rpmsg: virtio: change header file sort style
[linux-block.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
2666ca91 36#include <linux/devcoredump.h>
400e64df
OBC
37#include <linux/remoteproc.h>
38#include <linux/iommu.h>
b5ab5e24 39#include <linux/idr.h>
400e64df 40#include <linux/elf.h>
a2b950ac 41#include <linux/crc32.h>
086d0872 42#include <linux/of_reserved_mem.h>
400e64df
OBC
43#include <linux/virtio_ids.h>
44#include <linux/virtio_ring.h>
cf59d3e9 45#include <asm/byteorder.h>
086d0872 46#include <linux/platform_device.h>
400e64df
OBC
47
48#include "remoteproc_internal.h"
49
fec47d86
DG
50static DEFINE_MUTEX(rproc_list_mutex);
51static LIST_HEAD(rproc_list);
52
400e64df 53typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec 54 struct resource_table *table, int len);
a2b950ac
OBC
55typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
56 void *, int offset, int avail);
400e64df 57
c6aed238
LP
58static int rproc_alloc_carveout(struct rproc *rproc,
59 struct rproc_mem_entry *mem);
60static int rproc_release_carveout(struct rproc *rproc,
61 struct rproc_mem_entry *mem);
62
b5ab5e24
OBC
63/* Unique indices for remoteproc devices */
64static DEFINE_IDA(rproc_dev_index);
65
8afd519c
FGL
66static const char * const rproc_crash_names[] = {
67 [RPROC_MMUFAULT] = "mmufault",
b3d39032
BA
68 [RPROC_WATCHDOG] = "watchdog",
69 [RPROC_FATAL_ERROR] = "fatal error",
8afd519c
FGL
70};
71
72/* translate rproc_crash_type to string */
73static const char *rproc_crash_to_string(enum rproc_crash_type type)
74{
75 if (type < ARRAY_SIZE(rproc_crash_names))
76 return rproc_crash_names[type];
b23f7a09 77 return "unknown";
8afd519c
FGL
78}
79
400e64df
OBC
80/*
81 * This is the IOMMU fault handler we register with the IOMMU API
82 * (when relevant; not all remote processors access memory through
83 * an IOMMU).
84 *
85 * IOMMU core will invoke this handler whenever the remote processor
86 * will try to access an unmapped device address.
400e64df
OBC
87 */
88static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
730f84ce 89 unsigned long iova, int flags, void *token)
400e64df 90{
8afd519c
FGL
91 struct rproc *rproc = token;
92
400e64df
OBC
93 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
94
8afd519c
FGL
95 rproc_report_crash(rproc, RPROC_MMUFAULT);
96
400e64df
OBC
97 /*
98 * Let the iommu core know we're not really handling this fault;
8afd519c 99 * we just used it as a recovery trigger.
400e64df
OBC
100 */
101 return -ENOSYS;
102}
103
104static int rproc_enable_iommu(struct rproc *rproc)
105{
106 struct iommu_domain *domain;
b5ab5e24 107 struct device *dev = rproc->dev.parent;
400e64df
OBC
108 int ret;
109
315491e5
SA
110 if (!rproc->has_iommu) {
111 dev_dbg(dev, "iommu not present\n");
0798e1da 112 return 0;
400e64df
OBC
113 }
114
115 domain = iommu_domain_alloc(dev->bus);
116 if (!domain) {
117 dev_err(dev, "can't alloc iommu domain\n");
118 return -ENOMEM;
119 }
120
77ca2332 121 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
122
123 ret = iommu_attach_device(domain, dev);
124 if (ret) {
125 dev_err(dev, "can't attach iommu device: %d\n", ret);
126 goto free_domain;
127 }
128
129 rproc->domain = domain;
130
131 return 0;
132
133free_domain:
134 iommu_domain_free(domain);
135 return ret;
136}
137
138static void rproc_disable_iommu(struct rproc *rproc)
139{
140 struct iommu_domain *domain = rproc->domain;
b5ab5e24 141 struct device *dev = rproc->dev.parent;
400e64df
OBC
142
143 if (!domain)
144 return;
145
146 iommu_detach_device(domain, dev);
147 iommu_domain_free(domain);
400e64df
OBC
148}
149
086d0872 150phys_addr_t rproc_va_to_pa(void *cpu_addr)
eb30596e
LP
151{
152 /*
153 * Return physical address according to virtual address location
154 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
155 * - in kernel: if region allocated in generic dma memory pool
156 */
157 if (is_vmalloc_addr(cpu_addr)) {
158 return page_to_phys(vmalloc_to_page(cpu_addr)) +
159 offset_in_page(cpu_addr);
160 }
161
162 WARN_ON(!virt_addr_valid(cpu_addr));
163 return virt_to_phys(cpu_addr);
164}
086d0872 165EXPORT_SYMBOL(rproc_va_to_pa);
eb30596e 166
a01f7cd6
SA
167/**
168 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
169 * @rproc: handle of a remote processor
170 * @da: remoteproc device address to translate
171 * @len: length of the memory region @da is pointing to
172 *
400e64df
OBC
173 * Some remote processors will ask us to allocate them physically contiguous
174 * memory regions (which we call "carveouts"), and map them to specific
a01f7cd6
SA
175 * device addresses (which are hardcoded in the firmware). They may also have
176 * dedicated memory regions internal to the processors, and use them either
177 * exclusively or alongside carveouts.
400e64df
OBC
178 *
179 * They may then ask us to copy objects into specific device addresses (e.g.
180 * code/data sections) or expose us certain symbols in other device address
181 * (e.g. their trace buffer).
182 *
a01f7cd6
SA
183 * This function is a helper function with which we can go over the allocated
184 * carveouts and translate specific device addresses to kernel virtual addresses
185 * so we can access the referenced memory. This function also allows to perform
186 * translations on the internal remoteproc memory regions through a platform
187 * implementation specific da_to_va ops, if present.
188 *
189 * The function returns a valid kernel address on success or NULL on failure.
400e64df
OBC
190 *
191 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
192 * but only on kernel direct mapped RAM memory. Instead, we're just using
a01f7cd6
SA
193 * here the output of the DMA API for the carveouts, which should be more
194 * correct.
400e64df 195 */
72854fb0 196void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
197{
198 struct rproc_mem_entry *carveout;
199 void *ptr = NULL;
200
a01f7cd6
SA
201 if (rproc->ops->da_to_va) {
202 ptr = rproc->ops->da_to_va(rproc, da, len);
203 if (ptr)
204 goto out;
205 }
206
400e64df
OBC
207 list_for_each_entry(carveout, &rproc->carveouts, node) {
208 int offset = da - carveout->da;
209
210 /* try next carveout if da is too small */
211 if (offset < 0)
212 continue;
213
214 /* try next carveout if da is too large */
215 if (offset + len > carveout->len)
216 continue;
217
218 ptr = carveout->va + offset;
219
220 break;
221 }
222
a01f7cd6 223out:
400e64df
OBC
224 return ptr;
225}
4afc89d6 226EXPORT_SYMBOL(rproc_da_to_va);
400e64df 227
b0019ccd
LP
228/**
229 * rproc_find_carveout_by_name() - lookup the carveout region by a name
230 * @rproc: handle of a remote processor
231 * @name,..: carveout name to find (standard printf format)
232 *
233 * Platform driver has the capability to register some pre-allacoted carveout
234 * (physically contiguous memory regions) before rproc firmware loading and
235 * associated resource table analysis. These regions may be dedicated memory
236 * regions internal to the coprocessor or specified DDR region with specific
237 * attributes
238 *
239 * This function is a helper function with which we can go over the
240 * allocated carveouts and return associated region characteristics like
241 * coprocessor address, length or processor virtual address.
242 *
243 * Return: a valid pointer on carveout entry on success or NULL on failure.
244 */
245struct rproc_mem_entry *
246rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
247{
248 va_list args;
249 char _name[32];
250 struct rproc_mem_entry *carveout, *mem = NULL;
251
252 if (!name)
253 return NULL;
254
255 va_start(args, name);
256 vsnprintf(_name, sizeof(_name), name, args);
257 va_end(args);
258
259 list_for_each_entry(carveout, &rproc->carveouts, node) {
260 /* Compare carveout and requested names */
261 if (!strcmp(carveout->name, _name)) {
262 mem = carveout;
263 break;
264 }
265 }
266
267 return mem;
268}
269
c874bf59
LP
270/**
271 * rproc_check_carveout_da() - Check specified carveout da configuration
272 * @rproc: handle of a remote processor
273 * @mem: pointer on carveout to check
274 * @da: area device address
275 * @len: associated area size
276 *
277 * This function is a helper function to verify requested device area (couple
278 * da, len) is part of specified carevout.
279 *
280 * Return: 0 if carveout match request else -ENOMEM
281 */
282int rproc_check_carveout_da(struct rproc *rproc, struct rproc_mem_entry *mem,
283 u32 da, u32 len)
284{
285 struct device *dev = &rproc->dev;
286 int delta = 0;
287
288 /* Check requested resource length */
289 if (len > mem->len) {
290 dev_err(dev, "Registered carveout doesn't fit len request\n");
291 return -ENOMEM;
292 }
293
294 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
295 /* Update existing carveout da */
296 mem->da = da;
297 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
298 delta = da - mem->da;
299
300 /* Check requested resource belongs to registered carveout */
301 if (delta < 0) {
302 dev_err(dev,
303 "Registered carveout doesn't fit da request\n");
304 return -ENOMEM;
305 }
306
307 if (delta + len > mem->len) {
308 dev_err(dev,
309 "Registered carveout doesn't fit len request\n");
310 return -ENOMEM;
311 }
312 }
313
314 return 0;
315}
316
6db20ea8 317int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 318{
7a186941 319 struct rproc *rproc = rvdev->rproc;
b5ab5e24 320 struct device *dev = &rproc->dev;
6db20ea8 321 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 322 struct fw_rsc_vdev *rsc;
7a186941 323 int ret, size, notifyid;
c6aed238 324 struct rproc_mem_entry *mem;
400e64df 325
7a186941 326 /* actual size of vring (in bytes) */
6db20ea8 327 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 328
c6aed238
LP
329 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
330
331 /* Search for pre-registered carveout */
332 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
333 i);
334 if (mem) {
335 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
336 return -ENOMEM;
337 } else {
338 /* Register carveout in in list */
339 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
340 rproc_alloc_carveout,
341 rproc_release_carveout,
342 "vdev%dvring%d",
343 rvdev->index, i);
344 if (!mem) {
345 dev_err(dev, "Can't allocate memory entry structure\n");
346 return -ENOMEM;
347 }
348
349 rproc_add_carveout(rproc, mem);
400e64df
OBC
350 }
351
6db20ea8
OBC
352 /*
353 * Assign an rproc-wide unique index for this vring
354 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
355 * TODO: support predefined notifyids (via resource table)
356 */
15fc6110 357 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 358 if (ret < 0) {
15fc6110 359 dev_err(dev, "idr_alloc failed: %d\n", ret);
7a186941
OBC
360 return ret;
361 }
15fc6110 362 notifyid = ret;
400e64df 363
48f18f89
BA
364 /* Potentially bump max_notifyid */
365 if (notifyid > rproc->max_notifyid)
366 rproc->max_notifyid = notifyid;
367
6db20ea8 368 rvring->notifyid = notifyid;
400e64df 369
c6aed238 370 /* Let the rproc know the notifyid of this vring.*/
c0d63157 371 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
372 return 0;
373}
374
6db20ea8
OBC
375static int
376rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
377{
378 struct rproc *rproc = rvdev->rproc;
b5ab5e24 379 struct device *dev = &rproc->dev;
6db20ea8
OBC
380 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
381 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 382
9d7814a9 383 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
730f84ce 384 i, vring->da, vring->num, vring->align);
7a186941 385
6db20ea8
OBC
386 /* verify queue size and vring alignment are sane */
387 if (!vring->num || !vring->align) {
388 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
730f84ce 389 vring->num, vring->align);
6db20ea8 390 return -EINVAL;
7a186941 391 }
6db20ea8
OBC
392
393 rvring->len = vring->num;
394 rvring->align = vring->align;
395 rvring->rvdev = rvdev;
396
397 return 0;
398}
399
400void rproc_free_vring(struct rproc_vring *rvring)
401{
6db20ea8 402 struct rproc *rproc = rvring->rvdev->rproc;
c0d63157
SB
403 int idx = rvring->rvdev->vring - rvring;
404 struct fw_rsc_vdev *rsc;
6db20ea8 405
6db20ea8 406 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 407
c0d63157
SB
408 /* reset resource entry info */
409 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
410 rsc->vring[idx].da = 0;
411 rsc->vring[idx].notifyid = -1;
7a186941
OBC
412}
413
6f8b0373 414static int rproc_vdev_do_start(struct rproc_subdev *subdev)
f5bcb353
BA
415{
416 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
417
418 return rproc_add_virtio_dev(rvdev, rvdev->id);
419}
420
6f8b0373 421static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
f5bcb353
BA
422{
423 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
424
425 rproc_remove_virtio_dev(rvdev);
426}
427
086d0872
LP
428/**
429 * rproc_rvdev_release() - release the existence of a rvdev
430 *
431 * @dev: the subdevice's dev
432 */
433static void rproc_rvdev_release(struct device *dev)
434{
435 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
436
437 of_reserved_mem_device_release(dev);
438
439 kfree(rvdev);
440}
441
400e64df 442/**
fd2c15ec 443 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
444 * @rproc: the remote processor
445 * @rsc: the vring resource descriptor
fd2c15ec 446 * @avail: size of available data (for sanity checking the image)
400e64df 447 *
7a186941
OBC
448 * This resource entry requests the host to statically register a virtio
449 * device (vdev), and setup everything needed to support it. It contains
450 * everything needed to make it possible: the virtio device id, virtio
451 * device features, vrings information, virtio config space, etc...
452 *
453 * Before registering the vdev, the vrings are allocated from non-cacheable
454 * physically contiguous memory. Currently we only support two vrings per
455 * remote processor (temporary limitation). We might also want to consider
456 * doing the vring allocation only later when ->find_vqs() is invoked, and
457 * then release them upon ->del_vqs().
458 *
459 * Note: @da is currently not really handled correctly: we dynamically
460 * allocate it using the DMA API, ignoring requested hard coded addresses,
461 * and we don't take care of any required IOMMU programming. This is all
462 * going to be taken care of when the generic iommu-based DMA API will be
463 * merged. Meanwhile, statically-addressed iommu-based firmware images should
464 * use RSC_DEVMEM resource entries to map their required @da to the physical
465 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
466 *
467 * Returns 0 on success, or an appropriate error code otherwise
468 */
fd2c15ec 469static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
730f84ce 470 int offset, int avail)
400e64df 471{
b5ab5e24 472 struct device *dev = &rproc->dev;
7a186941
OBC
473 struct rproc_vdev *rvdev;
474 int i, ret;
086d0872 475 char name[16];
400e64df 476
fd2c15ec
OBC
477 /* make sure resource isn't truncated */
478 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
479 + rsc->config_len > avail) {
b5ab5e24 480 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
481 return -EINVAL;
482 }
483
fd2c15ec
OBC
484 /* make sure reserved bytes are zeroes */
485 if (rsc->reserved[0] || rsc->reserved[1]) {
486 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
487 return -EINVAL;
488 }
489
9d7814a9 490 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
fd2c15ec
OBC
491 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
492
7a186941
OBC
493 /* we currently support only two vrings per rvdev */
494 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 495 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
496 return -EINVAL;
497 }
498
899585ad 499 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
7a186941
OBC
500 if (!rvdev)
501 return -ENOMEM;
400e64df 502
aab8d802
BA
503 kref_init(&rvdev->refcount);
504
f5bcb353 505 rvdev->id = rsc->id;
7a186941 506 rvdev->rproc = rproc;
c6aed238 507 rvdev->index = rproc->nb_vdev++;
400e64df 508
086d0872
LP
509 /* Initialise vdev subdevice */
510 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
511 rvdev->dev.parent = rproc->dev.parent;
512 rvdev->dev.release = rproc_rvdev_release;
513 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
514 dev_set_drvdata(&rvdev->dev, rvdev);
515
516 ret = device_register(&rvdev->dev);
517 if (ret) {
518 put_device(&rvdev->dev);
519 return ret;
520 }
521 /* Make device dma capable by inheriting from parent's capabilities */
522 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
523
524 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
525 dma_get_mask(rproc->dev.parent));
526 if (ret) {
527 dev_warn(dev,
528 "Failed to set DMA mask %llx. Trying to continue... %x\n",
529 dma_get_mask(rproc->dev.parent), ret);
530 }
531
6db20ea8 532 /* parse the vrings */
7a186941 533 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 534 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 535 if (ret)
6db20ea8 536 goto free_rvdev;
7a186941 537 }
400e64df 538
a2b950ac
OBC
539 /* remember the resource offset*/
540 rvdev->rsc_offset = offset;
fd2c15ec 541
a863af5d
BA
542 /* allocate the vring resources */
543 for (i = 0; i < rsc->num_of_vrings; i++) {
544 ret = rproc_alloc_vring(rvdev, i);
545 if (ret)
546 goto unwind_vring_allocations;
547 }
548
7a186941 549 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 550
6f8b0373
AE
551 rvdev->subdev.start = rproc_vdev_do_start;
552 rvdev->subdev.stop = rproc_vdev_do_stop;
4902676f
BA
553
554 rproc_add_subdev(rproc, &rvdev->subdev);
400e64df
OBC
555
556 return 0;
7a186941 557
a863af5d
BA
558unwind_vring_allocations:
559 for (i--; i >= 0; i--)
560 rproc_free_vring(&rvdev->vring[i]);
6db20ea8 561free_rvdev:
086d0872 562 device_unregister(&rvdev->dev);
7a186941 563 return ret;
400e64df
OBC
564}
565
aab8d802
BA
566void rproc_vdev_release(struct kref *ref)
567{
568 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
a863af5d 569 struct rproc_vring *rvring;
f5bcb353 570 struct rproc *rproc = rvdev->rproc;
a863af5d
BA
571 int id;
572
573 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
574 rvring = &rvdev->vring[id];
a863af5d
BA
575 rproc_free_vring(rvring);
576 }
aab8d802 577
f5bcb353 578 rproc_remove_subdev(rproc, &rvdev->subdev);
aab8d802 579 list_del(&rvdev->node);
086d0872 580 device_unregister(&rvdev->dev);
aab8d802
BA
581}
582
400e64df
OBC
583/**
584 * rproc_handle_trace() - handle a shared trace buffer resource
585 * @rproc: the remote processor
586 * @rsc: the trace resource descriptor
fd2c15ec 587 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
588 *
589 * In case the remote processor dumps trace logs into memory,
590 * export it via debugfs.
591 *
592 * Currently, the 'da' member of @rsc should contain the device address
593 * where the remote processor is dumping the traces. Later we could also
594 * support dynamically allocating this address using the generic
595 * DMA API (but currently there isn't a use case for that).
596 *
597 * Returns 0 on success, or an appropriate error code otherwise
598 */
fd2c15ec 599static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
730f84ce 600 int offset, int avail)
400e64df
OBC
601{
602 struct rproc_mem_entry *trace;
b5ab5e24 603 struct device *dev = &rproc->dev;
400e64df
OBC
604 void *ptr;
605 char name[15];
606
fd2c15ec 607 if (sizeof(*rsc) > avail) {
b5ab5e24 608 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
609 return -EINVAL;
610 }
611
612 /* make sure reserved bytes are zeroes */
613 if (rsc->reserved) {
614 dev_err(dev, "trace rsc has non zero reserved bytes\n");
615 return -EINVAL;
616 }
617
400e64df
OBC
618 /* what's the kernel address of this resource ? */
619 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
620 if (!ptr) {
621 dev_err(dev, "erroneous trace resource entry\n");
622 return -EINVAL;
623 }
624
625 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 626 if (!trace)
400e64df 627 return -ENOMEM;
400e64df
OBC
628
629 /* set the trace buffer dma properties */
630 trace->len = rsc->len;
631 trace->va = ptr;
632
633 /* make sure snprintf always null terminates, even if truncating */
634 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
635
636 /* create the debugfs entry */
637 trace->priv = rproc_create_trace_file(name, rproc, trace);
638 if (!trace->priv) {
639 trace->va = NULL;
640 kfree(trace);
641 return -EINVAL;
642 }
643
644 list_add_tail(&trace->node, &rproc->traces);
645
646 rproc->num_traces++;
647
276ec993 648 dev_dbg(dev, "%s added: va %pK, da 0x%x, len 0x%x\n",
35386166 649 name, ptr, rsc->da, rsc->len);
400e64df
OBC
650
651 return 0;
652}
653
654/**
655 * rproc_handle_devmem() - handle devmem resource entry
656 * @rproc: remote processor handle
657 * @rsc: the devmem resource entry
fd2c15ec 658 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
659 *
660 * Remote processors commonly need to access certain on-chip peripherals.
661 *
662 * Some of these remote processors access memory via an iommu device,
663 * and might require us to configure their iommu before they can access
664 * the on-chip peripherals they need.
665 *
666 * This resource entry is a request to map such a peripheral device.
667 *
668 * These devmem entries will contain the physical address of the device in
669 * the 'pa' member. If a specific device address is expected, then 'da' will
670 * contain it (currently this is the only use case supported). 'len' will
671 * contain the size of the physical region we need to map.
672 *
673 * Currently we just "trust" those devmem entries to contain valid physical
674 * addresses, but this is going to change: we want the implementations to
675 * tell us ranges of physical addresses the firmware is allowed to request,
676 * and not allow firmwares to request access to physical addresses that
677 * are outside those ranges.
678 */
fd2c15ec 679static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
730f84ce 680 int offset, int avail)
400e64df
OBC
681{
682 struct rproc_mem_entry *mapping;
b5ab5e24 683 struct device *dev = &rproc->dev;
400e64df
OBC
684 int ret;
685
686 /* no point in handling this resource without a valid iommu domain */
687 if (!rproc->domain)
688 return -EINVAL;
689
fd2c15ec 690 if (sizeof(*rsc) > avail) {
b5ab5e24 691 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
692 return -EINVAL;
693 }
694
695 /* make sure reserved bytes are zeroes */
696 if (rsc->reserved) {
b5ab5e24 697 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
698 return -EINVAL;
699 }
700
400e64df 701 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 702 if (!mapping)
400e64df 703 return -ENOMEM;
400e64df
OBC
704
705 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
706 if (ret) {
b5ab5e24 707 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
708 goto out;
709 }
710
711 /*
712 * We'll need this info later when we'll want to unmap everything
713 * (e.g. on shutdown).
714 *
715 * We can't trust the remote processor not to change the resource
716 * table, so we must maintain this info independently.
717 */
718 mapping->da = rsc->da;
719 mapping->len = rsc->len;
720 list_add_tail(&mapping->node, &rproc->mappings);
721
b5ab5e24 722 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
730f84ce 723 rsc->pa, rsc->da, rsc->len);
400e64df
OBC
724
725 return 0;
726
727out:
728 kfree(mapping);
729 return ret;
730}
731
f2e74abf 732/**
d7c51706 733 * rproc_alloc_carveout() - allocated specified carveout
f2e74abf 734 * @rproc: rproc handle
d7c51706 735 * @mem: the memory entry to allocate
400e64df 736 *
d7c51706
LP
737 * This function allocate specified memory entry @mem using
738 * dma_alloc_coherent() as default allocator
400e64df 739 */
d7c51706
LP
740static int rproc_alloc_carveout(struct rproc *rproc,
741 struct rproc_mem_entry *mem)
400e64df 742{
d7c51706 743 struct rproc_mem_entry *mapping = NULL;
b5ab5e24 744 struct device *dev = &rproc->dev;
400e64df
OBC
745 dma_addr_t dma;
746 void *va;
747 int ret;
748
d7c51706 749 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
400e64df 750 if (!va) {
9c219b23 751 dev_err(dev->parent,
d7c51706 752 "failed to allocate dma memory: len 0x%x\n", mem->len);
72029c90 753 return -ENOMEM;
400e64df
OBC
754 }
755
276ec993 756 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
d7c51706 757 va, &dma, mem->len);
400e64df
OBC
758
759 /*
760 * Ok, this is non-standard.
761 *
762 * Sometimes we can't rely on the generic iommu-based DMA API
763 * to dynamically allocate the device address and then set the IOMMU
764 * tables accordingly, because some remote processors might
765 * _require_ us to use hard coded device addresses that their
766 * firmware was compiled with.
767 *
768 * In this case, we must use the IOMMU API directly and map
769 * the memory to the device address as expected by the remote
770 * processor.
771 *
772 * Obviously such remote processor devices should not be configured
773 * to use the iommu-based DMA API: we expect 'dma' to contain the
774 * physical address in this case.
775 */
3bc8140b 776
d7c51706
LP
777 if (mem->da != FW_RSC_ADDR_ANY) {
778 if (!rproc->domain) {
779 dev_err(dev->parent,
780 "Bad carveout rsc configuration\n");
781 ret = -ENOMEM;
782 goto dma_free;
783 }
3bc8140b 784
7168d914
DC
785 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
786 if (!mapping) {
7168d914
DC
787 ret = -ENOMEM;
788 goto dma_free;
789 }
790
d7c51706
LP
791 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
792 mem->flags);
400e64df
OBC
793 if (ret) {
794 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 795 goto free_mapping;
400e64df
OBC
796 }
797
798 /*
799 * We'll need this info later when we'll want to unmap
800 * everything (e.g. on shutdown).
801 *
802 * We can't trust the remote processor not to change the
803 * resource table, so we must maintain this info independently.
804 */
d7c51706
LP
805 mapping->da = mem->da;
806 mapping->len = mem->len;
400e64df
OBC
807 list_add_tail(&mapping->node, &rproc->mappings);
808
b605ed8b 809 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
d7c51706
LP
810 mem->da, &dma);
811 } else {
812 mem->da = (u32)dma;
400e64df
OBC
813 }
814
d7c51706
LP
815 mem->dma = (u32)dma;
816 mem->va = va;
400e64df
OBC
817
818 return 0;
819
7168d914
DC
820free_mapping:
821 kfree(mapping);
400e64df 822dma_free:
d7c51706 823 dma_free_coherent(dev->parent, mem->len, va, dma);
400e64df
OBC
824 return ret;
825}
826
d7c51706
LP
827/**
828 * rproc_release_carveout() - release acquired carveout
829 * @rproc: rproc handle
830 * @mem: the memory entry to release
831 *
832 * This function releases specified memory entry @mem allocated via
833 * rproc_alloc_carveout() function by @rproc.
834 */
835static int rproc_release_carveout(struct rproc *rproc,
836 struct rproc_mem_entry *mem)
837{
838 struct device *dev = &rproc->dev;
839
840 /* clean up carveout allocations */
841 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
842 return 0;
843}
844
845/**
846 * rproc_handle_carveout() - handle phys contig memory allocation requests
847 * @rproc: rproc handle
848 * @rsc: the resource entry
849 * @avail: size of available data (for image validation)
850 *
851 * This function will handle firmware requests for allocation of physically
852 * contiguous memory regions.
853 *
854 * These request entries should come first in the firmware's resource table,
855 * as other firmware entries might request placing other data objects inside
856 * these memory regions (e.g. data/code segments, trace resource entries, ...).
857 *
858 * Allocating memory this way helps utilizing the reserved physical memory
859 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
860 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
861 * pressure is important; it may have a substantial impact on performance.
862 */
863static int rproc_handle_carveout(struct rproc *rproc,
864 struct fw_rsc_carveout *rsc,
865 int offset, int avail)
866{
867 struct rproc_mem_entry *carveout;
868 struct device *dev = &rproc->dev;
869
870 if (sizeof(*rsc) > avail) {
871 dev_err(dev, "carveout rsc is truncated\n");
872 return -EINVAL;
873 }
874
875 /* make sure reserved bytes are zeroes */
876 if (rsc->reserved) {
877 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
878 return -EINVAL;
879 }
880
881 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
882 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
883
ffa5f9c8
LP
884 /*
885 * Check carveout rsc already part of a registered carveout,
886 * Search by name, then check the da and length
887 */
888 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
889
890 if (carveout) {
891 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
892 dev_err(dev,
893 "Carveout already associated to resource table\n");
894 return -ENOMEM;
895 }
896
897 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
898 return -ENOMEM;
899
900 /* Update memory carveout with resource table info */
901 carveout->rsc_offset = offset;
902 carveout->flags = rsc->flags;
903
904 return 0;
905 }
906
d7c51706
LP
907 /* Register carveout in in list */
908 carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
909 rproc_alloc_carveout,
910 rproc_release_carveout, rsc->name);
911 if (!carveout) {
912 dev_err(dev, "Can't allocate memory entry structure\n");
913 return -ENOMEM;
914 }
915
916 carveout->flags = rsc->flags;
917 carveout->rsc_offset = offset;
918 rproc_add_carveout(rproc, carveout);
919
920 return 0;
921}
922
15c0b025
LP
923/**
924 * rproc_add_carveout() - register an allocated carveout region
925 * @rproc: rproc handle
926 * @mem: memory entry to register
927 *
928 * This function registers specified memory entry in @rproc carveouts list.
929 * Specified carveout should have been allocated before registering.
930 */
931void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
932{
933 list_add_tail(&mem->node, &rproc->carveouts);
934}
935EXPORT_SYMBOL(rproc_add_carveout);
936
72029c90
LP
937/**
938 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
939 * @dev: pointer on device struct
940 * @va: virtual address
941 * @dma: dma address
942 * @len: memory carveout length
943 * @da: device address
944 * @release: memory carveout function
945 * @name: carveout name
946 *
947 * This function allocates a rproc_mem_entry struct and fill it with parameters
948 * provided by client.
949 */
950struct rproc_mem_entry *
951rproc_mem_entry_init(struct device *dev,
952 void *va, dma_addr_t dma, int len, u32 da,
d7c51706 953 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
72029c90
LP
954 int (*release)(struct rproc *, struct rproc_mem_entry *),
955 const char *name, ...)
956{
957 struct rproc_mem_entry *mem;
958 va_list args;
959
960 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
961 if (!mem)
962 return mem;
963
964 mem->va = va;
965 mem->dma = dma;
966 mem->da = da;
967 mem->len = len;
d7c51706 968 mem->alloc = alloc;
72029c90 969 mem->release = release;
d7c51706 970 mem->rsc_offset = FW_RSC_ADDR_ANY;
1429cca1 971 mem->of_resm_idx = -1;
72029c90
LP
972
973 va_start(args, name);
974 vsnprintf(mem->name, sizeof(mem->name), name, args);
975 va_end(args);
976
977 return mem;
978}
979EXPORT_SYMBOL(rproc_mem_entry_init);
980
1429cca1
LP
981/**
982 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
983 * from a reserved memory phandle
984 * @dev: pointer on device struct
985 * @of_resm_idx: reserved memory phandle index in "memory-region"
986 * @len: memory carveout length
987 * @da: device address
988 * @name: carveout name
989 *
990 * This function allocates a rproc_mem_entry struct and fill it with parameters
991 * provided by client.
992 */
993struct rproc_mem_entry *
994rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
995 u32 da, const char *name, ...)
996{
997 struct rproc_mem_entry *mem;
998 va_list args;
999
1000 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1001 if (!mem)
1002 return mem;
1003
1004 mem->da = da;
1005 mem->len = len;
1006 mem->rsc_offset = FW_RSC_ADDR_ANY;
1007 mem->of_resm_idx = of_resm_idx;
1008
1009 va_start(args, name);
1010 vsnprintf(mem->name, sizeof(mem->name), name, args);
1011 va_end(args);
1012
1013 return mem;
1014}
1015EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1016
72029c90 1017/**
e12bc14b
OBC
1018 * A lookup table for resource handlers. The indices are defined in
1019 * enum fw_resource_type.
1020 */
232fcdbb 1021static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
1022 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1023 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1024 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
232fcdbb
SB
1025 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1026};
1027
400e64df 1028/* handle firmware resource entries before booting the remote processor */
a4b24c75 1029static int rproc_handle_resources(struct rproc *rproc,
232fcdbb 1030 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 1031{
b5ab5e24 1032 struct device *dev = &rproc->dev;
e12bc14b 1033 rproc_handle_resource_t handler;
fd2c15ec
OBC
1034 int ret = 0, i;
1035
d4bb86f2
BA
1036 if (!rproc->table_ptr)
1037 return 0;
1038
a2b950ac
OBC
1039 for (i = 0; i < rproc->table_ptr->num; i++) {
1040 int offset = rproc->table_ptr->offset[i];
1041 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
a4b24c75 1042 int avail = rproc->table_sz - offset - sizeof(*hdr);
fd2c15ec
OBC
1043 void *rsc = (void *)hdr + sizeof(*hdr);
1044
1045 /* make sure table isn't truncated */
1046 if (avail < 0) {
1047 dev_err(dev, "rsc table is truncated\n");
1048 return -EINVAL;
1049 }
400e64df 1050
fd2c15ec 1051 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 1052
fd2c15ec
OBC
1053 if (hdr->type >= RSC_LAST) {
1054 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 1055 continue;
400e64df
OBC
1056 }
1057
232fcdbb 1058 handler = handlers[hdr->type];
e12bc14b
OBC
1059 if (!handler)
1060 continue;
1061
a2b950ac 1062 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 1063 if (ret)
400e64df 1064 break;
fd2c15ec 1065 }
400e64df
OBC
1066
1067 return ret;
1068}
1069
c455daa4
BA
1070static int rproc_prepare_subdevices(struct rproc *rproc)
1071{
1072 struct rproc_subdev *subdev;
1073 int ret;
1074
1075 list_for_each_entry(subdev, &rproc->subdevs, node) {
1076 if (subdev->prepare) {
1077 ret = subdev->prepare(subdev);
1078 if (ret)
1079 goto unroll_preparation;
1080 }
1081 }
1082
1083 return 0;
1084
1085unroll_preparation:
1086 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1087 if (subdev->unprepare)
1088 subdev->unprepare(subdev);
1089 }
1090
1091 return ret;
1092}
1093
618fcff3 1094static int rproc_start_subdevices(struct rproc *rproc)
7bdc9650
BA
1095{
1096 struct rproc_subdev *subdev;
1097 int ret;
1098
1099 list_for_each_entry(subdev, &rproc->subdevs, node) {
be37b1e0
BA
1100 if (subdev->start) {
1101 ret = subdev->start(subdev);
1102 if (ret)
1103 goto unroll_registration;
1104 }
7bdc9650
BA
1105 }
1106
1107 return 0;
1108
1109unroll_registration:
be37b1e0
BA
1110 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1111 if (subdev->stop)
1112 subdev->stop(subdev, true);
1113 }
7bdc9650
BA
1114
1115 return ret;
1116}
1117
618fcff3 1118static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
7bdc9650
BA
1119{
1120 struct rproc_subdev *subdev;
1121
be37b1e0
BA
1122 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1123 if (subdev->stop)
1124 subdev->stop(subdev, crashed);
1125 }
7bdc9650
BA
1126}
1127
c455daa4
BA
1128static void rproc_unprepare_subdevices(struct rproc *rproc)
1129{
1130 struct rproc_subdev *subdev;
1131
1132 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1133 if (subdev->unprepare)
1134 subdev->unprepare(subdev);
1135 }
1136}
1137
d7c51706
LP
1138/**
1139 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1140 * in the list
1141 * @rproc: the remote processor handle
1142 *
1143 * This function parses registered carveout list, performs allocation
1144 * if alloc() ops registered and updates resource table information
1145 * if rsc_offset set.
1146 *
1147 * Return: 0 on success
1148 */
1149static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1150{
1151 struct rproc_mem_entry *entry, *tmp;
1152 struct fw_rsc_carveout *rsc;
1153 struct device *dev = &rproc->dev;
1154 int ret;
1155
1156 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1157 if (entry->alloc) {
1158 ret = entry->alloc(rproc, entry);
1159 if (ret) {
1160 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1161 entry->name, ret);
1162 return -ENOMEM;
1163 }
1164 }
1165
1166 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1167 /* update resource table */
1168 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1169
1170 /*
1171 * Some remote processors might need to know the pa
1172 * even though they are behind an IOMMU. E.g., OMAP4's
1173 * remote M3 processor needs this so it can control
1174 * on-chip hardware accelerators that are not behind
1175 * the IOMMU, and therefor must know the pa.
1176 *
1177 * Generally we don't want to expose physical addresses
1178 * if we don't have to (remote processors are generally
1179 * _not_ trusted), so we might want to do this only for
1180 * remote processor that _must_ have this (e.g. OMAP4's
1181 * dual M3 subsystem).
1182 *
1183 * Non-IOMMU processors might also want to have this info.
1184 * In this case, the device address and the physical address
1185 * are the same.
1186 */
ffa5f9c8
LP
1187
1188 /* Use va if defined else dma to generate pa */
d7c51706
LP
1189 if (entry->va)
1190 rsc->pa = (u32)rproc_va_to_pa(entry->va);
ffa5f9c8
LP
1191 else
1192 rsc->pa = (u32)entry->dma;
1193
1194 rsc->da = entry->da;
1195 rsc->len = entry->len;
d7c51706
LP
1196 }
1197 }
1198
1199 return 0;
1200}
1201
2666ca91
SJ
1202/**
1203 * rproc_coredump_cleanup() - clean up dump_segments list
1204 * @rproc: the remote processor handle
1205 */
1206static void rproc_coredump_cleanup(struct rproc *rproc)
1207{
1208 struct rproc_dump_segment *entry, *tmp;
1209
1210 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1211 list_del(&entry->node);
1212 kfree(entry);
1213 }
1214}
1215
400e64df
OBC
1216/**
1217 * rproc_resource_cleanup() - clean up and free all acquired resources
1218 * @rproc: rproc handle
1219 *
1220 * This function will free all resources acquired for @rproc, and it
7a186941 1221 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
1222 */
1223static void rproc_resource_cleanup(struct rproc *rproc)
1224{
1225 struct rproc_mem_entry *entry, *tmp;
d81fb32f 1226 struct rproc_vdev *rvdev, *rvtmp;
b5ab5e24 1227 struct device *dev = &rproc->dev;
400e64df
OBC
1228
1229 /* clean up debugfs trace entries */
1230 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
1231 rproc_remove_trace_file(entry->priv);
1232 rproc->num_traces--;
1233 list_del(&entry->node);
1234 kfree(entry);
1235 }
1236
400e64df
OBC
1237 /* clean up iommu mapping entries */
1238 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1239 size_t unmapped;
1240
1241 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1242 if (unmapped != entry->len) {
1243 /* nothing much to do besides complaining */
e981f6d4 1244 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
730f84ce 1245 unmapped);
400e64df
OBC
1246 }
1247
1248 list_del(&entry->node);
1249 kfree(entry);
1250 }
b6356a01
SA
1251
1252 /* clean up carveout allocations */
1253 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
f2e74abf
LP
1254 if (entry->release)
1255 entry->release(rproc, entry);
b6356a01
SA
1256 list_del(&entry->node);
1257 kfree(entry);
1258 }
d81fb32f
BA
1259
1260 /* clean up remote vdev entries */
f5bcb353 1261 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
2b45cef5 1262 kref_put(&rvdev->refcount, rproc_vdev_release);
2666ca91
SJ
1263
1264 rproc_coredump_cleanup(rproc);
400e64df
OBC
1265}
1266
1efa30d0
SJ
1267static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1268{
a4b24c75 1269 struct resource_table *loaded_table;
1efa30d0 1270 struct device *dev = &rproc->dev;
a4b24c75 1271 int ret;
1efa30d0
SJ
1272
1273 /* load the ELF segments to memory */
1274 ret = rproc_load_segments(rproc, fw);
1275 if (ret) {
1276 dev_err(dev, "Failed to load program segments: %d\n", ret);
1277 return ret;
1278 }
1279
1280 /*
1281 * The starting device has been given the rproc->cached_table as the
1282 * resource table. The address of the vring along with the other
1283 * allocated resources (carveouts etc) is stored in cached_table.
1284 * In order to pass this information to the remote device we must copy
1285 * this information to device memory. We also update the table_ptr so
1286 * that any subsequent changes will be applied to the loaded version.
1287 */
1288 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1289 if (loaded_table) {
a4b24c75 1290 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1efa30d0
SJ
1291 rproc->table_ptr = loaded_table;
1292 }
1293
c455daa4
BA
1294 ret = rproc_prepare_subdevices(rproc);
1295 if (ret) {
1296 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1297 rproc->name, ret);
f68d51bd 1298 goto reset_table_ptr;
c455daa4
BA
1299 }
1300
1efa30d0
SJ
1301 /* power up the remote processor */
1302 ret = rproc->ops->start(rproc);
1303 if (ret) {
1304 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
c455daa4 1305 goto unprepare_subdevices;
1efa30d0
SJ
1306 }
1307
618fcff3
BA
1308 /* Start any subdevices for the remote processor */
1309 ret = rproc_start_subdevices(rproc);
1efa30d0
SJ
1310 if (ret) {
1311 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1312 rproc->name, ret);
c455daa4 1313 goto stop_rproc;
1efa30d0
SJ
1314 }
1315
1316 rproc->state = RPROC_RUNNING;
1317
1318 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1319
1320 return 0;
c455daa4
BA
1321
1322stop_rproc:
1323 rproc->ops->stop(rproc);
c455daa4
BA
1324unprepare_subdevices:
1325 rproc_unprepare_subdevices(rproc);
f68d51bd
SA
1326reset_table_ptr:
1327 rproc->table_ptr = rproc->cached_table;
c455daa4
BA
1328
1329 return ret;
1efa30d0
SJ
1330}
1331
400e64df
OBC
1332/*
1333 * take a firmware and boot a remote processor with it.
1334 */
1335static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1336{
b5ab5e24 1337 struct device *dev = &rproc->dev;
400e64df 1338 const char *name = rproc->firmware;
58b64090 1339 int ret;
400e64df
OBC
1340
1341 ret = rproc_fw_sanity_check(rproc, fw);
1342 if (ret)
1343 return ret;
1344
e981f6d4 1345 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
1346
1347 /*
1348 * if enabling an IOMMU isn't relevant for this rproc, this is
1349 * just a nop
1350 */
1351 ret = rproc_enable_iommu(rproc);
1352 if (ret) {
1353 dev_err(dev, "can't enable iommu: %d\n", ret);
1354 return ret;
1355 }
1356
3e5f9eb5 1357 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
988d204c 1358
c1d35c1a
BA
1359 /* Load resource table, core dump segment list etc from the firmware */
1360 ret = rproc_parse_fw(rproc, fw);
58b64090
BA
1361 if (ret)
1362 goto disable_iommu;
a0c10687 1363
b35d7afc
BA
1364 /* reset max_notifyid */
1365 rproc->max_notifyid = -1;
1366
c6aed238
LP
1367 /* reset handled vdev */
1368 rproc->nb_vdev = 0;
1369
400e64df 1370 /* handle fw resources which are required to boot rproc */
a4b24c75 1371 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
400e64df
OBC
1372 if (ret) {
1373 dev_err(dev, "Failed to process resources: %d\n", ret);
229b85a6 1374 goto clean_up_resources;
400e64df
OBC
1375 }
1376
d7c51706
LP
1377 /* Allocate carveout resources associated to rproc */
1378 ret = rproc_alloc_registered_carveouts(rproc);
1379 if (ret) {
1380 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1381 ret);
1382 goto clean_up_resources;
1383 }
1384
1efa30d0
SJ
1385 ret = rproc_start(rproc, fw);
1386 if (ret)
229b85a6 1387 goto clean_up_resources;
400e64df
OBC
1388
1389 return 0;
1390
229b85a6
BA
1391clean_up_resources:
1392 rproc_resource_cleanup(rproc);
a0c10687
BA
1393 kfree(rproc->cached_table);
1394 rproc->cached_table = NULL;
988d204c 1395 rproc->table_ptr = NULL;
58b64090 1396disable_iommu:
400e64df
OBC
1397 rproc_disable_iommu(rproc);
1398 return ret;
1399}
1400
1401/*
5e6533f7 1402 * take a firmware and boot it up.
400e64df
OBC
1403 *
1404 * Note: this function is called asynchronously upon registration of the
1405 * remote processor (so we must wait until it completes before we try
1406 * to unregister the device. one other option is just to use kref here,
1407 * that might be cleaner).
1408 */
5e6533f7 1409static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
400e64df
OBC
1410{
1411 struct rproc *rproc = context;
a2b950ac 1412
7a20c64d 1413 rproc_boot(rproc);
ddf71187 1414
3cc6e787 1415 release_firmware(fw);
400e64df
OBC
1416}
1417
5e6533f7 1418static int rproc_trigger_auto_boot(struct rproc *rproc)
70b85ef8
FGL
1419{
1420 int ret;
1421
70b85ef8 1422 /*
70b85ef8
FGL
1423 * We're initiating an asynchronous firmware loading, so we can
1424 * be built-in kernel code, without hanging the boot process.
1425 */
1426 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1427 rproc->firmware, &rproc->dev, GFP_KERNEL,
5e6533f7 1428 rproc, rproc_auto_boot_callback);
2099c77d 1429 if (ret < 0)
70b85ef8 1430 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
70b85ef8
FGL
1431
1432 return ret;
1433}
1434
880f5b38 1435static int rproc_stop(struct rproc *rproc, bool crashed)
1efa30d0
SJ
1436{
1437 struct device *dev = &rproc->dev;
1438 int ret;
1439
618fcff3
BA
1440 /* Stop any subdevices for the remote processor */
1441 rproc_stop_subdevices(rproc, crashed);
1efa30d0 1442
0a8b81cb
BA
1443 /* the installed resource table is no longer accessible */
1444 rproc->table_ptr = rproc->cached_table;
1445
1efa30d0
SJ
1446 /* power off the remote processor */
1447 ret = rproc->ops->stop(rproc);
1448 if (ret) {
1449 dev_err(dev, "can't stop rproc: %d\n", ret);
1450 return ret;
1451 }
1452
c455daa4
BA
1453 rproc_unprepare_subdevices(rproc);
1454
1efa30d0
SJ
1455 rproc->state = RPROC_OFFLINE;
1456
1457 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1458
1459 return 0;
1460}
1461
2666ca91
SJ
1462/**
1463 * rproc_coredump_add_segment() - add segment of device memory to coredump
1464 * @rproc: handle of a remote processor
1465 * @da: device address
1466 * @size: size of segment
1467 *
1468 * Add device memory to the list of segments to be included in a coredump for
1469 * the remoteproc.
1470 *
1471 * Return: 0 on success, negative errno on error.
1472 */
1473int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1474{
1475 struct rproc_dump_segment *segment;
1476
1477 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1478 if (!segment)
1479 return -ENOMEM;
1480
1481 segment->da = da;
1482 segment->size = size;
1483
1484 list_add_tail(&segment->node, &rproc->dump_segments);
1485
1486 return 0;
1487}
1488EXPORT_SYMBOL(rproc_coredump_add_segment);
1489
ab8f873b
SS
1490/**
1491 * rproc_coredump_add_custom_segment() - add custom coredump segment
1492 * @rproc: handle of a remote processor
1493 * @da: device address
1494 * @size: size of segment
1495 * @dumpfn: custom dump function called for each segment during coredump
1496 * @priv: private data
1497 *
1498 * Add device memory to the list of segments to be included in the coredump
1499 * and associate the segment with the given custom dump function and private
1500 * data.
1501 *
1502 * Return: 0 on success, negative errno on error.
1503 */
1504int rproc_coredump_add_custom_segment(struct rproc *rproc,
1505 dma_addr_t da, size_t size,
1506 void (*dumpfn)(struct rproc *rproc,
1507 struct rproc_dump_segment *segment,
1508 void *dest),
1509 void *priv)
1510{
1511 struct rproc_dump_segment *segment;
1512
1513 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1514 if (!segment)
1515 return -ENOMEM;
1516
1517 segment->da = da;
1518 segment->size = size;
1519 segment->priv = priv;
1520 segment->dump = dumpfn;
1521
1522 list_add_tail(&segment->node, &rproc->dump_segments);
1523
1524 return 0;
1525}
1526EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1527
2666ca91
SJ
1528/**
1529 * rproc_coredump() - perform coredump
1530 * @rproc: rproc handle
1531 *
1532 * This function will generate an ELF header for the registered segments
1533 * and create a devcoredump device associated with rproc.
1534 */
1535static void rproc_coredump(struct rproc *rproc)
1536{
1537 struct rproc_dump_segment *segment;
1538 struct elf32_phdr *phdr;
1539 struct elf32_hdr *ehdr;
1540 size_t data_size;
1541 size_t offset;
1542 void *data;
1543 void *ptr;
1544 int phnum = 0;
1545
1546 if (list_empty(&rproc->dump_segments))
1547 return;
1548
1549 data_size = sizeof(*ehdr);
1550 list_for_each_entry(segment, &rproc->dump_segments, node) {
1551 data_size += sizeof(*phdr) + segment->size;
1552
1553 phnum++;
1554 }
1555
1556 data = vmalloc(data_size);
1557 if (!data)
1558 return;
1559
1560 ehdr = data;
1561
1562 memset(ehdr, 0, sizeof(*ehdr));
1563 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1564 ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1565 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1566 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1567 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1568 ehdr->e_type = ET_CORE;
1569 ehdr->e_machine = EM_NONE;
1570 ehdr->e_version = EV_CURRENT;
1571 ehdr->e_entry = rproc->bootaddr;
1572 ehdr->e_phoff = sizeof(*ehdr);
1573 ehdr->e_ehsize = sizeof(*ehdr);
1574 ehdr->e_phentsize = sizeof(*phdr);
1575 ehdr->e_phnum = phnum;
1576
1577 phdr = data + ehdr->e_phoff;
1578 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1579 list_for_each_entry(segment, &rproc->dump_segments, node) {
1580 memset(phdr, 0, sizeof(*phdr));
1581 phdr->p_type = PT_LOAD;
1582 phdr->p_offset = offset;
1583 phdr->p_vaddr = segment->da;
1584 phdr->p_paddr = segment->da;
1585 phdr->p_filesz = segment->size;
1586 phdr->p_memsz = segment->size;
1587 phdr->p_flags = PF_R | PF_W | PF_X;
1588 phdr->p_align = 0;
1589
3952105d
SS
1590 if (segment->dump) {
1591 segment->dump(rproc, segment, data + offset);
2666ca91 1592 } else {
3952105d
SS
1593 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1594 if (!ptr) {
1595 dev_err(&rproc->dev,
1596 "invalid coredump segment (%pad, %zu)\n",
1597 &segment->da, segment->size);
1598 memset(data + offset, 0xff, segment->size);
1599 } else {
1600 memcpy(data + offset, ptr, segment->size);
1601 }
2666ca91
SJ
1602 }
1603
1604 offset += phdr->p_filesz;
1605 phdr++;
1606 }
1607
1608 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1609}
1610
70b85ef8
FGL
1611/**
1612 * rproc_trigger_recovery() - recover a remoteproc
1613 * @rproc: the remote processor
1614 *
56324d7a 1615 * The recovery is done by resetting all the virtio devices, that way all the
70b85ef8
FGL
1616 * rpmsg drivers will be reseted along with the remote processor making the
1617 * remoteproc functional again.
1618 *
1619 * This function can sleep, so it cannot be called from atomic context.
1620 */
1621int rproc_trigger_recovery(struct rproc *rproc)
1622{
7e83cab8
SJ
1623 const struct firmware *firmware_p;
1624 struct device *dev = &rproc->dev;
1625 int ret;
1626
1627 dev_err(dev, "recovering %s\n", rproc->name);
70b85ef8 1628
7e83cab8
SJ
1629 ret = mutex_lock_interruptible(&rproc->lock);
1630 if (ret)
1631 return ret;
1632
fcd58037 1633 ret = rproc_stop(rproc, true);
7e83cab8
SJ
1634 if (ret)
1635 goto unlock_mutex;
ddf71187 1636
2666ca91
SJ
1637 /* generate coredump */
1638 rproc_coredump(rproc);
1639
7e83cab8
SJ
1640 /* load firmware */
1641 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1642 if (ret < 0) {
1643 dev_err(dev, "request_firmware failed: %d\n", ret);
1644 goto unlock_mutex;
1645 }
ddf71187 1646
7e83cab8
SJ
1647 /* boot the remote processor up again */
1648 ret = rproc_start(rproc, firmware_p);
1649
1650 release_firmware(firmware_p);
1651
1652unlock_mutex:
1653 mutex_unlock(&rproc->lock);
1654 return ret;
70b85ef8
FGL
1655}
1656
8afd519c
FGL
1657/**
1658 * rproc_crash_handler_work() - handle a crash
1659 *
1660 * This function needs to handle everything related to a crash, like cpu
1661 * registers and stack dump, information to help to debug the fatal error, etc.
1662 */
1663static void rproc_crash_handler_work(struct work_struct *work)
1664{
1665 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1666 struct device *dev = &rproc->dev;
1667
1668 dev_dbg(dev, "enter %s\n", __func__);
1669
1670 mutex_lock(&rproc->lock);
1671
1672 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1673 /* handle only the first crash detected */
1674 mutex_unlock(&rproc->lock);
1675 return;
1676 }
1677
1678 rproc->state = RPROC_CRASHED;
1679 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1680 rproc->name);
1681
1682 mutex_unlock(&rproc->lock);
1683
2e37abb8
FGL
1684 if (!rproc->recovery_disabled)
1685 rproc_trigger_recovery(rproc);
8afd519c
FGL
1686}
1687
400e64df 1688/**
1b0ef906 1689 * rproc_boot() - boot a remote processor
400e64df
OBC
1690 * @rproc: handle of a remote processor
1691 *
1692 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1693 *
1694 * If the remote processor is already powered on, this function immediately
1695 * returns (successfully).
1696 *
1697 * Returns 0 on success, and an appropriate error value otherwise.
1698 */
1b0ef906 1699int rproc_boot(struct rproc *rproc)
400e64df
OBC
1700{
1701 const struct firmware *firmware_p;
1702 struct device *dev;
1703 int ret;
1704
1705 if (!rproc) {
1706 pr_err("invalid rproc handle\n");
1707 return -EINVAL;
1708 }
1709
b5ab5e24 1710 dev = &rproc->dev;
400e64df
OBC
1711
1712 ret = mutex_lock_interruptible(&rproc->lock);
1713 if (ret) {
1714 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1715 return ret;
1716 }
1717
2099c77d
SJ
1718 if (rproc->state == RPROC_DELETED) {
1719 ret = -ENODEV;
1720 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1721 goto unlock_mutex;
1722 }
1723
400e64df
OBC
1724 /* skip the boot process if rproc is already powered up */
1725 if (atomic_inc_return(&rproc->power) > 1) {
1726 ret = 0;
1727 goto unlock_mutex;
1728 }
1729
1730 dev_info(dev, "powering up %s\n", rproc->name);
1731
1732 /* load firmware */
1733 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1734 if (ret < 0) {
1735 dev_err(dev, "request_firmware failed: %d\n", ret);
1736 goto downref_rproc;
1737 }
1738
1739 ret = rproc_fw_boot(rproc, firmware_p);
1740
1741 release_firmware(firmware_p);
1742
1743downref_rproc:
fbb6aacb 1744 if (ret)
400e64df 1745 atomic_dec(&rproc->power);
400e64df
OBC
1746unlock_mutex:
1747 mutex_unlock(&rproc->lock);
1748 return ret;
1749}
1750EXPORT_SYMBOL(rproc_boot);
1751
1752/**
1753 * rproc_shutdown() - power off the remote processor
1754 * @rproc: the remote processor
1755 *
1756 * Power off a remote processor (previously booted with rproc_boot()).
1757 *
1758 * In case @rproc is still being used by an additional user(s), then
1759 * this function will just decrement the power refcount and exit,
1760 * without really powering off the device.
1761 *
1762 * Every call to rproc_boot() must (eventually) be accompanied by a call
1763 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1764 *
1765 * Notes:
1766 * - we're not decrementing the rproc's refcount, only the power refcount.
1767 * which means that the @rproc handle stays valid even after rproc_shutdown()
1768 * returns, and users can still use it with a subsequent rproc_boot(), if
1769 * needed.
400e64df
OBC
1770 */
1771void rproc_shutdown(struct rproc *rproc)
1772{
b5ab5e24 1773 struct device *dev = &rproc->dev;
400e64df
OBC
1774 int ret;
1775
1776 ret = mutex_lock_interruptible(&rproc->lock);
1777 if (ret) {
1778 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1779 return;
1780 }
1781
1782 /* if the remote proc is still needed, bail out */
1783 if (!atomic_dec_and_test(&rproc->power))
1784 goto out;
1785
fcd58037 1786 ret = rproc_stop(rproc, false);
400e64df
OBC
1787 if (ret) {
1788 atomic_inc(&rproc->power);
400e64df
OBC
1789 goto out;
1790 }
1791
1792 /* clean up all acquired resources */
1793 rproc_resource_cleanup(rproc);
1794
1795 rproc_disable_iommu(rproc);
1796
988d204c 1797 /* Free the copy of the resource table */
a0c10687
BA
1798 kfree(rproc->cached_table);
1799 rproc->cached_table = NULL;
988d204c 1800 rproc->table_ptr = NULL;
400e64df
OBC
1801out:
1802 mutex_unlock(&rproc->lock);
400e64df
OBC
1803}
1804EXPORT_SYMBOL(rproc_shutdown);
1805
fec47d86
DG
1806/**
1807 * rproc_get_by_phandle() - find a remote processor by phandle
1808 * @phandle: phandle to the rproc
1809 *
1810 * Finds an rproc handle using the remote processor's phandle, and then
1811 * return a handle to the rproc.
1812 *
1813 * This function increments the remote processor's refcount, so always
1814 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1815 *
1816 * Returns the rproc handle on success, and NULL on failure.
1817 */
8de3dbd0 1818#ifdef CONFIG_OF
fec47d86
DG
1819struct rproc *rproc_get_by_phandle(phandle phandle)
1820{
1821 struct rproc *rproc = NULL, *r;
1822 struct device_node *np;
1823
1824 np = of_find_node_by_phandle(phandle);
1825 if (!np)
1826 return NULL;
1827
1828 mutex_lock(&rproc_list_mutex);
1829 list_for_each_entry(r, &rproc_list, node) {
1830 if (r->dev.parent && r->dev.parent->of_node == np) {
fbb6aacb
BA
1831 /* prevent underlying implementation from being removed */
1832 if (!try_module_get(r->dev.parent->driver->owner)) {
1833 dev_err(&r->dev, "can't get owner\n");
1834 break;
1835 }
1836
fec47d86
DG
1837 rproc = r;
1838 get_device(&rproc->dev);
1839 break;
1840 }
1841 }
1842 mutex_unlock(&rproc_list_mutex);
1843
1844 of_node_put(np);
1845
1846 return rproc;
1847}
8de3dbd0
OBC
1848#else
1849struct rproc *rproc_get_by_phandle(phandle phandle)
1850{
1851 return NULL;
1852}
1853#endif
fec47d86
DG
1854EXPORT_SYMBOL(rproc_get_by_phandle);
1855
400e64df 1856/**
160e7c84 1857 * rproc_add() - register a remote processor
400e64df
OBC
1858 * @rproc: the remote processor handle to register
1859 *
1860 * Registers @rproc with the remoteproc framework, after it has been
1861 * allocated with rproc_alloc().
1862 *
1863 * This is called by the platform-specific rproc implementation, whenever
1864 * a new remote processor device is probed.
1865 *
1866 * Returns 0 on success and an appropriate error code otherwise.
1867 *
1868 * Note: this function initiates an asynchronous firmware loading
1869 * context, which will look for virtio devices supported by the rproc's
1870 * firmware.
1871 *
1872 * If found, those virtio devices will be created and added, so as a result
7a186941 1873 * of registering this remote processor, additional virtio drivers might be
400e64df 1874 * probed.
400e64df 1875 */
160e7c84 1876int rproc_add(struct rproc *rproc)
400e64df 1877{
b5ab5e24 1878 struct device *dev = &rproc->dev;
70b85ef8 1879 int ret;
400e64df 1880
b5ab5e24
OBC
1881 ret = device_add(dev);
1882 if (ret < 0)
1883 return ret;
400e64df 1884
b5ab5e24 1885 dev_info(dev, "%s is available\n", rproc->name);
400e64df
OBC
1886
1887 /* create debugfs entries */
1888 rproc_create_debug_dir(rproc);
7a20c64d
SJ
1889
1890 /* if rproc is marked always-on, request it to boot */
1891 if (rproc->auto_boot) {
5e6533f7 1892 ret = rproc_trigger_auto_boot(rproc);
7a20c64d
SJ
1893 if (ret < 0)
1894 return ret;
1895 }
400e64df 1896
d2e12e66
DG
1897 /* expose to rproc_get_by_phandle users */
1898 mutex_lock(&rproc_list_mutex);
1899 list_add(&rproc->node, &rproc_list);
1900 mutex_unlock(&rproc_list_mutex);
1901
1902 return 0;
400e64df 1903}
160e7c84 1904EXPORT_SYMBOL(rproc_add);
400e64df 1905
b5ab5e24
OBC
1906/**
1907 * rproc_type_release() - release a remote processor instance
1908 * @dev: the rproc's device
1909 *
1910 * This function should _never_ be called directly.
1911 *
1912 * It will be called by the driver core when no one holds a valid pointer
1913 * to @dev anymore.
1914 */
1915static void rproc_type_release(struct device *dev)
1916{
1917 struct rproc *rproc = container_of(dev, struct rproc, dev);
1918
7183a2a7
OBC
1919 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1920
b5ab5e24
OBC
1921 idr_destroy(&rproc->notifyids);
1922
1923 if (rproc->index >= 0)
1924 ida_simple_remove(&rproc_dev_index, rproc->index);
1925
0f57dc6a 1926 kfree(rproc->firmware);
fb98e2bd 1927 kfree(rproc->ops);
b5ab5e24
OBC
1928 kfree(rproc);
1929}
1930
c42ca04d 1931static const struct device_type rproc_type = {
b5ab5e24
OBC
1932 .name = "remoteproc",
1933 .release = rproc_type_release,
1934};
400e64df
OBC
1935
1936/**
1937 * rproc_alloc() - allocate a remote processor handle
1938 * @dev: the underlying device
1939 * @name: name of this remote processor
1940 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 1941 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
1942 * @len: length of private data needed by the rproc driver (in bytes)
1943 *
1944 * Allocates a new remote processor handle, but does not register
8b4aec9a 1945 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
1946 *
1947 * This function should be used by rproc implementations during initialization
1948 * of the remote processor.
1949 *
1950 * After creating an rproc handle using this function, and when ready,
160e7c84 1951 * implementations should then call rproc_add() to complete
400e64df
OBC
1952 * the registration of the remote processor.
1953 *
1954 * On success the new rproc is returned, and on failure, NULL.
1955 *
1956 * Note: _never_ directly deallocate @rproc, even if it was not registered
433c0e04 1957 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
400e64df
OBC
1958 */
1959struct rproc *rproc_alloc(struct device *dev, const char *name,
730f84ce
AS
1960 const struct rproc_ops *ops,
1961 const char *firmware, int len)
400e64df
OBC
1962{
1963 struct rproc *rproc;
8b4aec9a 1964 char *p, *template = "rproc-%s-fw";
0f57dc6a 1965 int name_len;
400e64df
OBC
1966
1967 if (!dev || !name || !ops)
1968 return NULL;
1969
0f57dc6a 1970 if (!firmware) {
8b4aec9a 1971 /*
8b4aec9a 1972 * If the caller didn't pass in a firmware name then
0f57dc6a 1973 * construct a default name.
8b4aec9a
RT
1974 */
1975 name_len = strlen(name) + strlen(template) - 2 + 1;
0f57dc6a
MR
1976 p = kmalloc(name_len, GFP_KERNEL);
1977 if (!p)
1978 return NULL;
8b4aec9a
RT
1979 snprintf(p, name_len, template, name);
1980 } else {
0f57dc6a
MR
1981 p = kstrdup(firmware, GFP_KERNEL);
1982 if (!p)
1983 return NULL;
1984 }
1985
1986 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1987 if (!rproc) {
1988 kfree(p);
1989 return NULL;
8b4aec9a
RT
1990 }
1991
fb98e2bd
BA
1992 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
1993 if (!rproc->ops) {
1994 kfree(p);
1995 kfree(rproc);
1996 return NULL;
1997 }
1998
8b4aec9a 1999 rproc->firmware = p;
400e64df 2000 rproc->name = name;
400e64df 2001 rproc->priv = &rproc[1];
ddf71187 2002 rproc->auto_boot = true;
400e64df 2003
b5ab5e24
OBC
2004 device_initialize(&rproc->dev);
2005 rproc->dev.parent = dev;
2006 rproc->dev.type = &rproc_type;
2aefbef0 2007 rproc->dev.class = &rproc_class;
7c89717f 2008 rproc->dev.driver_data = rproc;
b5ab5e24
OBC
2009
2010 /* Assign a unique device index and name */
2011 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2012 if (rproc->index < 0) {
2013 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2014 put_device(&rproc->dev);
2015 return NULL;
2016 }
2017
2018 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2019
400e64df
OBC
2020 atomic_set(&rproc->power, 0);
2021
0f21f9cc
BA
2022 /* Default to ELF loader if no load function is specified */
2023 if (!rproc->ops->load) {
2024 rproc->ops->load = rproc_elf_load_segments;
c1d35c1a 2025 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
0f21f9cc
BA
2026 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2027 rproc->ops->sanity_check = rproc_elf_sanity_check;
2028 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2029 }
400e64df
OBC
2030
2031 mutex_init(&rproc->lock);
2032
7a186941
OBC
2033 idr_init(&rproc->notifyids);
2034
400e64df
OBC
2035 INIT_LIST_HEAD(&rproc->carveouts);
2036 INIT_LIST_HEAD(&rproc->mappings);
2037 INIT_LIST_HEAD(&rproc->traces);
7a186941 2038 INIT_LIST_HEAD(&rproc->rvdevs);
7bdc9650 2039 INIT_LIST_HEAD(&rproc->subdevs);
2666ca91 2040 INIT_LIST_HEAD(&rproc->dump_segments);
400e64df 2041
8afd519c
FGL
2042 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2043
400e64df
OBC
2044 rproc->state = RPROC_OFFLINE;
2045
2046 return rproc;
2047}
2048EXPORT_SYMBOL(rproc_alloc);
2049
2050/**
433c0e04
BA
2051 * rproc_free() - unroll rproc_alloc()
2052 * @rproc: the remote processor handle
2053 *
2054 * This function decrements the rproc dev refcount.
2055 *
2056 * If no one holds any reference to rproc anymore, then its refcount would
2057 * now drop to zero, and it would be freed.
2058 */
2059void rproc_free(struct rproc *rproc)
2060{
2061 put_device(&rproc->dev);
2062}
2063EXPORT_SYMBOL(rproc_free);
2064
2065/**
2066 * rproc_put() - release rproc reference
400e64df
OBC
2067 * @rproc: the remote processor handle
2068 *
c6b5a276 2069 * This function decrements the rproc dev refcount.
400e64df 2070 *
c6b5a276
OBC
2071 * If no one holds any reference to rproc anymore, then its refcount would
2072 * now drop to zero, and it would be freed.
400e64df 2073 */
160e7c84 2074void rproc_put(struct rproc *rproc)
400e64df 2075{
fbb6aacb 2076 module_put(rproc->dev.parent->driver->owner);
b5ab5e24 2077 put_device(&rproc->dev);
400e64df 2078}
160e7c84 2079EXPORT_SYMBOL(rproc_put);
400e64df
OBC
2080
2081/**
160e7c84 2082 * rproc_del() - unregister a remote processor
400e64df
OBC
2083 * @rproc: rproc handle to unregister
2084 *
400e64df
OBC
2085 * This function should be called when the platform specific rproc
2086 * implementation decides to remove the rproc device. it should
160e7c84 2087 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
2088 * has completed successfully.
2089 *
160e7c84 2090 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 2091 * of the outstanding reference created by rproc_alloc. To decrement that
433c0e04 2092 * one last refcount, one still needs to call rproc_free().
400e64df
OBC
2093 *
2094 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2095 */
160e7c84 2096int rproc_del(struct rproc *rproc)
400e64df
OBC
2097{
2098 if (!rproc)
2099 return -EINVAL;
2100
ddf71187
BA
2101 /* if rproc is marked always-on, rproc_add() booted it */
2102 /* TODO: make sure this works with rproc->power > 1 */
2103 if (rproc->auto_boot)
2104 rproc_shutdown(rproc);
2105
2099c77d
SJ
2106 mutex_lock(&rproc->lock);
2107 rproc->state = RPROC_DELETED;
2108 mutex_unlock(&rproc->lock);
2109
b003d45b
SJ
2110 rproc_delete_debug_dir(rproc);
2111
fec47d86
DG
2112 /* the rproc is downref'ed as soon as it's removed from the klist */
2113 mutex_lock(&rproc_list_mutex);
2114 list_del(&rproc->node);
2115 mutex_unlock(&rproc_list_mutex);
2116
b5ab5e24 2117 device_del(&rproc->dev);
400e64df
OBC
2118
2119 return 0;
2120}
160e7c84 2121EXPORT_SYMBOL(rproc_del);
400e64df 2122
7bdc9650
BA
2123/**
2124 * rproc_add_subdev() - add a subdevice to a remoteproc
2125 * @rproc: rproc handle to add the subdevice to
2126 * @subdev: subdev handle to register
4902676f
BA
2127 *
2128 * Caller is responsible for populating optional subdevice function pointers.
7bdc9650 2129 */
4902676f 2130void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
7bdc9650 2131{
7bdc9650
BA
2132 list_add_tail(&subdev->node, &rproc->subdevs);
2133}
2134EXPORT_SYMBOL(rproc_add_subdev);
2135
2136/**
2137 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2138 * @rproc: rproc handle to remove the subdevice from
2139 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2140 */
2141void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2142{
2143 list_del(&subdev->node);
2144}
2145EXPORT_SYMBOL(rproc_remove_subdev);
2146
7c89717f
BA
2147/**
2148 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2149 * @dev: child device to find ancestor of
2150 *
2151 * Returns the ancestor rproc instance, or NULL if not found.
2152 */
2153struct rproc *rproc_get_by_child(struct device *dev)
2154{
2155 for (dev = dev->parent; dev; dev = dev->parent) {
2156 if (dev->type == &rproc_type)
2157 return dev->driver_data;
2158 }
2159
2160 return NULL;
2161}
2162EXPORT_SYMBOL(rproc_get_by_child);
2163
8afd519c
FGL
2164/**
2165 * rproc_report_crash() - rproc crash reporter function
2166 * @rproc: remote processor
2167 * @type: crash type
2168 *
2169 * This function must be called every time a crash is detected by the low-level
2170 * drivers implementing a specific remoteproc. This should not be called from a
2171 * non-remoteproc driver.
2172 *
2173 * This function can be called from atomic/interrupt context.
2174 */
2175void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2176{
2177 if (!rproc) {
2178 pr_err("NULL rproc pointer\n");
2179 return;
2180 }
2181
2182 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2183 rproc->name, rproc_crash_to_string(type));
2184
2185 /* create a new task to handle the error */
2186 schedule_work(&rproc->crash_handler);
2187}
2188EXPORT_SYMBOL(rproc_report_crash);
2189
400e64df
OBC
2190static int __init remoteproc_init(void)
2191{
2aefbef0 2192 rproc_init_sysfs();
400e64df 2193 rproc_init_debugfs();
b5ab5e24 2194
400e64df
OBC
2195 return 0;
2196}
2197module_init(remoteproc_init);
2198
2199static void __exit remoteproc_exit(void)
2200{
f42f79af
SA
2201 ida_destroy(&rproc_dev_index);
2202
400e64df 2203 rproc_exit_debugfs();
2aefbef0 2204 rproc_exit_sysfs();
400e64df
OBC
2205}
2206module_exit(remoteproc_exit);
2207
2208MODULE_LICENSE("GPL v2");
2209MODULE_DESCRIPTION("Generic Remote Processor Framework");