Linux 3.12-rc2
[linux-2.6-block.git] / drivers / regulator / ti-abb-regulator.c
CommitLineData
40b1936e
AT
1/*
2 * Texas Instruments SoC Adaptive Body Bias(ABB) Regulator
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Mike Turquette <mturquette@ti.com>
6 *
7 * Copyright (C) 2012-2013 Texas Instruments, Inc.
8 * Andrii Tseglytskyi <andrii.tseglytskyi@ti.com>
9 * Nishanth Menon <nm@ti.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
16 * kind, whether express or implied; without even the implied warranty
17 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 */
20#include <linux/clk.h>
21#include <linux/delay.h>
22#include <linux/err.h>
23#include <linux/io.h>
24#include <linux/module.h>
25#include <linux/of_device.h>
26#include <linux/of.h>
27#include <linux/platform_device.h>
28#include <linux/regulator/driver.h>
29#include <linux/regulator/machine.h>
30#include <linux/regulator/of_regulator.h>
31
32/*
33 * ABB LDO operating states:
34 * NOMINAL_OPP: bypasses the ABB LDO
35 * FAST_OPP: sets ABB LDO to Forward Body-Bias
36 * SLOW_OPP: sets ABB LDO to Reverse Body-Bias
37 */
38#define TI_ABB_NOMINAL_OPP 0
39#define TI_ABB_FAST_OPP 1
40#define TI_ABB_SLOW_OPP 3
41
42/**
43 * struct ti_abb_info - ABB information per voltage setting
44 * @opp_sel: one of TI_ABB macro
45 * @vset: (optional) vset value that LDOVBB needs to be overriden with.
46 *
47 * Array of per voltage entries organized in the same order as regulator_desc's
48 * volt_table list. (selector is used to index from this array)
49 */
50struct ti_abb_info {
51 u32 opp_sel;
52 u32 vset;
53};
54
55/**
56 * struct ti_abb_reg - Register description for ABB block
57 * @setup_reg: setup register offset from base
58 * @control_reg: control register offset from base
59 * @sr2_wtcnt_value_mask: setup register- sr2_wtcnt_value mask
60 * @fbb_sel_mask: setup register- FBB sel mask
61 * @rbb_sel_mask: setup register- RBB sel mask
62 * @sr2_en_mask: setup register- enable mask
63 * @opp_change_mask: control register - mask to trigger LDOVBB change
64 * @opp_sel_mask: control register - mask for mode to operate
65 */
66struct ti_abb_reg {
67 u32 setup_reg;
68 u32 control_reg;
69
70 /* Setup register fields */
71 u32 sr2_wtcnt_value_mask;
72 u32 fbb_sel_mask;
73 u32 rbb_sel_mask;
74 u32 sr2_en_mask;
75
76 /* Control register fields */
77 u32 opp_change_mask;
78 u32 opp_sel_mask;
79};
80
81/**
82 * struct ti_abb - ABB instance data
83 * @rdesc: regulator descriptor
84 * @clk: clock(usually sysclk) supplying ABB block
85 * @base: base address of ABB block
86 * @int_base: interrupt register base address
87 * @efuse_base: (optional) efuse base address for ABB modes
88 * @ldo_base: (optional) LDOVBB vset override base address
89 * @regs: pointer to struct ti_abb_reg for ABB block
90 * @txdone_mask: mask on int_base for tranxdone interrupt
91 * @ldovbb_override_mask: mask to ldo_base for overriding default LDO VBB
92 * vset with value from efuse
93 * @ldovbb_vset_mask: mask to ldo_base for providing the VSET override
94 * @info: array to per voltage ABB configuration
95 * @current_info_idx: current index to info
96 * @settling_time: SoC specific settling time for LDO VBB
97 */
98struct ti_abb {
99 struct regulator_desc rdesc;
100 struct clk *clk;
101 void __iomem *base;
102 void __iomem *int_base;
103 void __iomem *efuse_base;
104 void __iomem *ldo_base;
105
106 const struct ti_abb_reg *regs;
107 u32 txdone_mask;
108 u32 ldovbb_override_mask;
109 u32 ldovbb_vset_mask;
110
111 struct ti_abb_info *info;
112 int current_info_idx;
113
114 u32 settling_time;
115};
116
117/**
118 * ti_abb_rmw() - handy wrapper to set specific register bits
119 * @mask: mask for register field
120 * @value: value shifted to mask location and written
121 * @offset: offset of register
122 * @base: base address
123 *
124 * Return: final register value (may be unused)
125 */
126static inline u32 ti_abb_rmw(u32 mask, u32 value, u32 offset,
127 void __iomem *base)
128{
129 u32 val;
130
131 val = readl(base + offset);
132 val &= ~mask;
133 val |= (value << __ffs(mask)) & mask;
134 writel(val, base + offset);
135
136 return val;
137}
138
139/**
140 * ti_abb_check_txdone() - handy wrapper to check ABB tranxdone status
141 * @abb: pointer to the abb instance
142 *
143 * Return: true or false
144 */
145static inline bool ti_abb_check_txdone(const struct ti_abb *abb)
146{
147 return !!(readl(abb->int_base) & abb->txdone_mask);
148}
149
150/**
151 * ti_abb_clear_txdone() - handy wrapper to clear ABB tranxdone status
152 * @abb: pointer to the abb instance
153 */
154static inline void ti_abb_clear_txdone(const struct ti_abb *abb)
155{
156 writel(abb->txdone_mask, abb->int_base);
157};
158
159/**
160 * ti_abb_wait_tranx() - waits for ABB tranxdone event
161 * @dev: device
162 * @abb: pointer to the abb instance
163 *
164 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time.
165 */
166static int ti_abb_wait_txdone(struct device *dev, struct ti_abb *abb)
167{
168 int timeout = 0;
169 bool status;
170
171 while (timeout++ <= abb->settling_time) {
172 status = ti_abb_check_txdone(abb);
173 if (status)
174 break;
175
176 udelay(1);
177 }
178
179 if (timeout > abb->settling_time) {
180 dev_warn_ratelimited(dev,
181 "%s:TRANXDONE timeout(%duS) int=0x%08x\n",
182 __func__, timeout, readl(abb->int_base));
183 return -ETIMEDOUT;
184 }
185
186 return 0;
187}
188
189/**
190 * ti_abb_clear_all_txdone() - clears ABB tranxdone event
191 * @dev: device
192 * @abb: pointer to the abb instance
193 *
194 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time.
195 */
196static int ti_abb_clear_all_txdone(struct device *dev, const struct ti_abb *abb)
197{
198 int timeout = 0;
199 bool status;
200
201 while (timeout++ <= abb->settling_time) {
202 ti_abb_clear_txdone(abb);
203
204 status = ti_abb_check_txdone(abb);
205 if (!status)
206 break;
207
208 udelay(1);
209 }
210
211 if (timeout > abb->settling_time) {
212 dev_warn_ratelimited(dev,
213 "%s:TRANXDONE timeout(%duS) int=0x%08x\n",
214 __func__, timeout, readl(abb->int_base));
215 return -ETIMEDOUT;
216 }
217
218 return 0;
219}
220
221/**
222 * ti_abb_program_ldovbb() - program LDOVBB register for override value
223 * @dev: device
224 * @abb: pointer to the abb instance
225 * @info: ABB info to program
226 */
227static void ti_abb_program_ldovbb(struct device *dev, const struct ti_abb *abb,
228 struct ti_abb_info *info)
229{
230 u32 val;
231
232 val = readl(abb->ldo_base);
233 /* clear up previous values */
234 val &= ~(abb->ldovbb_override_mask | abb->ldovbb_vset_mask);
235
236 switch (info->opp_sel) {
237 case TI_ABB_SLOW_OPP:
238 case TI_ABB_FAST_OPP:
239 val |= abb->ldovbb_override_mask;
240 val |= info->vset << __ffs(abb->ldovbb_vset_mask);
241 break;
242 }
243
244 writel(val, abb->ldo_base);
245}
246
247/**
248 * ti_abb_set_opp() - Setup ABB and LDO VBB for required bias
249 * @rdev: regulator device
250 * @abb: pointer to the abb instance
251 * @info: ABB info to program
252 *
253 * Return: 0 on success or appropriate error value when fails
254 */
255static int ti_abb_set_opp(struct regulator_dev *rdev, struct ti_abb *abb,
256 struct ti_abb_info *info)
257{
258 const struct ti_abb_reg *regs = abb->regs;
259 struct device *dev = &rdev->dev;
260 int ret;
261
262 ret = ti_abb_clear_all_txdone(dev, abb);
263 if (ret)
264 goto out;
265
266 ti_abb_rmw(regs->fbb_sel_mask | regs->rbb_sel_mask, 0, regs->setup_reg,
267 abb->base);
268
269 switch (info->opp_sel) {
270 case TI_ABB_SLOW_OPP:
271 ti_abb_rmw(regs->rbb_sel_mask, 1, regs->setup_reg, abb->base);
272 break;
273 case TI_ABB_FAST_OPP:
274 ti_abb_rmw(regs->fbb_sel_mask, 1, regs->setup_reg, abb->base);
275 break;
276 }
277
278 /* program next state of ABB ldo */
279 ti_abb_rmw(regs->opp_sel_mask, info->opp_sel, regs->control_reg,
280 abb->base);
281
282 /* program LDO VBB vset override if needed */
283 if (abb->ldo_base)
284 ti_abb_program_ldovbb(dev, abb, info);
285
286 /* Initiate ABB ldo change */
287 ti_abb_rmw(regs->opp_change_mask, 1, regs->control_reg, abb->base);
288
289 /* Wait for ABB LDO to complete transition to new Bias setting */
290 ret = ti_abb_wait_txdone(dev, abb);
291 if (ret)
292 goto out;
293
294 ret = ti_abb_clear_all_txdone(dev, abb);
295 if (ret)
296 goto out;
297
298out:
299 return ret;
300}
301
302/**
303 * ti_abb_set_voltage_sel() - regulator accessor function to set ABB LDO
304 * @rdev: regulator device
305 * @sel: selector to index into required ABB LDO settings (maps to
306 * regulator descriptor's volt_table)
307 *
308 * Return: 0 on success or appropriate error value when fails
309 */
310static int ti_abb_set_voltage_sel(struct regulator_dev *rdev, unsigned sel)
311{
312 const struct regulator_desc *desc = rdev->desc;
313 struct ti_abb *abb = rdev_get_drvdata(rdev);
314 struct device *dev = &rdev->dev;
315 struct ti_abb_info *info, *oinfo;
316 int ret = 0;
317
318 if (!abb) {
319 dev_err_ratelimited(dev, "%s: No regulator drvdata\n",
320 __func__);
321 return -ENODEV;
322 }
323
324 if (!desc->n_voltages || !abb->info) {
325 dev_err_ratelimited(dev,
326 "%s: No valid voltage table entries?\n",
327 __func__);
328 return -EINVAL;
329 }
330
331 if (sel >= desc->n_voltages) {
332 dev_err(dev, "%s: sel idx(%d) >= n_voltages(%d)\n", __func__,
333 sel, desc->n_voltages);
334 return -EINVAL;
335 }
336
337 /* If we are in the same index as we were, nothing to do here! */
338 if (sel == abb->current_info_idx) {
339 dev_dbg(dev, "%s: Already at sel=%d\n", __func__, sel);
340 return ret;
341 }
342
343 /* If data is exactly the same, then just update index, no change */
344 info = &abb->info[sel];
345 oinfo = &abb->info[abb->current_info_idx];
346 if (!memcmp(info, oinfo, sizeof(*info))) {
347 dev_dbg(dev, "%s: Same data new idx=%d, old idx=%d\n", __func__,
348 sel, abb->current_info_idx);
349 goto out;
350 }
351
352 ret = ti_abb_set_opp(rdev, abb, info);
353
354out:
355 if (!ret)
356 abb->current_info_idx = sel;
357 else
358 dev_err_ratelimited(dev,
359 "%s: Volt[%d] idx[%d] mode[%d] Fail(%d)\n",
360 __func__, desc->volt_table[sel], sel,
361 info->opp_sel, ret);
362 return ret;
363}
364
365/**
366 * ti_abb_get_voltage_sel() - Regulator accessor to get current ABB LDO setting
367 * @rdev: regulator device
368 *
369 * Return: 0 on success or appropriate error value when fails
370 */
371static int ti_abb_get_voltage_sel(struct regulator_dev *rdev)
372{
373 const struct regulator_desc *desc = rdev->desc;
374 struct ti_abb *abb = rdev_get_drvdata(rdev);
375 struct device *dev = &rdev->dev;
376
377 if (!abb) {
378 dev_err_ratelimited(dev, "%s: No regulator drvdata\n",
379 __func__);
380 return -ENODEV;
381 }
382
383 if (!desc->n_voltages || !abb->info) {
384 dev_err_ratelimited(dev,
385 "%s: No valid voltage table entries?\n",
386 __func__);
387 return -EINVAL;
388 }
389
f5cd8de2
AL
390 if (abb->current_info_idx >= (int)desc->n_voltages) {
391 dev_err(dev, "%s: Corrupted data? idx(%d) >= n_voltages(%d)\n",
40b1936e
AT
392 __func__, abb->current_info_idx, desc->n_voltages);
393 return -EINVAL;
394 }
395
396 return abb->current_info_idx;
397}
398
399/**
400 * ti_abb_init_timings() - setup ABB clock timing for the current platform
401 * @dev: device
402 * @abb: pointer to the abb instance
403 *
404 * Return: 0 if timing is updated, else returns error result.
405 */
406static int ti_abb_init_timings(struct device *dev, struct ti_abb *abb)
407{
408 u32 clock_cycles;
409 u32 clk_rate, sr2_wt_cnt_val, cycle_rate;
410 const struct ti_abb_reg *regs = abb->regs;
411 int ret;
412 char *pname = "ti,settling-time";
413
414 /* read device tree properties */
415 ret = of_property_read_u32(dev->of_node, pname, &abb->settling_time);
416 if (ret) {
417 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret);
418 return ret;
419 }
420
421 /* ABB LDO cannot be settle in 0 time */
422 if (!abb->settling_time) {
423 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
424 return -EINVAL;
425 }
426
427 pname = "ti,clock-cycles";
428 ret = of_property_read_u32(dev->of_node, pname, &clock_cycles);
429 if (ret) {
430 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret);
431 return ret;
432 }
433 /* ABB LDO cannot be settle in 0 clock cycles */
434 if (!clock_cycles) {
435 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
436 return -EINVAL;
437 }
438
439 abb->clk = devm_clk_get(dev, NULL);
440 if (IS_ERR(abb->clk)) {
441 ret = PTR_ERR(abb->clk);
442 dev_err(dev, "%s: Unable to get clk(%d)\n", __func__, ret);
443 return ret;
444 }
445
446 /*
447 * SR2_WTCNT_VALUE is the settling time for the ABB ldo after a
448 * transition and must be programmed with the correct time at boot.
449 * The value programmed into the register is the number of SYS_CLK
450 * clock cycles that match a given wall time profiled for the ldo.
451 * This value depends on:
452 * settling time of ldo in micro-seconds (varies per OMAP family)
453 * # of clock cycles per SYS_CLK period (varies per OMAP family)
454 * the SYS_CLK frequency in MHz (varies per board)
455 * The formula is:
456 *
457 * ldo settling time (in micro-seconds)
458 * SR2_WTCNT_VALUE = ------------------------------------------
459 * (# system clock cycles) * (sys_clk period)
460 *
461 * Put another way:
462 *
463 * SR2_WTCNT_VALUE = settling time / (# SYS_CLK cycles / SYS_CLK rate))
464 *
465 * To avoid dividing by zero multiply both "# clock cycles" and
466 * "settling time" by 10 such that the final result is the one we want.
467 */
468
469 /* Convert SYS_CLK rate to MHz & prevent divide by zero */
470 clk_rate = DIV_ROUND_CLOSEST(clk_get_rate(abb->clk), 1000000);
471
472 /* Calculate cycle rate */
473 cycle_rate = DIV_ROUND_CLOSEST(clock_cycles * 10, clk_rate);
474
475 /* Calulate SR2_WTCNT_VALUE */
476 sr2_wt_cnt_val = DIV_ROUND_CLOSEST(abb->settling_time * 10, cycle_rate);
477
478 dev_dbg(dev, "%s: Clk_rate=%ld, sr2_cnt=0x%08x\n", __func__,
479 clk_get_rate(abb->clk), sr2_wt_cnt_val);
480
481 ti_abb_rmw(regs->sr2_wtcnt_value_mask, sr2_wt_cnt_val, regs->setup_reg,
482 abb->base);
483
484 return 0;
485}
486
487/**
488 * ti_abb_init_table() - Initialize ABB table from device tree
489 * @dev: device
490 * @abb: pointer to the abb instance
491 * @rinit_data: regulator initdata
492 *
493 * Return: 0 on success or appropriate error value when fails
494 */
495static int ti_abb_init_table(struct device *dev, struct ti_abb *abb,
496 struct regulator_init_data *rinit_data)
497{
498 struct ti_abb_info *info;
499 const struct property *prop;
500 const __be32 *abb_info;
501 const u32 num_values = 6;
502 char *pname = "ti,abb_info";
503 u32 num_entries, i;
504 unsigned int *volt_table;
505 int min_uV = INT_MAX, max_uV = 0;
506 struct regulation_constraints *c = &rinit_data->constraints;
507
508 prop = of_find_property(dev->of_node, pname, NULL);
509 if (!prop) {
510 dev_err(dev, "No '%s' property?\n", pname);
511 return -ENODEV;
512 }
513
514 if (!prop->value) {
515 dev_err(dev, "Empty '%s' property?\n", pname);
516 return -ENODATA;
517 }
518
519 /*
520 * Each abb_info is a set of n-tuple, where n is num_values, consisting
521 * of voltage and a set of detection logic for ABB information for that
522 * voltage to apply.
523 */
524 num_entries = prop->length / sizeof(u32);
525 if (!num_entries || (num_entries % num_values)) {
526 dev_err(dev, "All '%s' list entries need %d vals\n", pname,
527 num_values);
528 return -EINVAL;
529 }
530 num_entries /= num_values;
531
532 info = devm_kzalloc(dev, sizeof(*info) * num_entries, GFP_KERNEL);
533 if (!info) {
534 dev_err(dev, "Can't allocate info table for '%s' property\n",
535 pname);
536 return -ENOMEM;
537 }
538 abb->info = info;
539
540 volt_table = devm_kzalloc(dev, sizeof(unsigned int) * num_entries,
541 GFP_KERNEL);
542 if (!volt_table) {
543 dev_err(dev, "Can't allocate voltage table for '%s' property\n",
544 pname);
545 return -ENOMEM;
546 }
547
548 abb->rdesc.n_voltages = num_entries;
549 abb->rdesc.volt_table = volt_table;
550 /* We do not know where the OPP voltage is at the moment */
551 abb->current_info_idx = -EINVAL;
552
553 abb_info = prop->value;
554 for (i = 0; i < num_entries; i++, info++, volt_table++) {
555 u32 efuse_offset, rbb_mask, fbb_mask, vset_mask;
556 u32 efuse_val;
557
558 /* NOTE: num_values should equal to entries picked up here */
559 *volt_table = be32_to_cpup(abb_info++);
560 info->opp_sel = be32_to_cpup(abb_info++);
561 efuse_offset = be32_to_cpup(abb_info++);
562 rbb_mask = be32_to_cpup(abb_info++);
563 fbb_mask = be32_to_cpup(abb_info++);
564 vset_mask = be32_to_cpup(abb_info++);
565
566 dev_dbg(dev,
567 "[%d]v=%d ABB=%d ef=0x%x rbb=0x%x fbb=0x%x vset=0x%x\n",
568 i, *volt_table, info->opp_sel, efuse_offset, rbb_mask,
569 fbb_mask, vset_mask);
570
571 /* Find min/max for voltage set */
572 if (min_uV > *volt_table)
573 min_uV = *volt_table;
574 if (max_uV < *volt_table)
575 max_uV = *volt_table;
576
577 if (!abb->efuse_base) {
578 /* Ignore invalid data, but warn to help cleanup */
579 if (efuse_offset || rbb_mask || fbb_mask || vset_mask)
580 dev_err(dev, "prop '%s': v=%d,bad efuse/mask\n",
581 pname, *volt_table);
582 goto check_abb;
583 }
584
585 efuse_val = readl(abb->efuse_base + efuse_offset);
586
587 /* Use ABB recommendation from Efuse */
588 if (efuse_val & rbb_mask)
589 info->opp_sel = TI_ABB_SLOW_OPP;
590 else if (efuse_val & fbb_mask)
591 info->opp_sel = TI_ABB_FAST_OPP;
592 else if (rbb_mask || fbb_mask)
593 info->opp_sel = TI_ABB_NOMINAL_OPP;
594
595 dev_dbg(dev,
596 "[%d]v=%d efusev=0x%x final ABB=%d\n",
597 i, *volt_table, efuse_val, info->opp_sel);
598
599 /* Use recommended Vset bits from Efuse */
600 if (!abb->ldo_base) {
601 if (vset_mask)
602 dev_err(dev, "prop'%s':v=%d vst=%x LDO base?\n",
603 pname, *volt_table, vset_mask);
604 continue;
605 }
606 info->vset = efuse_val & vset_mask >> __ffs(vset_mask);
607 dev_dbg(dev, "[%d]v=%d vset=%x\n", i, *volt_table, info->vset);
608check_abb:
609 switch (info->opp_sel) {
610 case TI_ABB_NOMINAL_OPP:
611 case TI_ABB_FAST_OPP:
612 case TI_ABB_SLOW_OPP:
613 /* Valid values */
614 break;
615 default:
616 dev_err(dev, "%s:[%d]v=%d, ABB=%d is invalid! Abort!\n",
617 __func__, i, *volt_table, info->opp_sel);
618 return -EINVAL;
619 }
620 }
621
622 /* Setup the min/max voltage constraints from the supported list */
623 c->min_uV = min_uV;
624 c->max_uV = max_uV;
625
626 return 0;
627}
628
629static struct regulator_ops ti_abb_reg_ops = {
630 .list_voltage = regulator_list_voltage_table,
631
632 .set_voltage_sel = ti_abb_set_voltage_sel,
633 .get_voltage_sel = ti_abb_get_voltage_sel,
634};
635
636/* Default ABB block offsets, IF this changes in future, create new one */
637static const struct ti_abb_reg abb_regs_v1 = {
638 /* WARNING: registers are wrongly documented in TRM */
639 .setup_reg = 0x04,
640 .control_reg = 0x00,
641
642 .sr2_wtcnt_value_mask = (0xff << 8),
643 .fbb_sel_mask = (0x01 << 2),
644 .rbb_sel_mask = (0x01 << 1),
645 .sr2_en_mask = (0x01 << 0),
646
647 .opp_change_mask = (0x01 << 2),
648 .opp_sel_mask = (0x03 << 0),
649};
650
651static const struct ti_abb_reg abb_regs_v2 = {
652 .setup_reg = 0x00,
653 .control_reg = 0x04,
654
655 .sr2_wtcnt_value_mask = (0xff << 8),
656 .fbb_sel_mask = (0x01 << 2),
657 .rbb_sel_mask = (0x01 << 1),
658 .sr2_en_mask = (0x01 << 0),
659
660 .opp_change_mask = (0x01 << 2),
661 .opp_sel_mask = (0x03 << 0),
662};
663
664static const struct of_device_id ti_abb_of_match[] = {
665 {.compatible = "ti,abb-v1", .data = &abb_regs_v1},
666 {.compatible = "ti,abb-v2", .data = &abb_regs_v2},
667 { },
668};
669
670MODULE_DEVICE_TABLE(of, ti_abb_of_match);
671
672/**
673 * ti_abb_probe() - Initialize an ABB ldo instance
674 * @pdev: ABB platform device
675 *
676 * Initializes an individual ABB LDO for required Body-Bias. ABB is used to
677 * addional bias supply to SoC modules for power savings or mandatory stability
678 * configuration at certain Operating Performance Points(OPPs).
679 *
680 * Return: 0 on success or appropriate error value when fails
681 */
682static int ti_abb_probe(struct platform_device *pdev)
683{
684 struct device *dev = &pdev->dev;
685 const struct of_device_id *match;
686 struct resource *res;
687 struct ti_abb *abb;
688 struct regulator_init_data *initdata = NULL;
689 struct regulator_dev *rdev = NULL;
690 struct regulator_desc *desc;
691 struct regulation_constraints *c;
692 struct regulator_config config = { };
693 char *pname;
694 int ret = 0;
695
696 match = of_match_device(ti_abb_of_match, dev);
697 if (!match) {
698 /* We do not expect this to happen */
699 ret = -ENODEV;
700 dev_err(dev, "%s: Unable to match device\n", __func__);
701 goto err;
702 }
703 if (!match->data) {
704 ret = -EINVAL;
705 dev_err(dev, "%s: Bad data in match\n", __func__);
706 goto err;
707 }
708
709 abb = devm_kzalloc(dev, sizeof(struct ti_abb), GFP_KERNEL);
710 if (!abb) {
711 dev_err(dev, "%s: Unable to allocate ABB struct\n", __func__);
712 ret = -ENOMEM;
713 goto err;
714 }
715 abb->regs = match->data;
716
717 /* Map ABB resources */
718 pname = "base-address";
719 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
d26ec830
TB
720 abb->base = devm_ioremap_resource(dev, res);
721 if (IS_ERR(abb->base)) {
722 ret = PTR_ERR(abb->base);
40b1936e
AT
723 goto err;
724 }
725
726 pname = "int-address";
727 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
728 if (!res) {
729 dev_err(dev, "Missing '%s' IO resource\n", pname);
730 ret = -ENODEV;
731 goto err;
732 }
733 /*
734 * We may have shared interrupt register offsets which are
735 * write-1-to-clear between domains ensuring exclusivity.
736 */
737 abb->int_base = devm_ioremap_nocache(dev, res->start,
738 resource_size(res));
739 if (!abb->int_base) {
740 dev_err(dev, "Unable to map '%s'\n", pname);
741 ret = -ENOMEM;
742 goto err;
743 }
744
745 /* Map Optional resources */
746 pname = "efuse-address";
747 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
748 if (!res) {
749 dev_dbg(dev, "Missing '%s' IO resource\n", pname);
750 ret = -ENODEV;
751 goto skip_opt;
752 }
753
754 /*
755 * We may have shared efuse register offsets which are read-only
756 * between domains
757 */
758 abb->efuse_base = devm_ioremap_nocache(dev, res->start,
759 resource_size(res));
760 if (!abb->efuse_base) {
761 dev_err(dev, "Unable to map '%s'\n", pname);
762 ret = -ENOMEM;
763 goto err;
764 }
765
766 pname = "ldo-address";
767 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname);
d26ec830
TB
768 abb->ldo_base = devm_ioremap_resource(dev, res);
769 if (IS_ERR(abb->ldo_base)) {
770 ret = PTR_ERR(abb->ldo_base);
40b1936e
AT
771 goto err;
772 }
773
774 /* IF ldo_base is set, the following are mandatory */
775 pname = "ti,ldovbb-override-mask";
776 ret =
777 of_property_read_u32(pdev->dev.of_node, pname,
778 &abb->ldovbb_override_mask);
779 if (ret) {
780 dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
781 goto err;
782 }
783 if (!abb->ldovbb_override_mask) {
784 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
785 ret = -EINVAL;
786 goto err;
787 }
788
789 pname = "ti,ldovbb-vset-mask";
790 ret =
791 of_property_read_u32(pdev->dev.of_node, pname,
792 &abb->ldovbb_vset_mask);
793 if (ret) {
794 dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
795 goto err;
796 }
797 if (!abb->ldovbb_vset_mask) {
798 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
799 ret = -EINVAL;
800 goto err;
801 }
802
803skip_opt:
804 pname = "ti,tranxdone-status-mask";
805 ret =
806 of_property_read_u32(pdev->dev.of_node, pname,
807 &abb->txdone_mask);
808 if (ret) {
809 dev_err(dev, "Missing '%s' (%d)\n", pname, ret);
810 goto err;
811 }
812 if (!abb->txdone_mask) {
813 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname);
814 ret = -EINVAL;
815 goto err;
816 }
817
818 initdata = of_get_regulator_init_data(dev, pdev->dev.of_node);
819 if (!initdata) {
820 ret = -ENOMEM;
821 dev_err(dev, "%s: Unable to alloc regulator init data\n",
822 __func__);
823 goto err;
824 }
825
826 /* init ABB opp_sel table */
827 ret = ti_abb_init_table(dev, abb, initdata);
828 if (ret)
829 goto err;
830
831 /* init ABB timing */
832 ret = ti_abb_init_timings(dev, abb);
833 if (ret)
834 goto err;
835
836 desc = &abb->rdesc;
837 desc->name = dev_name(dev);
838 desc->owner = THIS_MODULE;
839 desc->type = REGULATOR_VOLTAGE;
840 desc->ops = &ti_abb_reg_ops;
841
842 c = &initdata->constraints;
843 if (desc->n_voltages > 1)
844 c->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE;
845 c->always_on = true;
846
847 config.dev = dev;
848 config.init_data = initdata;
849 config.driver_data = abb;
850 config.of_node = pdev->dev.of_node;
851
852 rdev = regulator_register(desc, &config);
853 if (IS_ERR(rdev)) {
854 ret = PTR_ERR(rdev);
855 dev_err(dev, "%s: failed to register regulator(%d)\n",
856 __func__, ret);
857 goto err;
858 }
859 platform_set_drvdata(pdev, rdev);
860
861 /* Enable the ldo if not already done by bootloader */
862 ti_abb_rmw(abb->regs->sr2_en_mask, 1, abb->regs->setup_reg, abb->base);
863
864 return 0;
865
866err:
867 dev_err(dev, "%s: Failed to initialize(%d)\n", __func__, ret);
868 return ret;
869}
870
871/**
872 * ti_abb_remove() - cleanups
873 * @pdev: ABB platform device
874 *
875 * Return: 0
876 */
877static int ti_abb_remove(struct platform_device *pdev)
878{
879 struct regulator_dev *rdev = platform_get_drvdata(pdev);
880
881 regulator_unregister(rdev);
882 return 0;
883}
884
885MODULE_ALIAS("platform:ti_abb");
886
887static struct platform_driver ti_abb_driver = {
888 .probe = ti_abb_probe,
889 .remove = ti_abb_remove,
890 .driver = {
891 .name = "ti_abb",
892 .owner = THIS_MODULE,
893 .of_match_table = of_match_ptr(ti_abb_of_match),
894 },
895};
896module_platform_driver(ti_abb_driver);
897
898MODULE_DESCRIPTION("Texas Instruments ABB LDO regulator driver");
899MODULE_AUTHOR("Texas Instruments Inc.");
900MODULE_LICENSE("GPL v2");