regulator: core: Check for failed voltage sets before checking for delay
[linux-2.6-block.git] / drivers / regulator / core.c
CommitLineData
414c70cb
LG
1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
a5766f11 5 * Copyright 2008 SlimLogic Ltd.
414c70cb 6 *
a5766f11 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
414c70cb
LG
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
1130e5b3 18#include <linux/debugfs.h>
414c70cb 19#include <linux/device.h>
5a0e3ad6 20#include <linux/slab.h>
f21e0e81 21#include <linux/async.h>
414c70cb
LG
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
31aae2be 25#include <linux/delay.h>
69511a45 26#include <linux/of.h>
65b19ce6 27#include <linux/regmap.h>
69511a45 28#include <linux/regulator/of_regulator.h>
414c70cb
LG
29#include <linux/regulator/consumer.h>
30#include <linux/regulator/driver.h>
31#include <linux/regulator/machine.h>
65602c32 32#include <linux/module.h>
414c70cb 33
02fa3ec0
MB
34#define CREATE_TRACE_POINTS
35#include <trace/events/regulator.h>
36
34abbd68
MB
37#include "dummy.h"
38
7d51a0db
MB
39#define rdev_crit(rdev, fmt, ...) \
40 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
5da84fd9
JP
41#define rdev_err(rdev, fmt, ...) \
42 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_warn(rdev, fmt, ...) \
44 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_info(rdev, fmt, ...) \
46 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_dbg(rdev, fmt, ...) \
48 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
414c70cb
LG
50static DEFINE_MUTEX(regulator_list_mutex);
51static LIST_HEAD(regulator_list);
52static LIST_HEAD(regulator_map_list);
21cf891a 53static bool has_full_constraints;
688fe99a 54static bool board_wants_dummy_regulator;
414c70cb 55
1130e5b3 56static struct dentry *debugfs_root;
1130e5b3 57
8dc5390d 58/*
414c70cb
LG
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
40f9244f 65 const char *dev_name; /* The dev_name() for the consumer */
414c70cb 66 const char *supply;
a5766f11 67 struct regulator_dev *regulator;
414c70cb
LG
68};
69
414c70cb
LG
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76 struct device *dev;
77 struct list_head list;
6492bc1b 78 unsigned int always_on:1;
414c70cb
LG
79 int uA_load;
80 int min_uV;
81 int max_uV;
414c70cb
LG
82 char *supply_name;
83 struct device_attribute dev_attr;
84 struct regulator_dev *rdev;
5de70519 85 struct dentry *debugfs;
414c70cb
LG
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
3801b86a 89static int _regulator_disable(struct regulator_dev *rdev);
414c70cb
LG
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94 unsigned long event, void *data);
75790251
MB
95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96 int min_uV, int max_uV);
3801b86a
MB
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
414c70cb 100
1083c393
MB
101static const char *rdev_get_name(struct regulator_dev *rdev)
102{
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109}
110
414c70cb
LG
111/* gets the regulator for a given consumer device */
112static struct regulator *get_device_regulator(struct device *dev)
113{
114 struct regulator *regulator = NULL;
115 struct regulator_dev *rdev;
116
117 mutex_lock(&regulator_list_mutex);
118 list_for_each_entry(rdev, &regulator_list, list) {
119 mutex_lock(&rdev->mutex);
120 list_for_each_entry(regulator, &rdev->consumer_list, list) {
121 if (regulator->dev == dev) {
122 mutex_unlock(&rdev->mutex);
123 mutex_unlock(&regulator_list_mutex);
124 return regulator;
125 }
126 }
127 mutex_unlock(&rdev->mutex);
128 }
129 mutex_unlock(&regulator_list_mutex);
130 return NULL;
131}
132
69511a45
RN
133/**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * retruns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
142static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143{
144 struct device_node *regnode = NULL;
145 char prop_name[32]; /* 32 is max size of property name */
146
147 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149 snprintf(prop_name, 32, "%s-supply", supply);
150 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152 if (!regnode) {
16fbcc3b 153 dev_dbg(dev, "Looking up %s property in node %s failed",
69511a45
RN
154 prop_name, dev->of_node->full_name);
155 return NULL;
156 }
157 return regnode;
158}
159
6492bc1b
MB
160static int _regulator_can_change_status(struct regulator_dev *rdev)
161{
162 if (!rdev->constraints)
163 return 0;
164
165 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166 return 1;
167 else
168 return 0;
169}
170
414c70cb
LG
171/* Platform voltage constraint check */
172static int regulator_check_voltage(struct regulator_dev *rdev,
173 int *min_uV, int *max_uV)
174{
175 BUG_ON(*min_uV > *max_uV);
176
177 if (!rdev->constraints) {
5da84fd9 178 rdev_err(rdev, "no constraints\n");
414c70cb
LG
179 return -ENODEV;
180 }
181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
5da84fd9 182 rdev_err(rdev, "operation not allowed\n");
414c70cb
LG
183 return -EPERM;
184 }
185
186 if (*max_uV > rdev->constraints->max_uV)
187 *max_uV = rdev->constraints->max_uV;
188 if (*min_uV < rdev->constraints->min_uV)
189 *min_uV = rdev->constraints->min_uV;
190
89f425ed
MB
191 if (*min_uV > *max_uV) {
192 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
54abd335 193 *min_uV, *max_uV);
414c70cb 194 return -EINVAL;
89f425ed 195 }
414c70cb
LG
196
197 return 0;
198}
199
05fda3b1
TP
200/* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
203static int regulator_check_consumers(struct regulator_dev *rdev,
204 int *min_uV, int *max_uV)
205{
206 struct regulator *regulator;
207
208 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4aa922c0
MB
209 /*
210 * Assume consumers that didn't say anything are OK
211 * with anything in the constraint range.
212 */
213 if (!regulator->min_uV && !regulator->max_uV)
214 continue;
215
05fda3b1
TP
216 if (*max_uV > regulator->max_uV)
217 *max_uV = regulator->max_uV;
218 if (*min_uV < regulator->min_uV)
219 *min_uV = regulator->min_uV;
220 }
221
222 if (*min_uV > *max_uV)
223 return -EINVAL;
224
225 return 0;
226}
227
414c70cb
LG
228/* current constraint check */
229static int regulator_check_current_limit(struct regulator_dev *rdev,
230 int *min_uA, int *max_uA)
231{
232 BUG_ON(*min_uA > *max_uA);
233
234 if (!rdev->constraints) {
5da84fd9 235 rdev_err(rdev, "no constraints\n");
414c70cb
LG
236 return -ENODEV;
237 }
238 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
5da84fd9 239 rdev_err(rdev, "operation not allowed\n");
414c70cb
LG
240 return -EPERM;
241 }
242
243 if (*max_uA > rdev->constraints->max_uA)
244 *max_uA = rdev->constraints->max_uA;
245 if (*min_uA < rdev->constraints->min_uA)
246 *min_uA = rdev->constraints->min_uA;
247
89f425ed
MB
248 if (*min_uA > *max_uA) {
249 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
54abd335 250 *min_uA, *max_uA);
414c70cb 251 return -EINVAL;
89f425ed 252 }
414c70cb
LG
253
254 return 0;
255}
256
257/* operating mode constraint check */
2c608234 258static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
414c70cb 259{
2c608234 260 switch (*mode) {
e573520b
DB
261 case REGULATOR_MODE_FAST:
262 case REGULATOR_MODE_NORMAL:
263 case REGULATOR_MODE_IDLE:
264 case REGULATOR_MODE_STANDBY:
265 break;
266 default:
89f425ed 267 rdev_err(rdev, "invalid mode %x specified\n", *mode);
e573520b
DB
268 return -EINVAL;
269 }
270
414c70cb 271 if (!rdev->constraints) {
5da84fd9 272 rdev_err(rdev, "no constraints\n");
414c70cb
LG
273 return -ENODEV;
274 }
275 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
5da84fd9 276 rdev_err(rdev, "operation not allowed\n");
414c70cb
LG
277 return -EPERM;
278 }
2c608234
MB
279
280 /* The modes are bitmasks, the most power hungry modes having
281 * the lowest values. If the requested mode isn't supported
282 * try higher modes. */
283 while (*mode) {
284 if (rdev->constraints->valid_modes_mask & *mode)
285 return 0;
286 *mode /= 2;
414c70cb 287 }
2c608234
MB
288
289 return -EINVAL;
414c70cb
LG
290}
291
292/* dynamic regulator mode switching constraint check */
293static int regulator_check_drms(struct regulator_dev *rdev)
294{
295 if (!rdev->constraints) {
5da84fd9 296 rdev_err(rdev, "no constraints\n");
414c70cb
LG
297 return -ENODEV;
298 }
299 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
5da84fd9 300 rdev_err(rdev, "operation not allowed\n");
414c70cb
LG
301 return -EPERM;
302 }
303 return 0;
304}
305
306static ssize_t device_requested_uA_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
308{
309 struct regulator *regulator;
310
311 regulator = get_device_regulator(dev);
312 if (regulator == NULL)
313 return 0;
314
315 return sprintf(buf, "%d\n", regulator->uA_load);
316}
317
318static ssize_t regulator_uV_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320{
a5766f11 321 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
322 ssize_t ret;
323
324 mutex_lock(&rdev->mutex);
325 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326 mutex_unlock(&rdev->mutex);
327
328 return ret;
329}
7ad68e2f 330static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
414c70cb
LG
331
332static ssize_t regulator_uA_show(struct device *dev,
333 struct device_attribute *attr, char *buf)
334{
a5766f11 335 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
336
337 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338}
7ad68e2f 339static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
414c70cb 340
bc558a60
MB
341static ssize_t regulator_name_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
343{
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
bc558a60 345
1083c393 346 return sprintf(buf, "%s\n", rdev_get_name(rdev));
bc558a60
MB
347}
348
4fca9545 349static ssize_t regulator_print_opmode(char *buf, int mode)
414c70cb 350{
414c70cb
LG
351 switch (mode) {
352 case REGULATOR_MODE_FAST:
353 return sprintf(buf, "fast\n");
354 case REGULATOR_MODE_NORMAL:
355 return sprintf(buf, "normal\n");
356 case REGULATOR_MODE_IDLE:
357 return sprintf(buf, "idle\n");
358 case REGULATOR_MODE_STANDBY:
359 return sprintf(buf, "standby\n");
360 }
361 return sprintf(buf, "unknown\n");
362}
363
4fca9545
DB
364static ssize_t regulator_opmode_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
414c70cb 366{
a5766f11 367 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 368
4fca9545
DB
369 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370}
7ad68e2f 371static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
4fca9545
DB
372
373static ssize_t regulator_print_state(char *buf, int state)
374{
414c70cb
LG
375 if (state > 0)
376 return sprintf(buf, "enabled\n");
377 else if (state == 0)
378 return sprintf(buf, "disabled\n");
379 else
380 return sprintf(buf, "unknown\n");
381}
382
4fca9545
DB
383static ssize_t regulator_state_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385{
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
9332546f
MB
387 ssize_t ret;
388
389 mutex_lock(&rdev->mutex);
390 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391 mutex_unlock(&rdev->mutex);
4fca9545 392
9332546f 393 return ret;
4fca9545 394}
7ad68e2f 395static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
4fca9545 396
853116a1
DB
397static ssize_t regulator_status_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399{
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401 int status;
402 char *label;
403
404 status = rdev->desc->ops->get_status(rdev);
405 if (status < 0)
406 return status;
407
408 switch (status) {
409 case REGULATOR_STATUS_OFF:
410 label = "off";
411 break;
412 case REGULATOR_STATUS_ON:
413 label = "on";
414 break;
415 case REGULATOR_STATUS_ERROR:
416 label = "error";
417 break;
418 case REGULATOR_STATUS_FAST:
419 label = "fast";
420 break;
421 case REGULATOR_STATUS_NORMAL:
422 label = "normal";
423 break;
424 case REGULATOR_STATUS_IDLE:
425 label = "idle";
426 break;
427 case REGULATOR_STATUS_STANDBY:
428 label = "standby";
429 break;
430 default:
431 return -ERANGE;
432 }
433
434 return sprintf(buf, "%s\n", label);
435}
436static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
414c70cb
LG
438static ssize_t regulator_min_uA_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440{
a5766f11 441 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
442
443 if (!rdev->constraints)
444 return sprintf(buf, "constraint not defined\n");
445
446 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447}
7ad68e2f 448static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
414c70cb
LG
449
450static ssize_t regulator_max_uA_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452{
a5766f11 453 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
454
455 if (!rdev->constraints)
456 return sprintf(buf, "constraint not defined\n");
457
458 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459}
7ad68e2f 460static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
414c70cb
LG
461
462static ssize_t regulator_min_uV_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464{
a5766f11 465 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
466
467 if (!rdev->constraints)
468 return sprintf(buf, "constraint not defined\n");
469
470 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471}
7ad68e2f 472static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
414c70cb
LG
473
474static ssize_t regulator_max_uV_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476{
a5766f11 477 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
478
479 if (!rdev->constraints)
480 return sprintf(buf, "constraint not defined\n");
481
482 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483}
7ad68e2f 484static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
414c70cb
LG
485
486static ssize_t regulator_total_uA_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
488{
a5766f11 489 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
490 struct regulator *regulator;
491 int uA = 0;
492
493 mutex_lock(&rdev->mutex);
494 list_for_each_entry(regulator, &rdev->consumer_list, list)
fa2984d4 495 uA += regulator->uA_load;
414c70cb
LG
496 mutex_unlock(&rdev->mutex);
497 return sprintf(buf, "%d\n", uA);
498}
7ad68e2f 499static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
414c70cb
LG
500
501static ssize_t regulator_num_users_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503{
a5766f11 504 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
505 return sprintf(buf, "%d\n", rdev->use_count);
506}
507
508static ssize_t regulator_type_show(struct device *dev,
509 struct device_attribute *attr, char *buf)
510{
a5766f11 511 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
512
513 switch (rdev->desc->type) {
514 case REGULATOR_VOLTAGE:
515 return sprintf(buf, "voltage\n");
516 case REGULATOR_CURRENT:
517 return sprintf(buf, "current\n");
518 }
519 return sprintf(buf, "unknown\n");
520}
521
522static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
524{
a5766f11 525 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 526
414c70cb
LG
527 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528}
7ad68e2f
DB
529static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530 regulator_suspend_mem_uV_show, NULL);
414c70cb
LG
531
532static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533 struct device_attribute *attr, char *buf)
534{
a5766f11 535 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 536
414c70cb
LG
537 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538}
7ad68e2f
DB
539static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540 regulator_suspend_disk_uV_show, NULL);
414c70cb
LG
541
542static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543 struct device_attribute *attr, char *buf)
544{
a5766f11 545 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 546
414c70cb
LG
547 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548}
7ad68e2f
DB
549static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550 regulator_suspend_standby_uV_show, NULL);
414c70cb 551
414c70cb
LG
552static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553 struct device_attribute *attr, char *buf)
554{
a5766f11 555 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 556
4fca9545
DB
557 return regulator_print_opmode(buf,
558 rdev->constraints->state_mem.mode);
414c70cb 559}
7ad68e2f
DB
560static DEVICE_ATTR(suspend_mem_mode, 0444,
561 regulator_suspend_mem_mode_show, NULL);
414c70cb
LG
562
563static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565{
a5766f11 566 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 567
4fca9545
DB
568 return regulator_print_opmode(buf,
569 rdev->constraints->state_disk.mode);
414c70cb 570}
7ad68e2f
DB
571static DEVICE_ATTR(suspend_disk_mode, 0444,
572 regulator_suspend_disk_mode_show, NULL);
414c70cb
LG
573
574static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575 struct device_attribute *attr, char *buf)
576{
a5766f11 577 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 578
4fca9545
DB
579 return regulator_print_opmode(buf,
580 rdev->constraints->state_standby.mode);
414c70cb 581}
7ad68e2f
DB
582static DEVICE_ATTR(suspend_standby_mode, 0444,
583 regulator_suspend_standby_mode_show, NULL);
414c70cb
LG
584
585static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587{
a5766f11 588 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 589
4fca9545
DB
590 return regulator_print_state(buf,
591 rdev->constraints->state_mem.enabled);
414c70cb 592}
7ad68e2f
DB
593static DEVICE_ATTR(suspend_mem_state, 0444,
594 regulator_suspend_mem_state_show, NULL);
414c70cb
LG
595
596static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598{
a5766f11 599 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 600
4fca9545
DB
601 return regulator_print_state(buf,
602 rdev->constraints->state_disk.enabled);
414c70cb 603}
7ad68e2f
DB
604static DEVICE_ATTR(suspend_disk_state, 0444,
605 regulator_suspend_disk_state_show, NULL);
414c70cb
LG
606
607static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608 struct device_attribute *attr, char *buf)
609{
a5766f11 610 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 611
4fca9545
DB
612 return regulator_print_state(buf,
613 rdev->constraints->state_standby.enabled);
414c70cb 614}
7ad68e2f
DB
615static DEVICE_ATTR(suspend_standby_state, 0444,
616 regulator_suspend_standby_state_show, NULL);
617
bc558a60 618
7ad68e2f
DB
619/*
620 * These are the only attributes are present for all regulators.
621 * Other attributes are a function of regulator functionality.
622 */
414c70cb 623static struct device_attribute regulator_dev_attrs[] = {
bc558a60 624 __ATTR(name, 0444, regulator_name_show, NULL),
414c70cb
LG
625 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
626 __ATTR(type, 0444, regulator_type_show, NULL),
414c70cb
LG
627 __ATTR_NULL,
628};
629
630static void regulator_dev_release(struct device *dev)
631{
a5766f11 632 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
633 kfree(rdev);
634}
635
636static struct class regulator_class = {
637 .name = "regulator",
638 .dev_release = regulator_dev_release,
639 .dev_attrs = regulator_dev_attrs,
640};
641
642/* Calculate the new optimum regulator operating mode based on the new total
643 * consumer load. All locks held by caller */
644static void drms_uA_update(struct regulator_dev *rdev)
645{
646 struct regulator *sibling;
647 int current_uA = 0, output_uV, input_uV, err;
648 unsigned int mode;
649
650 err = regulator_check_drms(rdev);
651 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
476c2d83
MB
652 (!rdev->desc->ops->get_voltage &&
653 !rdev->desc->ops->get_voltage_sel) ||
654 !rdev->desc->ops->set_mode)
036de8ef 655 return;
414c70cb
LG
656
657 /* get output voltage */
1bf5a1f8 658 output_uV = _regulator_get_voltage(rdev);
414c70cb
LG
659 if (output_uV <= 0)
660 return;
661
662 /* get input voltage */
1bf5a1f8
MB
663 input_uV = 0;
664 if (rdev->supply)
3f24f5ad 665 input_uV = regulator_get_voltage(rdev->supply);
1bf5a1f8 666 if (input_uV <= 0)
414c70cb
LG
667 input_uV = rdev->constraints->input_uV;
668 if (input_uV <= 0)
669 return;
670
671 /* calc total requested load */
672 list_for_each_entry(sibling, &rdev->consumer_list, list)
fa2984d4 673 current_uA += sibling->uA_load;
414c70cb
LG
674
675 /* now get the optimum mode for our new total regulator load */
676 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677 output_uV, current_uA);
678
679 /* check the new mode is allowed */
2c608234 680 err = regulator_mode_constrain(rdev, &mode);
414c70cb
LG
681 if (err == 0)
682 rdev->desc->ops->set_mode(rdev, mode);
683}
684
685static int suspend_set_state(struct regulator_dev *rdev,
686 struct regulator_state *rstate)
687{
688 int ret = 0;
638f85c5
MB
689
690 /* If we have no suspend mode configration don't set anything;
8ac0e95d
AL
691 * only warn if the driver implements set_suspend_voltage or
692 * set_suspend_mode callback.
638f85c5
MB
693 */
694 if (!rstate->enabled && !rstate->disabled) {
8ac0e95d
AL
695 if (rdev->desc->ops->set_suspend_voltage ||
696 rdev->desc->ops->set_suspend_mode)
5da84fd9 697 rdev_warn(rdev, "No configuration\n");
638f85c5
MB
698 return 0;
699 }
700
701 if (rstate->enabled && rstate->disabled) {
5da84fd9 702 rdev_err(rdev, "invalid configuration\n");
638f85c5
MB
703 return -EINVAL;
704 }
414c70cb 705
8ac0e95d 706 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
414c70cb 707 ret = rdev->desc->ops->set_suspend_enable(rdev);
8ac0e95d 708 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
414c70cb 709 ret = rdev->desc->ops->set_suspend_disable(rdev);
8ac0e95d
AL
710 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711 ret = 0;
712
414c70cb 713 if (ret < 0) {
5da84fd9 714 rdev_err(rdev, "failed to enabled/disable\n");
414c70cb
LG
715 return ret;
716 }
717
718 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720 if (ret < 0) {
5da84fd9 721 rdev_err(rdev, "failed to set voltage\n");
414c70cb
LG
722 return ret;
723 }
724 }
725
726 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728 if (ret < 0) {
5da84fd9 729 rdev_err(rdev, "failed to set mode\n");
414c70cb
LG
730 return ret;
731 }
732 }
733 return ret;
734}
735
736/* locks held by caller */
737static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738{
739 if (!rdev->constraints)
740 return -EINVAL;
741
742 switch (state) {
743 case PM_SUSPEND_STANDBY:
744 return suspend_set_state(rdev,
745 &rdev->constraints->state_standby);
746 case PM_SUSPEND_MEM:
747 return suspend_set_state(rdev,
748 &rdev->constraints->state_mem);
749 case PM_SUSPEND_MAX:
750 return suspend_set_state(rdev,
751 &rdev->constraints->state_disk);
752 default:
753 return -EINVAL;
754 }
755}
756
757static void print_constraints(struct regulator_dev *rdev)
758{
759 struct regulation_constraints *constraints = rdev->constraints;
973e9a27 760 char buf[80] = "";
8f031b48
MB
761 int count = 0;
762 int ret;
414c70cb 763
8f031b48 764 if (constraints->min_uV && constraints->max_uV) {
414c70cb 765 if (constraints->min_uV == constraints->max_uV)
8f031b48
MB
766 count += sprintf(buf + count, "%d mV ",
767 constraints->min_uV / 1000);
414c70cb 768 else
8f031b48
MB
769 count += sprintf(buf + count, "%d <--> %d mV ",
770 constraints->min_uV / 1000,
771 constraints->max_uV / 1000);
772 }
773
774 if (!constraints->min_uV ||
775 constraints->min_uV != constraints->max_uV) {
776 ret = _regulator_get_voltage(rdev);
777 if (ret > 0)
778 count += sprintf(buf + count, "at %d mV ", ret / 1000);
779 }
780
bf5892a8
MB
781 if (constraints->uV_offset)
782 count += sprintf(buf, "%dmV offset ",
783 constraints->uV_offset / 1000);
784
8f031b48 785 if (constraints->min_uA && constraints->max_uA) {
414c70cb 786 if (constraints->min_uA == constraints->max_uA)
8f031b48
MB
787 count += sprintf(buf + count, "%d mA ",
788 constraints->min_uA / 1000);
414c70cb 789 else
8f031b48
MB
790 count += sprintf(buf + count, "%d <--> %d mA ",
791 constraints->min_uA / 1000,
792 constraints->max_uA / 1000);
793 }
794
795 if (!constraints->min_uA ||
796 constraints->min_uA != constraints->max_uA) {
797 ret = _regulator_get_current_limit(rdev);
798 if (ret > 0)
e4a6376b 799 count += sprintf(buf + count, "at %d mA ", ret / 1000);
414c70cb 800 }
8f031b48 801
414c70cb
LG
802 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803 count += sprintf(buf + count, "fast ");
804 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805 count += sprintf(buf + count, "normal ");
806 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807 count += sprintf(buf + count, "idle ");
808 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809 count += sprintf(buf + count, "standby");
810
13ce29f8 811 rdev_info(rdev, "%s\n", buf);
4a682922
MB
812
813 if ((constraints->min_uV != constraints->max_uV) &&
814 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815 rdev_warn(rdev,
816 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
414c70cb
LG
817}
818
e79055d6 819static int machine_constraints_voltage(struct regulator_dev *rdev,
1083c393 820 struct regulation_constraints *constraints)
a5766f11 821{
e5fda26c 822 struct regulator_ops *ops = rdev->desc->ops;
af5866c9
MB
823 int ret;
824
825 /* do we need to apply the constraint voltage */
826 if (rdev->constraints->apply_uV &&
75790251
MB
827 rdev->constraints->min_uV == rdev->constraints->max_uV) {
828 ret = _regulator_do_set_voltage(rdev,
829 rdev->constraints->min_uV,
830 rdev->constraints->max_uV);
831 if (ret < 0) {
832 rdev_err(rdev, "failed to apply %duV constraint\n",
833 rdev->constraints->min_uV);
75790251
MB
834 return ret;
835 }
af5866c9 836 }
e06f5b4f 837
4367cfdc
DB
838 /* constrain machine-level voltage specs to fit
839 * the actual range supported by this regulator.
840 */
841 if (ops->list_voltage && rdev->desc->n_voltages) {
842 int count = rdev->desc->n_voltages;
843 int i;
844 int min_uV = INT_MAX;
845 int max_uV = INT_MIN;
846 int cmin = constraints->min_uV;
847 int cmax = constraints->max_uV;
848
3e590918
MB
849 /* it's safe to autoconfigure fixed-voltage supplies
850 and the constraints are used by list_voltage. */
4367cfdc 851 if (count == 1 && !cmin) {
3e590918 852 cmin = 1;
4367cfdc 853 cmax = INT_MAX;
3e590918
MB
854 constraints->min_uV = cmin;
855 constraints->max_uV = cmax;
4367cfdc
DB
856 }
857
3e2b9abd
MB
858 /* voltage constraints are optional */
859 if ((cmin == 0) && (cmax == 0))
e79055d6 860 return 0;
3e2b9abd 861
4367cfdc 862 /* else require explicit machine-level constraints */
3e2b9abd 863 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
5da84fd9 864 rdev_err(rdev, "invalid voltage constraints\n");
e79055d6 865 return -EINVAL;
4367cfdc
DB
866 }
867
868 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869 for (i = 0; i < count; i++) {
870 int value;
871
872 value = ops->list_voltage(rdev, i);
873 if (value <= 0)
874 continue;
875
876 /* maybe adjust [min_uV..max_uV] */
877 if (value >= cmin && value < min_uV)
878 min_uV = value;
879 if (value <= cmax && value > max_uV)
880 max_uV = value;
881 }
882
883 /* final: [min_uV..max_uV] valid iff constraints valid */
884 if (max_uV < min_uV) {
5da84fd9 885 rdev_err(rdev, "unsupportable voltage constraints\n");
e79055d6 886 return -EINVAL;
4367cfdc
DB
887 }
888
889 /* use regulator's subset of machine constraints */
890 if (constraints->min_uV < min_uV) {
5da84fd9
JP
891 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892 constraints->min_uV, min_uV);
4367cfdc
DB
893 constraints->min_uV = min_uV;
894 }
895 if (constraints->max_uV > max_uV) {
5da84fd9
JP
896 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897 constraints->max_uV, max_uV);
4367cfdc
DB
898 constraints->max_uV = max_uV;
899 }
900 }
901
e79055d6
MB
902 return 0;
903}
904
905/**
906 * set_machine_constraints - sets regulator constraints
907 * @rdev: regulator source
908 * @constraints: constraints to apply
909 *
910 * Allows platform initialisation code to define and constrain
911 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
912 * Constraints *must* be set by platform code in order for some
913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
914 * set_mode.
915 */
916static int set_machine_constraints(struct regulator_dev *rdev,
f8c12fe3 917 const struct regulation_constraints *constraints)
e79055d6
MB
918{
919 int ret = 0;
e79055d6
MB
920 struct regulator_ops *ops = rdev->desc->ops;
921
9a8f5e07
MB
922 if (constraints)
923 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924 GFP_KERNEL);
925 else
926 rdev->constraints = kzalloc(sizeof(*constraints),
927 GFP_KERNEL);
f8c12fe3
MB
928 if (!rdev->constraints)
929 return -ENOMEM;
af5866c9 930
f8c12fe3 931 ret = machine_constraints_voltage(rdev, rdev->constraints);
e79055d6
MB
932 if (ret != 0)
933 goto out;
934
a5766f11 935 /* do we need to setup our suspend state */
9a8f5e07 936 if (rdev->constraints->initial_state) {
f8c12fe3 937 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
e06f5b4f 938 if (ret < 0) {
5da84fd9 939 rdev_err(rdev, "failed to set suspend state\n");
e06f5b4f
MB
940 goto out;
941 }
942 }
a5766f11 943
9a8f5e07 944 if (rdev->constraints->initial_mode) {
a308466c 945 if (!ops->set_mode) {
5da84fd9 946 rdev_err(rdev, "no set_mode operation\n");
a308466c
MB
947 ret = -EINVAL;
948 goto out;
949 }
950
f8c12fe3 951 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
a308466c 952 if (ret < 0) {
5da84fd9 953 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
a308466c
MB
954 goto out;
955 }
956 }
957
cacf90f2
MB
958 /* If the constraints say the regulator should be on at this point
959 * and we have control then make sure it is enabled.
960 */
f8c12fe3
MB
961 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962 ops->enable) {
e5fda26c
MB
963 ret = ops->enable(rdev);
964 if (ret < 0) {
5da84fd9 965 rdev_err(rdev, "failed to enable\n");
e5fda26c
MB
966 goto out;
967 }
968 }
969
a5766f11 970 print_constraints(rdev);
1a6958e7 971 return 0;
a5766f11 972out:
1a6958e7
AL
973 kfree(rdev->constraints);
974 rdev->constraints = NULL;
a5766f11
LG
975 return ret;
976}
977
978/**
979 * set_supply - set regulator supply regulator
69279fb9
MB
980 * @rdev: regulator name
981 * @supply_rdev: supply regulator name
a5766f11
LG
982 *
983 * Called by platform initialisation code to set the supply regulator for this
984 * regulator. This ensures that a regulators supply will also be enabled by the
985 * core if it's child is enabled.
986 */
987static int set_supply(struct regulator_dev *rdev,
3801b86a 988 struct regulator_dev *supply_rdev)
a5766f11
LG
989{
990 int err;
991
3801b86a
MB
992 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
993
994 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
32c78de8
AL
995 if (rdev->supply == NULL) {
996 err = -ENOMEM;
3801b86a 997 return err;
a5766f11 998 }
3801b86a
MB
999
1000 return 0;
a5766f11
LG
1001}
1002
1003/**
06c63f93 1004 * set_consumer_device_supply - Bind a regulator to a symbolic supply
69279fb9 1005 * @rdev: regulator source
40f9244f 1006 * @consumer_dev_name: dev_name() string for device supply applies to
69279fb9 1007 * @supply: symbolic name for supply
a5766f11
LG
1008 *
1009 * Allows platform initialisation code to map physical regulator
1010 * sources to symbolic names for supplies for use by devices. Devices
1011 * should use these symbolic names to request regulators, avoiding the
1012 * need to provide board-specific regulator names as platform data.
1013 */
1014static int set_consumer_device_supply(struct regulator_dev *rdev,
737f360d
MB
1015 const char *consumer_dev_name,
1016 const char *supply)
a5766f11
LG
1017{
1018 struct regulator_map *node;
9ed2099e 1019 int has_dev;
a5766f11
LG
1020
1021 if (supply == NULL)
1022 return -EINVAL;
1023
9ed2099e
MB
1024 if (consumer_dev_name != NULL)
1025 has_dev = 1;
1026 else
1027 has_dev = 0;
1028
6001e13c 1029 list_for_each_entry(node, &regulator_map_list, list) {
23b5cc2a
JN
1030 if (node->dev_name && consumer_dev_name) {
1031 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032 continue;
1033 } else if (node->dev_name || consumer_dev_name) {
6001e13c 1034 continue;
23b5cc2a
JN
1035 }
1036
6001e13c
DB
1037 if (strcmp(node->supply, supply) != 0)
1038 continue;
1039
737f360d
MB
1040 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041 consumer_dev_name,
1042 dev_name(&node->regulator->dev),
1043 node->regulator->desc->name,
1044 supply,
1045 dev_name(&rdev->dev), rdev_get_name(rdev));
6001e13c
DB
1046 return -EBUSY;
1047 }
1048
9ed2099e 1049 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
a5766f11
LG
1050 if (node == NULL)
1051 return -ENOMEM;
1052
1053 node->regulator = rdev;
a5766f11
LG
1054 node->supply = supply;
1055
9ed2099e
MB
1056 if (has_dev) {
1057 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058 if (node->dev_name == NULL) {
1059 kfree(node);
1060 return -ENOMEM;
1061 }
40f9244f
MB
1062 }
1063
a5766f11
LG
1064 list_add(&node->list, &regulator_map_list);
1065 return 0;
1066}
1067
0f1d747b
MR
1068static void unset_regulator_supplies(struct regulator_dev *rdev)
1069{
1070 struct regulator_map *node, *n;
1071
1072 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073 if (rdev == node->regulator) {
1074 list_del(&node->list);
40f9244f 1075 kfree(node->dev_name);
0f1d747b 1076 kfree(node);
0f1d747b
MR
1077 }
1078 }
1079}
1080
f5726ae3 1081#define REG_STR_SIZE 64
414c70cb
LG
1082
1083static struct regulator *create_regulator(struct regulator_dev *rdev,
1084 struct device *dev,
1085 const char *supply_name)
1086{
1087 struct regulator *regulator;
1088 char buf[REG_STR_SIZE];
1089 int err, size;
1090
1091 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092 if (regulator == NULL)
1093 return NULL;
1094
1095 mutex_lock(&rdev->mutex);
1096 regulator->rdev = rdev;
1097 list_add(&regulator->list, &rdev->consumer_list);
1098
1099 if (dev) {
1100 /* create a 'requested_microamps_name' sysfs entry */
e0eaedef
MB
1101 size = scnprintf(buf, REG_STR_SIZE,
1102 "microamps_requested_%s-%s",
1103 dev_name(dev), supply_name);
414c70cb
LG
1104 if (size >= REG_STR_SIZE)
1105 goto overflow_err;
1106
1107 regulator->dev = dev;
4f26a2ab 1108 sysfs_attr_init(&regulator->dev_attr.attr);
414c70cb
LG
1109 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110 if (regulator->dev_attr.attr.name == NULL)
1111 goto attr_name_err;
1112
414c70cb
LG
1113 regulator->dev_attr.attr.mode = 0444;
1114 regulator->dev_attr.show = device_requested_uA_show;
1115 err = device_create_file(dev, &regulator->dev_attr);
1116 if (err < 0) {
5da84fd9 1117 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
414c70cb
LG
1118 goto attr_name_err;
1119 }
1120
1121 /* also add a link to the device sysfs entry */
1122 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123 dev->kobj.name, supply_name);
1124 if (size >= REG_STR_SIZE)
1125 goto attr_err;
1126
1127 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128 if (regulator->supply_name == NULL)
1129 goto attr_err;
1130
1131 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132 buf);
1133 if (err) {
5da84fd9
JP
1134 rdev_warn(rdev, "could not add device link %s err %d\n",
1135 dev->kobj.name, err);
414c70cb
LG
1136 goto link_name_err;
1137 }
5de70519
MB
1138 } else {
1139 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140 if (regulator->supply_name == NULL)
1141 goto attr_err;
1142 }
1143
5de70519
MB
1144 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145 rdev->debugfs);
24751434 1146 if (!regulator->debugfs) {
5de70519 1147 rdev_warn(rdev, "Failed to create debugfs directory\n");
5de70519
MB
1148 } else {
1149 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150 &regulator->uA_load);
1151 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152 &regulator->min_uV);
1153 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154 &regulator->max_uV);
414c70cb 1155 }
5de70519 1156
6492bc1b
MB
1157 /*
1158 * Check now if the regulator is an always on regulator - if
1159 * it is then we don't need to do nearly so much work for
1160 * enable/disable calls.
1161 */
1162 if (!_regulator_can_change_status(rdev) &&
1163 _regulator_is_enabled(rdev))
1164 regulator->always_on = true;
1165
414c70cb
LG
1166 mutex_unlock(&rdev->mutex);
1167 return regulator;
1168link_name_err:
1169 kfree(regulator->supply_name);
1170attr_err:
1171 device_remove_file(regulator->dev, &regulator->dev_attr);
1172attr_name_err:
1173 kfree(regulator->dev_attr.attr.name);
1174overflow_err:
1175 list_del(&regulator->list);
1176 kfree(regulator);
1177 mutex_unlock(&rdev->mutex);
1178 return NULL;
1179}
1180
31aae2be
MB
1181static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182{
1183 if (!rdev->desc->ops->enable_time)
1184 return 0;
1185 return rdev->desc->ops->enable_time(rdev);
1186}
1187
69511a45 1188static struct regulator_dev *regulator_dev_lookup(struct device *dev,
6d191a5f
MB
1189 const char *supply,
1190 int *ret)
69511a45
RN
1191{
1192 struct regulator_dev *r;
1193 struct device_node *node;
576ca436
MB
1194 struct regulator_map *map;
1195 const char *devname = NULL;
69511a45
RN
1196
1197 /* first do a dt based lookup */
1198 if (dev && dev->of_node) {
1199 node = of_get_regulator(dev, supply);
6d191a5f 1200 if (node) {
69511a45
RN
1201 list_for_each_entry(r, &regulator_list, list)
1202 if (r->dev.parent &&
1203 node == r->dev.of_node)
1204 return r;
6d191a5f
MB
1205 } else {
1206 /*
1207 * If we couldn't even get the node then it's
1208 * not just that the device didn't register
1209 * yet, there's no node and we'll never
1210 * succeed.
1211 */
1212 *ret = -ENODEV;
1213 }
69511a45
RN
1214 }
1215
1216 /* if not found, try doing it non-dt way */
576ca436
MB
1217 if (dev)
1218 devname = dev_name(dev);
1219
69511a45
RN
1220 list_for_each_entry(r, &regulator_list, list)
1221 if (strcmp(rdev_get_name(r), supply) == 0)
1222 return r;
1223
576ca436
MB
1224 list_for_each_entry(map, &regulator_map_list, list) {
1225 /* If the mapping has a device set up it must match */
1226 if (map->dev_name &&
1227 (!devname || strcmp(map->dev_name, devname)))
1228 continue;
1229
1230 if (strcmp(map->supply, supply) == 0)
1231 return map->regulator;
1232 }
1233
1234
69511a45
RN
1235 return NULL;
1236}
1237
5ffbd136
MB
1238/* Internal regulator request function */
1239static struct regulator *_regulator_get(struct device *dev, const char *id,
1240 int exclusive)
414c70cb
LG
1241{
1242 struct regulator_dev *rdev;
04bf3011 1243 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
40f9244f 1244 const char *devname = NULL;
5ffbd136 1245 int ret;
414c70cb
LG
1246
1247 if (id == NULL) {
5da84fd9 1248 pr_err("get() with no identifier\n");
414c70cb
LG
1249 return regulator;
1250 }
1251
40f9244f
MB
1252 if (dev)
1253 devname = dev_name(dev);
1254
414c70cb
LG
1255 mutex_lock(&regulator_list_mutex);
1256
6d191a5f 1257 rdev = regulator_dev_lookup(dev, id, &ret);
69511a45
RN
1258 if (rdev)
1259 goto found;
1260
688fe99a
MB
1261 if (board_wants_dummy_regulator) {
1262 rdev = dummy_regulator_rdev;
1263 goto found;
1264 }
1265
34abbd68
MB
1266#ifdef CONFIG_REGULATOR_DUMMY
1267 if (!devname)
1268 devname = "deviceless";
1269
1270 /* If the board didn't flag that it was fully constrained then
1271 * substitute in a dummy regulator so consumers can continue.
1272 */
1273 if (!has_full_constraints) {
5da84fd9
JP
1274 pr_warn("%s supply %s not found, using dummy regulator\n",
1275 devname, id);
34abbd68
MB
1276 rdev = dummy_regulator_rdev;
1277 goto found;
1278 }
1279#endif
1280
414c70cb
LG
1281 mutex_unlock(&regulator_list_mutex);
1282 return regulator;
1283
1284found:
5ffbd136
MB
1285 if (rdev->exclusive) {
1286 regulator = ERR_PTR(-EPERM);
1287 goto out;
1288 }
1289
1290 if (exclusive && rdev->open_count) {
1291 regulator = ERR_PTR(-EBUSY);
1292 goto out;
1293 }
1294
a5766f11
LG
1295 if (!try_module_get(rdev->owner))
1296 goto out;
1297
414c70cb
LG
1298 regulator = create_regulator(rdev, dev, id);
1299 if (regulator == NULL) {
1300 regulator = ERR_PTR(-ENOMEM);
1301 module_put(rdev->owner);
bcda4321 1302 goto out;
414c70cb
LG
1303 }
1304
5ffbd136
MB
1305 rdev->open_count++;
1306 if (exclusive) {
1307 rdev->exclusive = 1;
1308
1309 ret = _regulator_is_enabled(rdev);
1310 if (ret > 0)
1311 rdev->use_count = 1;
1312 else
1313 rdev->use_count = 0;
1314 }
1315
a5766f11 1316out:
414c70cb 1317 mutex_unlock(&regulator_list_mutex);
5ffbd136 1318
414c70cb
LG
1319 return regulator;
1320}
5ffbd136
MB
1321
1322/**
1323 * regulator_get - lookup and obtain a reference to a regulator.
1324 * @dev: device for regulator "consumer"
1325 * @id: Supply name or regulator ID.
1326 *
1327 * Returns a struct regulator corresponding to the regulator producer,
1328 * or IS_ERR() condition containing errno.
1329 *
1330 * Use of supply names configured via regulator_set_device_supply() is
1331 * strongly encouraged. It is recommended that the supply name used
1332 * should match the name used for the supply and/or the relevant
1333 * device pins in the datasheet.
1334 */
1335struct regulator *regulator_get(struct device *dev, const char *id)
1336{
1337 return _regulator_get(dev, id, 0);
1338}
414c70cb
LG
1339EXPORT_SYMBOL_GPL(regulator_get);
1340
070b9079
SB
1341static void devm_regulator_release(struct device *dev, void *res)
1342{
1343 regulator_put(*(struct regulator **)res);
1344}
1345
1346/**
1347 * devm_regulator_get - Resource managed regulator_get()
1348 * @dev: device for regulator "consumer"
1349 * @id: Supply name or regulator ID.
1350 *
1351 * Managed regulator_get(). Regulators returned from this function are
1352 * automatically regulator_put() on driver detach. See regulator_get() for more
1353 * information.
1354 */
1355struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356{
1357 struct regulator **ptr, *regulator;
1358
1359 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360 if (!ptr)
1361 return ERR_PTR(-ENOMEM);
1362
1363 regulator = regulator_get(dev, id);
1364 if (!IS_ERR(regulator)) {
1365 *ptr = regulator;
1366 devres_add(dev, ptr);
1367 } else {
1368 devres_free(ptr);
1369 }
1370
1371 return regulator;
1372}
1373EXPORT_SYMBOL_GPL(devm_regulator_get);
1374
5ffbd136
MB
1375/**
1376 * regulator_get_exclusive - obtain exclusive access to a regulator.
1377 * @dev: device for regulator "consumer"
1378 * @id: Supply name or regulator ID.
1379 *
1380 * Returns a struct regulator corresponding to the regulator producer,
1381 * or IS_ERR() condition containing errno. Other consumers will be
1382 * unable to obtain this reference is held and the use count for the
1383 * regulator will be initialised to reflect the current state of the
1384 * regulator.
1385 *
1386 * This is intended for use by consumers which cannot tolerate shared
1387 * use of the regulator such as those which need to force the
1388 * regulator off for correct operation of the hardware they are
1389 * controlling.
1390 *
1391 * Use of supply names configured via regulator_set_device_supply() is
1392 * strongly encouraged. It is recommended that the supply name used
1393 * should match the name used for the supply and/or the relevant
1394 * device pins in the datasheet.
1395 */
1396struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397{
1398 return _regulator_get(dev, id, 1);
1399}
1400EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401
414c70cb
LG
1402/**
1403 * regulator_put - "free" the regulator source
1404 * @regulator: regulator source
1405 *
1406 * Note: drivers must ensure that all regulator_enable calls made on this
1407 * regulator source are balanced by regulator_disable calls prior to calling
1408 * this function.
1409 */
1410void regulator_put(struct regulator *regulator)
1411{
1412 struct regulator_dev *rdev;
1413
1414 if (regulator == NULL || IS_ERR(regulator))
1415 return;
1416
414c70cb
LG
1417 mutex_lock(&regulator_list_mutex);
1418 rdev = regulator->rdev;
1419
5de70519 1420 debugfs_remove_recursive(regulator->debugfs);
5de70519 1421
414c70cb
LG
1422 /* remove any sysfs entries */
1423 if (regulator->dev) {
1424 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
414c70cb
LG
1425 device_remove_file(regulator->dev, &regulator->dev_attr);
1426 kfree(regulator->dev_attr.attr.name);
1427 }
5de70519 1428 kfree(regulator->supply_name);
414c70cb
LG
1429 list_del(&regulator->list);
1430 kfree(regulator);
1431
5ffbd136
MB
1432 rdev->open_count--;
1433 rdev->exclusive = 0;
1434
414c70cb
LG
1435 module_put(rdev->owner);
1436 mutex_unlock(&regulator_list_mutex);
1437}
1438EXPORT_SYMBOL_GPL(regulator_put);
1439
d5ad34f7
MB
1440static int devm_regulator_match(struct device *dev, void *res, void *data)
1441{
1442 struct regulator **r = res;
1443 if (!r || !*r) {
1444 WARN_ON(!r || !*r);
1445 return 0;
1446 }
1447 return *r == data;
1448}
1449
1450/**
1451 * devm_regulator_put - Resource managed regulator_put()
1452 * @regulator: regulator to free
1453 *
1454 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455 * this function will not need to be called and the resource management
1456 * code will ensure that the resource is freed.
1457 */
1458void devm_regulator_put(struct regulator *regulator)
1459{
1460 int rc;
1461
361ff501 1462 rc = devres_release(regulator->dev, devm_regulator_release,
d5ad34f7 1463 devm_regulator_match, regulator);
230a5a1c 1464 if (rc != 0)
968c2c17 1465 WARN_ON(rc);
d5ad34f7
MB
1466}
1467EXPORT_SYMBOL_GPL(devm_regulator_put);
1468
414c70cb
LG
1469/* locks held by regulator_enable() */
1470static int _regulator_enable(struct regulator_dev *rdev)
1471{
31aae2be 1472 int ret, delay;
414c70cb 1473
414c70cb 1474 /* check voltage and requested load before enabling */
9a2372fa
MB
1475 if (rdev->constraints &&
1476 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1477 drms_uA_update(rdev);
414c70cb 1478
9a2372fa
MB
1479 if (rdev->use_count == 0) {
1480 /* The regulator may on if it's not switchable or left on */
1481 ret = _regulator_is_enabled(rdev);
1482 if (ret == -EINVAL || ret == 0) {
1483 if (!_regulator_can_change_status(rdev))
1484 return -EPERM;
1485
31aae2be 1486 if (!rdev->desc->ops->enable)
9a2372fa 1487 return -EINVAL;
31aae2be
MB
1488
1489 /* Query before enabling in case configuration
25985edc 1490 * dependent. */
31aae2be
MB
1491 ret = _regulator_get_enable_time(rdev);
1492 if (ret >= 0) {
1493 delay = ret;
1494 } else {
5da84fd9 1495 rdev_warn(rdev, "enable_time() failed: %d\n",
1d7372e1 1496 ret);
31aae2be 1497 delay = 0;
9a2372fa 1498 }
31aae2be 1499
02fa3ec0
MB
1500 trace_regulator_enable(rdev_get_name(rdev));
1501
31aae2be
MB
1502 /* Allow the regulator to ramp; it would be useful
1503 * to extend this for bulk operations so that the
1504 * regulators can ramp together. */
1505 ret = rdev->desc->ops->enable(rdev);
1506 if (ret < 0)
1507 return ret;
1508
02fa3ec0
MB
1509 trace_regulator_enable_delay(rdev_get_name(rdev));
1510
e36c1df8 1511 if (delay >= 1000) {
31aae2be 1512 mdelay(delay / 1000);
e36c1df8
AL
1513 udelay(delay % 1000);
1514 } else if (delay) {
31aae2be 1515 udelay(delay);
e36c1df8 1516 }
31aae2be 1517
02fa3ec0
MB
1518 trace_regulator_enable_complete(rdev_get_name(rdev));
1519
a7433cff 1520 } else if (ret < 0) {
5da84fd9 1521 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
414c70cb
LG
1522 return ret;
1523 }
a7433cff 1524 /* Fallthrough on positive return values - already enabled */
414c70cb
LG
1525 }
1526
9a2372fa
MB
1527 rdev->use_count++;
1528
1529 return 0;
414c70cb
LG
1530}
1531
1532/**
1533 * regulator_enable - enable regulator output
1534 * @regulator: regulator source
1535 *
cf7bbcdf
MB
1536 * Request that the regulator be enabled with the regulator output at
1537 * the predefined voltage or current value. Calls to regulator_enable()
1538 * must be balanced with calls to regulator_disable().
1539 *
414c70cb 1540 * NOTE: the output value can be set by other drivers, boot loader or may be
cf7bbcdf 1541 * hardwired in the regulator.
414c70cb
LG
1542 */
1543int regulator_enable(struct regulator *regulator)
1544{
412aec61
DB
1545 struct regulator_dev *rdev = regulator->rdev;
1546 int ret = 0;
414c70cb 1547
6492bc1b
MB
1548 if (regulator->always_on)
1549 return 0;
1550
3801b86a
MB
1551 if (rdev->supply) {
1552 ret = regulator_enable(rdev->supply);
1553 if (ret != 0)
1554 return ret;
1555 }
1556
412aec61 1557 mutex_lock(&rdev->mutex);
cd94b505 1558 ret = _regulator_enable(rdev);
412aec61 1559 mutex_unlock(&rdev->mutex);
3801b86a 1560
d1685e4e 1561 if (ret != 0 && rdev->supply)
3801b86a
MB
1562 regulator_disable(rdev->supply);
1563
414c70cb
LG
1564 return ret;
1565}
1566EXPORT_SYMBOL_GPL(regulator_enable);
1567
1568/* locks held by regulator_disable() */
3801b86a 1569static int _regulator_disable(struct regulator_dev *rdev)
414c70cb
LG
1570{
1571 int ret = 0;
1572
cd94b505 1573 if (WARN(rdev->use_count <= 0,
43e7ee33 1574 "unbalanced disables for %s\n", rdev_get_name(rdev)))
cd94b505
DB
1575 return -EIO;
1576
414c70cb 1577 /* are we the last user and permitted to disable ? */
60ef66fc
MB
1578 if (rdev->use_count == 1 &&
1579 (rdev->constraints && !rdev->constraints->always_on)) {
414c70cb
LG
1580
1581 /* we are last user */
9a2372fa
MB
1582 if (_regulator_can_change_status(rdev) &&
1583 rdev->desc->ops->disable) {
02fa3ec0
MB
1584 trace_regulator_disable(rdev_get_name(rdev));
1585
414c70cb
LG
1586 ret = rdev->desc->ops->disable(rdev);
1587 if (ret < 0) {
5da84fd9 1588 rdev_err(rdev, "failed to disable\n");
414c70cb
LG
1589 return ret;
1590 }
84b68263 1591
02fa3ec0
MB
1592 trace_regulator_disable_complete(rdev_get_name(rdev));
1593
84b68263
MB
1594 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1595 NULL);
414c70cb
LG
1596 }
1597
414c70cb
LG
1598 rdev->use_count = 0;
1599 } else if (rdev->use_count > 1) {
1600
1601 if (rdev->constraints &&
1602 (rdev->constraints->valid_ops_mask &
1603 REGULATOR_CHANGE_DRMS))
1604 drms_uA_update(rdev);
1605
1606 rdev->use_count--;
1607 }
3801b86a 1608
414c70cb
LG
1609 return ret;
1610}
1611
1612/**
1613 * regulator_disable - disable regulator output
1614 * @regulator: regulator source
1615 *
cf7bbcdf
MB
1616 * Disable the regulator output voltage or current. Calls to
1617 * regulator_enable() must be balanced with calls to
1618 * regulator_disable().
69279fb9 1619 *
414c70cb 1620 * NOTE: this will only disable the regulator output if no other consumer
cf7bbcdf
MB
1621 * devices have it enabled, the regulator device supports disabling and
1622 * machine constraints permit this operation.
414c70cb
LG
1623 */
1624int regulator_disable(struct regulator *regulator)
1625{
412aec61
DB
1626 struct regulator_dev *rdev = regulator->rdev;
1627 int ret = 0;
414c70cb 1628
6492bc1b
MB
1629 if (regulator->always_on)
1630 return 0;
1631
412aec61 1632 mutex_lock(&rdev->mutex);
3801b86a 1633 ret = _regulator_disable(rdev);
412aec61 1634 mutex_unlock(&rdev->mutex);
8cbf811d 1635
3801b86a
MB
1636 if (ret == 0 && rdev->supply)
1637 regulator_disable(rdev->supply);
8cbf811d 1638
414c70cb
LG
1639 return ret;
1640}
1641EXPORT_SYMBOL_GPL(regulator_disable);
1642
1643/* locks held by regulator_force_disable() */
3801b86a 1644static int _regulator_force_disable(struct regulator_dev *rdev)
414c70cb
LG
1645{
1646 int ret = 0;
1647
1648 /* force disable */
1649 if (rdev->desc->ops->disable) {
1650 /* ah well, who wants to live forever... */
1651 ret = rdev->desc->ops->disable(rdev);
1652 if (ret < 0) {
5da84fd9 1653 rdev_err(rdev, "failed to force disable\n");
414c70cb
LG
1654 return ret;
1655 }
1656 /* notify other consumers that power has been forced off */
84b68263
MB
1657 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1658 REGULATOR_EVENT_DISABLE, NULL);
414c70cb
LG
1659 }
1660
414c70cb
LG
1661 return ret;
1662}
1663
1664/**
1665 * regulator_force_disable - force disable regulator output
1666 * @regulator: regulator source
1667 *
1668 * Forcibly disable the regulator output voltage or current.
1669 * NOTE: this *will* disable the regulator output even if other consumer
1670 * devices have it enabled. This should be used for situations when device
1671 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1672 */
1673int regulator_force_disable(struct regulator *regulator)
1674{
82d15839 1675 struct regulator_dev *rdev = regulator->rdev;
414c70cb
LG
1676 int ret;
1677
82d15839 1678 mutex_lock(&rdev->mutex);
414c70cb 1679 regulator->uA_load = 0;
3801b86a 1680 ret = _regulator_force_disable(regulator->rdev);
82d15839 1681 mutex_unlock(&rdev->mutex);
8cbf811d 1682
3801b86a
MB
1683 if (rdev->supply)
1684 while (rdev->open_count--)
1685 regulator_disable(rdev->supply);
8cbf811d 1686
414c70cb
LG
1687 return ret;
1688}
1689EXPORT_SYMBOL_GPL(regulator_force_disable);
1690
da07ecd9
MB
1691static void regulator_disable_work(struct work_struct *work)
1692{
1693 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1694 disable_work.work);
1695 int count, i, ret;
1696
1697 mutex_lock(&rdev->mutex);
1698
1699 BUG_ON(!rdev->deferred_disables);
1700
1701 count = rdev->deferred_disables;
1702 rdev->deferred_disables = 0;
1703
1704 for (i = 0; i < count; i++) {
1705 ret = _regulator_disable(rdev);
1706 if (ret != 0)
1707 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1708 }
1709
1710 mutex_unlock(&rdev->mutex);
1711
1712 if (rdev->supply) {
1713 for (i = 0; i < count; i++) {
1714 ret = regulator_disable(rdev->supply);
1715 if (ret != 0) {
1716 rdev_err(rdev,
1717 "Supply disable failed: %d\n", ret);
1718 }
1719 }
1720 }
1721}
1722
1723/**
1724 * regulator_disable_deferred - disable regulator output with delay
1725 * @regulator: regulator source
1726 * @ms: miliseconds until the regulator is disabled
1727 *
1728 * Execute regulator_disable() on the regulator after a delay. This
1729 * is intended for use with devices that require some time to quiesce.
1730 *
1731 * NOTE: this will only disable the regulator output if no other consumer
1732 * devices have it enabled, the regulator device supports disabling and
1733 * machine constraints permit this operation.
1734 */
1735int regulator_disable_deferred(struct regulator *regulator, int ms)
1736{
1737 struct regulator_dev *rdev = regulator->rdev;
aa59802d 1738 int ret;
da07ecd9 1739
6492bc1b
MB
1740 if (regulator->always_on)
1741 return 0;
1742
da07ecd9
MB
1743 mutex_lock(&rdev->mutex);
1744 rdev->deferred_disables++;
1745 mutex_unlock(&rdev->mutex);
1746
aa59802d
MB
1747 ret = schedule_delayed_work(&rdev->disable_work,
1748 msecs_to_jiffies(ms));
1749 if (ret < 0)
1750 return ret;
1751 else
1752 return 0;
da07ecd9
MB
1753}
1754EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1755
cd6dffb4
MB
1756/**
1757 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1758 *
1759 * @rdev: regulator to operate on
1760 *
1761 * Regulators that use regmap for their register I/O can set the
1762 * enable_reg and enable_mask fields in their descriptor and then use
1763 * this as their is_enabled operation, saving some code.
1764 */
1765int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1766{
1767 unsigned int val;
1768 int ret;
1769
1770 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1771 if (ret != 0)
1772 return ret;
1773
1774 return (val & rdev->desc->enable_mask) != 0;
1775}
1776EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1777
1778/**
1779 * regulator_enable_regmap - standard enable() for regmap users
1780 *
1781 * @rdev: regulator to operate on
1782 *
1783 * Regulators that use regmap for their register I/O can set the
1784 * enable_reg and enable_mask fields in their descriptor and then use
1785 * this as their enable() operation, saving some code.
1786 */
1787int regulator_enable_regmap(struct regulator_dev *rdev)
1788{
1789 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1790 rdev->desc->enable_mask,
1791 rdev->desc->enable_mask);
1792}
1793EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1794
1795/**
1796 * regulator_disable_regmap - standard disable() for regmap users
1797 *
1798 * @rdev: regulator to operate on
1799 *
1800 * Regulators that use regmap for their register I/O can set the
1801 * enable_reg and enable_mask fields in their descriptor and then use
1802 * this as their disable() operation, saving some code.
1803 */
1804int regulator_disable_regmap(struct regulator_dev *rdev)
1805{
1806 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1807 rdev->desc->enable_mask, 0);
1808}
1809EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1810
414c70cb
LG
1811static int _regulator_is_enabled(struct regulator_dev *rdev)
1812{
9a7f6a4c 1813 /* If we don't know then assume that the regulator is always on */
9332546f 1814 if (!rdev->desc->ops->is_enabled)
9a7f6a4c 1815 return 1;
414c70cb 1816
9332546f 1817 return rdev->desc->ops->is_enabled(rdev);
414c70cb
LG
1818}
1819
1820/**
1821 * regulator_is_enabled - is the regulator output enabled
1822 * @regulator: regulator source
1823 *
412aec61
DB
1824 * Returns positive if the regulator driver backing the source/client
1825 * has requested that the device be enabled, zero if it hasn't, else a
1826 * negative errno code.
1827 *
1828 * Note that the device backing this regulator handle can have multiple
1829 * users, so it might be enabled even if regulator_enable() was never
1830 * called for this particular source.
414c70cb
LG
1831 */
1832int regulator_is_enabled(struct regulator *regulator)
1833{
9332546f
MB
1834 int ret;
1835
6492bc1b
MB
1836 if (regulator->always_on)
1837 return 1;
1838
9332546f
MB
1839 mutex_lock(&regulator->rdev->mutex);
1840 ret = _regulator_is_enabled(regulator->rdev);
1841 mutex_unlock(&regulator->rdev->mutex);
1842
1843 return ret;
414c70cb
LG
1844}
1845EXPORT_SYMBOL_GPL(regulator_is_enabled);
1846
4367cfdc
DB
1847/**
1848 * regulator_count_voltages - count regulator_list_voltage() selectors
1849 * @regulator: regulator source
1850 *
1851 * Returns number of selectors, or negative errno. Selectors are
1852 * numbered starting at zero, and typically correspond to bitfields
1853 * in hardware registers.
1854 */
1855int regulator_count_voltages(struct regulator *regulator)
1856{
1857 struct regulator_dev *rdev = regulator->rdev;
1858
1859 return rdev->desc->n_voltages ? : -EINVAL;
1860}
1861EXPORT_SYMBOL_GPL(regulator_count_voltages);
1862
bca7bbff
MB
1863/**
1864 * regulator_list_voltage_linear - List voltages with simple calculation
1865 *
1866 * @rdev: Regulator device
1867 * @selector: Selector to convert into a voltage
1868 *
1869 * Regulators with a simple linear mapping between voltages and
1870 * selectors can set min_uV and uV_step in the regulator descriptor
1871 * and then use this function as their list_voltage() operation,
1872 */
1873int regulator_list_voltage_linear(struct regulator_dev *rdev,
1874 unsigned int selector)
1875{
1876 if (selector >= rdev->desc->n_voltages)
1877 return -EINVAL;
1878
1879 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1880}
1881EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1882
cffc9592
AL
1883/**
1884 * regulator_list_voltage_table - List voltages with table based mapping
1885 *
1886 * @rdev: Regulator device
1887 * @selector: Selector to convert into a voltage
1888 *
1889 * Regulators with table based mapping between voltages and
1890 * selectors can set volt_table in the regulator descriptor
1891 * and then use this function as their list_voltage() operation.
1892 */
1893int regulator_list_voltage_table(struct regulator_dev *rdev,
1894 unsigned int selector)
1895{
1896 if (!rdev->desc->volt_table) {
1897 BUG_ON(!rdev->desc->volt_table);
1898 return -EINVAL;
1899 }
1900
1901 if (selector >= rdev->desc->n_voltages)
1902 return -EINVAL;
1903
1904 return rdev->desc->volt_table[selector];
1905}
1906EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1907
4367cfdc
DB
1908/**
1909 * regulator_list_voltage - enumerate supported voltages
1910 * @regulator: regulator source
1911 * @selector: identify voltage to list
1912 * Context: can sleep
1913 *
1914 * Returns a voltage that can be passed to @regulator_set_voltage(),
88393161 1915 * zero if this selector code can't be used on this system, or a
4367cfdc
DB
1916 * negative errno.
1917 */
1918int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1919{
1920 struct regulator_dev *rdev = regulator->rdev;
1921 struct regulator_ops *ops = rdev->desc->ops;
1922 int ret;
1923
1924 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1925 return -EINVAL;
1926
1927 mutex_lock(&rdev->mutex);
1928 ret = ops->list_voltage(rdev, selector);
1929 mutex_unlock(&rdev->mutex);
1930
1931 if (ret > 0) {
1932 if (ret < rdev->constraints->min_uV)
1933 ret = 0;
1934 else if (ret > rdev->constraints->max_uV)
1935 ret = 0;
1936 }
1937
1938 return ret;
1939}
1940EXPORT_SYMBOL_GPL(regulator_list_voltage);
1941
a7a1ad90
MB
1942/**
1943 * regulator_is_supported_voltage - check if a voltage range can be supported
1944 *
1945 * @regulator: Regulator to check.
1946 * @min_uV: Minimum required voltage in uV.
1947 * @max_uV: Maximum required voltage in uV.
1948 *
1949 * Returns a boolean or a negative error code.
1950 */
1951int regulator_is_supported_voltage(struct regulator *regulator,
1952 int min_uV, int max_uV)
1953{
1954 int i, voltages, ret;
1955
1956 ret = regulator_count_voltages(regulator);
1957 if (ret < 0)
1958 return ret;
1959 voltages = ret;
1960
1961 for (i = 0; i < voltages; i++) {
1962 ret = regulator_list_voltage(regulator, i);
1963
1964 if (ret >= min_uV && ret <= max_uV)
1965 return 1;
1966 }
1967
1968 return 0;
1969}
a398eaa2 1970EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
a7a1ad90 1971
4ab5b3d9
MB
1972/**
1973 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1974 *
1975 * @rdev: regulator to operate on
1976 *
1977 * Regulators that use regmap for their register I/O can set the
1978 * vsel_reg and vsel_mask fields in their descriptor and then use this
1979 * as their get_voltage_vsel operation, saving some code.
1980 */
1981int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1982{
1983 unsigned int val;
1984 int ret;
1985
1986 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1987 if (ret != 0)
1988 return ret;
1989
1990 val &= rdev->desc->vsel_mask;
1991 val >>= ffs(rdev->desc->vsel_mask) - 1;
1992
1993 return val;
1994}
1995EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1996
1997/**
1998 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1999 *
2000 * @rdev: regulator to operate on
2001 * @sel: Selector to set
2002 *
2003 * Regulators that use regmap for their register I/O can set the
2004 * vsel_reg and vsel_mask fields in their descriptor and then use this
2005 * as their set_voltage_vsel operation, saving some code.
2006 */
2007int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2008{
2009 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2010
2011 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2012 rdev->desc->vsel_mask, sel);
2013}
2014EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2015
e843fc46
MB
2016/**
2017 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2018 *
2019 * @rdev: Regulator to operate on
2020 * @min_uV: Lower bound for voltage
2021 * @max_uV: Upper bound for voltage
2022 *
2023 * Drivers implementing set_voltage_sel() and list_voltage() can use
2024 * this as their map_voltage() operation. It will find a suitable
2025 * voltage by calling list_voltage() until it gets something in bounds
2026 * for the requested voltages.
2027 */
2028int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2029 int min_uV, int max_uV)
2030{
2031 int best_val = INT_MAX;
2032 int selector = 0;
2033 int i, ret;
2034
2035 /* Find the smallest voltage that falls within the specified
2036 * range.
2037 */
2038 for (i = 0; i < rdev->desc->n_voltages; i++) {
2039 ret = rdev->desc->ops->list_voltage(rdev, i);
2040 if (ret < 0)
2041 continue;
2042
2043 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2044 best_val = ret;
2045 selector = i;
2046 }
2047 }
2048
2049 if (best_val != INT_MAX)
2050 return selector;
2051 else
2052 return -EINVAL;
2053}
2054EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2055
bca7bbff
MB
2056/**
2057 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2058 *
2059 * @rdev: Regulator to operate on
2060 * @min_uV: Lower bound for voltage
2061 * @max_uV: Upper bound for voltage
2062 *
2063 * Drivers providing min_uV and uV_step in their regulator_desc can
2064 * use this as their map_voltage() operation.
2065 */
2066int regulator_map_voltage_linear(struct regulator_dev *rdev,
2067 int min_uV, int max_uV)
2068{
2069 int ret, voltage;
2070
2071 if (!rdev->desc->uV_step) {
2072 BUG_ON(!rdev->desc->uV_step);
2073 return -EINVAL;
2074 }
2075
ccfcb1c3 2076 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
bca7bbff
MB
2077 if (ret < 0)
2078 return ret;
2079
2080 /* Map back into a voltage to verify we're still in bounds */
2081 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2082 if (voltage < min_uV || voltage > max_uV)
2083 return -EINVAL;
2084
2085 return ret;
2086}
2087EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2088
75790251
MB
2089static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2090 int min_uV, int max_uV)
2091{
2092 int ret;
77af1b26 2093 int delay = 0;
e843fc46 2094 int best_val;
75790251 2095 unsigned int selector;
eba41a5e 2096 int old_selector = -1;
75790251
MB
2097
2098 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2099
bf5892a8
MB
2100 min_uV += rdev->constraints->uV_offset;
2101 max_uV += rdev->constraints->uV_offset;
2102
eba41a5e
AL
2103 /*
2104 * If we can't obtain the old selector there is not enough
2105 * info to call set_voltage_time_sel().
2106 */
8b7485ef
AL
2107 if (_regulator_is_enabled(rdev) &&
2108 rdev->desc->ops->set_voltage_time_sel &&
eba41a5e
AL
2109 rdev->desc->ops->get_voltage_sel) {
2110 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2111 if (old_selector < 0)
2112 return old_selector;
2113 }
2114
75790251
MB
2115 if (rdev->desc->ops->set_voltage) {
2116 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2117 &selector);
e8eef82b 2118 } else if (rdev->desc->ops->set_voltage_sel) {
9152c36a 2119 if (rdev->desc->ops->map_voltage) {
e843fc46
MB
2120 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2121 max_uV);
9152c36a
AL
2122 } else {
2123 if (rdev->desc->ops->list_voltage ==
2124 regulator_list_voltage_linear)
2125 ret = regulator_map_voltage_linear(rdev,
2126 min_uV, max_uV);
2127 else
2128 ret = regulator_map_voltage_iterate(rdev,
2129 min_uV, max_uV);
2130 }
e8eef82b 2131
e843fc46
MB
2132 if (ret >= 0) {
2133 selector = ret;
2134 ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
e8eef82b 2135 }
75790251
MB
2136 } else {
2137 ret = -EINVAL;
2138 }
e8eef82b 2139
e843fc46
MB
2140 if (rdev->desc->ops->list_voltage)
2141 best_val = rdev->desc->ops->list_voltage(rdev, selector);
2142 else
2f7baf89 2143 best_val = _regulator_get_voltage(rdev);
77af1b26 2144
eba41a5e 2145 /* Call set_voltage_time_sel if successfully obtained old_selector */
5aff3a8b 2146 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
eba41a5e 2147 rdev->desc->ops->set_voltage_time_sel) {
77af1b26 2148
eba41a5e
AL
2149 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2150 old_selector, selector);
2151 if (delay < 0) {
2152 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2153 delay);
2154 delay = 0;
e8eef82b 2155 }
75790251 2156
8b96de31
PR
2157 /* Insert any necessary delays */
2158 if (delay >= 1000) {
2159 mdelay(delay / 1000);
2160 udelay(delay % 1000);
2161 } else if (delay) {
2162 udelay(delay);
2163 }
77af1b26
LW
2164 }
2165
2f7baf89 2166 if (ret == 0 && best_val >= 0)
ded06a52 2167 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2f7baf89 2168 (void *)best_val);
ded06a52 2169
eba41a5e 2170 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
75790251
MB
2171
2172 return ret;
2173}
2174
414c70cb
LG
2175/**
2176 * regulator_set_voltage - set regulator output voltage
2177 * @regulator: regulator source
2178 * @min_uV: Minimum required voltage in uV
2179 * @max_uV: Maximum acceptable voltage in uV
2180 *
2181 * Sets a voltage regulator to the desired output voltage. This can be set
2182 * during any regulator state. IOW, regulator can be disabled or enabled.
2183 *
2184 * If the regulator is enabled then the voltage will change to the new value
2185 * immediately otherwise if the regulator is disabled the regulator will
2186 * output at the new voltage when enabled.
2187 *
2188 * NOTE: If the regulator is shared between several devices then the lowest
2189 * request voltage that meets the system constraints will be used.
69279fb9 2190 * Regulator system constraints must be set for this regulator before
414c70cb
LG
2191 * calling this function otherwise this call will fail.
2192 */
2193int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2194{
2195 struct regulator_dev *rdev = regulator->rdev;
95a3c23a 2196 int ret = 0;
414c70cb
LG
2197
2198 mutex_lock(&rdev->mutex);
2199
95a3c23a
MB
2200 /* If we're setting the same range as last time the change
2201 * should be a noop (some cpufreq implementations use the same
2202 * voltage for multiple frequencies, for example).
2203 */
2204 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2205 goto out;
2206
414c70cb 2207 /* sanity check */
e8eef82b
MB
2208 if (!rdev->desc->ops->set_voltage &&
2209 !rdev->desc->ops->set_voltage_sel) {
414c70cb
LG
2210 ret = -EINVAL;
2211 goto out;
2212 }
2213
2214 /* constraints check */
2215 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2216 if (ret < 0)
2217 goto out;
2218 regulator->min_uV = min_uV;
2219 regulator->max_uV = max_uV;
3a93f2a9 2220
05fda3b1
TP
2221 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2222 if (ret < 0)
2223 goto out;
2224
75790251 2225 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
02fa3ec0 2226
414c70cb
LG
2227out:
2228 mutex_unlock(&rdev->mutex);
2229 return ret;
2230}
2231EXPORT_SYMBOL_GPL(regulator_set_voltage);
2232
88cd222b
LW
2233/**
2234 * regulator_set_voltage_time - get raise/fall time
2235 * @regulator: regulator source
2236 * @old_uV: starting voltage in microvolts
2237 * @new_uV: target voltage in microvolts
2238 *
2239 * Provided with the starting and ending voltage, this function attempts to
2240 * calculate the time in microseconds required to rise or fall to this new
2241 * voltage.
2242 */
2243int regulator_set_voltage_time(struct regulator *regulator,
2244 int old_uV, int new_uV)
2245{
2246 struct regulator_dev *rdev = regulator->rdev;
2247 struct regulator_ops *ops = rdev->desc->ops;
2248 int old_sel = -1;
2249 int new_sel = -1;
2250 int voltage;
2251 int i;
2252
2253 /* Currently requires operations to do this */
2254 if (!ops->list_voltage || !ops->set_voltage_time_sel
2255 || !rdev->desc->n_voltages)
2256 return -EINVAL;
2257
2258 for (i = 0; i < rdev->desc->n_voltages; i++) {
2259 /* We only look for exact voltage matches here */
2260 voltage = regulator_list_voltage(regulator, i);
2261 if (voltage < 0)
2262 return -EINVAL;
2263 if (voltage == 0)
2264 continue;
2265 if (voltage == old_uV)
2266 old_sel = i;
2267 if (voltage == new_uV)
2268 new_sel = i;
2269 }
2270
2271 if (old_sel < 0 || new_sel < 0)
2272 return -EINVAL;
2273
2274 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2275}
2276EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2277
606a2562
MB
2278/**
2279 * regulator_sync_voltage - re-apply last regulator output voltage
2280 * @regulator: regulator source
2281 *
2282 * Re-apply the last configured voltage. This is intended to be used
2283 * where some external control source the consumer is cooperating with
2284 * has caused the configured voltage to change.
2285 */
2286int regulator_sync_voltage(struct regulator *regulator)
2287{
2288 struct regulator_dev *rdev = regulator->rdev;
2289 int ret, min_uV, max_uV;
2290
2291 mutex_lock(&rdev->mutex);
2292
2293 if (!rdev->desc->ops->set_voltage &&
2294 !rdev->desc->ops->set_voltage_sel) {
2295 ret = -EINVAL;
2296 goto out;
2297 }
2298
2299 /* This is only going to work if we've had a voltage configured. */
2300 if (!regulator->min_uV && !regulator->max_uV) {
2301 ret = -EINVAL;
2302 goto out;
2303 }
2304
2305 min_uV = regulator->min_uV;
2306 max_uV = regulator->max_uV;
2307
2308 /* This should be a paranoia check... */
2309 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2310 if (ret < 0)
2311 goto out;
2312
2313 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2314 if (ret < 0)
2315 goto out;
2316
2317 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2318
2319out:
2320 mutex_unlock(&rdev->mutex);
2321 return ret;
2322}
2323EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2324
414c70cb
LG
2325static int _regulator_get_voltage(struct regulator_dev *rdev)
2326{
bf5892a8 2327 int sel, ret;
476c2d83
MB
2328
2329 if (rdev->desc->ops->get_voltage_sel) {
2330 sel = rdev->desc->ops->get_voltage_sel(rdev);
2331 if (sel < 0)
2332 return sel;
bf5892a8 2333 ret = rdev->desc->ops->list_voltage(rdev, sel);
cb220d16 2334 } else if (rdev->desc->ops->get_voltage) {
bf5892a8 2335 ret = rdev->desc->ops->get_voltage(rdev);
cb220d16 2336 } else {
414c70cb 2337 return -EINVAL;
cb220d16 2338 }
bf5892a8 2339
cb220d16
AL
2340 if (ret < 0)
2341 return ret;
bf5892a8 2342 return ret - rdev->constraints->uV_offset;
414c70cb
LG
2343}
2344
2345/**
2346 * regulator_get_voltage - get regulator output voltage
2347 * @regulator: regulator source
2348 *
2349 * This returns the current regulator voltage in uV.
2350 *
2351 * NOTE: If the regulator is disabled it will return the voltage value. This
2352 * function should not be used to determine regulator state.
2353 */
2354int regulator_get_voltage(struct regulator *regulator)
2355{
2356 int ret;
2357
2358 mutex_lock(&regulator->rdev->mutex);
2359
2360 ret = _regulator_get_voltage(regulator->rdev);
2361
2362 mutex_unlock(&regulator->rdev->mutex);
2363
2364 return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_get_voltage);
2367
2368/**
2369 * regulator_set_current_limit - set regulator output current limit
2370 * @regulator: regulator source
2371 * @min_uA: Minimuum supported current in uA
2372 * @max_uA: Maximum supported current in uA
2373 *
2374 * Sets current sink to the desired output current. This can be set during
2375 * any regulator state. IOW, regulator can be disabled or enabled.
2376 *
2377 * If the regulator is enabled then the current will change to the new value
2378 * immediately otherwise if the regulator is disabled the regulator will
2379 * output at the new current when enabled.
2380 *
2381 * NOTE: Regulator system constraints must be set for this regulator before
2382 * calling this function otherwise this call will fail.
2383 */
2384int regulator_set_current_limit(struct regulator *regulator,
2385 int min_uA, int max_uA)
2386{
2387 struct regulator_dev *rdev = regulator->rdev;
2388 int ret;
2389
2390 mutex_lock(&rdev->mutex);
2391
2392 /* sanity check */
2393 if (!rdev->desc->ops->set_current_limit) {
2394 ret = -EINVAL;
2395 goto out;
2396 }
2397
2398 /* constraints check */
2399 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2400 if (ret < 0)
2401 goto out;
2402
2403 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2404out:
2405 mutex_unlock(&rdev->mutex);
2406 return ret;
2407}
2408EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2409
2410static int _regulator_get_current_limit(struct regulator_dev *rdev)
2411{
2412 int ret;
2413
2414 mutex_lock(&rdev->mutex);
2415
2416 /* sanity check */
2417 if (!rdev->desc->ops->get_current_limit) {
2418 ret = -EINVAL;
2419 goto out;
2420 }
2421
2422 ret = rdev->desc->ops->get_current_limit(rdev);
2423out:
2424 mutex_unlock(&rdev->mutex);
2425 return ret;
2426}
2427
2428/**
2429 * regulator_get_current_limit - get regulator output current
2430 * @regulator: regulator source
2431 *
2432 * This returns the current supplied by the specified current sink in uA.
2433 *
2434 * NOTE: If the regulator is disabled it will return the current value. This
2435 * function should not be used to determine regulator state.
2436 */
2437int regulator_get_current_limit(struct regulator *regulator)
2438{
2439 return _regulator_get_current_limit(regulator->rdev);
2440}
2441EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2442
2443/**
2444 * regulator_set_mode - set regulator operating mode
2445 * @regulator: regulator source
2446 * @mode: operating mode - one of the REGULATOR_MODE constants
2447 *
2448 * Set regulator operating mode to increase regulator efficiency or improve
2449 * regulation performance.
2450 *
2451 * NOTE: Regulator system constraints must be set for this regulator before
2452 * calling this function otherwise this call will fail.
2453 */
2454int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2455{
2456 struct regulator_dev *rdev = regulator->rdev;
2457 int ret;
500b4ac9 2458 int regulator_curr_mode;
414c70cb
LG
2459
2460 mutex_lock(&rdev->mutex);
2461
2462 /* sanity check */
2463 if (!rdev->desc->ops->set_mode) {
2464 ret = -EINVAL;
2465 goto out;
2466 }
2467
500b4ac9
SI
2468 /* return if the same mode is requested */
2469 if (rdev->desc->ops->get_mode) {
2470 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2471 if (regulator_curr_mode == mode) {
2472 ret = 0;
2473 goto out;
2474 }
2475 }
2476
414c70cb 2477 /* constraints check */
22c51b47 2478 ret = regulator_mode_constrain(rdev, &mode);
414c70cb
LG
2479 if (ret < 0)
2480 goto out;
2481
2482 ret = rdev->desc->ops->set_mode(rdev, mode);
2483out:
2484 mutex_unlock(&rdev->mutex);
2485 return ret;
2486}
2487EXPORT_SYMBOL_GPL(regulator_set_mode);
2488
2489static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2490{
2491 int ret;
2492
2493 mutex_lock(&rdev->mutex);
2494
2495 /* sanity check */
2496 if (!rdev->desc->ops->get_mode) {
2497 ret = -EINVAL;
2498 goto out;
2499 }
2500
2501 ret = rdev->desc->ops->get_mode(rdev);
2502out:
2503 mutex_unlock(&rdev->mutex);
2504 return ret;
2505}
2506
2507/**
2508 * regulator_get_mode - get regulator operating mode
2509 * @regulator: regulator source
2510 *
2511 * Get the current regulator operating mode.
2512 */
2513unsigned int regulator_get_mode(struct regulator *regulator)
2514{
2515 return _regulator_get_mode(regulator->rdev);
2516}
2517EXPORT_SYMBOL_GPL(regulator_get_mode);
2518
2519/**
2520 * regulator_set_optimum_mode - set regulator optimum operating mode
2521 * @regulator: regulator source
2522 * @uA_load: load current
2523 *
2524 * Notifies the regulator core of a new device load. This is then used by
2525 * DRMS (if enabled by constraints) to set the most efficient regulator
2526 * operating mode for the new regulator loading.
2527 *
2528 * Consumer devices notify their supply regulator of the maximum power
2529 * they will require (can be taken from device datasheet in the power
2530 * consumption tables) when they change operational status and hence power
2531 * state. Examples of operational state changes that can affect power
2532 * consumption are :-
2533 *
2534 * o Device is opened / closed.
2535 * o Device I/O is about to begin or has just finished.
2536 * o Device is idling in between work.
2537 *
2538 * This information is also exported via sysfs to userspace.
2539 *
2540 * DRMS will sum the total requested load on the regulator and change
2541 * to the most efficient operating mode if platform constraints allow.
2542 *
2543 * Returns the new regulator mode or error.
2544 */
2545int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2546{
2547 struct regulator_dev *rdev = regulator->rdev;
2548 struct regulator *consumer;
2549 int ret, output_uV, input_uV, total_uA_load = 0;
2550 unsigned int mode;
2551
2552 mutex_lock(&rdev->mutex);
2553
a4b41483
MB
2554 /*
2555 * first check to see if we can set modes at all, otherwise just
2556 * tell the consumer everything is OK.
2557 */
414c70cb
LG
2558 regulator->uA_load = uA_load;
2559 ret = regulator_check_drms(rdev);
a4b41483
MB
2560 if (ret < 0) {
2561 ret = 0;
414c70cb 2562 goto out;
a4b41483 2563 }
414c70cb 2564
414c70cb
LG
2565 if (!rdev->desc->ops->get_optimum_mode)
2566 goto out;
2567
a4b41483
MB
2568 /*
2569 * we can actually do this so any errors are indicators of
2570 * potential real failure.
2571 */
2572 ret = -EINVAL;
2573
854ccbae
AL
2574 if (!rdev->desc->ops->set_mode)
2575 goto out;
2576
414c70cb 2577 /* get output voltage */
1bf5a1f8 2578 output_uV = _regulator_get_voltage(rdev);
414c70cb 2579 if (output_uV <= 0) {
5da84fd9 2580 rdev_err(rdev, "invalid output voltage found\n");
414c70cb
LG
2581 goto out;
2582 }
2583
2584 /* get input voltage */
1bf5a1f8
MB
2585 input_uV = 0;
2586 if (rdev->supply)
3801b86a 2587 input_uV = regulator_get_voltage(rdev->supply);
1bf5a1f8 2588 if (input_uV <= 0)
414c70cb
LG
2589 input_uV = rdev->constraints->input_uV;
2590 if (input_uV <= 0) {
5da84fd9 2591 rdev_err(rdev, "invalid input voltage found\n");
414c70cb
LG
2592 goto out;
2593 }
2594
2595 /* calc total requested load for this regulator */
2596 list_for_each_entry(consumer, &rdev->consumer_list, list)
fa2984d4 2597 total_uA_load += consumer->uA_load;
414c70cb
LG
2598
2599 mode = rdev->desc->ops->get_optimum_mode(rdev,
2600 input_uV, output_uV,
2601 total_uA_load);
2c608234 2602 ret = regulator_mode_constrain(rdev, &mode);
e573520b 2603 if (ret < 0) {
5da84fd9
JP
2604 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2605 total_uA_load, input_uV, output_uV);
414c70cb
LG
2606 goto out;
2607 }
2608
2609 ret = rdev->desc->ops->set_mode(rdev, mode);
e573520b 2610 if (ret < 0) {
5da84fd9 2611 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
414c70cb
LG
2612 goto out;
2613 }
2614 ret = mode;
2615out:
2616 mutex_unlock(&rdev->mutex);
2617 return ret;
2618}
2619EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2620
2621/**
2622 * regulator_register_notifier - register regulator event notifier
2623 * @regulator: regulator source
69279fb9 2624 * @nb: notifier block
414c70cb
LG
2625 *
2626 * Register notifier block to receive regulator events.
2627 */
2628int regulator_register_notifier(struct regulator *regulator,
2629 struct notifier_block *nb)
2630{
2631 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2632 nb);
2633}
2634EXPORT_SYMBOL_GPL(regulator_register_notifier);
2635
2636/**
2637 * regulator_unregister_notifier - unregister regulator event notifier
2638 * @regulator: regulator source
69279fb9 2639 * @nb: notifier block
414c70cb
LG
2640 *
2641 * Unregister regulator event notifier block.
2642 */
2643int regulator_unregister_notifier(struct regulator *regulator,
2644 struct notifier_block *nb)
2645{
2646 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2647 nb);
2648}
2649EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2650
b136fb44
JC
2651/* notify regulator consumers and downstream regulator consumers.
2652 * Note mutex must be held by caller.
2653 */
414c70cb
LG
2654static void _notifier_call_chain(struct regulator_dev *rdev,
2655 unsigned long event, void *data)
2656{
414c70cb 2657 /* call rdev chain first */
d8493d21 2658 blocking_notifier_call_chain(&rdev->notifier, event, data);
414c70cb
LG
2659}
2660
2661/**
2662 * regulator_bulk_get - get multiple regulator consumers
2663 *
2664 * @dev: Device to supply
2665 * @num_consumers: Number of consumers to register
2666 * @consumers: Configuration of consumers; clients are stored here.
2667 *
2668 * @return 0 on success, an errno on failure.
2669 *
2670 * This helper function allows drivers to get several regulator
2671 * consumers in one operation. If any of the regulators cannot be
2672 * acquired then any regulators that were allocated will be freed
2673 * before returning to the caller.
2674 */
2675int regulator_bulk_get(struct device *dev, int num_consumers,
2676 struct regulator_bulk_data *consumers)
2677{
2678 int i;
2679 int ret;
2680
2681 for (i = 0; i < num_consumers; i++)
2682 consumers[i].consumer = NULL;
2683
2684 for (i = 0; i < num_consumers; i++) {
2685 consumers[i].consumer = regulator_get(dev,
2686 consumers[i].supply);
2687 if (IS_ERR(consumers[i].consumer)) {
414c70cb 2688 ret = PTR_ERR(consumers[i].consumer);
5b307627
MB
2689 dev_err(dev, "Failed to get supply '%s': %d\n",
2690 consumers[i].supply, ret);
414c70cb
LG
2691 consumers[i].consumer = NULL;
2692 goto err;
2693 }
2694 }
2695
2696 return 0;
2697
2698err:
b29c7690 2699 while (--i >= 0)
414c70cb
LG
2700 regulator_put(consumers[i].consumer);
2701
2702 return ret;
2703}
2704EXPORT_SYMBOL_GPL(regulator_bulk_get);
2705
e6e74030
MB
2706/**
2707 * devm_regulator_bulk_get - managed get multiple regulator consumers
2708 *
2709 * @dev: Device to supply
2710 * @num_consumers: Number of consumers to register
2711 * @consumers: Configuration of consumers; clients are stored here.
2712 *
2713 * @return 0 on success, an errno on failure.
2714 *
2715 * This helper function allows drivers to get several regulator
2716 * consumers in one operation with management, the regulators will
2717 * automatically be freed when the device is unbound. If any of the
2718 * regulators cannot be acquired then any regulators that were
2719 * allocated will be freed before returning to the caller.
2720 */
2721int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2722 struct regulator_bulk_data *consumers)
2723{
2724 int i;
2725 int ret;
2726
2727 for (i = 0; i < num_consumers; i++)
2728 consumers[i].consumer = NULL;
2729
2730 for (i = 0; i < num_consumers; i++) {
2731 consumers[i].consumer = devm_regulator_get(dev,
2732 consumers[i].supply);
2733 if (IS_ERR(consumers[i].consumer)) {
2734 ret = PTR_ERR(consumers[i].consumer);
2735 dev_err(dev, "Failed to get supply '%s': %d\n",
2736 consumers[i].supply, ret);
2737 consumers[i].consumer = NULL;
2738 goto err;
2739 }
2740 }
2741
2742 return 0;
2743
2744err:
2745 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2746 devm_regulator_put(consumers[i].consumer);
2747
2748 return ret;
2749}
2750EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2751
f21e0e81
MB
2752static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2753{
2754 struct regulator_bulk_data *bulk = data;
2755
2756 bulk->ret = regulator_enable(bulk->consumer);
2757}
2758
414c70cb
LG
2759/**
2760 * regulator_bulk_enable - enable multiple regulator consumers
2761 *
2762 * @num_consumers: Number of consumers
2763 * @consumers: Consumer data; clients are stored here.
2764 * @return 0 on success, an errno on failure
2765 *
2766 * This convenience API allows consumers to enable multiple regulator
2767 * clients in a single API call. If any consumers cannot be enabled
2768 * then any others that were enabled will be disabled again prior to
2769 * return.
2770 */
2771int regulator_bulk_enable(int num_consumers,
2772 struct regulator_bulk_data *consumers)
2773{
f21e0e81 2774 LIST_HEAD(async_domain);
414c70cb 2775 int i;
f21e0e81 2776 int ret = 0;
414c70cb 2777
6492bc1b
MB
2778 for (i = 0; i < num_consumers; i++) {
2779 if (consumers[i].consumer->always_on)
2780 consumers[i].ret = 0;
2781 else
2782 async_schedule_domain(regulator_bulk_enable_async,
2783 &consumers[i], &async_domain);
2784 }
f21e0e81
MB
2785
2786 async_synchronize_full_domain(&async_domain);
2787
2788 /* If any consumer failed we need to unwind any that succeeded */
414c70cb 2789 for (i = 0; i < num_consumers; i++) {
f21e0e81
MB
2790 if (consumers[i].ret != 0) {
2791 ret = consumers[i].ret;
414c70cb 2792 goto err;
f21e0e81 2793 }
414c70cb
LG
2794 }
2795
2796 return 0;
2797
2798err:
b29c7690
AL
2799 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2800 while (--i >= 0)
2801 regulator_disable(consumers[i].consumer);
414c70cb
LG
2802
2803 return ret;
2804}
2805EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2806
2807/**
2808 * regulator_bulk_disable - disable multiple regulator consumers
2809 *
2810 * @num_consumers: Number of consumers
2811 * @consumers: Consumer data; clients are stored here.
2812 * @return 0 on success, an errno on failure
2813 *
2814 * This convenience API allows consumers to disable multiple regulator
49e22632
SN
2815 * clients in a single API call. If any consumers cannot be disabled
2816 * then any others that were disabled will be enabled again prior to
414c70cb
LG
2817 * return.
2818 */
2819int regulator_bulk_disable(int num_consumers,
2820 struct regulator_bulk_data *consumers)
2821{
2822 int i;
01e86f49 2823 int ret, r;
414c70cb 2824
49e22632 2825 for (i = num_consumers - 1; i >= 0; --i) {
414c70cb
LG
2826 ret = regulator_disable(consumers[i].consumer);
2827 if (ret != 0)
2828 goto err;
2829 }
2830
2831 return 0;
2832
2833err:
5da84fd9 2834 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
01e86f49
MB
2835 for (++i; i < num_consumers; ++i) {
2836 r = regulator_enable(consumers[i].consumer);
2837 if (r != 0)
2838 pr_err("Failed to reename %s: %d\n",
2839 consumers[i].supply, r);
2840 }
414c70cb
LG
2841
2842 return ret;
2843}
2844EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2845
e1de2f42
DK
2846/**
2847 * regulator_bulk_force_disable - force disable multiple regulator consumers
2848 *
2849 * @num_consumers: Number of consumers
2850 * @consumers: Consumer data; clients are stored here.
2851 * @return 0 on success, an errno on failure
2852 *
2853 * This convenience API allows consumers to forcibly disable multiple regulator
2854 * clients in a single API call.
2855 * NOTE: This should be used for situations when device damage will
2856 * likely occur if the regulators are not disabled (e.g. over temp).
2857 * Although regulator_force_disable function call for some consumers can
2858 * return error numbers, the function is called for all consumers.
2859 */
2860int regulator_bulk_force_disable(int num_consumers,
2861 struct regulator_bulk_data *consumers)
2862{
2863 int i;
2864 int ret;
2865
2866 for (i = 0; i < num_consumers; i++)
2867 consumers[i].ret =
2868 regulator_force_disable(consumers[i].consumer);
2869
2870 for (i = 0; i < num_consumers; i++) {
2871 if (consumers[i].ret != 0) {
2872 ret = consumers[i].ret;
2873 goto out;
2874 }
2875 }
2876
2877 return 0;
2878out:
2879 return ret;
2880}
2881EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2882
414c70cb
LG
2883/**
2884 * regulator_bulk_free - free multiple regulator consumers
2885 *
2886 * @num_consumers: Number of consumers
2887 * @consumers: Consumer data; clients are stored here.
2888 *
2889 * This convenience API allows consumers to free multiple regulator
2890 * clients in a single API call.
2891 */
2892void regulator_bulk_free(int num_consumers,
2893 struct regulator_bulk_data *consumers)
2894{
2895 int i;
2896
2897 for (i = 0; i < num_consumers; i++) {
2898 regulator_put(consumers[i].consumer);
2899 consumers[i].consumer = NULL;
2900 }
2901}
2902EXPORT_SYMBOL_GPL(regulator_bulk_free);
2903
2904/**
2905 * regulator_notifier_call_chain - call regulator event notifier
69279fb9 2906 * @rdev: regulator source
414c70cb 2907 * @event: notifier block
69279fb9 2908 * @data: callback-specific data.
414c70cb
LG
2909 *
2910 * Called by regulator drivers to notify clients a regulator event has
2911 * occurred. We also notify regulator clients downstream.
b136fb44 2912 * Note lock must be held by caller.
414c70cb
LG
2913 */
2914int regulator_notifier_call_chain(struct regulator_dev *rdev,
2915 unsigned long event, void *data)
2916{
2917 _notifier_call_chain(rdev, event, data);
2918 return NOTIFY_DONE;
2919
2920}
2921EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2922
be721979
MB
2923/**
2924 * regulator_mode_to_status - convert a regulator mode into a status
2925 *
2926 * @mode: Mode to convert
2927 *
2928 * Convert a regulator mode into a status.
2929 */
2930int regulator_mode_to_status(unsigned int mode)
2931{
2932 switch (mode) {
2933 case REGULATOR_MODE_FAST:
2934 return REGULATOR_STATUS_FAST;
2935 case REGULATOR_MODE_NORMAL:
2936 return REGULATOR_STATUS_NORMAL;
2937 case REGULATOR_MODE_IDLE:
2938 return REGULATOR_STATUS_IDLE;
2939 case REGULATOR_STATUS_STANDBY:
2940 return REGULATOR_STATUS_STANDBY;
2941 default:
2942 return 0;
2943 }
2944}
2945EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2946
7ad68e2f
DB
2947/*
2948 * To avoid cluttering sysfs (and memory) with useless state, only
2949 * create attributes that can be meaningfully displayed.
2950 */
2951static int add_regulator_attributes(struct regulator_dev *rdev)
2952{
2953 struct device *dev = &rdev->dev;
2954 struct regulator_ops *ops = rdev->desc->ops;
2955 int status = 0;
2956
2957 /* some attributes need specific methods to be displayed */
4c78899b
MB
2958 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2959 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
7ad68e2f
DB
2960 status = device_create_file(dev, &dev_attr_microvolts);
2961 if (status < 0)
2962 return status;
2963 }
2964 if (ops->get_current_limit) {
2965 status = device_create_file(dev, &dev_attr_microamps);
2966 if (status < 0)
2967 return status;
2968 }
2969 if (ops->get_mode) {
2970 status = device_create_file(dev, &dev_attr_opmode);
2971 if (status < 0)
2972 return status;
2973 }
2974 if (ops->is_enabled) {
2975 status = device_create_file(dev, &dev_attr_state);
2976 if (status < 0)
2977 return status;
2978 }
853116a1
DB
2979 if (ops->get_status) {
2980 status = device_create_file(dev, &dev_attr_status);
2981 if (status < 0)
2982 return status;
2983 }
7ad68e2f
DB
2984
2985 /* some attributes are type-specific */
2986 if (rdev->desc->type == REGULATOR_CURRENT) {
2987 status = device_create_file(dev, &dev_attr_requested_microamps);
2988 if (status < 0)
2989 return status;
2990 }
2991
2992 /* all the other attributes exist to support constraints;
2993 * don't show them if there are no constraints, or if the
2994 * relevant supporting methods are missing.
2995 */
2996 if (!rdev->constraints)
2997 return status;
2998
2999 /* constraints need specific supporting methods */
e8eef82b 3000 if (ops->set_voltage || ops->set_voltage_sel) {
7ad68e2f
DB
3001 status = device_create_file(dev, &dev_attr_min_microvolts);
3002 if (status < 0)
3003 return status;
3004 status = device_create_file(dev, &dev_attr_max_microvolts);
3005 if (status < 0)
3006 return status;
3007 }
3008 if (ops->set_current_limit) {
3009 status = device_create_file(dev, &dev_attr_min_microamps);
3010 if (status < 0)
3011 return status;
3012 status = device_create_file(dev, &dev_attr_max_microamps);
3013 if (status < 0)
3014 return status;
3015 }
3016
7ad68e2f
DB
3017 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3018 if (status < 0)
3019 return status;
3020 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3021 if (status < 0)
3022 return status;
3023 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3024 if (status < 0)
3025 return status;
3026
3027 if (ops->set_suspend_voltage) {
3028 status = device_create_file(dev,
3029 &dev_attr_suspend_standby_microvolts);
3030 if (status < 0)
3031 return status;
3032 status = device_create_file(dev,
3033 &dev_attr_suspend_mem_microvolts);
3034 if (status < 0)
3035 return status;
3036 status = device_create_file(dev,
3037 &dev_attr_suspend_disk_microvolts);
3038 if (status < 0)
3039 return status;
3040 }
3041
3042 if (ops->set_suspend_mode) {
3043 status = device_create_file(dev,
3044 &dev_attr_suspend_standby_mode);
3045 if (status < 0)
3046 return status;
3047 status = device_create_file(dev,
3048 &dev_attr_suspend_mem_mode);
3049 if (status < 0)
3050 return status;
3051 status = device_create_file(dev,
3052 &dev_attr_suspend_disk_mode);
3053 if (status < 0)
3054 return status;
3055 }
3056
3057 return status;
3058}
3059
1130e5b3
MB
3060static void rdev_init_debugfs(struct regulator_dev *rdev)
3061{
1130e5b3 3062 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
24751434 3063 if (!rdev->debugfs) {
1130e5b3 3064 rdev_warn(rdev, "Failed to create debugfs directory\n");
1130e5b3
MB
3065 return;
3066 }
3067
3068 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3069 &rdev->use_count);
3070 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3071 &rdev->open_count);
1130e5b3
MB
3072}
3073
414c70cb
LG
3074/**
3075 * regulator_register - register regulator
69279fb9 3076 * @regulator_desc: regulator to register
c172708d 3077 * @config: runtime configuration for regulator
414c70cb
LG
3078 *
3079 * Called by regulator drivers to register a regulator.
3080 * Returns 0 on success.
3081 */
65f26846
MB
3082struct regulator_dev *
3083regulator_register(const struct regulator_desc *regulator_desc,
c172708d 3084 const struct regulator_config *config)
414c70cb 3085{
9a8f5e07 3086 const struct regulation_constraints *constraints = NULL;
c172708d 3087 const struct regulator_init_data *init_data;
414c70cb
LG
3088 static atomic_t regulator_no = ATOMIC_INIT(0);
3089 struct regulator_dev *rdev;
32c8fad4 3090 struct device *dev;
a5766f11 3091 int ret, i;
69511a45 3092 const char *supply = NULL;
414c70cb 3093
c172708d 3094 if (regulator_desc == NULL || config == NULL)
414c70cb
LG
3095 return ERR_PTR(-EINVAL);
3096
32c8fad4 3097 dev = config->dev;
dcf70112 3098 WARN_ON(!dev);
32c8fad4 3099
414c70cb
LG
3100 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3101 return ERR_PTR(-EINVAL);
3102
cd78dfc6
DL
3103 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3104 regulator_desc->type != REGULATOR_CURRENT)
414c70cb
LG
3105 return ERR_PTR(-EINVAL);
3106
476c2d83
MB
3107 /* Only one of each should be implemented */
3108 WARN_ON(regulator_desc->ops->get_voltage &&
3109 regulator_desc->ops->get_voltage_sel);
e8eef82b
MB
3110 WARN_ON(regulator_desc->ops->set_voltage &&
3111 regulator_desc->ops->set_voltage_sel);
476c2d83
MB
3112
3113 /* If we're using selectors we must implement list_voltage. */
3114 if (regulator_desc->ops->get_voltage_sel &&
3115 !regulator_desc->ops->list_voltage) {
3116 return ERR_PTR(-EINVAL);
3117 }
e8eef82b
MB
3118 if (regulator_desc->ops->set_voltage_sel &&
3119 !regulator_desc->ops->list_voltage) {
3120 return ERR_PTR(-EINVAL);
3121 }
476c2d83 3122
c172708d
MB
3123 init_data = config->init_data;
3124
414c70cb
LG
3125 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3126 if (rdev == NULL)
3127 return ERR_PTR(-ENOMEM);
3128
3129 mutex_lock(&regulator_list_mutex);
3130
3131 mutex_init(&rdev->mutex);
c172708d 3132 rdev->reg_data = config->driver_data;
414c70cb
LG
3133 rdev->owner = regulator_desc->owner;
3134 rdev->desc = regulator_desc;
3a4b0a07
MB
3135 if (config->regmap)
3136 rdev->regmap = config->regmap;
3137 else
3138 rdev->regmap = dev_get_regmap(dev, NULL);
414c70cb 3139 INIT_LIST_HEAD(&rdev->consumer_list);
414c70cb 3140 INIT_LIST_HEAD(&rdev->list);
414c70cb 3141 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
da07ecd9 3142 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
414c70cb 3143
a5766f11 3144 /* preform any regulator specific init */
9a8f5e07 3145 if (init_data && init_data->regulator_init) {
a5766f11 3146 ret = init_data->regulator_init(rdev->reg_data);
4fca9545
DB
3147 if (ret < 0)
3148 goto clean;
a5766f11
LG
3149 }
3150
a5766f11 3151 /* register with sysfs */
414c70cb 3152 rdev->dev.class = &regulator_class;
c172708d 3153 rdev->dev.of_node = config->of_node;
a5766f11 3154 rdev->dev.parent = dev;
812460a9
KS
3155 dev_set_name(&rdev->dev, "regulator.%d",
3156 atomic_inc_return(&regulator_no) - 1);
a5766f11 3157 ret = device_register(&rdev->dev);
ad7725cb
VK
3158 if (ret != 0) {
3159 put_device(&rdev->dev);
4fca9545 3160 goto clean;
ad7725cb 3161 }
a5766f11
LG
3162
3163 dev_set_drvdata(&rdev->dev, rdev);
3164
74f544c1 3165 /* set regulator constraints */
9a8f5e07
MB
3166 if (init_data)
3167 constraints = &init_data->constraints;
3168
3169 ret = set_machine_constraints(rdev, constraints);
74f544c1
MR
3170 if (ret < 0)
3171 goto scrub;
3172
7ad68e2f
DB
3173 /* add attributes supported by this regulator */
3174 ret = add_regulator_attributes(rdev);
3175 if (ret < 0)
3176 goto scrub;
3177
9a8f5e07 3178 if (init_data && init_data->supply_regulator)
69511a45
RN
3179 supply = init_data->supply_regulator;
3180 else if (regulator_desc->supply_name)
3181 supply = regulator_desc->supply_name;
3182
3183 if (supply) {
0178f3e2 3184 struct regulator_dev *r;
0178f3e2 3185
6d191a5f 3186 r = regulator_dev_lookup(dev, supply, &ret);
0178f3e2 3187
69511a45
RN
3188 if (!r) {
3189 dev_err(dev, "Failed to find supply %s\n", supply);
04bf3011 3190 ret = -EPROBE_DEFER;
0178f3e2
MB
3191 goto scrub;
3192 }
3193
3194 ret = set_supply(rdev, r);
3195 if (ret < 0)
3196 goto scrub;
b2296bd4
LD
3197
3198 /* Enable supply if rail is enabled */
b1a86831 3199 if (_regulator_is_enabled(rdev)) {
b2296bd4
LD
3200 ret = regulator_enable(rdev->supply);
3201 if (ret < 0)
3202 goto scrub;
3203 }
0178f3e2
MB
3204 }
3205
a5766f11 3206 /* add consumers devices */
9a8f5e07
MB
3207 if (init_data) {
3208 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3209 ret = set_consumer_device_supply(rdev,
9a8f5e07 3210 init_data->consumer_supplies[i].dev_name,
23c2f041 3211 init_data->consumer_supplies[i].supply);
9a8f5e07
MB
3212 if (ret < 0) {
3213 dev_err(dev, "Failed to set supply %s\n",
3214 init_data->consumer_supplies[i].supply);
3215 goto unset_supplies;
3216 }
23c2f041 3217 }
414c70cb 3218 }
a5766f11
LG
3219
3220 list_add(&rdev->list, &regulator_list);
1130e5b3
MB
3221
3222 rdev_init_debugfs(rdev);
a5766f11 3223out:
414c70cb
LG
3224 mutex_unlock(&regulator_list_mutex);
3225 return rdev;
4fca9545 3226
d4033b54
JN
3227unset_supplies:
3228 unset_regulator_supplies(rdev);
3229
4fca9545 3230scrub:
e81dba85
MB
3231 if (rdev->supply)
3232 regulator_put(rdev->supply);
1a6958e7 3233 kfree(rdev->constraints);
4fca9545 3234 device_unregister(&rdev->dev);
53032daf
PW
3235 /* device core frees rdev */
3236 rdev = ERR_PTR(ret);
3237 goto out;
3238
4fca9545
DB
3239clean:
3240 kfree(rdev);
3241 rdev = ERR_PTR(ret);
3242 goto out;
414c70cb
LG
3243}
3244EXPORT_SYMBOL_GPL(regulator_register);
3245
3246/**
3247 * regulator_unregister - unregister regulator
69279fb9 3248 * @rdev: regulator to unregister
414c70cb
LG
3249 *
3250 * Called by regulator drivers to unregister a regulator.
3251 */
3252void regulator_unregister(struct regulator_dev *rdev)
3253{
3254 if (rdev == NULL)
3255 return;
3256
e032b376
MB
3257 if (rdev->supply)
3258 regulator_put(rdev->supply);
414c70cb 3259 mutex_lock(&regulator_list_mutex);
1130e5b3 3260 debugfs_remove_recursive(rdev->debugfs);
da07ecd9 3261 flush_work_sync(&rdev->disable_work.work);
6bf87d17 3262 WARN_ON(rdev->open_count);
0f1d747b 3263 unset_regulator_supplies(rdev);
414c70cb 3264 list_del(&rdev->list);
f8c12fe3 3265 kfree(rdev->constraints);
58fb5cf5 3266 device_unregister(&rdev->dev);
414c70cb
LG
3267 mutex_unlock(&regulator_list_mutex);
3268}
3269EXPORT_SYMBOL_GPL(regulator_unregister);
3270
414c70cb 3271/**
cf7bbcdf 3272 * regulator_suspend_prepare - prepare regulators for system wide suspend
414c70cb
LG
3273 * @state: system suspend state
3274 *
3275 * Configure each regulator with it's suspend operating parameters for state.
3276 * This will usually be called by machine suspend code prior to supending.
3277 */
3278int regulator_suspend_prepare(suspend_state_t state)
3279{
3280 struct regulator_dev *rdev;
3281 int ret = 0;
3282
3283 /* ON is handled by regulator active state */
3284 if (state == PM_SUSPEND_ON)
3285 return -EINVAL;
3286
3287 mutex_lock(&regulator_list_mutex);
3288 list_for_each_entry(rdev, &regulator_list, list) {
3289
3290 mutex_lock(&rdev->mutex);
3291 ret = suspend_prepare(rdev, state);
3292 mutex_unlock(&rdev->mutex);
3293
3294 if (ret < 0) {
5da84fd9 3295 rdev_err(rdev, "failed to prepare\n");
414c70cb
LG
3296 goto out;
3297 }
3298 }
3299out:
3300 mutex_unlock(&regulator_list_mutex);
3301 return ret;
3302}
3303EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3304
7a32b589
MH
3305/**
3306 * regulator_suspend_finish - resume regulators from system wide suspend
3307 *
3308 * Turn on regulators that might be turned off by regulator_suspend_prepare
3309 * and that should be turned on according to the regulators properties.
3310 */
3311int regulator_suspend_finish(void)
3312{
3313 struct regulator_dev *rdev;
3314 int ret = 0, error;
3315
3316 mutex_lock(&regulator_list_mutex);
3317 list_for_each_entry(rdev, &regulator_list, list) {
3318 struct regulator_ops *ops = rdev->desc->ops;
3319
3320 mutex_lock(&rdev->mutex);
3321 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3322 ops->enable) {
3323 error = ops->enable(rdev);
3324 if (error)
3325 ret = error;
3326 } else {
3327 if (!has_full_constraints)
3328 goto unlock;
3329 if (!ops->disable)
3330 goto unlock;
b1a86831 3331 if (!_regulator_is_enabled(rdev))
7a32b589
MH
3332 goto unlock;
3333
3334 error = ops->disable(rdev);
3335 if (error)
3336 ret = error;
3337 }
3338unlock:
3339 mutex_unlock(&rdev->mutex);
3340 }
3341 mutex_unlock(&regulator_list_mutex);
3342 return ret;
3343}
3344EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3345
ca725561
MB
3346/**
3347 * regulator_has_full_constraints - the system has fully specified constraints
3348 *
3349 * Calling this function will cause the regulator API to disable all
3350 * regulators which have a zero use count and don't have an always_on
3351 * constraint in a late_initcall.
3352 *
3353 * The intention is that this will become the default behaviour in a
3354 * future kernel release so users are encouraged to use this facility
3355 * now.
3356 */
3357void regulator_has_full_constraints(void)
3358{
3359 has_full_constraints = 1;
3360}
3361EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3362
688fe99a
MB
3363/**
3364 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3365 *
3366 * Calling this function will cause the regulator API to provide a
3367 * dummy regulator to consumers if no physical regulator is found,
3368 * allowing most consumers to proceed as though a regulator were
3369 * configured. This allows systems such as those with software
3370 * controllable regulators for the CPU core only to be brought up more
3371 * readily.
3372 */
3373void regulator_use_dummy_regulator(void)
3374{
3375 board_wants_dummy_regulator = true;
3376}
3377EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3378
414c70cb
LG
3379/**
3380 * rdev_get_drvdata - get rdev regulator driver data
69279fb9 3381 * @rdev: regulator
414c70cb
LG
3382 *
3383 * Get rdev regulator driver private data. This call can be used in the
3384 * regulator driver context.
3385 */
3386void *rdev_get_drvdata(struct regulator_dev *rdev)
3387{
3388 return rdev->reg_data;
3389}
3390EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3391
3392/**
3393 * regulator_get_drvdata - get regulator driver data
3394 * @regulator: regulator
3395 *
3396 * Get regulator driver private data. This call can be used in the consumer
3397 * driver context when non API regulator specific functions need to be called.
3398 */
3399void *regulator_get_drvdata(struct regulator *regulator)
3400{
3401 return regulator->rdev->reg_data;
3402}
3403EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3404
3405/**
3406 * regulator_set_drvdata - set regulator driver data
3407 * @regulator: regulator
3408 * @data: data
3409 */
3410void regulator_set_drvdata(struct regulator *regulator, void *data)
3411{
3412 regulator->rdev->reg_data = data;
3413}
3414EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3415
3416/**
3417 * regulator_get_id - get regulator ID
69279fb9 3418 * @rdev: regulator
414c70cb
LG
3419 */
3420int rdev_get_id(struct regulator_dev *rdev)
3421{
3422 return rdev->desc->id;
3423}
3424EXPORT_SYMBOL_GPL(rdev_get_id);
3425
a5766f11
LG
3426struct device *rdev_get_dev(struct regulator_dev *rdev)
3427{
3428 return &rdev->dev;
3429}
3430EXPORT_SYMBOL_GPL(rdev_get_dev);
3431
3432void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3433{
3434 return reg_init_data->driver_data;
3435}
3436EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3437
ba55a974
MB
3438#ifdef CONFIG_DEBUG_FS
3439static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3440 size_t count, loff_t *ppos)
3441{
3442 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3443 ssize_t len, ret = 0;
3444 struct regulator_map *map;
3445
3446 if (!buf)
3447 return -ENOMEM;
3448
3449 list_for_each_entry(map, &regulator_map_list, list) {
3450 len = snprintf(buf + ret, PAGE_SIZE - ret,
3451 "%s -> %s.%s\n",
3452 rdev_get_name(map->regulator), map->dev_name,
3453 map->supply);
3454 if (len >= 0)
3455 ret += len;
3456 if (ret > PAGE_SIZE) {
3457 ret = PAGE_SIZE;
3458 break;
3459 }
3460 }
3461
3462 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3463
3464 kfree(buf);
3465
3466 return ret;
3467}
24751434 3468#endif
ba55a974
MB
3469
3470static const struct file_operations supply_map_fops = {
24751434 3471#ifdef CONFIG_DEBUG_FS
ba55a974
MB
3472 .read = supply_map_read_file,
3473 .llseek = default_llseek,
ba55a974 3474#endif
24751434 3475};
ba55a974 3476
414c70cb
LG
3477static int __init regulator_init(void)
3478{
34abbd68
MB
3479 int ret;
3480
34abbd68
MB
3481 ret = class_register(&regulator_class);
3482
1130e5b3 3483 debugfs_root = debugfs_create_dir("regulator", NULL);
24751434 3484 if (!debugfs_root)
1130e5b3 3485 pr_warn("regulator: Failed to create debugfs directory\n");
ba55a974 3486
f4d562c6
MB
3487 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3488 &supply_map_fops);
1130e5b3 3489
34abbd68
MB
3490 regulator_dummy_init();
3491
3492 return ret;
414c70cb
LG
3493}
3494
3495/* init early to allow our consumers to complete system booting */
3496core_initcall(regulator_init);
ca725561
MB
3497
3498static int __init regulator_init_complete(void)
3499{
3500 struct regulator_dev *rdev;
3501 struct regulator_ops *ops;
3502 struct regulation_constraints *c;
3503 int enabled, ret;
ca725561
MB
3504
3505 mutex_lock(&regulator_list_mutex);
3506
3507 /* If we have a full configuration then disable any regulators
3508 * which are not in use or always_on. This will become the
3509 * default behaviour in the future.
3510 */
3511 list_for_each_entry(rdev, &regulator_list, list) {
3512 ops = rdev->desc->ops;
3513 c = rdev->constraints;
3514
f25e0b4f 3515 if (!ops->disable || (c && c->always_on))
ca725561
MB
3516 continue;
3517
3518 mutex_lock(&rdev->mutex);
3519
3520 if (rdev->use_count)
3521 goto unlock;
3522
3523 /* If we can't read the status assume it's on. */
3524 if (ops->is_enabled)
3525 enabled = ops->is_enabled(rdev);
3526 else
3527 enabled = 1;
3528
3529 if (!enabled)
3530 goto unlock;
3531
3532 if (has_full_constraints) {
3533 /* We log since this may kill the system if it
3534 * goes wrong. */
5da84fd9 3535 rdev_info(rdev, "disabling\n");
ca725561
MB
3536 ret = ops->disable(rdev);
3537 if (ret != 0) {
5da84fd9 3538 rdev_err(rdev, "couldn't disable: %d\n", ret);
ca725561
MB
3539 }
3540 } else {
3541 /* The intention is that in future we will
3542 * assume that full constraints are provided
3543 * so warn even if we aren't going to do
3544 * anything here.
3545 */
5da84fd9 3546 rdev_warn(rdev, "incomplete constraints, leaving on\n");
ca725561
MB
3547 }
3548
3549unlock:
3550 mutex_unlock(&rdev->mutex);
3551 }
3552
3553 mutex_unlock(&regulator_list_mutex);
3554
3555 return 0;
3556}
3557late_initcall(regulator_init_complete);