Merge remote-tracking branch 'regulator/topic/drivers' into regulator-next
[linux-2.6-block.git] / drivers / regulator / core.c
CommitLineData
414c70cb
LG
1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
a5766f11 5 * Copyright 2008 SlimLogic Ltd.
414c70cb 6 *
a5766f11 7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
414c70cb
LG
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
1130e5b3 18#include <linux/debugfs.h>
414c70cb 19#include <linux/device.h>
5a0e3ad6 20#include <linux/slab.h>
f21e0e81 21#include <linux/async.h>
414c70cb
LG
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
31aae2be 25#include <linux/delay.h>
69511a45 26#include <linux/of.h>
65b19ce6 27#include <linux/regmap.h>
69511a45 28#include <linux/regulator/of_regulator.h>
414c70cb
LG
29#include <linux/regulator/consumer.h>
30#include <linux/regulator/driver.h>
31#include <linux/regulator/machine.h>
65602c32 32#include <linux/module.h>
414c70cb 33
02fa3ec0
MB
34#define CREATE_TRACE_POINTS
35#include <trace/events/regulator.h>
36
34abbd68
MB
37#include "dummy.h"
38
7d51a0db
MB
39#define rdev_crit(rdev, fmt, ...) \
40 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
5da84fd9
JP
41#define rdev_err(rdev, fmt, ...) \
42 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_warn(rdev, fmt, ...) \
44 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_info(rdev, fmt, ...) \
46 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_dbg(rdev, fmt, ...) \
48 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
414c70cb
LG
50static DEFINE_MUTEX(regulator_list_mutex);
51static LIST_HEAD(regulator_list);
52static LIST_HEAD(regulator_map_list);
21cf891a 53static bool has_full_constraints;
688fe99a 54static bool board_wants_dummy_regulator;
414c70cb 55
1130e5b3 56static struct dentry *debugfs_root;
1130e5b3 57
8dc5390d 58/*
414c70cb
LG
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
40f9244f 65 const char *dev_name; /* The dev_name() for the consumer */
414c70cb 66 const char *supply;
a5766f11 67 struct regulator_dev *regulator;
414c70cb
LG
68};
69
414c70cb
LG
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76 struct device *dev;
77 struct list_head list;
6492bc1b 78 unsigned int always_on:1;
414c70cb
LG
79 int uA_load;
80 int min_uV;
81 int max_uV;
414c70cb
LG
82 char *supply_name;
83 struct device_attribute dev_attr;
84 struct regulator_dev *rdev;
5de70519 85 struct dentry *debugfs;
414c70cb
LG
86};
87
88static int _regulator_is_enabled(struct regulator_dev *rdev);
3801b86a 89static int _regulator_disable(struct regulator_dev *rdev);
414c70cb
LG
90static int _regulator_get_voltage(struct regulator_dev *rdev);
91static int _regulator_get_current_limit(struct regulator_dev *rdev);
92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93static void _notifier_call_chain(struct regulator_dev *rdev,
94 unsigned long event, void *data);
75790251
MB
95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96 int min_uV, int max_uV);
3801b86a
MB
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
414c70cb 100
1083c393
MB
101static const char *rdev_get_name(struct regulator_dev *rdev)
102{
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109}
110
414c70cb
LG
111/* gets the regulator for a given consumer device */
112static struct regulator *get_device_regulator(struct device *dev)
113{
114 struct regulator *regulator = NULL;
115 struct regulator_dev *rdev;
116
117 mutex_lock(&regulator_list_mutex);
118 list_for_each_entry(rdev, &regulator_list, list) {
119 mutex_lock(&rdev->mutex);
120 list_for_each_entry(regulator, &rdev->consumer_list, list) {
121 if (regulator->dev == dev) {
122 mutex_unlock(&rdev->mutex);
123 mutex_unlock(&regulator_list_mutex);
124 return regulator;
125 }
126 }
127 mutex_unlock(&rdev->mutex);
128 }
129 mutex_unlock(&regulator_list_mutex);
130 return NULL;
131}
132
69511a45
RN
133/**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * retruns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
142static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143{
144 struct device_node *regnode = NULL;
145 char prop_name[32]; /* 32 is max size of property name */
146
147 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149 snprintf(prop_name, 32, "%s-supply", supply);
150 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152 if (!regnode) {
16fbcc3b 153 dev_dbg(dev, "Looking up %s property in node %s failed",
69511a45
RN
154 prop_name, dev->of_node->full_name);
155 return NULL;
156 }
157 return regnode;
158}
159
6492bc1b
MB
160static int _regulator_can_change_status(struct regulator_dev *rdev)
161{
162 if (!rdev->constraints)
163 return 0;
164
165 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166 return 1;
167 else
168 return 0;
169}
170
414c70cb
LG
171/* Platform voltage constraint check */
172static int regulator_check_voltage(struct regulator_dev *rdev,
173 int *min_uV, int *max_uV)
174{
175 BUG_ON(*min_uV > *max_uV);
176
177 if (!rdev->constraints) {
5da84fd9 178 rdev_err(rdev, "no constraints\n");
414c70cb
LG
179 return -ENODEV;
180 }
181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
5da84fd9 182 rdev_err(rdev, "operation not allowed\n");
414c70cb
LG
183 return -EPERM;
184 }
185
186 if (*max_uV > rdev->constraints->max_uV)
187 *max_uV = rdev->constraints->max_uV;
188 if (*min_uV < rdev->constraints->min_uV)
189 *min_uV = rdev->constraints->min_uV;
190
89f425ed
MB
191 if (*min_uV > *max_uV) {
192 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
54abd335 193 *min_uV, *max_uV);
414c70cb 194 return -EINVAL;
89f425ed 195 }
414c70cb
LG
196
197 return 0;
198}
199
05fda3b1
TP
200/* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
203static int regulator_check_consumers(struct regulator_dev *rdev,
204 int *min_uV, int *max_uV)
205{
206 struct regulator *regulator;
207
208 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4aa922c0
MB
209 /*
210 * Assume consumers that didn't say anything are OK
211 * with anything in the constraint range.
212 */
213 if (!regulator->min_uV && !regulator->max_uV)
214 continue;
215
05fda3b1
TP
216 if (*max_uV > regulator->max_uV)
217 *max_uV = regulator->max_uV;
218 if (*min_uV < regulator->min_uV)
219 *min_uV = regulator->min_uV;
220 }
221
222 if (*min_uV > *max_uV)
223 return -EINVAL;
224
225 return 0;
226}
227
414c70cb
LG
228/* current constraint check */
229static int regulator_check_current_limit(struct regulator_dev *rdev,
230 int *min_uA, int *max_uA)
231{
232 BUG_ON(*min_uA > *max_uA);
233
234 if (!rdev->constraints) {
5da84fd9 235 rdev_err(rdev, "no constraints\n");
414c70cb
LG
236 return -ENODEV;
237 }
238 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
5da84fd9 239 rdev_err(rdev, "operation not allowed\n");
414c70cb
LG
240 return -EPERM;
241 }
242
243 if (*max_uA > rdev->constraints->max_uA)
244 *max_uA = rdev->constraints->max_uA;
245 if (*min_uA < rdev->constraints->min_uA)
246 *min_uA = rdev->constraints->min_uA;
247
89f425ed
MB
248 if (*min_uA > *max_uA) {
249 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
54abd335 250 *min_uA, *max_uA);
414c70cb 251 return -EINVAL;
89f425ed 252 }
414c70cb
LG
253
254 return 0;
255}
256
257/* operating mode constraint check */
2c608234 258static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
414c70cb 259{
2c608234 260 switch (*mode) {
e573520b
DB
261 case REGULATOR_MODE_FAST:
262 case REGULATOR_MODE_NORMAL:
263 case REGULATOR_MODE_IDLE:
264 case REGULATOR_MODE_STANDBY:
265 break;
266 default:
89f425ed 267 rdev_err(rdev, "invalid mode %x specified\n", *mode);
e573520b
DB
268 return -EINVAL;
269 }
270
414c70cb 271 if (!rdev->constraints) {
5da84fd9 272 rdev_err(rdev, "no constraints\n");
414c70cb
LG
273 return -ENODEV;
274 }
275 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
5da84fd9 276 rdev_err(rdev, "operation not allowed\n");
414c70cb
LG
277 return -EPERM;
278 }
2c608234
MB
279
280 /* The modes are bitmasks, the most power hungry modes having
281 * the lowest values. If the requested mode isn't supported
282 * try higher modes. */
283 while (*mode) {
284 if (rdev->constraints->valid_modes_mask & *mode)
285 return 0;
286 *mode /= 2;
414c70cb 287 }
2c608234
MB
288
289 return -EINVAL;
414c70cb
LG
290}
291
292/* dynamic regulator mode switching constraint check */
293static int regulator_check_drms(struct regulator_dev *rdev)
294{
295 if (!rdev->constraints) {
5da84fd9 296 rdev_err(rdev, "no constraints\n");
414c70cb
LG
297 return -ENODEV;
298 }
299 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
5da84fd9 300 rdev_err(rdev, "operation not allowed\n");
414c70cb
LG
301 return -EPERM;
302 }
303 return 0;
304}
305
306static ssize_t device_requested_uA_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
308{
309 struct regulator *regulator;
310
311 regulator = get_device_regulator(dev);
312 if (regulator == NULL)
313 return 0;
314
315 return sprintf(buf, "%d\n", regulator->uA_load);
316}
317
318static ssize_t regulator_uV_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320{
a5766f11 321 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
322 ssize_t ret;
323
324 mutex_lock(&rdev->mutex);
325 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326 mutex_unlock(&rdev->mutex);
327
328 return ret;
329}
7ad68e2f 330static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
414c70cb
LG
331
332static ssize_t regulator_uA_show(struct device *dev,
333 struct device_attribute *attr, char *buf)
334{
a5766f11 335 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
336
337 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338}
7ad68e2f 339static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
414c70cb 340
bc558a60
MB
341static ssize_t regulator_name_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
343{
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
bc558a60 345
1083c393 346 return sprintf(buf, "%s\n", rdev_get_name(rdev));
bc558a60
MB
347}
348
4fca9545 349static ssize_t regulator_print_opmode(char *buf, int mode)
414c70cb 350{
414c70cb
LG
351 switch (mode) {
352 case REGULATOR_MODE_FAST:
353 return sprintf(buf, "fast\n");
354 case REGULATOR_MODE_NORMAL:
355 return sprintf(buf, "normal\n");
356 case REGULATOR_MODE_IDLE:
357 return sprintf(buf, "idle\n");
358 case REGULATOR_MODE_STANDBY:
359 return sprintf(buf, "standby\n");
360 }
361 return sprintf(buf, "unknown\n");
362}
363
4fca9545
DB
364static ssize_t regulator_opmode_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
414c70cb 366{
a5766f11 367 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 368
4fca9545
DB
369 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370}
7ad68e2f 371static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
4fca9545
DB
372
373static ssize_t regulator_print_state(char *buf, int state)
374{
414c70cb
LG
375 if (state > 0)
376 return sprintf(buf, "enabled\n");
377 else if (state == 0)
378 return sprintf(buf, "disabled\n");
379 else
380 return sprintf(buf, "unknown\n");
381}
382
4fca9545
DB
383static ssize_t regulator_state_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385{
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
9332546f
MB
387 ssize_t ret;
388
389 mutex_lock(&rdev->mutex);
390 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391 mutex_unlock(&rdev->mutex);
4fca9545 392
9332546f 393 return ret;
4fca9545 394}
7ad68e2f 395static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
4fca9545 396
853116a1
DB
397static ssize_t regulator_status_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399{
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401 int status;
402 char *label;
403
404 status = rdev->desc->ops->get_status(rdev);
405 if (status < 0)
406 return status;
407
408 switch (status) {
409 case REGULATOR_STATUS_OFF:
410 label = "off";
411 break;
412 case REGULATOR_STATUS_ON:
413 label = "on";
414 break;
415 case REGULATOR_STATUS_ERROR:
416 label = "error";
417 break;
418 case REGULATOR_STATUS_FAST:
419 label = "fast";
420 break;
421 case REGULATOR_STATUS_NORMAL:
422 label = "normal";
423 break;
424 case REGULATOR_STATUS_IDLE:
425 label = "idle";
426 break;
427 case REGULATOR_STATUS_STANDBY:
428 label = "standby";
429 break;
430 default:
431 return -ERANGE;
432 }
433
434 return sprintf(buf, "%s\n", label);
435}
436static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
414c70cb
LG
438static ssize_t regulator_min_uA_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440{
a5766f11 441 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
442
443 if (!rdev->constraints)
444 return sprintf(buf, "constraint not defined\n");
445
446 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447}
7ad68e2f 448static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
414c70cb
LG
449
450static ssize_t regulator_max_uA_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452{
a5766f11 453 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
454
455 if (!rdev->constraints)
456 return sprintf(buf, "constraint not defined\n");
457
458 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459}
7ad68e2f 460static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
414c70cb
LG
461
462static ssize_t regulator_min_uV_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464{
a5766f11 465 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
466
467 if (!rdev->constraints)
468 return sprintf(buf, "constraint not defined\n");
469
470 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471}
7ad68e2f 472static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
414c70cb
LG
473
474static ssize_t regulator_max_uV_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476{
a5766f11 477 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
478
479 if (!rdev->constraints)
480 return sprintf(buf, "constraint not defined\n");
481
482 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483}
7ad68e2f 484static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
414c70cb
LG
485
486static ssize_t regulator_total_uA_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
488{
a5766f11 489 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
490 struct regulator *regulator;
491 int uA = 0;
492
493 mutex_lock(&rdev->mutex);
494 list_for_each_entry(regulator, &rdev->consumer_list, list)
fa2984d4 495 uA += regulator->uA_load;
414c70cb
LG
496 mutex_unlock(&rdev->mutex);
497 return sprintf(buf, "%d\n", uA);
498}
7ad68e2f 499static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
414c70cb
LG
500
501static ssize_t regulator_num_users_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503{
a5766f11 504 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
505 return sprintf(buf, "%d\n", rdev->use_count);
506}
507
508static ssize_t regulator_type_show(struct device *dev,
509 struct device_attribute *attr, char *buf)
510{
a5766f11 511 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
512
513 switch (rdev->desc->type) {
514 case REGULATOR_VOLTAGE:
515 return sprintf(buf, "voltage\n");
516 case REGULATOR_CURRENT:
517 return sprintf(buf, "current\n");
518 }
519 return sprintf(buf, "unknown\n");
520}
521
522static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
524{
a5766f11 525 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 526
414c70cb
LG
527 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528}
7ad68e2f
DB
529static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530 regulator_suspend_mem_uV_show, NULL);
414c70cb
LG
531
532static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533 struct device_attribute *attr, char *buf)
534{
a5766f11 535 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 536
414c70cb
LG
537 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538}
7ad68e2f
DB
539static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540 regulator_suspend_disk_uV_show, NULL);
414c70cb
LG
541
542static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543 struct device_attribute *attr, char *buf)
544{
a5766f11 545 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 546
414c70cb
LG
547 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548}
7ad68e2f
DB
549static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550 regulator_suspend_standby_uV_show, NULL);
414c70cb 551
414c70cb
LG
552static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553 struct device_attribute *attr, char *buf)
554{
a5766f11 555 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 556
4fca9545
DB
557 return regulator_print_opmode(buf,
558 rdev->constraints->state_mem.mode);
414c70cb 559}
7ad68e2f
DB
560static DEVICE_ATTR(suspend_mem_mode, 0444,
561 regulator_suspend_mem_mode_show, NULL);
414c70cb
LG
562
563static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565{
a5766f11 566 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 567
4fca9545
DB
568 return regulator_print_opmode(buf,
569 rdev->constraints->state_disk.mode);
414c70cb 570}
7ad68e2f
DB
571static DEVICE_ATTR(suspend_disk_mode, 0444,
572 regulator_suspend_disk_mode_show, NULL);
414c70cb
LG
573
574static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575 struct device_attribute *attr, char *buf)
576{
a5766f11 577 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 578
4fca9545
DB
579 return regulator_print_opmode(buf,
580 rdev->constraints->state_standby.mode);
414c70cb 581}
7ad68e2f
DB
582static DEVICE_ATTR(suspend_standby_mode, 0444,
583 regulator_suspend_standby_mode_show, NULL);
414c70cb
LG
584
585static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587{
a5766f11 588 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 589
4fca9545
DB
590 return regulator_print_state(buf,
591 rdev->constraints->state_mem.enabled);
414c70cb 592}
7ad68e2f
DB
593static DEVICE_ATTR(suspend_mem_state, 0444,
594 regulator_suspend_mem_state_show, NULL);
414c70cb
LG
595
596static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598{
a5766f11 599 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 600
4fca9545
DB
601 return regulator_print_state(buf,
602 rdev->constraints->state_disk.enabled);
414c70cb 603}
7ad68e2f
DB
604static DEVICE_ATTR(suspend_disk_state, 0444,
605 regulator_suspend_disk_state_show, NULL);
414c70cb
LG
606
607static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608 struct device_attribute *attr, char *buf)
609{
a5766f11 610 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb 611
4fca9545
DB
612 return regulator_print_state(buf,
613 rdev->constraints->state_standby.enabled);
414c70cb 614}
7ad68e2f
DB
615static DEVICE_ATTR(suspend_standby_state, 0444,
616 regulator_suspend_standby_state_show, NULL);
617
bc558a60 618
7ad68e2f
DB
619/*
620 * These are the only attributes are present for all regulators.
621 * Other attributes are a function of regulator functionality.
622 */
414c70cb 623static struct device_attribute regulator_dev_attrs[] = {
bc558a60 624 __ATTR(name, 0444, regulator_name_show, NULL),
414c70cb
LG
625 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
626 __ATTR(type, 0444, regulator_type_show, NULL),
414c70cb
LG
627 __ATTR_NULL,
628};
629
630static void regulator_dev_release(struct device *dev)
631{
a5766f11 632 struct regulator_dev *rdev = dev_get_drvdata(dev);
414c70cb
LG
633 kfree(rdev);
634}
635
636static struct class regulator_class = {
637 .name = "regulator",
638 .dev_release = regulator_dev_release,
639 .dev_attrs = regulator_dev_attrs,
640};
641
642/* Calculate the new optimum regulator operating mode based on the new total
643 * consumer load. All locks held by caller */
644static void drms_uA_update(struct regulator_dev *rdev)
645{
646 struct regulator *sibling;
647 int current_uA = 0, output_uV, input_uV, err;
648 unsigned int mode;
649
650 err = regulator_check_drms(rdev);
651 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
476c2d83
MB
652 (!rdev->desc->ops->get_voltage &&
653 !rdev->desc->ops->get_voltage_sel) ||
654 !rdev->desc->ops->set_mode)
036de8ef 655 return;
414c70cb
LG
656
657 /* get output voltage */
1bf5a1f8 658 output_uV = _regulator_get_voltage(rdev);
414c70cb
LG
659 if (output_uV <= 0)
660 return;
661
662 /* get input voltage */
1bf5a1f8
MB
663 input_uV = 0;
664 if (rdev->supply)
3f24f5ad 665 input_uV = regulator_get_voltage(rdev->supply);
1bf5a1f8 666 if (input_uV <= 0)
414c70cb
LG
667 input_uV = rdev->constraints->input_uV;
668 if (input_uV <= 0)
669 return;
670
671 /* calc total requested load */
672 list_for_each_entry(sibling, &rdev->consumer_list, list)
fa2984d4 673 current_uA += sibling->uA_load;
414c70cb
LG
674
675 /* now get the optimum mode for our new total regulator load */
676 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677 output_uV, current_uA);
678
679 /* check the new mode is allowed */
2c608234 680 err = regulator_mode_constrain(rdev, &mode);
414c70cb
LG
681 if (err == 0)
682 rdev->desc->ops->set_mode(rdev, mode);
683}
684
685static int suspend_set_state(struct regulator_dev *rdev,
686 struct regulator_state *rstate)
687{
688 int ret = 0;
638f85c5
MB
689
690 /* If we have no suspend mode configration don't set anything;
8ac0e95d
AL
691 * only warn if the driver implements set_suspend_voltage or
692 * set_suspend_mode callback.
638f85c5
MB
693 */
694 if (!rstate->enabled && !rstate->disabled) {
8ac0e95d
AL
695 if (rdev->desc->ops->set_suspend_voltage ||
696 rdev->desc->ops->set_suspend_mode)
5da84fd9 697 rdev_warn(rdev, "No configuration\n");
638f85c5
MB
698 return 0;
699 }
700
701 if (rstate->enabled && rstate->disabled) {
5da84fd9 702 rdev_err(rdev, "invalid configuration\n");
638f85c5
MB
703 return -EINVAL;
704 }
414c70cb 705
8ac0e95d 706 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
414c70cb 707 ret = rdev->desc->ops->set_suspend_enable(rdev);
8ac0e95d 708 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
414c70cb 709 ret = rdev->desc->ops->set_suspend_disable(rdev);
8ac0e95d
AL
710 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711 ret = 0;
712
414c70cb 713 if (ret < 0) {
5da84fd9 714 rdev_err(rdev, "failed to enabled/disable\n");
414c70cb
LG
715 return ret;
716 }
717
718 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720 if (ret < 0) {
5da84fd9 721 rdev_err(rdev, "failed to set voltage\n");
414c70cb
LG
722 return ret;
723 }
724 }
725
726 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728 if (ret < 0) {
5da84fd9 729 rdev_err(rdev, "failed to set mode\n");
414c70cb
LG
730 return ret;
731 }
732 }
733 return ret;
734}
735
736/* locks held by caller */
737static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738{
739 if (!rdev->constraints)
740 return -EINVAL;
741
742 switch (state) {
743 case PM_SUSPEND_STANDBY:
744 return suspend_set_state(rdev,
745 &rdev->constraints->state_standby);
746 case PM_SUSPEND_MEM:
747 return suspend_set_state(rdev,
748 &rdev->constraints->state_mem);
749 case PM_SUSPEND_MAX:
750 return suspend_set_state(rdev,
751 &rdev->constraints->state_disk);
752 default:
753 return -EINVAL;
754 }
755}
756
757static void print_constraints(struct regulator_dev *rdev)
758{
759 struct regulation_constraints *constraints = rdev->constraints;
973e9a27 760 char buf[80] = "";
8f031b48
MB
761 int count = 0;
762 int ret;
414c70cb 763
8f031b48 764 if (constraints->min_uV && constraints->max_uV) {
414c70cb 765 if (constraints->min_uV == constraints->max_uV)
8f031b48
MB
766 count += sprintf(buf + count, "%d mV ",
767 constraints->min_uV / 1000);
414c70cb 768 else
8f031b48
MB
769 count += sprintf(buf + count, "%d <--> %d mV ",
770 constraints->min_uV / 1000,
771 constraints->max_uV / 1000);
772 }
773
774 if (!constraints->min_uV ||
775 constraints->min_uV != constraints->max_uV) {
776 ret = _regulator_get_voltage(rdev);
777 if (ret > 0)
778 count += sprintf(buf + count, "at %d mV ", ret / 1000);
779 }
780
bf5892a8
MB
781 if (constraints->uV_offset)
782 count += sprintf(buf, "%dmV offset ",
783 constraints->uV_offset / 1000);
784
8f031b48 785 if (constraints->min_uA && constraints->max_uA) {
414c70cb 786 if (constraints->min_uA == constraints->max_uA)
8f031b48
MB
787 count += sprintf(buf + count, "%d mA ",
788 constraints->min_uA / 1000);
414c70cb 789 else
8f031b48
MB
790 count += sprintf(buf + count, "%d <--> %d mA ",
791 constraints->min_uA / 1000,
792 constraints->max_uA / 1000);
793 }
794
795 if (!constraints->min_uA ||
796 constraints->min_uA != constraints->max_uA) {
797 ret = _regulator_get_current_limit(rdev);
798 if (ret > 0)
e4a6376b 799 count += sprintf(buf + count, "at %d mA ", ret / 1000);
414c70cb 800 }
8f031b48 801
414c70cb
LG
802 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803 count += sprintf(buf + count, "fast ");
804 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805 count += sprintf(buf + count, "normal ");
806 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807 count += sprintf(buf + count, "idle ");
808 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809 count += sprintf(buf + count, "standby");
810
13ce29f8 811 rdev_info(rdev, "%s\n", buf);
4a682922
MB
812
813 if ((constraints->min_uV != constraints->max_uV) &&
814 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815 rdev_warn(rdev,
816 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
414c70cb
LG
817}
818
e79055d6 819static int machine_constraints_voltage(struct regulator_dev *rdev,
1083c393 820 struct regulation_constraints *constraints)
a5766f11 821{
e5fda26c 822 struct regulator_ops *ops = rdev->desc->ops;
af5866c9
MB
823 int ret;
824
825 /* do we need to apply the constraint voltage */
826 if (rdev->constraints->apply_uV &&
75790251
MB
827 rdev->constraints->min_uV == rdev->constraints->max_uV) {
828 ret = _regulator_do_set_voltage(rdev,
829 rdev->constraints->min_uV,
830 rdev->constraints->max_uV);
831 if (ret < 0) {
832 rdev_err(rdev, "failed to apply %duV constraint\n",
833 rdev->constraints->min_uV);
75790251
MB
834 return ret;
835 }
af5866c9 836 }
e06f5b4f 837
4367cfdc
DB
838 /* constrain machine-level voltage specs to fit
839 * the actual range supported by this regulator.
840 */
841 if (ops->list_voltage && rdev->desc->n_voltages) {
842 int count = rdev->desc->n_voltages;
843 int i;
844 int min_uV = INT_MAX;
845 int max_uV = INT_MIN;
846 int cmin = constraints->min_uV;
847 int cmax = constraints->max_uV;
848
3e590918
MB
849 /* it's safe to autoconfigure fixed-voltage supplies
850 and the constraints are used by list_voltage. */
4367cfdc 851 if (count == 1 && !cmin) {
3e590918 852 cmin = 1;
4367cfdc 853 cmax = INT_MAX;
3e590918
MB
854 constraints->min_uV = cmin;
855 constraints->max_uV = cmax;
4367cfdc
DB
856 }
857
3e2b9abd
MB
858 /* voltage constraints are optional */
859 if ((cmin == 0) && (cmax == 0))
e79055d6 860 return 0;
3e2b9abd 861
4367cfdc 862 /* else require explicit machine-level constraints */
3e2b9abd 863 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
5da84fd9 864 rdev_err(rdev, "invalid voltage constraints\n");
e79055d6 865 return -EINVAL;
4367cfdc
DB
866 }
867
868 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869 for (i = 0; i < count; i++) {
870 int value;
871
872 value = ops->list_voltage(rdev, i);
873 if (value <= 0)
874 continue;
875
876 /* maybe adjust [min_uV..max_uV] */
877 if (value >= cmin && value < min_uV)
878 min_uV = value;
879 if (value <= cmax && value > max_uV)
880 max_uV = value;
881 }
882
883 /* final: [min_uV..max_uV] valid iff constraints valid */
884 if (max_uV < min_uV) {
5da84fd9 885 rdev_err(rdev, "unsupportable voltage constraints\n");
e79055d6 886 return -EINVAL;
4367cfdc
DB
887 }
888
889 /* use regulator's subset of machine constraints */
890 if (constraints->min_uV < min_uV) {
5da84fd9
JP
891 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892 constraints->min_uV, min_uV);
4367cfdc
DB
893 constraints->min_uV = min_uV;
894 }
895 if (constraints->max_uV > max_uV) {
5da84fd9
JP
896 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897 constraints->max_uV, max_uV);
4367cfdc
DB
898 constraints->max_uV = max_uV;
899 }
900 }
901
e79055d6
MB
902 return 0;
903}
904
905/**
906 * set_machine_constraints - sets regulator constraints
907 * @rdev: regulator source
908 * @constraints: constraints to apply
909 *
910 * Allows platform initialisation code to define and constrain
911 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
912 * Constraints *must* be set by platform code in order for some
913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
914 * set_mode.
915 */
916static int set_machine_constraints(struct regulator_dev *rdev,
f8c12fe3 917 const struct regulation_constraints *constraints)
e79055d6
MB
918{
919 int ret = 0;
e79055d6
MB
920 struct regulator_ops *ops = rdev->desc->ops;
921
9a8f5e07
MB
922 if (constraints)
923 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924 GFP_KERNEL);
925 else
926 rdev->constraints = kzalloc(sizeof(*constraints),
927 GFP_KERNEL);
f8c12fe3
MB
928 if (!rdev->constraints)
929 return -ENOMEM;
af5866c9 930
f8c12fe3 931 ret = machine_constraints_voltage(rdev, rdev->constraints);
e79055d6
MB
932 if (ret != 0)
933 goto out;
934
a5766f11 935 /* do we need to setup our suspend state */
9a8f5e07 936 if (rdev->constraints->initial_state) {
f8c12fe3 937 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
e06f5b4f 938 if (ret < 0) {
5da84fd9 939 rdev_err(rdev, "failed to set suspend state\n");
e06f5b4f
MB
940 goto out;
941 }
942 }
a5766f11 943
9a8f5e07 944 if (rdev->constraints->initial_mode) {
a308466c 945 if (!ops->set_mode) {
5da84fd9 946 rdev_err(rdev, "no set_mode operation\n");
a308466c
MB
947 ret = -EINVAL;
948 goto out;
949 }
950
f8c12fe3 951 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
a308466c 952 if (ret < 0) {
5da84fd9 953 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
a308466c
MB
954 goto out;
955 }
956 }
957
cacf90f2
MB
958 /* If the constraints say the regulator should be on at this point
959 * and we have control then make sure it is enabled.
960 */
f8c12fe3
MB
961 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962 ops->enable) {
e5fda26c
MB
963 ret = ops->enable(rdev);
964 if (ret < 0) {
5da84fd9 965 rdev_err(rdev, "failed to enable\n");
e5fda26c
MB
966 goto out;
967 }
968 }
969
a5766f11 970 print_constraints(rdev);
1a6958e7 971 return 0;
a5766f11 972out:
1a6958e7
AL
973 kfree(rdev->constraints);
974 rdev->constraints = NULL;
a5766f11
LG
975 return ret;
976}
977
978/**
979 * set_supply - set regulator supply regulator
69279fb9
MB
980 * @rdev: regulator name
981 * @supply_rdev: supply regulator name
a5766f11
LG
982 *
983 * Called by platform initialisation code to set the supply regulator for this
984 * regulator. This ensures that a regulators supply will also be enabled by the
985 * core if it's child is enabled.
986 */
987static int set_supply(struct regulator_dev *rdev,
3801b86a 988 struct regulator_dev *supply_rdev)
a5766f11
LG
989{
990 int err;
991
3801b86a
MB
992 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
993
994 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
32c78de8
AL
995 if (rdev->supply == NULL) {
996 err = -ENOMEM;
3801b86a 997 return err;
a5766f11 998 }
3801b86a
MB
999
1000 return 0;
a5766f11
LG
1001}
1002
1003/**
06c63f93 1004 * set_consumer_device_supply - Bind a regulator to a symbolic supply
69279fb9 1005 * @rdev: regulator source
40f9244f 1006 * @consumer_dev_name: dev_name() string for device supply applies to
69279fb9 1007 * @supply: symbolic name for supply
a5766f11
LG
1008 *
1009 * Allows platform initialisation code to map physical regulator
1010 * sources to symbolic names for supplies for use by devices. Devices
1011 * should use these symbolic names to request regulators, avoiding the
1012 * need to provide board-specific regulator names as platform data.
1013 */
1014static int set_consumer_device_supply(struct regulator_dev *rdev,
737f360d
MB
1015 const char *consumer_dev_name,
1016 const char *supply)
a5766f11
LG
1017{
1018 struct regulator_map *node;
9ed2099e 1019 int has_dev;
a5766f11
LG
1020
1021 if (supply == NULL)
1022 return -EINVAL;
1023
9ed2099e
MB
1024 if (consumer_dev_name != NULL)
1025 has_dev = 1;
1026 else
1027 has_dev = 0;
1028
6001e13c 1029 list_for_each_entry(node, &regulator_map_list, list) {
23b5cc2a
JN
1030 if (node->dev_name && consumer_dev_name) {
1031 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032 continue;
1033 } else if (node->dev_name || consumer_dev_name) {
6001e13c 1034 continue;
23b5cc2a
JN
1035 }
1036
6001e13c
DB
1037 if (strcmp(node->supply, supply) != 0)
1038 continue;
1039
737f360d
MB
1040 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041 consumer_dev_name,
1042 dev_name(&node->regulator->dev),
1043 node->regulator->desc->name,
1044 supply,
1045 dev_name(&rdev->dev), rdev_get_name(rdev));
6001e13c
DB
1046 return -EBUSY;
1047 }
1048
9ed2099e 1049 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
a5766f11
LG
1050 if (node == NULL)
1051 return -ENOMEM;
1052
1053 node->regulator = rdev;
a5766f11
LG
1054 node->supply = supply;
1055
9ed2099e
MB
1056 if (has_dev) {
1057 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058 if (node->dev_name == NULL) {
1059 kfree(node);
1060 return -ENOMEM;
1061 }
40f9244f
MB
1062 }
1063
a5766f11
LG
1064 list_add(&node->list, &regulator_map_list);
1065 return 0;
1066}
1067
0f1d747b
MR
1068static void unset_regulator_supplies(struct regulator_dev *rdev)
1069{
1070 struct regulator_map *node, *n;
1071
1072 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073 if (rdev == node->regulator) {
1074 list_del(&node->list);
40f9244f 1075 kfree(node->dev_name);
0f1d747b 1076 kfree(node);
0f1d747b
MR
1077 }
1078 }
1079}
1080
f5726ae3 1081#define REG_STR_SIZE 64
414c70cb
LG
1082
1083static struct regulator *create_regulator(struct regulator_dev *rdev,
1084 struct device *dev,
1085 const char *supply_name)
1086{
1087 struct regulator *regulator;
1088 char buf[REG_STR_SIZE];
1089 int err, size;
1090
1091 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092 if (regulator == NULL)
1093 return NULL;
1094
1095 mutex_lock(&rdev->mutex);
1096 regulator->rdev = rdev;
1097 list_add(&regulator->list, &rdev->consumer_list);
1098
1099 if (dev) {
1100 /* create a 'requested_microamps_name' sysfs entry */
e0eaedef
MB
1101 size = scnprintf(buf, REG_STR_SIZE,
1102 "microamps_requested_%s-%s",
1103 dev_name(dev), supply_name);
414c70cb
LG
1104 if (size >= REG_STR_SIZE)
1105 goto overflow_err;
1106
1107 regulator->dev = dev;
4f26a2ab 1108 sysfs_attr_init(&regulator->dev_attr.attr);
414c70cb
LG
1109 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110 if (regulator->dev_attr.attr.name == NULL)
1111 goto attr_name_err;
1112
414c70cb
LG
1113 regulator->dev_attr.attr.mode = 0444;
1114 regulator->dev_attr.show = device_requested_uA_show;
1115 err = device_create_file(dev, &regulator->dev_attr);
1116 if (err < 0) {
5da84fd9 1117 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
414c70cb
LG
1118 goto attr_name_err;
1119 }
1120
1121 /* also add a link to the device sysfs entry */
1122 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123 dev->kobj.name, supply_name);
1124 if (size >= REG_STR_SIZE)
1125 goto attr_err;
1126
1127 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128 if (regulator->supply_name == NULL)
1129 goto attr_err;
1130
1131 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132 buf);
1133 if (err) {
5da84fd9
JP
1134 rdev_warn(rdev, "could not add device link %s err %d\n",
1135 dev->kobj.name, err);
414c70cb
LG
1136 goto link_name_err;
1137 }
5de70519
MB
1138 } else {
1139 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140 if (regulator->supply_name == NULL)
1141 goto attr_err;
1142 }
1143
5de70519
MB
1144 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145 rdev->debugfs);
24751434 1146 if (!regulator->debugfs) {
5de70519 1147 rdev_warn(rdev, "Failed to create debugfs directory\n");
5de70519
MB
1148 } else {
1149 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150 &regulator->uA_load);
1151 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152 &regulator->min_uV);
1153 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154 &regulator->max_uV);
414c70cb 1155 }
5de70519 1156
6492bc1b
MB
1157 /*
1158 * Check now if the regulator is an always on regulator - if
1159 * it is then we don't need to do nearly so much work for
1160 * enable/disable calls.
1161 */
1162 if (!_regulator_can_change_status(rdev) &&
1163 _regulator_is_enabled(rdev))
1164 regulator->always_on = true;
1165
414c70cb
LG
1166 mutex_unlock(&rdev->mutex);
1167 return regulator;
1168link_name_err:
1169 kfree(regulator->supply_name);
1170attr_err:
1171 device_remove_file(regulator->dev, &regulator->dev_attr);
1172attr_name_err:
1173 kfree(regulator->dev_attr.attr.name);
1174overflow_err:
1175 list_del(&regulator->list);
1176 kfree(regulator);
1177 mutex_unlock(&rdev->mutex);
1178 return NULL;
1179}
1180
31aae2be
MB
1181static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182{
1183 if (!rdev->desc->ops->enable_time)
1184 return 0;
1185 return rdev->desc->ops->enable_time(rdev);
1186}
1187
69511a45 1188static struct regulator_dev *regulator_dev_lookup(struct device *dev,
6d191a5f
MB
1189 const char *supply,
1190 int *ret)
69511a45
RN
1191{
1192 struct regulator_dev *r;
1193 struct device_node *node;
576ca436
MB
1194 struct regulator_map *map;
1195 const char *devname = NULL;
69511a45
RN
1196
1197 /* first do a dt based lookup */
1198 if (dev && dev->of_node) {
1199 node = of_get_regulator(dev, supply);
6d191a5f 1200 if (node) {
69511a45
RN
1201 list_for_each_entry(r, &regulator_list, list)
1202 if (r->dev.parent &&
1203 node == r->dev.of_node)
1204 return r;
6d191a5f
MB
1205 } else {
1206 /*
1207 * If we couldn't even get the node then it's
1208 * not just that the device didn't register
1209 * yet, there's no node and we'll never
1210 * succeed.
1211 */
1212 *ret = -ENODEV;
1213 }
69511a45
RN
1214 }
1215
1216 /* if not found, try doing it non-dt way */
576ca436
MB
1217 if (dev)
1218 devname = dev_name(dev);
1219
69511a45
RN
1220 list_for_each_entry(r, &regulator_list, list)
1221 if (strcmp(rdev_get_name(r), supply) == 0)
1222 return r;
1223
576ca436
MB
1224 list_for_each_entry(map, &regulator_map_list, list) {
1225 /* If the mapping has a device set up it must match */
1226 if (map->dev_name &&
1227 (!devname || strcmp(map->dev_name, devname)))
1228 continue;
1229
1230 if (strcmp(map->supply, supply) == 0)
1231 return map->regulator;
1232 }
1233
1234
69511a45
RN
1235 return NULL;
1236}
1237
5ffbd136
MB
1238/* Internal regulator request function */
1239static struct regulator *_regulator_get(struct device *dev, const char *id,
1240 int exclusive)
414c70cb
LG
1241{
1242 struct regulator_dev *rdev;
04bf3011 1243 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
40f9244f 1244 const char *devname = NULL;
5ffbd136 1245 int ret;
414c70cb
LG
1246
1247 if (id == NULL) {
5da84fd9 1248 pr_err("get() with no identifier\n");
414c70cb
LG
1249 return regulator;
1250 }
1251
40f9244f
MB
1252 if (dev)
1253 devname = dev_name(dev);
1254
414c70cb
LG
1255 mutex_lock(&regulator_list_mutex);
1256
6d191a5f 1257 rdev = regulator_dev_lookup(dev, id, &ret);
69511a45
RN
1258 if (rdev)
1259 goto found;
1260
688fe99a
MB
1261 if (board_wants_dummy_regulator) {
1262 rdev = dummy_regulator_rdev;
1263 goto found;
1264 }
1265
34abbd68
MB
1266#ifdef CONFIG_REGULATOR_DUMMY
1267 if (!devname)
1268 devname = "deviceless";
1269
1270 /* If the board didn't flag that it was fully constrained then
1271 * substitute in a dummy regulator so consumers can continue.
1272 */
1273 if (!has_full_constraints) {
5da84fd9
JP
1274 pr_warn("%s supply %s not found, using dummy regulator\n",
1275 devname, id);
34abbd68
MB
1276 rdev = dummy_regulator_rdev;
1277 goto found;
1278 }
1279#endif
1280
414c70cb
LG
1281 mutex_unlock(&regulator_list_mutex);
1282 return regulator;
1283
1284found:
5ffbd136
MB
1285 if (rdev->exclusive) {
1286 regulator = ERR_PTR(-EPERM);
1287 goto out;
1288 }
1289
1290 if (exclusive && rdev->open_count) {
1291 regulator = ERR_PTR(-EBUSY);
1292 goto out;
1293 }
1294
a5766f11
LG
1295 if (!try_module_get(rdev->owner))
1296 goto out;
1297
414c70cb
LG
1298 regulator = create_regulator(rdev, dev, id);
1299 if (regulator == NULL) {
1300 regulator = ERR_PTR(-ENOMEM);
1301 module_put(rdev->owner);
bcda4321 1302 goto out;
414c70cb
LG
1303 }
1304
5ffbd136
MB
1305 rdev->open_count++;
1306 if (exclusive) {
1307 rdev->exclusive = 1;
1308
1309 ret = _regulator_is_enabled(rdev);
1310 if (ret > 0)
1311 rdev->use_count = 1;
1312 else
1313 rdev->use_count = 0;
1314 }
1315
a5766f11 1316out:
414c70cb 1317 mutex_unlock(&regulator_list_mutex);
5ffbd136 1318
414c70cb
LG
1319 return regulator;
1320}
5ffbd136
MB
1321
1322/**
1323 * regulator_get - lookup and obtain a reference to a regulator.
1324 * @dev: device for regulator "consumer"
1325 * @id: Supply name or regulator ID.
1326 *
1327 * Returns a struct regulator corresponding to the regulator producer,
1328 * or IS_ERR() condition containing errno.
1329 *
1330 * Use of supply names configured via regulator_set_device_supply() is
1331 * strongly encouraged. It is recommended that the supply name used
1332 * should match the name used for the supply and/or the relevant
1333 * device pins in the datasheet.
1334 */
1335struct regulator *regulator_get(struct device *dev, const char *id)
1336{
1337 return _regulator_get(dev, id, 0);
1338}
414c70cb
LG
1339EXPORT_SYMBOL_GPL(regulator_get);
1340
070b9079
SB
1341static void devm_regulator_release(struct device *dev, void *res)
1342{
1343 regulator_put(*(struct regulator **)res);
1344}
1345
1346/**
1347 * devm_regulator_get - Resource managed regulator_get()
1348 * @dev: device for regulator "consumer"
1349 * @id: Supply name or regulator ID.
1350 *
1351 * Managed regulator_get(). Regulators returned from this function are
1352 * automatically regulator_put() on driver detach. See regulator_get() for more
1353 * information.
1354 */
1355struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356{
1357 struct regulator **ptr, *regulator;
1358
1359 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360 if (!ptr)
1361 return ERR_PTR(-ENOMEM);
1362
1363 regulator = regulator_get(dev, id);
1364 if (!IS_ERR(regulator)) {
1365 *ptr = regulator;
1366 devres_add(dev, ptr);
1367 } else {
1368 devres_free(ptr);
1369 }
1370
1371 return regulator;
1372}
1373EXPORT_SYMBOL_GPL(devm_regulator_get);
1374
5ffbd136
MB
1375/**
1376 * regulator_get_exclusive - obtain exclusive access to a regulator.
1377 * @dev: device for regulator "consumer"
1378 * @id: Supply name or regulator ID.
1379 *
1380 * Returns a struct regulator corresponding to the regulator producer,
1381 * or IS_ERR() condition containing errno. Other consumers will be
1382 * unable to obtain this reference is held and the use count for the
1383 * regulator will be initialised to reflect the current state of the
1384 * regulator.
1385 *
1386 * This is intended for use by consumers which cannot tolerate shared
1387 * use of the regulator such as those which need to force the
1388 * regulator off for correct operation of the hardware they are
1389 * controlling.
1390 *
1391 * Use of supply names configured via regulator_set_device_supply() is
1392 * strongly encouraged. It is recommended that the supply name used
1393 * should match the name used for the supply and/or the relevant
1394 * device pins in the datasheet.
1395 */
1396struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397{
1398 return _regulator_get(dev, id, 1);
1399}
1400EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401
414c70cb
LG
1402/**
1403 * regulator_put - "free" the regulator source
1404 * @regulator: regulator source
1405 *
1406 * Note: drivers must ensure that all regulator_enable calls made on this
1407 * regulator source are balanced by regulator_disable calls prior to calling
1408 * this function.
1409 */
1410void regulator_put(struct regulator *regulator)
1411{
1412 struct regulator_dev *rdev;
1413
1414 if (regulator == NULL || IS_ERR(regulator))
1415 return;
1416
414c70cb
LG
1417 mutex_lock(&regulator_list_mutex);
1418 rdev = regulator->rdev;
1419
5de70519 1420 debugfs_remove_recursive(regulator->debugfs);
5de70519 1421
414c70cb
LG
1422 /* remove any sysfs entries */
1423 if (regulator->dev) {
1424 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
414c70cb
LG
1425 device_remove_file(regulator->dev, &regulator->dev_attr);
1426 kfree(regulator->dev_attr.attr.name);
1427 }
5de70519 1428 kfree(regulator->supply_name);
414c70cb
LG
1429 list_del(&regulator->list);
1430 kfree(regulator);
1431
5ffbd136
MB
1432 rdev->open_count--;
1433 rdev->exclusive = 0;
1434
414c70cb
LG
1435 module_put(rdev->owner);
1436 mutex_unlock(&regulator_list_mutex);
1437}
1438EXPORT_SYMBOL_GPL(regulator_put);
1439
d5ad34f7
MB
1440static int devm_regulator_match(struct device *dev, void *res, void *data)
1441{
1442 struct regulator **r = res;
1443 if (!r || !*r) {
1444 WARN_ON(!r || !*r);
1445 return 0;
1446 }
1447 return *r == data;
1448}
1449
1450/**
1451 * devm_regulator_put - Resource managed regulator_put()
1452 * @regulator: regulator to free
1453 *
1454 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455 * this function will not need to be called and the resource management
1456 * code will ensure that the resource is freed.
1457 */
1458void devm_regulator_put(struct regulator *regulator)
1459{
1460 int rc;
1461
1462 rc = devres_destroy(regulator->dev, devm_regulator_release,
1463 devm_regulator_match, regulator);
1464 WARN_ON(rc);
1465}
1466EXPORT_SYMBOL_GPL(devm_regulator_put);
1467
414c70cb
LG
1468/* locks held by regulator_enable() */
1469static int _regulator_enable(struct regulator_dev *rdev)
1470{
31aae2be 1471 int ret, delay;
414c70cb 1472
414c70cb 1473 /* check voltage and requested load before enabling */
9a2372fa
MB
1474 if (rdev->constraints &&
1475 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1476 drms_uA_update(rdev);
414c70cb 1477
9a2372fa
MB
1478 if (rdev->use_count == 0) {
1479 /* The regulator may on if it's not switchable or left on */
1480 ret = _regulator_is_enabled(rdev);
1481 if (ret == -EINVAL || ret == 0) {
1482 if (!_regulator_can_change_status(rdev))
1483 return -EPERM;
1484
31aae2be 1485 if (!rdev->desc->ops->enable)
9a2372fa 1486 return -EINVAL;
31aae2be
MB
1487
1488 /* Query before enabling in case configuration
25985edc 1489 * dependent. */
31aae2be
MB
1490 ret = _regulator_get_enable_time(rdev);
1491 if (ret >= 0) {
1492 delay = ret;
1493 } else {
5da84fd9 1494 rdev_warn(rdev, "enable_time() failed: %d\n",
1d7372e1 1495 ret);
31aae2be 1496 delay = 0;
9a2372fa 1497 }
31aae2be 1498
02fa3ec0
MB
1499 trace_regulator_enable(rdev_get_name(rdev));
1500
31aae2be
MB
1501 /* Allow the regulator to ramp; it would be useful
1502 * to extend this for bulk operations so that the
1503 * regulators can ramp together. */
1504 ret = rdev->desc->ops->enable(rdev);
1505 if (ret < 0)
1506 return ret;
1507
02fa3ec0
MB
1508 trace_regulator_enable_delay(rdev_get_name(rdev));
1509
e36c1df8 1510 if (delay >= 1000) {
31aae2be 1511 mdelay(delay / 1000);
e36c1df8
AL
1512 udelay(delay % 1000);
1513 } else if (delay) {
31aae2be 1514 udelay(delay);
e36c1df8 1515 }
31aae2be 1516
02fa3ec0
MB
1517 trace_regulator_enable_complete(rdev_get_name(rdev));
1518
a7433cff 1519 } else if (ret < 0) {
5da84fd9 1520 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
414c70cb
LG
1521 return ret;
1522 }
a7433cff 1523 /* Fallthrough on positive return values - already enabled */
414c70cb
LG
1524 }
1525
9a2372fa
MB
1526 rdev->use_count++;
1527
1528 return 0;
414c70cb
LG
1529}
1530
1531/**
1532 * regulator_enable - enable regulator output
1533 * @regulator: regulator source
1534 *
cf7bbcdf
MB
1535 * Request that the regulator be enabled with the regulator output at
1536 * the predefined voltage or current value. Calls to regulator_enable()
1537 * must be balanced with calls to regulator_disable().
1538 *
414c70cb 1539 * NOTE: the output value can be set by other drivers, boot loader or may be
cf7bbcdf 1540 * hardwired in the regulator.
414c70cb
LG
1541 */
1542int regulator_enable(struct regulator *regulator)
1543{
412aec61
DB
1544 struct regulator_dev *rdev = regulator->rdev;
1545 int ret = 0;
414c70cb 1546
6492bc1b
MB
1547 if (regulator->always_on)
1548 return 0;
1549
3801b86a
MB
1550 if (rdev->supply) {
1551 ret = regulator_enable(rdev->supply);
1552 if (ret != 0)
1553 return ret;
1554 }
1555
412aec61 1556 mutex_lock(&rdev->mutex);
cd94b505 1557 ret = _regulator_enable(rdev);
412aec61 1558 mutex_unlock(&rdev->mutex);
3801b86a 1559
d1685e4e 1560 if (ret != 0 && rdev->supply)
3801b86a
MB
1561 regulator_disable(rdev->supply);
1562
414c70cb
LG
1563 return ret;
1564}
1565EXPORT_SYMBOL_GPL(regulator_enable);
1566
1567/* locks held by regulator_disable() */
3801b86a 1568static int _regulator_disable(struct regulator_dev *rdev)
414c70cb
LG
1569{
1570 int ret = 0;
1571
cd94b505 1572 if (WARN(rdev->use_count <= 0,
43e7ee33 1573 "unbalanced disables for %s\n", rdev_get_name(rdev)))
cd94b505
DB
1574 return -EIO;
1575
414c70cb 1576 /* are we the last user and permitted to disable ? */
60ef66fc
MB
1577 if (rdev->use_count == 1 &&
1578 (rdev->constraints && !rdev->constraints->always_on)) {
414c70cb
LG
1579
1580 /* we are last user */
9a2372fa
MB
1581 if (_regulator_can_change_status(rdev) &&
1582 rdev->desc->ops->disable) {
02fa3ec0
MB
1583 trace_regulator_disable(rdev_get_name(rdev));
1584
414c70cb
LG
1585 ret = rdev->desc->ops->disable(rdev);
1586 if (ret < 0) {
5da84fd9 1587 rdev_err(rdev, "failed to disable\n");
414c70cb
LG
1588 return ret;
1589 }
84b68263 1590
02fa3ec0
MB
1591 trace_regulator_disable_complete(rdev_get_name(rdev));
1592
84b68263
MB
1593 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1594 NULL);
414c70cb
LG
1595 }
1596
414c70cb
LG
1597 rdev->use_count = 0;
1598 } else if (rdev->use_count > 1) {
1599
1600 if (rdev->constraints &&
1601 (rdev->constraints->valid_ops_mask &
1602 REGULATOR_CHANGE_DRMS))
1603 drms_uA_update(rdev);
1604
1605 rdev->use_count--;
1606 }
3801b86a 1607
414c70cb
LG
1608 return ret;
1609}
1610
1611/**
1612 * regulator_disable - disable regulator output
1613 * @regulator: regulator source
1614 *
cf7bbcdf
MB
1615 * Disable the regulator output voltage or current. Calls to
1616 * regulator_enable() must be balanced with calls to
1617 * regulator_disable().
69279fb9 1618 *
414c70cb 1619 * NOTE: this will only disable the regulator output if no other consumer
cf7bbcdf
MB
1620 * devices have it enabled, the regulator device supports disabling and
1621 * machine constraints permit this operation.
414c70cb
LG
1622 */
1623int regulator_disable(struct regulator *regulator)
1624{
412aec61
DB
1625 struct regulator_dev *rdev = regulator->rdev;
1626 int ret = 0;
414c70cb 1627
6492bc1b
MB
1628 if (regulator->always_on)
1629 return 0;
1630
412aec61 1631 mutex_lock(&rdev->mutex);
3801b86a 1632 ret = _regulator_disable(rdev);
412aec61 1633 mutex_unlock(&rdev->mutex);
8cbf811d 1634
3801b86a
MB
1635 if (ret == 0 && rdev->supply)
1636 regulator_disable(rdev->supply);
8cbf811d 1637
414c70cb
LG
1638 return ret;
1639}
1640EXPORT_SYMBOL_GPL(regulator_disable);
1641
1642/* locks held by regulator_force_disable() */
3801b86a 1643static int _regulator_force_disable(struct regulator_dev *rdev)
414c70cb
LG
1644{
1645 int ret = 0;
1646
1647 /* force disable */
1648 if (rdev->desc->ops->disable) {
1649 /* ah well, who wants to live forever... */
1650 ret = rdev->desc->ops->disable(rdev);
1651 if (ret < 0) {
5da84fd9 1652 rdev_err(rdev, "failed to force disable\n");
414c70cb
LG
1653 return ret;
1654 }
1655 /* notify other consumers that power has been forced off */
84b68263
MB
1656 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1657 REGULATOR_EVENT_DISABLE, NULL);
414c70cb
LG
1658 }
1659
414c70cb
LG
1660 return ret;
1661}
1662
1663/**
1664 * regulator_force_disable - force disable regulator output
1665 * @regulator: regulator source
1666 *
1667 * Forcibly disable the regulator output voltage or current.
1668 * NOTE: this *will* disable the regulator output even if other consumer
1669 * devices have it enabled. This should be used for situations when device
1670 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1671 */
1672int regulator_force_disable(struct regulator *regulator)
1673{
82d15839 1674 struct regulator_dev *rdev = regulator->rdev;
414c70cb
LG
1675 int ret;
1676
82d15839 1677 mutex_lock(&rdev->mutex);
414c70cb 1678 regulator->uA_load = 0;
3801b86a 1679 ret = _regulator_force_disable(regulator->rdev);
82d15839 1680 mutex_unlock(&rdev->mutex);
8cbf811d 1681
3801b86a
MB
1682 if (rdev->supply)
1683 while (rdev->open_count--)
1684 regulator_disable(rdev->supply);
8cbf811d 1685
414c70cb
LG
1686 return ret;
1687}
1688EXPORT_SYMBOL_GPL(regulator_force_disable);
1689
da07ecd9
MB
1690static void regulator_disable_work(struct work_struct *work)
1691{
1692 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1693 disable_work.work);
1694 int count, i, ret;
1695
1696 mutex_lock(&rdev->mutex);
1697
1698 BUG_ON(!rdev->deferred_disables);
1699
1700 count = rdev->deferred_disables;
1701 rdev->deferred_disables = 0;
1702
1703 for (i = 0; i < count; i++) {
1704 ret = _regulator_disable(rdev);
1705 if (ret != 0)
1706 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1707 }
1708
1709 mutex_unlock(&rdev->mutex);
1710
1711 if (rdev->supply) {
1712 for (i = 0; i < count; i++) {
1713 ret = regulator_disable(rdev->supply);
1714 if (ret != 0) {
1715 rdev_err(rdev,
1716 "Supply disable failed: %d\n", ret);
1717 }
1718 }
1719 }
1720}
1721
1722/**
1723 * regulator_disable_deferred - disable regulator output with delay
1724 * @regulator: regulator source
1725 * @ms: miliseconds until the regulator is disabled
1726 *
1727 * Execute regulator_disable() on the regulator after a delay. This
1728 * is intended for use with devices that require some time to quiesce.
1729 *
1730 * NOTE: this will only disable the regulator output if no other consumer
1731 * devices have it enabled, the regulator device supports disabling and
1732 * machine constraints permit this operation.
1733 */
1734int regulator_disable_deferred(struct regulator *regulator, int ms)
1735{
1736 struct regulator_dev *rdev = regulator->rdev;
aa59802d 1737 int ret;
da07ecd9 1738
6492bc1b
MB
1739 if (regulator->always_on)
1740 return 0;
1741
da07ecd9
MB
1742 mutex_lock(&rdev->mutex);
1743 rdev->deferred_disables++;
1744 mutex_unlock(&rdev->mutex);
1745
aa59802d
MB
1746 ret = schedule_delayed_work(&rdev->disable_work,
1747 msecs_to_jiffies(ms));
1748 if (ret < 0)
1749 return ret;
1750 else
1751 return 0;
da07ecd9
MB
1752}
1753EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1754
cd6dffb4
MB
1755/**
1756 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1757 *
1758 * @rdev: regulator to operate on
1759 *
1760 * Regulators that use regmap for their register I/O can set the
1761 * enable_reg and enable_mask fields in their descriptor and then use
1762 * this as their is_enabled operation, saving some code.
1763 */
1764int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1765{
1766 unsigned int val;
1767 int ret;
1768
1769 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1770 if (ret != 0)
1771 return ret;
1772
1773 return (val & rdev->desc->enable_mask) != 0;
1774}
1775EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1776
1777/**
1778 * regulator_enable_regmap - standard enable() for regmap users
1779 *
1780 * @rdev: regulator to operate on
1781 *
1782 * Regulators that use regmap for their register I/O can set the
1783 * enable_reg and enable_mask fields in their descriptor and then use
1784 * this as their enable() operation, saving some code.
1785 */
1786int regulator_enable_regmap(struct regulator_dev *rdev)
1787{
1788 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1789 rdev->desc->enable_mask,
1790 rdev->desc->enable_mask);
1791}
1792EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1793
1794/**
1795 * regulator_disable_regmap - standard disable() for regmap users
1796 *
1797 * @rdev: regulator to operate on
1798 *
1799 * Regulators that use regmap for their register I/O can set the
1800 * enable_reg and enable_mask fields in their descriptor and then use
1801 * this as their disable() operation, saving some code.
1802 */
1803int regulator_disable_regmap(struct regulator_dev *rdev)
1804{
1805 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1806 rdev->desc->enable_mask, 0);
1807}
1808EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1809
414c70cb
LG
1810static int _regulator_is_enabled(struct regulator_dev *rdev)
1811{
9a7f6a4c 1812 /* If we don't know then assume that the regulator is always on */
9332546f 1813 if (!rdev->desc->ops->is_enabled)
9a7f6a4c 1814 return 1;
414c70cb 1815
9332546f 1816 return rdev->desc->ops->is_enabled(rdev);
414c70cb
LG
1817}
1818
1819/**
1820 * regulator_is_enabled - is the regulator output enabled
1821 * @regulator: regulator source
1822 *
412aec61
DB
1823 * Returns positive if the regulator driver backing the source/client
1824 * has requested that the device be enabled, zero if it hasn't, else a
1825 * negative errno code.
1826 *
1827 * Note that the device backing this regulator handle can have multiple
1828 * users, so it might be enabled even if regulator_enable() was never
1829 * called for this particular source.
414c70cb
LG
1830 */
1831int regulator_is_enabled(struct regulator *regulator)
1832{
9332546f
MB
1833 int ret;
1834
6492bc1b
MB
1835 if (regulator->always_on)
1836 return 1;
1837
9332546f
MB
1838 mutex_lock(&regulator->rdev->mutex);
1839 ret = _regulator_is_enabled(regulator->rdev);
1840 mutex_unlock(&regulator->rdev->mutex);
1841
1842 return ret;
414c70cb
LG
1843}
1844EXPORT_SYMBOL_GPL(regulator_is_enabled);
1845
4367cfdc
DB
1846/**
1847 * regulator_count_voltages - count regulator_list_voltage() selectors
1848 * @regulator: regulator source
1849 *
1850 * Returns number of selectors, or negative errno. Selectors are
1851 * numbered starting at zero, and typically correspond to bitfields
1852 * in hardware registers.
1853 */
1854int regulator_count_voltages(struct regulator *regulator)
1855{
1856 struct regulator_dev *rdev = regulator->rdev;
1857
1858 return rdev->desc->n_voltages ? : -EINVAL;
1859}
1860EXPORT_SYMBOL_GPL(regulator_count_voltages);
1861
1862/**
1863 * regulator_list_voltage - enumerate supported voltages
1864 * @regulator: regulator source
1865 * @selector: identify voltage to list
1866 * Context: can sleep
1867 *
1868 * Returns a voltage that can be passed to @regulator_set_voltage(),
88393161 1869 * zero if this selector code can't be used on this system, or a
4367cfdc
DB
1870 * negative errno.
1871 */
1872int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1873{
1874 struct regulator_dev *rdev = regulator->rdev;
1875 struct regulator_ops *ops = rdev->desc->ops;
1876 int ret;
1877
1878 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1879 return -EINVAL;
1880
1881 mutex_lock(&rdev->mutex);
1882 ret = ops->list_voltage(rdev, selector);
1883 mutex_unlock(&rdev->mutex);
1884
1885 if (ret > 0) {
1886 if (ret < rdev->constraints->min_uV)
1887 ret = 0;
1888 else if (ret > rdev->constraints->max_uV)
1889 ret = 0;
1890 }
1891
1892 return ret;
1893}
1894EXPORT_SYMBOL_GPL(regulator_list_voltage);
1895
a7a1ad90
MB
1896/**
1897 * regulator_is_supported_voltage - check if a voltage range can be supported
1898 *
1899 * @regulator: Regulator to check.
1900 * @min_uV: Minimum required voltage in uV.
1901 * @max_uV: Maximum required voltage in uV.
1902 *
1903 * Returns a boolean or a negative error code.
1904 */
1905int regulator_is_supported_voltage(struct regulator *regulator,
1906 int min_uV, int max_uV)
1907{
1908 int i, voltages, ret;
1909
1910 ret = regulator_count_voltages(regulator);
1911 if (ret < 0)
1912 return ret;
1913 voltages = ret;
1914
1915 for (i = 0; i < voltages; i++) {
1916 ret = regulator_list_voltage(regulator, i);
1917
1918 if (ret >= min_uV && ret <= max_uV)
1919 return 1;
1920 }
1921
1922 return 0;
1923}
a398eaa2 1924EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
a7a1ad90 1925
4ab5b3d9
MB
1926/**
1927 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1928 *
1929 * @rdev: regulator to operate on
1930 *
1931 * Regulators that use regmap for their register I/O can set the
1932 * vsel_reg and vsel_mask fields in their descriptor and then use this
1933 * as their get_voltage_vsel operation, saving some code.
1934 */
1935int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1936{
1937 unsigned int val;
1938 int ret;
1939
1940 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1941 if (ret != 0)
1942 return ret;
1943
1944 val &= rdev->desc->vsel_mask;
1945 val >>= ffs(rdev->desc->vsel_mask) - 1;
1946
1947 return val;
1948}
1949EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1950
1951/**
1952 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1953 *
1954 * @rdev: regulator to operate on
1955 * @sel: Selector to set
1956 *
1957 * Regulators that use regmap for their register I/O can set the
1958 * vsel_reg and vsel_mask fields in their descriptor and then use this
1959 * as their set_voltage_vsel operation, saving some code.
1960 */
1961int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1962{
1963 sel <<= ffs(rdev->desc->vsel_mask) - 1;
1964
1965 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1966 rdev->desc->vsel_mask, sel);
1967}
1968EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1969
75790251
MB
1970static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1971 int min_uV, int max_uV)
1972{
1973 int ret;
77af1b26 1974 int delay = 0;
75790251 1975 unsigned int selector;
eba41a5e
AL
1976 int old_selector = -1;
1977 int best_val = INT_MAX;
75790251
MB
1978
1979 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1980
bf5892a8
MB
1981 min_uV += rdev->constraints->uV_offset;
1982 max_uV += rdev->constraints->uV_offset;
1983
eba41a5e
AL
1984 /*
1985 * If we can't obtain the old selector there is not enough
1986 * info to call set_voltage_time_sel().
1987 */
1988 if (rdev->desc->ops->set_voltage_time_sel &&
1989 rdev->desc->ops->get_voltage_sel) {
1990 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
1991 if (old_selector < 0)
1992 return old_selector;
1993 }
1994
75790251
MB
1995 if (rdev->desc->ops->set_voltage) {
1996 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1997 &selector);
1998
1999 if (rdev->desc->ops->list_voltage)
eba41a5e 2000 best_val = rdev->desc->ops->list_voltage(rdev,
75790251
MB
2001 selector);
2002 else
eba41a5e 2003 best_val = -1;
e8eef82b 2004 } else if (rdev->desc->ops->set_voltage_sel) {
e8eef82b
MB
2005 int i;
2006
2007 selector = 0;
2008
2009 /* Find the smallest voltage that falls within the specified
2010 * range.
2011 */
2012 for (i = 0; i < rdev->desc->n_voltages; i++) {
2013 ret = rdev->desc->ops->list_voltage(rdev, i);
2014 if (ret < 0)
2015 continue;
2016
2017 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2018 best_val = ret;
2019 selector = i;
2020 }
2021 }
2022
eba41a5e 2023 if (best_val != INT_MAX)
e8eef82b 2024 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
eba41a5e 2025 else
e8eef82b 2026 ret = -EINVAL;
75790251
MB
2027 } else {
2028 ret = -EINVAL;
2029 }
2030
eba41a5e
AL
2031 /* Call set_voltage_time_sel if successfully obtained old_selector */
2032 if (ret == 0 && old_selector >= 0 &&
2033 rdev->desc->ops->set_voltage_time_sel) {
2034
2035 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2036 old_selector, selector);
2037 if (delay < 0) {
2038 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2039 delay);
2040 delay = 0;
2041 }
2042 }
2043
77af1b26
LW
2044 /* Insert any necessary delays */
2045 if (delay >= 1000) {
2046 mdelay(delay / 1000);
2047 udelay(delay % 1000);
2048 } else if (delay) {
2049 udelay(delay);
2050 }
2051
ded06a52
MB
2052 if (ret == 0)
2053 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2054 NULL);
2055
eba41a5e 2056 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
75790251
MB
2057
2058 return ret;
2059}
2060
414c70cb
LG
2061/**
2062 * regulator_set_voltage - set regulator output voltage
2063 * @regulator: regulator source
2064 * @min_uV: Minimum required voltage in uV
2065 * @max_uV: Maximum acceptable voltage in uV
2066 *
2067 * Sets a voltage regulator to the desired output voltage. This can be set
2068 * during any regulator state. IOW, regulator can be disabled or enabled.
2069 *
2070 * If the regulator is enabled then the voltage will change to the new value
2071 * immediately otherwise if the regulator is disabled the regulator will
2072 * output at the new voltage when enabled.
2073 *
2074 * NOTE: If the regulator is shared between several devices then the lowest
2075 * request voltage that meets the system constraints will be used.
69279fb9 2076 * Regulator system constraints must be set for this regulator before
414c70cb
LG
2077 * calling this function otherwise this call will fail.
2078 */
2079int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2080{
2081 struct regulator_dev *rdev = regulator->rdev;
95a3c23a 2082 int ret = 0;
414c70cb
LG
2083
2084 mutex_lock(&rdev->mutex);
2085
95a3c23a
MB
2086 /* If we're setting the same range as last time the change
2087 * should be a noop (some cpufreq implementations use the same
2088 * voltage for multiple frequencies, for example).
2089 */
2090 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2091 goto out;
2092
414c70cb 2093 /* sanity check */
e8eef82b
MB
2094 if (!rdev->desc->ops->set_voltage &&
2095 !rdev->desc->ops->set_voltage_sel) {
414c70cb
LG
2096 ret = -EINVAL;
2097 goto out;
2098 }
2099
2100 /* constraints check */
2101 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2102 if (ret < 0)
2103 goto out;
2104 regulator->min_uV = min_uV;
2105 regulator->max_uV = max_uV;
3a93f2a9 2106
05fda3b1
TP
2107 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2108 if (ret < 0)
2109 goto out;
2110
75790251 2111 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
02fa3ec0 2112
414c70cb
LG
2113out:
2114 mutex_unlock(&rdev->mutex);
2115 return ret;
2116}
2117EXPORT_SYMBOL_GPL(regulator_set_voltage);
2118
88cd222b
LW
2119/**
2120 * regulator_set_voltage_time - get raise/fall time
2121 * @regulator: regulator source
2122 * @old_uV: starting voltage in microvolts
2123 * @new_uV: target voltage in microvolts
2124 *
2125 * Provided with the starting and ending voltage, this function attempts to
2126 * calculate the time in microseconds required to rise or fall to this new
2127 * voltage.
2128 */
2129int regulator_set_voltage_time(struct regulator *regulator,
2130 int old_uV, int new_uV)
2131{
2132 struct regulator_dev *rdev = regulator->rdev;
2133 struct regulator_ops *ops = rdev->desc->ops;
2134 int old_sel = -1;
2135 int new_sel = -1;
2136 int voltage;
2137 int i;
2138
2139 /* Currently requires operations to do this */
2140 if (!ops->list_voltage || !ops->set_voltage_time_sel
2141 || !rdev->desc->n_voltages)
2142 return -EINVAL;
2143
2144 for (i = 0; i < rdev->desc->n_voltages; i++) {
2145 /* We only look for exact voltage matches here */
2146 voltage = regulator_list_voltage(regulator, i);
2147 if (voltage < 0)
2148 return -EINVAL;
2149 if (voltage == 0)
2150 continue;
2151 if (voltage == old_uV)
2152 old_sel = i;
2153 if (voltage == new_uV)
2154 new_sel = i;
2155 }
2156
2157 if (old_sel < 0 || new_sel < 0)
2158 return -EINVAL;
2159
2160 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2161}
2162EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2163
606a2562
MB
2164/**
2165 * regulator_sync_voltage - re-apply last regulator output voltage
2166 * @regulator: regulator source
2167 *
2168 * Re-apply the last configured voltage. This is intended to be used
2169 * where some external control source the consumer is cooperating with
2170 * has caused the configured voltage to change.
2171 */
2172int regulator_sync_voltage(struct regulator *regulator)
2173{
2174 struct regulator_dev *rdev = regulator->rdev;
2175 int ret, min_uV, max_uV;
2176
2177 mutex_lock(&rdev->mutex);
2178
2179 if (!rdev->desc->ops->set_voltage &&
2180 !rdev->desc->ops->set_voltage_sel) {
2181 ret = -EINVAL;
2182 goto out;
2183 }
2184
2185 /* This is only going to work if we've had a voltage configured. */
2186 if (!regulator->min_uV && !regulator->max_uV) {
2187 ret = -EINVAL;
2188 goto out;
2189 }
2190
2191 min_uV = regulator->min_uV;
2192 max_uV = regulator->max_uV;
2193
2194 /* This should be a paranoia check... */
2195 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2196 if (ret < 0)
2197 goto out;
2198
2199 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2200 if (ret < 0)
2201 goto out;
2202
2203 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2204
2205out:
2206 mutex_unlock(&rdev->mutex);
2207 return ret;
2208}
2209EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2210
414c70cb
LG
2211static int _regulator_get_voltage(struct regulator_dev *rdev)
2212{
bf5892a8 2213 int sel, ret;
476c2d83
MB
2214
2215 if (rdev->desc->ops->get_voltage_sel) {
2216 sel = rdev->desc->ops->get_voltage_sel(rdev);
2217 if (sel < 0)
2218 return sel;
bf5892a8 2219 ret = rdev->desc->ops->list_voltage(rdev, sel);
cb220d16 2220 } else if (rdev->desc->ops->get_voltage) {
bf5892a8 2221 ret = rdev->desc->ops->get_voltage(rdev);
cb220d16 2222 } else {
414c70cb 2223 return -EINVAL;
cb220d16 2224 }
bf5892a8 2225
cb220d16
AL
2226 if (ret < 0)
2227 return ret;
bf5892a8 2228 return ret - rdev->constraints->uV_offset;
414c70cb
LG
2229}
2230
2231/**
2232 * regulator_get_voltage - get regulator output voltage
2233 * @regulator: regulator source
2234 *
2235 * This returns the current regulator voltage in uV.
2236 *
2237 * NOTE: If the regulator is disabled it will return the voltage value. This
2238 * function should not be used to determine regulator state.
2239 */
2240int regulator_get_voltage(struct regulator *regulator)
2241{
2242 int ret;
2243
2244 mutex_lock(&regulator->rdev->mutex);
2245
2246 ret = _regulator_get_voltage(regulator->rdev);
2247
2248 mutex_unlock(&regulator->rdev->mutex);
2249
2250 return ret;
2251}
2252EXPORT_SYMBOL_GPL(regulator_get_voltage);
2253
2254/**
2255 * regulator_set_current_limit - set regulator output current limit
2256 * @regulator: regulator source
2257 * @min_uA: Minimuum supported current in uA
2258 * @max_uA: Maximum supported current in uA
2259 *
2260 * Sets current sink to the desired output current. This can be set during
2261 * any regulator state. IOW, regulator can be disabled or enabled.
2262 *
2263 * If the regulator is enabled then the current will change to the new value
2264 * immediately otherwise if the regulator is disabled the regulator will
2265 * output at the new current when enabled.
2266 *
2267 * NOTE: Regulator system constraints must be set for this regulator before
2268 * calling this function otherwise this call will fail.
2269 */
2270int regulator_set_current_limit(struct regulator *regulator,
2271 int min_uA, int max_uA)
2272{
2273 struct regulator_dev *rdev = regulator->rdev;
2274 int ret;
2275
2276 mutex_lock(&rdev->mutex);
2277
2278 /* sanity check */
2279 if (!rdev->desc->ops->set_current_limit) {
2280 ret = -EINVAL;
2281 goto out;
2282 }
2283
2284 /* constraints check */
2285 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2286 if (ret < 0)
2287 goto out;
2288
2289 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2290out:
2291 mutex_unlock(&rdev->mutex);
2292 return ret;
2293}
2294EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2295
2296static int _regulator_get_current_limit(struct regulator_dev *rdev)
2297{
2298 int ret;
2299
2300 mutex_lock(&rdev->mutex);
2301
2302 /* sanity check */
2303 if (!rdev->desc->ops->get_current_limit) {
2304 ret = -EINVAL;
2305 goto out;
2306 }
2307
2308 ret = rdev->desc->ops->get_current_limit(rdev);
2309out:
2310 mutex_unlock(&rdev->mutex);
2311 return ret;
2312}
2313
2314/**
2315 * regulator_get_current_limit - get regulator output current
2316 * @regulator: regulator source
2317 *
2318 * This returns the current supplied by the specified current sink in uA.
2319 *
2320 * NOTE: If the regulator is disabled it will return the current value. This
2321 * function should not be used to determine regulator state.
2322 */
2323int regulator_get_current_limit(struct regulator *regulator)
2324{
2325 return _regulator_get_current_limit(regulator->rdev);
2326}
2327EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2328
2329/**
2330 * regulator_set_mode - set regulator operating mode
2331 * @regulator: regulator source
2332 * @mode: operating mode - one of the REGULATOR_MODE constants
2333 *
2334 * Set regulator operating mode to increase regulator efficiency or improve
2335 * regulation performance.
2336 *
2337 * NOTE: Regulator system constraints must be set for this regulator before
2338 * calling this function otherwise this call will fail.
2339 */
2340int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2341{
2342 struct regulator_dev *rdev = regulator->rdev;
2343 int ret;
500b4ac9 2344 int regulator_curr_mode;
414c70cb
LG
2345
2346 mutex_lock(&rdev->mutex);
2347
2348 /* sanity check */
2349 if (!rdev->desc->ops->set_mode) {
2350 ret = -EINVAL;
2351 goto out;
2352 }
2353
500b4ac9
SI
2354 /* return if the same mode is requested */
2355 if (rdev->desc->ops->get_mode) {
2356 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2357 if (regulator_curr_mode == mode) {
2358 ret = 0;
2359 goto out;
2360 }
2361 }
2362
414c70cb 2363 /* constraints check */
22c51b47 2364 ret = regulator_mode_constrain(rdev, &mode);
414c70cb
LG
2365 if (ret < 0)
2366 goto out;
2367
2368 ret = rdev->desc->ops->set_mode(rdev, mode);
2369out:
2370 mutex_unlock(&rdev->mutex);
2371 return ret;
2372}
2373EXPORT_SYMBOL_GPL(regulator_set_mode);
2374
2375static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2376{
2377 int ret;
2378
2379 mutex_lock(&rdev->mutex);
2380
2381 /* sanity check */
2382 if (!rdev->desc->ops->get_mode) {
2383 ret = -EINVAL;
2384 goto out;
2385 }
2386
2387 ret = rdev->desc->ops->get_mode(rdev);
2388out:
2389 mutex_unlock(&rdev->mutex);
2390 return ret;
2391}
2392
2393/**
2394 * regulator_get_mode - get regulator operating mode
2395 * @regulator: regulator source
2396 *
2397 * Get the current regulator operating mode.
2398 */
2399unsigned int regulator_get_mode(struct regulator *regulator)
2400{
2401 return _regulator_get_mode(regulator->rdev);
2402}
2403EXPORT_SYMBOL_GPL(regulator_get_mode);
2404
2405/**
2406 * regulator_set_optimum_mode - set regulator optimum operating mode
2407 * @regulator: regulator source
2408 * @uA_load: load current
2409 *
2410 * Notifies the regulator core of a new device load. This is then used by
2411 * DRMS (if enabled by constraints) to set the most efficient regulator
2412 * operating mode for the new regulator loading.
2413 *
2414 * Consumer devices notify their supply regulator of the maximum power
2415 * they will require (can be taken from device datasheet in the power
2416 * consumption tables) when they change operational status and hence power
2417 * state. Examples of operational state changes that can affect power
2418 * consumption are :-
2419 *
2420 * o Device is opened / closed.
2421 * o Device I/O is about to begin or has just finished.
2422 * o Device is idling in between work.
2423 *
2424 * This information is also exported via sysfs to userspace.
2425 *
2426 * DRMS will sum the total requested load on the regulator and change
2427 * to the most efficient operating mode if platform constraints allow.
2428 *
2429 * Returns the new regulator mode or error.
2430 */
2431int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2432{
2433 struct regulator_dev *rdev = regulator->rdev;
2434 struct regulator *consumer;
2435 int ret, output_uV, input_uV, total_uA_load = 0;
2436 unsigned int mode;
2437
2438 mutex_lock(&rdev->mutex);
2439
a4b41483
MB
2440 /*
2441 * first check to see if we can set modes at all, otherwise just
2442 * tell the consumer everything is OK.
2443 */
414c70cb
LG
2444 regulator->uA_load = uA_load;
2445 ret = regulator_check_drms(rdev);
a4b41483
MB
2446 if (ret < 0) {
2447 ret = 0;
414c70cb 2448 goto out;
a4b41483 2449 }
414c70cb 2450
414c70cb
LG
2451 if (!rdev->desc->ops->get_optimum_mode)
2452 goto out;
2453
a4b41483
MB
2454 /*
2455 * we can actually do this so any errors are indicators of
2456 * potential real failure.
2457 */
2458 ret = -EINVAL;
2459
854ccbae
AL
2460 if (!rdev->desc->ops->set_mode)
2461 goto out;
2462
414c70cb 2463 /* get output voltage */
1bf5a1f8 2464 output_uV = _regulator_get_voltage(rdev);
414c70cb 2465 if (output_uV <= 0) {
5da84fd9 2466 rdev_err(rdev, "invalid output voltage found\n");
414c70cb
LG
2467 goto out;
2468 }
2469
2470 /* get input voltage */
1bf5a1f8
MB
2471 input_uV = 0;
2472 if (rdev->supply)
3801b86a 2473 input_uV = regulator_get_voltage(rdev->supply);
1bf5a1f8 2474 if (input_uV <= 0)
414c70cb
LG
2475 input_uV = rdev->constraints->input_uV;
2476 if (input_uV <= 0) {
5da84fd9 2477 rdev_err(rdev, "invalid input voltage found\n");
414c70cb
LG
2478 goto out;
2479 }
2480
2481 /* calc total requested load for this regulator */
2482 list_for_each_entry(consumer, &rdev->consumer_list, list)
fa2984d4 2483 total_uA_load += consumer->uA_load;
414c70cb
LG
2484
2485 mode = rdev->desc->ops->get_optimum_mode(rdev,
2486 input_uV, output_uV,
2487 total_uA_load);
2c608234 2488 ret = regulator_mode_constrain(rdev, &mode);
e573520b 2489 if (ret < 0) {
5da84fd9
JP
2490 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2491 total_uA_load, input_uV, output_uV);
414c70cb
LG
2492 goto out;
2493 }
2494
2495 ret = rdev->desc->ops->set_mode(rdev, mode);
e573520b 2496 if (ret < 0) {
5da84fd9 2497 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
414c70cb
LG
2498 goto out;
2499 }
2500 ret = mode;
2501out:
2502 mutex_unlock(&rdev->mutex);
2503 return ret;
2504}
2505EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2506
2507/**
2508 * regulator_register_notifier - register regulator event notifier
2509 * @regulator: regulator source
69279fb9 2510 * @nb: notifier block
414c70cb
LG
2511 *
2512 * Register notifier block to receive regulator events.
2513 */
2514int regulator_register_notifier(struct regulator *regulator,
2515 struct notifier_block *nb)
2516{
2517 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2518 nb);
2519}
2520EXPORT_SYMBOL_GPL(regulator_register_notifier);
2521
2522/**
2523 * regulator_unregister_notifier - unregister regulator event notifier
2524 * @regulator: regulator source
69279fb9 2525 * @nb: notifier block
414c70cb
LG
2526 *
2527 * Unregister regulator event notifier block.
2528 */
2529int regulator_unregister_notifier(struct regulator *regulator,
2530 struct notifier_block *nb)
2531{
2532 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2533 nb);
2534}
2535EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2536
b136fb44
JC
2537/* notify regulator consumers and downstream regulator consumers.
2538 * Note mutex must be held by caller.
2539 */
414c70cb
LG
2540static void _notifier_call_chain(struct regulator_dev *rdev,
2541 unsigned long event, void *data)
2542{
414c70cb 2543 /* call rdev chain first */
414c70cb 2544 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
414c70cb
LG
2545}
2546
2547/**
2548 * regulator_bulk_get - get multiple regulator consumers
2549 *
2550 * @dev: Device to supply
2551 * @num_consumers: Number of consumers to register
2552 * @consumers: Configuration of consumers; clients are stored here.
2553 *
2554 * @return 0 on success, an errno on failure.
2555 *
2556 * This helper function allows drivers to get several regulator
2557 * consumers in one operation. If any of the regulators cannot be
2558 * acquired then any regulators that were allocated will be freed
2559 * before returning to the caller.
2560 */
2561int regulator_bulk_get(struct device *dev, int num_consumers,
2562 struct regulator_bulk_data *consumers)
2563{
2564 int i;
2565 int ret;
2566
2567 for (i = 0; i < num_consumers; i++)
2568 consumers[i].consumer = NULL;
2569
2570 for (i = 0; i < num_consumers; i++) {
2571 consumers[i].consumer = regulator_get(dev,
2572 consumers[i].supply);
2573 if (IS_ERR(consumers[i].consumer)) {
414c70cb 2574 ret = PTR_ERR(consumers[i].consumer);
5b307627
MB
2575 dev_err(dev, "Failed to get supply '%s': %d\n",
2576 consumers[i].supply, ret);
414c70cb
LG
2577 consumers[i].consumer = NULL;
2578 goto err;
2579 }
2580 }
2581
2582 return 0;
2583
2584err:
b29c7690 2585 while (--i >= 0)
414c70cb
LG
2586 regulator_put(consumers[i].consumer);
2587
2588 return ret;
2589}
2590EXPORT_SYMBOL_GPL(regulator_bulk_get);
2591
e6e74030
MB
2592/**
2593 * devm_regulator_bulk_get - managed get multiple regulator consumers
2594 *
2595 * @dev: Device to supply
2596 * @num_consumers: Number of consumers to register
2597 * @consumers: Configuration of consumers; clients are stored here.
2598 *
2599 * @return 0 on success, an errno on failure.
2600 *
2601 * This helper function allows drivers to get several regulator
2602 * consumers in one operation with management, the regulators will
2603 * automatically be freed when the device is unbound. If any of the
2604 * regulators cannot be acquired then any regulators that were
2605 * allocated will be freed before returning to the caller.
2606 */
2607int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2608 struct regulator_bulk_data *consumers)
2609{
2610 int i;
2611 int ret;
2612
2613 for (i = 0; i < num_consumers; i++)
2614 consumers[i].consumer = NULL;
2615
2616 for (i = 0; i < num_consumers; i++) {
2617 consumers[i].consumer = devm_regulator_get(dev,
2618 consumers[i].supply);
2619 if (IS_ERR(consumers[i].consumer)) {
2620 ret = PTR_ERR(consumers[i].consumer);
2621 dev_err(dev, "Failed to get supply '%s': %d\n",
2622 consumers[i].supply, ret);
2623 consumers[i].consumer = NULL;
2624 goto err;
2625 }
2626 }
2627
2628 return 0;
2629
2630err:
2631 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2632 devm_regulator_put(consumers[i].consumer);
2633
2634 return ret;
2635}
2636EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2637
f21e0e81
MB
2638static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2639{
2640 struct regulator_bulk_data *bulk = data;
2641
2642 bulk->ret = regulator_enable(bulk->consumer);
2643}
2644
414c70cb
LG
2645/**
2646 * regulator_bulk_enable - enable multiple regulator consumers
2647 *
2648 * @num_consumers: Number of consumers
2649 * @consumers: Consumer data; clients are stored here.
2650 * @return 0 on success, an errno on failure
2651 *
2652 * This convenience API allows consumers to enable multiple regulator
2653 * clients in a single API call. If any consumers cannot be enabled
2654 * then any others that were enabled will be disabled again prior to
2655 * return.
2656 */
2657int regulator_bulk_enable(int num_consumers,
2658 struct regulator_bulk_data *consumers)
2659{
f21e0e81 2660 LIST_HEAD(async_domain);
414c70cb 2661 int i;
f21e0e81 2662 int ret = 0;
414c70cb 2663
6492bc1b
MB
2664 for (i = 0; i < num_consumers; i++) {
2665 if (consumers[i].consumer->always_on)
2666 consumers[i].ret = 0;
2667 else
2668 async_schedule_domain(regulator_bulk_enable_async,
2669 &consumers[i], &async_domain);
2670 }
f21e0e81
MB
2671
2672 async_synchronize_full_domain(&async_domain);
2673
2674 /* If any consumer failed we need to unwind any that succeeded */
414c70cb 2675 for (i = 0; i < num_consumers; i++) {
f21e0e81
MB
2676 if (consumers[i].ret != 0) {
2677 ret = consumers[i].ret;
414c70cb 2678 goto err;
f21e0e81 2679 }
414c70cb
LG
2680 }
2681
2682 return 0;
2683
2684err:
b29c7690
AL
2685 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2686 while (--i >= 0)
2687 regulator_disable(consumers[i].consumer);
414c70cb
LG
2688
2689 return ret;
2690}
2691EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2692
2693/**
2694 * regulator_bulk_disable - disable multiple regulator consumers
2695 *
2696 * @num_consumers: Number of consumers
2697 * @consumers: Consumer data; clients are stored here.
2698 * @return 0 on success, an errno on failure
2699 *
2700 * This convenience API allows consumers to disable multiple regulator
49e22632
SN
2701 * clients in a single API call. If any consumers cannot be disabled
2702 * then any others that were disabled will be enabled again prior to
414c70cb
LG
2703 * return.
2704 */
2705int regulator_bulk_disable(int num_consumers,
2706 struct regulator_bulk_data *consumers)
2707{
2708 int i;
01e86f49 2709 int ret, r;
414c70cb 2710
49e22632 2711 for (i = num_consumers - 1; i >= 0; --i) {
414c70cb
LG
2712 ret = regulator_disable(consumers[i].consumer);
2713 if (ret != 0)
2714 goto err;
2715 }
2716
2717 return 0;
2718
2719err:
5da84fd9 2720 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
01e86f49
MB
2721 for (++i; i < num_consumers; ++i) {
2722 r = regulator_enable(consumers[i].consumer);
2723 if (r != 0)
2724 pr_err("Failed to reename %s: %d\n",
2725 consumers[i].supply, r);
2726 }
414c70cb
LG
2727
2728 return ret;
2729}
2730EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2731
e1de2f42
DK
2732/**
2733 * regulator_bulk_force_disable - force disable multiple regulator consumers
2734 *
2735 * @num_consumers: Number of consumers
2736 * @consumers: Consumer data; clients are stored here.
2737 * @return 0 on success, an errno on failure
2738 *
2739 * This convenience API allows consumers to forcibly disable multiple regulator
2740 * clients in a single API call.
2741 * NOTE: This should be used for situations when device damage will
2742 * likely occur if the regulators are not disabled (e.g. over temp).
2743 * Although regulator_force_disable function call for some consumers can
2744 * return error numbers, the function is called for all consumers.
2745 */
2746int regulator_bulk_force_disable(int num_consumers,
2747 struct regulator_bulk_data *consumers)
2748{
2749 int i;
2750 int ret;
2751
2752 for (i = 0; i < num_consumers; i++)
2753 consumers[i].ret =
2754 regulator_force_disable(consumers[i].consumer);
2755
2756 for (i = 0; i < num_consumers; i++) {
2757 if (consumers[i].ret != 0) {
2758 ret = consumers[i].ret;
2759 goto out;
2760 }
2761 }
2762
2763 return 0;
2764out:
2765 return ret;
2766}
2767EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2768
414c70cb
LG
2769/**
2770 * regulator_bulk_free - free multiple regulator consumers
2771 *
2772 * @num_consumers: Number of consumers
2773 * @consumers: Consumer data; clients are stored here.
2774 *
2775 * This convenience API allows consumers to free multiple regulator
2776 * clients in a single API call.
2777 */
2778void regulator_bulk_free(int num_consumers,
2779 struct regulator_bulk_data *consumers)
2780{
2781 int i;
2782
2783 for (i = 0; i < num_consumers; i++) {
2784 regulator_put(consumers[i].consumer);
2785 consumers[i].consumer = NULL;
2786 }
2787}
2788EXPORT_SYMBOL_GPL(regulator_bulk_free);
2789
2790/**
2791 * regulator_notifier_call_chain - call regulator event notifier
69279fb9 2792 * @rdev: regulator source
414c70cb 2793 * @event: notifier block
69279fb9 2794 * @data: callback-specific data.
414c70cb
LG
2795 *
2796 * Called by regulator drivers to notify clients a regulator event has
2797 * occurred. We also notify regulator clients downstream.
b136fb44 2798 * Note lock must be held by caller.
414c70cb
LG
2799 */
2800int regulator_notifier_call_chain(struct regulator_dev *rdev,
2801 unsigned long event, void *data)
2802{
2803 _notifier_call_chain(rdev, event, data);
2804 return NOTIFY_DONE;
2805
2806}
2807EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2808
be721979
MB
2809/**
2810 * regulator_mode_to_status - convert a regulator mode into a status
2811 *
2812 * @mode: Mode to convert
2813 *
2814 * Convert a regulator mode into a status.
2815 */
2816int regulator_mode_to_status(unsigned int mode)
2817{
2818 switch (mode) {
2819 case REGULATOR_MODE_FAST:
2820 return REGULATOR_STATUS_FAST;
2821 case REGULATOR_MODE_NORMAL:
2822 return REGULATOR_STATUS_NORMAL;
2823 case REGULATOR_MODE_IDLE:
2824 return REGULATOR_STATUS_IDLE;
2825 case REGULATOR_STATUS_STANDBY:
2826 return REGULATOR_STATUS_STANDBY;
2827 default:
2828 return 0;
2829 }
2830}
2831EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2832
7ad68e2f
DB
2833/*
2834 * To avoid cluttering sysfs (and memory) with useless state, only
2835 * create attributes that can be meaningfully displayed.
2836 */
2837static int add_regulator_attributes(struct regulator_dev *rdev)
2838{
2839 struct device *dev = &rdev->dev;
2840 struct regulator_ops *ops = rdev->desc->ops;
2841 int status = 0;
2842
2843 /* some attributes need specific methods to be displayed */
4c78899b
MB
2844 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2845 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
7ad68e2f
DB
2846 status = device_create_file(dev, &dev_attr_microvolts);
2847 if (status < 0)
2848 return status;
2849 }
2850 if (ops->get_current_limit) {
2851 status = device_create_file(dev, &dev_attr_microamps);
2852 if (status < 0)
2853 return status;
2854 }
2855 if (ops->get_mode) {
2856 status = device_create_file(dev, &dev_attr_opmode);
2857 if (status < 0)
2858 return status;
2859 }
2860 if (ops->is_enabled) {
2861 status = device_create_file(dev, &dev_attr_state);
2862 if (status < 0)
2863 return status;
2864 }
853116a1
DB
2865 if (ops->get_status) {
2866 status = device_create_file(dev, &dev_attr_status);
2867 if (status < 0)
2868 return status;
2869 }
7ad68e2f
DB
2870
2871 /* some attributes are type-specific */
2872 if (rdev->desc->type == REGULATOR_CURRENT) {
2873 status = device_create_file(dev, &dev_attr_requested_microamps);
2874 if (status < 0)
2875 return status;
2876 }
2877
2878 /* all the other attributes exist to support constraints;
2879 * don't show them if there are no constraints, or if the
2880 * relevant supporting methods are missing.
2881 */
2882 if (!rdev->constraints)
2883 return status;
2884
2885 /* constraints need specific supporting methods */
e8eef82b 2886 if (ops->set_voltage || ops->set_voltage_sel) {
7ad68e2f
DB
2887 status = device_create_file(dev, &dev_attr_min_microvolts);
2888 if (status < 0)
2889 return status;
2890 status = device_create_file(dev, &dev_attr_max_microvolts);
2891 if (status < 0)
2892 return status;
2893 }
2894 if (ops->set_current_limit) {
2895 status = device_create_file(dev, &dev_attr_min_microamps);
2896 if (status < 0)
2897 return status;
2898 status = device_create_file(dev, &dev_attr_max_microamps);
2899 if (status < 0)
2900 return status;
2901 }
2902
7ad68e2f
DB
2903 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2904 if (status < 0)
2905 return status;
2906 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2907 if (status < 0)
2908 return status;
2909 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2910 if (status < 0)
2911 return status;
2912
2913 if (ops->set_suspend_voltage) {
2914 status = device_create_file(dev,
2915 &dev_attr_suspend_standby_microvolts);
2916 if (status < 0)
2917 return status;
2918 status = device_create_file(dev,
2919 &dev_attr_suspend_mem_microvolts);
2920 if (status < 0)
2921 return status;
2922 status = device_create_file(dev,
2923 &dev_attr_suspend_disk_microvolts);
2924 if (status < 0)
2925 return status;
2926 }
2927
2928 if (ops->set_suspend_mode) {
2929 status = device_create_file(dev,
2930 &dev_attr_suspend_standby_mode);
2931 if (status < 0)
2932 return status;
2933 status = device_create_file(dev,
2934 &dev_attr_suspend_mem_mode);
2935 if (status < 0)
2936 return status;
2937 status = device_create_file(dev,
2938 &dev_attr_suspend_disk_mode);
2939 if (status < 0)
2940 return status;
2941 }
2942
2943 return status;
2944}
2945
1130e5b3
MB
2946static void rdev_init_debugfs(struct regulator_dev *rdev)
2947{
1130e5b3 2948 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
24751434 2949 if (!rdev->debugfs) {
1130e5b3 2950 rdev_warn(rdev, "Failed to create debugfs directory\n");
1130e5b3
MB
2951 return;
2952 }
2953
2954 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2955 &rdev->use_count);
2956 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2957 &rdev->open_count);
1130e5b3
MB
2958}
2959
414c70cb
LG
2960/**
2961 * regulator_register - register regulator
69279fb9 2962 * @regulator_desc: regulator to register
c172708d 2963 * @config: runtime configuration for regulator
414c70cb
LG
2964 *
2965 * Called by regulator drivers to register a regulator.
2966 * Returns 0 on success.
2967 */
65f26846
MB
2968struct regulator_dev *
2969regulator_register(const struct regulator_desc *regulator_desc,
c172708d 2970 const struct regulator_config *config)
414c70cb 2971{
9a8f5e07 2972 const struct regulation_constraints *constraints = NULL;
c172708d 2973 const struct regulator_init_data *init_data;
414c70cb
LG
2974 static atomic_t regulator_no = ATOMIC_INIT(0);
2975 struct regulator_dev *rdev;
32c8fad4 2976 struct device *dev;
a5766f11 2977 int ret, i;
69511a45 2978 const char *supply = NULL;
414c70cb 2979
c172708d 2980 if (regulator_desc == NULL || config == NULL)
414c70cb
LG
2981 return ERR_PTR(-EINVAL);
2982
32c8fad4 2983 dev = config->dev;
dcf70112 2984 WARN_ON(!dev);
32c8fad4 2985
414c70cb
LG
2986 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2987 return ERR_PTR(-EINVAL);
2988
cd78dfc6
DL
2989 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2990 regulator_desc->type != REGULATOR_CURRENT)
414c70cb
LG
2991 return ERR_PTR(-EINVAL);
2992
476c2d83
MB
2993 /* Only one of each should be implemented */
2994 WARN_ON(regulator_desc->ops->get_voltage &&
2995 regulator_desc->ops->get_voltage_sel);
e8eef82b
MB
2996 WARN_ON(regulator_desc->ops->set_voltage &&
2997 regulator_desc->ops->set_voltage_sel);
476c2d83
MB
2998
2999 /* If we're using selectors we must implement list_voltage. */
3000 if (regulator_desc->ops->get_voltage_sel &&
3001 !regulator_desc->ops->list_voltage) {
3002 return ERR_PTR(-EINVAL);
3003 }
e8eef82b
MB
3004 if (regulator_desc->ops->set_voltage_sel &&
3005 !regulator_desc->ops->list_voltage) {
3006 return ERR_PTR(-EINVAL);
3007 }
476c2d83 3008
c172708d
MB
3009 init_data = config->init_data;
3010
414c70cb
LG
3011 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3012 if (rdev == NULL)
3013 return ERR_PTR(-ENOMEM);
3014
3015 mutex_lock(&regulator_list_mutex);
3016
3017 mutex_init(&rdev->mutex);
c172708d 3018 rdev->reg_data = config->driver_data;
414c70cb
LG
3019 rdev->owner = regulator_desc->owner;
3020 rdev->desc = regulator_desc;
65b19ce6 3021 rdev->regmap = config->regmap;
414c70cb 3022 INIT_LIST_HEAD(&rdev->consumer_list);
414c70cb 3023 INIT_LIST_HEAD(&rdev->list);
414c70cb 3024 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
da07ecd9 3025 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
414c70cb 3026
a5766f11 3027 /* preform any regulator specific init */
9a8f5e07 3028 if (init_data && init_data->regulator_init) {
a5766f11 3029 ret = init_data->regulator_init(rdev->reg_data);
4fca9545
DB
3030 if (ret < 0)
3031 goto clean;
a5766f11
LG
3032 }
3033
a5766f11 3034 /* register with sysfs */
414c70cb 3035 rdev->dev.class = &regulator_class;
c172708d 3036 rdev->dev.of_node = config->of_node;
a5766f11 3037 rdev->dev.parent = dev;
812460a9
KS
3038 dev_set_name(&rdev->dev, "regulator.%d",
3039 atomic_inc_return(&regulator_no) - 1);
a5766f11 3040 ret = device_register(&rdev->dev);
ad7725cb
VK
3041 if (ret != 0) {
3042 put_device(&rdev->dev);
4fca9545 3043 goto clean;
ad7725cb 3044 }
a5766f11
LG
3045
3046 dev_set_drvdata(&rdev->dev, rdev);
3047
74f544c1 3048 /* set regulator constraints */
9a8f5e07
MB
3049 if (init_data)
3050 constraints = &init_data->constraints;
3051
3052 ret = set_machine_constraints(rdev, constraints);
74f544c1
MR
3053 if (ret < 0)
3054 goto scrub;
3055
7ad68e2f
DB
3056 /* add attributes supported by this regulator */
3057 ret = add_regulator_attributes(rdev);
3058 if (ret < 0)
3059 goto scrub;
3060
9a8f5e07 3061 if (init_data && init_data->supply_regulator)
69511a45
RN
3062 supply = init_data->supply_regulator;
3063 else if (regulator_desc->supply_name)
3064 supply = regulator_desc->supply_name;
3065
3066 if (supply) {
0178f3e2 3067 struct regulator_dev *r;
0178f3e2 3068
6d191a5f 3069 r = regulator_dev_lookup(dev, supply, &ret);
0178f3e2 3070
69511a45
RN
3071 if (!r) {
3072 dev_err(dev, "Failed to find supply %s\n", supply);
04bf3011 3073 ret = -EPROBE_DEFER;
0178f3e2
MB
3074 goto scrub;
3075 }
3076
3077 ret = set_supply(rdev, r);
3078 if (ret < 0)
3079 goto scrub;
b2296bd4
LD
3080
3081 /* Enable supply if rail is enabled */
3082 if (rdev->desc->ops->is_enabled &&
3083 rdev->desc->ops->is_enabled(rdev)) {
3084 ret = regulator_enable(rdev->supply);
3085 if (ret < 0)
3086 goto scrub;
3087 }
0178f3e2
MB
3088 }
3089
a5766f11 3090 /* add consumers devices */
9a8f5e07
MB
3091 if (init_data) {
3092 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3093 ret = set_consumer_device_supply(rdev,
9a8f5e07 3094 init_data->consumer_supplies[i].dev_name,
23c2f041 3095 init_data->consumer_supplies[i].supply);
9a8f5e07
MB
3096 if (ret < 0) {
3097 dev_err(dev, "Failed to set supply %s\n",
3098 init_data->consumer_supplies[i].supply);
3099 goto unset_supplies;
3100 }
23c2f041 3101 }
414c70cb 3102 }
a5766f11
LG
3103
3104 list_add(&rdev->list, &regulator_list);
1130e5b3
MB
3105
3106 rdev_init_debugfs(rdev);
a5766f11 3107out:
414c70cb
LG
3108 mutex_unlock(&regulator_list_mutex);
3109 return rdev;
4fca9545 3110
d4033b54
JN
3111unset_supplies:
3112 unset_regulator_supplies(rdev);
3113
4fca9545 3114scrub:
1a6958e7 3115 kfree(rdev->constraints);
4fca9545 3116 device_unregister(&rdev->dev);
53032daf
PW
3117 /* device core frees rdev */
3118 rdev = ERR_PTR(ret);
3119 goto out;
3120
4fca9545
DB
3121clean:
3122 kfree(rdev);
3123 rdev = ERR_PTR(ret);
3124 goto out;
414c70cb
LG
3125}
3126EXPORT_SYMBOL_GPL(regulator_register);
3127
3128/**
3129 * regulator_unregister - unregister regulator
69279fb9 3130 * @rdev: regulator to unregister
414c70cb
LG
3131 *
3132 * Called by regulator drivers to unregister a regulator.
3133 */
3134void regulator_unregister(struct regulator_dev *rdev)
3135{
3136 if (rdev == NULL)
3137 return;
3138
e032b376
MB
3139 if (rdev->supply)
3140 regulator_put(rdev->supply);
414c70cb 3141 mutex_lock(&regulator_list_mutex);
1130e5b3 3142 debugfs_remove_recursive(rdev->debugfs);
da07ecd9 3143 flush_work_sync(&rdev->disable_work.work);
6bf87d17 3144 WARN_ON(rdev->open_count);
0f1d747b 3145 unset_regulator_supplies(rdev);
414c70cb 3146 list_del(&rdev->list);
f8c12fe3 3147 kfree(rdev->constraints);
58fb5cf5 3148 device_unregister(&rdev->dev);
414c70cb
LG
3149 mutex_unlock(&regulator_list_mutex);
3150}
3151EXPORT_SYMBOL_GPL(regulator_unregister);
3152
414c70cb 3153/**
cf7bbcdf 3154 * regulator_suspend_prepare - prepare regulators for system wide suspend
414c70cb
LG
3155 * @state: system suspend state
3156 *
3157 * Configure each regulator with it's suspend operating parameters for state.
3158 * This will usually be called by machine suspend code prior to supending.
3159 */
3160int regulator_suspend_prepare(suspend_state_t state)
3161{
3162 struct regulator_dev *rdev;
3163 int ret = 0;
3164
3165 /* ON is handled by regulator active state */
3166 if (state == PM_SUSPEND_ON)
3167 return -EINVAL;
3168
3169 mutex_lock(&regulator_list_mutex);
3170 list_for_each_entry(rdev, &regulator_list, list) {
3171
3172 mutex_lock(&rdev->mutex);
3173 ret = suspend_prepare(rdev, state);
3174 mutex_unlock(&rdev->mutex);
3175
3176 if (ret < 0) {
5da84fd9 3177 rdev_err(rdev, "failed to prepare\n");
414c70cb
LG
3178 goto out;
3179 }
3180 }
3181out:
3182 mutex_unlock(&regulator_list_mutex);
3183 return ret;
3184}
3185EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3186
7a32b589
MH
3187/**
3188 * regulator_suspend_finish - resume regulators from system wide suspend
3189 *
3190 * Turn on regulators that might be turned off by regulator_suspend_prepare
3191 * and that should be turned on according to the regulators properties.
3192 */
3193int regulator_suspend_finish(void)
3194{
3195 struct regulator_dev *rdev;
3196 int ret = 0, error;
3197
3198 mutex_lock(&regulator_list_mutex);
3199 list_for_each_entry(rdev, &regulator_list, list) {
3200 struct regulator_ops *ops = rdev->desc->ops;
3201
3202 mutex_lock(&rdev->mutex);
3203 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3204 ops->enable) {
3205 error = ops->enable(rdev);
3206 if (error)
3207 ret = error;
3208 } else {
3209 if (!has_full_constraints)
3210 goto unlock;
3211 if (!ops->disable)
3212 goto unlock;
3213 if (ops->is_enabled && !ops->is_enabled(rdev))
3214 goto unlock;
3215
3216 error = ops->disable(rdev);
3217 if (error)
3218 ret = error;
3219 }
3220unlock:
3221 mutex_unlock(&rdev->mutex);
3222 }
3223 mutex_unlock(&regulator_list_mutex);
3224 return ret;
3225}
3226EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3227
ca725561
MB
3228/**
3229 * regulator_has_full_constraints - the system has fully specified constraints
3230 *
3231 * Calling this function will cause the regulator API to disable all
3232 * regulators which have a zero use count and don't have an always_on
3233 * constraint in a late_initcall.
3234 *
3235 * The intention is that this will become the default behaviour in a
3236 * future kernel release so users are encouraged to use this facility
3237 * now.
3238 */
3239void regulator_has_full_constraints(void)
3240{
3241 has_full_constraints = 1;
3242}
3243EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3244
688fe99a
MB
3245/**
3246 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3247 *
3248 * Calling this function will cause the regulator API to provide a
3249 * dummy regulator to consumers if no physical regulator is found,
3250 * allowing most consumers to proceed as though a regulator were
3251 * configured. This allows systems such as those with software
3252 * controllable regulators for the CPU core only to be brought up more
3253 * readily.
3254 */
3255void regulator_use_dummy_regulator(void)
3256{
3257 board_wants_dummy_regulator = true;
3258}
3259EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3260
414c70cb
LG
3261/**
3262 * rdev_get_drvdata - get rdev regulator driver data
69279fb9 3263 * @rdev: regulator
414c70cb
LG
3264 *
3265 * Get rdev regulator driver private data. This call can be used in the
3266 * regulator driver context.
3267 */
3268void *rdev_get_drvdata(struct regulator_dev *rdev)
3269{
3270 return rdev->reg_data;
3271}
3272EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3273
3274/**
3275 * regulator_get_drvdata - get regulator driver data
3276 * @regulator: regulator
3277 *
3278 * Get regulator driver private data. This call can be used in the consumer
3279 * driver context when non API regulator specific functions need to be called.
3280 */
3281void *regulator_get_drvdata(struct regulator *regulator)
3282{
3283 return regulator->rdev->reg_data;
3284}
3285EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3286
3287/**
3288 * regulator_set_drvdata - set regulator driver data
3289 * @regulator: regulator
3290 * @data: data
3291 */
3292void regulator_set_drvdata(struct regulator *regulator, void *data)
3293{
3294 regulator->rdev->reg_data = data;
3295}
3296EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3297
3298/**
3299 * regulator_get_id - get regulator ID
69279fb9 3300 * @rdev: regulator
414c70cb
LG
3301 */
3302int rdev_get_id(struct regulator_dev *rdev)
3303{
3304 return rdev->desc->id;
3305}
3306EXPORT_SYMBOL_GPL(rdev_get_id);
3307
a5766f11
LG
3308struct device *rdev_get_dev(struct regulator_dev *rdev)
3309{
3310 return &rdev->dev;
3311}
3312EXPORT_SYMBOL_GPL(rdev_get_dev);
3313
3314void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3315{
3316 return reg_init_data->driver_data;
3317}
3318EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3319
ba55a974
MB
3320#ifdef CONFIG_DEBUG_FS
3321static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3322 size_t count, loff_t *ppos)
3323{
3324 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3325 ssize_t len, ret = 0;
3326 struct regulator_map *map;
3327
3328 if (!buf)
3329 return -ENOMEM;
3330
3331 list_for_each_entry(map, &regulator_map_list, list) {
3332 len = snprintf(buf + ret, PAGE_SIZE - ret,
3333 "%s -> %s.%s\n",
3334 rdev_get_name(map->regulator), map->dev_name,
3335 map->supply);
3336 if (len >= 0)
3337 ret += len;
3338 if (ret > PAGE_SIZE) {
3339 ret = PAGE_SIZE;
3340 break;
3341 }
3342 }
3343
3344 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3345
3346 kfree(buf);
3347
3348 return ret;
3349}
24751434 3350#endif
ba55a974
MB
3351
3352static const struct file_operations supply_map_fops = {
24751434 3353#ifdef CONFIG_DEBUG_FS
ba55a974
MB
3354 .read = supply_map_read_file,
3355 .llseek = default_llseek,
ba55a974 3356#endif
24751434 3357};
ba55a974 3358
414c70cb
LG
3359static int __init regulator_init(void)
3360{
34abbd68
MB
3361 int ret;
3362
34abbd68
MB
3363 ret = class_register(&regulator_class);
3364
1130e5b3 3365 debugfs_root = debugfs_create_dir("regulator", NULL);
24751434 3366 if (!debugfs_root)
1130e5b3 3367 pr_warn("regulator: Failed to create debugfs directory\n");
ba55a974 3368
f4d562c6
MB
3369 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3370 &supply_map_fops);
1130e5b3 3371
34abbd68
MB
3372 regulator_dummy_init();
3373
3374 return ret;
414c70cb
LG
3375}
3376
3377/* init early to allow our consumers to complete system booting */
3378core_initcall(regulator_init);
ca725561
MB
3379
3380static int __init regulator_init_complete(void)
3381{
3382 struct regulator_dev *rdev;
3383 struct regulator_ops *ops;
3384 struct regulation_constraints *c;
3385 int enabled, ret;
ca725561
MB
3386
3387 mutex_lock(&regulator_list_mutex);
3388
3389 /* If we have a full configuration then disable any regulators
3390 * which are not in use or always_on. This will become the
3391 * default behaviour in the future.
3392 */
3393 list_for_each_entry(rdev, &regulator_list, list) {
3394 ops = rdev->desc->ops;
3395 c = rdev->constraints;
3396
f25e0b4f 3397 if (!ops->disable || (c && c->always_on))
ca725561
MB
3398 continue;
3399
3400 mutex_lock(&rdev->mutex);
3401
3402 if (rdev->use_count)
3403 goto unlock;
3404
3405 /* If we can't read the status assume it's on. */
3406 if (ops->is_enabled)
3407 enabled = ops->is_enabled(rdev);
3408 else
3409 enabled = 1;
3410
3411 if (!enabled)
3412 goto unlock;
3413
3414 if (has_full_constraints) {
3415 /* We log since this may kill the system if it
3416 * goes wrong. */
5da84fd9 3417 rdev_info(rdev, "disabling\n");
ca725561
MB
3418 ret = ops->disable(rdev);
3419 if (ret != 0) {
5da84fd9 3420 rdev_err(rdev, "couldn't disable: %d\n", ret);
ca725561
MB
3421 }
3422 } else {
3423 /* The intention is that in future we will
3424 * assume that full constraints are provided
3425 * so warn even if we aren't going to do
3426 * anything here.
3427 */
5da84fd9 3428 rdev_warn(rdev, "incomplete constraints, leaving on\n");
ca725561
MB
3429 }
3430
3431unlock:
3432 mutex_unlock(&rdev->mutex);
3433 }
3434
3435 mutex_unlock(&regulator_list_mutex);
3436
3437 return 0;
3438}
3439late_initcall(regulator_init_complete);