remoteproc: fix trace buffer va initialization
[linux-2.6-block.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
2666ca91 36#include <linux/devcoredump.h>
400e64df
OBC
37#include <linux/remoteproc.h>
38#include <linux/iommu.h>
b5ab5e24 39#include <linux/idr.h>
400e64df 40#include <linux/elf.h>
a2b950ac 41#include <linux/crc32.h>
086d0872 42#include <linux/of_reserved_mem.h>
400e64df
OBC
43#include <linux/virtio_ids.h>
44#include <linux/virtio_ring.h>
cf59d3e9 45#include <asm/byteorder.h>
086d0872 46#include <linux/platform_device.h>
400e64df
OBC
47
48#include "remoteproc_internal.h"
49
b36de8cf
LP
50#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
51
fec47d86
DG
52static DEFINE_MUTEX(rproc_list_mutex);
53static LIST_HEAD(rproc_list);
54
400e64df 55typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec 56 struct resource_table *table, int len);
a2b950ac
OBC
57typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
58 void *, int offset, int avail);
400e64df 59
c6aed238
LP
60static int rproc_alloc_carveout(struct rproc *rproc,
61 struct rproc_mem_entry *mem);
62static int rproc_release_carveout(struct rproc *rproc,
63 struct rproc_mem_entry *mem);
64
b5ab5e24
OBC
65/* Unique indices for remoteproc devices */
66static DEFINE_IDA(rproc_dev_index);
67
8afd519c
FGL
68static const char * const rproc_crash_names[] = {
69 [RPROC_MMUFAULT] = "mmufault",
b3d39032
BA
70 [RPROC_WATCHDOG] = "watchdog",
71 [RPROC_FATAL_ERROR] = "fatal error",
8afd519c
FGL
72};
73
74/* translate rproc_crash_type to string */
75static const char *rproc_crash_to_string(enum rproc_crash_type type)
76{
77 if (type < ARRAY_SIZE(rproc_crash_names))
78 return rproc_crash_names[type];
b23f7a09 79 return "unknown";
8afd519c
FGL
80}
81
400e64df
OBC
82/*
83 * This is the IOMMU fault handler we register with the IOMMU API
84 * (when relevant; not all remote processors access memory through
85 * an IOMMU).
86 *
87 * IOMMU core will invoke this handler whenever the remote processor
88 * will try to access an unmapped device address.
400e64df
OBC
89 */
90static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
730f84ce 91 unsigned long iova, int flags, void *token)
400e64df 92{
8afd519c
FGL
93 struct rproc *rproc = token;
94
400e64df
OBC
95 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
96
8afd519c
FGL
97 rproc_report_crash(rproc, RPROC_MMUFAULT);
98
400e64df
OBC
99 /*
100 * Let the iommu core know we're not really handling this fault;
8afd519c 101 * we just used it as a recovery trigger.
400e64df
OBC
102 */
103 return -ENOSYS;
104}
105
106static int rproc_enable_iommu(struct rproc *rproc)
107{
108 struct iommu_domain *domain;
b5ab5e24 109 struct device *dev = rproc->dev.parent;
400e64df
OBC
110 int ret;
111
315491e5
SA
112 if (!rproc->has_iommu) {
113 dev_dbg(dev, "iommu not present\n");
0798e1da 114 return 0;
400e64df
OBC
115 }
116
117 domain = iommu_domain_alloc(dev->bus);
118 if (!domain) {
119 dev_err(dev, "can't alloc iommu domain\n");
120 return -ENOMEM;
121 }
122
77ca2332 123 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
124
125 ret = iommu_attach_device(domain, dev);
126 if (ret) {
127 dev_err(dev, "can't attach iommu device: %d\n", ret);
128 goto free_domain;
129 }
130
131 rproc->domain = domain;
132
133 return 0;
134
135free_domain:
136 iommu_domain_free(domain);
137 return ret;
138}
139
140static void rproc_disable_iommu(struct rproc *rproc)
141{
142 struct iommu_domain *domain = rproc->domain;
b5ab5e24 143 struct device *dev = rproc->dev.parent;
400e64df
OBC
144
145 if (!domain)
146 return;
147
148 iommu_detach_device(domain, dev);
149 iommu_domain_free(domain);
400e64df
OBC
150}
151
086d0872 152phys_addr_t rproc_va_to_pa(void *cpu_addr)
eb30596e
LP
153{
154 /*
155 * Return physical address according to virtual address location
156 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
157 * - in kernel: if region allocated in generic dma memory pool
158 */
159 if (is_vmalloc_addr(cpu_addr)) {
160 return page_to_phys(vmalloc_to_page(cpu_addr)) +
161 offset_in_page(cpu_addr);
162 }
163
164 WARN_ON(!virt_addr_valid(cpu_addr));
165 return virt_to_phys(cpu_addr);
166}
086d0872 167EXPORT_SYMBOL(rproc_va_to_pa);
eb30596e 168
a01f7cd6
SA
169/**
170 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
171 * @rproc: handle of a remote processor
172 * @da: remoteproc device address to translate
173 * @len: length of the memory region @da is pointing to
174 *
400e64df
OBC
175 * Some remote processors will ask us to allocate them physically contiguous
176 * memory regions (which we call "carveouts"), and map them to specific
a01f7cd6
SA
177 * device addresses (which are hardcoded in the firmware). They may also have
178 * dedicated memory regions internal to the processors, and use them either
179 * exclusively or alongside carveouts.
400e64df
OBC
180 *
181 * They may then ask us to copy objects into specific device addresses (e.g.
182 * code/data sections) or expose us certain symbols in other device address
183 * (e.g. their trace buffer).
184 *
a01f7cd6
SA
185 * This function is a helper function with which we can go over the allocated
186 * carveouts and translate specific device addresses to kernel virtual addresses
187 * so we can access the referenced memory. This function also allows to perform
188 * translations on the internal remoteproc memory regions through a platform
189 * implementation specific da_to_va ops, if present.
190 *
191 * The function returns a valid kernel address on success or NULL on failure.
400e64df
OBC
192 *
193 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
194 * but only on kernel direct mapped RAM memory. Instead, we're just using
a01f7cd6
SA
195 * here the output of the DMA API for the carveouts, which should be more
196 * correct.
400e64df 197 */
72854fb0 198void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
199{
200 struct rproc_mem_entry *carveout;
201 void *ptr = NULL;
202
a01f7cd6
SA
203 if (rproc->ops->da_to_va) {
204 ptr = rproc->ops->da_to_va(rproc, da, len);
205 if (ptr)
206 goto out;
207 }
208
400e64df
OBC
209 list_for_each_entry(carveout, &rproc->carveouts, node) {
210 int offset = da - carveout->da;
211
74457c40
LP
212 /* Verify that carveout is allocated */
213 if (!carveout->va)
214 continue;
215
400e64df
OBC
216 /* try next carveout if da is too small */
217 if (offset < 0)
218 continue;
219
220 /* try next carveout if da is too large */
221 if (offset + len > carveout->len)
222 continue;
223
224 ptr = carveout->va + offset;
225
226 break;
227 }
228
a01f7cd6 229out:
400e64df
OBC
230 return ptr;
231}
4afc89d6 232EXPORT_SYMBOL(rproc_da_to_va);
400e64df 233
b0019ccd
LP
234/**
235 * rproc_find_carveout_by_name() - lookup the carveout region by a name
236 * @rproc: handle of a remote processor
237 * @name,..: carveout name to find (standard printf format)
238 *
239 * Platform driver has the capability to register some pre-allacoted carveout
240 * (physically contiguous memory regions) before rproc firmware loading and
241 * associated resource table analysis. These regions may be dedicated memory
242 * regions internal to the coprocessor or specified DDR region with specific
243 * attributes
244 *
245 * This function is a helper function with which we can go over the
246 * allocated carveouts and return associated region characteristics like
247 * coprocessor address, length or processor virtual address.
248 *
249 * Return: a valid pointer on carveout entry on success or NULL on failure.
250 */
251struct rproc_mem_entry *
252rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
253{
254 va_list args;
255 char _name[32];
256 struct rproc_mem_entry *carveout, *mem = NULL;
257
258 if (!name)
259 return NULL;
260
261 va_start(args, name);
262 vsnprintf(_name, sizeof(_name), name, args);
263 va_end(args);
264
265 list_for_each_entry(carveout, &rproc->carveouts, node) {
266 /* Compare carveout and requested names */
267 if (!strcmp(carveout->name, _name)) {
268 mem = carveout;
269 break;
270 }
271 }
272
273 return mem;
274}
275
c874bf59
LP
276/**
277 * rproc_check_carveout_da() - Check specified carveout da configuration
278 * @rproc: handle of a remote processor
279 * @mem: pointer on carveout to check
280 * @da: area device address
281 * @len: associated area size
282 *
283 * This function is a helper function to verify requested device area (couple
284 * da, len) is part of specified carevout.
285 *
286 * Return: 0 if carveout match request else -ENOMEM
287 */
288int rproc_check_carveout_da(struct rproc *rproc, struct rproc_mem_entry *mem,
289 u32 da, u32 len)
290{
291 struct device *dev = &rproc->dev;
292 int delta = 0;
293
294 /* Check requested resource length */
295 if (len > mem->len) {
296 dev_err(dev, "Registered carveout doesn't fit len request\n");
297 return -ENOMEM;
298 }
299
300 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
301 /* Update existing carveout da */
302 mem->da = da;
303 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
304 delta = da - mem->da;
305
306 /* Check requested resource belongs to registered carveout */
307 if (delta < 0) {
308 dev_err(dev,
309 "Registered carveout doesn't fit da request\n");
310 return -ENOMEM;
311 }
312
313 if (delta + len > mem->len) {
314 dev_err(dev,
315 "Registered carveout doesn't fit len request\n");
316 return -ENOMEM;
317 }
318 }
319
320 return 0;
321}
322
6db20ea8 323int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 324{
7a186941 325 struct rproc *rproc = rvdev->rproc;
b5ab5e24 326 struct device *dev = &rproc->dev;
6db20ea8 327 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 328 struct fw_rsc_vdev *rsc;
7a186941 329 int ret, size, notifyid;
c6aed238 330 struct rproc_mem_entry *mem;
400e64df 331
7a186941 332 /* actual size of vring (in bytes) */
6db20ea8 333 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 334
c6aed238
LP
335 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
336
337 /* Search for pre-registered carveout */
338 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
339 i);
340 if (mem) {
341 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
342 return -ENOMEM;
343 } else {
344 /* Register carveout in in list */
345 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
346 rproc_alloc_carveout,
347 rproc_release_carveout,
348 "vdev%dvring%d",
349 rvdev->index, i);
350 if (!mem) {
351 dev_err(dev, "Can't allocate memory entry structure\n");
352 return -ENOMEM;
353 }
354
355 rproc_add_carveout(rproc, mem);
400e64df
OBC
356 }
357
6db20ea8
OBC
358 /*
359 * Assign an rproc-wide unique index for this vring
360 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
361 * TODO: support predefined notifyids (via resource table)
362 */
15fc6110 363 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 364 if (ret < 0) {
15fc6110 365 dev_err(dev, "idr_alloc failed: %d\n", ret);
7a186941
OBC
366 return ret;
367 }
15fc6110 368 notifyid = ret;
400e64df 369
48f18f89
BA
370 /* Potentially bump max_notifyid */
371 if (notifyid > rproc->max_notifyid)
372 rproc->max_notifyid = notifyid;
373
6db20ea8 374 rvring->notifyid = notifyid;
400e64df 375
c6aed238 376 /* Let the rproc know the notifyid of this vring.*/
c0d63157 377 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
378 return 0;
379}
380
6db20ea8
OBC
381static int
382rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
383{
384 struct rproc *rproc = rvdev->rproc;
b5ab5e24 385 struct device *dev = &rproc->dev;
6db20ea8
OBC
386 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
387 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 388
9d7814a9 389 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
730f84ce 390 i, vring->da, vring->num, vring->align);
7a186941 391
6db20ea8
OBC
392 /* verify queue size and vring alignment are sane */
393 if (!vring->num || !vring->align) {
394 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
730f84ce 395 vring->num, vring->align);
6db20ea8 396 return -EINVAL;
7a186941 397 }
6db20ea8
OBC
398
399 rvring->len = vring->num;
400 rvring->align = vring->align;
401 rvring->rvdev = rvdev;
402
403 return 0;
404}
405
406void rproc_free_vring(struct rproc_vring *rvring)
407{
6db20ea8 408 struct rproc *rproc = rvring->rvdev->rproc;
c0d63157
SB
409 int idx = rvring->rvdev->vring - rvring;
410 struct fw_rsc_vdev *rsc;
6db20ea8 411
6db20ea8 412 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 413
c0d63157
SB
414 /* reset resource entry info */
415 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
416 rsc->vring[idx].da = 0;
417 rsc->vring[idx].notifyid = -1;
7a186941
OBC
418}
419
6f8b0373 420static int rproc_vdev_do_start(struct rproc_subdev *subdev)
f5bcb353
BA
421{
422 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
423
424 return rproc_add_virtio_dev(rvdev, rvdev->id);
425}
426
6f8b0373 427static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
f5bcb353
BA
428{
429 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
d4c036fe 430 int ret;
f5bcb353 431
d4c036fe
LP
432 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
433 if (ret)
434 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
f5bcb353
BA
435}
436
086d0872
LP
437/**
438 * rproc_rvdev_release() - release the existence of a rvdev
439 *
440 * @dev: the subdevice's dev
441 */
442static void rproc_rvdev_release(struct device *dev)
443{
444 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
445
446 of_reserved_mem_device_release(dev);
447
448 kfree(rvdev);
449}
450
400e64df 451/**
fd2c15ec 452 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
453 * @rproc: the remote processor
454 * @rsc: the vring resource descriptor
fd2c15ec 455 * @avail: size of available data (for sanity checking the image)
400e64df 456 *
7a186941
OBC
457 * This resource entry requests the host to statically register a virtio
458 * device (vdev), and setup everything needed to support it. It contains
459 * everything needed to make it possible: the virtio device id, virtio
460 * device features, vrings information, virtio config space, etc...
461 *
462 * Before registering the vdev, the vrings are allocated from non-cacheable
463 * physically contiguous memory. Currently we only support two vrings per
464 * remote processor (temporary limitation). We might also want to consider
465 * doing the vring allocation only later when ->find_vqs() is invoked, and
466 * then release them upon ->del_vqs().
467 *
468 * Note: @da is currently not really handled correctly: we dynamically
469 * allocate it using the DMA API, ignoring requested hard coded addresses,
470 * and we don't take care of any required IOMMU programming. This is all
471 * going to be taken care of when the generic iommu-based DMA API will be
472 * merged. Meanwhile, statically-addressed iommu-based firmware images should
473 * use RSC_DEVMEM resource entries to map their required @da to the physical
474 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
475 *
476 * Returns 0 on success, or an appropriate error code otherwise
477 */
fd2c15ec 478static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
730f84ce 479 int offset, int avail)
400e64df 480{
b5ab5e24 481 struct device *dev = &rproc->dev;
7a186941
OBC
482 struct rproc_vdev *rvdev;
483 int i, ret;
086d0872 484 char name[16];
400e64df 485
fd2c15ec
OBC
486 /* make sure resource isn't truncated */
487 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
488 + rsc->config_len > avail) {
b5ab5e24 489 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
490 return -EINVAL;
491 }
492
fd2c15ec
OBC
493 /* make sure reserved bytes are zeroes */
494 if (rsc->reserved[0] || rsc->reserved[1]) {
495 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
496 return -EINVAL;
497 }
498
9d7814a9 499 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
fd2c15ec
OBC
500 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
501
7a186941
OBC
502 /* we currently support only two vrings per rvdev */
503 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 504 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
505 return -EINVAL;
506 }
507
899585ad 508 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
7a186941
OBC
509 if (!rvdev)
510 return -ENOMEM;
400e64df 511
aab8d802
BA
512 kref_init(&rvdev->refcount);
513
f5bcb353 514 rvdev->id = rsc->id;
7a186941 515 rvdev->rproc = rproc;
c6aed238 516 rvdev->index = rproc->nb_vdev++;
400e64df 517
086d0872
LP
518 /* Initialise vdev subdevice */
519 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
520 rvdev->dev.parent = rproc->dev.parent;
521 rvdev->dev.release = rproc_rvdev_release;
522 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
523 dev_set_drvdata(&rvdev->dev, rvdev);
524
525 ret = device_register(&rvdev->dev);
526 if (ret) {
527 put_device(&rvdev->dev);
528 return ret;
529 }
530 /* Make device dma capable by inheriting from parent's capabilities */
531 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
532
533 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
534 dma_get_mask(rproc->dev.parent));
535 if (ret) {
536 dev_warn(dev,
537 "Failed to set DMA mask %llx. Trying to continue... %x\n",
538 dma_get_mask(rproc->dev.parent), ret);
539 }
540
6db20ea8 541 /* parse the vrings */
7a186941 542 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 543 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 544 if (ret)
6db20ea8 545 goto free_rvdev;
7a186941 546 }
400e64df 547
a2b950ac
OBC
548 /* remember the resource offset*/
549 rvdev->rsc_offset = offset;
fd2c15ec 550
a863af5d
BA
551 /* allocate the vring resources */
552 for (i = 0; i < rsc->num_of_vrings; i++) {
553 ret = rproc_alloc_vring(rvdev, i);
554 if (ret)
555 goto unwind_vring_allocations;
556 }
557
7a186941 558 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 559
6f8b0373
AE
560 rvdev->subdev.start = rproc_vdev_do_start;
561 rvdev->subdev.stop = rproc_vdev_do_stop;
4902676f
BA
562
563 rproc_add_subdev(rproc, &rvdev->subdev);
400e64df
OBC
564
565 return 0;
7a186941 566
a863af5d
BA
567unwind_vring_allocations:
568 for (i--; i >= 0; i--)
569 rproc_free_vring(&rvdev->vring[i]);
6db20ea8 570free_rvdev:
086d0872 571 device_unregister(&rvdev->dev);
7a186941 572 return ret;
400e64df
OBC
573}
574
aab8d802
BA
575void rproc_vdev_release(struct kref *ref)
576{
577 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
a863af5d 578 struct rproc_vring *rvring;
f5bcb353 579 struct rproc *rproc = rvdev->rproc;
a863af5d
BA
580 int id;
581
582 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
583 rvring = &rvdev->vring[id];
a863af5d
BA
584 rproc_free_vring(rvring);
585 }
aab8d802 586
f5bcb353 587 rproc_remove_subdev(rproc, &rvdev->subdev);
aab8d802 588 list_del(&rvdev->node);
086d0872 589 device_unregister(&rvdev->dev);
aab8d802
BA
590}
591
400e64df
OBC
592/**
593 * rproc_handle_trace() - handle a shared trace buffer resource
594 * @rproc: the remote processor
595 * @rsc: the trace resource descriptor
fd2c15ec 596 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
597 *
598 * In case the remote processor dumps trace logs into memory,
599 * export it via debugfs.
600 *
601 * Currently, the 'da' member of @rsc should contain the device address
602 * where the remote processor is dumping the traces. Later we could also
603 * support dynamically allocating this address using the generic
604 * DMA API (but currently there isn't a use case for that).
605 *
606 * Returns 0 on success, or an appropriate error code otherwise
607 */
fd2c15ec 608static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
730f84ce 609 int offset, int avail)
400e64df 610{
a987e6b9 611 struct rproc_debug_trace *trace;
b5ab5e24 612 struct device *dev = &rproc->dev;
400e64df
OBC
613 char name[15];
614
fd2c15ec 615 if (sizeof(*rsc) > avail) {
b5ab5e24 616 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
617 return -EINVAL;
618 }
619
620 /* make sure reserved bytes are zeroes */
621 if (rsc->reserved) {
622 dev_err(dev, "trace rsc has non zero reserved bytes\n");
623 return -EINVAL;
624 }
625
400e64df 626 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 627 if (!trace)
400e64df 628 return -ENOMEM;
400e64df
OBC
629
630 /* set the trace buffer dma properties */
a987e6b9
LP
631 trace->trace_mem.len = rsc->len;
632 trace->trace_mem.da = rsc->da;
633
634 /* set pointer on rproc device */
635 trace->rproc = rproc;
400e64df
OBC
636
637 /* make sure snprintf always null terminates, even if truncating */
638 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
639
640 /* create the debugfs entry */
a987e6b9
LP
641 trace->tfile = rproc_create_trace_file(name, rproc, trace);
642 if (!trace->tfile) {
400e64df
OBC
643 kfree(trace);
644 return -EINVAL;
645 }
646
647 list_add_tail(&trace->node, &rproc->traces);
648
649 rproc->num_traces++;
650
a987e6b9
LP
651 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
652 name, rsc->da, rsc->len);
400e64df
OBC
653
654 return 0;
655}
656
657/**
658 * rproc_handle_devmem() - handle devmem resource entry
659 * @rproc: remote processor handle
660 * @rsc: the devmem resource entry
fd2c15ec 661 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
662 *
663 * Remote processors commonly need to access certain on-chip peripherals.
664 *
665 * Some of these remote processors access memory via an iommu device,
666 * and might require us to configure their iommu before they can access
667 * the on-chip peripherals they need.
668 *
669 * This resource entry is a request to map such a peripheral device.
670 *
671 * These devmem entries will contain the physical address of the device in
672 * the 'pa' member. If a specific device address is expected, then 'da' will
673 * contain it (currently this is the only use case supported). 'len' will
674 * contain the size of the physical region we need to map.
675 *
676 * Currently we just "trust" those devmem entries to contain valid physical
677 * addresses, but this is going to change: we want the implementations to
678 * tell us ranges of physical addresses the firmware is allowed to request,
679 * and not allow firmwares to request access to physical addresses that
680 * are outside those ranges.
681 */
fd2c15ec 682static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
730f84ce 683 int offset, int avail)
400e64df
OBC
684{
685 struct rproc_mem_entry *mapping;
b5ab5e24 686 struct device *dev = &rproc->dev;
400e64df
OBC
687 int ret;
688
689 /* no point in handling this resource without a valid iommu domain */
690 if (!rproc->domain)
691 return -EINVAL;
692
fd2c15ec 693 if (sizeof(*rsc) > avail) {
b5ab5e24 694 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
695 return -EINVAL;
696 }
697
698 /* make sure reserved bytes are zeroes */
699 if (rsc->reserved) {
b5ab5e24 700 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
701 return -EINVAL;
702 }
703
400e64df 704 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 705 if (!mapping)
400e64df 706 return -ENOMEM;
400e64df
OBC
707
708 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
709 if (ret) {
b5ab5e24 710 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
711 goto out;
712 }
713
714 /*
715 * We'll need this info later when we'll want to unmap everything
716 * (e.g. on shutdown).
717 *
718 * We can't trust the remote processor not to change the resource
719 * table, so we must maintain this info independently.
720 */
721 mapping->da = rsc->da;
722 mapping->len = rsc->len;
723 list_add_tail(&mapping->node, &rproc->mappings);
724
b5ab5e24 725 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
730f84ce 726 rsc->pa, rsc->da, rsc->len);
400e64df
OBC
727
728 return 0;
729
730out:
731 kfree(mapping);
732 return ret;
733}
734
f2e74abf 735/**
d7c51706 736 * rproc_alloc_carveout() - allocated specified carveout
f2e74abf 737 * @rproc: rproc handle
d7c51706 738 * @mem: the memory entry to allocate
400e64df 739 *
d7c51706
LP
740 * This function allocate specified memory entry @mem using
741 * dma_alloc_coherent() as default allocator
400e64df 742 */
d7c51706
LP
743static int rproc_alloc_carveout(struct rproc *rproc,
744 struct rproc_mem_entry *mem)
400e64df 745{
d7c51706 746 struct rproc_mem_entry *mapping = NULL;
b5ab5e24 747 struct device *dev = &rproc->dev;
400e64df
OBC
748 dma_addr_t dma;
749 void *va;
750 int ret;
751
d7c51706 752 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
400e64df 753 if (!va) {
9c219b23 754 dev_err(dev->parent,
d7c51706 755 "failed to allocate dma memory: len 0x%x\n", mem->len);
72029c90 756 return -ENOMEM;
400e64df
OBC
757 }
758
276ec993 759 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
d7c51706 760 va, &dma, mem->len);
400e64df 761
60f849a5
LP
762 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
763 /*
764 * Check requested da is equal to dma address
765 * and print a warn message in case of missalignment.
766 * Don't stop rproc_start sequence as coprocessor may
767 * build pa to da translation on its side.
768 */
769 if (mem->da != (u32)dma)
770 dev_warn(dev->parent,
771 "Allocated carveout doesn't fit device address request\n");
772 }
773
400e64df
OBC
774 /*
775 * Ok, this is non-standard.
776 *
777 * Sometimes we can't rely on the generic iommu-based DMA API
778 * to dynamically allocate the device address and then set the IOMMU
779 * tables accordingly, because some remote processors might
780 * _require_ us to use hard coded device addresses that their
781 * firmware was compiled with.
782 *
783 * In this case, we must use the IOMMU API directly and map
784 * the memory to the device address as expected by the remote
785 * processor.
786 *
787 * Obviously such remote processor devices should not be configured
788 * to use the iommu-based DMA API: we expect 'dma' to contain the
789 * physical address in this case.
790 */
60f849a5 791 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
7168d914
DC
792 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
793 if (!mapping) {
7168d914
DC
794 ret = -ENOMEM;
795 goto dma_free;
796 }
797
d7c51706
LP
798 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
799 mem->flags);
400e64df
OBC
800 if (ret) {
801 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 802 goto free_mapping;
400e64df
OBC
803 }
804
805 /*
806 * We'll need this info later when we'll want to unmap
807 * everything (e.g. on shutdown).
808 *
809 * We can't trust the remote processor not to change the
810 * resource table, so we must maintain this info independently.
811 */
d7c51706
LP
812 mapping->da = mem->da;
813 mapping->len = mem->len;
400e64df
OBC
814 list_add_tail(&mapping->node, &rproc->mappings);
815
b605ed8b 816 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
d7c51706 817 mem->da, &dma);
60f849a5
LP
818 }
819
820 if (mem->da == FW_RSC_ADDR_ANY) {
b36de8cf
LP
821 /* Update device address as undefined by requester */
822 if ((u64)dma & HIGH_BITS_MASK)
823 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
824
d7c51706 825 mem->da = (u32)dma;
400e64df
OBC
826 }
827
80137b40 828 mem->dma = dma;
d7c51706 829 mem->va = va;
400e64df
OBC
830
831 return 0;
832
7168d914
DC
833free_mapping:
834 kfree(mapping);
400e64df 835dma_free:
d7c51706 836 dma_free_coherent(dev->parent, mem->len, va, dma);
400e64df
OBC
837 return ret;
838}
839
d7c51706
LP
840/**
841 * rproc_release_carveout() - release acquired carveout
842 * @rproc: rproc handle
843 * @mem: the memory entry to release
844 *
845 * This function releases specified memory entry @mem allocated via
846 * rproc_alloc_carveout() function by @rproc.
847 */
848static int rproc_release_carveout(struct rproc *rproc,
849 struct rproc_mem_entry *mem)
850{
851 struct device *dev = &rproc->dev;
852
853 /* clean up carveout allocations */
854 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
855 return 0;
856}
857
858/**
859 * rproc_handle_carveout() - handle phys contig memory allocation requests
860 * @rproc: rproc handle
861 * @rsc: the resource entry
862 * @avail: size of available data (for image validation)
863 *
864 * This function will handle firmware requests for allocation of physically
865 * contiguous memory regions.
866 *
867 * These request entries should come first in the firmware's resource table,
868 * as other firmware entries might request placing other data objects inside
869 * these memory regions (e.g. data/code segments, trace resource entries, ...).
870 *
871 * Allocating memory this way helps utilizing the reserved physical memory
872 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
873 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
874 * pressure is important; it may have a substantial impact on performance.
875 */
876static int rproc_handle_carveout(struct rproc *rproc,
877 struct fw_rsc_carveout *rsc,
878 int offset, int avail)
879{
880 struct rproc_mem_entry *carveout;
881 struct device *dev = &rproc->dev;
882
883 if (sizeof(*rsc) > avail) {
884 dev_err(dev, "carveout rsc is truncated\n");
885 return -EINVAL;
886 }
887
888 /* make sure reserved bytes are zeroes */
889 if (rsc->reserved) {
890 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
891 return -EINVAL;
892 }
893
894 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
895 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
896
ffa5f9c8
LP
897 /*
898 * Check carveout rsc already part of a registered carveout,
899 * Search by name, then check the da and length
900 */
901 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
902
903 if (carveout) {
904 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
905 dev_err(dev,
906 "Carveout already associated to resource table\n");
907 return -ENOMEM;
908 }
909
910 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
911 return -ENOMEM;
912
913 /* Update memory carveout with resource table info */
914 carveout->rsc_offset = offset;
915 carveout->flags = rsc->flags;
916
917 return 0;
918 }
919
d7c51706
LP
920 /* Register carveout in in list */
921 carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
922 rproc_alloc_carveout,
923 rproc_release_carveout, rsc->name);
924 if (!carveout) {
925 dev_err(dev, "Can't allocate memory entry structure\n");
926 return -ENOMEM;
927 }
928
929 carveout->flags = rsc->flags;
930 carveout->rsc_offset = offset;
931 rproc_add_carveout(rproc, carveout);
932
933 return 0;
934}
935
15c0b025
LP
936/**
937 * rproc_add_carveout() - register an allocated carveout region
938 * @rproc: rproc handle
939 * @mem: memory entry to register
940 *
941 * This function registers specified memory entry in @rproc carveouts list.
942 * Specified carveout should have been allocated before registering.
943 */
944void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
945{
946 list_add_tail(&mem->node, &rproc->carveouts);
947}
948EXPORT_SYMBOL(rproc_add_carveout);
949
72029c90
LP
950/**
951 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
952 * @dev: pointer on device struct
953 * @va: virtual address
954 * @dma: dma address
955 * @len: memory carveout length
956 * @da: device address
a9f6fe0d
LP
957 * @alloc: memory carveout allocation function
958 * @release: memory carveout release function
72029c90
LP
959 * @name: carveout name
960 *
961 * This function allocates a rproc_mem_entry struct and fill it with parameters
962 * provided by client.
963 */
964struct rproc_mem_entry *
965rproc_mem_entry_init(struct device *dev,
966 void *va, dma_addr_t dma, int len, u32 da,
d7c51706 967 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
72029c90
LP
968 int (*release)(struct rproc *, struct rproc_mem_entry *),
969 const char *name, ...)
970{
971 struct rproc_mem_entry *mem;
972 va_list args;
973
974 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
975 if (!mem)
976 return mem;
977
978 mem->va = va;
979 mem->dma = dma;
980 mem->da = da;
981 mem->len = len;
d7c51706 982 mem->alloc = alloc;
72029c90 983 mem->release = release;
d7c51706 984 mem->rsc_offset = FW_RSC_ADDR_ANY;
1429cca1 985 mem->of_resm_idx = -1;
72029c90
LP
986
987 va_start(args, name);
988 vsnprintf(mem->name, sizeof(mem->name), name, args);
989 va_end(args);
990
991 return mem;
992}
993EXPORT_SYMBOL(rproc_mem_entry_init);
994
1429cca1
LP
995/**
996 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
997 * from a reserved memory phandle
998 * @dev: pointer on device struct
999 * @of_resm_idx: reserved memory phandle index in "memory-region"
1000 * @len: memory carveout length
1001 * @da: device address
1002 * @name: carveout name
1003 *
1004 * This function allocates a rproc_mem_entry struct and fill it with parameters
1005 * provided by client.
1006 */
1007struct rproc_mem_entry *
1008rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1009 u32 da, const char *name, ...)
1010{
1011 struct rproc_mem_entry *mem;
1012 va_list args;
1013
1014 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1015 if (!mem)
1016 return mem;
1017
1018 mem->da = da;
1019 mem->len = len;
1020 mem->rsc_offset = FW_RSC_ADDR_ANY;
1021 mem->of_resm_idx = of_resm_idx;
1022
1023 va_start(args, name);
1024 vsnprintf(mem->name, sizeof(mem->name), name, args);
1025 va_end(args);
1026
1027 return mem;
1028}
1029EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1030
72029c90 1031/**
e12bc14b
OBC
1032 * A lookup table for resource handlers. The indices are defined in
1033 * enum fw_resource_type.
1034 */
232fcdbb 1035static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
1036 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1037 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1038 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
232fcdbb
SB
1039 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1040};
1041
400e64df 1042/* handle firmware resource entries before booting the remote processor */
a4b24c75 1043static int rproc_handle_resources(struct rproc *rproc,
232fcdbb 1044 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 1045{
b5ab5e24 1046 struct device *dev = &rproc->dev;
e12bc14b 1047 rproc_handle_resource_t handler;
fd2c15ec
OBC
1048 int ret = 0, i;
1049
d4bb86f2
BA
1050 if (!rproc->table_ptr)
1051 return 0;
1052
a2b950ac
OBC
1053 for (i = 0; i < rproc->table_ptr->num; i++) {
1054 int offset = rproc->table_ptr->offset[i];
1055 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
a4b24c75 1056 int avail = rproc->table_sz - offset - sizeof(*hdr);
fd2c15ec
OBC
1057 void *rsc = (void *)hdr + sizeof(*hdr);
1058
1059 /* make sure table isn't truncated */
1060 if (avail < 0) {
1061 dev_err(dev, "rsc table is truncated\n");
1062 return -EINVAL;
1063 }
400e64df 1064
fd2c15ec 1065 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 1066
fd2c15ec
OBC
1067 if (hdr->type >= RSC_LAST) {
1068 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 1069 continue;
400e64df
OBC
1070 }
1071
232fcdbb 1072 handler = handlers[hdr->type];
e12bc14b
OBC
1073 if (!handler)
1074 continue;
1075
a2b950ac 1076 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 1077 if (ret)
400e64df 1078 break;
fd2c15ec 1079 }
400e64df
OBC
1080
1081 return ret;
1082}
1083
c455daa4
BA
1084static int rproc_prepare_subdevices(struct rproc *rproc)
1085{
1086 struct rproc_subdev *subdev;
1087 int ret;
1088
1089 list_for_each_entry(subdev, &rproc->subdevs, node) {
1090 if (subdev->prepare) {
1091 ret = subdev->prepare(subdev);
1092 if (ret)
1093 goto unroll_preparation;
1094 }
1095 }
1096
1097 return 0;
1098
1099unroll_preparation:
1100 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1101 if (subdev->unprepare)
1102 subdev->unprepare(subdev);
1103 }
1104
1105 return ret;
1106}
1107
618fcff3 1108static int rproc_start_subdevices(struct rproc *rproc)
7bdc9650
BA
1109{
1110 struct rproc_subdev *subdev;
1111 int ret;
1112
1113 list_for_each_entry(subdev, &rproc->subdevs, node) {
be37b1e0
BA
1114 if (subdev->start) {
1115 ret = subdev->start(subdev);
1116 if (ret)
1117 goto unroll_registration;
1118 }
7bdc9650
BA
1119 }
1120
1121 return 0;
1122
1123unroll_registration:
be37b1e0
BA
1124 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1125 if (subdev->stop)
1126 subdev->stop(subdev, true);
1127 }
7bdc9650
BA
1128
1129 return ret;
1130}
1131
618fcff3 1132static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
7bdc9650
BA
1133{
1134 struct rproc_subdev *subdev;
1135
be37b1e0
BA
1136 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1137 if (subdev->stop)
1138 subdev->stop(subdev, crashed);
1139 }
7bdc9650
BA
1140}
1141
c455daa4
BA
1142static void rproc_unprepare_subdevices(struct rproc *rproc)
1143{
1144 struct rproc_subdev *subdev;
1145
1146 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1147 if (subdev->unprepare)
1148 subdev->unprepare(subdev);
1149 }
1150}
1151
d7c51706
LP
1152/**
1153 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1154 * in the list
1155 * @rproc: the remote processor handle
1156 *
1157 * This function parses registered carveout list, performs allocation
1158 * if alloc() ops registered and updates resource table information
1159 * if rsc_offset set.
1160 *
1161 * Return: 0 on success
1162 */
1163static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1164{
1165 struct rproc_mem_entry *entry, *tmp;
1166 struct fw_rsc_carveout *rsc;
1167 struct device *dev = &rproc->dev;
b36de8cf 1168 u64 pa;
d7c51706
LP
1169 int ret;
1170
1171 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1172 if (entry->alloc) {
1173 ret = entry->alloc(rproc, entry);
1174 if (ret) {
1175 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1176 entry->name, ret);
1177 return -ENOMEM;
1178 }
1179 }
1180
1181 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1182 /* update resource table */
1183 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1184
1185 /*
1186 * Some remote processors might need to know the pa
1187 * even though they are behind an IOMMU. E.g., OMAP4's
1188 * remote M3 processor needs this so it can control
1189 * on-chip hardware accelerators that are not behind
1190 * the IOMMU, and therefor must know the pa.
1191 *
1192 * Generally we don't want to expose physical addresses
1193 * if we don't have to (remote processors are generally
1194 * _not_ trusted), so we might want to do this only for
1195 * remote processor that _must_ have this (e.g. OMAP4's
1196 * dual M3 subsystem).
1197 *
1198 * Non-IOMMU processors might also want to have this info.
1199 * In this case, the device address and the physical address
1200 * are the same.
1201 */
ffa5f9c8
LP
1202
1203 /* Use va if defined else dma to generate pa */
d7c51706 1204 if (entry->va)
b36de8cf 1205 pa = (u64)rproc_va_to_pa(entry->va);
ffa5f9c8 1206 else
b36de8cf
LP
1207 pa = (u64)entry->dma;
1208
1209 if (((u64)pa) & HIGH_BITS_MASK)
1210 dev_warn(dev,
1211 "Physical address cast in 32bit to fit resource table format\n");
ffa5f9c8 1212
b36de8cf 1213 rsc->pa = (u32)pa;
ffa5f9c8
LP
1214 rsc->da = entry->da;
1215 rsc->len = entry->len;
d7c51706
LP
1216 }
1217 }
1218
1219 return 0;
1220}
1221
2666ca91
SJ
1222/**
1223 * rproc_coredump_cleanup() - clean up dump_segments list
1224 * @rproc: the remote processor handle
1225 */
1226static void rproc_coredump_cleanup(struct rproc *rproc)
1227{
1228 struct rproc_dump_segment *entry, *tmp;
1229
1230 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1231 list_del(&entry->node);
1232 kfree(entry);
1233 }
1234}
1235
400e64df
OBC
1236/**
1237 * rproc_resource_cleanup() - clean up and free all acquired resources
1238 * @rproc: rproc handle
1239 *
1240 * This function will free all resources acquired for @rproc, and it
7a186941 1241 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
1242 */
1243static void rproc_resource_cleanup(struct rproc *rproc)
1244{
1245 struct rproc_mem_entry *entry, *tmp;
a987e6b9 1246 struct rproc_debug_trace *trace, *ttmp;
d81fb32f 1247 struct rproc_vdev *rvdev, *rvtmp;
b5ab5e24 1248 struct device *dev = &rproc->dev;
400e64df
OBC
1249
1250 /* clean up debugfs trace entries */
a987e6b9
LP
1251 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1252 rproc_remove_trace_file(trace->tfile);
400e64df 1253 rproc->num_traces--;
a987e6b9
LP
1254 list_del(&trace->node);
1255 kfree(trace);
400e64df
OBC
1256 }
1257
400e64df
OBC
1258 /* clean up iommu mapping entries */
1259 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1260 size_t unmapped;
1261
1262 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1263 if (unmapped != entry->len) {
1264 /* nothing much to do besides complaining */
e981f6d4 1265 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
730f84ce 1266 unmapped);
400e64df
OBC
1267 }
1268
1269 list_del(&entry->node);
1270 kfree(entry);
1271 }
b6356a01
SA
1272
1273 /* clean up carveout allocations */
1274 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
f2e74abf
LP
1275 if (entry->release)
1276 entry->release(rproc, entry);
b6356a01
SA
1277 list_del(&entry->node);
1278 kfree(entry);
1279 }
d81fb32f
BA
1280
1281 /* clean up remote vdev entries */
f5bcb353 1282 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
2b45cef5 1283 kref_put(&rvdev->refcount, rproc_vdev_release);
2666ca91
SJ
1284
1285 rproc_coredump_cleanup(rproc);
400e64df
OBC
1286}
1287
1efa30d0
SJ
1288static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1289{
a4b24c75 1290 struct resource_table *loaded_table;
1efa30d0 1291 struct device *dev = &rproc->dev;
a4b24c75 1292 int ret;
1efa30d0
SJ
1293
1294 /* load the ELF segments to memory */
1295 ret = rproc_load_segments(rproc, fw);
1296 if (ret) {
1297 dev_err(dev, "Failed to load program segments: %d\n", ret);
1298 return ret;
1299 }
1300
1301 /*
1302 * The starting device has been given the rproc->cached_table as the
1303 * resource table. The address of the vring along with the other
1304 * allocated resources (carveouts etc) is stored in cached_table.
1305 * In order to pass this information to the remote device we must copy
1306 * this information to device memory. We also update the table_ptr so
1307 * that any subsequent changes will be applied to the loaded version.
1308 */
1309 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1310 if (loaded_table) {
a4b24c75 1311 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1efa30d0
SJ
1312 rproc->table_ptr = loaded_table;
1313 }
1314
c455daa4
BA
1315 ret = rproc_prepare_subdevices(rproc);
1316 if (ret) {
1317 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1318 rproc->name, ret);
f68d51bd 1319 goto reset_table_ptr;
c455daa4
BA
1320 }
1321
1efa30d0
SJ
1322 /* power up the remote processor */
1323 ret = rproc->ops->start(rproc);
1324 if (ret) {
1325 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
c455daa4 1326 goto unprepare_subdevices;
1efa30d0
SJ
1327 }
1328
618fcff3
BA
1329 /* Start any subdevices for the remote processor */
1330 ret = rproc_start_subdevices(rproc);
1efa30d0
SJ
1331 if (ret) {
1332 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1333 rproc->name, ret);
c455daa4 1334 goto stop_rproc;
1efa30d0
SJ
1335 }
1336
1337 rproc->state = RPROC_RUNNING;
1338
1339 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1340
1341 return 0;
c455daa4
BA
1342
1343stop_rproc:
1344 rproc->ops->stop(rproc);
c455daa4
BA
1345unprepare_subdevices:
1346 rproc_unprepare_subdevices(rproc);
f68d51bd
SA
1347reset_table_ptr:
1348 rproc->table_ptr = rproc->cached_table;
c455daa4
BA
1349
1350 return ret;
1efa30d0
SJ
1351}
1352
400e64df
OBC
1353/*
1354 * take a firmware and boot a remote processor with it.
1355 */
1356static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1357{
b5ab5e24 1358 struct device *dev = &rproc->dev;
400e64df 1359 const char *name = rproc->firmware;
58b64090 1360 int ret;
400e64df
OBC
1361
1362 ret = rproc_fw_sanity_check(rproc, fw);
1363 if (ret)
1364 return ret;
1365
e981f6d4 1366 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
1367
1368 /*
1369 * if enabling an IOMMU isn't relevant for this rproc, this is
1370 * just a nop
1371 */
1372 ret = rproc_enable_iommu(rproc);
1373 if (ret) {
1374 dev_err(dev, "can't enable iommu: %d\n", ret);
1375 return ret;
1376 }
1377
3e5f9eb5 1378 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
988d204c 1379
c1d35c1a
BA
1380 /* Load resource table, core dump segment list etc from the firmware */
1381 ret = rproc_parse_fw(rproc, fw);
58b64090
BA
1382 if (ret)
1383 goto disable_iommu;
a0c10687 1384
b35d7afc
BA
1385 /* reset max_notifyid */
1386 rproc->max_notifyid = -1;
1387
c6aed238
LP
1388 /* reset handled vdev */
1389 rproc->nb_vdev = 0;
1390
400e64df 1391 /* handle fw resources which are required to boot rproc */
a4b24c75 1392 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
400e64df
OBC
1393 if (ret) {
1394 dev_err(dev, "Failed to process resources: %d\n", ret);
229b85a6 1395 goto clean_up_resources;
400e64df
OBC
1396 }
1397
d7c51706
LP
1398 /* Allocate carveout resources associated to rproc */
1399 ret = rproc_alloc_registered_carveouts(rproc);
1400 if (ret) {
1401 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1402 ret);
1403 goto clean_up_resources;
1404 }
1405
1efa30d0
SJ
1406 ret = rproc_start(rproc, fw);
1407 if (ret)
229b85a6 1408 goto clean_up_resources;
400e64df
OBC
1409
1410 return 0;
1411
229b85a6
BA
1412clean_up_resources:
1413 rproc_resource_cleanup(rproc);
a0c10687
BA
1414 kfree(rproc->cached_table);
1415 rproc->cached_table = NULL;
988d204c 1416 rproc->table_ptr = NULL;
58b64090 1417disable_iommu:
400e64df
OBC
1418 rproc_disable_iommu(rproc);
1419 return ret;
1420}
1421
1422/*
5e6533f7 1423 * take a firmware and boot it up.
400e64df
OBC
1424 *
1425 * Note: this function is called asynchronously upon registration of the
1426 * remote processor (so we must wait until it completes before we try
1427 * to unregister the device. one other option is just to use kref here,
1428 * that might be cleaner).
1429 */
5e6533f7 1430static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
400e64df
OBC
1431{
1432 struct rproc *rproc = context;
a2b950ac 1433
7a20c64d 1434 rproc_boot(rproc);
ddf71187 1435
3cc6e787 1436 release_firmware(fw);
400e64df
OBC
1437}
1438
5e6533f7 1439static int rproc_trigger_auto_boot(struct rproc *rproc)
70b85ef8
FGL
1440{
1441 int ret;
1442
70b85ef8 1443 /*
70b85ef8
FGL
1444 * We're initiating an asynchronous firmware loading, so we can
1445 * be built-in kernel code, without hanging the boot process.
1446 */
1447 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1448 rproc->firmware, &rproc->dev, GFP_KERNEL,
5e6533f7 1449 rproc, rproc_auto_boot_callback);
2099c77d 1450 if (ret < 0)
70b85ef8 1451 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
70b85ef8
FGL
1452
1453 return ret;
1454}
1455
880f5b38 1456static int rproc_stop(struct rproc *rproc, bool crashed)
1efa30d0
SJ
1457{
1458 struct device *dev = &rproc->dev;
1459 int ret;
1460
618fcff3
BA
1461 /* Stop any subdevices for the remote processor */
1462 rproc_stop_subdevices(rproc, crashed);
1efa30d0 1463
0a8b81cb
BA
1464 /* the installed resource table is no longer accessible */
1465 rproc->table_ptr = rproc->cached_table;
1466
1efa30d0
SJ
1467 /* power off the remote processor */
1468 ret = rproc->ops->stop(rproc);
1469 if (ret) {
1470 dev_err(dev, "can't stop rproc: %d\n", ret);
1471 return ret;
1472 }
1473
c455daa4
BA
1474 rproc_unprepare_subdevices(rproc);
1475
1efa30d0
SJ
1476 rproc->state = RPROC_OFFLINE;
1477
1478 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1479
1480 return 0;
1481}
1482
2666ca91
SJ
1483/**
1484 * rproc_coredump_add_segment() - add segment of device memory to coredump
1485 * @rproc: handle of a remote processor
1486 * @da: device address
1487 * @size: size of segment
1488 *
1489 * Add device memory to the list of segments to be included in a coredump for
1490 * the remoteproc.
1491 *
1492 * Return: 0 on success, negative errno on error.
1493 */
1494int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1495{
1496 struct rproc_dump_segment *segment;
1497
1498 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1499 if (!segment)
1500 return -ENOMEM;
1501
1502 segment->da = da;
1503 segment->size = size;
1504
1505 list_add_tail(&segment->node, &rproc->dump_segments);
1506
1507 return 0;
1508}
1509EXPORT_SYMBOL(rproc_coredump_add_segment);
1510
ab8f873b
SS
1511/**
1512 * rproc_coredump_add_custom_segment() - add custom coredump segment
1513 * @rproc: handle of a remote processor
1514 * @da: device address
1515 * @size: size of segment
1516 * @dumpfn: custom dump function called for each segment during coredump
1517 * @priv: private data
1518 *
1519 * Add device memory to the list of segments to be included in the coredump
1520 * and associate the segment with the given custom dump function and private
1521 * data.
1522 *
1523 * Return: 0 on success, negative errno on error.
1524 */
1525int rproc_coredump_add_custom_segment(struct rproc *rproc,
1526 dma_addr_t da, size_t size,
1527 void (*dumpfn)(struct rproc *rproc,
1528 struct rproc_dump_segment *segment,
1529 void *dest),
1530 void *priv)
1531{
1532 struct rproc_dump_segment *segment;
1533
1534 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1535 if (!segment)
1536 return -ENOMEM;
1537
1538 segment->da = da;
1539 segment->size = size;
1540 segment->priv = priv;
1541 segment->dump = dumpfn;
1542
1543 list_add_tail(&segment->node, &rproc->dump_segments);
1544
1545 return 0;
1546}
1547EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1548
2666ca91
SJ
1549/**
1550 * rproc_coredump() - perform coredump
1551 * @rproc: rproc handle
1552 *
1553 * This function will generate an ELF header for the registered segments
1554 * and create a devcoredump device associated with rproc.
1555 */
1556static void rproc_coredump(struct rproc *rproc)
1557{
1558 struct rproc_dump_segment *segment;
1559 struct elf32_phdr *phdr;
1560 struct elf32_hdr *ehdr;
1561 size_t data_size;
1562 size_t offset;
1563 void *data;
1564 void *ptr;
1565 int phnum = 0;
1566
1567 if (list_empty(&rproc->dump_segments))
1568 return;
1569
1570 data_size = sizeof(*ehdr);
1571 list_for_each_entry(segment, &rproc->dump_segments, node) {
1572 data_size += sizeof(*phdr) + segment->size;
1573
1574 phnum++;
1575 }
1576
1577 data = vmalloc(data_size);
1578 if (!data)
1579 return;
1580
1581 ehdr = data;
1582
1583 memset(ehdr, 0, sizeof(*ehdr));
1584 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1585 ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1586 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1587 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1588 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1589 ehdr->e_type = ET_CORE;
1590 ehdr->e_machine = EM_NONE;
1591 ehdr->e_version = EV_CURRENT;
1592 ehdr->e_entry = rproc->bootaddr;
1593 ehdr->e_phoff = sizeof(*ehdr);
1594 ehdr->e_ehsize = sizeof(*ehdr);
1595 ehdr->e_phentsize = sizeof(*phdr);
1596 ehdr->e_phnum = phnum;
1597
1598 phdr = data + ehdr->e_phoff;
1599 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1600 list_for_each_entry(segment, &rproc->dump_segments, node) {
1601 memset(phdr, 0, sizeof(*phdr));
1602 phdr->p_type = PT_LOAD;
1603 phdr->p_offset = offset;
1604 phdr->p_vaddr = segment->da;
1605 phdr->p_paddr = segment->da;
1606 phdr->p_filesz = segment->size;
1607 phdr->p_memsz = segment->size;
1608 phdr->p_flags = PF_R | PF_W | PF_X;
1609 phdr->p_align = 0;
1610
3952105d
SS
1611 if (segment->dump) {
1612 segment->dump(rproc, segment, data + offset);
2666ca91 1613 } else {
3952105d
SS
1614 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1615 if (!ptr) {
1616 dev_err(&rproc->dev,
1617 "invalid coredump segment (%pad, %zu)\n",
1618 &segment->da, segment->size);
1619 memset(data + offset, 0xff, segment->size);
1620 } else {
1621 memcpy(data + offset, ptr, segment->size);
1622 }
2666ca91
SJ
1623 }
1624
1625 offset += phdr->p_filesz;
1626 phdr++;
1627 }
1628
1629 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1630}
1631
70b85ef8
FGL
1632/**
1633 * rproc_trigger_recovery() - recover a remoteproc
1634 * @rproc: the remote processor
1635 *
56324d7a 1636 * The recovery is done by resetting all the virtio devices, that way all the
70b85ef8
FGL
1637 * rpmsg drivers will be reseted along with the remote processor making the
1638 * remoteproc functional again.
1639 *
1640 * This function can sleep, so it cannot be called from atomic context.
1641 */
1642int rproc_trigger_recovery(struct rproc *rproc)
1643{
7e83cab8
SJ
1644 const struct firmware *firmware_p;
1645 struct device *dev = &rproc->dev;
1646 int ret;
1647
1648 dev_err(dev, "recovering %s\n", rproc->name);
70b85ef8 1649
7e83cab8
SJ
1650 ret = mutex_lock_interruptible(&rproc->lock);
1651 if (ret)
1652 return ret;
1653
fcd58037 1654 ret = rproc_stop(rproc, true);
7e83cab8
SJ
1655 if (ret)
1656 goto unlock_mutex;
ddf71187 1657
2666ca91
SJ
1658 /* generate coredump */
1659 rproc_coredump(rproc);
1660
7e83cab8
SJ
1661 /* load firmware */
1662 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1663 if (ret < 0) {
1664 dev_err(dev, "request_firmware failed: %d\n", ret);
1665 goto unlock_mutex;
1666 }
ddf71187 1667
7e83cab8
SJ
1668 /* boot the remote processor up again */
1669 ret = rproc_start(rproc, firmware_p);
1670
1671 release_firmware(firmware_p);
1672
1673unlock_mutex:
1674 mutex_unlock(&rproc->lock);
1675 return ret;
70b85ef8
FGL
1676}
1677
8afd519c
FGL
1678/**
1679 * rproc_crash_handler_work() - handle a crash
1680 *
1681 * This function needs to handle everything related to a crash, like cpu
1682 * registers and stack dump, information to help to debug the fatal error, etc.
1683 */
1684static void rproc_crash_handler_work(struct work_struct *work)
1685{
1686 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1687 struct device *dev = &rproc->dev;
1688
1689 dev_dbg(dev, "enter %s\n", __func__);
1690
1691 mutex_lock(&rproc->lock);
1692
1693 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1694 /* handle only the first crash detected */
1695 mutex_unlock(&rproc->lock);
1696 return;
1697 }
1698
1699 rproc->state = RPROC_CRASHED;
1700 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1701 rproc->name);
1702
1703 mutex_unlock(&rproc->lock);
1704
2e37abb8
FGL
1705 if (!rproc->recovery_disabled)
1706 rproc_trigger_recovery(rproc);
8afd519c
FGL
1707}
1708
400e64df 1709/**
1b0ef906 1710 * rproc_boot() - boot a remote processor
400e64df
OBC
1711 * @rproc: handle of a remote processor
1712 *
1713 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1714 *
1715 * If the remote processor is already powered on, this function immediately
1716 * returns (successfully).
1717 *
1718 * Returns 0 on success, and an appropriate error value otherwise.
1719 */
1b0ef906 1720int rproc_boot(struct rproc *rproc)
400e64df
OBC
1721{
1722 const struct firmware *firmware_p;
1723 struct device *dev;
1724 int ret;
1725
1726 if (!rproc) {
1727 pr_err("invalid rproc handle\n");
1728 return -EINVAL;
1729 }
1730
b5ab5e24 1731 dev = &rproc->dev;
400e64df
OBC
1732
1733 ret = mutex_lock_interruptible(&rproc->lock);
1734 if (ret) {
1735 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1736 return ret;
1737 }
1738
2099c77d
SJ
1739 if (rproc->state == RPROC_DELETED) {
1740 ret = -ENODEV;
1741 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1742 goto unlock_mutex;
1743 }
1744
400e64df
OBC
1745 /* skip the boot process if rproc is already powered up */
1746 if (atomic_inc_return(&rproc->power) > 1) {
1747 ret = 0;
1748 goto unlock_mutex;
1749 }
1750
1751 dev_info(dev, "powering up %s\n", rproc->name);
1752
1753 /* load firmware */
1754 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1755 if (ret < 0) {
1756 dev_err(dev, "request_firmware failed: %d\n", ret);
1757 goto downref_rproc;
1758 }
1759
1760 ret = rproc_fw_boot(rproc, firmware_p);
1761
1762 release_firmware(firmware_p);
1763
1764downref_rproc:
fbb6aacb 1765 if (ret)
400e64df 1766 atomic_dec(&rproc->power);
400e64df
OBC
1767unlock_mutex:
1768 mutex_unlock(&rproc->lock);
1769 return ret;
1770}
1771EXPORT_SYMBOL(rproc_boot);
1772
1773/**
1774 * rproc_shutdown() - power off the remote processor
1775 * @rproc: the remote processor
1776 *
1777 * Power off a remote processor (previously booted with rproc_boot()).
1778 *
1779 * In case @rproc is still being used by an additional user(s), then
1780 * this function will just decrement the power refcount and exit,
1781 * without really powering off the device.
1782 *
1783 * Every call to rproc_boot() must (eventually) be accompanied by a call
1784 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1785 *
1786 * Notes:
1787 * - we're not decrementing the rproc's refcount, only the power refcount.
1788 * which means that the @rproc handle stays valid even after rproc_shutdown()
1789 * returns, and users can still use it with a subsequent rproc_boot(), if
1790 * needed.
400e64df
OBC
1791 */
1792void rproc_shutdown(struct rproc *rproc)
1793{
b5ab5e24 1794 struct device *dev = &rproc->dev;
400e64df
OBC
1795 int ret;
1796
1797 ret = mutex_lock_interruptible(&rproc->lock);
1798 if (ret) {
1799 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1800 return;
1801 }
1802
1803 /* if the remote proc is still needed, bail out */
1804 if (!atomic_dec_and_test(&rproc->power))
1805 goto out;
1806
fcd58037 1807 ret = rproc_stop(rproc, false);
400e64df
OBC
1808 if (ret) {
1809 atomic_inc(&rproc->power);
400e64df
OBC
1810 goto out;
1811 }
1812
1813 /* clean up all acquired resources */
1814 rproc_resource_cleanup(rproc);
1815
1816 rproc_disable_iommu(rproc);
1817
988d204c 1818 /* Free the copy of the resource table */
a0c10687
BA
1819 kfree(rproc->cached_table);
1820 rproc->cached_table = NULL;
988d204c 1821 rproc->table_ptr = NULL;
400e64df
OBC
1822out:
1823 mutex_unlock(&rproc->lock);
400e64df
OBC
1824}
1825EXPORT_SYMBOL(rproc_shutdown);
1826
fec47d86
DG
1827/**
1828 * rproc_get_by_phandle() - find a remote processor by phandle
1829 * @phandle: phandle to the rproc
1830 *
1831 * Finds an rproc handle using the remote processor's phandle, and then
1832 * return a handle to the rproc.
1833 *
1834 * This function increments the remote processor's refcount, so always
1835 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1836 *
1837 * Returns the rproc handle on success, and NULL on failure.
1838 */
8de3dbd0 1839#ifdef CONFIG_OF
fec47d86
DG
1840struct rproc *rproc_get_by_phandle(phandle phandle)
1841{
1842 struct rproc *rproc = NULL, *r;
1843 struct device_node *np;
1844
1845 np = of_find_node_by_phandle(phandle);
1846 if (!np)
1847 return NULL;
1848
1849 mutex_lock(&rproc_list_mutex);
1850 list_for_each_entry(r, &rproc_list, node) {
1851 if (r->dev.parent && r->dev.parent->of_node == np) {
fbb6aacb
BA
1852 /* prevent underlying implementation from being removed */
1853 if (!try_module_get(r->dev.parent->driver->owner)) {
1854 dev_err(&r->dev, "can't get owner\n");
1855 break;
1856 }
1857
fec47d86
DG
1858 rproc = r;
1859 get_device(&rproc->dev);
1860 break;
1861 }
1862 }
1863 mutex_unlock(&rproc_list_mutex);
1864
1865 of_node_put(np);
1866
1867 return rproc;
1868}
8de3dbd0
OBC
1869#else
1870struct rproc *rproc_get_by_phandle(phandle phandle)
1871{
1872 return NULL;
1873}
1874#endif
fec47d86
DG
1875EXPORT_SYMBOL(rproc_get_by_phandle);
1876
400e64df 1877/**
160e7c84 1878 * rproc_add() - register a remote processor
400e64df
OBC
1879 * @rproc: the remote processor handle to register
1880 *
1881 * Registers @rproc with the remoteproc framework, after it has been
1882 * allocated with rproc_alloc().
1883 *
1884 * This is called by the platform-specific rproc implementation, whenever
1885 * a new remote processor device is probed.
1886 *
1887 * Returns 0 on success and an appropriate error code otherwise.
1888 *
1889 * Note: this function initiates an asynchronous firmware loading
1890 * context, which will look for virtio devices supported by the rproc's
1891 * firmware.
1892 *
1893 * If found, those virtio devices will be created and added, so as a result
7a186941 1894 * of registering this remote processor, additional virtio drivers might be
400e64df 1895 * probed.
400e64df 1896 */
160e7c84 1897int rproc_add(struct rproc *rproc)
400e64df 1898{
b5ab5e24 1899 struct device *dev = &rproc->dev;
70b85ef8 1900 int ret;
400e64df 1901
b5ab5e24
OBC
1902 ret = device_add(dev);
1903 if (ret < 0)
1904 return ret;
400e64df 1905
b5ab5e24 1906 dev_info(dev, "%s is available\n", rproc->name);
400e64df
OBC
1907
1908 /* create debugfs entries */
1909 rproc_create_debug_dir(rproc);
7a20c64d
SJ
1910
1911 /* if rproc is marked always-on, request it to boot */
1912 if (rproc->auto_boot) {
5e6533f7 1913 ret = rproc_trigger_auto_boot(rproc);
7a20c64d
SJ
1914 if (ret < 0)
1915 return ret;
1916 }
400e64df 1917
d2e12e66
DG
1918 /* expose to rproc_get_by_phandle users */
1919 mutex_lock(&rproc_list_mutex);
1920 list_add(&rproc->node, &rproc_list);
1921 mutex_unlock(&rproc_list_mutex);
1922
1923 return 0;
400e64df 1924}
160e7c84 1925EXPORT_SYMBOL(rproc_add);
400e64df 1926
b5ab5e24
OBC
1927/**
1928 * rproc_type_release() - release a remote processor instance
1929 * @dev: the rproc's device
1930 *
1931 * This function should _never_ be called directly.
1932 *
1933 * It will be called by the driver core when no one holds a valid pointer
1934 * to @dev anymore.
1935 */
1936static void rproc_type_release(struct device *dev)
1937{
1938 struct rproc *rproc = container_of(dev, struct rproc, dev);
1939
7183a2a7
OBC
1940 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1941
b5ab5e24
OBC
1942 idr_destroy(&rproc->notifyids);
1943
1944 if (rproc->index >= 0)
1945 ida_simple_remove(&rproc_dev_index, rproc->index);
1946
0f57dc6a 1947 kfree(rproc->firmware);
fb98e2bd 1948 kfree(rproc->ops);
b5ab5e24
OBC
1949 kfree(rproc);
1950}
1951
c42ca04d 1952static const struct device_type rproc_type = {
b5ab5e24
OBC
1953 .name = "remoteproc",
1954 .release = rproc_type_release,
1955};
400e64df
OBC
1956
1957/**
1958 * rproc_alloc() - allocate a remote processor handle
1959 * @dev: the underlying device
1960 * @name: name of this remote processor
1961 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 1962 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
1963 * @len: length of private data needed by the rproc driver (in bytes)
1964 *
1965 * Allocates a new remote processor handle, but does not register
8b4aec9a 1966 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
1967 *
1968 * This function should be used by rproc implementations during initialization
1969 * of the remote processor.
1970 *
1971 * After creating an rproc handle using this function, and when ready,
160e7c84 1972 * implementations should then call rproc_add() to complete
400e64df
OBC
1973 * the registration of the remote processor.
1974 *
1975 * On success the new rproc is returned, and on failure, NULL.
1976 *
1977 * Note: _never_ directly deallocate @rproc, even if it was not registered
433c0e04 1978 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
400e64df
OBC
1979 */
1980struct rproc *rproc_alloc(struct device *dev, const char *name,
730f84ce
AS
1981 const struct rproc_ops *ops,
1982 const char *firmware, int len)
400e64df
OBC
1983{
1984 struct rproc *rproc;
8b4aec9a 1985 char *p, *template = "rproc-%s-fw";
0f57dc6a 1986 int name_len;
400e64df
OBC
1987
1988 if (!dev || !name || !ops)
1989 return NULL;
1990
0f57dc6a 1991 if (!firmware) {
8b4aec9a 1992 /*
8b4aec9a 1993 * If the caller didn't pass in a firmware name then
0f57dc6a 1994 * construct a default name.
8b4aec9a
RT
1995 */
1996 name_len = strlen(name) + strlen(template) - 2 + 1;
0f57dc6a
MR
1997 p = kmalloc(name_len, GFP_KERNEL);
1998 if (!p)
1999 return NULL;
8b4aec9a
RT
2000 snprintf(p, name_len, template, name);
2001 } else {
0f57dc6a
MR
2002 p = kstrdup(firmware, GFP_KERNEL);
2003 if (!p)
2004 return NULL;
2005 }
2006
2007 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2008 if (!rproc) {
2009 kfree(p);
2010 return NULL;
8b4aec9a
RT
2011 }
2012
fb98e2bd
BA
2013 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2014 if (!rproc->ops) {
2015 kfree(p);
2016 kfree(rproc);
2017 return NULL;
2018 }
2019
8b4aec9a 2020 rproc->firmware = p;
400e64df 2021 rproc->name = name;
400e64df 2022 rproc->priv = &rproc[1];
ddf71187 2023 rproc->auto_boot = true;
400e64df 2024
b5ab5e24
OBC
2025 device_initialize(&rproc->dev);
2026 rproc->dev.parent = dev;
2027 rproc->dev.type = &rproc_type;
2aefbef0 2028 rproc->dev.class = &rproc_class;
7c89717f 2029 rproc->dev.driver_data = rproc;
b5ab5e24
OBC
2030
2031 /* Assign a unique device index and name */
2032 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2033 if (rproc->index < 0) {
2034 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2035 put_device(&rproc->dev);
2036 return NULL;
2037 }
2038
2039 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2040
400e64df
OBC
2041 atomic_set(&rproc->power, 0);
2042
0f21f9cc
BA
2043 /* Default to ELF loader if no load function is specified */
2044 if (!rproc->ops->load) {
2045 rproc->ops->load = rproc_elf_load_segments;
c1d35c1a 2046 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
0f21f9cc
BA
2047 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2048 rproc->ops->sanity_check = rproc_elf_sanity_check;
2049 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2050 }
400e64df
OBC
2051
2052 mutex_init(&rproc->lock);
2053
7a186941
OBC
2054 idr_init(&rproc->notifyids);
2055
400e64df
OBC
2056 INIT_LIST_HEAD(&rproc->carveouts);
2057 INIT_LIST_HEAD(&rproc->mappings);
2058 INIT_LIST_HEAD(&rproc->traces);
7a186941 2059 INIT_LIST_HEAD(&rproc->rvdevs);
7bdc9650 2060 INIT_LIST_HEAD(&rproc->subdevs);
2666ca91 2061 INIT_LIST_HEAD(&rproc->dump_segments);
400e64df 2062
8afd519c
FGL
2063 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2064
400e64df
OBC
2065 rproc->state = RPROC_OFFLINE;
2066
2067 return rproc;
2068}
2069EXPORT_SYMBOL(rproc_alloc);
2070
2071/**
433c0e04
BA
2072 * rproc_free() - unroll rproc_alloc()
2073 * @rproc: the remote processor handle
2074 *
2075 * This function decrements the rproc dev refcount.
2076 *
2077 * If no one holds any reference to rproc anymore, then its refcount would
2078 * now drop to zero, and it would be freed.
2079 */
2080void rproc_free(struct rproc *rproc)
2081{
2082 put_device(&rproc->dev);
2083}
2084EXPORT_SYMBOL(rproc_free);
2085
2086/**
2087 * rproc_put() - release rproc reference
400e64df
OBC
2088 * @rproc: the remote processor handle
2089 *
c6b5a276 2090 * This function decrements the rproc dev refcount.
400e64df 2091 *
c6b5a276
OBC
2092 * If no one holds any reference to rproc anymore, then its refcount would
2093 * now drop to zero, and it would be freed.
400e64df 2094 */
160e7c84 2095void rproc_put(struct rproc *rproc)
400e64df 2096{
fbb6aacb 2097 module_put(rproc->dev.parent->driver->owner);
b5ab5e24 2098 put_device(&rproc->dev);
400e64df 2099}
160e7c84 2100EXPORT_SYMBOL(rproc_put);
400e64df
OBC
2101
2102/**
160e7c84 2103 * rproc_del() - unregister a remote processor
400e64df
OBC
2104 * @rproc: rproc handle to unregister
2105 *
400e64df
OBC
2106 * This function should be called when the platform specific rproc
2107 * implementation decides to remove the rproc device. it should
160e7c84 2108 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
2109 * has completed successfully.
2110 *
160e7c84 2111 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 2112 * of the outstanding reference created by rproc_alloc. To decrement that
433c0e04 2113 * one last refcount, one still needs to call rproc_free().
400e64df
OBC
2114 *
2115 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2116 */
160e7c84 2117int rproc_del(struct rproc *rproc)
400e64df
OBC
2118{
2119 if (!rproc)
2120 return -EINVAL;
2121
ddf71187
BA
2122 /* if rproc is marked always-on, rproc_add() booted it */
2123 /* TODO: make sure this works with rproc->power > 1 */
2124 if (rproc->auto_boot)
2125 rproc_shutdown(rproc);
2126
2099c77d
SJ
2127 mutex_lock(&rproc->lock);
2128 rproc->state = RPROC_DELETED;
2129 mutex_unlock(&rproc->lock);
2130
b003d45b
SJ
2131 rproc_delete_debug_dir(rproc);
2132
fec47d86
DG
2133 /* the rproc is downref'ed as soon as it's removed from the klist */
2134 mutex_lock(&rproc_list_mutex);
2135 list_del(&rproc->node);
2136 mutex_unlock(&rproc_list_mutex);
2137
b5ab5e24 2138 device_del(&rproc->dev);
400e64df
OBC
2139
2140 return 0;
2141}
160e7c84 2142EXPORT_SYMBOL(rproc_del);
400e64df 2143
7bdc9650
BA
2144/**
2145 * rproc_add_subdev() - add a subdevice to a remoteproc
2146 * @rproc: rproc handle to add the subdevice to
2147 * @subdev: subdev handle to register
4902676f
BA
2148 *
2149 * Caller is responsible for populating optional subdevice function pointers.
7bdc9650 2150 */
4902676f 2151void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
7bdc9650 2152{
7bdc9650
BA
2153 list_add_tail(&subdev->node, &rproc->subdevs);
2154}
2155EXPORT_SYMBOL(rproc_add_subdev);
2156
2157/**
2158 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2159 * @rproc: rproc handle to remove the subdevice from
2160 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2161 */
2162void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2163{
2164 list_del(&subdev->node);
2165}
2166EXPORT_SYMBOL(rproc_remove_subdev);
2167
7c89717f
BA
2168/**
2169 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2170 * @dev: child device to find ancestor of
2171 *
2172 * Returns the ancestor rproc instance, or NULL if not found.
2173 */
2174struct rproc *rproc_get_by_child(struct device *dev)
2175{
2176 for (dev = dev->parent; dev; dev = dev->parent) {
2177 if (dev->type == &rproc_type)
2178 return dev->driver_data;
2179 }
2180
2181 return NULL;
2182}
2183EXPORT_SYMBOL(rproc_get_by_child);
2184
8afd519c
FGL
2185/**
2186 * rproc_report_crash() - rproc crash reporter function
2187 * @rproc: remote processor
2188 * @type: crash type
2189 *
2190 * This function must be called every time a crash is detected by the low-level
2191 * drivers implementing a specific remoteproc. This should not be called from a
2192 * non-remoteproc driver.
2193 *
2194 * This function can be called from atomic/interrupt context.
2195 */
2196void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2197{
2198 if (!rproc) {
2199 pr_err("NULL rproc pointer\n");
2200 return;
2201 }
2202
2203 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2204 rproc->name, rproc_crash_to_string(type));
2205
2206 /* create a new task to handle the error */
2207 schedule_work(&rproc->crash_handler);
2208}
2209EXPORT_SYMBOL(rproc_report_crash);
2210
400e64df
OBC
2211static int __init remoteproc_init(void)
2212{
2aefbef0 2213 rproc_init_sysfs();
400e64df 2214 rproc_init_debugfs();
b5ab5e24 2215
400e64df
OBC
2216 return 0;
2217}
2218module_init(remoteproc_init);
2219
2220static void __exit remoteproc_exit(void)
2221{
f42f79af
SA
2222 ida_destroy(&rproc_dev_index);
2223
400e64df 2224 rproc_exit_debugfs();
2aefbef0 2225 rproc_exit_sysfs();
400e64df
OBC
2226}
2227module_exit(remoteproc_exit);
2228
2229MODULE_LICENSE("GPL v2");
2230MODULE_DESCRIPTION("Generic Remote Processor Framework");