remoteproc: q6v5_adsp: Remove voting for lpass_aon clock
[linux-2.6-block.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
400e64df
OBC
1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt) "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
2666ca91 36#include <linux/devcoredump.h>
400e64df
OBC
37#include <linux/remoteproc.h>
38#include <linux/iommu.h>
b5ab5e24 39#include <linux/idr.h>
400e64df 40#include <linux/elf.h>
a2b950ac 41#include <linux/crc32.h>
400e64df
OBC
42#include <linux/virtio_ids.h>
43#include <linux/virtio_ring.h>
cf59d3e9 44#include <asm/byteorder.h>
400e64df
OBC
45
46#include "remoteproc_internal.h"
47
fec47d86
DG
48static DEFINE_MUTEX(rproc_list_mutex);
49static LIST_HEAD(rproc_list);
50
400e64df 51typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
fd2c15ec 52 struct resource_table *table, int len);
a2b950ac
OBC
53typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
54 void *, int offset, int avail);
400e64df 55
c6aed238
LP
56static int rproc_alloc_carveout(struct rproc *rproc,
57 struct rproc_mem_entry *mem);
58static int rproc_release_carveout(struct rproc *rproc,
59 struct rproc_mem_entry *mem);
60
b5ab5e24
OBC
61/* Unique indices for remoteproc devices */
62static DEFINE_IDA(rproc_dev_index);
63
8afd519c
FGL
64static const char * const rproc_crash_names[] = {
65 [RPROC_MMUFAULT] = "mmufault",
b3d39032
BA
66 [RPROC_WATCHDOG] = "watchdog",
67 [RPROC_FATAL_ERROR] = "fatal error",
8afd519c
FGL
68};
69
70/* translate rproc_crash_type to string */
71static const char *rproc_crash_to_string(enum rproc_crash_type type)
72{
73 if (type < ARRAY_SIZE(rproc_crash_names))
74 return rproc_crash_names[type];
b23f7a09 75 return "unknown";
8afd519c
FGL
76}
77
400e64df
OBC
78/*
79 * This is the IOMMU fault handler we register with the IOMMU API
80 * (when relevant; not all remote processors access memory through
81 * an IOMMU).
82 *
83 * IOMMU core will invoke this handler whenever the remote processor
84 * will try to access an unmapped device address.
400e64df
OBC
85 */
86static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
730f84ce 87 unsigned long iova, int flags, void *token)
400e64df 88{
8afd519c
FGL
89 struct rproc *rproc = token;
90
400e64df
OBC
91 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
92
8afd519c
FGL
93 rproc_report_crash(rproc, RPROC_MMUFAULT);
94
400e64df
OBC
95 /*
96 * Let the iommu core know we're not really handling this fault;
8afd519c 97 * we just used it as a recovery trigger.
400e64df
OBC
98 */
99 return -ENOSYS;
100}
101
102static int rproc_enable_iommu(struct rproc *rproc)
103{
104 struct iommu_domain *domain;
b5ab5e24 105 struct device *dev = rproc->dev.parent;
400e64df
OBC
106 int ret;
107
315491e5
SA
108 if (!rproc->has_iommu) {
109 dev_dbg(dev, "iommu not present\n");
0798e1da 110 return 0;
400e64df
OBC
111 }
112
113 domain = iommu_domain_alloc(dev->bus);
114 if (!domain) {
115 dev_err(dev, "can't alloc iommu domain\n");
116 return -ENOMEM;
117 }
118
77ca2332 119 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
120
121 ret = iommu_attach_device(domain, dev);
122 if (ret) {
123 dev_err(dev, "can't attach iommu device: %d\n", ret);
124 goto free_domain;
125 }
126
127 rproc->domain = domain;
128
129 return 0;
130
131free_domain:
132 iommu_domain_free(domain);
133 return ret;
134}
135
136static void rproc_disable_iommu(struct rproc *rproc)
137{
138 struct iommu_domain *domain = rproc->domain;
b5ab5e24 139 struct device *dev = rproc->dev.parent;
400e64df
OBC
140
141 if (!domain)
142 return;
143
144 iommu_detach_device(domain, dev);
145 iommu_domain_free(domain);
400e64df
OBC
146}
147
eb30596e
LP
148static phys_addr_t rproc_va_to_pa(void *cpu_addr)
149{
150 /*
151 * Return physical address according to virtual address location
152 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
153 * - in kernel: if region allocated in generic dma memory pool
154 */
155 if (is_vmalloc_addr(cpu_addr)) {
156 return page_to_phys(vmalloc_to_page(cpu_addr)) +
157 offset_in_page(cpu_addr);
158 }
159
160 WARN_ON(!virt_addr_valid(cpu_addr));
161 return virt_to_phys(cpu_addr);
162}
163
a01f7cd6
SA
164/**
165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166 * @rproc: handle of a remote processor
167 * @da: remoteproc device address to translate
168 * @len: length of the memory region @da is pointing to
169 *
400e64df
OBC
170 * Some remote processors will ask us to allocate them physically contiguous
171 * memory regions (which we call "carveouts"), and map them to specific
a01f7cd6
SA
172 * device addresses (which are hardcoded in the firmware). They may also have
173 * dedicated memory regions internal to the processors, and use them either
174 * exclusively or alongside carveouts.
400e64df
OBC
175 *
176 * They may then ask us to copy objects into specific device addresses (e.g.
177 * code/data sections) or expose us certain symbols in other device address
178 * (e.g. their trace buffer).
179 *
a01f7cd6
SA
180 * This function is a helper function with which we can go over the allocated
181 * carveouts and translate specific device addresses to kernel virtual addresses
182 * so we can access the referenced memory. This function also allows to perform
183 * translations on the internal remoteproc memory regions through a platform
184 * implementation specific da_to_va ops, if present.
185 *
186 * The function returns a valid kernel address on success or NULL on failure.
400e64df
OBC
187 *
188 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
189 * but only on kernel direct mapped RAM memory. Instead, we're just using
a01f7cd6
SA
190 * here the output of the DMA API for the carveouts, which should be more
191 * correct.
400e64df 192 */
72854fb0 193void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
400e64df
OBC
194{
195 struct rproc_mem_entry *carveout;
196 void *ptr = NULL;
197
a01f7cd6
SA
198 if (rproc->ops->da_to_va) {
199 ptr = rproc->ops->da_to_va(rproc, da, len);
200 if (ptr)
201 goto out;
202 }
203
400e64df
OBC
204 list_for_each_entry(carveout, &rproc->carveouts, node) {
205 int offset = da - carveout->da;
206
207 /* try next carveout if da is too small */
208 if (offset < 0)
209 continue;
210
211 /* try next carveout if da is too large */
212 if (offset + len > carveout->len)
213 continue;
214
215 ptr = carveout->va + offset;
216
217 break;
218 }
219
a01f7cd6 220out:
400e64df
OBC
221 return ptr;
222}
4afc89d6 223EXPORT_SYMBOL(rproc_da_to_va);
400e64df 224
b0019ccd
LP
225/**
226 * rproc_find_carveout_by_name() - lookup the carveout region by a name
227 * @rproc: handle of a remote processor
228 * @name,..: carveout name to find (standard printf format)
229 *
230 * Platform driver has the capability to register some pre-allacoted carveout
231 * (physically contiguous memory regions) before rproc firmware loading and
232 * associated resource table analysis. These regions may be dedicated memory
233 * regions internal to the coprocessor or specified DDR region with specific
234 * attributes
235 *
236 * This function is a helper function with which we can go over the
237 * allocated carveouts and return associated region characteristics like
238 * coprocessor address, length or processor virtual address.
239 *
240 * Return: a valid pointer on carveout entry on success or NULL on failure.
241 */
242struct rproc_mem_entry *
243rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
244{
245 va_list args;
246 char _name[32];
247 struct rproc_mem_entry *carveout, *mem = NULL;
248
249 if (!name)
250 return NULL;
251
252 va_start(args, name);
253 vsnprintf(_name, sizeof(_name), name, args);
254 va_end(args);
255
256 list_for_each_entry(carveout, &rproc->carveouts, node) {
257 /* Compare carveout and requested names */
258 if (!strcmp(carveout->name, _name)) {
259 mem = carveout;
260 break;
261 }
262 }
263
264 return mem;
265}
266
c874bf59
LP
267/**
268 * rproc_check_carveout_da() - Check specified carveout da configuration
269 * @rproc: handle of a remote processor
270 * @mem: pointer on carveout to check
271 * @da: area device address
272 * @len: associated area size
273 *
274 * This function is a helper function to verify requested device area (couple
275 * da, len) is part of specified carevout.
276 *
277 * Return: 0 if carveout match request else -ENOMEM
278 */
279int rproc_check_carveout_da(struct rproc *rproc, struct rproc_mem_entry *mem,
280 u32 da, u32 len)
281{
282 struct device *dev = &rproc->dev;
283 int delta = 0;
284
285 /* Check requested resource length */
286 if (len > mem->len) {
287 dev_err(dev, "Registered carveout doesn't fit len request\n");
288 return -ENOMEM;
289 }
290
291 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
292 /* Update existing carveout da */
293 mem->da = da;
294 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
295 delta = da - mem->da;
296
297 /* Check requested resource belongs to registered carveout */
298 if (delta < 0) {
299 dev_err(dev,
300 "Registered carveout doesn't fit da request\n");
301 return -ENOMEM;
302 }
303
304 if (delta + len > mem->len) {
305 dev_err(dev,
306 "Registered carveout doesn't fit len request\n");
307 return -ENOMEM;
308 }
309 }
310
311 return 0;
312}
313
6db20ea8 314int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 315{
7a186941 316 struct rproc *rproc = rvdev->rproc;
b5ab5e24 317 struct device *dev = &rproc->dev;
6db20ea8 318 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 319 struct fw_rsc_vdev *rsc;
7a186941 320 int ret, size, notifyid;
c6aed238 321 struct rproc_mem_entry *mem;
400e64df 322
7a186941 323 /* actual size of vring (in bytes) */
6db20ea8 324 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 325
c6aed238
LP
326 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
327
328 /* Search for pre-registered carveout */
329 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
330 i);
331 if (mem) {
332 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
333 return -ENOMEM;
334 } else {
335 /* Register carveout in in list */
336 mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
337 rproc_alloc_carveout,
338 rproc_release_carveout,
339 "vdev%dvring%d",
340 rvdev->index, i);
341 if (!mem) {
342 dev_err(dev, "Can't allocate memory entry structure\n");
343 return -ENOMEM;
344 }
345
346 rproc_add_carveout(rproc, mem);
400e64df
OBC
347 }
348
6db20ea8
OBC
349 /*
350 * Assign an rproc-wide unique index for this vring
351 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
352 * TODO: support predefined notifyids (via resource table)
353 */
15fc6110 354 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 355 if (ret < 0) {
15fc6110 356 dev_err(dev, "idr_alloc failed: %d\n", ret);
7a186941
OBC
357 return ret;
358 }
15fc6110 359 notifyid = ret;
400e64df 360
48f18f89
BA
361 /* Potentially bump max_notifyid */
362 if (notifyid > rproc->max_notifyid)
363 rproc->max_notifyid = notifyid;
364
6db20ea8 365 rvring->notifyid = notifyid;
400e64df 366
c6aed238 367 /* Let the rproc know the notifyid of this vring.*/
c0d63157 368 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
369 return 0;
370}
371
6db20ea8
OBC
372static int
373rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
374{
375 struct rproc *rproc = rvdev->rproc;
b5ab5e24 376 struct device *dev = &rproc->dev;
6db20ea8
OBC
377 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
378 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 379
9d7814a9 380 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
730f84ce 381 i, vring->da, vring->num, vring->align);
7a186941 382
6db20ea8
OBC
383 /* verify queue size and vring alignment are sane */
384 if (!vring->num || !vring->align) {
385 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
730f84ce 386 vring->num, vring->align);
6db20ea8 387 return -EINVAL;
7a186941 388 }
6db20ea8
OBC
389
390 rvring->len = vring->num;
391 rvring->align = vring->align;
392 rvring->rvdev = rvdev;
393
394 return 0;
395}
396
397void rproc_free_vring(struct rproc_vring *rvring)
398{
6db20ea8 399 struct rproc *rproc = rvring->rvdev->rproc;
c0d63157
SB
400 int idx = rvring->rvdev->vring - rvring;
401 struct fw_rsc_vdev *rsc;
6db20ea8 402
6db20ea8 403 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 404
c0d63157
SB
405 /* reset resource entry info */
406 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
407 rsc->vring[idx].da = 0;
408 rsc->vring[idx].notifyid = -1;
7a186941
OBC
409}
410
6f8b0373 411static int rproc_vdev_do_start(struct rproc_subdev *subdev)
f5bcb353
BA
412{
413 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
414
415 return rproc_add_virtio_dev(rvdev, rvdev->id);
416}
417
6f8b0373 418static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
f5bcb353
BA
419{
420 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
421
422 rproc_remove_virtio_dev(rvdev);
423}
424
400e64df 425/**
fd2c15ec 426 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
427 * @rproc: the remote processor
428 * @rsc: the vring resource descriptor
fd2c15ec 429 * @avail: size of available data (for sanity checking the image)
400e64df 430 *
7a186941
OBC
431 * This resource entry requests the host to statically register a virtio
432 * device (vdev), and setup everything needed to support it. It contains
433 * everything needed to make it possible: the virtio device id, virtio
434 * device features, vrings information, virtio config space, etc...
435 *
436 * Before registering the vdev, the vrings are allocated from non-cacheable
437 * physically contiguous memory. Currently we only support two vrings per
438 * remote processor (temporary limitation). We might also want to consider
439 * doing the vring allocation only later when ->find_vqs() is invoked, and
440 * then release them upon ->del_vqs().
441 *
442 * Note: @da is currently not really handled correctly: we dynamically
443 * allocate it using the DMA API, ignoring requested hard coded addresses,
444 * and we don't take care of any required IOMMU programming. This is all
445 * going to be taken care of when the generic iommu-based DMA API will be
446 * merged. Meanwhile, statically-addressed iommu-based firmware images should
447 * use RSC_DEVMEM resource entries to map their required @da to the physical
448 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
449 *
450 * Returns 0 on success, or an appropriate error code otherwise
451 */
fd2c15ec 452static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
730f84ce 453 int offset, int avail)
400e64df 454{
b5ab5e24 455 struct device *dev = &rproc->dev;
7a186941
OBC
456 struct rproc_vdev *rvdev;
457 int i, ret;
400e64df 458
fd2c15ec
OBC
459 /* make sure resource isn't truncated */
460 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
461 + rsc->config_len > avail) {
b5ab5e24 462 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
463 return -EINVAL;
464 }
465
fd2c15ec
OBC
466 /* make sure reserved bytes are zeroes */
467 if (rsc->reserved[0] || rsc->reserved[1]) {
468 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
469 return -EINVAL;
470 }
471
9d7814a9 472 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
fd2c15ec
OBC
473 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
474
7a186941
OBC
475 /* we currently support only two vrings per rvdev */
476 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 477 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
478 return -EINVAL;
479 }
480
899585ad 481 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
7a186941
OBC
482 if (!rvdev)
483 return -ENOMEM;
400e64df 484
aab8d802
BA
485 kref_init(&rvdev->refcount);
486
f5bcb353 487 rvdev->id = rsc->id;
7a186941 488 rvdev->rproc = rproc;
c6aed238 489 rvdev->index = rproc->nb_vdev++;
400e64df 490
6db20ea8 491 /* parse the vrings */
7a186941 492 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 493 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 494 if (ret)
6db20ea8 495 goto free_rvdev;
7a186941 496 }
400e64df 497
a2b950ac
OBC
498 /* remember the resource offset*/
499 rvdev->rsc_offset = offset;
fd2c15ec 500
a863af5d
BA
501 /* allocate the vring resources */
502 for (i = 0; i < rsc->num_of_vrings; i++) {
503 ret = rproc_alloc_vring(rvdev, i);
504 if (ret)
505 goto unwind_vring_allocations;
506 }
507
7a186941 508 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 509
6f8b0373
AE
510 rvdev->subdev.start = rproc_vdev_do_start;
511 rvdev->subdev.stop = rproc_vdev_do_stop;
4902676f
BA
512
513 rproc_add_subdev(rproc, &rvdev->subdev);
400e64df
OBC
514
515 return 0;
7a186941 516
a863af5d
BA
517unwind_vring_allocations:
518 for (i--; i >= 0; i--)
519 rproc_free_vring(&rvdev->vring[i]);
6db20ea8 520free_rvdev:
7a186941
OBC
521 kfree(rvdev);
522 return ret;
400e64df
OBC
523}
524
aab8d802
BA
525void rproc_vdev_release(struct kref *ref)
526{
527 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
a863af5d 528 struct rproc_vring *rvring;
f5bcb353 529 struct rproc *rproc = rvdev->rproc;
a863af5d
BA
530 int id;
531
532 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
533 rvring = &rvdev->vring[id];
a863af5d
BA
534 rproc_free_vring(rvring);
535 }
aab8d802 536
f5bcb353 537 rproc_remove_subdev(rproc, &rvdev->subdev);
aab8d802
BA
538 list_del(&rvdev->node);
539 kfree(rvdev);
540}
541
400e64df
OBC
542/**
543 * rproc_handle_trace() - handle a shared trace buffer resource
544 * @rproc: the remote processor
545 * @rsc: the trace resource descriptor
fd2c15ec 546 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
547 *
548 * In case the remote processor dumps trace logs into memory,
549 * export it via debugfs.
550 *
551 * Currently, the 'da' member of @rsc should contain the device address
552 * where the remote processor is dumping the traces. Later we could also
553 * support dynamically allocating this address using the generic
554 * DMA API (but currently there isn't a use case for that).
555 *
556 * Returns 0 on success, or an appropriate error code otherwise
557 */
fd2c15ec 558static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
730f84ce 559 int offset, int avail)
400e64df
OBC
560{
561 struct rproc_mem_entry *trace;
b5ab5e24 562 struct device *dev = &rproc->dev;
400e64df
OBC
563 void *ptr;
564 char name[15];
565
fd2c15ec 566 if (sizeof(*rsc) > avail) {
b5ab5e24 567 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
568 return -EINVAL;
569 }
570
571 /* make sure reserved bytes are zeroes */
572 if (rsc->reserved) {
573 dev_err(dev, "trace rsc has non zero reserved bytes\n");
574 return -EINVAL;
575 }
576
400e64df
OBC
577 /* what's the kernel address of this resource ? */
578 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
579 if (!ptr) {
580 dev_err(dev, "erroneous trace resource entry\n");
581 return -EINVAL;
582 }
583
584 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 585 if (!trace)
400e64df 586 return -ENOMEM;
400e64df
OBC
587
588 /* set the trace buffer dma properties */
589 trace->len = rsc->len;
590 trace->va = ptr;
591
592 /* make sure snprintf always null terminates, even if truncating */
593 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
594
595 /* create the debugfs entry */
596 trace->priv = rproc_create_trace_file(name, rproc, trace);
597 if (!trace->priv) {
598 trace->va = NULL;
599 kfree(trace);
600 return -EINVAL;
601 }
602
603 list_add_tail(&trace->node, &rproc->traces);
604
605 rproc->num_traces++;
606
276ec993 607 dev_dbg(dev, "%s added: va %pK, da 0x%x, len 0x%x\n",
35386166 608 name, ptr, rsc->da, rsc->len);
400e64df
OBC
609
610 return 0;
611}
612
613/**
614 * rproc_handle_devmem() - handle devmem resource entry
615 * @rproc: remote processor handle
616 * @rsc: the devmem resource entry
fd2c15ec 617 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
618 *
619 * Remote processors commonly need to access certain on-chip peripherals.
620 *
621 * Some of these remote processors access memory via an iommu device,
622 * and might require us to configure their iommu before they can access
623 * the on-chip peripherals they need.
624 *
625 * This resource entry is a request to map such a peripheral device.
626 *
627 * These devmem entries will contain the physical address of the device in
628 * the 'pa' member. If a specific device address is expected, then 'da' will
629 * contain it (currently this is the only use case supported). 'len' will
630 * contain the size of the physical region we need to map.
631 *
632 * Currently we just "trust" those devmem entries to contain valid physical
633 * addresses, but this is going to change: we want the implementations to
634 * tell us ranges of physical addresses the firmware is allowed to request,
635 * and not allow firmwares to request access to physical addresses that
636 * are outside those ranges.
637 */
fd2c15ec 638static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
730f84ce 639 int offset, int avail)
400e64df
OBC
640{
641 struct rproc_mem_entry *mapping;
b5ab5e24 642 struct device *dev = &rproc->dev;
400e64df
OBC
643 int ret;
644
645 /* no point in handling this resource without a valid iommu domain */
646 if (!rproc->domain)
647 return -EINVAL;
648
fd2c15ec 649 if (sizeof(*rsc) > avail) {
b5ab5e24 650 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
651 return -EINVAL;
652 }
653
654 /* make sure reserved bytes are zeroes */
655 if (rsc->reserved) {
b5ab5e24 656 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
657 return -EINVAL;
658 }
659
400e64df 660 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 661 if (!mapping)
400e64df 662 return -ENOMEM;
400e64df
OBC
663
664 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
665 if (ret) {
b5ab5e24 666 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
667 goto out;
668 }
669
670 /*
671 * We'll need this info later when we'll want to unmap everything
672 * (e.g. on shutdown).
673 *
674 * We can't trust the remote processor not to change the resource
675 * table, so we must maintain this info independently.
676 */
677 mapping->da = rsc->da;
678 mapping->len = rsc->len;
679 list_add_tail(&mapping->node, &rproc->mappings);
680
b5ab5e24 681 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
730f84ce 682 rsc->pa, rsc->da, rsc->len);
400e64df
OBC
683
684 return 0;
685
686out:
687 kfree(mapping);
688 return ret;
689}
690
f2e74abf 691/**
d7c51706 692 * rproc_alloc_carveout() - allocated specified carveout
f2e74abf 693 * @rproc: rproc handle
d7c51706 694 * @mem: the memory entry to allocate
400e64df 695 *
d7c51706
LP
696 * This function allocate specified memory entry @mem using
697 * dma_alloc_coherent() as default allocator
400e64df 698 */
d7c51706
LP
699static int rproc_alloc_carveout(struct rproc *rproc,
700 struct rproc_mem_entry *mem)
400e64df 701{
d7c51706 702 struct rproc_mem_entry *mapping = NULL;
b5ab5e24 703 struct device *dev = &rproc->dev;
400e64df
OBC
704 dma_addr_t dma;
705 void *va;
706 int ret;
707
d7c51706 708 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
400e64df 709 if (!va) {
9c219b23 710 dev_err(dev->parent,
d7c51706 711 "failed to allocate dma memory: len 0x%x\n", mem->len);
72029c90 712 return -ENOMEM;
400e64df
OBC
713 }
714
276ec993 715 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
d7c51706 716 va, &dma, mem->len);
400e64df
OBC
717
718 /*
719 * Ok, this is non-standard.
720 *
721 * Sometimes we can't rely on the generic iommu-based DMA API
722 * to dynamically allocate the device address and then set the IOMMU
723 * tables accordingly, because some remote processors might
724 * _require_ us to use hard coded device addresses that their
725 * firmware was compiled with.
726 *
727 * In this case, we must use the IOMMU API directly and map
728 * the memory to the device address as expected by the remote
729 * processor.
730 *
731 * Obviously such remote processor devices should not be configured
732 * to use the iommu-based DMA API: we expect 'dma' to contain the
733 * physical address in this case.
734 */
3bc8140b 735
d7c51706
LP
736 if (mem->da != FW_RSC_ADDR_ANY) {
737 if (!rproc->domain) {
738 dev_err(dev->parent,
739 "Bad carveout rsc configuration\n");
740 ret = -ENOMEM;
741 goto dma_free;
742 }
3bc8140b 743
7168d914
DC
744 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
745 if (!mapping) {
7168d914
DC
746 ret = -ENOMEM;
747 goto dma_free;
748 }
749
d7c51706
LP
750 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
751 mem->flags);
400e64df
OBC
752 if (ret) {
753 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 754 goto free_mapping;
400e64df
OBC
755 }
756
757 /*
758 * We'll need this info later when we'll want to unmap
759 * everything (e.g. on shutdown).
760 *
761 * We can't trust the remote processor not to change the
762 * resource table, so we must maintain this info independently.
763 */
d7c51706
LP
764 mapping->da = mem->da;
765 mapping->len = mem->len;
400e64df
OBC
766 list_add_tail(&mapping->node, &rproc->mappings);
767
b605ed8b 768 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
d7c51706
LP
769 mem->da, &dma);
770 } else {
771 mem->da = (u32)dma;
400e64df
OBC
772 }
773
d7c51706
LP
774 mem->dma = (u32)dma;
775 mem->va = va;
400e64df
OBC
776
777 return 0;
778
7168d914
DC
779free_mapping:
780 kfree(mapping);
400e64df 781dma_free:
d7c51706 782 dma_free_coherent(dev->parent, mem->len, va, dma);
400e64df
OBC
783 return ret;
784}
785
d7c51706
LP
786/**
787 * rproc_release_carveout() - release acquired carveout
788 * @rproc: rproc handle
789 * @mem: the memory entry to release
790 *
791 * This function releases specified memory entry @mem allocated via
792 * rproc_alloc_carveout() function by @rproc.
793 */
794static int rproc_release_carveout(struct rproc *rproc,
795 struct rproc_mem_entry *mem)
796{
797 struct device *dev = &rproc->dev;
798
799 /* clean up carveout allocations */
800 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
801 return 0;
802}
803
804/**
805 * rproc_handle_carveout() - handle phys contig memory allocation requests
806 * @rproc: rproc handle
807 * @rsc: the resource entry
808 * @avail: size of available data (for image validation)
809 *
810 * This function will handle firmware requests for allocation of physically
811 * contiguous memory regions.
812 *
813 * These request entries should come first in the firmware's resource table,
814 * as other firmware entries might request placing other data objects inside
815 * these memory regions (e.g. data/code segments, trace resource entries, ...).
816 *
817 * Allocating memory this way helps utilizing the reserved physical memory
818 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
819 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
820 * pressure is important; it may have a substantial impact on performance.
821 */
822static int rproc_handle_carveout(struct rproc *rproc,
823 struct fw_rsc_carveout *rsc,
824 int offset, int avail)
825{
826 struct rproc_mem_entry *carveout;
827 struct device *dev = &rproc->dev;
828
829 if (sizeof(*rsc) > avail) {
830 dev_err(dev, "carveout rsc is truncated\n");
831 return -EINVAL;
832 }
833
834 /* make sure reserved bytes are zeroes */
835 if (rsc->reserved) {
836 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
837 return -EINVAL;
838 }
839
840 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
841 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
842
ffa5f9c8
LP
843 /*
844 * Check carveout rsc already part of a registered carveout,
845 * Search by name, then check the da and length
846 */
847 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
848
849 if (carveout) {
850 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
851 dev_err(dev,
852 "Carveout already associated to resource table\n");
853 return -ENOMEM;
854 }
855
856 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
857 return -ENOMEM;
858
859 /* Update memory carveout with resource table info */
860 carveout->rsc_offset = offset;
861 carveout->flags = rsc->flags;
862
863 return 0;
864 }
865
d7c51706
LP
866 /* Register carveout in in list */
867 carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
868 rproc_alloc_carveout,
869 rproc_release_carveout, rsc->name);
870 if (!carveout) {
871 dev_err(dev, "Can't allocate memory entry structure\n");
872 return -ENOMEM;
873 }
874
875 carveout->flags = rsc->flags;
876 carveout->rsc_offset = offset;
877 rproc_add_carveout(rproc, carveout);
878
879 return 0;
880}
881
15c0b025
LP
882/**
883 * rproc_add_carveout() - register an allocated carveout region
884 * @rproc: rproc handle
885 * @mem: memory entry to register
886 *
887 * This function registers specified memory entry in @rproc carveouts list.
888 * Specified carveout should have been allocated before registering.
889 */
890void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
891{
892 list_add_tail(&mem->node, &rproc->carveouts);
893}
894EXPORT_SYMBOL(rproc_add_carveout);
895
72029c90
LP
896/**
897 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
898 * @dev: pointer on device struct
899 * @va: virtual address
900 * @dma: dma address
901 * @len: memory carveout length
902 * @da: device address
903 * @release: memory carveout function
904 * @name: carveout name
905 *
906 * This function allocates a rproc_mem_entry struct and fill it with parameters
907 * provided by client.
908 */
909struct rproc_mem_entry *
910rproc_mem_entry_init(struct device *dev,
911 void *va, dma_addr_t dma, int len, u32 da,
d7c51706 912 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
72029c90
LP
913 int (*release)(struct rproc *, struct rproc_mem_entry *),
914 const char *name, ...)
915{
916 struct rproc_mem_entry *mem;
917 va_list args;
918
919 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
920 if (!mem)
921 return mem;
922
923 mem->va = va;
924 mem->dma = dma;
925 mem->da = da;
926 mem->len = len;
d7c51706 927 mem->alloc = alloc;
72029c90 928 mem->release = release;
d7c51706 929 mem->rsc_offset = FW_RSC_ADDR_ANY;
1429cca1 930 mem->of_resm_idx = -1;
72029c90
LP
931
932 va_start(args, name);
933 vsnprintf(mem->name, sizeof(mem->name), name, args);
934 va_end(args);
935
936 return mem;
937}
938EXPORT_SYMBOL(rproc_mem_entry_init);
939
1429cca1
LP
940/**
941 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
942 * from a reserved memory phandle
943 * @dev: pointer on device struct
944 * @of_resm_idx: reserved memory phandle index in "memory-region"
945 * @len: memory carveout length
946 * @da: device address
947 * @name: carveout name
948 *
949 * This function allocates a rproc_mem_entry struct and fill it with parameters
950 * provided by client.
951 */
952struct rproc_mem_entry *
953rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
954 u32 da, const char *name, ...)
955{
956 struct rproc_mem_entry *mem;
957 va_list args;
958
959 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
960 if (!mem)
961 return mem;
962
963 mem->da = da;
964 mem->len = len;
965 mem->rsc_offset = FW_RSC_ADDR_ANY;
966 mem->of_resm_idx = of_resm_idx;
967
968 va_start(args, name);
969 vsnprintf(mem->name, sizeof(mem->name), name, args);
970 va_end(args);
971
972 return mem;
973}
974EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
975
72029c90 976/**
e12bc14b
OBC
977 * A lookup table for resource handlers. The indices are defined in
978 * enum fw_resource_type.
979 */
232fcdbb 980static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
981 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
982 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
983 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
232fcdbb
SB
984 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
985};
986
400e64df 987/* handle firmware resource entries before booting the remote processor */
a4b24c75 988static int rproc_handle_resources(struct rproc *rproc,
232fcdbb 989 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 990{
b5ab5e24 991 struct device *dev = &rproc->dev;
e12bc14b 992 rproc_handle_resource_t handler;
fd2c15ec
OBC
993 int ret = 0, i;
994
d4bb86f2
BA
995 if (!rproc->table_ptr)
996 return 0;
997
a2b950ac
OBC
998 for (i = 0; i < rproc->table_ptr->num; i++) {
999 int offset = rproc->table_ptr->offset[i];
1000 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
a4b24c75 1001 int avail = rproc->table_sz - offset - sizeof(*hdr);
fd2c15ec
OBC
1002 void *rsc = (void *)hdr + sizeof(*hdr);
1003
1004 /* make sure table isn't truncated */
1005 if (avail < 0) {
1006 dev_err(dev, "rsc table is truncated\n");
1007 return -EINVAL;
1008 }
400e64df 1009
fd2c15ec 1010 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 1011
fd2c15ec
OBC
1012 if (hdr->type >= RSC_LAST) {
1013 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 1014 continue;
400e64df
OBC
1015 }
1016
232fcdbb 1017 handler = handlers[hdr->type];
e12bc14b
OBC
1018 if (!handler)
1019 continue;
1020
a2b950ac 1021 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 1022 if (ret)
400e64df 1023 break;
fd2c15ec 1024 }
400e64df
OBC
1025
1026 return ret;
1027}
1028
c455daa4
BA
1029static int rproc_prepare_subdevices(struct rproc *rproc)
1030{
1031 struct rproc_subdev *subdev;
1032 int ret;
1033
1034 list_for_each_entry(subdev, &rproc->subdevs, node) {
1035 if (subdev->prepare) {
1036 ret = subdev->prepare(subdev);
1037 if (ret)
1038 goto unroll_preparation;
1039 }
1040 }
1041
1042 return 0;
1043
1044unroll_preparation:
1045 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1046 if (subdev->unprepare)
1047 subdev->unprepare(subdev);
1048 }
1049
1050 return ret;
1051}
1052
618fcff3 1053static int rproc_start_subdevices(struct rproc *rproc)
7bdc9650
BA
1054{
1055 struct rproc_subdev *subdev;
1056 int ret;
1057
1058 list_for_each_entry(subdev, &rproc->subdevs, node) {
be37b1e0
BA
1059 if (subdev->start) {
1060 ret = subdev->start(subdev);
1061 if (ret)
1062 goto unroll_registration;
1063 }
7bdc9650
BA
1064 }
1065
1066 return 0;
1067
1068unroll_registration:
be37b1e0
BA
1069 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1070 if (subdev->stop)
1071 subdev->stop(subdev, true);
1072 }
7bdc9650
BA
1073
1074 return ret;
1075}
1076
618fcff3 1077static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
7bdc9650
BA
1078{
1079 struct rproc_subdev *subdev;
1080
be37b1e0
BA
1081 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1082 if (subdev->stop)
1083 subdev->stop(subdev, crashed);
1084 }
7bdc9650
BA
1085}
1086
c455daa4
BA
1087static void rproc_unprepare_subdevices(struct rproc *rproc)
1088{
1089 struct rproc_subdev *subdev;
1090
1091 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1092 if (subdev->unprepare)
1093 subdev->unprepare(subdev);
1094 }
1095}
1096
d7c51706
LP
1097/**
1098 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1099 * in the list
1100 * @rproc: the remote processor handle
1101 *
1102 * This function parses registered carveout list, performs allocation
1103 * if alloc() ops registered and updates resource table information
1104 * if rsc_offset set.
1105 *
1106 * Return: 0 on success
1107 */
1108static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1109{
1110 struct rproc_mem_entry *entry, *tmp;
1111 struct fw_rsc_carveout *rsc;
1112 struct device *dev = &rproc->dev;
1113 int ret;
1114
1115 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1116 if (entry->alloc) {
1117 ret = entry->alloc(rproc, entry);
1118 if (ret) {
1119 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1120 entry->name, ret);
1121 return -ENOMEM;
1122 }
1123 }
1124
1125 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1126 /* update resource table */
1127 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1128
1129 /*
1130 * Some remote processors might need to know the pa
1131 * even though they are behind an IOMMU. E.g., OMAP4's
1132 * remote M3 processor needs this so it can control
1133 * on-chip hardware accelerators that are not behind
1134 * the IOMMU, and therefor must know the pa.
1135 *
1136 * Generally we don't want to expose physical addresses
1137 * if we don't have to (remote processors are generally
1138 * _not_ trusted), so we might want to do this only for
1139 * remote processor that _must_ have this (e.g. OMAP4's
1140 * dual M3 subsystem).
1141 *
1142 * Non-IOMMU processors might also want to have this info.
1143 * In this case, the device address and the physical address
1144 * are the same.
1145 */
ffa5f9c8
LP
1146
1147 /* Use va if defined else dma to generate pa */
d7c51706
LP
1148 if (entry->va)
1149 rsc->pa = (u32)rproc_va_to_pa(entry->va);
ffa5f9c8
LP
1150 else
1151 rsc->pa = (u32)entry->dma;
1152
1153 rsc->da = entry->da;
1154 rsc->len = entry->len;
d7c51706
LP
1155 }
1156 }
1157
1158 return 0;
1159}
1160
2666ca91
SJ
1161/**
1162 * rproc_coredump_cleanup() - clean up dump_segments list
1163 * @rproc: the remote processor handle
1164 */
1165static void rproc_coredump_cleanup(struct rproc *rproc)
1166{
1167 struct rproc_dump_segment *entry, *tmp;
1168
1169 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1170 list_del(&entry->node);
1171 kfree(entry);
1172 }
1173}
1174
400e64df
OBC
1175/**
1176 * rproc_resource_cleanup() - clean up and free all acquired resources
1177 * @rproc: rproc handle
1178 *
1179 * This function will free all resources acquired for @rproc, and it
7a186941 1180 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
1181 */
1182static void rproc_resource_cleanup(struct rproc *rproc)
1183{
1184 struct rproc_mem_entry *entry, *tmp;
d81fb32f 1185 struct rproc_vdev *rvdev, *rvtmp;
b5ab5e24 1186 struct device *dev = &rproc->dev;
400e64df
OBC
1187
1188 /* clean up debugfs trace entries */
1189 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
1190 rproc_remove_trace_file(entry->priv);
1191 rproc->num_traces--;
1192 list_del(&entry->node);
1193 kfree(entry);
1194 }
1195
400e64df
OBC
1196 /* clean up iommu mapping entries */
1197 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1198 size_t unmapped;
1199
1200 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1201 if (unmapped != entry->len) {
1202 /* nothing much to do besides complaining */
e981f6d4 1203 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
730f84ce 1204 unmapped);
400e64df
OBC
1205 }
1206
1207 list_del(&entry->node);
1208 kfree(entry);
1209 }
b6356a01
SA
1210
1211 /* clean up carveout allocations */
1212 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
f2e74abf
LP
1213 if (entry->release)
1214 entry->release(rproc, entry);
b6356a01
SA
1215 list_del(&entry->node);
1216 kfree(entry);
1217 }
d81fb32f
BA
1218
1219 /* clean up remote vdev entries */
f5bcb353 1220 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
2b45cef5 1221 kref_put(&rvdev->refcount, rproc_vdev_release);
2666ca91
SJ
1222
1223 rproc_coredump_cleanup(rproc);
400e64df
OBC
1224}
1225
1efa30d0
SJ
1226static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1227{
a4b24c75 1228 struct resource_table *loaded_table;
1efa30d0 1229 struct device *dev = &rproc->dev;
a4b24c75 1230 int ret;
1efa30d0
SJ
1231
1232 /* load the ELF segments to memory */
1233 ret = rproc_load_segments(rproc, fw);
1234 if (ret) {
1235 dev_err(dev, "Failed to load program segments: %d\n", ret);
1236 return ret;
1237 }
1238
1239 /*
1240 * The starting device has been given the rproc->cached_table as the
1241 * resource table. The address of the vring along with the other
1242 * allocated resources (carveouts etc) is stored in cached_table.
1243 * In order to pass this information to the remote device we must copy
1244 * this information to device memory. We also update the table_ptr so
1245 * that any subsequent changes will be applied to the loaded version.
1246 */
1247 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1248 if (loaded_table) {
a4b24c75 1249 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1efa30d0
SJ
1250 rproc->table_ptr = loaded_table;
1251 }
1252
c455daa4
BA
1253 ret = rproc_prepare_subdevices(rproc);
1254 if (ret) {
1255 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1256 rproc->name, ret);
f68d51bd 1257 goto reset_table_ptr;
c455daa4
BA
1258 }
1259
1efa30d0
SJ
1260 /* power up the remote processor */
1261 ret = rproc->ops->start(rproc);
1262 if (ret) {
1263 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
c455daa4 1264 goto unprepare_subdevices;
1efa30d0
SJ
1265 }
1266
618fcff3
BA
1267 /* Start any subdevices for the remote processor */
1268 ret = rproc_start_subdevices(rproc);
1efa30d0
SJ
1269 if (ret) {
1270 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1271 rproc->name, ret);
c455daa4 1272 goto stop_rproc;
1efa30d0
SJ
1273 }
1274
1275 rproc->state = RPROC_RUNNING;
1276
1277 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1278
1279 return 0;
c455daa4
BA
1280
1281stop_rproc:
1282 rproc->ops->stop(rproc);
c455daa4
BA
1283unprepare_subdevices:
1284 rproc_unprepare_subdevices(rproc);
f68d51bd
SA
1285reset_table_ptr:
1286 rproc->table_ptr = rproc->cached_table;
c455daa4
BA
1287
1288 return ret;
1efa30d0
SJ
1289}
1290
400e64df
OBC
1291/*
1292 * take a firmware and boot a remote processor with it.
1293 */
1294static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1295{
b5ab5e24 1296 struct device *dev = &rproc->dev;
400e64df 1297 const char *name = rproc->firmware;
58b64090 1298 int ret;
400e64df
OBC
1299
1300 ret = rproc_fw_sanity_check(rproc, fw);
1301 if (ret)
1302 return ret;
1303
e981f6d4 1304 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
1305
1306 /*
1307 * if enabling an IOMMU isn't relevant for this rproc, this is
1308 * just a nop
1309 */
1310 ret = rproc_enable_iommu(rproc);
1311 if (ret) {
1312 dev_err(dev, "can't enable iommu: %d\n", ret);
1313 return ret;
1314 }
1315
3e5f9eb5 1316 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
988d204c 1317
c1d35c1a
BA
1318 /* Load resource table, core dump segment list etc from the firmware */
1319 ret = rproc_parse_fw(rproc, fw);
58b64090
BA
1320 if (ret)
1321 goto disable_iommu;
a0c10687 1322
b35d7afc
BA
1323 /* reset max_notifyid */
1324 rproc->max_notifyid = -1;
1325
c6aed238
LP
1326 /* reset handled vdev */
1327 rproc->nb_vdev = 0;
1328
400e64df 1329 /* handle fw resources which are required to boot rproc */
a4b24c75 1330 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
400e64df
OBC
1331 if (ret) {
1332 dev_err(dev, "Failed to process resources: %d\n", ret);
229b85a6 1333 goto clean_up_resources;
400e64df
OBC
1334 }
1335
d7c51706
LP
1336 /* Allocate carveout resources associated to rproc */
1337 ret = rproc_alloc_registered_carveouts(rproc);
1338 if (ret) {
1339 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1340 ret);
1341 goto clean_up_resources;
1342 }
1343
1efa30d0
SJ
1344 ret = rproc_start(rproc, fw);
1345 if (ret)
229b85a6 1346 goto clean_up_resources;
400e64df
OBC
1347
1348 return 0;
1349
229b85a6
BA
1350clean_up_resources:
1351 rproc_resource_cleanup(rproc);
a0c10687
BA
1352 kfree(rproc->cached_table);
1353 rproc->cached_table = NULL;
988d204c 1354 rproc->table_ptr = NULL;
58b64090 1355disable_iommu:
400e64df
OBC
1356 rproc_disable_iommu(rproc);
1357 return ret;
1358}
1359
1360/*
5e6533f7 1361 * take a firmware and boot it up.
400e64df
OBC
1362 *
1363 * Note: this function is called asynchronously upon registration of the
1364 * remote processor (so we must wait until it completes before we try
1365 * to unregister the device. one other option is just to use kref here,
1366 * that might be cleaner).
1367 */
5e6533f7 1368static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
400e64df
OBC
1369{
1370 struct rproc *rproc = context;
a2b950ac 1371
7a20c64d 1372 rproc_boot(rproc);
ddf71187 1373
3cc6e787 1374 release_firmware(fw);
400e64df
OBC
1375}
1376
5e6533f7 1377static int rproc_trigger_auto_boot(struct rproc *rproc)
70b85ef8
FGL
1378{
1379 int ret;
1380
70b85ef8 1381 /*
70b85ef8
FGL
1382 * We're initiating an asynchronous firmware loading, so we can
1383 * be built-in kernel code, without hanging the boot process.
1384 */
1385 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1386 rproc->firmware, &rproc->dev, GFP_KERNEL,
5e6533f7 1387 rproc, rproc_auto_boot_callback);
2099c77d 1388 if (ret < 0)
70b85ef8 1389 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
70b85ef8
FGL
1390
1391 return ret;
1392}
1393
880f5b38 1394static int rproc_stop(struct rproc *rproc, bool crashed)
1efa30d0
SJ
1395{
1396 struct device *dev = &rproc->dev;
1397 int ret;
1398
618fcff3
BA
1399 /* Stop any subdevices for the remote processor */
1400 rproc_stop_subdevices(rproc, crashed);
1efa30d0 1401
0a8b81cb
BA
1402 /* the installed resource table is no longer accessible */
1403 rproc->table_ptr = rproc->cached_table;
1404
1efa30d0
SJ
1405 /* power off the remote processor */
1406 ret = rproc->ops->stop(rproc);
1407 if (ret) {
1408 dev_err(dev, "can't stop rproc: %d\n", ret);
1409 return ret;
1410 }
1411
c455daa4
BA
1412 rproc_unprepare_subdevices(rproc);
1413
1efa30d0
SJ
1414 rproc->state = RPROC_OFFLINE;
1415
1416 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1417
1418 return 0;
1419}
1420
2666ca91
SJ
1421/**
1422 * rproc_coredump_add_segment() - add segment of device memory to coredump
1423 * @rproc: handle of a remote processor
1424 * @da: device address
1425 * @size: size of segment
1426 *
1427 * Add device memory to the list of segments to be included in a coredump for
1428 * the remoteproc.
1429 *
1430 * Return: 0 on success, negative errno on error.
1431 */
1432int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1433{
1434 struct rproc_dump_segment *segment;
1435
1436 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1437 if (!segment)
1438 return -ENOMEM;
1439
1440 segment->da = da;
1441 segment->size = size;
1442
1443 list_add_tail(&segment->node, &rproc->dump_segments);
1444
1445 return 0;
1446}
1447EXPORT_SYMBOL(rproc_coredump_add_segment);
1448
ab8f873b
SS
1449/**
1450 * rproc_coredump_add_custom_segment() - add custom coredump segment
1451 * @rproc: handle of a remote processor
1452 * @da: device address
1453 * @size: size of segment
1454 * @dumpfn: custom dump function called for each segment during coredump
1455 * @priv: private data
1456 *
1457 * Add device memory to the list of segments to be included in the coredump
1458 * and associate the segment with the given custom dump function and private
1459 * data.
1460 *
1461 * Return: 0 on success, negative errno on error.
1462 */
1463int rproc_coredump_add_custom_segment(struct rproc *rproc,
1464 dma_addr_t da, size_t size,
1465 void (*dumpfn)(struct rproc *rproc,
1466 struct rproc_dump_segment *segment,
1467 void *dest),
1468 void *priv)
1469{
1470 struct rproc_dump_segment *segment;
1471
1472 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1473 if (!segment)
1474 return -ENOMEM;
1475
1476 segment->da = da;
1477 segment->size = size;
1478 segment->priv = priv;
1479 segment->dump = dumpfn;
1480
1481 list_add_tail(&segment->node, &rproc->dump_segments);
1482
1483 return 0;
1484}
1485EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1486
2666ca91
SJ
1487/**
1488 * rproc_coredump() - perform coredump
1489 * @rproc: rproc handle
1490 *
1491 * This function will generate an ELF header for the registered segments
1492 * and create a devcoredump device associated with rproc.
1493 */
1494static void rproc_coredump(struct rproc *rproc)
1495{
1496 struct rproc_dump_segment *segment;
1497 struct elf32_phdr *phdr;
1498 struct elf32_hdr *ehdr;
1499 size_t data_size;
1500 size_t offset;
1501 void *data;
1502 void *ptr;
1503 int phnum = 0;
1504
1505 if (list_empty(&rproc->dump_segments))
1506 return;
1507
1508 data_size = sizeof(*ehdr);
1509 list_for_each_entry(segment, &rproc->dump_segments, node) {
1510 data_size += sizeof(*phdr) + segment->size;
1511
1512 phnum++;
1513 }
1514
1515 data = vmalloc(data_size);
1516 if (!data)
1517 return;
1518
1519 ehdr = data;
1520
1521 memset(ehdr, 0, sizeof(*ehdr));
1522 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1523 ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1524 ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1525 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1526 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1527 ehdr->e_type = ET_CORE;
1528 ehdr->e_machine = EM_NONE;
1529 ehdr->e_version = EV_CURRENT;
1530 ehdr->e_entry = rproc->bootaddr;
1531 ehdr->e_phoff = sizeof(*ehdr);
1532 ehdr->e_ehsize = sizeof(*ehdr);
1533 ehdr->e_phentsize = sizeof(*phdr);
1534 ehdr->e_phnum = phnum;
1535
1536 phdr = data + ehdr->e_phoff;
1537 offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1538 list_for_each_entry(segment, &rproc->dump_segments, node) {
1539 memset(phdr, 0, sizeof(*phdr));
1540 phdr->p_type = PT_LOAD;
1541 phdr->p_offset = offset;
1542 phdr->p_vaddr = segment->da;
1543 phdr->p_paddr = segment->da;
1544 phdr->p_filesz = segment->size;
1545 phdr->p_memsz = segment->size;
1546 phdr->p_flags = PF_R | PF_W | PF_X;
1547 phdr->p_align = 0;
1548
3952105d
SS
1549 if (segment->dump) {
1550 segment->dump(rproc, segment, data + offset);
2666ca91 1551 } else {
3952105d
SS
1552 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1553 if (!ptr) {
1554 dev_err(&rproc->dev,
1555 "invalid coredump segment (%pad, %zu)\n",
1556 &segment->da, segment->size);
1557 memset(data + offset, 0xff, segment->size);
1558 } else {
1559 memcpy(data + offset, ptr, segment->size);
1560 }
2666ca91
SJ
1561 }
1562
1563 offset += phdr->p_filesz;
1564 phdr++;
1565 }
1566
1567 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1568}
1569
70b85ef8
FGL
1570/**
1571 * rproc_trigger_recovery() - recover a remoteproc
1572 * @rproc: the remote processor
1573 *
56324d7a 1574 * The recovery is done by resetting all the virtio devices, that way all the
70b85ef8
FGL
1575 * rpmsg drivers will be reseted along with the remote processor making the
1576 * remoteproc functional again.
1577 *
1578 * This function can sleep, so it cannot be called from atomic context.
1579 */
1580int rproc_trigger_recovery(struct rproc *rproc)
1581{
7e83cab8
SJ
1582 const struct firmware *firmware_p;
1583 struct device *dev = &rproc->dev;
1584 int ret;
1585
1586 dev_err(dev, "recovering %s\n", rproc->name);
70b85ef8 1587
7e83cab8
SJ
1588 ret = mutex_lock_interruptible(&rproc->lock);
1589 if (ret)
1590 return ret;
1591
fcd58037 1592 ret = rproc_stop(rproc, true);
7e83cab8
SJ
1593 if (ret)
1594 goto unlock_mutex;
ddf71187 1595
2666ca91
SJ
1596 /* generate coredump */
1597 rproc_coredump(rproc);
1598
7e83cab8
SJ
1599 /* load firmware */
1600 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1601 if (ret < 0) {
1602 dev_err(dev, "request_firmware failed: %d\n", ret);
1603 goto unlock_mutex;
1604 }
ddf71187 1605
7e83cab8
SJ
1606 /* boot the remote processor up again */
1607 ret = rproc_start(rproc, firmware_p);
1608
1609 release_firmware(firmware_p);
1610
1611unlock_mutex:
1612 mutex_unlock(&rproc->lock);
1613 return ret;
70b85ef8
FGL
1614}
1615
8afd519c
FGL
1616/**
1617 * rproc_crash_handler_work() - handle a crash
1618 *
1619 * This function needs to handle everything related to a crash, like cpu
1620 * registers and stack dump, information to help to debug the fatal error, etc.
1621 */
1622static void rproc_crash_handler_work(struct work_struct *work)
1623{
1624 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1625 struct device *dev = &rproc->dev;
1626
1627 dev_dbg(dev, "enter %s\n", __func__);
1628
1629 mutex_lock(&rproc->lock);
1630
1631 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1632 /* handle only the first crash detected */
1633 mutex_unlock(&rproc->lock);
1634 return;
1635 }
1636
1637 rproc->state = RPROC_CRASHED;
1638 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1639 rproc->name);
1640
1641 mutex_unlock(&rproc->lock);
1642
2e37abb8
FGL
1643 if (!rproc->recovery_disabled)
1644 rproc_trigger_recovery(rproc);
8afd519c
FGL
1645}
1646
400e64df 1647/**
1b0ef906 1648 * rproc_boot() - boot a remote processor
400e64df
OBC
1649 * @rproc: handle of a remote processor
1650 *
1651 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1652 *
1653 * If the remote processor is already powered on, this function immediately
1654 * returns (successfully).
1655 *
1656 * Returns 0 on success, and an appropriate error value otherwise.
1657 */
1b0ef906 1658int rproc_boot(struct rproc *rproc)
400e64df
OBC
1659{
1660 const struct firmware *firmware_p;
1661 struct device *dev;
1662 int ret;
1663
1664 if (!rproc) {
1665 pr_err("invalid rproc handle\n");
1666 return -EINVAL;
1667 }
1668
b5ab5e24 1669 dev = &rproc->dev;
400e64df
OBC
1670
1671 ret = mutex_lock_interruptible(&rproc->lock);
1672 if (ret) {
1673 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1674 return ret;
1675 }
1676
2099c77d
SJ
1677 if (rproc->state == RPROC_DELETED) {
1678 ret = -ENODEV;
1679 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1680 goto unlock_mutex;
1681 }
1682
400e64df
OBC
1683 /* skip the boot process if rproc is already powered up */
1684 if (atomic_inc_return(&rproc->power) > 1) {
1685 ret = 0;
1686 goto unlock_mutex;
1687 }
1688
1689 dev_info(dev, "powering up %s\n", rproc->name);
1690
1691 /* load firmware */
1692 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1693 if (ret < 0) {
1694 dev_err(dev, "request_firmware failed: %d\n", ret);
1695 goto downref_rproc;
1696 }
1697
1698 ret = rproc_fw_boot(rproc, firmware_p);
1699
1700 release_firmware(firmware_p);
1701
1702downref_rproc:
fbb6aacb 1703 if (ret)
400e64df 1704 atomic_dec(&rproc->power);
400e64df
OBC
1705unlock_mutex:
1706 mutex_unlock(&rproc->lock);
1707 return ret;
1708}
1709EXPORT_SYMBOL(rproc_boot);
1710
1711/**
1712 * rproc_shutdown() - power off the remote processor
1713 * @rproc: the remote processor
1714 *
1715 * Power off a remote processor (previously booted with rproc_boot()).
1716 *
1717 * In case @rproc is still being used by an additional user(s), then
1718 * this function will just decrement the power refcount and exit,
1719 * without really powering off the device.
1720 *
1721 * Every call to rproc_boot() must (eventually) be accompanied by a call
1722 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1723 *
1724 * Notes:
1725 * - we're not decrementing the rproc's refcount, only the power refcount.
1726 * which means that the @rproc handle stays valid even after rproc_shutdown()
1727 * returns, and users can still use it with a subsequent rproc_boot(), if
1728 * needed.
400e64df
OBC
1729 */
1730void rproc_shutdown(struct rproc *rproc)
1731{
b5ab5e24 1732 struct device *dev = &rproc->dev;
400e64df
OBC
1733 int ret;
1734
1735 ret = mutex_lock_interruptible(&rproc->lock);
1736 if (ret) {
1737 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1738 return;
1739 }
1740
1741 /* if the remote proc is still needed, bail out */
1742 if (!atomic_dec_and_test(&rproc->power))
1743 goto out;
1744
fcd58037 1745 ret = rproc_stop(rproc, false);
400e64df
OBC
1746 if (ret) {
1747 atomic_inc(&rproc->power);
400e64df
OBC
1748 goto out;
1749 }
1750
1751 /* clean up all acquired resources */
1752 rproc_resource_cleanup(rproc);
1753
1754 rproc_disable_iommu(rproc);
1755
988d204c 1756 /* Free the copy of the resource table */
a0c10687
BA
1757 kfree(rproc->cached_table);
1758 rproc->cached_table = NULL;
988d204c 1759 rproc->table_ptr = NULL;
400e64df
OBC
1760out:
1761 mutex_unlock(&rproc->lock);
400e64df
OBC
1762}
1763EXPORT_SYMBOL(rproc_shutdown);
1764
fec47d86
DG
1765/**
1766 * rproc_get_by_phandle() - find a remote processor by phandle
1767 * @phandle: phandle to the rproc
1768 *
1769 * Finds an rproc handle using the remote processor's phandle, and then
1770 * return a handle to the rproc.
1771 *
1772 * This function increments the remote processor's refcount, so always
1773 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1774 *
1775 * Returns the rproc handle on success, and NULL on failure.
1776 */
8de3dbd0 1777#ifdef CONFIG_OF
fec47d86
DG
1778struct rproc *rproc_get_by_phandle(phandle phandle)
1779{
1780 struct rproc *rproc = NULL, *r;
1781 struct device_node *np;
1782
1783 np = of_find_node_by_phandle(phandle);
1784 if (!np)
1785 return NULL;
1786
1787 mutex_lock(&rproc_list_mutex);
1788 list_for_each_entry(r, &rproc_list, node) {
1789 if (r->dev.parent && r->dev.parent->of_node == np) {
fbb6aacb
BA
1790 /* prevent underlying implementation from being removed */
1791 if (!try_module_get(r->dev.parent->driver->owner)) {
1792 dev_err(&r->dev, "can't get owner\n");
1793 break;
1794 }
1795
fec47d86
DG
1796 rproc = r;
1797 get_device(&rproc->dev);
1798 break;
1799 }
1800 }
1801 mutex_unlock(&rproc_list_mutex);
1802
1803 of_node_put(np);
1804
1805 return rproc;
1806}
8de3dbd0
OBC
1807#else
1808struct rproc *rproc_get_by_phandle(phandle phandle)
1809{
1810 return NULL;
1811}
1812#endif
fec47d86
DG
1813EXPORT_SYMBOL(rproc_get_by_phandle);
1814
400e64df 1815/**
160e7c84 1816 * rproc_add() - register a remote processor
400e64df
OBC
1817 * @rproc: the remote processor handle to register
1818 *
1819 * Registers @rproc with the remoteproc framework, after it has been
1820 * allocated with rproc_alloc().
1821 *
1822 * This is called by the platform-specific rproc implementation, whenever
1823 * a new remote processor device is probed.
1824 *
1825 * Returns 0 on success and an appropriate error code otherwise.
1826 *
1827 * Note: this function initiates an asynchronous firmware loading
1828 * context, which will look for virtio devices supported by the rproc's
1829 * firmware.
1830 *
1831 * If found, those virtio devices will be created and added, so as a result
7a186941 1832 * of registering this remote processor, additional virtio drivers might be
400e64df 1833 * probed.
400e64df 1834 */
160e7c84 1835int rproc_add(struct rproc *rproc)
400e64df 1836{
b5ab5e24 1837 struct device *dev = &rproc->dev;
70b85ef8 1838 int ret;
400e64df 1839
b5ab5e24
OBC
1840 ret = device_add(dev);
1841 if (ret < 0)
1842 return ret;
400e64df 1843
b5ab5e24 1844 dev_info(dev, "%s is available\n", rproc->name);
400e64df
OBC
1845
1846 /* create debugfs entries */
1847 rproc_create_debug_dir(rproc);
7a20c64d
SJ
1848
1849 /* if rproc is marked always-on, request it to boot */
1850 if (rproc->auto_boot) {
5e6533f7 1851 ret = rproc_trigger_auto_boot(rproc);
7a20c64d
SJ
1852 if (ret < 0)
1853 return ret;
1854 }
400e64df 1855
d2e12e66
DG
1856 /* expose to rproc_get_by_phandle users */
1857 mutex_lock(&rproc_list_mutex);
1858 list_add(&rproc->node, &rproc_list);
1859 mutex_unlock(&rproc_list_mutex);
1860
1861 return 0;
400e64df 1862}
160e7c84 1863EXPORT_SYMBOL(rproc_add);
400e64df 1864
b5ab5e24
OBC
1865/**
1866 * rproc_type_release() - release a remote processor instance
1867 * @dev: the rproc's device
1868 *
1869 * This function should _never_ be called directly.
1870 *
1871 * It will be called by the driver core when no one holds a valid pointer
1872 * to @dev anymore.
1873 */
1874static void rproc_type_release(struct device *dev)
1875{
1876 struct rproc *rproc = container_of(dev, struct rproc, dev);
1877
7183a2a7
OBC
1878 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1879
b5ab5e24
OBC
1880 idr_destroy(&rproc->notifyids);
1881
1882 if (rproc->index >= 0)
1883 ida_simple_remove(&rproc_dev_index, rproc->index);
1884
0f57dc6a 1885 kfree(rproc->firmware);
fb98e2bd 1886 kfree(rproc->ops);
b5ab5e24
OBC
1887 kfree(rproc);
1888}
1889
c42ca04d 1890static const struct device_type rproc_type = {
b5ab5e24
OBC
1891 .name = "remoteproc",
1892 .release = rproc_type_release,
1893};
400e64df
OBC
1894
1895/**
1896 * rproc_alloc() - allocate a remote processor handle
1897 * @dev: the underlying device
1898 * @name: name of this remote processor
1899 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 1900 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
1901 * @len: length of private data needed by the rproc driver (in bytes)
1902 *
1903 * Allocates a new remote processor handle, but does not register
8b4aec9a 1904 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
1905 *
1906 * This function should be used by rproc implementations during initialization
1907 * of the remote processor.
1908 *
1909 * After creating an rproc handle using this function, and when ready,
160e7c84 1910 * implementations should then call rproc_add() to complete
400e64df
OBC
1911 * the registration of the remote processor.
1912 *
1913 * On success the new rproc is returned, and on failure, NULL.
1914 *
1915 * Note: _never_ directly deallocate @rproc, even if it was not registered
433c0e04 1916 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
400e64df
OBC
1917 */
1918struct rproc *rproc_alloc(struct device *dev, const char *name,
730f84ce
AS
1919 const struct rproc_ops *ops,
1920 const char *firmware, int len)
400e64df
OBC
1921{
1922 struct rproc *rproc;
8b4aec9a 1923 char *p, *template = "rproc-%s-fw";
0f57dc6a 1924 int name_len;
400e64df
OBC
1925
1926 if (!dev || !name || !ops)
1927 return NULL;
1928
0f57dc6a 1929 if (!firmware) {
8b4aec9a 1930 /*
8b4aec9a 1931 * If the caller didn't pass in a firmware name then
0f57dc6a 1932 * construct a default name.
8b4aec9a
RT
1933 */
1934 name_len = strlen(name) + strlen(template) - 2 + 1;
0f57dc6a
MR
1935 p = kmalloc(name_len, GFP_KERNEL);
1936 if (!p)
1937 return NULL;
8b4aec9a
RT
1938 snprintf(p, name_len, template, name);
1939 } else {
0f57dc6a
MR
1940 p = kstrdup(firmware, GFP_KERNEL);
1941 if (!p)
1942 return NULL;
1943 }
1944
1945 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1946 if (!rproc) {
1947 kfree(p);
1948 return NULL;
8b4aec9a
RT
1949 }
1950
fb98e2bd
BA
1951 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
1952 if (!rproc->ops) {
1953 kfree(p);
1954 kfree(rproc);
1955 return NULL;
1956 }
1957
8b4aec9a 1958 rproc->firmware = p;
400e64df 1959 rproc->name = name;
400e64df 1960 rproc->priv = &rproc[1];
ddf71187 1961 rproc->auto_boot = true;
400e64df 1962
b5ab5e24
OBC
1963 device_initialize(&rproc->dev);
1964 rproc->dev.parent = dev;
1965 rproc->dev.type = &rproc_type;
2aefbef0 1966 rproc->dev.class = &rproc_class;
7c89717f 1967 rproc->dev.driver_data = rproc;
b5ab5e24
OBC
1968
1969 /* Assign a unique device index and name */
1970 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1971 if (rproc->index < 0) {
1972 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1973 put_device(&rproc->dev);
1974 return NULL;
1975 }
1976
1977 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1978
400e64df
OBC
1979 atomic_set(&rproc->power, 0);
1980
0f21f9cc
BA
1981 /* Default to ELF loader if no load function is specified */
1982 if (!rproc->ops->load) {
1983 rproc->ops->load = rproc_elf_load_segments;
c1d35c1a 1984 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
0f21f9cc
BA
1985 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
1986 rproc->ops->sanity_check = rproc_elf_sanity_check;
1987 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
1988 }
400e64df
OBC
1989
1990 mutex_init(&rproc->lock);
1991
7a186941
OBC
1992 idr_init(&rproc->notifyids);
1993
400e64df
OBC
1994 INIT_LIST_HEAD(&rproc->carveouts);
1995 INIT_LIST_HEAD(&rproc->mappings);
1996 INIT_LIST_HEAD(&rproc->traces);
7a186941 1997 INIT_LIST_HEAD(&rproc->rvdevs);
7bdc9650 1998 INIT_LIST_HEAD(&rproc->subdevs);
2666ca91 1999 INIT_LIST_HEAD(&rproc->dump_segments);
400e64df 2000
8afd519c
FGL
2001 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2002
400e64df
OBC
2003 rproc->state = RPROC_OFFLINE;
2004
2005 return rproc;
2006}
2007EXPORT_SYMBOL(rproc_alloc);
2008
2009/**
433c0e04
BA
2010 * rproc_free() - unroll rproc_alloc()
2011 * @rproc: the remote processor handle
2012 *
2013 * This function decrements the rproc dev refcount.
2014 *
2015 * If no one holds any reference to rproc anymore, then its refcount would
2016 * now drop to zero, and it would be freed.
2017 */
2018void rproc_free(struct rproc *rproc)
2019{
2020 put_device(&rproc->dev);
2021}
2022EXPORT_SYMBOL(rproc_free);
2023
2024/**
2025 * rproc_put() - release rproc reference
400e64df
OBC
2026 * @rproc: the remote processor handle
2027 *
c6b5a276 2028 * This function decrements the rproc dev refcount.
400e64df 2029 *
c6b5a276
OBC
2030 * If no one holds any reference to rproc anymore, then its refcount would
2031 * now drop to zero, and it would be freed.
400e64df 2032 */
160e7c84 2033void rproc_put(struct rproc *rproc)
400e64df 2034{
fbb6aacb 2035 module_put(rproc->dev.parent->driver->owner);
b5ab5e24 2036 put_device(&rproc->dev);
400e64df 2037}
160e7c84 2038EXPORT_SYMBOL(rproc_put);
400e64df
OBC
2039
2040/**
160e7c84 2041 * rproc_del() - unregister a remote processor
400e64df
OBC
2042 * @rproc: rproc handle to unregister
2043 *
400e64df
OBC
2044 * This function should be called when the platform specific rproc
2045 * implementation decides to remove the rproc device. it should
160e7c84 2046 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
2047 * has completed successfully.
2048 *
160e7c84 2049 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 2050 * of the outstanding reference created by rproc_alloc. To decrement that
433c0e04 2051 * one last refcount, one still needs to call rproc_free().
400e64df
OBC
2052 *
2053 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2054 */
160e7c84 2055int rproc_del(struct rproc *rproc)
400e64df
OBC
2056{
2057 if (!rproc)
2058 return -EINVAL;
2059
ddf71187
BA
2060 /* if rproc is marked always-on, rproc_add() booted it */
2061 /* TODO: make sure this works with rproc->power > 1 */
2062 if (rproc->auto_boot)
2063 rproc_shutdown(rproc);
2064
2099c77d
SJ
2065 mutex_lock(&rproc->lock);
2066 rproc->state = RPROC_DELETED;
2067 mutex_unlock(&rproc->lock);
2068
b003d45b
SJ
2069 rproc_delete_debug_dir(rproc);
2070
fec47d86
DG
2071 /* the rproc is downref'ed as soon as it's removed from the klist */
2072 mutex_lock(&rproc_list_mutex);
2073 list_del(&rproc->node);
2074 mutex_unlock(&rproc_list_mutex);
2075
b5ab5e24 2076 device_del(&rproc->dev);
400e64df
OBC
2077
2078 return 0;
2079}
160e7c84 2080EXPORT_SYMBOL(rproc_del);
400e64df 2081
7bdc9650
BA
2082/**
2083 * rproc_add_subdev() - add a subdevice to a remoteproc
2084 * @rproc: rproc handle to add the subdevice to
2085 * @subdev: subdev handle to register
4902676f
BA
2086 *
2087 * Caller is responsible for populating optional subdevice function pointers.
7bdc9650 2088 */
4902676f 2089void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
7bdc9650 2090{
7bdc9650
BA
2091 list_add_tail(&subdev->node, &rproc->subdevs);
2092}
2093EXPORT_SYMBOL(rproc_add_subdev);
2094
2095/**
2096 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2097 * @rproc: rproc handle to remove the subdevice from
2098 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2099 */
2100void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2101{
2102 list_del(&subdev->node);
2103}
2104EXPORT_SYMBOL(rproc_remove_subdev);
2105
7c89717f
BA
2106/**
2107 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2108 * @dev: child device to find ancestor of
2109 *
2110 * Returns the ancestor rproc instance, or NULL if not found.
2111 */
2112struct rproc *rproc_get_by_child(struct device *dev)
2113{
2114 for (dev = dev->parent; dev; dev = dev->parent) {
2115 if (dev->type == &rproc_type)
2116 return dev->driver_data;
2117 }
2118
2119 return NULL;
2120}
2121EXPORT_SYMBOL(rproc_get_by_child);
2122
8afd519c
FGL
2123/**
2124 * rproc_report_crash() - rproc crash reporter function
2125 * @rproc: remote processor
2126 * @type: crash type
2127 *
2128 * This function must be called every time a crash is detected by the low-level
2129 * drivers implementing a specific remoteproc. This should not be called from a
2130 * non-remoteproc driver.
2131 *
2132 * This function can be called from atomic/interrupt context.
2133 */
2134void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2135{
2136 if (!rproc) {
2137 pr_err("NULL rproc pointer\n");
2138 return;
2139 }
2140
2141 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2142 rproc->name, rproc_crash_to_string(type));
2143
2144 /* create a new task to handle the error */
2145 schedule_work(&rproc->crash_handler);
2146}
2147EXPORT_SYMBOL(rproc_report_crash);
2148
400e64df
OBC
2149static int __init remoteproc_init(void)
2150{
2aefbef0 2151 rproc_init_sysfs();
400e64df 2152 rproc_init_debugfs();
b5ab5e24 2153
400e64df
OBC
2154 return 0;
2155}
2156module_init(remoteproc_init);
2157
2158static void __exit remoteproc_exit(void)
2159{
f42f79af
SA
2160 ida_destroy(&rproc_dev_index);
2161
400e64df 2162 rproc_exit_debugfs();
2aefbef0 2163 rproc_exit_sysfs();
400e64df
OBC
2164}
2165module_exit(remoteproc_exit);
2166
2167MODULE_LICENSE("GPL v2");
2168MODULE_DESCRIPTION("Generic Remote Processor Framework");