remoteproc: Add new attach() remoteproc operation
[linux-block.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
1802d0be 1// SPDX-License-Identifier: GPL-2.0-only
400e64df
OBC
2/*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
400e64df
OBC
15 */
16
17#define pr_fmt(fmt) "%s: " fmt, __func__
18
dc5192c4 19#include <linux/delay.h>
400e64df
OBC
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/device.h>
23#include <linux/slab.h>
24#include <linux/mutex.h>
25#include <linux/dma-mapping.h>
26#include <linux/firmware.h>
27#include <linux/string.h>
28#include <linux/debugfs.h>
2666ca91 29#include <linux/devcoredump.h>
c0abe2ca 30#include <linux/rculist.h>
400e64df
OBC
31#include <linux/remoteproc.h>
32#include <linux/iommu.h>
b5ab5e24 33#include <linux/idr.h>
400e64df 34#include <linux/elf.h>
a2b950ac 35#include <linux/crc32.h>
086d0872 36#include <linux/of_reserved_mem.h>
400e64df
OBC
37#include <linux/virtio_ids.h>
38#include <linux/virtio_ring.h>
cf59d3e9 39#include <asm/byteorder.h>
086d0872 40#include <linux/platform_device.h>
400e64df
OBC
41
42#include "remoteproc_internal.h"
8f403350 43#include "remoteproc_elf_helpers.h"
400e64df 44
b36de8cf
LP
45#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46
fec47d86
DG
47static DEFINE_MUTEX(rproc_list_mutex);
48static LIST_HEAD(rproc_list);
dc5192c4 49static struct notifier_block rproc_panic_nb;
fec47d86 50
a2b950ac
OBC
51typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52 void *, int offset, int avail);
400e64df 53
c6aed238
LP
54static int rproc_alloc_carveout(struct rproc *rproc,
55 struct rproc_mem_entry *mem);
56static int rproc_release_carveout(struct rproc *rproc,
57 struct rproc_mem_entry *mem);
58
b5ab5e24
OBC
59/* Unique indices for remoteproc devices */
60static DEFINE_IDA(rproc_dev_index);
61
8afd519c
FGL
62static const char * const rproc_crash_names[] = {
63 [RPROC_MMUFAULT] = "mmufault",
b3d39032
BA
64 [RPROC_WATCHDOG] = "watchdog",
65 [RPROC_FATAL_ERROR] = "fatal error",
8afd519c
FGL
66};
67
68/* translate rproc_crash_type to string */
69static const char *rproc_crash_to_string(enum rproc_crash_type type)
70{
71 if (type < ARRAY_SIZE(rproc_crash_names))
72 return rproc_crash_names[type];
b23f7a09 73 return "unknown";
8afd519c
FGL
74}
75
400e64df
OBC
76/*
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
79 * an IOMMU).
80 *
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
400e64df
OBC
83 */
84static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
730f84ce 85 unsigned long iova, int flags, void *token)
400e64df 86{
8afd519c
FGL
87 struct rproc *rproc = token;
88
400e64df
OBC
89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90
8afd519c
FGL
91 rproc_report_crash(rproc, RPROC_MMUFAULT);
92
400e64df
OBC
93 /*
94 * Let the iommu core know we're not really handling this fault;
8afd519c 95 * we just used it as a recovery trigger.
400e64df
OBC
96 */
97 return -ENOSYS;
98}
99
100static int rproc_enable_iommu(struct rproc *rproc)
101{
102 struct iommu_domain *domain;
b5ab5e24 103 struct device *dev = rproc->dev.parent;
400e64df
OBC
104 int ret;
105
315491e5
SA
106 if (!rproc->has_iommu) {
107 dev_dbg(dev, "iommu not present\n");
0798e1da 108 return 0;
400e64df
OBC
109 }
110
111 domain = iommu_domain_alloc(dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
115 }
116
77ca2332 117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
118
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
123 }
124
125 rproc->domain = domain;
126
127 return 0;
128
129free_domain:
130 iommu_domain_free(domain);
131 return ret;
132}
133
134static void rproc_disable_iommu(struct rproc *rproc)
135{
136 struct iommu_domain *domain = rproc->domain;
b5ab5e24 137 struct device *dev = rproc->dev.parent;
400e64df
OBC
138
139 if (!domain)
140 return;
141
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
400e64df
OBC
144}
145
086d0872 146phys_addr_t rproc_va_to_pa(void *cpu_addr)
eb30596e
LP
147{
148 /*
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
152 */
153 if (is_vmalloc_addr(cpu_addr)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 offset_in_page(cpu_addr);
156 }
157
158 WARN_ON(!virt_addr_valid(cpu_addr));
159 return virt_to_phys(cpu_addr);
160}
086d0872 161EXPORT_SYMBOL(rproc_va_to_pa);
eb30596e 162
a01f7cd6
SA
163/**
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
168 *
400e64df
OBC
169 * Some remote processors will ask us to allocate them physically contiguous
170 * memory regions (which we call "carveouts"), and map them to specific
a01f7cd6
SA
171 * device addresses (which are hardcoded in the firmware). They may also have
172 * dedicated memory regions internal to the processors, and use them either
173 * exclusively or alongside carveouts.
400e64df
OBC
174 *
175 * They may then ask us to copy objects into specific device addresses (e.g.
176 * code/data sections) or expose us certain symbols in other device address
177 * (e.g. their trace buffer).
178 *
a01f7cd6
SA
179 * This function is a helper function with which we can go over the allocated
180 * carveouts and translate specific device addresses to kernel virtual addresses
181 * so we can access the referenced memory. This function also allows to perform
182 * translations on the internal remoteproc memory regions through a platform
183 * implementation specific da_to_va ops, if present.
184 *
185 * The function returns a valid kernel address on success or NULL on failure.
400e64df
OBC
186 *
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
a01f7cd6
SA
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
400e64df 191 */
9ce3bf22 192void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
400e64df
OBC
193{
194 struct rproc_mem_entry *carveout;
195 void *ptr = NULL;
196
a01f7cd6
SA
197 if (rproc->ops->da_to_va) {
198 ptr = rproc->ops->da_to_va(rproc, da, len);
199 if (ptr)
200 goto out;
201 }
202
400e64df
OBC
203 list_for_each_entry(carveout, &rproc->carveouts, node) {
204 int offset = da - carveout->da;
205
74457c40
LP
206 /* Verify that carveout is allocated */
207 if (!carveout->va)
208 continue;
209
400e64df
OBC
210 /* try next carveout if da is too small */
211 if (offset < 0)
212 continue;
213
214 /* try next carveout if da is too large */
215 if (offset + len > carveout->len)
216 continue;
217
218 ptr = carveout->va + offset;
219
220 break;
221 }
222
a01f7cd6 223out:
400e64df
OBC
224 return ptr;
225}
4afc89d6 226EXPORT_SYMBOL(rproc_da_to_va);
400e64df 227
b0019ccd
LP
228/**
229 * rproc_find_carveout_by_name() - lookup the carveout region by a name
230 * @rproc: handle of a remote processor
2e7d4c2c
AP
231 * @name: carveout name to find (format string)
232 * @...: optional parameters matching @name string
b0019ccd
LP
233 *
234 * Platform driver has the capability to register some pre-allacoted carveout
235 * (physically contiguous memory regions) before rproc firmware loading and
236 * associated resource table analysis. These regions may be dedicated memory
237 * regions internal to the coprocessor or specified DDR region with specific
238 * attributes
239 *
240 * This function is a helper function with which we can go over the
241 * allocated carveouts and return associated region characteristics like
242 * coprocessor address, length or processor virtual address.
243 *
244 * Return: a valid pointer on carveout entry on success or NULL on failure.
245 */
7e05c8de 246__printf(2, 3)
b0019ccd
LP
247struct rproc_mem_entry *
248rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
249{
250 va_list args;
251 char _name[32];
252 struct rproc_mem_entry *carveout, *mem = NULL;
253
254 if (!name)
255 return NULL;
256
257 va_start(args, name);
258 vsnprintf(_name, sizeof(_name), name, args);
259 va_end(args);
260
261 list_for_each_entry(carveout, &rproc->carveouts, node) {
262 /* Compare carveout and requested names */
263 if (!strcmp(carveout->name, _name)) {
264 mem = carveout;
265 break;
266 }
267 }
268
269 return mem;
270}
271
c874bf59
LP
272/**
273 * rproc_check_carveout_da() - Check specified carveout da configuration
274 * @rproc: handle of a remote processor
275 * @mem: pointer on carveout to check
276 * @da: area device address
277 * @len: associated area size
278 *
279 * This function is a helper function to verify requested device area (couple
28d7d5c6
LP
280 * da, len) is part of specified carveout.
281 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
282 * checked.
c874bf59 283 *
28d7d5c6 284 * Return: 0 if carveout matches request else error
c874bf59 285 */
28d7d5c6
LP
286static int rproc_check_carveout_da(struct rproc *rproc,
287 struct rproc_mem_entry *mem, u32 da, u32 len)
c874bf59
LP
288{
289 struct device *dev = &rproc->dev;
28d7d5c6 290 int delta;
c874bf59
LP
291
292 /* Check requested resource length */
293 if (len > mem->len) {
294 dev_err(dev, "Registered carveout doesn't fit len request\n");
28d7d5c6 295 return -EINVAL;
c874bf59
LP
296 }
297
298 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
28d7d5c6
LP
299 /* Address doesn't match registered carveout configuration */
300 return -EINVAL;
c874bf59
LP
301 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
302 delta = da - mem->da;
303
304 /* Check requested resource belongs to registered carveout */
305 if (delta < 0) {
306 dev_err(dev,
307 "Registered carveout doesn't fit da request\n");
28d7d5c6 308 return -EINVAL;
c874bf59
LP
309 }
310
311 if (delta + len > mem->len) {
312 dev_err(dev,
313 "Registered carveout doesn't fit len request\n");
28d7d5c6 314 return -EINVAL;
c874bf59
LP
315 }
316 }
317
318 return 0;
319}
320
6db20ea8 321int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 322{
7a186941 323 struct rproc *rproc = rvdev->rproc;
b5ab5e24 324 struct device *dev = &rproc->dev;
6db20ea8 325 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 326 struct fw_rsc_vdev *rsc;
096ee786 327 int ret, notifyid;
c6aed238 328 struct rproc_mem_entry *mem;
096ee786 329 size_t size;
400e64df 330
7a186941 331 /* actual size of vring (in bytes) */
6db20ea8 332 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 333
c6aed238
LP
334 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
335
336 /* Search for pre-registered carveout */
337 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
338 i);
339 if (mem) {
340 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
341 return -ENOMEM;
342 } else {
343 /* Register carveout in in list */
99cf0361
BDC
344 mem = rproc_mem_entry_init(dev, NULL, 0,
345 size, rsc->vring[i].da,
c6aed238
LP
346 rproc_alloc_carveout,
347 rproc_release_carveout,
348 "vdev%dvring%d",
349 rvdev->index, i);
350 if (!mem) {
351 dev_err(dev, "Can't allocate memory entry structure\n");
352 return -ENOMEM;
353 }
354
355 rproc_add_carveout(rproc, mem);
400e64df
OBC
356 }
357
6db20ea8
OBC
358 /*
359 * Assign an rproc-wide unique index for this vring
360 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
361 * TODO: support predefined notifyids (via resource table)
362 */
15fc6110 363 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 364 if (ret < 0) {
15fc6110 365 dev_err(dev, "idr_alloc failed: %d\n", ret);
7a186941
OBC
366 return ret;
367 }
15fc6110 368 notifyid = ret;
400e64df 369
48f18f89
BA
370 /* Potentially bump max_notifyid */
371 if (notifyid > rproc->max_notifyid)
372 rproc->max_notifyid = notifyid;
373
6db20ea8 374 rvring->notifyid = notifyid;
400e64df 375
c6aed238 376 /* Let the rproc know the notifyid of this vring.*/
c0d63157 377 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
378 return 0;
379}
380
6db20ea8
OBC
381static int
382rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
383{
384 struct rproc *rproc = rvdev->rproc;
b5ab5e24 385 struct device *dev = &rproc->dev;
6db20ea8
OBC
386 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
387 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 388
9d7814a9 389 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
730f84ce 390 i, vring->da, vring->num, vring->align);
7a186941 391
6db20ea8
OBC
392 /* verify queue size and vring alignment are sane */
393 if (!vring->num || !vring->align) {
394 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
730f84ce 395 vring->num, vring->align);
6db20ea8 396 return -EINVAL;
7a186941 397 }
6db20ea8
OBC
398
399 rvring->len = vring->num;
400 rvring->align = vring->align;
401 rvring->rvdev = rvdev;
402
403 return 0;
404}
405
406void rproc_free_vring(struct rproc_vring *rvring)
407{
6db20ea8 408 struct rproc *rproc = rvring->rvdev->rproc;
00a0eec5 409 int idx = rvring - rvring->rvdev->vring;
c0d63157 410 struct fw_rsc_vdev *rsc;
6db20ea8 411
6db20ea8 412 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 413
c0d63157
SB
414 /* reset resource entry info */
415 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
416 rsc->vring[idx].da = 0;
417 rsc->vring[idx].notifyid = -1;
7a186941
OBC
418}
419
6f8b0373 420static int rproc_vdev_do_start(struct rproc_subdev *subdev)
f5bcb353
BA
421{
422 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
423
424 return rproc_add_virtio_dev(rvdev, rvdev->id);
425}
426
6f8b0373 427static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
f5bcb353
BA
428{
429 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
d4c036fe 430 int ret;
f5bcb353 431
d4c036fe
LP
432 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
433 if (ret)
434 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
f5bcb353
BA
435}
436
086d0872
LP
437/**
438 * rproc_rvdev_release() - release the existence of a rvdev
439 *
440 * @dev: the subdevice's dev
441 */
442static void rproc_rvdev_release(struct device *dev)
443{
444 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
445
446 of_reserved_mem_device_release(dev);
447
448 kfree(rvdev);
449}
450
400e64df 451/**
fd2c15ec 452 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
453 * @rproc: the remote processor
454 * @rsc: the vring resource descriptor
2e7d4c2c 455 * @offset: offset of the resource entry
fd2c15ec 456 * @avail: size of available data (for sanity checking the image)
400e64df 457 *
7a186941
OBC
458 * This resource entry requests the host to statically register a virtio
459 * device (vdev), and setup everything needed to support it. It contains
460 * everything needed to make it possible: the virtio device id, virtio
461 * device features, vrings information, virtio config space, etc...
462 *
463 * Before registering the vdev, the vrings are allocated from non-cacheable
464 * physically contiguous memory. Currently we only support two vrings per
465 * remote processor (temporary limitation). We might also want to consider
466 * doing the vring allocation only later when ->find_vqs() is invoked, and
467 * then release them upon ->del_vqs().
468 *
469 * Note: @da is currently not really handled correctly: we dynamically
470 * allocate it using the DMA API, ignoring requested hard coded addresses,
471 * and we don't take care of any required IOMMU programming. This is all
472 * going to be taken care of when the generic iommu-based DMA API will be
473 * merged. Meanwhile, statically-addressed iommu-based firmware images should
474 * use RSC_DEVMEM resource entries to map their required @da to the physical
475 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
476 *
477 * Returns 0 on success, or an appropriate error code otherwise
478 */
fd2c15ec 479static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
730f84ce 480 int offset, int avail)
400e64df 481{
b5ab5e24 482 struct device *dev = &rproc->dev;
7a186941
OBC
483 struct rproc_vdev *rvdev;
484 int i, ret;
086d0872 485 char name[16];
400e64df 486
fd2c15ec 487 /* make sure resource isn't truncated */
c8784657
GS
488 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
489 avail) {
b5ab5e24 490 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
491 return -EINVAL;
492 }
493
fd2c15ec
OBC
494 /* make sure reserved bytes are zeroes */
495 if (rsc->reserved[0] || rsc->reserved[1]) {
496 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
497 return -EINVAL;
498 }
499
9d7814a9 500 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
fd2c15ec
OBC
501 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
502
7a186941
OBC
503 /* we currently support only two vrings per rvdev */
504 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 505 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
506 return -EINVAL;
507 }
508
899585ad 509 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
7a186941
OBC
510 if (!rvdev)
511 return -ENOMEM;
400e64df 512
aab8d802
BA
513 kref_init(&rvdev->refcount);
514
f5bcb353 515 rvdev->id = rsc->id;
7a186941 516 rvdev->rproc = rproc;
c6aed238 517 rvdev->index = rproc->nb_vdev++;
400e64df 518
086d0872
LP
519 /* Initialise vdev subdevice */
520 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
c774ad01 521 rvdev->dev.parent = &rproc->dev;
72f64cab 522 rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
086d0872
LP
523 rvdev->dev.release = rproc_rvdev_release;
524 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
525 dev_set_drvdata(&rvdev->dev, rvdev);
526
527 ret = device_register(&rvdev->dev);
528 if (ret) {
529 put_device(&rvdev->dev);
530 return ret;
531 }
532 /* Make device dma capable by inheriting from parent's capabilities */
533 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
534
535 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
536 dma_get_mask(rproc->dev.parent));
537 if (ret) {
538 dev_warn(dev,
539 "Failed to set DMA mask %llx. Trying to continue... %x\n",
540 dma_get_mask(rproc->dev.parent), ret);
541 }
542
6db20ea8 543 /* parse the vrings */
7a186941 544 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 545 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 546 if (ret)
6db20ea8 547 goto free_rvdev;
7a186941 548 }
400e64df 549
a2b950ac
OBC
550 /* remember the resource offset*/
551 rvdev->rsc_offset = offset;
fd2c15ec 552
a863af5d
BA
553 /* allocate the vring resources */
554 for (i = 0; i < rsc->num_of_vrings; i++) {
555 ret = rproc_alloc_vring(rvdev, i);
556 if (ret)
557 goto unwind_vring_allocations;
558 }
559
7a186941 560 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 561
6f8b0373
AE
562 rvdev->subdev.start = rproc_vdev_do_start;
563 rvdev->subdev.stop = rproc_vdev_do_stop;
4902676f
BA
564
565 rproc_add_subdev(rproc, &rvdev->subdev);
400e64df
OBC
566
567 return 0;
7a186941 568
a863af5d
BA
569unwind_vring_allocations:
570 for (i--; i >= 0; i--)
571 rproc_free_vring(&rvdev->vring[i]);
6db20ea8 572free_rvdev:
086d0872 573 device_unregister(&rvdev->dev);
7a186941 574 return ret;
400e64df
OBC
575}
576
aab8d802
BA
577void rproc_vdev_release(struct kref *ref)
578{
579 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
a863af5d 580 struct rproc_vring *rvring;
f5bcb353 581 struct rproc *rproc = rvdev->rproc;
a863af5d
BA
582 int id;
583
584 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
585 rvring = &rvdev->vring[id];
a863af5d
BA
586 rproc_free_vring(rvring);
587 }
aab8d802 588
f5bcb353 589 rproc_remove_subdev(rproc, &rvdev->subdev);
aab8d802 590 list_del(&rvdev->node);
086d0872 591 device_unregister(&rvdev->dev);
aab8d802
BA
592}
593
400e64df
OBC
594/**
595 * rproc_handle_trace() - handle a shared trace buffer resource
596 * @rproc: the remote processor
597 * @rsc: the trace resource descriptor
2e7d4c2c 598 * @offset: offset of the resource entry
fd2c15ec 599 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
600 *
601 * In case the remote processor dumps trace logs into memory,
602 * export it via debugfs.
603 *
604 * Currently, the 'da' member of @rsc should contain the device address
605 * where the remote processor is dumping the traces. Later we could also
606 * support dynamically allocating this address using the generic
607 * DMA API (but currently there isn't a use case for that).
608 *
609 * Returns 0 on success, or an appropriate error code otherwise
610 */
fd2c15ec 611static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
730f84ce 612 int offset, int avail)
400e64df 613{
a987e6b9 614 struct rproc_debug_trace *trace;
b5ab5e24 615 struct device *dev = &rproc->dev;
400e64df
OBC
616 char name[15];
617
fd2c15ec 618 if (sizeof(*rsc) > avail) {
b5ab5e24 619 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
620 return -EINVAL;
621 }
622
623 /* make sure reserved bytes are zeroes */
624 if (rsc->reserved) {
625 dev_err(dev, "trace rsc has non zero reserved bytes\n");
626 return -EINVAL;
627 }
628
400e64df 629 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 630 if (!trace)
400e64df 631 return -ENOMEM;
400e64df
OBC
632
633 /* set the trace buffer dma properties */
a987e6b9
LP
634 trace->trace_mem.len = rsc->len;
635 trace->trace_mem.da = rsc->da;
636
637 /* set pointer on rproc device */
638 trace->rproc = rproc;
400e64df
OBC
639
640 /* make sure snprintf always null terminates, even if truncating */
641 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
642
643 /* create the debugfs entry */
a987e6b9
LP
644 trace->tfile = rproc_create_trace_file(name, rproc, trace);
645 if (!trace->tfile) {
400e64df
OBC
646 kfree(trace);
647 return -EINVAL;
648 }
649
650 list_add_tail(&trace->node, &rproc->traces);
651
652 rproc->num_traces++;
653
a987e6b9
LP
654 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
655 name, rsc->da, rsc->len);
400e64df
OBC
656
657 return 0;
658}
659
660/**
661 * rproc_handle_devmem() - handle devmem resource entry
662 * @rproc: remote processor handle
663 * @rsc: the devmem resource entry
2e7d4c2c 664 * @offset: offset of the resource entry
fd2c15ec 665 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
666 *
667 * Remote processors commonly need to access certain on-chip peripherals.
668 *
669 * Some of these remote processors access memory via an iommu device,
670 * and might require us to configure their iommu before they can access
671 * the on-chip peripherals they need.
672 *
673 * This resource entry is a request to map such a peripheral device.
674 *
675 * These devmem entries will contain the physical address of the device in
676 * the 'pa' member. If a specific device address is expected, then 'da' will
677 * contain it (currently this is the only use case supported). 'len' will
678 * contain the size of the physical region we need to map.
679 *
680 * Currently we just "trust" those devmem entries to contain valid physical
681 * addresses, but this is going to change: we want the implementations to
682 * tell us ranges of physical addresses the firmware is allowed to request,
683 * and not allow firmwares to request access to physical addresses that
684 * are outside those ranges.
685 */
fd2c15ec 686static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
730f84ce 687 int offset, int avail)
400e64df
OBC
688{
689 struct rproc_mem_entry *mapping;
b5ab5e24 690 struct device *dev = &rproc->dev;
400e64df
OBC
691 int ret;
692
693 /* no point in handling this resource without a valid iommu domain */
694 if (!rproc->domain)
695 return -EINVAL;
696
fd2c15ec 697 if (sizeof(*rsc) > avail) {
b5ab5e24 698 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
699 return -EINVAL;
700 }
701
702 /* make sure reserved bytes are zeroes */
703 if (rsc->reserved) {
b5ab5e24 704 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
705 return -EINVAL;
706 }
707
400e64df 708 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 709 if (!mapping)
400e64df 710 return -ENOMEM;
400e64df
OBC
711
712 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
713 if (ret) {
b5ab5e24 714 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
715 goto out;
716 }
717
718 /*
719 * We'll need this info later when we'll want to unmap everything
720 * (e.g. on shutdown).
721 *
722 * We can't trust the remote processor not to change the resource
723 * table, so we must maintain this info independently.
724 */
725 mapping->da = rsc->da;
726 mapping->len = rsc->len;
727 list_add_tail(&mapping->node, &rproc->mappings);
728
b5ab5e24 729 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
730f84ce 730 rsc->pa, rsc->da, rsc->len);
400e64df
OBC
731
732 return 0;
733
734out:
735 kfree(mapping);
736 return ret;
737}
738
f2e74abf 739/**
d7c51706 740 * rproc_alloc_carveout() - allocated specified carveout
f2e74abf 741 * @rproc: rproc handle
d7c51706 742 * @mem: the memory entry to allocate
400e64df 743 *
d7c51706
LP
744 * This function allocate specified memory entry @mem using
745 * dma_alloc_coherent() as default allocator
400e64df 746 */
d7c51706
LP
747static int rproc_alloc_carveout(struct rproc *rproc,
748 struct rproc_mem_entry *mem)
400e64df 749{
d7c51706 750 struct rproc_mem_entry *mapping = NULL;
b5ab5e24 751 struct device *dev = &rproc->dev;
400e64df
OBC
752 dma_addr_t dma;
753 void *va;
754 int ret;
755
d7c51706 756 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
400e64df 757 if (!va) {
9c219b23 758 dev_err(dev->parent,
096ee786
CL
759 "failed to allocate dma memory: len 0x%zx\n",
760 mem->len);
72029c90 761 return -ENOMEM;
400e64df
OBC
762 }
763
096ee786 764 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
d7c51706 765 va, &dma, mem->len);
400e64df 766
60f849a5
LP
767 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
768 /*
769 * Check requested da is equal to dma address
770 * and print a warn message in case of missalignment.
771 * Don't stop rproc_start sequence as coprocessor may
772 * build pa to da translation on its side.
773 */
774 if (mem->da != (u32)dma)
775 dev_warn(dev->parent,
776 "Allocated carveout doesn't fit device address request\n");
777 }
778
400e64df
OBC
779 /*
780 * Ok, this is non-standard.
781 *
782 * Sometimes we can't rely on the generic iommu-based DMA API
783 * to dynamically allocate the device address and then set the IOMMU
784 * tables accordingly, because some remote processors might
785 * _require_ us to use hard coded device addresses that their
786 * firmware was compiled with.
787 *
788 * In this case, we must use the IOMMU API directly and map
789 * the memory to the device address as expected by the remote
790 * processor.
791 *
792 * Obviously such remote processor devices should not be configured
793 * to use the iommu-based DMA API: we expect 'dma' to contain the
794 * physical address in this case.
795 */
60f849a5 796 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
7168d914
DC
797 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
798 if (!mapping) {
7168d914
DC
799 ret = -ENOMEM;
800 goto dma_free;
801 }
802
d7c51706
LP
803 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
804 mem->flags);
400e64df
OBC
805 if (ret) {
806 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 807 goto free_mapping;
400e64df
OBC
808 }
809
810 /*
811 * We'll need this info later when we'll want to unmap
812 * everything (e.g. on shutdown).
813 *
814 * We can't trust the remote processor not to change the
815 * resource table, so we must maintain this info independently.
816 */
d7c51706
LP
817 mapping->da = mem->da;
818 mapping->len = mem->len;
400e64df
OBC
819 list_add_tail(&mapping->node, &rproc->mappings);
820
b605ed8b 821 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
d7c51706 822 mem->da, &dma);
60f849a5
LP
823 }
824
825 if (mem->da == FW_RSC_ADDR_ANY) {
b36de8cf
LP
826 /* Update device address as undefined by requester */
827 if ((u64)dma & HIGH_BITS_MASK)
828 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
829
d7c51706 830 mem->da = (u32)dma;
400e64df
OBC
831 }
832
80137b40 833 mem->dma = dma;
d7c51706 834 mem->va = va;
400e64df
OBC
835
836 return 0;
837
7168d914
DC
838free_mapping:
839 kfree(mapping);
400e64df 840dma_free:
d7c51706 841 dma_free_coherent(dev->parent, mem->len, va, dma);
400e64df
OBC
842 return ret;
843}
844
d7c51706
LP
845/**
846 * rproc_release_carveout() - release acquired carveout
847 * @rproc: rproc handle
848 * @mem: the memory entry to release
849 *
850 * This function releases specified memory entry @mem allocated via
851 * rproc_alloc_carveout() function by @rproc.
852 */
853static int rproc_release_carveout(struct rproc *rproc,
854 struct rproc_mem_entry *mem)
855{
856 struct device *dev = &rproc->dev;
857
858 /* clean up carveout allocations */
859 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
860 return 0;
861}
862
863/**
864 * rproc_handle_carveout() - handle phys contig memory allocation requests
865 * @rproc: rproc handle
866 * @rsc: the resource entry
2e7d4c2c 867 * @offset: offset of the resource entry
d7c51706
LP
868 * @avail: size of available data (for image validation)
869 *
870 * This function will handle firmware requests for allocation of physically
871 * contiguous memory regions.
872 *
873 * These request entries should come first in the firmware's resource table,
874 * as other firmware entries might request placing other data objects inside
875 * these memory regions (e.g. data/code segments, trace resource entries, ...).
876 *
877 * Allocating memory this way helps utilizing the reserved physical memory
878 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
879 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
880 * pressure is important; it may have a substantial impact on performance.
881 */
882static int rproc_handle_carveout(struct rproc *rproc,
883 struct fw_rsc_carveout *rsc,
884 int offset, int avail)
885{
886 struct rproc_mem_entry *carveout;
887 struct device *dev = &rproc->dev;
888
889 if (sizeof(*rsc) > avail) {
890 dev_err(dev, "carveout rsc is truncated\n");
891 return -EINVAL;
892 }
893
894 /* make sure reserved bytes are zeroes */
895 if (rsc->reserved) {
896 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
897 return -EINVAL;
898 }
899
900 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
901 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
902
ffa5f9c8
LP
903 /*
904 * Check carveout rsc already part of a registered carveout,
905 * Search by name, then check the da and length
906 */
907 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
908
909 if (carveout) {
910 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
911 dev_err(dev,
912 "Carveout already associated to resource table\n");
913 return -ENOMEM;
914 }
915
916 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
917 return -ENOMEM;
918
919 /* Update memory carveout with resource table info */
920 carveout->rsc_offset = offset;
921 carveout->flags = rsc->flags;
922
923 return 0;
924 }
925
d7c51706 926 /* Register carveout in in list */
99cf0361 927 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
d7c51706
LP
928 rproc_alloc_carveout,
929 rproc_release_carveout, rsc->name);
930 if (!carveout) {
931 dev_err(dev, "Can't allocate memory entry structure\n");
932 return -ENOMEM;
933 }
934
935 carveout->flags = rsc->flags;
936 carveout->rsc_offset = offset;
937 rproc_add_carveout(rproc, carveout);
938
939 return 0;
940}
941
15c0b025
LP
942/**
943 * rproc_add_carveout() - register an allocated carveout region
944 * @rproc: rproc handle
945 * @mem: memory entry to register
946 *
947 * This function registers specified memory entry in @rproc carveouts list.
948 * Specified carveout should have been allocated before registering.
949 */
950void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
951{
952 list_add_tail(&mem->node, &rproc->carveouts);
953}
954EXPORT_SYMBOL(rproc_add_carveout);
955
72029c90
LP
956/**
957 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
958 * @dev: pointer on device struct
959 * @va: virtual address
960 * @dma: dma address
961 * @len: memory carveout length
962 * @da: device address
a9f6fe0d
LP
963 * @alloc: memory carveout allocation function
964 * @release: memory carveout release function
72029c90
LP
965 * @name: carveout name
966 *
967 * This function allocates a rproc_mem_entry struct and fill it with parameters
968 * provided by client.
969 */
7e05c8de 970__printf(8, 9)
72029c90
LP
971struct rproc_mem_entry *
972rproc_mem_entry_init(struct device *dev,
096ee786 973 void *va, dma_addr_t dma, size_t len, u32 da,
d7c51706 974 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
72029c90
LP
975 int (*release)(struct rproc *, struct rproc_mem_entry *),
976 const char *name, ...)
977{
978 struct rproc_mem_entry *mem;
979 va_list args;
980
981 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
982 if (!mem)
983 return mem;
984
985 mem->va = va;
986 mem->dma = dma;
987 mem->da = da;
988 mem->len = len;
d7c51706 989 mem->alloc = alloc;
72029c90 990 mem->release = release;
d7c51706 991 mem->rsc_offset = FW_RSC_ADDR_ANY;
1429cca1 992 mem->of_resm_idx = -1;
72029c90
LP
993
994 va_start(args, name);
995 vsnprintf(mem->name, sizeof(mem->name), name, args);
996 va_end(args);
997
998 return mem;
999}
1000EXPORT_SYMBOL(rproc_mem_entry_init);
1001
1429cca1
LP
1002/**
1003 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1004 * from a reserved memory phandle
1005 * @dev: pointer on device struct
1006 * @of_resm_idx: reserved memory phandle index in "memory-region"
1007 * @len: memory carveout length
1008 * @da: device address
1009 * @name: carveout name
1010 *
1011 * This function allocates a rproc_mem_entry struct and fill it with parameters
1012 * provided by client.
1013 */
7e05c8de 1014__printf(5, 6)
1429cca1 1015struct rproc_mem_entry *
096ee786 1016rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1429cca1
LP
1017 u32 da, const char *name, ...)
1018{
1019 struct rproc_mem_entry *mem;
1020 va_list args;
1021
1022 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1023 if (!mem)
1024 return mem;
1025
1026 mem->da = da;
1027 mem->len = len;
1028 mem->rsc_offset = FW_RSC_ADDR_ANY;
1029 mem->of_resm_idx = of_resm_idx;
1030
1031 va_start(args, name);
1032 vsnprintf(mem->name, sizeof(mem->name), name, args);
1033 va_end(args);
1034
1035 return mem;
1036}
1037EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1038
2e7d4c2c 1039/*
e12bc14b
OBC
1040 * A lookup table for resource handlers. The indices are defined in
1041 * enum fw_resource_type.
1042 */
232fcdbb 1043static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
1044 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1045 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1046 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
232fcdbb
SB
1047 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1048};
1049
400e64df 1050/* handle firmware resource entries before booting the remote processor */
a4b24c75 1051static int rproc_handle_resources(struct rproc *rproc,
232fcdbb 1052 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 1053{
b5ab5e24 1054 struct device *dev = &rproc->dev;
e12bc14b 1055 rproc_handle_resource_t handler;
fd2c15ec
OBC
1056 int ret = 0, i;
1057
d4bb86f2
BA
1058 if (!rproc->table_ptr)
1059 return 0;
1060
a2b950ac
OBC
1061 for (i = 0; i < rproc->table_ptr->num; i++) {
1062 int offset = rproc->table_ptr->offset[i];
1063 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
a4b24c75 1064 int avail = rproc->table_sz - offset - sizeof(*hdr);
fd2c15ec
OBC
1065 void *rsc = (void *)hdr + sizeof(*hdr);
1066
1067 /* make sure table isn't truncated */
1068 if (avail < 0) {
1069 dev_err(dev, "rsc table is truncated\n");
1070 return -EINVAL;
1071 }
400e64df 1072
fd2c15ec 1073 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 1074
b1a17513
CL
1075 if (hdr->type >= RSC_VENDOR_START &&
1076 hdr->type <= RSC_VENDOR_END) {
1077 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1078 offset + sizeof(*hdr), avail);
1079 if (ret == RSC_HANDLED)
1080 continue;
1081 else if (ret < 0)
1082 break;
1083
1084 dev_warn(dev, "unsupported vendor resource %d\n",
1085 hdr->type);
1086 continue;
1087 }
1088
fd2c15ec
OBC
1089 if (hdr->type >= RSC_LAST) {
1090 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 1091 continue;
400e64df
OBC
1092 }
1093
232fcdbb 1094 handler = handlers[hdr->type];
e12bc14b
OBC
1095 if (!handler)
1096 continue;
1097
a2b950ac 1098 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 1099 if (ret)
400e64df 1100 break;
fd2c15ec 1101 }
400e64df
OBC
1102
1103 return ret;
1104}
1105
c455daa4
BA
1106static int rproc_prepare_subdevices(struct rproc *rproc)
1107{
1108 struct rproc_subdev *subdev;
1109 int ret;
1110
1111 list_for_each_entry(subdev, &rproc->subdevs, node) {
1112 if (subdev->prepare) {
1113 ret = subdev->prepare(subdev);
1114 if (ret)
1115 goto unroll_preparation;
1116 }
1117 }
1118
1119 return 0;
1120
1121unroll_preparation:
1122 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1123 if (subdev->unprepare)
1124 subdev->unprepare(subdev);
1125 }
1126
1127 return ret;
1128}
1129
618fcff3 1130static int rproc_start_subdevices(struct rproc *rproc)
7bdc9650
BA
1131{
1132 struct rproc_subdev *subdev;
1133 int ret;
1134
1135 list_for_each_entry(subdev, &rproc->subdevs, node) {
be37b1e0
BA
1136 if (subdev->start) {
1137 ret = subdev->start(subdev);
1138 if (ret)
1139 goto unroll_registration;
1140 }
7bdc9650
BA
1141 }
1142
1143 return 0;
1144
1145unroll_registration:
be37b1e0
BA
1146 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1147 if (subdev->stop)
1148 subdev->stop(subdev, true);
1149 }
7bdc9650
BA
1150
1151 return ret;
1152}
1153
618fcff3 1154static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
7bdc9650
BA
1155{
1156 struct rproc_subdev *subdev;
1157
be37b1e0
BA
1158 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1159 if (subdev->stop)
1160 subdev->stop(subdev, crashed);
1161 }
7bdc9650
BA
1162}
1163
c455daa4
BA
1164static void rproc_unprepare_subdevices(struct rproc *rproc)
1165{
1166 struct rproc_subdev *subdev;
1167
1168 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1169 if (subdev->unprepare)
1170 subdev->unprepare(subdev);
1171 }
1172}
1173
d7c51706
LP
1174/**
1175 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1176 * in the list
1177 * @rproc: the remote processor handle
1178 *
1179 * This function parses registered carveout list, performs allocation
1180 * if alloc() ops registered and updates resource table information
1181 * if rsc_offset set.
1182 *
1183 * Return: 0 on success
1184 */
1185static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1186{
1187 struct rproc_mem_entry *entry, *tmp;
1188 struct fw_rsc_carveout *rsc;
1189 struct device *dev = &rproc->dev;
b36de8cf 1190 u64 pa;
d7c51706
LP
1191 int ret;
1192
1193 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1194 if (entry->alloc) {
1195 ret = entry->alloc(rproc, entry);
1196 if (ret) {
1197 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1198 entry->name, ret);
1199 return -ENOMEM;
1200 }
1201 }
1202
1203 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1204 /* update resource table */
1205 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1206
1207 /*
1208 * Some remote processors might need to know the pa
1209 * even though they are behind an IOMMU. E.g., OMAP4's
1210 * remote M3 processor needs this so it can control
1211 * on-chip hardware accelerators that are not behind
1212 * the IOMMU, and therefor must know the pa.
1213 *
1214 * Generally we don't want to expose physical addresses
1215 * if we don't have to (remote processors are generally
1216 * _not_ trusted), so we might want to do this only for
1217 * remote processor that _must_ have this (e.g. OMAP4's
1218 * dual M3 subsystem).
1219 *
1220 * Non-IOMMU processors might also want to have this info.
1221 * In this case, the device address and the physical address
1222 * are the same.
1223 */
ffa5f9c8
LP
1224
1225 /* Use va if defined else dma to generate pa */
d7c51706 1226 if (entry->va)
b36de8cf 1227 pa = (u64)rproc_va_to_pa(entry->va);
ffa5f9c8 1228 else
b36de8cf
LP
1229 pa = (u64)entry->dma;
1230
1231 if (((u64)pa) & HIGH_BITS_MASK)
1232 dev_warn(dev,
1233 "Physical address cast in 32bit to fit resource table format\n");
ffa5f9c8 1234
b36de8cf 1235 rsc->pa = (u32)pa;
ffa5f9c8
LP
1236 rsc->da = entry->da;
1237 rsc->len = entry->len;
d7c51706
LP
1238 }
1239 }
1240
1241 return 0;
1242}
1243
2666ca91
SJ
1244/**
1245 * rproc_coredump_cleanup() - clean up dump_segments list
1246 * @rproc: the remote processor handle
1247 */
1248static void rproc_coredump_cleanup(struct rproc *rproc)
1249{
1250 struct rproc_dump_segment *entry, *tmp;
1251
1252 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1253 list_del(&entry->node);
1254 kfree(entry);
1255 }
1256}
1257
400e64df
OBC
1258/**
1259 * rproc_resource_cleanup() - clean up and free all acquired resources
1260 * @rproc: rproc handle
1261 *
1262 * This function will free all resources acquired for @rproc, and it
7a186941 1263 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
1264 */
1265static void rproc_resource_cleanup(struct rproc *rproc)
1266{
1267 struct rproc_mem_entry *entry, *tmp;
a987e6b9 1268 struct rproc_debug_trace *trace, *ttmp;
d81fb32f 1269 struct rproc_vdev *rvdev, *rvtmp;
b5ab5e24 1270 struct device *dev = &rproc->dev;
400e64df
OBC
1271
1272 /* clean up debugfs trace entries */
a987e6b9
LP
1273 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1274 rproc_remove_trace_file(trace->tfile);
400e64df 1275 rproc->num_traces--;
a987e6b9
LP
1276 list_del(&trace->node);
1277 kfree(trace);
400e64df
OBC
1278 }
1279
400e64df
OBC
1280 /* clean up iommu mapping entries */
1281 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1282 size_t unmapped;
1283
1284 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1285 if (unmapped != entry->len) {
1286 /* nothing much to do besides complaining */
096ee786 1287 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
730f84ce 1288 unmapped);
400e64df
OBC
1289 }
1290
1291 list_del(&entry->node);
1292 kfree(entry);
1293 }
b6356a01
SA
1294
1295 /* clean up carveout allocations */
1296 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
f2e74abf
LP
1297 if (entry->release)
1298 entry->release(rproc, entry);
b6356a01
SA
1299 list_del(&entry->node);
1300 kfree(entry);
1301 }
d81fb32f
BA
1302
1303 /* clean up remote vdev entries */
f5bcb353 1304 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
2b45cef5 1305 kref_put(&rvdev->refcount, rproc_vdev_release);
2666ca91
SJ
1306
1307 rproc_coredump_cleanup(rproc);
400e64df
OBC
1308}
1309
1efa30d0
SJ
1310static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1311{
a4b24c75 1312 struct resource_table *loaded_table;
1efa30d0 1313 struct device *dev = &rproc->dev;
a4b24c75 1314 int ret;
1efa30d0
SJ
1315
1316 /* load the ELF segments to memory */
1317 ret = rproc_load_segments(rproc, fw);
1318 if (ret) {
1319 dev_err(dev, "Failed to load program segments: %d\n", ret);
1320 return ret;
1321 }
1322
1323 /*
1324 * The starting device has been given the rproc->cached_table as the
1325 * resource table. The address of the vring along with the other
1326 * allocated resources (carveouts etc) is stored in cached_table.
1327 * In order to pass this information to the remote device we must copy
1328 * this information to device memory. We also update the table_ptr so
1329 * that any subsequent changes will be applied to the loaded version.
1330 */
1331 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1332 if (loaded_table) {
a4b24c75 1333 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1efa30d0
SJ
1334 rproc->table_ptr = loaded_table;
1335 }
1336
c455daa4
BA
1337 ret = rproc_prepare_subdevices(rproc);
1338 if (ret) {
1339 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1340 rproc->name, ret);
f68d51bd 1341 goto reset_table_ptr;
c455daa4
BA
1342 }
1343
1efa30d0
SJ
1344 /* power up the remote processor */
1345 ret = rproc->ops->start(rproc);
1346 if (ret) {
1347 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
c455daa4 1348 goto unprepare_subdevices;
1efa30d0
SJ
1349 }
1350
618fcff3
BA
1351 /* Start any subdevices for the remote processor */
1352 ret = rproc_start_subdevices(rproc);
1efa30d0
SJ
1353 if (ret) {
1354 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1355 rproc->name, ret);
c455daa4 1356 goto stop_rproc;
1efa30d0
SJ
1357 }
1358
1359 rproc->state = RPROC_RUNNING;
1360
1361 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1362
1363 return 0;
c455daa4
BA
1364
1365stop_rproc:
1366 rproc->ops->stop(rproc);
c455daa4
BA
1367unprepare_subdevices:
1368 rproc_unprepare_subdevices(rproc);
f68d51bd
SA
1369reset_table_ptr:
1370 rproc->table_ptr = rproc->cached_table;
c455daa4
BA
1371
1372 return ret;
1efa30d0
SJ
1373}
1374
400e64df
OBC
1375/*
1376 * take a firmware and boot a remote processor with it.
1377 */
1378static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1379{
b5ab5e24 1380 struct device *dev = &rproc->dev;
400e64df 1381 const char *name = rproc->firmware;
58b64090 1382 int ret;
400e64df
OBC
1383
1384 ret = rproc_fw_sanity_check(rproc, fw);
1385 if (ret)
1386 return ret;
1387
e981f6d4 1388 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
1389
1390 /*
1391 * if enabling an IOMMU isn't relevant for this rproc, this is
1392 * just a nop
1393 */
1394 ret = rproc_enable_iommu(rproc);
1395 if (ret) {
1396 dev_err(dev, "can't enable iommu: %d\n", ret);
49cff125 1397 return ret;
400e64df
OBC
1398 }
1399
33467ac3
LP
1400 /* Prepare rproc for firmware loading if needed */
1401 ret = rproc_prepare_device(rproc);
1402 if (ret) {
1403 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1404 goto disable_iommu;
1405 }
1406
3e5f9eb5 1407 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
988d204c 1408
c1d35c1a
BA
1409 /* Load resource table, core dump segment list etc from the firmware */
1410 ret = rproc_parse_fw(rproc, fw);
58b64090 1411 if (ret)
33467ac3 1412 goto unprepare_rproc;
a0c10687 1413
b35d7afc
BA
1414 /* reset max_notifyid */
1415 rproc->max_notifyid = -1;
1416
c6aed238
LP
1417 /* reset handled vdev */
1418 rproc->nb_vdev = 0;
1419
400e64df 1420 /* handle fw resources which are required to boot rproc */
a4b24c75 1421 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
400e64df
OBC
1422 if (ret) {
1423 dev_err(dev, "Failed to process resources: %d\n", ret);
229b85a6 1424 goto clean_up_resources;
400e64df
OBC
1425 }
1426
d7c51706
LP
1427 /* Allocate carveout resources associated to rproc */
1428 ret = rproc_alloc_registered_carveouts(rproc);
1429 if (ret) {
1430 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1431 ret);
1432 goto clean_up_resources;
1433 }
1434
1efa30d0
SJ
1435 ret = rproc_start(rproc, fw);
1436 if (ret)
229b85a6 1437 goto clean_up_resources;
400e64df
OBC
1438
1439 return 0;
1440
229b85a6
BA
1441clean_up_resources:
1442 rproc_resource_cleanup(rproc);
a0c10687
BA
1443 kfree(rproc->cached_table);
1444 rproc->cached_table = NULL;
988d204c 1445 rproc->table_ptr = NULL;
33467ac3
LP
1446unprepare_rproc:
1447 /* release HW resources if needed */
1448 rproc_unprepare_device(rproc);
58b64090 1449disable_iommu:
400e64df
OBC
1450 rproc_disable_iommu(rproc);
1451 return ret;
1452}
1453
1454/*
5e6533f7 1455 * take a firmware and boot it up.
400e64df
OBC
1456 *
1457 * Note: this function is called asynchronously upon registration of the
1458 * remote processor (so we must wait until it completes before we try
1459 * to unregister the device. one other option is just to use kref here,
1460 * that might be cleaner).
1461 */
5e6533f7 1462static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
400e64df
OBC
1463{
1464 struct rproc *rproc = context;
a2b950ac 1465
7a20c64d 1466 rproc_boot(rproc);
ddf71187 1467
3cc6e787 1468 release_firmware(fw);
400e64df
OBC
1469}
1470
5e6533f7 1471static int rproc_trigger_auto_boot(struct rproc *rproc)
70b85ef8
FGL
1472{
1473 int ret;
1474
70b85ef8 1475 /*
70b85ef8
FGL
1476 * We're initiating an asynchronous firmware loading, so we can
1477 * be built-in kernel code, without hanging the boot process.
1478 */
1479 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1480 rproc->firmware, &rproc->dev, GFP_KERNEL,
5e6533f7 1481 rproc, rproc_auto_boot_callback);
2099c77d 1482 if (ret < 0)
70b85ef8 1483 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
70b85ef8
FGL
1484
1485 return ret;
1486}
1487
880f5b38 1488static int rproc_stop(struct rproc *rproc, bool crashed)
1efa30d0
SJ
1489{
1490 struct device *dev = &rproc->dev;
1491 int ret;
1492
618fcff3
BA
1493 /* Stop any subdevices for the remote processor */
1494 rproc_stop_subdevices(rproc, crashed);
1efa30d0 1495
0a8b81cb
BA
1496 /* the installed resource table is no longer accessible */
1497 rproc->table_ptr = rproc->cached_table;
1498
1efa30d0
SJ
1499 /* power off the remote processor */
1500 ret = rproc->ops->stop(rproc);
1501 if (ret) {
1502 dev_err(dev, "can't stop rproc: %d\n", ret);
1503 return ret;
1504 }
1505
c455daa4
BA
1506 rproc_unprepare_subdevices(rproc);
1507
1efa30d0
SJ
1508 rproc->state = RPROC_OFFLINE;
1509
1510 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1511
1512 return 0;
1513}
1514
2666ca91
SJ
1515/**
1516 * rproc_coredump_add_segment() - add segment of device memory to coredump
1517 * @rproc: handle of a remote processor
1518 * @da: device address
1519 * @size: size of segment
1520 *
1521 * Add device memory to the list of segments to be included in a coredump for
1522 * the remoteproc.
1523 *
1524 * Return: 0 on success, negative errno on error.
1525 */
1526int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1527{
1528 struct rproc_dump_segment *segment;
1529
1530 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1531 if (!segment)
1532 return -ENOMEM;
1533
1534 segment->da = da;
1535 segment->size = size;
1536
1537 list_add_tail(&segment->node, &rproc->dump_segments);
1538
1539 return 0;
1540}
1541EXPORT_SYMBOL(rproc_coredump_add_segment);
1542
ab8f873b
SS
1543/**
1544 * rproc_coredump_add_custom_segment() - add custom coredump segment
1545 * @rproc: handle of a remote processor
1546 * @da: device address
1547 * @size: size of segment
1548 * @dumpfn: custom dump function called for each segment during coredump
1549 * @priv: private data
1550 *
1551 * Add device memory to the list of segments to be included in the coredump
1552 * and associate the segment with the given custom dump function and private
1553 * data.
1554 *
1555 * Return: 0 on success, negative errno on error.
1556 */
1557int rproc_coredump_add_custom_segment(struct rproc *rproc,
1558 dma_addr_t da, size_t size,
1559 void (*dumpfn)(struct rproc *rproc,
1560 struct rproc_dump_segment *segment,
1561 void *dest),
1562 void *priv)
1563{
1564 struct rproc_dump_segment *segment;
1565
1566 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1567 if (!segment)
1568 return -ENOMEM;
1569
1570 segment->da = da;
1571 segment->size = size;
1572 segment->priv = priv;
1573 segment->dump = dumpfn;
1574
1575 list_add_tail(&segment->node, &rproc->dump_segments);
1576
1577 return 0;
1578}
1579EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1580
418fd787
CL
1581/**
1582 * rproc_coredump_set_elf_info() - set coredump elf information
1583 * @rproc: handle of a remote processor
1584 * @class: elf class for coredump elf file
1585 * @machine: elf machine for coredump elf file
1586 *
1587 * Set elf information which will be used for coredump elf file.
1588 *
1589 * Return: 0 on success, negative errno on error.
1590 */
1591int rproc_coredump_set_elf_info(struct rproc *rproc, u8 class, u16 machine)
1592{
1593 if (class != ELFCLASS64 && class != ELFCLASS32)
1594 return -EINVAL;
1595
1596 rproc->elf_class = class;
1597 rproc->elf_machine = machine;
1598
1599 return 0;
1600}
1601EXPORT_SYMBOL(rproc_coredump_set_elf_info);
1602
2666ca91
SJ
1603/**
1604 * rproc_coredump() - perform coredump
1605 * @rproc: rproc handle
1606 *
1607 * This function will generate an ELF header for the registered segments
1608 * and create a devcoredump device associated with rproc.
1609 */
1610static void rproc_coredump(struct rproc *rproc)
1611{
1612 struct rproc_dump_segment *segment;
8f403350
CL
1613 void *phdr;
1614 void *ehdr;
2666ca91
SJ
1615 size_t data_size;
1616 size_t offset;
1617 void *data;
1618 void *ptr;
8f403350 1619 u8 class = rproc->elf_class;
2666ca91
SJ
1620 int phnum = 0;
1621
1622 if (list_empty(&rproc->dump_segments))
1623 return;
1624
418fd787
CL
1625 if (class == ELFCLASSNONE) {
1626 dev_err(&rproc->dev, "Elf class is not set\n");
1627 return;
1628 }
1629
8f403350 1630 data_size = elf_size_of_hdr(class);
2666ca91 1631 list_for_each_entry(segment, &rproc->dump_segments, node) {
8f403350 1632 data_size += elf_size_of_phdr(class) + segment->size;
2666ca91
SJ
1633
1634 phnum++;
1635 }
1636
1637 data = vmalloc(data_size);
1638 if (!data)
1639 return;
1640
1641 ehdr = data;
1642
8f403350
CL
1643 memset(ehdr, 0, elf_size_of_hdr(class));
1644 /* e_ident field is common for both elf32 and elf64 */
1645 elf_hdr_init_ident(ehdr, class);
1646
1647 elf_hdr_set_e_type(class, ehdr, ET_CORE);
418fd787 1648 elf_hdr_set_e_machine(class, ehdr, rproc->elf_machine);
8f403350
CL
1649 elf_hdr_set_e_version(class, ehdr, EV_CURRENT);
1650 elf_hdr_set_e_entry(class, ehdr, rproc->bootaddr);
1651 elf_hdr_set_e_phoff(class, ehdr, elf_size_of_hdr(class));
1652 elf_hdr_set_e_ehsize(class, ehdr, elf_size_of_hdr(class));
1653 elf_hdr_set_e_phentsize(class, ehdr, elf_size_of_phdr(class));
1654 elf_hdr_set_e_phnum(class, ehdr, phnum);
1655
1656 phdr = data + elf_hdr_get_e_phoff(class, ehdr);
1657 offset = elf_hdr_get_e_phoff(class, ehdr);
1658 offset += elf_size_of_phdr(class) * elf_hdr_get_e_phnum(class, ehdr);
1659
2666ca91 1660 list_for_each_entry(segment, &rproc->dump_segments, node) {
8f403350
CL
1661 memset(phdr, 0, elf_size_of_phdr(class));
1662 elf_phdr_set_p_type(class, phdr, PT_LOAD);
1663 elf_phdr_set_p_offset(class, phdr, offset);
1664 elf_phdr_set_p_vaddr(class, phdr, segment->da);
1665 elf_phdr_set_p_paddr(class, phdr, segment->da);
1666 elf_phdr_set_p_filesz(class, phdr, segment->size);
1667 elf_phdr_set_p_memsz(class, phdr, segment->size);
1668 elf_phdr_set_p_flags(class, phdr, PF_R | PF_W | PF_X);
1669 elf_phdr_set_p_align(class, phdr, 0);
2666ca91 1670
3952105d
SS
1671 if (segment->dump) {
1672 segment->dump(rproc, segment, data + offset);
2666ca91 1673 } else {
3952105d
SS
1674 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1675 if (!ptr) {
1676 dev_err(&rproc->dev,
1677 "invalid coredump segment (%pad, %zu)\n",
1678 &segment->da, segment->size);
1679 memset(data + offset, 0xff, segment->size);
1680 } else {
1681 memcpy(data + offset, ptr, segment->size);
1682 }
2666ca91
SJ
1683 }
1684
8f403350
CL
1685 offset += elf_phdr_get_p_filesz(class, phdr);
1686 phdr += elf_size_of_phdr(class);
2666ca91
SJ
1687 }
1688
1689 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1690}
1691
70b85ef8
FGL
1692/**
1693 * rproc_trigger_recovery() - recover a remoteproc
1694 * @rproc: the remote processor
1695 *
56324d7a 1696 * The recovery is done by resetting all the virtio devices, that way all the
70b85ef8
FGL
1697 * rpmsg drivers will be reseted along with the remote processor making the
1698 * remoteproc functional again.
1699 *
1700 * This function can sleep, so it cannot be called from atomic context.
1701 */
1702int rproc_trigger_recovery(struct rproc *rproc)
1703{
7e83cab8
SJ
1704 const struct firmware *firmware_p;
1705 struct device *dev = &rproc->dev;
1706 int ret;
1707
7e83cab8
SJ
1708 ret = mutex_lock_interruptible(&rproc->lock);
1709 if (ret)
1710 return ret;
1711
0b145574
AE
1712 /* State could have changed before we got the mutex */
1713 if (rproc->state != RPROC_CRASHED)
1714 goto unlock_mutex;
1715
1716 dev_err(dev, "recovering %s\n", rproc->name);
1717
fcd58037 1718 ret = rproc_stop(rproc, true);
7e83cab8
SJ
1719 if (ret)
1720 goto unlock_mutex;
ddf71187 1721
2666ca91
SJ
1722 /* generate coredump */
1723 rproc_coredump(rproc);
1724
7e83cab8
SJ
1725 /* load firmware */
1726 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1727 if (ret < 0) {
1728 dev_err(dev, "request_firmware failed: %d\n", ret);
1729 goto unlock_mutex;
1730 }
ddf71187 1731
7e83cab8
SJ
1732 /* boot the remote processor up again */
1733 ret = rproc_start(rproc, firmware_p);
1734
1735 release_firmware(firmware_p);
1736
1737unlock_mutex:
1738 mutex_unlock(&rproc->lock);
1739 return ret;
70b85ef8
FGL
1740}
1741
8afd519c
FGL
1742/**
1743 * rproc_crash_handler_work() - handle a crash
2e7d4c2c 1744 * @work: work treating the crash
8afd519c
FGL
1745 *
1746 * This function needs to handle everything related to a crash, like cpu
1747 * registers and stack dump, information to help to debug the fatal error, etc.
1748 */
1749static void rproc_crash_handler_work(struct work_struct *work)
1750{
1751 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1752 struct device *dev = &rproc->dev;
1753
1754 dev_dbg(dev, "enter %s\n", __func__);
1755
1756 mutex_lock(&rproc->lock);
1757
1758 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1759 /* handle only the first crash detected */
1760 mutex_unlock(&rproc->lock);
1761 return;
1762 }
1763
1764 rproc->state = RPROC_CRASHED;
1765 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1766 rproc->name);
1767
1768 mutex_unlock(&rproc->lock);
1769
2e37abb8
FGL
1770 if (!rproc->recovery_disabled)
1771 rproc_trigger_recovery(rproc);
a781e5aa
RB
1772
1773 pm_relax(rproc->dev.parent);
8afd519c
FGL
1774}
1775
400e64df 1776/**
1b0ef906 1777 * rproc_boot() - boot a remote processor
400e64df
OBC
1778 * @rproc: handle of a remote processor
1779 *
1780 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1781 *
1782 * If the remote processor is already powered on, this function immediately
1783 * returns (successfully).
1784 *
1785 * Returns 0 on success, and an appropriate error value otherwise.
1786 */
1b0ef906 1787int rproc_boot(struct rproc *rproc)
400e64df
OBC
1788{
1789 const struct firmware *firmware_p;
1790 struct device *dev;
1791 int ret;
1792
1793 if (!rproc) {
1794 pr_err("invalid rproc handle\n");
1795 return -EINVAL;
1796 }
1797
b5ab5e24 1798 dev = &rproc->dev;
400e64df
OBC
1799
1800 ret = mutex_lock_interruptible(&rproc->lock);
1801 if (ret) {
1802 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1803 return ret;
1804 }
1805
2099c77d
SJ
1806 if (rproc->state == RPROC_DELETED) {
1807 ret = -ENODEV;
1808 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1809 goto unlock_mutex;
1810 }
1811
400e64df
OBC
1812 /* skip the boot process if rproc is already powered up */
1813 if (atomic_inc_return(&rproc->power) > 1) {
1814 ret = 0;
1815 goto unlock_mutex;
1816 }
1817
1818 dev_info(dev, "powering up %s\n", rproc->name);
1819
1820 /* load firmware */
1821 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1822 if (ret < 0) {
1823 dev_err(dev, "request_firmware failed: %d\n", ret);
1824 goto downref_rproc;
1825 }
1826
1827 ret = rproc_fw_boot(rproc, firmware_p);
1828
1829 release_firmware(firmware_p);
1830
1831downref_rproc:
fbb6aacb 1832 if (ret)
400e64df 1833 atomic_dec(&rproc->power);
400e64df
OBC
1834unlock_mutex:
1835 mutex_unlock(&rproc->lock);
1836 return ret;
1837}
1838EXPORT_SYMBOL(rproc_boot);
1839
1840/**
1841 * rproc_shutdown() - power off the remote processor
1842 * @rproc: the remote processor
1843 *
1844 * Power off a remote processor (previously booted with rproc_boot()).
1845 *
1846 * In case @rproc is still being used by an additional user(s), then
1847 * this function will just decrement the power refcount and exit,
1848 * without really powering off the device.
1849 *
1850 * Every call to rproc_boot() must (eventually) be accompanied by a call
1851 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1852 *
1853 * Notes:
1854 * - we're not decrementing the rproc's refcount, only the power refcount.
1855 * which means that the @rproc handle stays valid even after rproc_shutdown()
1856 * returns, and users can still use it with a subsequent rproc_boot(), if
1857 * needed.
400e64df
OBC
1858 */
1859void rproc_shutdown(struct rproc *rproc)
1860{
b5ab5e24 1861 struct device *dev = &rproc->dev;
400e64df
OBC
1862 int ret;
1863
1864 ret = mutex_lock_interruptible(&rproc->lock);
1865 if (ret) {
1866 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1867 return;
1868 }
1869
1870 /* if the remote proc is still needed, bail out */
1871 if (!atomic_dec_and_test(&rproc->power))
1872 goto out;
1873
fcd58037 1874 ret = rproc_stop(rproc, false);
400e64df
OBC
1875 if (ret) {
1876 atomic_inc(&rproc->power);
400e64df
OBC
1877 goto out;
1878 }
1879
1880 /* clean up all acquired resources */
1881 rproc_resource_cleanup(rproc);
1882
33467ac3
LP
1883 /* release HW resources if needed */
1884 rproc_unprepare_device(rproc);
1885
400e64df
OBC
1886 rproc_disable_iommu(rproc);
1887
988d204c 1888 /* Free the copy of the resource table */
a0c10687
BA
1889 kfree(rproc->cached_table);
1890 rproc->cached_table = NULL;
988d204c 1891 rproc->table_ptr = NULL;
400e64df
OBC
1892out:
1893 mutex_unlock(&rproc->lock);
400e64df
OBC
1894}
1895EXPORT_SYMBOL(rproc_shutdown);
1896
fec47d86
DG
1897/**
1898 * rproc_get_by_phandle() - find a remote processor by phandle
1899 * @phandle: phandle to the rproc
1900 *
1901 * Finds an rproc handle using the remote processor's phandle, and then
1902 * return a handle to the rproc.
1903 *
1904 * This function increments the remote processor's refcount, so always
1905 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1906 *
1907 * Returns the rproc handle on success, and NULL on failure.
1908 */
8de3dbd0 1909#ifdef CONFIG_OF
fec47d86
DG
1910struct rproc *rproc_get_by_phandle(phandle phandle)
1911{
1912 struct rproc *rproc = NULL, *r;
1913 struct device_node *np;
1914
1915 np = of_find_node_by_phandle(phandle);
1916 if (!np)
1917 return NULL;
1918
c0abe2ca
BA
1919 rcu_read_lock();
1920 list_for_each_entry_rcu(r, &rproc_list, node) {
fec47d86 1921 if (r->dev.parent && r->dev.parent->of_node == np) {
fbb6aacb
BA
1922 /* prevent underlying implementation from being removed */
1923 if (!try_module_get(r->dev.parent->driver->owner)) {
1924 dev_err(&r->dev, "can't get owner\n");
1925 break;
1926 }
1927
fec47d86
DG
1928 rproc = r;
1929 get_device(&rproc->dev);
1930 break;
1931 }
1932 }
c0abe2ca 1933 rcu_read_unlock();
fec47d86
DG
1934
1935 of_node_put(np);
1936
1937 return rproc;
1938}
8de3dbd0
OBC
1939#else
1940struct rproc *rproc_get_by_phandle(phandle phandle)
1941{
1942 return NULL;
1943}
1944#endif
fec47d86
DG
1945EXPORT_SYMBOL(rproc_get_by_phandle);
1946
400e64df 1947/**
160e7c84 1948 * rproc_add() - register a remote processor
400e64df
OBC
1949 * @rproc: the remote processor handle to register
1950 *
1951 * Registers @rproc with the remoteproc framework, after it has been
1952 * allocated with rproc_alloc().
1953 *
1954 * This is called by the platform-specific rproc implementation, whenever
1955 * a new remote processor device is probed.
1956 *
1957 * Returns 0 on success and an appropriate error code otherwise.
1958 *
1959 * Note: this function initiates an asynchronous firmware loading
1960 * context, which will look for virtio devices supported by the rproc's
1961 * firmware.
1962 *
1963 * If found, those virtio devices will be created and added, so as a result
7a186941 1964 * of registering this remote processor, additional virtio drivers might be
400e64df 1965 * probed.
400e64df 1966 */
160e7c84 1967int rproc_add(struct rproc *rproc)
400e64df 1968{
b5ab5e24 1969 struct device *dev = &rproc->dev;
70b85ef8 1970 int ret;
400e64df 1971
b5ab5e24
OBC
1972 ret = device_add(dev);
1973 if (ret < 0)
1974 return ret;
400e64df 1975
b5ab5e24 1976 dev_info(dev, "%s is available\n", rproc->name);
400e64df
OBC
1977
1978 /* create debugfs entries */
1979 rproc_create_debug_dir(rproc);
7a20c64d
SJ
1980
1981 /* if rproc is marked always-on, request it to boot */
1982 if (rproc->auto_boot) {
5e6533f7 1983 ret = rproc_trigger_auto_boot(rproc);
7a20c64d
SJ
1984 if (ret < 0)
1985 return ret;
1986 }
400e64df 1987
d2e12e66
DG
1988 /* expose to rproc_get_by_phandle users */
1989 mutex_lock(&rproc_list_mutex);
c0abe2ca 1990 list_add_rcu(&rproc->node, &rproc_list);
d2e12e66
DG
1991 mutex_unlock(&rproc_list_mutex);
1992
1993 return 0;
400e64df 1994}
160e7c84 1995EXPORT_SYMBOL(rproc_add);
400e64df 1996
305ac5a7
PC
1997static void devm_rproc_remove(void *rproc)
1998{
1999 rproc_del(rproc);
2000}
2001
2002/**
2003 * devm_rproc_add() - resource managed rproc_add()
2004 * @dev: the underlying device
2005 * @rproc: the remote processor handle to register
2006 *
2007 * This function performs like rproc_add() but the registered rproc device will
2008 * automatically be removed on driver detach.
2009 *
2010 * Returns: 0 on success, negative errno on failure
2011 */
2012int devm_rproc_add(struct device *dev, struct rproc *rproc)
2013{
2014 int err;
2015
2016 err = rproc_add(rproc);
2017 if (err)
2018 return err;
2019
2020 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2021}
2022EXPORT_SYMBOL(devm_rproc_add);
2023
b5ab5e24
OBC
2024/**
2025 * rproc_type_release() - release a remote processor instance
2026 * @dev: the rproc's device
2027 *
2028 * This function should _never_ be called directly.
2029 *
2030 * It will be called by the driver core when no one holds a valid pointer
2031 * to @dev anymore.
2032 */
2033static void rproc_type_release(struct device *dev)
2034{
2035 struct rproc *rproc = container_of(dev, struct rproc, dev);
2036
7183a2a7
OBC
2037 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2038
b5ab5e24
OBC
2039 idr_destroy(&rproc->notifyids);
2040
2041 if (rproc->index >= 0)
2042 ida_simple_remove(&rproc_dev_index, rproc->index);
2043
1487deda 2044 kfree_const(rproc->firmware);
db655278 2045 kfree_const(rproc->name);
fb98e2bd 2046 kfree(rproc->ops);
b5ab5e24
OBC
2047 kfree(rproc);
2048}
2049
c42ca04d 2050static const struct device_type rproc_type = {
b5ab5e24
OBC
2051 .name = "remoteproc",
2052 .release = rproc_type_release,
2053};
400e64df 2054
0c2ae2b1
MP
2055static int rproc_alloc_firmware(struct rproc *rproc,
2056 const char *name, const char *firmware)
2057{
1487deda 2058 const char *p;
0c2ae2b1 2059
9d5f82c8
MP
2060 /*
2061 * Allocate a firmware name if the caller gave us one to work
2062 * with. Otherwise construct a new one using a default pattern.
2063 */
2064 if (firmware)
1487deda 2065 p = kstrdup_const(firmware, GFP_KERNEL);
9d5f82c8
MP
2066 else
2067 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
4df4f8be
MP
2068
2069 if (!p)
2070 return -ENOMEM;
0c2ae2b1
MP
2071
2072 rproc->firmware = p;
2073
2074 return 0;
2075}
2076
bf860aa1
MP
2077static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2078{
2079 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2080 if (!rproc->ops)
2081 return -ENOMEM;
2082
2083 if (rproc->ops->load)
2084 return 0;
2085
2086 /* Default to ELF loader if no load function is specified */
2087 rproc->ops->load = rproc_elf_load_segments;
2088 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2089 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
e29ff72b 2090 rproc->ops->sanity_check = rproc_elf_sanity_check;
bf860aa1
MP
2091 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2092
2093 return 0;
2094}
2095
400e64df
OBC
2096/**
2097 * rproc_alloc() - allocate a remote processor handle
2098 * @dev: the underlying device
2099 * @name: name of this remote processor
2100 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 2101 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
2102 * @len: length of private data needed by the rproc driver (in bytes)
2103 *
2104 * Allocates a new remote processor handle, but does not register
8b4aec9a 2105 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
2106 *
2107 * This function should be used by rproc implementations during initialization
2108 * of the remote processor.
2109 *
2110 * After creating an rproc handle using this function, and when ready,
160e7c84 2111 * implementations should then call rproc_add() to complete
400e64df
OBC
2112 * the registration of the remote processor.
2113 *
2114 * On success the new rproc is returned, and on failure, NULL.
2115 *
2116 * Note: _never_ directly deallocate @rproc, even if it was not registered
433c0e04 2117 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
400e64df
OBC
2118 */
2119struct rproc *rproc_alloc(struct device *dev, const char *name,
730f84ce
AS
2120 const struct rproc_ops *ops,
2121 const char *firmware, int len)
400e64df
OBC
2122{
2123 struct rproc *rproc;
2124
2125 if (!dev || !name || !ops)
2126 return NULL;
2127
0f57dc6a 2128 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
0c2ae2b1 2129 if (!rproc)
0f57dc6a 2130 return NULL;
0c2ae2b1 2131
400e64df 2132 rproc->priv = &rproc[1];
ddf71187 2133 rproc->auto_boot = true;
418fd787
CL
2134 rproc->elf_class = ELFCLASSNONE;
2135 rproc->elf_machine = EM_NONE;
400e64df 2136
b5ab5e24
OBC
2137 device_initialize(&rproc->dev);
2138 rproc->dev.parent = dev;
2139 rproc->dev.type = &rproc_type;
2aefbef0 2140 rproc->dev.class = &rproc_class;
7c89717f 2141 rproc->dev.driver_data = rproc;
6442df49 2142 idr_init(&rproc->notifyids);
b5ab5e24 2143
db655278
SA
2144 rproc->name = kstrdup_const(name, GFP_KERNEL);
2145 if (!rproc->name)
2146 goto put_device;
2147
226f5db4
MP
2148 if (rproc_alloc_firmware(rproc, name, firmware))
2149 goto put_device;
2150
2151 if (rproc_alloc_ops(rproc, ops))
2152 goto put_device;
2153
b5ab5e24
OBC
2154 /* Assign a unique device index and name */
2155 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2156 if (rproc->index < 0) {
2157 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
226f5db4 2158 goto put_device;
b5ab5e24
OBC
2159 }
2160
2161 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2162
400e64df
OBC
2163 atomic_set(&rproc->power, 0);
2164
400e64df
OBC
2165 mutex_init(&rproc->lock);
2166
2167 INIT_LIST_HEAD(&rproc->carveouts);
2168 INIT_LIST_HEAD(&rproc->mappings);
2169 INIT_LIST_HEAD(&rproc->traces);
7a186941 2170 INIT_LIST_HEAD(&rproc->rvdevs);
7bdc9650 2171 INIT_LIST_HEAD(&rproc->subdevs);
2666ca91 2172 INIT_LIST_HEAD(&rproc->dump_segments);
400e64df 2173
8afd519c
FGL
2174 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2175
400e64df
OBC
2176 rproc->state = RPROC_OFFLINE;
2177
2178 return rproc;
0c2ae2b1 2179
226f5db4
MP
2180put_device:
2181 put_device(&rproc->dev);
0c2ae2b1 2182 return NULL;
400e64df
OBC
2183}
2184EXPORT_SYMBOL(rproc_alloc);
2185
2186/**
433c0e04
BA
2187 * rproc_free() - unroll rproc_alloc()
2188 * @rproc: the remote processor handle
2189 *
2190 * This function decrements the rproc dev refcount.
2191 *
2192 * If no one holds any reference to rproc anymore, then its refcount would
2193 * now drop to zero, and it would be freed.
2194 */
2195void rproc_free(struct rproc *rproc)
2196{
2197 put_device(&rproc->dev);
2198}
2199EXPORT_SYMBOL(rproc_free);
2200
2201/**
2202 * rproc_put() - release rproc reference
400e64df
OBC
2203 * @rproc: the remote processor handle
2204 *
c6b5a276 2205 * This function decrements the rproc dev refcount.
400e64df 2206 *
c6b5a276
OBC
2207 * If no one holds any reference to rproc anymore, then its refcount would
2208 * now drop to zero, and it would be freed.
400e64df 2209 */
160e7c84 2210void rproc_put(struct rproc *rproc)
400e64df 2211{
fbb6aacb 2212 module_put(rproc->dev.parent->driver->owner);
b5ab5e24 2213 put_device(&rproc->dev);
400e64df 2214}
160e7c84 2215EXPORT_SYMBOL(rproc_put);
400e64df
OBC
2216
2217/**
160e7c84 2218 * rproc_del() - unregister a remote processor
400e64df
OBC
2219 * @rproc: rproc handle to unregister
2220 *
400e64df
OBC
2221 * This function should be called when the platform specific rproc
2222 * implementation decides to remove the rproc device. it should
160e7c84 2223 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
2224 * has completed successfully.
2225 *
160e7c84 2226 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 2227 * of the outstanding reference created by rproc_alloc. To decrement that
433c0e04 2228 * one last refcount, one still needs to call rproc_free().
400e64df
OBC
2229 *
2230 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2231 */
160e7c84 2232int rproc_del(struct rproc *rproc)
400e64df
OBC
2233{
2234 if (!rproc)
2235 return -EINVAL;
2236
ddf71187
BA
2237 /* if rproc is marked always-on, rproc_add() booted it */
2238 /* TODO: make sure this works with rproc->power > 1 */
2239 if (rproc->auto_boot)
2240 rproc_shutdown(rproc);
2241
2099c77d
SJ
2242 mutex_lock(&rproc->lock);
2243 rproc->state = RPROC_DELETED;
2244 mutex_unlock(&rproc->lock);
2245
b003d45b
SJ
2246 rproc_delete_debug_dir(rproc);
2247
fec47d86
DG
2248 /* the rproc is downref'ed as soon as it's removed from the klist */
2249 mutex_lock(&rproc_list_mutex);
c0abe2ca 2250 list_del_rcu(&rproc->node);
fec47d86
DG
2251 mutex_unlock(&rproc_list_mutex);
2252
c0abe2ca
BA
2253 /* Ensure that no readers of rproc_list are still active */
2254 synchronize_rcu();
2255
b5ab5e24 2256 device_del(&rproc->dev);
400e64df
OBC
2257
2258 return 0;
2259}
160e7c84 2260EXPORT_SYMBOL(rproc_del);
400e64df 2261
305ac5a7
PC
2262static void devm_rproc_free(struct device *dev, void *res)
2263{
2264 rproc_free(*(struct rproc **)res);
2265}
2266
2267/**
2268 * devm_rproc_alloc() - resource managed rproc_alloc()
2269 * @dev: the underlying device
2270 * @name: name of this remote processor
2271 * @ops: platform-specific handlers (mainly start/stop)
2272 * @firmware: name of firmware file to load, can be NULL
2273 * @len: length of private data needed by the rproc driver (in bytes)
2274 *
2275 * This function performs like rproc_alloc() but the acquired rproc device will
2276 * automatically be released on driver detach.
2277 *
2278 * Returns: new rproc instance, or NULL on failure
2279 */
2280struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2281 const struct rproc_ops *ops,
2282 const char *firmware, int len)
2283{
2284 struct rproc **ptr, *rproc;
2285
2286 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2287 if (!ptr)
7dcef398 2288 return NULL;
305ac5a7
PC
2289
2290 rproc = rproc_alloc(dev, name, ops, firmware, len);
2291 if (rproc) {
2292 *ptr = rproc;
2293 devres_add(dev, ptr);
2294 } else {
2295 devres_free(ptr);
2296 }
2297
2298 return rproc;
2299}
2300EXPORT_SYMBOL(devm_rproc_alloc);
2301
7bdc9650
BA
2302/**
2303 * rproc_add_subdev() - add a subdevice to a remoteproc
2304 * @rproc: rproc handle to add the subdevice to
2305 * @subdev: subdev handle to register
4902676f
BA
2306 *
2307 * Caller is responsible for populating optional subdevice function pointers.
7bdc9650 2308 */
4902676f 2309void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
7bdc9650 2310{
7bdc9650
BA
2311 list_add_tail(&subdev->node, &rproc->subdevs);
2312}
2313EXPORT_SYMBOL(rproc_add_subdev);
2314
2315/**
2316 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2317 * @rproc: rproc handle to remove the subdevice from
2318 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2319 */
2320void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2321{
2322 list_del(&subdev->node);
2323}
2324EXPORT_SYMBOL(rproc_remove_subdev);
2325
7c89717f
BA
2326/**
2327 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2328 * @dev: child device to find ancestor of
2329 *
2330 * Returns the ancestor rproc instance, or NULL if not found.
2331 */
2332struct rproc *rproc_get_by_child(struct device *dev)
2333{
2334 for (dev = dev->parent; dev; dev = dev->parent) {
2335 if (dev->type == &rproc_type)
2336 return dev->driver_data;
2337 }
2338
2339 return NULL;
2340}
2341EXPORT_SYMBOL(rproc_get_by_child);
2342
8afd519c
FGL
2343/**
2344 * rproc_report_crash() - rproc crash reporter function
2345 * @rproc: remote processor
2346 * @type: crash type
2347 *
2348 * This function must be called every time a crash is detected by the low-level
2349 * drivers implementing a specific remoteproc. This should not be called from a
2350 * non-remoteproc driver.
2351 *
2352 * This function can be called from atomic/interrupt context.
2353 */
2354void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2355{
2356 if (!rproc) {
2357 pr_err("NULL rproc pointer\n");
2358 return;
2359 }
2360
a781e5aa
RB
2361 /* Prevent suspend while the remoteproc is being recovered */
2362 pm_stay_awake(rproc->dev.parent);
2363
8afd519c
FGL
2364 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2365 rproc->name, rproc_crash_to_string(type));
2366
2367 /* create a new task to handle the error */
2368 schedule_work(&rproc->crash_handler);
2369}
2370EXPORT_SYMBOL(rproc_report_crash);
2371
dc5192c4
BA
2372static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2373 void *ptr)
2374{
2375 unsigned int longest = 0;
2376 struct rproc *rproc;
2377 unsigned int d;
2378
2379 rcu_read_lock();
2380 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2381 if (!rproc->ops->panic || rproc->state != RPROC_RUNNING)
2382 continue;
2383
2384 d = rproc->ops->panic(rproc);
2385 longest = max(longest, d);
2386 }
2387 rcu_read_unlock();
2388
2389 /*
2390 * Delay for the longest requested duration before returning. This can
2391 * be used by the remoteproc drivers to give the remote processor time
2392 * to perform any requested operations (such as flush caches), when
2393 * it's not possible to signal the Linux side due to the panic.
2394 */
2395 mdelay(longest);
2396
2397 return NOTIFY_DONE;
2398}
2399
2400static void __init rproc_init_panic(void)
2401{
2402 rproc_panic_nb.notifier_call = rproc_panic_handler;
2403 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2404}
2405
2406static void __exit rproc_exit_panic(void)
2407{
2408 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2409}
2410
400e64df
OBC
2411static int __init remoteproc_init(void)
2412{
2aefbef0 2413 rproc_init_sysfs();
400e64df 2414 rproc_init_debugfs();
dc5192c4 2415 rproc_init_panic();
b5ab5e24 2416
400e64df
OBC
2417 return 0;
2418}
a8f40111 2419subsys_initcall(remoteproc_init);
400e64df
OBC
2420
2421static void __exit remoteproc_exit(void)
2422{
f42f79af
SA
2423 ida_destroy(&rproc_dev_index);
2424
dc5192c4 2425 rproc_exit_panic();
400e64df 2426 rproc_exit_debugfs();
2aefbef0 2427 rproc_exit_sysfs();
400e64df
OBC
2428}
2429module_exit(remoteproc_exit);
2430
2431MODULE_LICENSE("GPL v2");
2432MODULE_DESCRIPTION("Generic Remote Processor Framework");