remoteproc: virtio: Anchor vring life cycle in vdev
[linux-block.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
b5ab5e24 38#include <linux/idr.h>
400e64df 39#include <linux/elf.h>
a2b950ac 40#include <linux/crc32.h>
400e64df
OBC
41#include <linux/virtio_ids.h>
42#include <linux/virtio_ring.h>
cf59d3e9 43#include <asm/byteorder.h>
400e64df
OBC
44
45#include "remoteproc_internal.h"
46
fec47d86
DG
47static DEFINE_MUTEX(rproc_list_mutex);
48static LIST_HEAD(rproc_list);
49
400e64df 50typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec 51 struct resource_table *table, int len);
a2b950ac
OBC
52typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
400e64df 54
b5ab5e24
OBC
55/* Unique indices for remoteproc devices */
56static DEFINE_IDA(rproc_dev_index);
57
8afd519c
FGL
58static const char * const rproc_crash_names[] = {
59 [RPROC_MMUFAULT] = "mmufault",
b3d39032
BA
60 [RPROC_WATCHDOG] = "watchdog",
61 [RPROC_FATAL_ERROR] = "fatal error",
8afd519c
FGL
62};
63
64/* translate rproc_crash_type to string */
65static const char *rproc_crash_to_string(enum rproc_crash_type type)
66{
67 if (type < ARRAY_SIZE(rproc_crash_names))
68 return rproc_crash_names[type];
b23f7a09 69 return "unknown";
8afd519c
FGL
70}
71
400e64df
OBC
72/*
73 * This is the IOMMU fault handler we register with the IOMMU API
74 * (when relevant; not all remote processors access memory through
75 * an IOMMU).
76 *
77 * IOMMU core will invoke this handler whenever the remote processor
78 * will try to access an unmapped device address.
400e64df
OBC
79 */
80static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
730f84ce 81 unsigned long iova, int flags, void *token)
400e64df 82{
8afd519c
FGL
83 struct rproc *rproc = token;
84
400e64df
OBC
85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
86
8afd519c
FGL
87 rproc_report_crash(rproc, RPROC_MMUFAULT);
88
400e64df
OBC
89 /*
90 * Let the iommu core know we're not really handling this fault;
8afd519c 91 * we just used it as a recovery trigger.
400e64df
OBC
92 */
93 return -ENOSYS;
94}
95
96static int rproc_enable_iommu(struct rproc *rproc)
97{
98 struct iommu_domain *domain;
b5ab5e24 99 struct device *dev = rproc->dev.parent;
400e64df
OBC
100 int ret;
101
315491e5
SA
102 if (!rproc->has_iommu) {
103 dev_dbg(dev, "iommu not present\n");
0798e1da 104 return 0;
400e64df
OBC
105 }
106
107 domain = iommu_domain_alloc(dev->bus);
108 if (!domain) {
109 dev_err(dev, "can't alloc iommu domain\n");
110 return -ENOMEM;
111 }
112
77ca2332 113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
114
115 ret = iommu_attach_device(domain, dev);
116 if (ret) {
117 dev_err(dev, "can't attach iommu device: %d\n", ret);
118 goto free_domain;
119 }
120
121 rproc->domain = domain;
122
123 return 0;
124
125free_domain:
126 iommu_domain_free(domain);
127 return ret;
128}
129
130static void rproc_disable_iommu(struct rproc *rproc)
131{
132 struct iommu_domain *domain = rproc->domain;
b5ab5e24 133 struct device *dev = rproc->dev.parent;
400e64df
OBC
134
135 if (!domain)
136 return;
137
138 iommu_detach_device(domain, dev);
139 iommu_domain_free(domain);
400e64df
OBC
140}
141
a01f7cd6
SA
142/**
143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144 * @rproc: handle of a remote processor
145 * @da: remoteproc device address to translate
146 * @len: length of the memory region @da is pointing to
147 *
400e64df
OBC
148 * Some remote processors will ask us to allocate them physically contiguous
149 * memory regions (which we call "carveouts"), and map them to specific
a01f7cd6
SA
150 * device addresses (which are hardcoded in the firmware). They may also have
151 * dedicated memory regions internal to the processors, and use them either
152 * exclusively or alongside carveouts.
400e64df
OBC
153 *
154 * They may then ask us to copy objects into specific device addresses (e.g.
155 * code/data sections) or expose us certain symbols in other device address
156 * (e.g. their trace buffer).
157 *
a01f7cd6
SA
158 * This function is a helper function with which we can go over the allocated
159 * carveouts and translate specific device addresses to kernel virtual addresses
160 * so we can access the referenced memory. This function also allows to perform
161 * translations on the internal remoteproc memory regions through a platform
162 * implementation specific da_to_va ops, if present.
163 *
164 * The function returns a valid kernel address on success or NULL on failure.
400e64df
OBC
165 *
166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167 * but only on kernel direct mapped RAM memory. Instead, we're just using
a01f7cd6
SA
168 * here the output of the DMA API for the carveouts, which should be more
169 * correct.
400e64df 170 */
72854fb0 171void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
172{
173 struct rproc_mem_entry *carveout;
174 void *ptr = NULL;
175
a01f7cd6
SA
176 if (rproc->ops->da_to_va) {
177 ptr = rproc->ops->da_to_va(rproc, da, len);
178 if (ptr)
179 goto out;
180 }
181
400e64df
OBC
182 list_for_each_entry(carveout, &rproc->carveouts, node) {
183 int offset = da - carveout->da;
184
185 /* try next carveout if da is too small */
186 if (offset < 0)
187 continue;
188
189 /* try next carveout if da is too large */
190 if (offset + len > carveout->len)
191 continue;
192
193 ptr = carveout->va + offset;
194
195 break;
196 }
197
a01f7cd6 198out:
400e64df
OBC
199 return ptr;
200}
4afc89d6 201EXPORT_SYMBOL(rproc_da_to_va);
400e64df 202
6db20ea8 203int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 204{
7a186941 205 struct rproc *rproc = rvdev->rproc;
b5ab5e24 206 struct device *dev = &rproc->dev;
6db20ea8 207 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 208 struct fw_rsc_vdev *rsc;
7a186941
OBC
209 dma_addr_t dma;
210 void *va;
211 int ret, size, notifyid;
400e64df 212
7a186941 213 /* actual size of vring (in bytes) */
6db20ea8 214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 215
7a186941
OBC
216 /*
217 * Allocate non-cacheable memory for the vring. In the future
218 * this call will also configure the IOMMU for us
219 */
b5ab5e24 220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
7a186941 221 if (!va) {
b5ab5e24 222 dev_err(dev->parent, "dma_alloc_coherent failed\n");
400e64df
OBC
223 return -EINVAL;
224 }
225
6db20ea8
OBC
226 /*
227 * Assign an rproc-wide unique index for this vring
228 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
229 * TODO: support predefined notifyids (via resource table)
230 */
15fc6110 231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 232 if (ret < 0) {
15fc6110 233 dev_err(dev, "idr_alloc failed: %d\n", ret);
b5ab5e24 234 dma_free_coherent(dev->parent, size, va, dma);
7a186941
OBC
235 return ret;
236 }
15fc6110 237 notifyid = ret;
400e64df 238
9d7814a9 239 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
b605ed8b 240 i, va, &dma, size, notifyid);
7a186941 241
6db20ea8
OBC
242 rvring->va = va;
243 rvring->dma = dma;
244 rvring->notifyid = notifyid;
400e64df 245
c0d63157
SB
246 /*
247 * Let the rproc know the notifyid and da of this vring.
248 * Not all platforms use dma_alloc_coherent to automatically
249 * set up the iommu. In this case the device address (da) will
250 * hold the physical address and not the device address.
251 */
252 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
253 rsc->vring[i].da = dma;
254 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
255 return 0;
256}
257
6db20ea8
OBC
258static int
259rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
260{
261 struct rproc *rproc = rvdev->rproc;
b5ab5e24 262 struct device *dev = &rproc->dev;
6db20ea8
OBC
263 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
264 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 265
9d7814a9 266 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
730f84ce 267 i, vring->da, vring->num, vring->align);
7a186941 268
6db20ea8
OBC
269 /* verify queue size and vring alignment are sane */
270 if (!vring->num || !vring->align) {
271 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
730f84ce 272 vring->num, vring->align);
6db20ea8 273 return -EINVAL;
7a186941 274 }
6db20ea8
OBC
275
276 rvring->len = vring->num;
277 rvring->align = vring->align;
278 rvring->rvdev = rvdev;
279
280 return 0;
281}
282
283void rproc_free_vring(struct rproc_vring *rvring)
284{
285 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
286 struct rproc *rproc = rvring->rvdev->rproc;
c0d63157
SB
287 int idx = rvring->rvdev->vring - rvring;
288 struct fw_rsc_vdev *rsc;
6db20ea8 289
b5ab5e24 290 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
6db20ea8 291 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 292
c0d63157
SB
293 /* reset resource entry info */
294 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
295 rsc->vring[idx].da = 0;
296 rsc->vring[idx].notifyid = -1;
7a186941
OBC
297}
298
400e64df 299/**
fd2c15ec 300 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
301 * @rproc: the remote processor
302 * @rsc: the vring resource descriptor
fd2c15ec 303 * @avail: size of available data (for sanity checking the image)
400e64df 304 *
7a186941
OBC
305 * This resource entry requests the host to statically register a virtio
306 * device (vdev), and setup everything needed to support it. It contains
307 * everything needed to make it possible: the virtio device id, virtio
308 * device features, vrings information, virtio config space, etc...
309 *
310 * Before registering the vdev, the vrings are allocated from non-cacheable
311 * physically contiguous memory. Currently we only support two vrings per
312 * remote processor (temporary limitation). We might also want to consider
313 * doing the vring allocation only later when ->find_vqs() is invoked, and
314 * then release them upon ->del_vqs().
315 *
316 * Note: @da is currently not really handled correctly: we dynamically
317 * allocate it using the DMA API, ignoring requested hard coded addresses,
318 * and we don't take care of any required IOMMU programming. This is all
319 * going to be taken care of when the generic iommu-based DMA API will be
320 * merged. Meanwhile, statically-addressed iommu-based firmware images should
321 * use RSC_DEVMEM resource entries to map their required @da to the physical
322 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
323 *
324 * Returns 0 on success, or an appropriate error code otherwise
325 */
fd2c15ec 326static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
730f84ce 327 int offset, int avail)
400e64df 328{
b5ab5e24 329 struct device *dev = &rproc->dev;
7a186941
OBC
330 struct rproc_vdev *rvdev;
331 int i, ret;
400e64df 332
fd2c15ec
OBC
333 /* make sure resource isn't truncated */
334 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
335 + rsc->config_len > avail) {
b5ab5e24 336 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
337 return -EINVAL;
338 }
339
fd2c15ec
OBC
340 /* make sure reserved bytes are zeroes */
341 if (rsc->reserved[0] || rsc->reserved[1]) {
342 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
343 return -EINVAL;
344 }
345
9d7814a9 346 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
fd2c15ec
OBC
347 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
348
7a186941
OBC
349 /* we currently support only two vrings per rvdev */
350 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 351 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
352 return -EINVAL;
353 }
354
899585ad 355 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
7a186941
OBC
356 if (!rvdev)
357 return -ENOMEM;
400e64df 358
aab8d802
BA
359 kref_init(&rvdev->refcount);
360
7a186941 361 rvdev->rproc = rproc;
400e64df 362
6db20ea8 363 /* parse the vrings */
7a186941 364 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 365 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 366 if (ret)
6db20ea8 367 goto free_rvdev;
7a186941 368 }
400e64df 369
a2b950ac
OBC
370 /* remember the resource offset*/
371 rvdev->rsc_offset = offset;
fd2c15ec 372
a863af5d
BA
373 /* allocate the vring resources */
374 for (i = 0; i < rsc->num_of_vrings; i++) {
375 ret = rproc_alloc_vring(rvdev, i);
376 if (ret)
377 goto unwind_vring_allocations;
378 }
379
7a186941 380 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 381
7a186941
OBC
382 /* it is now safe to add the virtio device */
383 ret = rproc_add_virtio_dev(rvdev, rsc->id);
384 if (ret)
cde42e07 385 goto remove_rvdev;
400e64df
OBC
386
387 return 0;
7a186941 388
a863af5d
BA
389unwind_vring_allocations:
390 for (i--; i >= 0; i--)
391 rproc_free_vring(&rvdev->vring[i]);
cde42e07
SB
392remove_rvdev:
393 list_del(&rvdev->node);
6db20ea8 394free_rvdev:
7a186941
OBC
395 kfree(rvdev);
396 return ret;
400e64df
OBC
397}
398
aab8d802
BA
399void rproc_vdev_release(struct kref *ref)
400{
401 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
a863af5d
BA
402 struct rproc_vring *rvring;
403 int id;
404
405 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
406 rvring = &rvdev->vring[id];
407 if (!rvring->va)
408 continue;
409
410 rproc_free_vring(rvring);
411 }
aab8d802
BA
412
413 list_del(&rvdev->node);
414 kfree(rvdev);
415}
416
400e64df
OBC
417/**
418 * rproc_handle_trace() - handle a shared trace buffer resource
419 * @rproc: the remote processor
420 * @rsc: the trace resource descriptor
fd2c15ec 421 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
422 *
423 * In case the remote processor dumps trace logs into memory,
424 * export it via debugfs.
425 *
426 * Currently, the 'da' member of @rsc should contain the device address
427 * where the remote processor is dumping the traces. Later we could also
428 * support dynamically allocating this address using the generic
429 * DMA API (but currently there isn't a use case for that).
430 *
431 * Returns 0 on success, or an appropriate error code otherwise
432 */
fd2c15ec 433static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
730f84ce 434 int offset, int avail)
400e64df
OBC
435{
436 struct rproc_mem_entry *trace;
b5ab5e24 437 struct device *dev = &rproc->dev;
400e64df
OBC
438 void *ptr;
439 char name[15];
440
fd2c15ec 441 if (sizeof(*rsc) > avail) {
b5ab5e24 442 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
443 return -EINVAL;
444 }
445
446 /* make sure reserved bytes are zeroes */
447 if (rsc->reserved) {
448 dev_err(dev, "trace rsc has non zero reserved bytes\n");
449 return -EINVAL;
450 }
451
400e64df
OBC
452 /* what's the kernel address of this resource ? */
453 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
454 if (!ptr) {
455 dev_err(dev, "erroneous trace resource entry\n");
456 return -EINVAL;
457 }
458
459 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 460 if (!trace)
400e64df 461 return -ENOMEM;
400e64df
OBC
462
463 /* set the trace buffer dma properties */
464 trace->len = rsc->len;
465 trace->va = ptr;
466
467 /* make sure snprintf always null terminates, even if truncating */
468 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
469
470 /* create the debugfs entry */
471 trace->priv = rproc_create_trace_file(name, rproc, trace);
472 if (!trace->priv) {
473 trace->va = NULL;
474 kfree(trace);
475 return -EINVAL;
476 }
477
478 list_add_tail(&trace->node, &rproc->traces);
479
480 rproc->num_traces++;
481
35386166
LJ
482 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
483 name, ptr, rsc->da, rsc->len);
400e64df
OBC
484
485 return 0;
486}
487
488/**
489 * rproc_handle_devmem() - handle devmem resource entry
490 * @rproc: remote processor handle
491 * @rsc: the devmem resource entry
fd2c15ec 492 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
493 *
494 * Remote processors commonly need to access certain on-chip peripherals.
495 *
496 * Some of these remote processors access memory via an iommu device,
497 * and might require us to configure their iommu before they can access
498 * the on-chip peripherals they need.
499 *
500 * This resource entry is a request to map such a peripheral device.
501 *
502 * These devmem entries will contain the physical address of the device in
503 * the 'pa' member. If a specific device address is expected, then 'da' will
504 * contain it (currently this is the only use case supported). 'len' will
505 * contain the size of the physical region we need to map.
506 *
507 * Currently we just "trust" those devmem entries to contain valid physical
508 * addresses, but this is going to change: we want the implementations to
509 * tell us ranges of physical addresses the firmware is allowed to request,
510 * and not allow firmwares to request access to physical addresses that
511 * are outside those ranges.
512 */
fd2c15ec 513static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
730f84ce 514 int offset, int avail)
400e64df
OBC
515{
516 struct rproc_mem_entry *mapping;
b5ab5e24 517 struct device *dev = &rproc->dev;
400e64df
OBC
518 int ret;
519
520 /* no point in handling this resource without a valid iommu domain */
521 if (!rproc->domain)
522 return -EINVAL;
523
fd2c15ec 524 if (sizeof(*rsc) > avail) {
b5ab5e24 525 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
526 return -EINVAL;
527 }
528
529 /* make sure reserved bytes are zeroes */
530 if (rsc->reserved) {
b5ab5e24 531 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
532 return -EINVAL;
533 }
534
400e64df 535 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 536 if (!mapping)
400e64df 537 return -ENOMEM;
400e64df
OBC
538
539 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
540 if (ret) {
b5ab5e24 541 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
542 goto out;
543 }
544
545 /*
546 * We'll need this info later when we'll want to unmap everything
547 * (e.g. on shutdown).
548 *
549 * We can't trust the remote processor not to change the resource
550 * table, so we must maintain this info independently.
551 */
552 mapping->da = rsc->da;
553 mapping->len = rsc->len;
554 list_add_tail(&mapping->node, &rproc->mappings);
555
b5ab5e24 556 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
730f84ce 557 rsc->pa, rsc->da, rsc->len);
400e64df
OBC
558
559 return 0;
560
561out:
562 kfree(mapping);
563 return ret;
564}
565
566/**
567 * rproc_handle_carveout() - handle phys contig memory allocation requests
568 * @rproc: rproc handle
569 * @rsc: the resource entry
fd2c15ec 570 * @avail: size of available data (for image validation)
400e64df
OBC
571 *
572 * This function will handle firmware requests for allocation of physically
573 * contiguous memory regions.
574 *
575 * These request entries should come first in the firmware's resource table,
576 * as other firmware entries might request placing other data objects inside
577 * these memory regions (e.g. data/code segments, trace resource entries, ...).
578 *
579 * Allocating memory this way helps utilizing the reserved physical memory
580 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
581 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
582 * pressure is important; it may have a substantial impact on performance.
583 */
fd2c15ec 584static int rproc_handle_carveout(struct rproc *rproc,
730f84ce
AS
585 struct fw_rsc_carveout *rsc,
586 int offset, int avail)
400e64df
OBC
587{
588 struct rproc_mem_entry *carveout, *mapping;
b5ab5e24 589 struct device *dev = &rproc->dev;
400e64df
OBC
590 dma_addr_t dma;
591 void *va;
592 int ret;
593
fd2c15ec 594 if (sizeof(*rsc) > avail) {
b5ab5e24 595 dev_err(dev, "carveout rsc is truncated\n");
fd2c15ec
OBC
596 return -EINVAL;
597 }
598
599 /* make sure reserved bytes are zeroes */
600 if (rsc->reserved) {
601 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
602 return -EINVAL;
603 }
604
9d7814a9 605 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
35386166 606 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
fd2c15ec 607
400e64df 608 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
172e6ab1 609 if (!carveout)
7168d914 610 return -ENOMEM;
400e64df 611
b5ab5e24 612 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
400e64df 613 if (!va) {
9c219b23
LJ
614 dev_err(dev->parent,
615 "failed to allocate dma memory: len 0x%x\n", rsc->len);
400e64df
OBC
616 ret = -ENOMEM;
617 goto free_carv;
618 }
619
b605ed8b
AS
620 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
621 va, &dma, rsc->len);
400e64df
OBC
622
623 /*
624 * Ok, this is non-standard.
625 *
626 * Sometimes we can't rely on the generic iommu-based DMA API
627 * to dynamically allocate the device address and then set the IOMMU
628 * tables accordingly, because some remote processors might
629 * _require_ us to use hard coded device addresses that their
630 * firmware was compiled with.
631 *
632 * In this case, we must use the IOMMU API directly and map
633 * the memory to the device address as expected by the remote
634 * processor.
635 *
636 * Obviously such remote processor devices should not be configured
637 * to use the iommu-based DMA API: we expect 'dma' to contain the
638 * physical address in this case.
639 */
640 if (rproc->domain) {
7168d914
DC
641 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
642 if (!mapping) {
7168d914
DC
643 ret = -ENOMEM;
644 goto dma_free;
645 }
646
400e64df 647 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
730f84ce 648 rsc->flags);
400e64df
OBC
649 if (ret) {
650 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 651 goto free_mapping;
400e64df
OBC
652 }
653
654 /*
655 * We'll need this info later when we'll want to unmap
656 * everything (e.g. on shutdown).
657 *
658 * We can't trust the remote processor not to change the
659 * resource table, so we must maintain this info independently.
660 */
661 mapping->da = rsc->da;
662 mapping->len = rsc->len;
663 list_add_tail(&mapping->node, &rproc->mappings);
664
b605ed8b
AS
665 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
666 rsc->da, &dma);
400e64df
OBC
667 }
668
0e49b72c
OBC
669 /*
670 * Some remote processors might need to know the pa
671 * even though they are behind an IOMMU. E.g., OMAP4's
672 * remote M3 processor needs this so it can control
673 * on-chip hardware accelerators that are not behind
674 * the IOMMU, and therefor must know the pa.
675 *
676 * Generally we don't want to expose physical addresses
677 * if we don't have to (remote processors are generally
678 * _not_ trusted), so we might want to do this only for
679 * remote processor that _must_ have this (e.g. OMAP4's
680 * dual M3 subsystem).
681 *
682 * Non-IOMMU processors might also want to have this info.
683 * In this case, the device address and the physical address
684 * are the same.
685 */
686 rsc->pa = dma;
687
400e64df
OBC
688 carveout->va = va;
689 carveout->len = rsc->len;
690 carveout->dma = dma;
691 carveout->da = rsc->da;
692
693 list_add_tail(&carveout->node, &rproc->carveouts);
694
695 return 0;
696
7168d914
DC
697free_mapping:
698 kfree(mapping);
400e64df 699dma_free:
b5ab5e24 700 dma_free_coherent(dev->parent, rsc->len, va, dma);
400e64df
OBC
701free_carv:
702 kfree(carveout);
400e64df
OBC
703 return ret;
704}
705
ba7290e0 706static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
a2b950ac 707 int offset, int avail)
ba7290e0
SB
708{
709 /* Summarize the number of notification IDs */
710 rproc->max_notifyid += rsc->num_of_vrings;
711
712 return 0;
713}
714
e12bc14b
OBC
715/*
716 * A lookup table for resource handlers. The indices are defined in
717 * enum fw_resource_type.
718 */
232fcdbb 719static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
720 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
721 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
722 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
b35d7afc 723 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
e12bc14b
OBC
724};
725
232fcdbb
SB
726static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
727 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
728};
729
400e64df 730/* handle firmware resource entries before booting the remote processor */
a2b950ac 731static int rproc_handle_resources(struct rproc *rproc, int len,
232fcdbb 732 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 733{
b5ab5e24 734 struct device *dev = &rproc->dev;
e12bc14b 735 rproc_handle_resource_t handler;
fd2c15ec
OBC
736 int ret = 0, i;
737
a2b950ac
OBC
738 for (i = 0; i < rproc->table_ptr->num; i++) {
739 int offset = rproc->table_ptr->offset[i];
740 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
fd2c15ec
OBC
741 int avail = len - offset - sizeof(*hdr);
742 void *rsc = (void *)hdr + sizeof(*hdr);
743
744 /* make sure table isn't truncated */
745 if (avail < 0) {
746 dev_err(dev, "rsc table is truncated\n");
747 return -EINVAL;
748 }
400e64df 749
fd2c15ec 750 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 751
fd2c15ec
OBC
752 if (hdr->type >= RSC_LAST) {
753 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 754 continue;
400e64df
OBC
755 }
756
232fcdbb 757 handler = handlers[hdr->type];
e12bc14b
OBC
758 if (!handler)
759 continue;
760
a2b950ac 761 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 762 if (ret)
400e64df 763 break;
fd2c15ec 764 }
400e64df
OBC
765
766 return ret;
767}
768
7bdc9650
BA
769static int rproc_probe_subdevices(struct rproc *rproc)
770{
771 struct rproc_subdev *subdev;
772 int ret;
773
774 list_for_each_entry(subdev, &rproc->subdevs, node) {
775 ret = subdev->probe(subdev);
776 if (ret)
777 goto unroll_registration;
778 }
779
780 return 0;
781
782unroll_registration:
783 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node)
784 subdev->remove(subdev);
785
786 return ret;
787}
788
789static void rproc_remove_subdevices(struct rproc *rproc)
790{
791 struct rproc_subdev *subdev;
792
793 list_for_each_entry(subdev, &rproc->subdevs, node)
794 subdev->remove(subdev);
795}
796
400e64df
OBC
797/**
798 * rproc_resource_cleanup() - clean up and free all acquired resources
799 * @rproc: rproc handle
800 *
801 * This function will free all resources acquired for @rproc, and it
7a186941 802 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
803 */
804static void rproc_resource_cleanup(struct rproc *rproc)
805{
806 struct rproc_mem_entry *entry, *tmp;
d81fb32f 807 struct rproc_vdev *rvdev, *rvtmp;
b5ab5e24 808 struct device *dev = &rproc->dev;
400e64df
OBC
809
810 /* clean up debugfs trace entries */
811 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
812 rproc_remove_trace_file(entry->priv);
813 rproc->num_traces--;
814 list_del(&entry->node);
815 kfree(entry);
816 }
817
400e64df
OBC
818 /* clean up iommu mapping entries */
819 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
820 size_t unmapped;
821
822 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
823 if (unmapped != entry->len) {
824 /* nothing much to do besides complaining */
e981f6d4 825 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
730f84ce 826 unmapped);
400e64df
OBC
827 }
828
829 list_del(&entry->node);
830 kfree(entry);
831 }
b6356a01
SA
832
833 /* clean up carveout allocations */
834 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
172e6ab1
SA
835 dma_free_coherent(dev->parent, entry->len, entry->va,
836 entry->dma);
b6356a01
SA
837 list_del(&entry->node);
838 kfree(entry);
839 }
d81fb32f
BA
840
841 /* clean up remote vdev entries */
842 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
843 rproc_remove_virtio_dev(rvdev);
400e64df
OBC
844}
845
400e64df
OBC
846/*
847 * take a firmware and boot a remote processor with it.
848 */
849static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
850{
b5ab5e24 851 struct device *dev = &rproc->dev;
400e64df 852 const char *name = rproc->firmware;
a2b950ac 853 struct resource_table *table, *loaded_table;
1e3e2c7c 854 int ret, tablesz;
400e64df
OBC
855
856 ret = rproc_fw_sanity_check(rproc, fw);
857 if (ret)
858 return ret;
859
e981f6d4 860 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
861
862 /*
863 * if enabling an IOMMU isn't relevant for this rproc, this is
864 * just a nop
865 */
866 ret = rproc_enable_iommu(rproc);
867 if (ret) {
868 dev_err(dev, "can't enable iommu: %d\n", ret);
869 return ret;
870 }
871
3e5f9eb5 872 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
89970d28 873 ret = -EINVAL;
400e64df 874
1e3e2c7c 875 /* look for the resource table */
bd484984 876 table = rproc_find_rsc_table(rproc, fw, &tablesz);
a66a5114
SA
877 if (!table) {
878 dev_err(dev, "Failed to find resource table\n");
1e3e2c7c 879 goto clean_up;
a66a5114 880 }
1e3e2c7c 881
988d204c
BA
882 /*
883 * Create a copy of the resource table. When a virtio device starts
884 * and calls vring_new_virtqueue() the address of the allocated vring
885 * will be stored in the cached_table. Before the device is started,
886 * cached_table will be copied into device memory.
887 */
888 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
889 if (!rproc->cached_table)
a2b950ac 890 goto clean_up;
988d204c
BA
891
892 rproc->table_ptr = rproc->cached_table;
a2b950ac 893
b35d7afc
BA
894 /* reset max_notifyid */
895 rproc->max_notifyid = -1;
896
d81fb32f
BA
897 /* look for virtio devices and register them */
898 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
899 if (ret) {
900 dev_err(dev, "Failed to handle vdev resources: %d\n", ret);
901 goto clean_up;
902 }
903
400e64df 904 /* handle fw resources which are required to boot rproc */
a2b950ac 905 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
400e64df
OBC
906 if (ret) {
907 dev_err(dev, "Failed to process resources: %d\n", ret);
229b85a6 908 goto clean_up_resources;
400e64df
OBC
909 }
910
911 /* load the ELF segments to memory */
bd484984 912 ret = rproc_load_segments(rproc, fw);
400e64df
OBC
913 if (ret) {
914 dev_err(dev, "Failed to load program segments: %d\n", ret);
229b85a6 915 goto clean_up_resources;
400e64df
OBC
916 }
917
a2b950ac
OBC
918 /*
919 * The starting device has been given the rproc->cached_table as the
920 * resource table. The address of the vring along with the other
921 * allocated resources (carveouts etc) is stored in cached_table.
13c4245b
BA
922 * In order to pass this information to the remote device we must copy
923 * this information to device memory. We also update the table_ptr so
924 * that any subsequent changes will be applied to the loaded version.
a2b950ac
OBC
925 */
926 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
13c4245b 927 if (loaded_table) {
e395f9ce 928 memcpy(loaded_table, rproc->cached_table, tablesz);
13c4245b
BA
929 rproc->table_ptr = loaded_table;
930 }
a2b950ac 931
400e64df
OBC
932 /* power up the remote processor */
933 ret = rproc->ops->start(rproc);
934 if (ret) {
935 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
229b85a6 936 goto clean_up_resources;
400e64df
OBC
937 }
938
7bdc9650
BA
939 /* probe any subdevices for the remote processor */
940 ret = rproc_probe_subdevices(rproc);
941 if (ret) {
942 dev_err(dev, "failed to probe subdevices for %s: %d\n",
943 rproc->name, ret);
944 goto stop_rproc;
945 }
946
400e64df
OBC
947 rproc->state = RPROC_RUNNING;
948
949 dev_info(dev, "remote processor %s is now up\n", rproc->name);
950
951 return 0;
952
7bdc9650
BA
953stop_rproc:
954 rproc->ops->stop(rproc);
229b85a6
BA
955clean_up_resources:
956 rproc_resource_cleanup(rproc);
400e64df 957clean_up:
988d204c
BA
958 kfree(rproc->cached_table);
959 rproc->cached_table = NULL;
960 rproc->table_ptr = NULL;
961
400e64df
OBC
962 rproc_disable_iommu(rproc);
963 return ret;
964}
965
966/*
967 * take a firmware and look for virtio devices to register.
968 *
969 * Note: this function is called asynchronously upon registration of the
970 * remote processor (so we must wait until it completes before we try
971 * to unregister the device. one other option is just to use kref here,
972 * that might be cleaner).
973 */
974static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
975{
976 struct rproc *rproc = context;
a2b950ac 977
ddf71187
BA
978 /* if rproc is marked always-on, request it to boot */
979 if (rproc->auto_boot)
980 rproc_boot_nowait(rproc);
981
3cc6e787 982 release_firmware(fw);
160e7c84 983 /* allow rproc_del() contexts, if any, to proceed */
400e64df
OBC
984 complete_all(&rproc->firmware_loading_complete);
985}
986
70b85ef8
FGL
987static int rproc_add_virtio_devices(struct rproc *rproc)
988{
989 int ret;
990
991 /* rproc_del() calls must wait until async loader completes */
992 init_completion(&rproc->firmware_loading_complete);
993
994 /*
995 * We must retrieve early virtio configuration info from
996 * the firmware (e.g. whether to register a virtio device,
997 * what virtio features does it support, ...).
998 *
999 * We're initiating an asynchronous firmware loading, so we can
1000 * be built-in kernel code, without hanging the boot process.
1001 */
1002 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1003 rproc->firmware, &rproc->dev, GFP_KERNEL,
1004 rproc, rproc_fw_config_virtio);
1005 if (ret < 0) {
1006 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1007 complete_all(&rproc->firmware_loading_complete);
1008 }
1009
1010 return ret;
1011}
1012
1013/**
1014 * rproc_trigger_recovery() - recover a remoteproc
1015 * @rproc: the remote processor
1016 *
56324d7a 1017 * The recovery is done by resetting all the virtio devices, that way all the
70b85ef8
FGL
1018 * rpmsg drivers will be reseted along with the remote processor making the
1019 * remoteproc functional again.
1020 *
1021 * This function can sleep, so it cannot be called from atomic context.
1022 */
1023int rproc_trigger_recovery(struct rproc *rproc)
1024{
70b85ef8
FGL
1025 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
1026
1027 init_completion(&rproc->crash_comp);
1028
ddf71187
BA
1029 /* shut down the remote */
1030 /* TODO: make sure this works with rproc->power > 1 */
1031 rproc_shutdown(rproc);
1032
70b85ef8
FGL
1033 /* wait until there is no more rproc users */
1034 wait_for_completion(&rproc->crash_comp);
1035
ddf71187 1036 /*
d81fb32f 1037 * boot the remote processor up again
ddf71187 1038 */
d81fb32f 1039 rproc_boot(rproc);
ddf71187
BA
1040
1041 return 0;
70b85ef8
FGL
1042}
1043
8afd519c
FGL
1044/**
1045 * rproc_crash_handler_work() - handle a crash
1046 *
1047 * This function needs to handle everything related to a crash, like cpu
1048 * registers and stack dump, information to help to debug the fatal error, etc.
1049 */
1050static void rproc_crash_handler_work(struct work_struct *work)
1051{
1052 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1053 struct device *dev = &rproc->dev;
1054
1055 dev_dbg(dev, "enter %s\n", __func__);
1056
1057 mutex_lock(&rproc->lock);
1058
1059 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1060 /* handle only the first crash detected */
1061 mutex_unlock(&rproc->lock);
1062 return;
1063 }
1064
1065 rproc->state = RPROC_CRASHED;
1066 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1067 rproc->name);
1068
1069 mutex_unlock(&rproc->lock);
1070
2e37abb8
FGL
1071 if (!rproc->recovery_disabled)
1072 rproc_trigger_recovery(rproc);
8afd519c
FGL
1073}
1074
400e64df 1075/**
3d87fa1d 1076 * __rproc_boot() - boot a remote processor
400e64df 1077 * @rproc: handle of a remote processor
3d87fa1d 1078 * @wait: wait for rproc registration completion
400e64df
OBC
1079 *
1080 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1081 *
1082 * If the remote processor is already powered on, this function immediately
1083 * returns (successfully).
1084 *
1085 * Returns 0 on success, and an appropriate error value otherwise.
1086 */
3d87fa1d 1087static int __rproc_boot(struct rproc *rproc, bool wait)
400e64df
OBC
1088{
1089 const struct firmware *firmware_p;
1090 struct device *dev;
1091 int ret;
1092
1093 if (!rproc) {
1094 pr_err("invalid rproc handle\n");
1095 return -EINVAL;
1096 }
1097
b5ab5e24 1098 dev = &rproc->dev;
400e64df
OBC
1099
1100 ret = mutex_lock_interruptible(&rproc->lock);
1101 if (ret) {
1102 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1103 return ret;
1104 }
1105
400e64df
OBC
1106 /* skip the boot process if rproc is already powered up */
1107 if (atomic_inc_return(&rproc->power) > 1) {
1108 ret = 0;
1109 goto unlock_mutex;
1110 }
1111
1112 dev_info(dev, "powering up %s\n", rproc->name);
1113
1114 /* load firmware */
1115 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1116 if (ret < 0) {
1117 dev_err(dev, "request_firmware failed: %d\n", ret);
1118 goto downref_rproc;
1119 }
1120
3d87fa1d
LJ
1121 /* if rproc virtio is not yet configured, wait */
1122 if (wait)
1123 wait_for_completion(&rproc->firmware_loading_complete);
1124
400e64df
OBC
1125 ret = rproc_fw_boot(rproc, firmware_p);
1126
1127 release_firmware(firmware_p);
1128
1129downref_rproc:
fbb6aacb 1130 if (ret)
400e64df 1131 atomic_dec(&rproc->power);
400e64df
OBC
1132unlock_mutex:
1133 mutex_unlock(&rproc->lock);
1134 return ret;
1135}
3d87fa1d
LJ
1136
1137/**
1138 * rproc_boot() - boot a remote processor
1139 * @rproc: handle of a remote processor
1140 */
1141int rproc_boot(struct rproc *rproc)
1142{
1143 return __rproc_boot(rproc, true);
1144}
400e64df
OBC
1145EXPORT_SYMBOL(rproc_boot);
1146
3d87fa1d
LJ
1147/**
1148 * rproc_boot_nowait() - boot a remote processor
1149 * @rproc: handle of a remote processor
1150 *
1151 * Same as rproc_boot() but don't wait for rproc registration completion
1152 */
1153int rproc_boot_nowait(struct rproc *rproc)
1154{
1155 return __rproc_boot(rproc, false);
1156}
1157
400e64df
OBC
1158/**
1159 * rproc_shutdown() - power off the remote processor
1160 * @rproc: the remote processor
1161 *
1162 * Power off a remote processor (previously booted with rproc_boot()).
1163 *
1164 * In case @rproc is still being used by an additional user(s), then
1165 * this function will just decrement the power refcount and exit,
1166 * without really powering off the device.
1167 *
1168 * Every call to rproc_boot() must (eventually) be accompanied by a call
1169 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1170 *
1171 * Notes:
1172 * - we're not decrementing the rproc's refcount, only the power refcount.
1173 * which means that the @rproc handle stays valid even after rproc_shutdown()
1174 * returns, and users can still use it with a subsequent rproc_boot(), if
1175 * needed.
400e64df
OBC
1176 */
1177void rproc_shutdown(struct rproc *rproc)
1178{
b5ab5e24 1179 struct device *dev = &rproc->dev;
400e64df
OBC
1180 int ret;
1181
1182 ret = mutex_lock_interruptible(&rproc->lock);
1183 if (ret) {
1184 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1185 return;
1186 }
1187
1188 /* if the remote proc is still needed, bail out */
1189 if (!atomic_dec_and_test(&rproc->power))
1190 goto out;
1191
7bdc9650
BA
1192 /* remove any subdevices for the remote processor */
1193 rproc_remove_subdevices(rproc);
1194
400e64df
OBC
1195 /* power off the remote processor */
1196 ret = rproc->ops->stop(rproc);
1197 if (ret) {
1198 atomic_inc(&rproc->power);
1199 dev_err(dev, "can't stop rproc: %d\n", ret);
1200 goto out;
1201 }
1202
1203 /* clean up all acquired resources */
1204 rproc_resource_cleanup(rproc);
1205
1206 rproc_disable_iommu(rproc);
1207
988d204c
BA
1208 /* Free the copy of the resource table */
1209 kfree(rproc->cached_table);
1210 rproc->cached_table = NULL;
1211 rproc->table_ptr = NULL;
a2b950ac 1212
70b85ef8
FGL
1213 /* if in crash state, unlock crash handler */
1214 if (rproc->state == RPROC_CRASHED)
1215 complete_all(&rproc->crash_comp);
1216
400e64df
OBC
1217 rproc->state = RPROC_OFFLINE;
1218
1219 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1220
1221out:
1222 mutex_unlock(&rproc->lock);
400e64df
OBC
1223}
1224EXPORT_SYMBOL(rproc_shutdown);
1225
fec47d86
DG
1226/**
1227 * rproc_get_by_phandle() - find a remote processor by phandle
1228 * @phandle: phandle to the rproc
1229 *
1230 * Finds an rproc handle using the remote processor's phandle, and then
1231 * return a handle to the rproc.
1232 *
1233 * This function increments the remote processor's refcount, so always
1234 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1235 *
1236 * Returns the rproc handle on success, and NULL on failure.
1237 */
8de3dbd0 1238#ifdef CONFIG_OF
fec47d86
DG
1239struct rproc *rproc_get_by_phandle(phandle phandle)
1240{
1241 struct rproc *rproc = NULL, *r;
1242 struct device_node *np;
1243
1244 np = of_find_node_by_phandle(phandle);
1245 if (!np)
1246 return NULL;
1247
1248 mutex_lock(&rproc_list_mutex);
1249 list_for_each_entry(r, &rproc_list, node) {
1250 if (r->dev.parent && r->dev.parent->of_node == np) {
fbb6aacb
BA
1251 /* prevent underlying implementation from being removed */
1252 if (!try_module_get(r->dev.parent->driver->owner)) {
1253 dev_err(&r->dev, "can't get owner\n");
1254 break;
1255 }
1256
fec47d86
DG
1257 rproc = r;
1258 get_device(&rproc->dev);
1259 break;
1260 }
1261 }
1262 mutex_unlock(&rproc_list_mutex);
1263
1264 of_node_put(np);
1265
1266 return rproc;
1267}
8de3dbd0
OBC
1268#else
1269struct rproc *rproc_get_by_phandle(phandle phandle)
1270{
1271 return NULL;
1272}
1273#endif
fec47d86
DG
1274EXPORT_SYMBOL(rproc_get_by_phandle);
1275
400e64df 1276/**
160e7c84 1277 * rproc_add() - register a remote processor
400e64df
OBC
1278 * @rproc: the remote processor handle to register
1279 *
1280 * Registers @rproc with the remoteproc framework, after it has been
1281 * allocated with rproc_alloc().
1282 *
1283 * This is called by the platform-specific rproc implementation, whenever
1284 * a new remote processor device is probed.
1285 *
1286 * Returns 0 on success and an appropriate error code otherwise.
1287 *
1288 * Note: this function initiates an asynchronous firmware loading
1289 * context, which will look for virtio devices supported by the rproc's
1290 * firmware.
1291 *
1292 * If found, those virtio devices will be created and added, so as a result
7a186941 1293 * of registering this remote processor, additional virtio drivers might be
400e64df 1294 * probed.
400e64df 1295 */
160e7c84 1296int rproc_add(struct rproc *rproc)
400e64df 1297{
b5ab5e24 1298 struct device *dev = &rproc->dev;
70b85ef8 1299 int ret;
400e64df 1300
b5ab5e24
OBC
1301 ret = device_add(dev);
1302 if (ret < 0)
1303 return ret;
400e64df 1304
b5ab5e24 1305 dev_info(dev, "%s is available\n", rproc->name);
400e64df 1306
489d129a
OBC
1307 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1308 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1309
400e64df
OBC
1310 /* create debugfs entries */
1311 rproc_create_debug_dir(rproc);
d2e12e66
DG
1312 ret = rproc_add_virtio_devices(rproc);
1313 if (ret < 0)
1314 return ret;
400e64df 1315
d2e12e66
DG
1316 /* expose to rproc_get_by_phandle users */
1317 mutex_lock(&rproc_list_mutex);
1318 list_add(&rproc->node, &rproc_list);
1319 mutex_unlock(&rproc_list_mutex);
1320
1321 return 0;
400e64df 1322}
160e7c84 1323EXPORT_SYMBOL(rproc_add);
400e64df 1324
b5ab5e24
OBC
1325/**
1326 * rproc_type_release() - release a remote processor instance
1327 * @dev: the rproc's device
1328 *
1329 * This function should _never_ be called directly.
1330 *
1331 * It will be called by the driver core when no one holds a valid pointer
1332 * to @dev anymore.
1333 */
1334static void rproc_type_release(struct device *dev)
1335{
1336 struct rproc *rproc = container_of(dev, struct rproc, dev);
1337
7183a2a7
OBC
1338 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1339
1340 rproc_delete_debug_dir(rproc);
1341
b5ab5e24
OBC
1342 idr_destroy(&rproc->notifyids);
1343
1344 if (rproc->index >= 0)
1345 ida_simple_remove(&rproc_dev_index, rproc->index);
1346
0f57dc6a 1347 kfree(rproc->firmware);
b5ab5e24
OBC
1348 kfree(rproc);
1349}
1350
1351static struct device_type rproc_type = {
1352 .name = "remoteproc",
1353 .release = rproc_type_release,
1354};
400e64df
OBC
1355
1356/**
1357 * rproc_alloc() - allocate a remote processor handle
1358 * @dev: the underlying device
1359 * @name: name of this remote processor
1360 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 1361 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
1362 * @len: length of private data needed by the rproc driver (in bytes)
1363 *
1364 * Allocates a new remote processor handle, but does not register
8b4aec9a 1365 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
1366 *
1367 * This function should be used by rproc implementations during initialization
1368 * of the remote processor.
1369 *
1370 * After creating an rproc handle using this function, and when ready,
160e7c84 1371 * implementations should then call rproc_add() to complete
400e64df
OBC
1372 * the registration of the remote processor.
1373 *
1374 * On success the new rproc is returned, and on failure, NULL.
1375 *
1376 * Note: _never_ directly deallocate @rproc, even if it was not registered
433c0e04 1377 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
400e64df
OBC
1378 */
1379struct rproc *rproc_alloc(struct device *dev, const char *name,
730f84ce
AS
1380 const struct rproc_ops *ops,
1381 const char *firmware, int len)
400e64df
OBC
1382{
1383 struct rproc *rproc;
8b4aec9a 1384 char *p, *template = "rproc-%s-fw";
0f57dc6a 1385 int name_len;
400e64df
OBC
1386
1387 if (!dev || !name || !ops)
1388 return NULL;
1389
0f57dc6a 1390 if (!firmware) {
8b4aec9a 1391 /*
8b4aec9a 1392 * If the caller didn't pass in a firmware name then
0f57dc6a 1393 * construct a default name.
8b4aec9a
RT
1394 */
1395 name_len = strlen(name) + strlen(template) - 2 + 1;
0f57dc6a
MR
1396 p = kmalloc(name_len, GFP_KERNEL);
1397 if (!p)
1398 return NULL;
8b4aec9a
RT
1399 snprintf(p, name_len, template, name);
1400 } else {
0f57dc6a
MR
1401 p = kstrdup(firmware, GFP_KERNEL);
1402 if (!p)
1403 return NULL;
1404 }
1405
1406 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1407 if (!rproc) {
1408 kfree(p);
1409 return NULL;
8b4aec9a
RT
1410 }
1411
1412 rproc->firmware = p;
400e64df
OBC
1413 rproc->name = name;
1414 rproc->ops = ops;
400e64df 1415 rproc->priv = &rproc[1];
ddf71187 1416 rproc->auto_boot = true;
400e64df 1417
b5ab5e24
OBC
1418 device_initialize(&rproc->dev);
1419 rproc->dev.parent = dev;
1420 rproc->dev.type = &rproc_type;
2aefbef0 1421 rproc->dev.class = &rproc_class;
b5ab5e24
OBC
1422
1423 /* Assign a unique device index and name */
1424 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1425 if (rproc->index < 0) {
1426 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1427 put_device(&rproc->dev);
1428 return NULL;
1429 }
1430
1431 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1432
400e64df
OBC
1433 atomic_set(&rproc->power, 0);
1434
4afc89d6
SB
1435 /* Set ELF as the default fw_ops handler */
1436 rproc->fw_ops = &rproc_elf_fw_ops;
400e64df
OBC
1437
1438 mutex_init(&rproc->lock);
1439
7a186941
OBC
1440 idr_init(&rproc->notifyids);
1441
400e64df
OBC
1442 INIT_LIST_HEAD(&rproc->carveouts);
1443 INIT_LIST_HEAD(&rproc->mappings);
1444 INIT_LIST_HEAD(&rproc->traces);
7a186941 1445 INIT_LIST_HEAD(&rproc->rvdevs);
7bdc9650 1446 INIT_LIST_HEAD(&rproc->subdevs);
400e64df 1447
8afd519c 1448 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
70b85ef8 1449 init_completion(&rproc->crash_comp);
8afd519c 1450
400e64df
OBC
1451 rproc->state = RPROC_OFFLINE;
1452
1453 return rproc;
1454}
1455EXPORT_SYMBOL(rproc_alloc);
1456
1457/**
433c0e04
BA
1458 * rproc_free() - unroll rproc_alloc()
1459 * @rproc: the remote processor handle
1460 *
1461 * This function decrements the rproc dev refcount.
1462 *
1463 * If no one holds any reference to rproc anymore, then its refcount would
1464 * now drop to zero, and it would be freed.
1465 */
1466void rproc_free(struct rproc *rproc)
1467{
1468 put_device(&rproc->dev);
1469}
1470EXPORT_SYMBOL(rproc_free);
1471
1472/**
1473 * rproc_put() - release rproc reference
400e64df
OBC
1474 * @rproc: the remote processor handle
1475 *
c6b5a276 1476 * This function decrements the rproc dev refcount.
400e64df 1477 *
c6b5a276
OBC
1478 * If no one holds any reference to rproc anymore, then its refcount would
1479 * now drop to zero, and it would be freed.
400e64df 1480 */
160e7c84 1481void rproc_put(struct rproc *rproc)
400e64df 1482{
fbb6aacb 1483 module_put(rproc->dev.parent->driver->owner);
b5ab5e24 1484 put_device(&rproc->dev);
400e64df 1485}
160e7c84 1486EXPORT_SYMBOL(rproc_put);
400e64df
OBC
1487
1488/**
160e7c84 1489 * rproc_del() - unregister a remote processor
400e64df
OBC
1490 * @rproc: rproc handle to unregister
1491 *
400e64df
OBC
1492 * This function should be called when the platform specific rproc
1493 * implementation decides to remove the rproc device. it should
160e7c84 1494 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
1495 * has completed successfully.
1496 *
160e7c84 1497 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 1498 * of the outstanding reference created by rproc_alloc. To decrement that
433c0e04 1499 * one last refcount, one still needs to call rproc_free().
400e64df
OBC
1500 *
1501 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1502 */
160e7c84 1503int rproc_del(struct rproc *rproc)
400e64df 1504{
6db20ea8 1505 struct rproc_vdev *rvdev, *tmp;
7a186941 1506
400e64df
OBC
1507 if (!rproc)
1508 return -EINVAL;
1509
1510 /* if rproc is just being registered, wait */
1511 wait_for_completion(&rproc->firmware_loading_complete);
1512
ddf71187
BA
1513 /* if rproc is marked always-on, rproc_add() booted it */
1514 /* TODO: make sure this works with rproc->power > 1 */
1515 if (rproc->auto_boot)
1516 rproc_shutdown(rproc);
1517
7a186941 1518 /* clean up remote vdev entries */
6db20ea8 1519 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
7a186941 1520 rproc_remove_virtio_dev(rvdev);
400e64df 1521
fec47d86
DG
1522 /* the rproc is downref'ed as soon as it's removed from the klist */
1523 mutex_lock(&rproc_list_mutex);
1524 list_del(&rproc->node);
1525 mutex_unlock(&rproc_list_mutex);
1526
b5ab5e24 1527 device_del(&rproc->dev);
400e64df
OBC
1528
1529 return 0;
1530}
160e7c84 1531EXPORT_SYMBOL(rproc_del);
400e64df 1532
7bdc9650
BA
1533/**
1534 * rproc_add_subdev() - add a subdevice to a remoteproc
1535 * @rproc: rproc handle to add the subdevice to
1536 * @subdev: subdev handle to register
1537 * @probe: function to call when the rproc boots
1538 * @remove: function to call when the rproc shuts down
1539 */
1540void rproc_add_subdev(struct rproc *rproc,
1541 struct rproc_subdev *subdev,
1542 int (*probe)(struct rproc_subdev *subdev),
1543 void (*remove)(struct rproc_subdev *subdev))
1544{
1545 subdev->probe = probe;
1546 subdev->remove = remove;
1547
1548 list_add_tail(&subdev->node, &rproc->subdevs);
1549}
1550EXPORT_SYMBOL(rproc_add_subdev);
1551
1552/**
1553 * rproc_remove_subdev() - remove a subdevice from a remoteproc
1554 * @rproc: rproc handle to remove the subdevice from
1555 * @subdev: subdev handle, previously registered with rproc_add_subdev()
1556 */
1557void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
1558{
1559 list_del(&subdev->node);
1560}
1561EXPORT_SYMBOL(rproc_remove_subdev);
1562
8afd519c
FGL
1563/**
1564 * rproc_report_crash() - rproc crash reporter function
1565 * @rproc: remote processor
1566 * @type: crash type
1567 *
1568 * This function must be called every time a crash is detected by the low-level
1569 * drivers implementing a specific remoteproc. This should not be called from a
1570 * non-remoteproc driver.
1571 *
1572 * This function can be called from atomic/interrupt context.
1573 */
1574void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1575{
1576 if (!rproc) {
1577 pr_err("NULL rproc pointer\n");
1578 return;
1579 }
1580
1581 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1582 rproc->name, rproc_crash_to_string(type));
1583
1584 /* create a new task to handle the error */
1585 schedule_work(&rproc->crash_handler);
1586}
1587EXPORT_SYMBOL(rproc_report_crash);
1588
400e64df
OBC
1589static int __init remoteproc_init(void)
1590{
2aefbef0 1591 rproc_init_sysfs();
400e64df 1592 rproc_init_debugfs();
b5ab5e24 1593
400e64df
OBC
1594 return 0;
1595}
1596module_init(remoteproc_init);
1597
1598static void __exit remoteproc_exit(void)
1599{
f42f79af
SA
1600 ida_destroy(&rproc_dev_index);
1601
400e64df 1602 rproc_exit_debugfs();
2aefbef0 1603 rproc_exit_sysfs();
400e64df
OBC
1604}
1605module_exit(remoteproc_exit);
1606
1607MODULE_LICENSE("GPL v2");
1608MODULE_DESCRIPTION("Generic Remote Processor Framework");