 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
578 return -EINVAL;
579 }
580
9d7814a9 581 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
35386166 582 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
fd2c15ec 583
400e64df 584 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
172e6ab1 585 if (!carveout)
7168d914 586 return -ENOMEM;
400e64df 587
b5ab5e24 588 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
400e64df 589 if (!va) {
9c219b23
LJ
590 dev_err(dev->parent,
591 "failed to allocate dma memory: len 0x%x\n", rsc->len);
400e64df
OBC
592 ret = -ENOMEM;
593 goto free_carv;
594 }
595
b605ed8b
AS
596 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
597 va, &dma, rsc->len);
400e64df
OBC
598
599 /*
600 * Ok, this is non-standard.
601 *
602 * Sometimes we can't rely on the generic iommu-based DMA API
603 * to dynamically allocate the device address and then set the IOMMU
604 * tables accordingly, because some remote processors might
605 * _require_ us to use hard coded device addresses that their
606 * firmware was compiled with.
607 *
608 * In this case, we must use the IOMMU API directly and map
609 * the memory to the device address as expected by the remote
610 * processor.
611 *
612 * Obviously such remote processor devices should not be configured
613 * to use the iommu-based DMA API: we expect 'dma' to contain the
614 * physical address in this case.
615 */
616 if (rproc->domain) {
7168d914
DC
617 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
618 if (!mapping) {
7168d914
DC
619 ret = -ENOMEM;
620 goto dma_free;
621 }
622
400e64df 623 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
730f84ce 624 rsc->flags);
400e64df
OBC
625 if (ret) {
626 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 627 goto free_mapping;
400e64df
OBC
628 }
629
630 /*
631 * We'll need this info later when we'll want to unmap
632 * everything (e.g. on shutdown).
633 *
634 * We can't trust the remote processor not to change the
635 * resource table, so we must maintain this info independently.
636 */
637 mapping->da = rsc->da;
638 mapping->len = rsc->len;
639 list_add_tail(&mapping->node, &rproc->mappings);
640
b605ed8b
AS
641 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
642 rsc->da, &dma);
400e64df
OBC
643 }
644
0e49b72c
OBC
645 /*
646 * Some remote processors might need to know the pa
647 * even though they are behind an IOMMU. E.g., OMAP4's
648 * remote M3 processor needs this so it can control
649 * on-chip hardware accelerators that are not behind
650 * the IOMMU, and therefor must know the pa.
651 *
652 * Generally we don't want to expose physical addresses
653 * if we don't have to (remote processors are generally
654 * _not_ trusted), so we might want to do this only for
655 * remote processor that _must_ have this (e.g. OMAP4's
656 * dual M3 subsystem).
657 *
658 * Non-IOMMU processors might also want to have this info.
659 * In this case, the device address and the physical address
660 * are the same.
661 */
662 rsc->pa = dma;
663
400e64df
OBC
664 carveout->va = va;
665 carveout->len = rsc->len;
666 carveout->dma = dma;
667 carveout->da = rsc->da;
668
669 list_add_tail(&carveout->node, &rproc->carveouts);
670
671 return 0;
672
7168d914
DC
673free_mapping:
674 kfree(mapping);
400e64df 675dma_free:
b5ab5e24 676 dma_free_coherent(dev->parent, rsc->len, va, dma);
400e64df
OBC
677free_carv:
678 kfree(carveout);
400e64df
OBC
679 return ret;
680}
681
ba7290e0 682static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
a2b950ac 683 int offset, int avail)
ba7290e0
SB
684{
685 /* Summarize the number of notification IDs */
686 rproc->max_notifyid += rsc->num_of_vrings;
687
688 return 0;
689}
690
e12bc14b
OBC
691/*
692 * A lookup table for resource handlers. The indices are defined in
693 * enum fw_resource_type.
694 */
232fcdbb 695static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
696 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
697 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
698 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
b35d7afc 699 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
e12bc14b
OBC
700};
701
232fcdbb
SB
702static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
703 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
704};
705
400e64df 706/* handle firmware resource entries before booting the remote processor */
a2b950ac 707static int rproc_handle_resources(struct rproc *rproc, int len,
232fcdbb 708 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 709{
b5ab5e24 710 struct device *dev = &rproc->dev;
e12bc14b 711 rproc_handle_resource_t handler;
fd2c15ec
OBC
712 int ret = 0, i;
713
a2b950ac
OBC
714 for (i = 0; i < rproc->table_ptr->num; i++) {
715 int offset = rproc->table_ptr->offset[i];
716 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
fd2c15ec
OBC
717 int avail = len - offset - sizeof(*hdr);
718 void *rsc = (void *)hdr + sizeof(*hdr);
719
720 /* make sure table isn't truncated */
721 if (avail < 0) {
722 dev_err(dev, "rsc table is truncated\n");
723 return -EINVAL;
724 }
400e64df 725
fd2c15ec 726 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 727
fd2c15ec
OBC
728 if (hdr->type >= RSC_LAST) {
729 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 730 continue;
400e64df
OBC
731 }
732
232fcdbb 733 handler = handlers[hdr->type];
e12bc14b
OBC
734 if (!handler)
735 continue;
736
a2b950ac 737 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 738 if (ret)
400e64df 739 break;
fd2c15ec 740 }
400e64df
OBC
741
742 return ret;
743}
744
400e64df
OBC
745/**
746 * rproc_resource_cleanup() - clean up and free all acquired resources
747 * @rproc: rproc handle
748 *
749 * This function will free all resources acquired for @rproc, and it
7a186941 750 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
751 */
752static void rproc_resource_cleanup(struct rproc *rproc)
753{
754 struct rproc_mem_entry *entry, *tmp;
b5ab5e24 755 struct device *dev = &rproc->dev;
400e64df
OBC
756
757 /* clean up debugfs trace entries */
758 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
759 rproc_remove_trace_file(entry->priv);
760 rproc->num_traces--;
761 list_del(&entry->node);
762 kfree(entry);
763 }
764
400e64df
OBC
765 /* clean up iommu mapping entries */
766 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
767 size_t unmapped;
768
769 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
770 if (unmapped != entry->len) {
771 /* nothing much to do besides complaining */
e981f6d4 772 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
730f84ce 773 unmapped);
400e64df
OBC
774 }
775
776 list_del(&entry->node);
777 kfree(entry);
778 }
b6356a01
SA
779
780 /* clean up carveout allocations */
781 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
172e6ab1
SA
782 dma_free_coherent(dev->parent, entry->len, entry->va,
783 entry->dma);
b6356a01
SA
784 list_del(&entry->node);
785 kfree(entry);
786 }
400e64df
OBC
787}
788
400e64df
OBC
789/*
790 * take a firmware and boot a remote processor with it.
791 */
792static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
793{
b5ab5e24 794 struct device *dev = &rproc->dev;
400e64df 795 const char *name = rproc->firmware;
a2b950ac 796 struct resource_table *table, *loaded_table;
1e3e2c7c 797 int ret, tablesz;
400e64df 798
a2b950ac
OBC
799 if (!rproc->table_ptr)
800 return -ENOMEM;
801
400e64df
OBC
802 ret = rproc_fw_sanity_check(rproc, fw);
803 if (ret)
804 return ret;
805
e981f6d4 806 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
807
808 /*
809 * if enabling an IOMMU isn't relevant for this rproc, this is
810 * just a nop
811 */
812 ret = rproc_enable_iommu(rproc);
813 if (ret) {
814 dev_err(dev, "can't enable iommu: %d\n", ret);
815 return ret;
816 }
817
3e5f9eb5 818 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
89970d28 819 ret = -EINVAL;
400e64df 820
1e3e2c7c 821 /* look for the resource table */
bd484984 822 table = rproc_find_rsc_table(rproc, fw, &tablesz);
a66a5114
SA
823 if (!table) {
824 dev_err(dev, "Failed to find resource table\n");
1e3e2c7c 825 goto clean_up;
a66a5114 826 }
1e3e2c7c 827
a2b950ac
OBC
828 /* Verify that resource table in loaded fw is unchanged */
829 if (rproc->table_csum != crc32(0, table, tablesz)) {
830 dev_err(dev, "resource checksum failed, fw changed?\n");
a2b950ac
OBC
831 goto clean_up;
832 }
833
b35d7afc
BA
834 /* reset max_notifyid */
835 rproc->max_notifyid = -1;
836
400e64df 837 /* handle fw resources which are required to boot rproc */
a2b950ac 838 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
400e64df
OBC
839 if (ret) {
840 dev_err(dev, "Failed to process resources: %d\n", ret);
841 goto clean_up;
842 }
843
844 /* load the ELF segments to memory */
bd484984 845 ret = rproc_load_segments(rproc, fw);
400e64df
OBC
846 if (ret) {
847 dev_err(dev, "Failed to load program segments: %d\n", ret);
848 goto clean_up;
849 }
850
a2b950ac
OBC
851 /*
852 * The starting device has been given the rproc->cached_table as the
853 * resource table. The address of the vring along with the other
854 * allocated resources (carveouts etc) is stored in cached_table.
855 * In order to pass this information to the remote device we must
856 * copy this information to device memory.
857 */
858 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
e395f9ce
BA
859 if (loaded_table)
860 memcpy(loaded_table, rproc->cached_table, tablesz);
a2b950ac 861
400e64df
OBC
862 /* power up the remote processor */
863 ret = rproc->ops->start(rproc);
864 if (ret) {
865 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
866 goto clean_up;
867 }
868
a2b950ac
OBC
869 /*
870 * Update table_ptr so that all subsequent vring allocations and
871 * virtio fields manipulation update the actual loaded resource table
872 * in device memory.
873 */
874 rproc->table_ptr = loaded_table;
875
400e64df
OBC
876 rproc->state = RPROC_RUNNING;
877
878 dev_info(dev, "remote processor %s is now up\n", rproc->name);
879
880 return 0;
881
882clean_up:
883 rproc_resource_cleanup(rproc);
884 rproc_disable_iommu(rproc);
885 return ret;
886}
887
888/*
889 * take a firmware and look for virtio devices to register.
890 *
891 * Note: this function is called asynchronously upon registration of the
892 * remote processor (so we must wait until it completes before we try
893 * to unregister the device. one other option is just to use kref here,
894 * that might be cleaner).
895 */
896static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
897{
898 struct rproc *rproc = context;
1e3e2c7c
OBC
899 struct resource_table *table;
900 int ret, tablesz;
400e64df
OBC
901
902 if (rproc_fw_sanity_check(rproc, fw) < 0)
903 goto out;
904
1e3e2c7c 905 /* look for the resource table */
bd484984 906 table = rproc_find_rsc_table(rproc, fw, &tablesz);
1e3e2c7c
OBC
907 if (!table)
908 goto out;
909
a2b950ac
OBC
910 rproc->table_csum = crc32(0, table, tablesz);
911
912 /*
913 * Create a copy of the resource table. When a virtio device starts
914 * and calls vring_new_virtqueue() the address of the allocated vring
915 * will be stored in the cached_table. Before the device is started,
35386166 916 * cached_table will be copied into device memory.
a2b950ac 917 */
95cee62c 918 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
a2b950ac
OBC
919 if (!rproc->cached_table)
920 goto out;
921
a2b950ac
OBC
922 rproc->table_ptr = rproc->cached_table;
923
a2b950ac
OBC
924 /* look for virtio devices and register them */
925 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
926
ddf71187
BA
927 /* if rproc is marked always-on, request it to boot */
928 if (rproc->auto_boot)
929 rproc_boot_nowait(rproc);
930
400e64df 931out:
3cc6e787 932 release_firmware(fw);
160e7c84 933 /* allow rproc_del() contexts, if any, to proceed */
400e64df
OBC
934 complete_all(&rproc->firmware_loading_complete);
935}
936
70b85ef8
FGL
937static int rproc_add_virtio_devices(struct rproc *rproc)
938{
939 int ret;
940
941 /* rproc_del() calls must wait until async loader completes */
942 init_completion(&rproc->firmware_loading_complete);
943
944 /*
945 * We must retrieve early virtio configuration info from
946 * the firmware (e.g. whether to register a virtio device,
947 * what virtio features does it support, ...).
948 *
949 * We're initiating an asynchronous firmware loading, so we can
950 * be built-in kernel code, without hanging the boot process.
951 */
952 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
953 rproc->firmware, &rproc->dev, GFP_KERNEL,
954 rproc, rproc_fw_config_virtio);
955 if (ret < 0) {
956 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
957 complete_all(&rproc->firmware_loading_complete);
958 }
959
960 return ret;
961}
962
963/**
964 * rproc_trigger_recovery() - recover a remoteproc
965 * @rproc: the remote processor
966 *
56324d7a 967 * The recovery is done by resetting all the virtio devices, that way all the
70b85ef8
FGL
968 * rpmsg drivers will be reseted along with the remote processor making the
969 * remoteproc functional again.
970 *
971 * This function can sleep, so it cannot be called from atomic context.
972 */
973int rproc_trigger_recovery(struct rproc *rproc)
974{
975 struct rproc_vdev *rvdev, *rvtmp;
ddf71187 976 int ret;
70b85ef8
FGL
977
978 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
979
980 init_completion(&rproc->crash_comp);
981
ddf71187
BA
982 /* shut down the remote */
983 /* TODO: make sure this works with rproc->power > 1 */
984 rproc_shutdown(rproc);
985
70b85ef8
FGL
986 /* clean up remote vdev entries */
987 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
988 rproc_remove_virtio_dev(rvdev);
989
990 /* wait until there is no more rproc users */
991 wait_for_completion(&rproc->crash_comp);
992
a2b950ac
OBC
993 /* Free the copy of the resource table */
994 kfree(rproc->cached_table);
995
ddf71187
BA
996 ret = rproc_add_virtio_devices(rproc);
997 if (ret)
998 return ret;
999
1000 /*
1001 * boot the remote processor up again, if the async firmware loader
1002 * didn't do so already, waiting for the async fw load to finish
1003 */
1004 if (!rproc->auto_boot)
1005 rproc_boot(rproc);
1006
1007 return 0;
70b85ef8
FGL
1008}
1009
8afd519c
FGL
1010/**
1011 * rproc_crash_handler_work() - handle a crash
1012 *
1013 * This function needs to handle everything related to a crash, like cpu
1014 * registers and stack dump, information to help to debug the fatal error, etc.
1015 */
1016static void rproc_crash_handler_work(struct work_struct *work)
1017{
1018 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1019 struct device *dev = &rproc->dev;
1020
1021 dev_dbg(dev, "enter %s\n", __func__);
1022
1023 mutex_lock(&rproc->lock);
1024
1025 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1026 /* handle only the first crash detected */
1027 mutex_unlock(&rproc->lock);
1028 return;
1029 }
1030
1031 rproc->state = RPROC_CRASHED;
1032 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1033 rproc->name);
1034
1035 mutex_unlock(&rproc->lock);
1036
2e37abb8
FGL
1037 if (!rproc->recovery_disabled)
1038 rproc_trigger_recovery(rproc);
8afd519c
FGL
1039}
1040
400e64df 1041/**
3d87fa1d 1042 * __rproc_boot() - boot a remote processor
400e64df 1043 * @rproc: handle of a remote processor
3d87fa1d 1044 * @wait: wait for rproc registration completion
400e64df
OBC
1045 *
1046 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1047 *
1048 * If the remote processor is already powered on, this function immediately
1049 * returns (successfully).
1050 *
1051 * Returns 0 on success, and an appropriate error value otherwise.
1052 */
3d87fa1d 1053static int __rproc_boot(struct rproc *rproc, bool wait)
400e64df
OBC
1054{
1055 const struct firmware *firmware_p;
1056 struct device *dev;
1057 int ret;
1058
1059 if (!rproc) {
1060 pr_err("invalid rproc handle\n");
1061 return -EINVAL;
1062 }
1063
b5ab5e24 1064 dev = &rproc->dev;
400e64df
OBC
1065
1066 ret = mutex_lock_interruptible(&rproc->lock);
1067 if (ret) {
1068 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1069 return ret;
1070 }
1071
1072 /* loading a firmware is required */
1073 if (!rproc->firmware) {
1074 dev_err(dev, "%s: no firmware to load\n", __func__);
1075 ret = -EINVAL;
1076 goto unlock_mutex;
1077 }
1078
1079 /* prevent underlying implementation from being removed */
b5ab5e24 1080 if (!try_module_get(dev->parent->driver->owner)) {
400e64df
OBC
1081 dev_err(dev, "%s: can't get owner\n", __func__);
1082 ret = -EINVAL;
1083 goto unlock_mutex;
1084 }
1085
1086 /* skip the boot process if rproc is already powered up */
1087 if (atomic_inc_return(&rproc->power) > 1) {
1088 ret = 0;
1089 goto unlock_mutex;
1090 }
1091
1092 dev_info(dev, "powering up %s\n", rproc->name);
1093
1094 /* load firmware */
1095 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1096 if (ret < 0) {
1097 dev_err(dev, "request_firmware failed: %d\n", ret);
1098 goto downref_rproc;
1099 }
1100
3d87fa1d
LJ
1101 /* if rproc virtio is not yet configured, wait */
1102 if (wait)
1103 wait_for_completion(&rproc->firmware_loading_complete);
1104
400e64df
OBC
1105 ret = rproc_fw_boot(rproc, firmware_p);
1106
1107 release_firmware(firmware_p);
1108
1109downref_rproc:
1110 if (ret) {
b5ab5e24 1111 module_put(dev->parent->driver->owner);
400e64df
OBC
1112 atomic_dec(&rproc->power);
1113 }
1114unlock_mutex:
1115 mutex_unlock(&rproc->lock);
1116 return ret;
1117}
3d87fa1d
LJ
1118
1119/**
1120 * rproc_boot() - boot a remote processor
1121 * @rproc: handle of a remote processor
1122 */
1123int rproc_boot(struct rproc *rproc)
1124{
1125 return __rproc_boot(rproc, true);
1126}
400e64df
OBC
1127EXPORT_SYMBOL(rproc_boot);
1128
3d87fa1d
LJ
1129/**
1130 * rproc_boot_nowait() - boot a remote processor
1131 * @rproc: handle of a remote processor
1132 *
1133 * Same as rproc_boot() but don't wait for rproc registration completion
1134 */
1135int rproc_boot_nowait(struct rproc *rproc)
1136{
1137 return __rproc_boot(rproc, false);
1138}
1139
400e64df
OBC
1140/**
1141 * rproc_shutdown() - power off the remote processor
1142 * @rproc: the remote processor
1143 *
1144 * Power off a remote processor (previously booted with rproc_boot()).
1145 *
1146 * In case @rproc is still being used by an additional user(s), then
1147 * this function will just decrement the power refcount and exit,
1148 * without really powering off the device.
1149 *
1150 * Every call to rproc_boot() must (eventually) be accompanied by a call
1151 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1152 *
1153 * Notes:
1154 * - we're not decrementing the rproc's refcount, only the power refcount.
1155 * which means that the @rproc handle stays valid even after rproc_shutdown()
1156 * returns, and users can still use it with a subsequent rproc_boot(), if
1157 * needed.
400e64df
OBC
1158 */
1159void rproc_shutdown(struct rproc *rproc)
1160{
b5ab5e24 1161 struct device *dev = &rproc->dev;
400e64df
OBC
1162 int ret;
1163
1164 ret = mutex_lock_interruptible(&rproc->lock);
1165 if (ret) {
1166 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1167 return;
1168 }
1169
1170 /* if the remote proc is still needed, bail out */
1171 if (!atomic_dec_and_test(&rproc->power))
1172 goto out;
1173
1174 /* power off the remote processor */
1175 ret = rproc->ops->stop(rproc);
1176 if (ret) {
1177 atomic_inc(&rproc->power);
1178 dev_err(dev, "can't stop rproc: %d\n", ret);
1179 goto out;
1180 }
1181
1182 /* clean up all acquired resources */
1183 rproc_resource_cleanup(rproc);
1184
1185 rproc_disable_iommu(rproc);
1186
a2b950ac
OBC
1187 /* Give the next start a clean resource table */
1188 rproc->table_ptr = rproc->cached_table;
1189
70b85ef8
FGL
1190 /* if in crash state, unlock crash handler */
1191 if (rproc->state == RPROC_CRASHED)
1192 complete_all(&rproc->crash_comp);
1193
400e64df
OBC
1194 rproc->state = RPROC_OFFLINE;
1195
1196 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1197
1198out:
1199 mutex_unlock(&rproc->lock);
1200 if (!ret)
b5ab5e24 1201 module_put(dev->parent->driver->owner);
400e64df
OBC
1202}
1203EXPORT_SYMBOL(rproc_shutdown);
1204
fec47d86
DG
1205/**
1206 * rproc_get_by_phandle() - find a remote processor by phandle
1207 * @phandle: phandle to the rproc
1208 *
1209 * Finds an rproc handle using the remote processor's phandle, and then
1210 * return a handle to the rproc.
1211 *
1212 * This function increments the remote processor's refcount, so always
1213 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1214 *
1215 * Returns the rproc handle on success, and NULL on failure.
1216 */
8de3dbd0 1217#ifdef CONFIG_OF
fec47d86
DG
1218struct rproc *rproc_get_by_phandle(phandle phandle)
1219{
1220 struct rproc *rproc = NULL, *r;
1221 struct device_node *np;
1222
1223 np = of_find_node_by_phandle(phandle);
1224 if (!np)
1225 return NULL;
1226
1227 mutex_lock(&rproc_list_mutex);
1228 list_for_each_entry(r, &rproc_list, node) {
1229 if (r->dev.parent && r->dev.parent->of_node == np) {
1230 rproc = r;
1231 get_device(&rproc->dev);
1232 break;
1233 }
1234 }
1235 mutex_unlock(&rproc_list_mutex);
1236
1237 of_node_put(np);
1238
1239 return rproc;
1240}
8de3dbd0
OBC
1241#else
1242struct rproc *rproc_get_by_phandle(phandle phandle)
1243{
1244 return NULL;
1245}
1246#endif
fec47d86
DG
1247EXPORT_SYMBOL(rproc_get_by_phandle);
1248
400e64df 1249/**
160e7c84 1250 * rproc_add() - register a remote processor
400e64df
OBC
1251 * @rproc: the remote processor handle to register
1252 *
1253 * Registers @rproc with the remoteproc framework, after it has been
1254 * allocated with rproc_alloc().
1255 *
1256 * This is called by the platform-specific rproc implementation, whenever
1257 * a new remote processor device is probed.
1258 *
1259 * Returns 0 on success and an appropriate error code otherwise.
1260 *
1261 * Note: this function initiates an asynchronous firmware loading
1262 * context, which will look for virtio devices supported by the rproc's
1263 * firmware.
1264 *
1265 * If found, those virtio devices will be created and added, so as a result
7a186941 1266 * of registering this remote processor, additional virtio drivers might be
400e64df 1267 * probed.
400e64df 1268 */
160e7c84 1269int rproc_add(struct rproc *rproc)
400e64df 1270{
b5ab5e24 1271 struct device *dev = &rproc->dev;
70b85ef8 1272 int ret;
400e64df 1273
b5ab5e24
OBC
1274 ret = device_add(dev);
1275 if (ret < 0)
1276 return ret;
400e64df 1277
b5ab5e24 1278 dev_info(dev, "%s is available\n", rproc->name);
400e64df 1279
489d129a
OBC
1280 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1281 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1282
400e64df
OBC
1283 /* create debugfs entries */
1284 rproc_create_debug_dir(rproc);
d2e12e66
DG
1285 ret = rproc_add_virtio_devices(rproc);
1286 if (ret < 0)
1287 return ret;
400e64df 1288
d2e12e66
DG
1289 /* expose to rproc_get_by_phandle users */
1290 mutex_lock(&rproc_list_mutex);
1291 list_add(&rproc->node, &rproc_list);
1292 mutex_unlock(&rproc_list_mutex);
1293
1294 return 0;
400e64df 1295}
160e7c84 1296EXPORT_SYMBOL(rproc_add);
400e64df 1297
b5ab5e24
OBC
1298/**
1299 * rproc_type_release() - release a remote processor instance
1300 * @dev: the rproc's device
1301 *
1302 * This function should _never_ be called directly.
1303 *
1304 * It will be called by the driver core when no one holds a valid pointer
1305 * to @dev anymore.
1306 */
1307static void rproc_type_release(struct device *dev)
1308{
1309 struct rproc *rproc = container_of(dev, struct rproc, dev);
1310
7183a2a7
OBC
1311 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1312
1313 rproc_delete_debug_dir(rproc);
1314
b5ab5e24
OBC
1315 idr_destroy(&rproc->notifyids);
1316
1317 if (rproc->index >= 0)
1318 ida_simple_remove(&rproc_dev_index, rproc->index);
1319
1320 kfree(rproc);
1321}
1322
1323static struct device_type rproc_type = {
1324 .name = "remoteproc",
1325 .release = rproc_type_release,
1326};
400e64df
OBC
1327
1328/**
1329 * rproc_alloc() - allocate a remote processor handle
1330 * @dev: the underlying device
1331 * @name: name of this remote processor
1332 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 1333 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
1334 * @len: length of private data needed by the rproc driver (in bytes)
1335 *
1336 * Allocates a new remote processor handle, but does not register
8b4aec9a 1337 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
1338 *
1339 * This function should be used by rproc implementations during initialization
1340 * of the remote processor.
1341 *
1342 * After creating an rproc handle using this function, and when ready,
160e7c84 1343 * implementations should then call rproc_add() to complete
400e64df
OBC
1344 * the registration of the remote processor.
1345 *
1346 * On success the new rproc is returned, and on failure, NULL.
1347 *
1348 * Note: _never_ directly deallocate @rproc, even if it was not registered
160e7c84 1349 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
400e64df
OBC
1350 */
1351struct rproc *rproc_alloc(struct device *dev, const char *name,
730f84ce
AS
1352 const struct rproc_ops *ops,
1353 const char *firmware, int len)
400e64df
OBC
1354{
1355 struct rproc *rproc;
8b4aec9a
RT
1356 char *p, *template = "rproc-%s-fw";
1357 int name_len = 0;
400e64df
OBC
1358
1359 if (!dev || !name || !ops)
1360 return NULL;
1361
8b4aec9a
RT
1362 if (!firmware)
1363 /*
1364 * Make room for default firmware name (minus %s plus '\0').
1365 * If the caller didn't pass in a firmware name then
1366 * construct a default name. We're already glomming 'len'
1367 * bytes onto the end of the struct rproc allocation, so do
1368 * a few more for the default firmware name (but only if
1369 * the caller doesn't pass one).
1370 */
1371 name_len = strlen(name) + strlen(template) - 2 + 1;
1372
899585ad 1373 rproc = kzalloc(sizeof(*rproc) + len + name_len, GFP_KERNEL);
172e6ab1 1374 if (!rproc)
400e64df 1375 return NULL;
400e64df 1376
8b4aec9a
RT
1377 if (!firmware) {
1378 p = (char *)rproc + sizeof(struct rproc) + len;
1379 snprintf(p, name_len, template, name);
1380 } else {
1381 p = (char *)firmware;
1382 }
1383
1384 rproc->firmware = p;
400e64df
OBC
1385 rproc->name = name;
1386 rproc->ops = ops;
400e64df 1387 rproc->priv = &rproc[1];
ddf71187 1388 rproc->auto_boot = true;
400e64df 1389
b5ab5e24
OBC
1390 device_initialize(&rproc->dev);
1391 rproc->dev.parent = dev;
1392 rproc->dev.type = &rproc_type;
1393
1394 /* Assign a unique device index and name */
1395 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1396 if (rproc->index < 0) {
1397 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1398 put_device(&rproc->dev);
1399 return NULL;
1400 }
1401
1402 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1403
400e64df
OBC
1404 atomic_set(&rproc->power, 0);
1405
4afc89d6
SB
1406 /* Set ELF as the default fw_ops handler */
1407 rproc->fw_ops = &rproc_elf_fw_ops;
400e64df
OBC
1408
1409 mutex_init(&rproc->lock);
1410
7a186941
OBC
1411 idr_init(&rproc->notifyids);
1412
400e64df
OBC
1413 INIT_LIST_HEAD(&rproc->carveouts);
1414 INIT_LIST_HEAD(&rproc->mappings);
1415 INIT_LIST_HEAD(&rproc->traces);
7a186941 1416 INIT_LIST_HEAD(&rproc->rvdevs);
400e64df 1417
8afd519c 1418 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
70b85ef8 1419 init_completion(&rproc->crash_comp);
8afd519c 1420
400e64df
OBC
1421 rproc->state = RPROC_OFFLINE;
1422
1423 return rproc;
1424}
1425EXPORT_SYMBOL(rproc_alloc);
1426
1427/**
160e7c84 1428 * rproc_put() - unroll rproc_alloc()
400e64df
OBC
1429 * @rproc: the remote processor handle
1430 *
c6b5a276 1431 * This function decrements the rproc dev refcount.
400e64df 1432 *
c6b5a276
OBC
1433 * If no one holds any reference to rproc anymore, then its refcount would
1434 * now drop to zero, and it would be freed.
400e64df 1435 */
160e7c84 1436void rproc_put(struct rproc *rproc)
400e64df 1437{
b5ab5e24 1438 put_device(&rproc->dev);
400e64df 1439}
160e7c84 1440EXPORT_SYMBOL(rproc_put);
400e64df
OBC
1441
1442/**
160e7c84 1443 * rproc_del() - unregister a remote processor
400e64df
OBC
1444 * @rproc: rproc handle to unregister
1445 *
400e64df
OBC
1446 * This function should be called when the platform specific rproc
1447 * implementation decides to remove the rproc device. it should
160e7c84 1448 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
1449 * has completed successfully.
1450 *
160e7c84 1451 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 1452 * of the outstanding reference created by rproc_alloc. To decrement that
160e7c84 1453 * one last refcount, one still needs to call rproc_put().
400e64df
OBC
1454 *
1455 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1456 */
160e7c84 1457int rproc_del(struct rproc *rproc)
400e64df 1458{
6db20ea8 1459 struct rproc_vdev *rvdev, *tmp;
7a186941 1460
400e64df
OBC
1461 if (!rproc)
1462 return -EINVAL;
1463
1464 /* if rproc is just being registered, wait */
1465 wait_for_completion(&rproc->firmware_loading_complete);
1466
ddf71187
BA
1467 /* if rproc is marked always-on, rproc_add() booted it */
1468 /* TODO: make sure this works with rproc->power > 1 */
1469 if (rproc->auto_boot)
1470 rproc_shutdown(rproc);
1471
7a186941 1472 /* clean up remote vdev entries */
6db20ea8 1473 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
7a186941 1474 rproc_remove_virtio_dev(rvdev);
400e64df 1475
a2b950ac
OBC
1476 /* Free the copy of the resource table */
1477 kfree(rproc->cached_table);
1478
fec47d86
DG
1479 /* the rproc is downref'ed as soon as it's removed from the klist */
1480 mutex_lock(&rproc_list_mutex);
1481 list_del(&rproc->node);
1482 mutex_unlock(&rproc_list_mutex);
1483
b5ab5e24 1484 device_del(&rproc->dev);
400e64df
OBC
1485
1486 return 0;
1487}
160e7c84 1488EXPORT_SYMBOL(rproc_del);
400e64df 1489
8afd519c
FGL
1490/**
1491 * rproc_report_crash() - rproc crash reporter function
1492 * @rproc: remote processor
1493 * @type: crash type
1494 *
1495 * This function must be called every time a crash is detected by the low-level
1496 * drivers implementing a specific remoteproc. This should not be called from a
1497 * non-remoteproc driver.
1498 *
1499 * This function can be called from atomic/interrupt context.
1500 */
1501void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1502{
1503 if (!rproc) {
1504 pr_err("NULL rproc pointer\n");
1505 return;
1506 }
1507
1508 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1509 rproc->name, rproc_crash_to_string(type));
1510
1511 /* create a new task to handle the error */
1512 schedule_work(&rproc->crash_handler);
1513}
1514EXPORT_SYMBOL(rproc_report_crash);
1515
400e64df
OBC
1516static int __init remoteproc_init(void)
1517{
1518 rproc_init_debugfs();
b5ab5e24 1519
400e64df
OBC
1520 return 0;
1521}
1522module_init(remoteproc_init);
1523
1524static void __exit remoteproc_exit(void)
1525{
f42f79af
SA
1526 ida_destroy(&rproc_dev_index);
1527
400e64df
OBC
1528 rproc_exit_debugfs();
1529}
1530module_exit(remoteproc_exit);
1531
1532MODULE_LICENSE("GPL v2");
1533MODULE_DESCRIPTION("Generic Remote Processor Framework");