dm: dm-zoned: use __bio_add_page for adding single metadata page
[linux-block.git] / drivers / pwm / pwm-tegra.c
CommitLineData
16216333 1// SPDX-License-Identifier: GPL-2.0-or-later
0134b932
TR
2/*
3 * drivers/pwm/pwm-tegra.c
4 *
5 * Tegra pulse-width-modulation controller driver
6 *
1d7796bd 7 * Copyright (c) 2010-2020, NVIDIA Corporation.
0134b932 8 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
1d7796bd
SP
9 *
10 * Overview of Tegra Pulse Width Modulator Register:
11 * 1. 13-bit: Frequency division (SCALE)
12 * 2. 8-bit : Pulse division (DUTY)
13 * 3. 1-bit : Enable bit
14 *
15 * The PWM clock frequency is divided by 256 before subdividing it based
16 * on the programmable frequency division value to generate the required
17 * frequency for PWM output. The maximum output frequency that can be
18 * achieved is (max rate of source clock) / 256.
19 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
20 * 408 MHz/256 = 1.6 MHz.
21 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
22 *
23 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
24 * To achieve 100% duty cycle, program Bit [24] of this register to
25 * 1’b1. In which case the other bits [23:16] are set to don't care.
26 *
27 * Limitations:
28 * - When PWM is disabled, the output is driven to inactive.
29 * - It does not allow the current PWM period to complete and
30 * stops abruptly.
31 *
32 * - If the register is reconfigured while PWM is running,
33 * it does not complete the currently running period.
34 *
35 * - If the user input duty is beyond acceptible limits,
36 * -EINVAL is returned.
0134b932
TR
37 */
38
39#include <linux/clk.h>
40#include <linux/err.h>
41#include <linux/io.h>
42#include <linux/module.h>
43#include <linux/of.h>
e9be88a2 44#include <linux/of_device.h>
3da9b0fe 45#include <linux/pm_opp.h>
0134b932
TR
46#include <linux/pwm.h>
47#include <linux/platform_device.h>
4a813b26 48#include <linux/pinctrl/consumer.h>
3da9b0fe 49#include <linux/pm_runtime.h>
0134b932 50#include <linux/slab.h>
5dfbd2bd 51#include <linux/reset.h>
0134b932 52
3da9b0fe
DO
53#include <soc/tegra/common.h>
54
0134b932
TR
55#define PWM_ENABLE (1 << 31)
56#define PWM_DUTY_WIDTH 8
57#define PWM_DUTY_SHIFT 16
58#define PWM_SCALE_WIDTH 13
59#define PWM_SCALE_SHIFT 0
60
e9be88a2
LD
61struct tegra_pwm_soc {
62 unsigned int num_channels;
0527eb37
LD
63
64 /* Maximum IP frequency for given SoCs */
65 unsigned long max_frequency;
e9be88a2
LD
66};
67
0134b932 68struct tegra_pwm_chip {
e17c0b22
TR
69 struct pwm_chip chip;
70 struct device *dev;
0134b932 71
e17c0b22 72 struct clk *clk;
5dfbd2bd 73 struct reset_control*rst;
0134b932 74
46fa8bc0 75 unsigned long clk_rate;
1d7796bd 76 unsigned long min_period_ns;
46fa8bc0 77
4f57f5a0 78 void __iomem *regs;
e9be88a2
LD
79
80 const struct tegra_pwm_soc *soc;
0134b932
TR
81};
82
83static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
84{
85 return container_of(chip, struct tegra_pwm_chip, chip);
86}
87
f19460c1 88static inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset)
0134b932 89{
f19460c1 90 return readl(pc->regs + (offset << 4));
0134b932
TR
91}
92
f19460c1 93static inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value)
0134b932 94{
f19460c1 95 writel(value, pc->regs + (offset << 4));
0134b932
TR
96}
97
98static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
99 int duty_ns, int period_ns)
100{
101 struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
8c193f47 102 unsigned long long c = duty_ns;
1d7796bd 103 unsigned long rate, required_clk_rate;
0134b932
TR
104 u32 val = 0;
105 int err;
106
107 /*
108 * Convert from duty_ns / period_ns to a fixed number of duty ticks
109 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
110 * nearest integer during division.
111 */
b979ed53 112 c *= (1 << PWM_DUTY_WIDTH);
90241fb9 113 c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
0134b932
TR
114
115 val = (u32)c << PWM_DUTY_SHIFT;
116
1d7796bd
SP
117 /*
118 * min period = max clock limit >> PWM_DUTY_WIDTH
119 */
120 if (period_ns < pc->min_period_ns)
121 return -EINVAL;
122
0134b932
TR
123 /*
124 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
125 * cycles at the PWM clock rate will take period_ns nanoseconds.
1d7796bd
SP
126 *
127 * num_channels: If single instance of PWM controller has multiple
128 * channels (e.g. Tegra210 or older) then it is not possible to
129 * configure separate clock rates to each of the channels, in such
130 * case the value stored during probe will be referred.
131 *
132 * If every PWM controller instance has one channel respectively, i.e.
133 * nums_channels == 1 then only the clock rate can be modified
134 * dynamically (e.g. Tegra186 or Tegra194).
0134b932 135 */
1d7796bd
SP
136 if (pc->soc->num_channels == 1) {
137 /*
138 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
139 * with the maximum possible rate that the controller can
140 * provide. Any further lower value can be derived by setting
141 * PFM bits[0:12].
142 *
143 * required_clk_rate is a reference rate for source clock and
144 * it is derived based on user requested period. By setting the
145 * source clock rate as required_clk_rate, PWM controller will
146 * be able to configure the requested period.
147 */
dd1f1da4 148 required_clk_rate = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC << PWM_DUTY_WIDTH,
f2719461 149 period_ns);
1d7796bd 150
5eccd0d9
JH
151 if (required_clk_rate > clk_round_rate(pc->clk, required_clk_rate))
152 /*
153 * required_clk_rate is a lower bound for the input
154 * rate; for lower rates there is no value for PWM_SCALE
155 * that yields a period less than or equal to the
156 * requested period. Hence, for lower rates, double the
157 * required_clk_rate to get a clock rate that can meet
158 * the requested period.
159 */
160 required_clk_rate *= 2;
161
3da9b0fe 162 err = dev_pm_opp_set_rate(pc->dev, required_clk_rate);
1d7796bd
SP
163 if (err < 0)
164 return -EINVAL;
165
166 /* Store the new rate for further references */
167 pc->clk_rate = clk_get_rate(pc->clk);
168 }
169
250b76f4 170 /* Consider precision in PWM_SCALE_WIDTH rate calculation */
8c193f47
UKK
171 rate = mul_u64_u64_div_u64(pc->clk_rate, period_ns,
172 (u64)NSEC_PER_SEC << PWM_DUTY_WIDTH);
0134b932
TR
173
174 /*
175 * Since the actual PWM divider is the register's frequency divider
1d7796bd 176 * field plus 1, we need to decrement to get the correct value to
0134b932
TR
177 * write to the register.
178 */
179 if (rate > 0)
180 rate--;
8c193f47
UKK
181 else
182 return -EINVAL;
0134b932
TR
183
184 /*
185 * Make sure that the rate will fit in the register's frequency
186 * divider field.
187 */
188 if (rate >> PWM_SCALE_WIDTH)
189 return -EINVAL;
190
191 val |= rate << PWM_SCALE_SHIFT;
192
193 /*
194 * If the PWM channel is disabled, make sure to turn on the clock
195 * before writing the register. Otherwise, keep it enabled.
196 */
5c31252c 197 if (!pwm_is_enabled(pwm)) {
3da9b0fe
DO
198 err = pm_runtime_resume_and_get(pc->dev);
199 if (err)
0134b932
TR
200 return err;
201 } else
202 val |= PWM_ENABLE;
203
204 pwm_writel(pc, pwm->hwpwm, val);
205
206 /*
207 * If the PWM is not enabled, turn the clock off again to save power.
208 */
5c31252c 209 if (!pwm_is_enabled(pwm))
3da9b0fe 210 pm_runtime_put(pc->dev);
0134b932
TR
211
212 return 0;
213}
214
215static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
216{
217 struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
218 int rc = 0;
219 u32 val;
220
3da9b0fe
DO
221 rc = pm_runtime_resume_and_get(pc->dev);
222 if (rc)
0134b932
TR
223 return rc;
224
225 val = pwm_readl(pc, pwm->hwpwm);
226 val |= PWM_ENABLE;
227 pwm_writel(pc, pwm->hwpwm, val);
228
229 return 0;
230}
231
232static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
233{
234 struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
235 u32 val;
236
237 val = pwm_readl(pc, pwm->hwpwm);
238 val &= ~PWM_ENABLE;
239 pwm_writel(pc, pwm->hwpwm, val);
240
3da9b0fe 241 pm_runtime_put_sync(pc->dev);
0134b932
TR
242}
243
fd3ddd43
UKK
244static int tegra_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
245 const struct pwm_state *state)
246{
247 int err;
248 bool enabled = pwm->state.enabled;
249
250 if (state->polarity != PWM_POLARITY_NORMAL)
251 return -EINVAL;
252
253 if (!state->enabled) {
254 if (enabled)
255 tegra_pwm_disable(chip, pwm);
256
257 return 0;
258 }
259
260 err = tegra_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period);
261 if (err)
262 return err;
263
264 if (!enabled)
265 err = tegra_pwm_enable(chip, pwm);
266
267 return err;
268}
269
0134b932 270static const struct pwm_ops tegra_pwm_ops = {
fd3ddd43 271 .apply = tegra_pwm_apply,
0134b932
TR
272 .owner = THIS_MODULE,
273};
274
275static int tegra_pwm_probe(struct platform_device *pdev)
276{
f19460c1 277 struct tegra_pwm_chip *pc;
0134b932
TR
278 int ret;
279
f19460c1
UKK
280 pc = devm_kzalloc(&pdev->dev, sizeof(*pc), GFP_KERNEL);
281 if (!pc)
0134b932 282 return -ENOMEM;
0134b932 283
f19460c1
UKK
284 pc->soc = of_device_get_match_data(&pdev->dev);
285 pc->dev = &pdev->dev;
0134b932 286
f19460c1
UKK
287 pc->regs = devm_platform_ioremap_resource(pdev, 0);
288 if (IS_ERR(pc->regs))
289 return PTR_ERR(pc->regs);
0134b932 290
f19460c1 291 platform_set_drvdata(pdev, pc);
0134b932 292
f19460c1
UKK
293 pc->clk = devm_clk_get(&pdev->dev, NULL);
294 if (IS_ERR(pc->clk))
295 return PTR_ERR(pc->clk);
0134b932 296
3da9b0fe
DO
297 ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
298 if (ret)
299 return ret;
300
301 pm_runtime_enable(&pdev->dev);
302 ret = pm_runtime_resume_and_get(&pdev->dev);
303 if (ret)
304 return ret;
305
0527eb37 306 /* Set maximum frequency of the IP */
f19460c1 307 ret = dev_pm_opp_set_rate(pc->dev, pc->soc->max_frequency);
0527eb37
LD
308 if (ret < 0) {
309 dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
3da9b0fe 310 goto put_pm;
0527eb37
LD
311 }
312
313 /*
314 * The requested and configured frequency may differ due to
315 * clock register resolutions. Get the configured frequency
316 * so that PWM period can be calculated more accurately.
317 */
f19460c1 318 pc->clk_rate = clk_get_rate(pc->clk);
46fa8bc0 319
1d7796bd 320 /* Set minimum limit of PWM period for the IP */
f19460c1
UKK
321 pc->min_period_ns =
322 (NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
1d7796bd 323
f19460c1
UKK
324 pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
325 if (IS_ERR(pc->rst)) {
326 ret = PTR_ERR(pc->rst);
5dfbd2bd 327 dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
3da9b0fe 328 goto put_pm;
5dfbd2bd
RS
329 }
330
f19460c1 331 reset_control_deassert(pc->rst);
5dfbd2bd 332
f19460c1
UKK
333 pc->chip.dev = &pdev->dev;
334 pc->chip.ops = &tegra_pwm_ops;
335 pc->chip.npwm = pc->soc->num_channels;
0134b932 336
f19460c1 337 ret = pwmchip_add(&pc->chip);
0134b932
TR
338 if (ret < 0) {
339 dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
f19460c1 340 reset_control_assert(pc->rst);
3da9b0fe 341 goto put_pm;
0134b932
TR
342 }
343
3da9b0fe
DO
344 pm_runtime_put(&pdev->dev);
345
0134b932 346 return 0;
3da9b0fe
DO
347put_pm:
348 pm_runtime_put_sync_suspend(&pdev->dev);
349 pm_runtime_force_suspend(&pdev->dev);
350 return ret;
0134b932
TR
351}
352
e39cb6f9 353static void tegra_pwm_remove(struct platform_device *pdev)
0134b932
TR
354{
355 struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
5dfbd2bd 356
2f1a3bd4
UKK
357 pwmchip_remove(&pc->chip);
358
5dfbd2bd 359 reset_control_assert(pc->rst);
5dfbd2bd 360
3da9b0fe 361 pm_runtime_force_suspend(&pdev->dev);
0134b932
TR
362}
363
3da9b0fe 364static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
4a813b26 365{
3da9b0fe
DO
366 struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
367 int err;
368
369 clk_disable_unprepare(pc->clk);
370
371 err = pinctrl_pm_select_sleep_state(dev);
372 if (err) {
373 clk_prepare_enable(pc->clk);
374 return err;
375 }
376
377 return 0;
4a813b26
LD
378}
379
3da9b0fe 380static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
4a813b26 381{
3da9b0fe
DO
382 struct tegra_pwm_chip *pc = dev_get_drvdata(dev);
383 int err;
384
385 err = pinctrl_pm_select_default_state(dev);
386 if (err)
387 return err;
388
389 err = clk_prepare_enable(pc->clk);
390 if (err) {
391 pinctrl_pm_select_sleep_state(dev);
392 return err;
393 }
394
395 return 0;
4a813b26 396}
4a813b26 397
e9be88a2
LD
398static const struct tegra_pwm_soc tegra20_pwm_soc = {
399 .num_channels = 4,
0527eb37 400 .max_frequency = 48000000UL,
e9be88a2
LD
401};
402
403static const struct tegra_pwm_soc tegra186_pwm_soc = {
404 .num_channels = 1,
0527eb37 405 .max_frequency = 102000000UL,
e9be88a2
LD
406};
407
2d0c08fc
SP
408static const struct tegra_pwm_soc tegra194_pwm_soc = {
409 .num_channels = 1,
410 .max_frequency = 408000000UL,
411};
412
f1a8870a 413static const struct of_device_id tegra_pwm_of_match[] = {
e9be88a2
LD
414 { .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
415 { .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
2d0c08fc 416 { .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
140fd977
TR
417 { }
418};
140fd977 419MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
140fd977 420
4a813b26 421static const struct dev_pm_ops tegra_pwm_pm_ops = {
3da9b0fe
DO
422 SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
423 NULL)
424 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
425 pm_runtime_force_resume)
4a813b26
LD
426};
427
0134b932
TR
428static struct platform_driver tegra_pwm_driver = {
429 .driver = {
430 .name = "tegra-pwm",
838bf09d 431 .of_match_table = tegra_pwm_of_match,
4a813b26 432 .pm = &tegra_pwm_pm_ops,
0134b932
TR
433 },
434 .probe = tegra_pwm_probe,
e39cb6f9 435 .remove_new = tegra_pwm_remove,
0134b932
TR
436};
437
438module_platform_driver(tegra_pwm_driver);
439
440MODULE_LICENSE("GPL");
1d7796bd
SP
441MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
442MODULE_DESCRIPTION("Tegra PWM controller driver");
0134b932 443MODULE_ALIAS("platform:tegra-pwm");