remoteproc: Add device-managed variants of rproc_alloc/rproc_add
[linux-block.git] / drivers / remoteproc / remoteproc_core.c
CommitLineData
1802d0be 1// SPDX-License-Identifier: GPL-2.0-only
400e64df
OBC
2/*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
400e64df
OBC
15 */
16
17#define pr_fmt(fmt) "%s: " fmt, __func__
18
dc5192c4 19#include <linux/delay.h>
400e64df
OBC
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/device.h>
23#include <linux/slab.h>
24#include <linux/mutex.h>
25#include <linux/dma-mapping.h>
26#include <linux/firmware.h>
27#include <linux/string.h>
28#include <linux/debugfs.h>
2666ca91 29#include <linux/devcoredump.h>
c0abe2ca 30#include <linux/rculist.h>
400e64df
OBC
31#include <linux/remoteproc.h>
32#include <linux/iommu.h>
b5ab5e24 33#include <linux/idr.h>
400e64df 34#include <linux/elf.h>
a2b950ac 35#include <linux/crc32.h>
086d0872 36#include <linux/of_reserved_mem.h>
400e64df
OBC
37#include <linux/virtio_ids.h>
38#include <linux/virtio_ring.h>
cf59d3e9 39#include <asm/byteorder.h>
086d0872 40#include <linux/platform_device.h>
400e64df
OBC
41
42#include "remoteproc_internal.h"
8f403350 43#include "remoteproc_elf_helpers.h"
400e64df 44
b36de8cf
LP
45#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46
fec47d86
DG
47static DEFINE_MUTEX(rproc_list_mutex);
48static LIST_HEAD(rproc_list);
dc5192c4 49static struct notifier_block rproc_panic_nb;
fec47d86 50
a2b950ac
OBC
51typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52 void *, int offset, int avail);
400e64df 53
c6aed238
LP
54static int rproc_alloc_carveout(struct rproc *rproc,
55 struct rproc_mem_entry *mem);
56static int rproc_release_carveout(struct rproc *rproc,
57 struct rproc_mem_entry *mem);
58
b5ab5e24
OBC
59/* Unique indices for remoteproc devices */
60static DEFINE_IDA(rproc_dev_index);
61
8afd519c
FGL
62static const char * const rproc_crash_names[] = {
63 [RPROC_MMUFAULT] = "mmufault",
b3d39032
BA
64 [RPROC_WATCHDOG] = "watchdog",
65 [RPROC_FATAL_ERROR] = "fatal error",
8afd519c
FGL
66};
67
68/* translate rproc_crash_type to string */
69static const char *rproc_crash_to_string(enum rproc_crash_type type)
70{
71 if (type < ARRAY_SIZE(rproc_crash_names))
72 return rproc_crash_names[type];
b23f7a09 73 return "unknown";
8afd519c
FGL
74}
75
400e64df
OBC
76/*
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
79 * an IOMMU).
80 *
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
400e64df
OBC
83 */
84static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
730f84ce 85 unsigned long iova, int flags, void *token)
400e64df 86{
8afd519c
FGL
87 struct rproc *rproc = token;
88
400e64df
OBC
89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90
8afd519c
FGL
91 rproc_report_crash(rproc, RPROC_MMUFAULT);
92
400e64df
OBC
93 /*
94 * Let the iommu core know we're not really handling this fault;
8afd519c 95 * we just used it as a recovery trigger.
400e64df
OBC
96 */
97 return -ENOSYS;
98}
99
100static int rproc_enable_iommu(struct rproc *rproc)
101{
102 struct iommu_domain *domain;
b5ab5e24 103 struct device *dev = rproc->dev.parent;
400e64df
OBC
104 int ret;
105
315491e5
SA
106 if (!rproc->has_iommu) {
107 dev_dbg(dev, "iommu not present\n");
0798e1da 108 return 0;
400e64df
OBC
109 }
110
111 domain = iommu_domain_alloc(dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
115 }
116
77ca2332 117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
400e64df
OBC
118
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
123 }
124
125 rproc->domain = domain;
126
127 return 0;
128
129free_domain:
130 iommu_domain_free(domain);
131 return ret;
132}
133
134static void rproc_disable_iommu(struct rproc *rproc)
135{
136 struct iommu_domain *domain = rproc->domain;
b5ab5e24 137 struct device *dev = rproc->dev.parent;
400e64df
OBC
138
139 if (!domain)
140 return;
141
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
400e64df
OBC
144}
145
086d0872 146phys_addr_t rproc_va_to_pa(void *cpu_addr)
eb30596e
LP
147{
148 /*
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
152 */
153 if (is_vmalloc_addr(cpu_addr)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 offset_in_page(cpu_addr);
156 }
157
158 WARN_ON(!virt_addr_valid(cpu_addr));
159 return virt_to_phys(cpu_addr);
160}
086d0872 161EXPORT_SYMBOL(rproc_va_to_pa);
eb30596e 162
a01f7cd6
SA
163/**
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
168 *
400e64df
OBC
169 * Some remote processors will ask us to allocate them physically contiguous
170 * memory regions (which we call "carveouts"), and map them to specific
a01f7cd6
SA
171 * device addresses (which are hardcoded in the firmware). They may also have
172 * dedicated memory regions internal to the processors, and use them either
173 * exclusively or alongside carveouts.
400e64df
OBC
174 *
175 * They may then ask us to copy objects into specific device addresses (e.g.
176 * code/data sections) or expose us certain symbols in other device address
177 * (e.g. their trace buffer).
178 *
a01f7cd6
SA
179 * This function is a helper function with which we can go over the allocated
180 * carveouts and translate specific device addresses to kernel virtual addresses
181 * so we can access the referenced memory. This function also allows to perform
182 * translations on the internal remoteproc memory regions through a platform
183 * implementation specific da_to_va ops, if present.
184 *
185 * The function returns a valid kernel address on success or NULL on failure.
400e64df
OBC
186 *
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
a01f7cd6
SA
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
400e64df 191 */
9ce3bf22 192void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
400e64df
OBC
193{
194 struct rproc_mem_entry *carveout;
195 void *ptr = NULL;
196
a01f7cd6
SA
197 if (rproc->ops->da_to_va) {
198 ptr = rproc->ops->da_to_va(rproc, da, len);
199 if (ptr)
200 goto out;
201 }
202
400e64df
OBC
203 list_for_each_entry(carveout, &rproc->carveouts, node) {
204 int offset = da - carveout->da;
205
74457c40
LP
206 /* Verify that carveout is allocated */
207 if (!carveout->va)
208 continue;
209
400e64df
OBC
210 /* try next carveout if da is too small */
211 if (offset < 0)
212 continue;
213
214 /* try next carveout if da is too large */
215 if (offset + len > carveout->len)
216 continue;
217
218 ptr = carveout->va + offset;
219
220 break;
221 }
222
a01f7cd6 223out:
400e64df
OBC
224 return ptr;
225}
4afc89d6 226EXPORT_SYMBOL(rproc_da_to_va);
400e64df 227
b0019ccd
LP
228/**
229 * rproc_find_carveout_by_name() - lookup the carveout region by a name
230 * @rproc: handle of a remote processor
2e7d4c2c
AP
231 * @name: carveout name to find (format string)
232 * @...: optional parameters matching @name string
b0019ccd
LP
233 *
234 * Platform driver has the capability to register some pre-allacoted carveout
235 * (physically contiguous memory regions) before rproc firmware loading and
236 * associated resource table analysis. These regions may be dedicated memory
237 * regions internal to the coprocessor or specified DDR region with specific
238 * attributes
239 *
240 * This function is a helper function with which we can go over the
241 * allocated carveouts and return associated region characteristics like
242 * coprocessor address, length or processor virtual address.
243 *
244 * Return: a valid pointer on carveout entry on success or NULL on failure.
245 */
246struct rproc_mem_entry *
247rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
248{
249 va_list args;
250 char _name[32];
251 struct rproc_mem_entry *carveout, *mem = NULL;
252
253 if (!name)
254 return NULL;
255
256 va_start(args, name);
257 vsnprintf(_name, sizeof(_name), name, args);
258 va_end(args);
259
260 list_for_each_entry(carveout, &rproc->carveouts, node) {
261 /* Compare carveout and requested names */
262 if (!strcmp(carveout->name, _name)) {
263 mem = carveout;
264 break;
265 }
266 }
267
268 return mem;
269}
270
c874bf59
LP
271/**
272 * rproc_check_carveout_da() - Check specified carveout da configuration
273 * @rproc: handle of a remote processor
274 * @mem: pointer on carveout to check
275 * @da: area device address
276 * @len: associated area size
277 *
278 * This function is a helper function to verify requested device area (couple
28d7d5c6
LP
279 * da, len) is part of specified carveout.
280 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
281 * checked.
c874bf59 282 *
28d7d5c6 283 * Return: 0 if carveout matches request else error
c874bf59 284 */
28d7d5c6
LP
285static int rproc_check_carveout_da(struct rproc *rproc,
286 struct rproc_mem_entry *mem, u32 da, u32 len)
c874bf59
LP
287{
288 struct device *dev = &rproc->dev;
28d7d5c6 289 int delta;
c874bf59
LP
290
291 /* Check requested resource length */
292 if (len > mem->len) {
293 dev_err(dev, "Registered carveout doesn't fit len request\n");
28d7d5c6 294 return -EINVAL;
c874bf59
LP
295 }
296
297 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
28d7d5c6
LP
298 /* Address doesn't match registered carveout configuration */
299 return -EINVAL;
c874bf59
LP
300 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
301 delta = da - mem->da;
302
303 /* Check requested resource belongs to registered carveout */
304 if (delta < 0) {
305 dev_err(dev,
306 "Registered carveout doesn't fit da request\n");
28d7d5c6 307 return -EINVAL;
c874bf59
LP
308 }
309
310 if (delta + len > mem->len) {
311 dev_err(dev,
312 "Registered carveout doesn't fit len request\n");
28d7d5c6 313 return -EINVAL;
c874bf59
LP
314 }
315 }
316
317 return 0;
318}
319
6db20ea8 320int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
400e64df 321{
7a186941 322 struct rproc *rproc = rvdev->rproc;
b5ab5e24 323 struct device *dev = &rproc->dev;
6db20ea8 324 struct rproc_vring *rvring = &rvdev->vring[i];
c0d63157 325 struct fw_rsc_vdev *rsc;
096ee786 326 int ret, notifyid;
c6aed238 327 struct rproc_mem_entry *mem;
096ee786 328 size_t size;
400e64df 329
7a186941 330 /* actual size of vring (in bytes) */
6db20ea8 331 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
7a186941 332
c6aed238
LP
333 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
334
335 /* Search for pre-registered carveout */
336 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
337 i);
338 if (mem) {
339 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
340 return -ENOMEM;
341 } else {
342 /* Register carveout in in list */
99cf0361
BDC
343 mem = rproc_mem_entry_init(dev, NULL, 0,
344 size, rsc->vring[i].da,
c6aed238
LP
345 rproc_alloc_carveout,
346 rproc_release_carveout,
347 "vdev%dvring%d",
348 rvdev->index, i);
349 if (!mem) {
350 dev_err(dev, "Can't allocate memory entry structure\n");
351 return -ENOMEM;
352 }
353
354 rproc_add_carveout(rproc, mem);
400e64df
OBC
355 }
356
6db20ea8
OBC
357 /*
358 * Assign an rproc-wide unique index for this vring
359 * TODO: assign a notifyid for rvdev updates as well
6db20ea8
OBC
360 * TODO: support predefined notifyids (via resource table)
361 */
15fc6110 362 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
b39599b7 363 if (ret < 0) {
15fc6110 364 dev_err(dev, "idr_alloc failed: %d\n", ret);
7a186941
OBC
365 return ret;
366 }
15fc6110 367 notifyid = ret;
400e64df 368
48f18f89
BA
369 /* Potentially bump max_notifyid */
370 if (notifyid > rproc->max_notifyid)
371 rproc->max_notifyid = notifyid;
372
6db20ea8 373 rvring->notifyid = notifyid;
400e64df 374
c6aed238 375 /* Let the rproc know the notifyid of this vring.*/
c0d63157 376 rsc->vring[i].notifyid = notifyid;
400e64df
OBC
377 return 0;
378}
379
6db20ea8
OBC
380static int
381rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
7a186941
OBC
382{
383 struct rproc *rproc = rvdev->rproc;
b5ab5e24 384 struct device *dev = &rproc->dev;
6db20ea8
OBC
385 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
386 struct rproc_vring *rvring = &rvdev->vring[i];
7a186941 387
9d7814a9 388 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
730f84ce 389 i, vring->da, vring->num, vring->align);
7a186941 390
6db20ea8
OBC
391 /* verify queue size and vring alignment are sane */
392 if (!vring->num || !vring->align) {
393 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
730f84ce 394 vring->num, vring->align);
6db20ea8 395 return -EINVAL;
7a186941 396 }
6db20ea8
OBC
397
398 rvring->len = vring->num;
399 rvring->align = vring->align;
400 rvring->rvdev = rvdev;
401
402 return 0;
403}
404
405void rproc_free_vring(struct rproc_vring *rvring)
406{
6db20ea8 407 struct rproc *rproc = rvring->rvdev->rproc;
00a0eec5 408 int idx = rvring - rvring->rvdev->vring;
c0d63157 409 struct fw_rsc_vdev *rsc;
6db20ea8 410
6db20ea8 411 idr_remove(&rproc->notifyids, rvring->notifyid);
099a3f33 412
c0d63157
SB
413 /* reset resource entry info */
414 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
415 rsc->vring[idx].da = 0;
416 rsc->vring[idx].notifyid = -1;
7a186941
OBC
417}
418
6f8b0373 419static int rproc_vdev_do_start(struct rproc_subdev *subdev)
f5bcb353
BA
420{
421 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
422
423 return rproc_add_virtio_dev(rvdev, rvdev->id);
424}
425
6f8b0373 426static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
f5bcb353
BA
427{
428 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
d4c036fe 429 int ret;
f5bcb353 430
d4c036fe
LP
431 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
432 if (ret)
433 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
f5bcb353
BA
434}
435
086d0872
LP
436/**
437 * rproc_rvdev_release() - release the existence of a rvdev
438 *
439 * @dev: the subdevice's dev
440 */
441static void rproc_rvdev_release(struct device *dev)
442{
443 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
444
445 of_reserved_mem_device_release(dev);
446
447 kfree(rvdev);
448}
449
400e64df 450/**
fd2c15ec 451 * rproc_handle_vdev() - handle a vdev fw resource
400e64df
OBC
452 * @rproc: the remote processor
453 * @rsc: the vring resource descriptor
2e7d4c2c 454 * @offset: offset of the resource entry
fd2c15ec 455 * @avail: size of available data (for sanity checking the image)
400e64df 456 *
7a186941
OBC
457 * This resource entry requests the host to statically register a virtio
458 * device (vdev), and setup everything needed to support it. It contains
459 * everything needed to make it possible: the virtio device id, virtio
460 * device features, vrings information, virtio config space, etc...
461 *
462 * Before registering the vdev, the vrings are allocated from non-cacheable
463 * physically contiguous memory. Currently we only support two vrings per
464 * remote processor (temporary limitation). We might also want to consider
465 * doing the vring allocation only later when ->find_vqs() is invoked, and
466 * then release them upon ->del_vqs().
467 *
468 * Note: @da is currently not really handled correctly: we dynamically
469 * allocate it using the DMA API, ignoring requested hard coded addresses,
470 * and we don't take care of any required IOMMU programming. This is all
471 * going to be taken care of when the generic iommu-based DMA API will be
472 * merged. Meanwhile, statically-addressed iommu-based firmware images should
473 * use RSC_DEVMEM resource entries to map their required @da to the physical
474 * address of their base CMA region (ouch, hacky!).
400e64df
OBC
475 *
476 * Returns 0 on success, or an appropriate error code otherwise
477 */
fd2c15ec 478static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
730f84ce 479 int offset, int avail)
400e64df 480{
b5ab5e24 481 struct device *dev = &rproc->dev;
7a186941
OBC
482 struct rproc_vdev *rvdev;
483 int i, ret;
086d0872 484 char name[16];
400e64df 485
fd2c15ec 486 /* make sure resource isn't truncated */
c8784657
GS
487 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
488 avail) {
b5ab5e24 489 dev_err(dev, "vdev rsc is truncated\n");
400e64df
OBC
490 return -EINVAL;
491 }
492
fd2c15ec
OBC
493 /* make sure reserved bytes are zeroes */
494 if (rsc->reserved[0] || rsc->reserved[1]) {
495 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
400e64df
OBC
496 return -EINVAL;
497 }
498
9d7814a9 499 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
fd2c15ec
OBC
500 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
501
7a186941
OBC
502 /* we currently support only two vrings per rvdev */
503 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
fd2c15ec 504 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
400e64df
OBC
505 return -EINVAL;
506 }
507
899585ad 508 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
7a186941
OBC
509 if (!rvdev)
510 return -ENOMEM;
400e64df 511
aab8d802
BA
512 kref_init(&rvdev->refcount);
513
f5bcb353 514 rvdev->id = rsc->id;
7a186941 515 rvdev->rproc = rproc;
c6aed238 516 rvdev->index = rproc->nb_vdev++;
400e64df 517
086d0872
LP
518 /* Initialise vdev subdevice */
519 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
520 rvdev->dev.parent = rproc->dev.parent;
72f64cab 521 rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
086d0872
LP
522 rvdev->dev.release = rproc_rvdev_release;
523 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
524 dev_set_drvdata(&rvdev->dev, rvdev);
525
526 ret = device_register(&rvdev->dev);
527 if (ret) {
528 put_device(&rvdev->dev);
529 return ret;
530 }
531 /* Make device dma capable by inheriting from parent's capabilities */
532 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
533
534 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
535 dma_get_mask(rproc->dev.parent));
536 if (ret) {
537 dev_warn(dev,
538 "Failed to set DMA mask %llx. Trying to continue... %x\n",
539 dma_get_mask(rproc->dev.parent), ret);
540 }
541
6db20ea8 542 /* parse the vrings */
7a186941 543 for (i = 0; i < rsc->num_of_vrings; i++) {
6db20ea8 544 ret = rproc_parse_vring(rvdev, rsc, i);
7a186941 545 if (ret)
6db20ea8 546 goto free_rvdev;
7a186941 547 }
400e64df 548
a2b950ac
OBC
549 /* remember the resource offset*/
550 rvdev->rsc_offset = offset;
fd2c15ec 551
a863af5d
BA
552 /* allocate the vring resources */
553 for (i = 0; i < rsc->num_of_vrings; i++) {
554 ret = rproc_alloc_vring(rvdev, i);
555 if (ret)
556 goto unwind_vring_allocations;
557 }
558
7a186941 559 list_add_tail(&rvdev->node, &rproc->rvdevs);
fd2c15ec 560
6f8b0373
AE
561 rvdev->subdev.start = rproc_vdev_do_start;
562 rvdev->subdev.stop = rproc_vdev_do_stop;
4902676f
BA
563
564 rproc_add_subdev(rproc, &rvdev->subdev);
400e64df
OBC
565
566 return 0;
7a186941 567
a863af5d
BA
568unwind_vring_allocations:
569 for (i--; i >= 0; i--)
570 rproc_free_vring(&rvdev->vring[i]);
6db20ea8 571free_rvdev:
086d0872 572 device_unregister(&rvdev->dev);
7a186941 573 return ret;
400e64df
OBC
574}
575
aab8d802
BA
576void rproc_vdev_release(struct kref *ref)
577{
578 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
a863af5d 579 struct rproc_vring *rvring;
f5bcb353 580 struct rproc *rproc = rvdev->rproc;
a863af5d
BA
581 int id;
582
583 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
584 rvring = &rvdev->vring[id];
a863af5d
BA
585 rproc_free_vring(rvring);
586 }
aab8d802 587
f5bcb353 588 rproc_remove_subdev(rproc, &rvdev->subdev);
aab8d802 589 list_del(&rvdev->node);
086d0872 590 device_unregister(&rvdev->dev);
aab8d802
BA
591}
592
400e64df
OBC
593/**
594 * rproc_handle_trace() - handle a shared trace buffer resource
595 * @rproc: the remote processor
596 * @rsc: the trace resource descriptor
2e7d4c2c 597 * @offset: offset of the resource entry
fd2c15ec 598 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
599 *
600 * In case the remote processor dumps trace logs into memory,
601 * export it via debugfs.
602 *
603 * Currently, the 'da' member of @rsc should contain the device address
604 * where the remote processor is dumping the traces. Later we could also
605 * support dynamically allocating this address using the generic
606 * DMA API (but currently there isn't a use case for that).
607 *
608 * Returns 0 on success, or an appropriate error code otherwise
609 */
fd2c15ec 610static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
730f84ce 611 int offset, int avail)
400e64df 612{
a987e6b9 613 struct rproc_debug_trace *trace;
b5ab5e24 614 struct device *dev = &rproc->dev;
400e64df
OBC
615 char name[15];
616
fd2c15ec 617 if (sizeof(*rsc) > avail) {
b5ab5e24 618 dev_err(dev, "trace rsc is truncated\n");
fd2c15ec
OBC
619 return -EINVAL;
620 }
621
622 /* make sure reserved bytes are zeroes */
623 if (rsc->reserved) {
624 dev_err(dev, "trace rsc has non zero reserved bytes\n");
625 return -EINVAL;
626 }
627
400e64df 628 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
172e6ab1 629 if (!trace)
400e64df 630 return -ENOMEM;
400e64df
OBC
631
632 /* set the trace buffer dma properties */
a987e6b9
LP
633 trace->trace_mem.len = rsc->len;
634 trace->trace_mem.da = rsc->da;
635
636 /* set pointer on rproc device */
637 trace->rproc = rproc;
400e64df
OBC
638
639 /* make sure snprintf always null terminates, even if truncating */
640 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
641
642 /* create the debugfs entry */
a987e6b9
LP
643 trace->tfile = rproc_create_trace_file(name, rproc, trace);
644 if (!trace->tfile) {
400e64df
OBC
645 kfree(trace);
646 return -EINVAL;
647 }
648
649 list_add_tail(&trace->node, &rproc->traces);
650
651 rproc->num_traces++;
652
a987e6b9
LP
653 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
654 name, rsc->da, rsc->len);
400e64df
OBC
655
656 return 0;
657}
658
659/**
660 * rproc_handle_devmem() - handle devmem resource entry
661 * @rproc: remote processor handle
662 * @rsc: the devmem resource entry
2e7d4c2c 663 * @offset: offset of the resource entry
fd2c15ec 664 * @avail: size of available data (for sanity checking the image)
400e64df
OBC
665 *
666 * Remote processors commonly need to access certain on-chip peripherals.
667 *
668 * Some of these remote processors access memory via an iommu device,
669 * and might require us to configure their iommu before they can access
670 * the on-chip peripherals they need.
671 *
672 * This resource entry is a request to map such a peripheral device.
673 *
674 * These devmem entries will contain the physical address of the device in
675 * the 'pa' member. If a specific device address is expected, then 'da' will
676 * contain it (currently this is the only use case supported). 'len' will
677 * contain the size of the physical region we need to map.
678 *
679 * Currently we just "trust" those devmem entries to contain valid physical
680 * addresses, but this is going to change: we want the implementations to
681 * tell us ranges of physical addresses the firmware is allowed to request,
682 * and not allow firmwares to request access to physical addresses that
683 * are outside those ranges.
684 */
fd2c15ec 685static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
730f84ce 686 int offset, int avail)
400e64df
OBC
687{
688 struct rproc_mem_entry *mapping;
b5ab5e24 689 struct device *dev = &rproc->dev;
400e64df
OBC
690 int ret;
691
692 /* no point in handling this resource without a valid iommu domain */
693 if (!rproc->domain)
694 return -EINVAL;
695
fd2c15ec 696 if (sizeof(*rsc) > avail) {
b5ab5e24 697 dev_err(dev, "devmem rsc is truncated\n");
fd2c15ec
OBC
698 return -EINVAL;
699 }
700
701 /* make sure reserved bytes are zeroes */
702 if (rsc->reserved) {
b5ab5e24 703 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
fd2c15ec
OBC
704 return -EINVAL;
705 }
706
400e64df 707 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
172e6ab1 708 if (!mapping)
400e64df 709 return -ENOMEM;
400e64df
OBC
710
711 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
712 if (ret) {
b5ab5e24 713 dev_err(dev, "failed to map devmem: %d\n", ret);
400e64df
OBC
714 goto out;
715 }
716
717 /*
718 * We'll need this info later when we'll want to unmap everything
719 * (e.g. on shutdown).
720 *
721 * We can't trust the remote processor not to change the resource
722 * table, so we must maintain this info independently.
723 */
724 mapping->da = rsc->da;
725 mapping->len = rsc->len;
726 list_add_tail(&mapping->node, &rproc->mappings);
727
b5ab5e24 728 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
730f84ce 729 rsc->pa, rsc->da, rsc->len);
400e64df
OBC
730
731 return 0;
732
733out:
734 kfree(mapping);
735 return ret;
736}
737
f2e74abf 738/**
d7c51706 739 * rproc_alloc_carveout() - allocated specified carveout
f2e74abf 740 * @rproc: rproc handle
d7c51706 741 * @mem: the memory entry to allocate
400e64df 742 *
d7c51706
LP
743 * This function allocate specified memory entry @mem using
744 * dma_alloc_coherent() as default allocator
400e64df 745 */
d7c51706
LP
746static int rproc_alloc_carveout(struct rproc *rproc,
747 struct rproc_mem_entry *mem)
400e64df 748{
d7c51706 749 struct rproc_mem_entry *mapping = NULL;
b5ab5e24 750 struct device *dev = &rproc->dev;
400e64df
OBC
751 dma_addr_t dma;
752 void *va;
753 int ret;
754
d7c51706 755 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
400e64df 756 if (!va) {
9c219b23 757 dev_err(dev->parent,
096ee786
CL
758 "failed to allocate dma memory: len 0x%zx\n",
759 mem->len);
72029c90 760 return -ENOMEM;
400e64df
OBC
761 }
762
096ee786 763 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
d7c51706 764 va, &dma, mem->len);
400e64df 765
60f849a5
LP
766 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
767 /*
768 * Check requested da is equal to dma address
769 * and print a warn message in case of missalignment.
770 * Don't stop rproc_start sequence as coprocessor may
771 * build pa to da translation on its side.
772 */
773 if (mem->da != (u32)dma)
774 dev_warn(dev->parent,
775 "Allocated carveout doesn't fit device address request\n");
776 }
777
400e64df
OBC
778 /*
779 * Ok, this is non-standard.
780 *
781 * Sometimes we can't rely on the generic iommu-based DMA API
782 * to dynamically allocate the device address and then set the IOMMU
783 * tables accordingly, because some remote processors might
784 * _require_ us to use hard coded device addresses that their
785 * firmware was compiled with.
786 *
787 * In this case, we must use the IOMMU API directly and map
788 * the memory to the device address as expected by the remote
789 * processor.
790 *
791 * Obviously such remote processor devices should not be configured
792 * to use the iommu-based DMA API: we expect 'dma' to contain the
793 * physical address in this case.
794 */
60f849a5 795 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
7168d914
DC
796 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
797 if (!mapping) {
7168d914
DC
798 ret = -ENOMEM;
799 goto dma_free;
800 }
801
d7c51706
LP
802 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
803 mem->flags);
400e64df
OBC
804 if (ret) {
805 dev_err(dev, "iommu_map failed: %d\n", ret);
7168d914 806 goto free_mapping;
400e64df
OBC
807 }
808
809 /*
810 * We'll need this info later when we'll want to unmap
811 * everything (e.g. on shutdown).
812 *
813 * We can't trust the remote processor not to change the
814 * resource table, so we must maintain this info independently.
815 */
d7c51706
LP
816 mapping->da = mem->da;
817 mapping->len = mem->len;
400e64df
OBC
818 list_add_tail(&mapping->node, &rproc->mappings);
819
b605ed8b 820 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
d7c51706 821 mem->da, &dma);
60f849a5
LP
822 }
823
824 if (mem->da == FW_RSC_ADDR_ANY) {
b36de8cf
LP
825 /* Update device address as undefined by requester */
826 if ((u64)dma & HIGH_BITS_MASK)
827 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
828
d7c51706 829 mem->da = (u32)dma;
400e64df
OBC
830 }
831
80137b40 832 mem->dma = dma;
d7c51706 833 mem->va = va;
400e64df
OBC
834
835 return 0;
836
7168d914
DC
837free_mapping:
838 kfree(mapping);
400e64df 839dma_free:
d7c51706 840 dma_free_coherent(dev->parent, mem->len, va, dma);
400e64df
OBC
841 return ret;
842}
843
d7c51706
LP
844/**
845 * rproc_release_carveout() - release acquired carveout
846 * @rproc: rproc handle
847 * @mem: the memory entry to release
848 *
849 * This function releases specified memory entry @mem allocated via
850 * rproc_alloc_carveout() function by @rproc.
851 */
852static int rproc_release_carveout(struct rproc *rproc,
853 struct rproc_mem_entry *mem)
854{
855 struct device *dev = &rproc->dev;
856
857 /* clean up carveout allocations */
858 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
859 return 0;
860}
861
862/**
863 * rproc_handle_carveout() - handle phys contig memory allocation requests
864 * @rproc: rproc handle
865 * @rsc: the resource entry
2e7d4c2c 866 * @offset: offset of the resource entry
d7c51706
LP
867 * @avail: size of available data (for image validation)
868 *
869 * This function will handle firmware requests for allocation of physically
870 * contiguous memory regions.
871 *
872 * These request entries should come first in the firmware's resource table,
873 * as other firmware entries might request placing other data objects inside
874 * these memory regions (e.g. data/code segments, trace resource entries, ...).
875 *
876 * Allocating memory this way helps utilizing the reserved physical memory
877 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
878 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
879 * pressure is important; it may have a substantial impact on performance.
880 */
881static int rproc_handle_carveout(struct rproc *rproc,
882 struct fw_rsc_carveout *rsc,
883 int offset, int avail)
884{
885 struct rproc_mem_entry *carveout;
886 struct device *dev = &rproc->dev;
887
888 if (sizeof(*rsc) > avail) {
889 dev_err(dev, "carveout rsc is truncated\n");
890 return -EINVAL;
891 }
892
893 /* make sure reserved bytes are zeroes */
894 if (rsc->reserved) {
895 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
896 return -EINVAL;
897 }
898
899 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
900 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
901
ffa5f9c8
LP
902 /*
903 * Check carveout rsc already part of a registered carveout,
904 * Search by name, then check the da and length
905 */
906 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
907
908 if (carveout) {
909 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
910 dev_err(dev,
911 "Carveout already associated to resource table\n");
912 return -ENOMEM;
913 }
914
915 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
916 return -ENOMEM;
917
918 /* Update memory carveout with resource table info */
919 carveout->rsc_offset = offset;
920 carveout->flags = rsc->flags;
921
922 return 0;
923 }
924
d7c51706 925 /* Register carveout in in list */
99cf0361 926 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
d7c51706
LP
927 rproc_alloc_carveout,
928 rproc_release_carveout, rsc->name);
929 if (!carveout) {
930 dev_err(dev, "Can't allocate memory entry structure\n");
931 return -ENOMEM;
932 }
933
934 carveout->flags = rsc->flags;
935 carveout->rsc_offset = offset;
936 rproc_add_carveout(rproc, carveout);
937
938 return 0;
939}
940
15c0b025
LP
941/**
942 * rproc_add_carveout() - register an allocated carveout region
943 * @rproc: rproc handle
944 * @mem: memory entry to register
945 *
946 * This function registers specified memory entry in @rproc carveouts list.
947 * Specified carveout should have been allocated before registering.
948 */
949void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
950{
951 list_add_tail(&mem->node, &rproc->carveouts);
952}
953EXPORT_SYMBOL(rproc_add_carveout);
954
72029c90
LP
955/**
956 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
957 * @dev: pointer on device struct
958 * @va: virtual address
959 * @dma: dma address
960 * @len: memory carveout length
961 * @da: device address
a9f6fe0d
LP
962 * @alloc: memory carveout allocation function
963 * @release: memory carveout release function
72029c90
LP
964 * @name: carveout name
965 *
966 * This function allocates a rproc_mem_entry struct and fill it with parameters
967 * provided by client.
968 */
969struct rproc_mem_entry *
970rproc_mem_entry_init(struct device *dev,
096ee786 971 void *va, dma_addr_t dma, size_t len, u32 da,
d7c51706 972 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
72029c90
LP
973 int (*release)(struct rproc *, struct rproc_mem_entry *),
974 const char *name, ...)
975{
976 struct rproc_mem_entry *mem;
977 va_list args;
978
979 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
980 if (!mem)
981 return mem;
982
983 mem->va = va;
984 mem->dma = dma;
985 mem->da = da;
986 mem->len = len;
d7c51706 987 mem->alloc = alloc;
72029c90 988 mem->release = release;
d7c51706 989 mem->rsc_offset = FW_RSC_ADDR_ANY;
1429cca1 990 mem->of_resm_idx = -1;
72029c90
LP
991
992 va_start(args, name);
993 vsnprintf(mem->name, sizeof(mem->name), name, args);
994 va_end(args);
995
996 return mem;
997}
998EXPORT_SYMBOL(rproc_mem_entry_init);
999
1429cca1
LP
1000/**
1001 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1002 * from a reserved memory phandle
1003 * @dev: pointer on device struct
1004 * @of_resm_idx: reserved memory phandle index in "memory-region"
1005 * @len: memory carveout length
1006 * @da: device address
1007 * @name: carveout name
1008 *
1009 * This function allocates a rproc_mem_entry struct and fill it with parameters
1010 * provided by client.
1011 */
1012struct rproc_mem_entry *
096ee786 1013rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1429cca1
LP
1014 u32 da, const char *name, ...)
1015{
1016 struct rproc_mem_entry *mem;
1017 va_list args;
1018
1019 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1020 if (!mem)
1021 return mem;
1022
1023 mem->da = da;
1024 mem->len = len;
1025 mem->rsc_offset = FW_RSC_ADDR_ANY;
1026 mem->of_resm_idx = of_resm_idx;
1027
1028 va_start(args, name);
1029 vsnprintf(mem->name, sizeof(mem->name), name, args);
1030 va_end(args);
1031
1032 return mem;
1033}
1034EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1035
2e7d4c2c 1036/*
e12bc14b
OBC
1037 * A lookup table for resource handlers. The indices are defined in
1038 * enum fw_resource_type.
1039 */
232fcdbb 1040static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
fd2c15ec
OBC
1041 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1042 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1043 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
232fcdbb
SB
1044 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1045};
1046
400e64df 1047/* handle firmware resource entries before booting the remote processor */
a4b24c75 1048static int rproc_handle_resources(struct rproc *rproc,
232fcdbb 1049 rproc_handle_resource_t handlers[RSC_LAST])
400e64df 1050{
b5ab5e24 1051 struct device *dev = &rproc->dev;
e12bc14b 1052 rproc_handle_resource_t handler;
fd2c15ec
OBC
1053 int ret = 0, i;
1054
d4bb86f2
BA
1055 if (!rproc->table_ptr)
1056 return 0;
1057
a2b950ac
OBC
1058 for (i = 0; i < rproc->table_ptr->num; i++) {
1059 int offset = rproc->table_ptr->offset[i];
1060 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
a4b24c75 1061 int avail = rproc->table_sz - offset - sizeof(*hdr);
fd2c15ec
OBC
1062 void *rsc = (void *)hdr + sizeof(*hdr);
1063
1064 /* make sure table isn't truncated */
1065 if (avail < 0) {
1066 dev_err(dev, "rsc table is truncated\n");
1067 return -EINVAL;
1068 }
400e64df 1069
fd2c15ec 1070 dev_dbg(dev, "rsc: type %d\n", hdr->type);
400e64df 1071
b1a17513
CL
1072 if (hdr->type >= RSC_VENDOR_START &&
1073 hdr->type <= RSC_VENDOR_END) {
1074 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1075 offset + sizeof(*hdr), avail);
1076 if (ret == RSC_HANDLED)
1077 continue;
1078 else if (ret < 0)
1079 break;
1080
1081 dev_warn(dev, "unsupported vendor resource %d\n",
1082 hdr->type);
1083 continue;
1084 }
1085
fd2c15ec
OBC
1086 if (hdr->type >= RSC_LAST) {
1087 dev_warn(dev, "unsupported resource %d\n", hdr->type);
e12bc14b 1088 continue;
400e64df
OBC
1089 }
1090
232fcdbb 1091 handler = handlers[hdr->type];
e12bc14b
OBC
1092 if (!handler)
1093 continue;
1094
a2b950ac 1095 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
7a186941 1096 if (ret)
400e64df 1097 break;
fd2c15ec 1098 }
400e64df
OBC
1099
1100 return ret;
1101}
1102
c455daa4
BA
1103static int rproc_prepare_subdevices(struct rproc *rproc)
1104{
1105 struct rproc_subdev *subdev;
1106 int ret;
1107
1108 list_for_each_entry(subdev, &rproc->subdevs, node) {
1109 if (subdev->prepare) {
1110 ret = subdev->prepare(subdev);
1111 if (ret)
1112 goto unroll_preparation;
1113 }
1114 }
1115
1116 return 0;
1117
1118unroll_preparation:
1119 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1120 if (subdev->unprepare)
1121 subdev->unprepare(subdev);
1122 }
1123
1124 return ret;
1125}
1126
618fcff3 1127static int rproc_start_subdevices(struct rproc *rproc)
7bdc9650
BA
1128{
1129 struct rproc_subdev *subdev;
1130 int ret;
1131
1132 list_for_each_entry(subdev, &rproc->subdevs, node) {
be37b1e0
BA
1133 if (subdev->start) {
1134 ret = subdev->start(subdev);
1135 if (ret)
1136 goto unroll_registration;
1137 }
7bdc9650
BA
1138 }
1139
1140 return 0;
1141
1142unroll_registration:
be37b1e0
BA
1143 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1144 if (subdev->stop)
1145 subdev->stop(subdev, true);
1146 }
7bdc9650
BA
1147
1148 return ret;
1149}
1150
618fcff3 1151static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
7bdc9650
BA
1152{
1153 struct rproc_subdev *subdev;
1154
be37b1e0
BA
1155 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1156 if (subdev->stop)
1157 subdev->stop(subdev, crashed);
1158 }
7bdc9650
BA
1159}
1160
c455daa4
BA
1161static void rproc_unprepare_subdevices(struct rproc *rproc)
1162{
1163 struct rproc_subdev *subdev;
1164
1165 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1166 if (subdev->unprepare)
1167 subdev->unprepare(subdev);
1168 }
1169}
1170
d7c51706
LP
1171/**
1172 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1173 * in the list
1174 * @rproc: the remote processor handle
1175 *
1176 * This function parses registered carveout list, performs allocation
1177 * if alloc() ops registered and updates resource table information
1178 * if rsc_offset set.
1179 *
1180 * Return: 0 on success
1181 */
1182static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1183{
1184 struct rproc_mem_entry *entry, *tmp;
1185 struct fw_rsc_carveout *rsc;
1186 struct device *dev = &rproc->dev;
b36de8cf 1187 u64 pa;
d7c51706
LP
1188 int ret;
1189
1190 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1191 if (entry->alloc) {
1192 ret = entry->alloc(rproc, entry);
1193 if (ret) {
1194 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1195 entry->name, ret);
1196 return -ENOMEM;
1197 }
1198 }
1199
1200 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1201 /* update resource table */
1202 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1203
1204 /*
1205 * Some remote processors might need to know the pa
1206 * even though they are behind an IOMMU. E.g., OMAP4's
1207 * remote M3 processor needs this so it can control
1208 * on-chip hardware accelerators that are not behind
1209 * the IOMMU, and therefor must know the pa.
1210 *
1211 * Generally we don't want to expose physical addresses
1212 * if we don't have to (remote processors are generally
1213 * _not_ trusted), so we might want to do this only for
1214 * remote processor that _must_ have this (e.g. OMAP4's
1215 * dual M3 subsystem).
1216 *
1217 * Non-IOMMU processors might also want to have this info.
1218 * In this case, the device address and the physical address
1219 * are the same.
1220 */
ffa5f9c8
LP
1221
1222 /* Use va if defined else dma to generate pa */
d7c51706 1223 if (entry->va)
b36de8cf 1224 pa = (u64)rproc_va_to_pa(entry->va);
ffa5f9c8 1225 else
b36de8cf
LP
1226 pa = (u64)entry->dma;
1227
1228 if (((u64)pa) & HIGH_BITS_MASK)
1229 dev_warn(dev,
1230 "Physical address cast in 32bit to fit resource table format\n");
ffa5f9c8 1231
b36de8cf 1232 rsc->pa = (u32)pa;
ffa5f9c8
LP
1233 rsc->da = entry->da;
1234 rsc->len = entry->len;
d7c51706
LP
1235 }
1236 }
1237
1238 return 0;
1239}
1240
2666ca91
SJ
1241/**
1242 * rproc_coredump_cleanup() - clean up dump_segments list
1243 * @rproc: the remote processor handle
1244 */
1245static void rproc_coredump_cleanup(struct rproc *rproc)
1246{
1247 struct rproc_dump_segment *entry, *tmp;
1248
1249 list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1250 list_del(&entry->node);
1251 kfree(entry);
1252 }
1253}
1254
400e64df
OBC
1255/**
1256 * rproc_resource_cleanup() - clean up and free all acquired resources
1257 * @rproc: rproc handle
1258 *
1259 * This function will free all resources acquired for @rproc, and it
7a186941 1260 * is called whenever @rproc either shuts down or fails to boot.
400e64df
OBC
1261 */
1262static void rproc_resource_cleanup(struct rproc *rproc)
1263{
1264 struct rproc_mem_entry *entry, *tmp;
a987e6b9 1265 struct rproc_debug_trace *trace, *ttmp;
d81fb32f 1266 struct rproc_vdev *rvdev, *rvtmp;
b5ab5e24 1267 struct device *dev = &rproc->dev;
400e64df
OBC
1268
1269 /* clean up debugfs trace entries */
a987e6b9
LP
1270 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1271 rproc_remove_trace_file(trace->tfile);
400e64df 1272 rproc->num_traces--;
a987e6b9
LP
1273 list_del(&trace->node);
1274 kfree(trace);
400e64df
OBC
1275 }
1276
400e64df
OBC
1277 /* clean up iommu mapping entries */
1278 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1279 size_t unmapped;
1280
1281 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1282 if (unmapped != entry->len) {
1283 /* nothing much to do besides complaining */
096ee786 1284 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
730f84ce 1285 unmapped);
400e64df
OBC
1286 }
1287
1288 list_del(&entry->node);
1289 kfree(entry);
1290 }
b6356a01
SA
1291
1292 /* clean up carveout allocations */
1293 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
f2e74abf
LP
1294 if (entry->release)
1295 entry->release(rproc, entry);
b6356a01
SA
1296 list_del(&entry->node);
1297 kfree(entry);
1298 }
d81fb32f
BA
1299
1300 /* clean up remote vdev entries */
f5bcb353 1301 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
2b45cef5 1302 kref_put(&rvdev->refcount, rproc_vdev_release);
2666ca91
SJ
1303
1304 rproc_coredump_cleanup(rproc);
400e64df
OBC
1305}
1306
1efa30d0
SJ
1307static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1308{
a4b24c75 1309 struct resource_table *loaded_table;
1efa30d0 1310 struct device *dev = &rproc->dev;
a4b24c75 1311 int ret;
1efa30d0
SJ
1312
1313 /* load the ELF segments to memory */
1314 ret = rproc_load_segments(rproc, fw);
1315 if (ret) {
1316 dev_err(dev, "Failed to load program segments: %d\n", ret);
1317 return ret;
1318 }
1319
1320 /*
1321 * The starting device has been given the rproc->cached_table as the
1322 * resource table. The address of the vring along with the other
1323 * allocated resources (carveouts etc) is stored in cached_table.
1324 * In order to pass this information to the remote device we must copy
1325 * this information to device memory. We also update the table_ptr so
1326 * that any subsequent changes will be applied to the loaded version.
1327 */
1328 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1329 if (loaded_table) {
a4b24c75 1330 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1efa30d0
SJ
1331 rproc->table_ptr = loaded_table;
1332 }
1333
c455daa4
BA
1334 ret = rproc_prepare_subdevices(rproc);
1335 if (ret) {
1336 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1337 rproc->name, ret);
f68d51bd 1338 goto reset_table_ptr;
c455daa4
BA
1339 }
1340
1efa30d0
SJ
1341 /* power up the remote processor */
1342 ret = rproc->ops->start(rproc);
1343 if (ret) {
1344 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
c455daa4 1345 goto unprepare_subdevices;
1efa30d0
SJ
1346 }
1347
618fcff3
BA
1348 /* Start any subdevices for the remote processor */
1349 ret = rproc_start_subdevices(rproc);
1efa30d0
SJ
1350 if (ret) {
1351 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1352 rproc->name, ret);
c455daa4 1353 goto stop_rproc;
1efa30d0
SJ
1354 }
1355
1356 rproc->state = RPROC_RUNNING;
1357
1358 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1359
1360 return 0;
c455daa4
BA
1361
1362stop_rproc:
1363 rproc->ops->stop(rproc);
c455daa4
BA
1364unprepare_subdevices:
1365 rproc_unprepare_subdevices(rproc);
f68d51bd
SA
1366reset_table_ptr:
1367 rproc->table_ptr = rproc->cached_table;
c455daa4
BA
1368
1369 return ret;
1efa30d0
SJ
1370}
1371
400e64df
OBC
1372/*
1373 * take a firmware and boot a remote processor with it.
1374 */
1375static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1376{
b5ab5e24 1377 struct device *dev = &rproc->dev;
400e64df 1378 const char *name = rproc->firmware;
58b64090 1379 int ret;
400e64df
OBC
1380
1381 ret = rproc_fw_sanity_check(rproc, fw);
1382 if (ret)
1383 return ret;
1384
e981f6d4 1385 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
400e64df
OBC
1386
1387 /*
1388 * if enabling an IOMMU isn't relevant for this rproc, this is
1389 * just a nop
1390 */
1391 ret = rproc_enable_iommu(rproc);
1392 if (ret) {
1393 dev_err(dev, "can't enable iommu: %d\n", ret);
1394 return ret;
1395 }
1396
3e5f9eb5 1397 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
988d204c 1398
c1d35c1a
BA
1399 /* Load resource table, core dump segment list etc from the firmware */
1400 ret = rproc_parse_fw(rproc, fw);
58b64090
BA
1401 if (ret)
1402 goto disable_iommu;
a0c10687 1403
b35d7afc
BA
1404 /* reset max_notifyid */
1405 rproc->max_notifyid = -1;
1406
c6aed238
LP
1407 /* reset handled vdev */
1408 rproc->nb_vdev = 0;
1409
400e64df 1410 /* handle fw resources which are required to boot rproc */
a4b24c75 1411 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
400e64df
OBC
1412 if (ret) {
1413 dev_err(dev, "Failed to process resources: %d\n", ret);
229b85a6 1414 goto clean_up_resources;
400e64df
OBC
1415 }
1416
d7c51706
LP
1417 /* Allocate carveout resources associated to rproc */
1418 ret = rproc_alloc_registered_carveouts(rproc);
1419 if (ret) {
1420 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1421 ret);
1422 goto clean_up_resources;
1423 }
1424
1efa30d0
SJ
1425 ret = rproc_start(rproc, fw);
1426 if (ret)
229b85a6 1427 goto clean_up_resources;
400e64df
OBC
1428
1429 return 0;
1430
229b85a6
BA
1431clean_up_resources:
1432 rproc_resource_cleanup(rproc);
a0c10687
BA
1433 kfree(rproc->cached_table);
1434 rproc->cached_table = NULL;
988d204c 1435 rproc->table_ptr = NULL;
58b64090 1436disable_iommu:
400e64df
OBC
1437 rproc_disable_iommu(rproc);
1438 return ret;
1439}
1440
1441/*
5e6533f7 1442 * take a firmware and boot it up.
400e64df
OBC
1443 *
1444 * Note: this function is called asynchronously upon registration of the
1445 * remote processor (so we must wait until it completes before we try
1446 * to unregister the device. one other option is just to use kref here,
1447 * that might be cleaner).
1448 */
5e6533f7 1449static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
400e64df
OBC
1450{
1451 struct rproc *rproc = context;
a2b950ac 1452
7a20c64d 1453 rproc_boot(rproc);
ddf71187 1454
3cc6e787 1455 release_firmware(fw);
400e64df
OBC
1456}
1457
5e6533f7 1458static int rproc_trigger_auto_boot(struct rproc *rproc)
70b85ef8
FGL
1459{
1460 int ret;
1461
70b85ef8 1462 /*
70b85ef8
FGL
1463 * We're initiating an asynchronous firmware loading, so we can
1464 * be built-in kernel code, without hanging the boot process.
1465 */
1466 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1467 rproc->firmware, &rproc->dev, GFP_KERNEL,
5e6533f7 1468 rproc, rproc_auto_boot_callback);
2099c77d 1469 if (ret < 0)
70b85ef8 1470 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
70b85ef8
FGL
1471
1472 return ret;
1473}
1474
880f5b38 1475static int rproc_stop(struct rproc *rproc, bool crashed)
1efa30d0
SJ
1476{
1477 struct device *dev = &rproc->dev;
1478 int ret;
1479
618fcff3
BA
1480 /* Stop any subdevices for the remote processor */
1481 rproc_stop_subdevices(rproc, crashed);
1efa30d0 1482
0a8b81cb
BA
1483 /* the installed resource table is no longer accessible */
1484 rproc->table_ptr = rproc->cached_table;
1485
1efa30d0
SJ
1486 /* power off the remote processor */
1487 ret = rproc->ops->stop(rproc);
1488 if (ret) {
1489 dev_err(dev, "can't stop rproc: %d\n", ret);
1490 return ret;
1491 }
1492
c455daa4
BA
1493 rproc_unprepare_subdevices(rproc);
1494
1efa30d0
SJ
1495 rproc->state = RPROC_OFFLINE;
1496
1497 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1498
1499 return 0;
1500}
1501
2666ca91
SJ
1502/**
1503 * rproc_coredump_add_segment() - add segment of device memory to coredump
1504 * @rproc: handle of a remote processor
1505 * @da: device address
1506 * @size: size of segment
1507 *
1508 * Add device memory to the list of segments to be included in a coredump for
1509 * the remoteproc.
1510 *
1511 * Return: 0 on success, negative errno on error.
1512 */
1513int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1514{
1515 struct rproc_dump_segment *segment;
1516
1517 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1518 if (!segment)
1519 return -ENOMEM;
1520
1521 segment->da = da;
1522 segment->size = size;
1523
1524 list_add_tail(&segment->node, &rproc->dump_segments);
1525
1526 return 0;
1527}
1528EXPORT_SYMBOL(rproc_coredump_add_segment);
1529
ab8f873b
SS
1530/**
1531 * rproc_coredump_add_custom_segment() - add custom coredump segment
1532 * @rproc: handle of a remote processor
1533 * @da: device address
1534 * @size: size of segment
1535 * @dumpfn: custom dump function called for each segment during coredump
1536 * @priv: private data
1537 *
1538 * Add device memory to the list of segments to be included in the coredump
1539 * and associate the segment with the given custom dump function and private
1540 * data.
1541 *
1542 * Return: 0 on success, negative errno on error.
1543 */
1544int rproc_coredump_add_custom_segment(struct rproc *rproc,
1545 dma_addr_t da, size_t size,
1546 void (*dumpfn)(struct rproc *rproc,
1547 struct rproc_dump_segment *segment,
1548 void *dest),
1549 void *priv)
1550{
1551 struct rproc_dump_segment *segment;
1552
1553 segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1554 if (!segment)
1555 return -ENOMEM;
1556
1557 segment->da = da;
1558 segment->size = size;
1559 segment->priv = priv;
1560 segment->dump = dumpfn;
1561
1562 list_add_tail(&segment->node, &rproc->dump_segments);
1563
1564 return 0;
1565}
1566EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1567
418fd787
CL
1568/**
1569 * rproc_coredump_set_elf_info() - set coredump elf information
1570 * @rproc: handle of a remote processor
1571 * @class: elf class for coredump elf file
1572 * @machine: elf machine for coredump elf file
1573 *
1574 * Set elf information which will be used for coredump elf file.
1575 *
1576 * Return: 0 on success, negative errno on error.
1577 */
1578int rproc_coredump_set_elf_info(struct rproc *rproc, u8 class, u16 machine)
1579{
1580 if (class != ELFCLASS64 && class != ELFCLASS32)
1581 return -EINVAL;
1582
1583 rproc->elf_class = class;
1584 rproc->elf_machine = machine;
1585
1586 return 0;
1587}
1588EXPORT_SYMBOL(rproc_coredump_set_elf_info);
1589
2666ca91
SJ
1590/**
1591 * rproc_coredump() - perform coredump
1592 * @rproc: rproc handle
1593 *
1594 * This function will generate an ELF header for the registered segments
1595 * and create a devcoredump device associated with rproc.
1596 */
1597static void rproc_coredump(struct rproc *rproc)
1598{
1599 struct rproc_dump_segment *segment;
8f403350
CL
1600 void *phdr;
1601 void *ehdr;
2666ca91
SJ
1602 size_t data_size;
1603 size_t offset;
1604 void *data;
1605 void *ptr;
8f403350 1606 u8 class = rproc->elf_class;
2666ca91
SJ
1607 int phnum = 0;
1608
1609 if (list_empty(&rproc->dump_segments))
1610 return;
1611
418fd787
CL
1612 if (class == ELFCLASSNONE) {
1613 dev_err(&rproc->dev, "Elf class is not set\n");
1614 return;
1615 }
1616
8f403350 1617 data_size = elf_size_of_hdr(class);
2666ca91 1618 list_for_each_entry(segment, &rproc->dump_segments, node) {
8f403350 1619 data_size += elf_size_of_phdr(class) + segment->size;
2666ca91
SJ
1620
1621 phnum++;
1622 }
1623
1624 data = vmalloc(data_size);
1625 if (!data)
1626 return;
1627
1628 ehdr = data;
1629
8f403350
CL
1630 memset(ehdr, 0, elf_size_of_hdr(class));
1631 /* e_ident field is common for both elf32 and elf64 */
1632 elf_hdr_init_ident(ehdr, class);
1633
1634 elf_hdr_set_e_type(class, ehdr, ET_CORE);
418fd787 1635 elf_hdr_set_e_machine(class, ehdr, rproc->elf_machine);
8f403350
CL
1636 elf_hdr_set_e_version(class, ehdr, EV_CURRENT);
1637 elf_hdr_set_e_entry(class, ehdr, rproc->bootaddr);
1638 elf_hdr_set_e_phoff(class, ehdr, elf_size_of_hdr(class));
1639 elf_hdr_set_e_ehsize(class, ehdr, elf_size_of_hdr(class));
1640 elf_hdr_set_e_phentsize(class, ehdr, elf_size_of_phdr(class));
1641 elf_hdr_set_e_phnum(class, ehdr, phnum);
1642
1643 phdr = data + elf_hdr_get_e_phoff(class, ehdr);
1644 offset = elf_hdr_get_e_phoff(class, ehdr);
1645 offset += elf_size_of_phdr(class) * elf_hdr_get_e_phnum(class, ehdr);
1646
2666ca91 1647 list_for_each_entry(segment, &rproc->dump_segments, node) {
8f403350
CL
1648 memset(phdr, 0, elf_size_of_phdr(class));
1649 elf_phdr_set_p_type(class, phdr, PT_LOAD);
1650 elf_phdr_set_p_offset(class, phdr, offset);
1651 elf_phdr_set_p_vaddr(class, phdr, segment->da);
1652 elf_phdr_set_p_paddr(class, phdr, segment->da);
1653 elf_phdr_set_p_filesz(class, phdr, segment->size);
1654 elf_phdr_set_p_memsz(class, phdr, segment->size);
1655 elf_phdr_set_p_flags(class, phdr, PF_R | PF_W | PF_X);
1656 elf_phdr_set_p_align(class, phdr, 0);
2666ca91 1657
3952105d
SS
1658 if (segment->dump) {
1659 segment->dump(rproc, segment, data + offset);
2666ca91 1660 } else {
3952105d
SS
1661 ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1662 if (!ptr) {
1663 dev_err(&rproc->dev,
1664 "invalid coredump segment (%pad, %zu)\n",
1665 &segment->da, segment->size);
1666 memset(data + offset, 0xff, segment->size);
1667 } else {
1668 memcpy(data + offset, ptr, segment->size);
1669 }
2666ca91
SJ
1670 }
1671
8f403350
CL
1672 offset += elf_phdr_get_p_filesz(class, phdr);
1673 phdr += elf_size_of_phdr(class);
2666ca91
SJ
1674 }
1675
1676 dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1677}
1678
70b85ef8
FGL
1679/**
1680 * rproc_trigger_recovery() - recover a remoteproc
1681 * @rproc: the remote processor
1682 *
56324d7a 1683 * The recovery is done by resetting all the virtio devices, that way all the
70b85ef8
FGL
1684 * rpmsg drivers will be reseted along with the remote processor making the
1685 * remoteproc functional again.
1686 *
1687 * This function can sleep, so it cannot be called from atomic context.
1688 */
1689int rproc_trigger_recovery(struct rproc *rproc)
1690{
7e83cab8
SJ
1691 const struct firmware *firmware_p;
1692 struct device *dev = &rproc->dev;
1693 int ret;
1694
7e83cab8
SJ
1695 ret = mutex_lock_interruptible(&rproc->lock);
1696 if (ret)
1697 return ret;
1698
0b145574
AE
1699 /* State could have changed before we got the mutex */
1700 if (rproc->state != RPROC_CRASHED)
1701 goto unlock_mutex;
1702
1703 dev_err(dev, "recovering %s\n", rproc->name);
1704
fcd58037 1705 ret = rproc_stop(rproc, true);
7e83cab8
SJ
1706 if (ret)
1707 goto unlock_mutex;
ddf71187 1708
2666ca91
SJ
1709 /* generate coredump */
1710 rproc_coredump(rproc);
1711
7e83cab8
SJ
1712 /* load firmware */
1713 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1714 if (ret < 0) {
1715 dev_err(dev, "request_firmware failed: %d\n", ret);
1716 goto unlock_mutex;
1717 }
ddf71187 1718
7e83cab8
SJ
1719 /* boot the remote processor up again */
1720 ret = rproc_start(rproc, firmware_p);
1721
1722 release_firmware(firmware_p);
1723
1724unlock_mutex:
1725 mutex_unlock(&rproc->lock);
1726 return ret;
70b85ef8
FGL
1727}
1728
8afd519c
FGL
1729/**
1730 * rproc_crash_handler_work() - handle a crash
2e7d4c2c 1731 * @work: work treating the crash
8afd519c
FGL
1732 *
1733 * This function needs to handle everything related to a crash, like cpu
1734 * registers and stack dump, information to help to debug the fatal error, etc.
1735 */
1736static void rproc_crash_handler_work(struct work_struct *work)
1737{
1738 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1739 struct device *dev = &rproc->dev;
1740
1741 dev_dbg(dev, "enter %s\n", __func__);
1742
1743 mutex_lock(&rproc->lock);
1744
1745 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1746 /* handle only the first crash detected */
1747 mutex_unlock(&rproc->lock);
1748 return;
1749 }
1750
1751 rproc->state = RPROC_CRASHED;
1752 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1753 rproc->name);
1754
1755 mutex_unlock(&rproc->lock);
1756
2e37abb8
FGL
1757 if (!rproc->recovery_disabled)
1758 rproc_trigger_recovery(rproc);
8afd519c
FGL
1759}
1760
400e64df 1761/**
1b0ef906 1762 * rproc_boot() - boot a remote processor
400e64df
OBC
1763 * @rproc: handle of a remote processor
1764 *
1765 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1766 *
1767 * If the remote processor is already powered on, this function immediately
1768 * returns (successfully).
1769 *
1770 * Returns 0 on success, and an appropriate error value otherwise.
1771 */
1b0ef906 1772int rproc_boot(struct rproc *rproc)
400e64df
OBC
1773{
1774 const struct firmware *firmware_p;
1775 struct device *dev;
1776 int ret;
1777
1778 if (!rproc) {
1779 pr_err("invalid rproc handle\n");
1780 return -EINVAL;
1781 }
1782
b5ab5e24 1783 dev = &rproc->dev;
400e64df
OBC
1784
1785 ret = mutex_lock_interruptible(&rproc->lock);
1786 if (ret) {
1787 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1788 return ret;
1789 }
1790
2099c77d
SJ
1791 if (rproc->state == RPROC_DELETED) {
1792 ret = -ENODEV;
1793 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1794 goto unlock_mutex;
1795 }
1796
400e64df
OBC
1797 /* skip the boot process if rproc is already powered up */
1798 if (atomic_inc_return(&rproc->power) > 1) {
1799 ret = 0;
1800 goto unlock_mutex;
1801 }
1802
1803 dev_info(dev, "powering up %s\n", rproc->name);
1804
1805 /* load firmware */
1806 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1807 if (ret < 0) {
1808 dev_err(dev, "request_firmware failed: %d\n", ret);
1809 goto downref_rproc;
1810 }
1811
1812 ret = rproc_fw_boot(rproc, firmware_p);
1813
1814 release_firmware(firmware_p);
1815
1816downref_rproc:
fbb6aacb 1817 if (ret)
400e64df 1818 atomic_dec(&rproc->power);
400e64df
OBC
1819unlock_mutex:
1820 mutex_unlock(&rproc->lock);
1821 return ret;
1822}
1823EXPORT_SYMBOL(rproc_boot);
1824
1825/**
1826 * rproc_shutdown() - power off the remote processor
1827 * @rproc: the remote processor
1828 *
1829 * Power off a remote processor (previously booted with rproc_boot()).
1830 *
1831 * In case @rproc is still being used by an additional user(s), then
1832 * this function will just decrement the power refcount and exit,
1833 * without really powering off the device.
1834 *
1835 * Every call to rproc_boot() must (eventually) be accompanied by a call
1836 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1837 *
1838 * Notes:
1839 * - we're not decrementing the rproc's refcount, only the power refcount.
1840 * which means that the @rproc handle stays valid even after rproc_shutdown()
1841 * returns, and users can still use it with a subsequent rproc_boot(), if
1842 * needed.
400e64df
OBC
1843 */
1844void rproc_shutdown(struct rproc *rproc)
1845{
b5ab5e24 1846 struct device *dev = &rproc->dev;
400e64df
OBC
1847 int ret;
1848
1849 ret = mutex_lock_interruptible(&rproc->lock);
1850 if (ret) {
1851 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1852 return;
1853 }
1854
1855 /* if the remote proc is still needed, bail out */
1856 if (!atomic_dec_and_test(&rproc->power))
1857 goto out;
1858
fcd58037 1859 ret = rproc_stop(rproc, false);
400e64df
OBC
1860 if (ret) {
1861 atomic_inc(&rproc->power);
400e64df
OBC
1862 goto out;
1863 }
1864
1865 /* clean up all acquired resources */
1866 rproc_resource_cleanup(rproc);
1867
1868 rproc_disable_iommu(rproc);
1869
988d204c 1870 /* Free the copy of the resource table */
a0c10687
BA
1871 kfree(rproc->cached_table);
1872 rproc->cached_table = NULL;
988d204c 1873 rproc->table_ptr = NULL;
400e64df
OBC
1874out:
1875 mutex_unlock(&rproc->lock);
400e64df
OBC
1876}
1877EXPORT_SYMBOL(rproc_shutdown);
1878
fec47d86
DG
1879/**
1880 * rproc_get_by_phandle() - find a remote processor by phandle
1881 * @phandle: phandle to the rproc
1882 *
1883 * Finds an rproc handle using the remote processor's phandle, and then
1884 * return a handle to the rproc.
1885 *
1886 * This function increments the remote processor's refcount, so always
1887 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1888 *
1889 * Returns the rproc handle on success, and NULL on failure.
1890 */
8de3dbd0 1891#ifdef CONFIG_OF
fec47d86
DG
1892struct rproc *rproc_get_by_phandle(phandle phandle)
1893{
1894 struct rproc *rproc = NULL, *r;
1895 struct device_node *np;
1896
1897 np = of_find_node_by_phandle(phandle);
1898 if (!np)
1899 return NULL;
1900
c0abe2ca
BA
1901 rcu_read_lock();
1902 list_for_each_entry_rcu(r, &rproc_list, node) {
fec47d86 1903 if (r->dev.parent && r->dev.parent->of_node == np) {
fbb6aacb
BA
1904 /* prevent underlying implementation from being removed */
1905 if (!try_module_get(r->dev.parent->driver->owner)) {
1906 dev_err(&r->dev, "can't get owner\n");
1907 break;
1908 }
1909
fec47d86
DG
1910 rproc = r;
1911 get_device(&rproc->dev);
1912 break;
1913 }
1914 }
c0abe2ca 1915 rcu_read_unlock();
fec47d86
DG
1916
1917 of_node_put(np);
1918
1919 return rproc;
1920}
8de3dbd0
OBC
1921#else
1922struct rproc *rproc_get_by_phandle(phandle phandle)
1923{
1924 return NULL;
1925}
1926#endif
fec47d86
DG
1927EXPORT_SYMBOL(rproc_get_by_phandle);
1928
400e64df 1929/**
160e7c84 1930 * rproc_add() - register a remote processor
400e64df
OBC
1931 * @rproc: the remote processor handle to register
1932 *
1933 * Registers @rproc with the remoteproc framework, after it has been
1934 * allocated with rproc_alloc().
1935 *
1936 * This is called by the platform-specific rproc implementation, whenever
1937 * a new remote processor device is probed.
1938 *
1939 * Returns 0 on success and an appropriate error code otherwise.
1940 *
1941 * Note: this function initiates an asynchronous firmware loading
1942 * context, which will look for virtio devices supported by the rproc's
1943 * firmware.
1944 *
1945 * If found, those virtio devices will be created and added, so as a result
7a186941 1946 * of registering this remote processor, additional virtio drivers might be
400e64df 1947 * probed.
400e64df 1948 */
160e7c84 1949int rproc_add(struct rproc *rproc)
400e64df 1950{
b5ab5e24 1951 struct device *dev = &rproc->dev;
70b85ef8 1952 int ret;
400e64df 1953
b5ab5e24
OBC
1954 ret = device_add(dev);
1955 if (ret < 0)
1956 return ret;
400e64df 1957
b5ab5e24 1958 dev_info(dev, "%s is available\n", rproc->name);
400e64df
OBC
1959
1960 /* create debugfs entries */
1961 rproc_create_debug_dir(rproc);
7a20c64d
SJ
1962
1963 /* if rproc is marked always-on, request it to boot */
1964 if (rproc->auto_boot) {
5e6533f7 1965 ret = rproc_trigger_auto_boot(rproc);
7a20c64d
SJ
1966 if (ret < 0)
1967 return ret;
1968 }
400e64df 1969
d2e12e66
DG
1970 /* expose to rproc_get_by_phandle users */
1971 mutex_lock(&rproc_list_mutex);
c0abe2ca 1972 list_add_rcu(&rproc->node, &rproc_list);
d2e12e66
DG
1973 mutex_unlock(&rproc_list_mutex);
1974
1975 return 0;
400e64df 1976}
160e7c84 1977EXPORT_SYMBOL(rproc_add);
400e64df 1978
305ac5a7
PC
1979static void devm_rproc_remove(void *rproc)
1980{
1981 rproc_del(rproc);
1982}
1983
1984/**
1985 * devm_rproc_add() - resource managed rproc_add()
1986 * @dev: the underlying device
1987 * @rproc: the remote processor handle to register
1988 *
1989 * This function performs like rproc_add() but the registered rproc device will
1990 * automatically be removed on driver detach.
1991 *
1992 * Returns: 0 on success, negative errno on failure
1993 */
1994int devm_rproc_add(struct device *dev, struct rproc *rproc)
1995{
1996 int err;
1997
1998 err = rproc_add(rproc);
1999 if (err)
2000 return err;
2001
2002 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2003}
2004EXPORT_SYMBOL(devm_rproc_add);
2005
b5ab5e24
OBC
2006/**
2007 * rproc_type_release() - release a remote processor instance
2008 * @dev: the rproc's device
2009 *
2010 * This function should _never_ be called directly.
2011 *
2012 * It will be called by the driver core when no one holds a valid pointer
2013 * to @dev anymore.
2014 */
2015static void rproc_type_release(struct device *dev)
2016{
2017 struct rproc *rproc = container_of(dev, struct rproc, dev);
2018
7183a2a7
OBC
2019 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2020
b5ab5e24
OBC
2021 idr_destroy(&rproc->notifyids);
2022
2023 if (rproc->index >= 0)
2024 ida_simple_remove(&rproc_dev_index, rproc->index);
2025
1487deda 2026 kfree_const(rproc->firmware);
db655278 2027 kfree_const(rproc->name);
fb98e2bd 2028 kfree(rproc->ops);
b5ab5e24
OBC
2029 kfree(rproc);
2030}
2031
c42ca04d 2032static const struct device_type rproc_type = {
b5ab5e24
OBC
2033 .name = "remoteproc",
2034 .release = rproc_type_release,
2035};
400e64df 2036
0c2ae2b1
MP
2037static int rproc_alloc_firmware(struct rproc *rproc,
2038 const char *name, const char *firmware)
2039{
1487deda 2040 const char *p;
0c2ae2b1 2041
9d5f82c8
MP
2042 /*
2043 * Allocate a firmware name if the caller gave us one to work
2044 * with. Otherwise construct a new one using a default pattern.
2045 */
2046 if (firmware)
1487deda 2047 p = kstrdup_const(firmware, GFP_KERNEL);
9d5f82c8
MP
2048 else
2049 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
4df4f8be
MP
2050
2051 if (!p)
2052 return -ENOMEM;
0c2ae2b1
MP
2053
2054 rproc->firmware = p;
2055
2056 return 0;
2057}
2058
bf860aa1
MP
2059static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2060{
2061 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2062 if (!rproc->ops)
2063 return -ENOMEM;
2064
2065 if (rproc->ops->load)
2066 return 0;
2067
2068 /* Default to ELF loader if no load function is specified */
2069 rproc->ops->load = rproc_elf_load_segments;
2070 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2071 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2072 if (!rproc->ops->sanity_check)
2073 rproc->ops->sanity_check = rproc_elf32_sanity_check;
2074 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2075
2076 return 0;
2077}
2078
400e64df
OBC
2079/**
2080 * rproc_alloc() - allocate a remote processor handle
2081 * @dev: the underlying device
2082 * @name: name of this remote processor
2083 * @ops: platform-specific handlers (mainly start/stop)
8b4aec9a 2084 * @firmware: name of firmware file to load, can be NULL
400e64df
OBC
2085 * @len: length of private data needed by the rproc driver (in bytes)
2086 *
2087 * Allocates a new remote processor handle, but does not register
8b4aec9a 2088 * it yet. if @firmware is NULL, a default name is used.
400e64df
OBC
2089 *
2090 * This function should be used by rproc implementations during initialization
2091 * of the remote processor.
2092 *
2093 * After creating an rproc handle using this function, and when ready,
160e7c84 2094 * implementations should then call rproc_add() to complete
400e64df
OBC
2095 * the registration of the remote processor.
2096 *
2097 * On success the new rproc is returned, and on failure, NULL.
2098 *
2099 * Note: _never_ directly deallocate @rproc, even if it was not registered
433c0e04 2100 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
400e64df
OBC
2101 */
2102struct rproc *rproc_alloc(struct device *dev, const char *name,
730f84ce
AS
2103 const struct rproc_ops *ops,
2104 const char *firmware, int len)
400e64df
OBC
2105{
2106 struct rproc *rproc;
2107
2108 if (!dev || !name || !ops)
2109 return NULL;
2110
0f57dc6a 2111 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
0c2ae2b1 2112 if (!rproc)
0f57dc6a 2113 return NULL;
0c2ae2b1 2114
400e64df 2115 rproc->priv = &rproc[1];
ddf71187 2116 rproc->auto_boot = true;
418fd787
CL
2117 rproc->elf_class = ELFCLASSNONE;
2118 rproc->elf_machine = EM_NONE;
400e64df 2119
b5ab5e24
OBC
2120 device_initialize(&rproc->dev);
2121 rproc->dev.parent = dev;
2122 rproc->dev.type = &rproc_type;
2aefbef0 2123 rproc->dev.class = &rproc_class;
7c89717f 2124 rproc->dev.driver_data = rproc;
6442df49 2125 idr_init(&rproc->notifyids);
b5ab5e24 2126
db655278
SA
2127 rproc->name = kstrdup_const(name, GFP_KERNEL);
2128 if (!rproc->name)
2129 goto put_device;
2130
226f5db4
MP
2131 if (rproc_alloc_firmware(rproc, name, firmware))
2132 goto put_device;
2133
2134 if (rproc_alloc_ops(rproc, ops))
2135 goto put_device;
2136
b5ab5e24
OBC
2137 /* Assign a unique device index and name */
2138 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2139 if (rproc->index < 0) {
2140 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
226f5db4 2141 goto put_device;
b5ab5e24
OBC
2142 }
2143
2144 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2145
400e64df
OBC
2146 atomic_set(&rproc->power, 0);
2147
400e64df
OBC
2148 mutex_init(&rproc->lock);
2149
2150 INIT_LIST_HEAD(&rproc->carveouts);
2151 INIT_LIST_HEAD(&rproc->mappings);
2152 INIT_LIST_HEAD(&rproc->traces);
7a186941 2153 INIT_LIST_HEAD(&rproc->rvdevs);
7bdc9650 2154 INIT_LIST_HEAD(&rproc->subdevs);
2666ca91 2155 INIT_LIST_HEAD(&rproc->dump_segments);
400e64df 2156
8afd519c
FGL
2157 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2158
400e64df
OBC
2159 rproc->state = RPROC_OFFLINE;
2160
2161 return rproc;
0c2ae2b1 2162
226f5db4
MP
2163put_device:
2164 put_device(&rproc->dev);
0c2ae2b1 2165 return NULL;
400e64df
OBC
2166}
2167EXPORT_SYMBOL(rproc_alloc);
2168
2169/**
433c0e04
BA
2170 * rproc_free() - unroll rproc_alloc()
2171 * @rproc: the remote processor handle
2172 *
2173 * This function decrements the rproc dev refcount.
2174 *
2175 * If no one holds any reference to rproc anymore, then its refcount would
2176 * now drop to zero, and it would be freed.
2177 */
2178void rproc_free(struct rproc *rproc)
2179{
2180 put_device(&rproc->dev);
2181}
2182EXPORT_SYMBOL(rproc_free);
2183
2184/**
2185 * rproc_put() - release rproc reference
400e64df
OBC
2186 * @rproc: the remote processor handle
2187 *
c6b5a276 2188 * This function decrements the rproc dev refcount.
400e64df 2189 *
c6b5a276
OBC
2190 * If no one holds any reference to rproc anymore, then its refcount would
2191 * now drop to zero, and it would be freed.
400e64df 2192 */
160e7c84 2193void rproc_put(struct rproc *rproc)
400e64df 2194{
fbb6aacb 2195 module_put(rproc->dev.parent->driver->owner);
b5ab5e24 2196 put_device(&rproc->dev);
400e64df 2197}
160e7c84 2198EXPORT_SYMBOL(rproc_put);
400e64df
OBC
2199
2200/**
160e7c84 2201 * rproc_del() - unregister a remote processor
400e64df
OBC
2202 * @rproc: rproc handle to unregister
2203 *
400e64df
OBC
2204 * This function should be called when the platform specific rproc
2205 * implementation decides to remove the rproc device. it should
160e7c84 2206 * _only_ be called if a previous invocation of rproc_add()
400e64df
OBC
2207 * has completed successfully.
2208 *
160e7c84 2209 * After rproc_del() returns, @rproc isn't freed yet, because
c6b5a276 2210 * of the outstanding reference created by rproc_alloc. To decrement that
433c0e04 2211 * one last refcount, one still needs to call rproc_free().
400e64df
OBC
2212 *
2213 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2214 */
160e7c84 2215int rproc_del(struct rproc *rproc)
400e64df
OBC
2216{
2217 if (!rproc)
2218 return -EINVAL;
2219
ddf71187
BA
2220 /* if rproc is marked always-on, rproc_add() booted it */
2221 /* TODO: make sure this works with rproc->power > 1 */
2222 if (rproc->auto_boot)
2223 rproc_shutdown(rproc);
2224
2099c77d
SJ
2225 mutex_lock(&rproc->lock);
2226 rproc->state = RPROC_DELETED;
2227 mutex_unlock(&rproc->lock);
2228
b003d45b
SJ
2229 rproc_delete_debug_dir(rproc);
2230
fec47d86
DG
2231 /* the rproc is downref'ed as soon as it's removed from the klist */
2232 mutex_lock(&rproc_list_mutex);
c0abe2ca 2233 list_del_rcu(&rproc->node);
fec47d86
DG
2234 mutex_unlock(&rproc_list_mutex);
2235
c0abe2ca
BA
2236 /* Ensure that no readers of rproc_list are still active */
2237 synchronize_rcu();
2238
b5ab5e24 2239 device_del(&rproc->dev);
400e64df
OBC
2240
2241 return 0;
2242}
160e7c84 2243EXPORT_SYMBOL(rproc_del);
400e64df 2244
305ac5a7
PC
2245static void devm_rproc_free(struct device *dev, void *res)
2246{
2247 rproc_free(*(struct rproc **)res);
2248}
2249
2250/**
2251 * devm_rproc_alloc() - resource managed rproc_alloc()
2252 * @dev: the underlying device
2253 * @name: name of this remote processor
2254 * @ops: platform-specific handlers (mainly start/stop)
2255 * @firmware: name of firmware file to load, can be NULL
2256 * @len: length of private data needed by the rproc driver (in bytes)
2257 *
2258 * This function performs like rproc_alloc() but the acquired rproc device will
2259 * automatically be released on driver detach.
2260 *
2261 * Returns: new rproc instance, or NULL on failure
2262 */
2263struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2264 const struct rproc_ops *ops,
2265 const char *firmware, int len)
2266{
2267 struct rproc **ptr, *rproc;
2268
2269 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2270 if (!ptr)
2271 return ERR_PTR(-ENOMEM);
2272
2273 rproc = rproc_alloc(dev, name, ops, firmware, len);
2274 if (rproc) {
2275 *ptr = rproc;
2276 devres_add(dev, ptr);
2277 } else {
2278 devres_free(ptr);
2279 }
2280
2281 return rproc;
2282}
2283EXPORT_SYMBOL(devm_rproc_alloc);
2284
7bdc9650
BA
2285/**
2286 * rproc_add_subdev() - add a subdevice to a remoteproc
2287 * @rproc: rproc handle to add the subdevice to
2288 * @subdev: subdev handle to register
4902676f
BA
2289 *
2290 * Caller is responsible for populating optional subdevice function pointers.
7bdc9650 2291 */
4902676f 2292void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
7bdc9650 2293{
7bdc9650
BA
2294 list_add_tail(&subdev->node, &rproc->subdevs);
2295}
2296EXPORT_SYMBOL(rproc_add_subdev);
2297
2298/**
2299 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2300 * @rproc: rproc handle to remove the subdevice from
2301 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2302 */
2303void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2304{
2305 list_del(&subdev->node);
2306}
2307EXPORT_SYMBOL(rproc_remove_subdev);
2308
7c89717f
BA
2309/**
2310 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2311 * @dev: child device to find ancestor of
2312 *
2313 * Returns the ancestor rproc instance, or NULL if not found.
2314 */
2315struct rproc *rproc_get_by_child(struct device *dev)
2316{
2317 for (dev = dev->parent; dev; dev = dev->parent) {
2318 if (dev->type == &rproc_type)
2319 return dev->driver_data;
2320 }
2321
2322 return NULL;
2323}
2324EXPORT_SYMBOL(rproc_get_by_child);
2325
8afd519c
FGL
2326/**
2327 * rproc_report_crash() - rproc crash reporter function
2328 * @rproc: remote processor
2329 * @type: crash type
2330 *
2331 * This function must be called every time a crash is detected by the low-level
2332 * drivers implementing a specific remoteproc. This should not be called from a
2333 * non-remoteproc driver.
2334 *
2335 * This function can be called from atomic/interrupt context.
2336 */
2337void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2338{
2339 if (!rproc) {
2340 pr_err("NULL rproc pointer\n");
2341 return;
2342 }
2343
2344 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2345 rproc->name, rproc_crash_to_string(type));
2346
2347 /* create a new task to handle the error */
2348 schedule_work(&rproc->crash_handler);
2349}
2350EXPORT_SYMBOL(rproc_report_crash);
2351
dc5192c4
BA
2352static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2353 void *ptr)
2354{
2355 unsigned int longest = 0;
2356 struct rproc *rproc;
2357 unsigned int d;
2358
2359 rcu_read_lock();
2360 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2361 if (!rproc->ops->panic || rproc->state != RPROC_RUNNING)
2362 continue;
2363
2364 d = rproc->ops->panic(rproc);
2365 longest = max(longest, d);
2366 }
2367 rcu_read_unlock();
2368
2369 /*
2370 * Delay for the longest requested duration before returning. This can
2371 * be used by the remoteproc drivers to give the remote processor time
2372 * to perform any requested operations (such as flush caches), when
2373 * it's not possible to signal the Linux side due to the panic.
2374 */
2375 mdelay(longest);
2376
2377 return NOTIFY_DONE;
2378}
2379
2380static void __init rproc_init_panic(void)
2381{
2382 rproc_panic_nb.notifier_call = rproc_panic_handler;
2383 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2384}
2385
2386static void __exit rproc_exit_panic(void)
2387{
2388 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2389}
2390
400e64df
OBC
2391static int __init remoteproc_init(void)
2392{
2aefbef0 2393 rproc_init_sysfs();
400e64df 2394 rproc_init_debugfs();
dc5192c4 2395 rproc_init_panic();
b5ab5e24 2396
400e64df
OBC
2397 return 0;
2398}
a8f40111 2399subsys_initcall(remoteproc_init);
400e64df
OBC
2400
2401static void __exit remoteproc_exit(void)
2402{
f42f79af
SA
2403 ida_destroy(&rproc_dev_index);
2404
dc5192c4 2405 rproc_exit_panic();
400e64df 2406 rproc_exit_debugfs();
2aefbef0 2407 rproc_exit_sysfs();
400e64df
OBC
2408}
2409module_exit(remoteproc_exit);
2410
2411MODULE_LICENSE("GPL v2");
2412MODULE_DESCRIPTION("Generic Remote Processor Framework");