ab8500_charger: Charger current step-up/down
[linux-2.6-block.git] / drivers / power / ab8500_fg.c
CommitLineData
13151631
AM
1/*
2 * Copyright (C) ST-Ericsson AB 2012
3 *
4 * Main and Back-up battery management driver.
5 *
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
9 * driver.
10 *
11 * License Terms: GNU General Public License v2
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
16 */
17
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/device.h>
21#include <linux/interrupt.h>
22#include <linux/platform_device.h>
23#include <linux/power_supply.h>
24#include <linux/kobject.h>
13151631 25#include <linux/slab.h>
13151631 26#include <linux/delay.h>
13151631 27#include <linux/time.h>
e0f1abeb 28#include <linux/of.h>
13151631 29#include <linux/completion.h>
e0f1abeb
R
30#include <linux/mfd/core.h>
31#include <linux/mfd/abx500.h>
32#include <linux/mfd/abx500/ab8500.h>
33#include <linux/mfd/abx500/ab8500-bm.h>
34#include <linux/mfd/abx500/ab8500-gpadc.h>
13151631
AM
35
36#define MILLI_TO_MICRO 1000
37#define FG_LSB_IN_MA 1627
38#define QLSB_NANO_AMP_HOURS_X10 1129
39#define INS_CURR_TIMEOUT (3 * HZ)
40
41#define SEC_TO_SAMPLE(S) (S * 4)
42
43#define NBR_AVG_SAMPLES 20
44
45#define LOW_BAT_CHECK_INTERVAL (2 * HZ)
46
47#define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
48#define BATT_OK_MIN 2360 /* mV */
49#define BATT_OK_INCREMENT 50 /* mV */
50#define BATT_OK_MAX_NR_INCREMENTS 0xE
51
52/* FG constants */
53#define BATT_OVV 0x01
54
55#define interpolate(x, x1, y1, x2, y2) \
56 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
57
58#define to_ab8500_fg_device_info(x) container_of((x), \
59 struct ab8500_fg, fg_psy);
60
61/**
62 * struct ab8500_fg_interrupts - ab8500 fg interupts
63 * @name: name of the interrupt
64 * @isr function pointer to the isr
65 */
66struct ab8500_fg_interrupts {
67 char *name;
68 irqreturn_t (*isr)(int irq, void *data);
69};
70
71enum ab8500_fg_discharge_state {
72 AB8500_FG_DISCHARGE_INIT,
73 AB8500_FG_DISCHARGE_INITMEASURING,
74 AB8500_FG_DISCHARGE_INIT_RECOVERY,
75 AB8500_FG_DISCHARGE_RECOVERY,
76 AB8500_FG_DISCHARGE_READOUT_INIT,
77 AB8500_FG_DISCHARGE_READOUT,
78 AB8500_FG_DISCHARGE_WAKEUP,
79};
80
81static char *discharge_state[] = {
82 "DISCHARGE_INIT",
83 "DISCHARGE_INITMEASURING",
84 "DISCHARGE_INIT_RECOVERY",
85 "DISCHARGE_RECOVERY",
86 "DISCHARGE_READOUT_INIT",
87 "DISCHARGE_READOUT",
88 "DISCHARGE_WAKEUP",
89};
90
91enum ab8500_fg_charge_state {
92 AB8500_FG_CHARGE_INIT,
93 AB8500_FG_CHARGE_READOUT,
94};
95
96static char *charge_state[] = {
97 "CHARGE_INIT",
98 "CHARGE_READOUT",
99};
100
101enum ab8500_fg_calibration_state {
102 AB8500_FG_CALIB_INIT,
103 AB8500_FG_CALIB_WAIT,
104 AB8500_FG_CALIB_END,
105};
106
107struct ab8500_fg_avg_cap {
108 int avg;
109 int samples[NBR_AVG_SAMPLES];
110 __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
111 int pos;
112 int nbr_samples;
113 int sum;
114};
115
116struct ab8500_fg_battery_capacity {
117 int max_mah_design;
118 int max_mah;
119 int mah;
120 int permille;
121 int level;
122 int prev_mah;
123 int prev_percent;
124 int prev_level;
125 int user_mah;
126};
127
128struct ab8500_fg_flags {
129 bool fg_enabled;
130 bool conv_done;
131 bool charging;
132 bool fully_charged;
133 bool force_full;
134 bool low_bat_delay;
135 bool low_bat;
136 bool bat_ovv;
137 bool batt_unknown;
138 bool calibrate;
139 bool user_cap;
140 bool batt_id_received;
141};
142
143struct inst_curr_result_list {
144 struct list_head list;
145 int *result;
146};
147
148/**
149 * struct ab8500_fg - ab8500 FG device information
150 * @dev: Pointer to the structure device
151 * @node: a list of AB8500 FGs, hence prepared for reentrance
152 * @irq holds the CCEOC interrupt number
153 * @vbat: Battery voltage in mV
154 * @vbat_nom: Nominal battery voltage in mV
155 * @inst_curr: Instantenous battery current in mA
156 * @avg_curr: Average battery current in mA
157 * @bat_temp battery temperature
158 * @fg_samples: Number of samples used in the FG accumulation
159 * @accu_charge: Accumulated charge from the last conversion
160 * @recovery_cnt: Counter for recovery mode
161 * @high_curr_cnt: Counter for high current mode
162 * @init_cnt: Counter for init mode
163 * @recovery_needed: Indicate if recovery is needed
164 * @high_curr_mode: Indicate if we're in high current mode
165 * @init_capacity: Indicate if initial capacity measuring should be done
166 * @turn_off_fg: True if fg was off before current measurement
167 * @calib_state State during offset calibration
168 * @discharge_state: Current discharge state
169 * @charge_state: Current charge state
170 * @ab8500_fg_complete Completion struct used for the instant current reading
171 * @flags: Structure for information about events triggered
172 * @bat_cap: Structure for battery capacity specific parameters
173 * @avg_cap: Average capacity filter
174 * @parent: Pointer to the struct ab8500
175 * @gpadc: Pointer to the struct gpadc
13151631
AM
176 * @bat: Pointer to the abx500_bm platform data
177 * @fg_psy: Structure that holds the FG specific battery properties
178 * @fg_wq: Work queue for running the FG algorithm
179 * @fg_periodic_work: Work to run the FG algorithm periodically
180 * @fg_low_bat_work: Work to check low bat condition
181 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
182 * @fg_work: Work to run the FG algorithm instantly
183 * @fg_acc_cur_work: Work to read the FG accumulator
184 * @fg_check_hw_failure_work: Work for checking HW state
185 * @cc_lock: Mutex for locking the CC
186 * @fg_kobject: Structure of type kobject
187 */
188struct ab8500_fg {
189 struct device *dev;
190 struct list_head node;
191 int irq;
192 int vbat;
193 int vbat_nom;
194 int inst_curr;
195 int avg_curr;
196 int bat_temp;
197 int fg_samples;
198 int accu_charge;
199 int recovery_cnt;
200 int high_curr_cnt;
201 int init_cnt;
202 bool recovery_needed;
203 bool high_curr_mode;
204 bool init_capacity;
205 bool turn_off_fg;
206 enum ab8500_fg_calibration_state calib_state;
207 enum ab8500_fg_discharge_state discharge_state;
208 enum ab8500_fg_charge_state charge_state;
209 struct completion ab8500_fg_complete;
210 struct ab8500_fg_flags flags;
211 struct ab8500_fg_battery_capacity bat_cap;
212 struct ab8500_fg_avg_cap avg_cap;
213 struct ab8500 *parent;
214 struct ab8500_gpadc *gpadc;
13151631
AM
215 struct abx500_bm_data *bat;
216 struct power_supply fg_psy;
217 struct workqueue_struct *fg_wq;
218 struct delayed_work fg_periodic_work;
219 struct delayed_work fg_low_bat_work;
220 struct delayed_work fg_reinit_work;
221 struct work_struct fg_work;
222 struct work_struct fg_acc_cur_work;
223 struct delayed_work fg_check_hw_failure_work;
224 struct mutex cc_lock;
225 struct kobject fg_kobject;
226};
227static LIST_HEAD(ab8500_fg_list);
228
229/**
230 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
231 * (i.e. the first fuel gauge in the instance list)
232 */
233struct ab8500_fg *ab8500_fg_get(void)
234{
235 struct ab8500_fg *fg;
236
237 if (list_empty(&ab8500_fg_list))
238 return NULL;
239
240 fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
241 return fg;
242}
243
244/* Main battery properties */
245static enum power_supply_property ab8500_fg_props[] = {
246 POWER_SUPPLY_PROP_VOLTAGE_NOW,
247 POWER_SUPPLY_PROP_CURRENT_NOW,
248 POWER_SUPPLY_PROP_CURRENT_AVG,
249 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
250 POWER_SUPPLY_PROP_ENERGY_FULL,
251 POWER_SUPPLY_PROP_ENERGY_NOW,
252 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
253 POWER_SUPPLY_PROP_CHARGE_FULL,
254 POWER_SUPPLY_PROP_CHARGE_NOW,
255 POWER_SUPPLY_PROP_CAPACITY,
256 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
257};
258
259/*
260 * This array maps the raw hex value to lowbat voltage used by the AB8500
261 * Values taken from the UM0836
262 */
263static int ab8500_fg_lowbat_voltage_map[] = {
264 2300 ,
265 2325 ,
266 2350 ,
267 2375 ,
268 2400 ,
269 2425 ,
270 2450 ,
271 2475 ,
272 2500 ,
273 2525 ,
274 2550 ,
275 2575 ,
276 2600 ,
277 2625 ,
278 2650 ,
279 2675 ,
280 2700 ,
281 2725 ,
282 2750 ,
283 2775 ,
284 2800 ,
285 2825 ,
286 2850 ,
287 2875 ,
288 2900 ,
289 2925 ,
290 2950 ,
291 2975 ,
292 3000 ,
293 3025 ,
294 3050 ,
295 3075 ,
296 3100 ,
297 3125 ,
298 3150 ,
299 3175 ,
300 3200 ,
301 3225 ,
302 3250 ,
303 3275 ,
304 3300 ,
305 3325 ,
306 3350 ,
307 3375 ,
308 3400 ,
309 3425 ,
310 3450 ,
311 3475 ,
312 3500 ,
313 3525 ,
314 3550 ,
315 3575 ,
316 3600 ,
317 3625 ,
318 3650 ,
319 3675 ,
320 3700 ,
321 3725 ,
322 3750 ,
323 3775 ,
324 3800 ,
325 3825 ,
326 3850 ,
327 3850 ,
328};
329
330static u8 ab8500_volt_to_regval(int voltage)
331{
332 int i;
333
334 if (voltage < ab8500_fg_lowbat_voltage_map[0])
335 return 0;
336
337 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
338 if (voltage < ab8500_fg_lowbat_voltage_map[i])
339 return (u8) i - 1;
340 }
341
342 /* If not captured above, return index of last element */
343 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
344}
345
346/**
347 * ab8500_fg_is_low_curr() - Low or high current mode
348 * @di: pointer to the ab8500_fg structure
349 * @curr: the current to base or our decision on
350 *
351 * Low current mode if the current consumption is below a certain threshold
352 */
353static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
354{
355 /*
356 * We want to know if we're in low current mode
357 */
358 if (curr > -di->bat->fg_params->high_curr_threshold)
359 return true;
360 else
361 return false;
362}
363
364/**
365 * ab8500_fg_add_cap_sample() - Add capacity to average filter
366 * @di: pointer to the ab8500_fg structure
367 * @sample: the capacity in mAh to add to the filter
368 *
369 * A capacity is added to the filter and a new mean capacity is calculated and
370 * returned
371 */
372static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
373{
374 struct timespec ts;
375 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
376
377 getnstimeofday(&ts);
378
379 do {
380 avg->sum += sample - avg->samples[avg->pos];
381 avg->samples[avg->pos] = sample;
382 avg->time_stamps[avg->pos] = ts.tv_sec;
383 avg->pos++;
384
385 if (avg->pos == NBR_AVG_SAMPLES)
386 avg->pos = 0;
387
388 if (avg->nbr_samples < NBR_AVG_SAMPLES)
389 avg->nbr_samples++;
390
391 /*
392 * Check the time stamp for each sample. If too old,
393 * replace with latest sample
394 */
395 } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
396
397 avg->avg = avg->sum / avg->nbr_samples;
398
399 return avg->avg;
400}
401
402/**
403 * ab8500_fg_clear_cap_samples() - Clear average filter
404 * @di: pointer to the ab8500_fg structure
405 *
406 * The capacity filter is is reset to zero.
407 */
408static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
409{
410 int i;
411 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
412
413 avg->pos = 0;
414 avg->nbr_samples = 0;
415 avg->sum = 0;
416 avg->avg = 0;
417
418 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
419 avg->samples[i] = 0;
420 avg->time_stamps[i] = 0;
421 }
422}
423
424/**
425 * ab8500_fg_fill_cap_sample() - Fill average filter
426 * @di: pointer to the ab8500_fg structure
427 * @sample: the capacity in mAh to fill the filter with
428 *
429 * The capacity filter is filled with a capacity in mAh
430 */
431static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
432{
433 int i;
434 struct timespec ts;
435 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
436
437 getnstimeofday(&ts);
438
439 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
440 avg->samples[i] = sample;
441 avg->time_stamps[i] = ts.tv_sec;
442 }
443
444 avg->pos = 0;
445 avg->nbr_samples = NBR_AVG_SAMPLES;
446 avg->sum = sample * NBR_AVG_SAMPLES;
447 avg->avg = sample;
448}
449
450/**
451 * ab8500_fg_coulomb_counter() - enable coulomb counter
452 * @di: pointer to the ab8500_fg structure
453 * @enable: enable/disable
454 *
455 * Enable/Disable coulomb counter.
456 * On failure returns negative value.
457 */
458static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
459{
460 int ret = 0;
461 mutex_lock(&di->cc_lock);
462 if (enable) {
463 /* To be able to reprogram the number of samples, we have to
464 * first stop the CC and then enable it again */
465 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
466 AB8500_RTC_CC_CONF_REG, 0x00);
467 if (ret)
468 goto cc_err;
469
470 /* Program the samples */
471 ret = abx500_set_register_interruptible(di->dev,
472 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
473 di->fg_samples);
474 if (ret)
475 goto cc_err;
476
477 /* Start the CC */
478 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
479 AB8500_RTC_CC_CONF_REG,
480 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
481 if (ret)
482 goto cc_err;
483
484 di->flags.fg_enabled = true;
485 } else {
486 /* Clear any pending read requests */
487 ret = abx500_set_register_interruptible(di->dev,
488 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
489 if (ret)
490 goto cc_err;
491
492 ret = abx500_set_register_interruptible(di->dev,
493 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
494 if (ret)
495 goto cc_err;
496
497 /* Stop the CC */
498 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
499 AB8500_RTC_CC_CONF_REG, 0);
500 if (ret)
501 goto cc_err;
502
503 di->flags.fg_enabled = false;
504
505 }
506 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
507 enable, di->fg_samples);
508
509 mutex_unlock(&di->cc_lock);
510
511 return ret;
512cc_err:
513 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
514 mutex_unlock(&di->cc_lock);
515 return ret;
516}
517
518/**
519 * ab8500_fg_inst_curr_start() - start battery instantaneous current
520 * @di: pointer to the ab8500_fg structure
521 *
522 * Returns 0 or error code
523 * Note: This is part "one" and has to be called before
524 * ab8500_fg_inst_curr_finalize()
525 */
526 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
527{
528 u8 reg_val;
529 int ret;
530
531 mutex_lock(&di->cc_lock);
532
533 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
534 AB8500_RTC_CC_CONF_REG, &reg_val);
535 if (ret < 0)
536 goto fail;
537
538 if (!(reg_val & CC_PWR_UP_ENA)) {
539 dev_dbg(di->dev, "%s Enable FG\n", __func__);
540 di->turn_off_fg = true;
541
542 /* Program the samples */
543 ret = abx500_set_register_interruptible(di->dev,
544 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
545 SEC_TO_SAMPLE(10));
546 if (ret)
547 goto fail;
548
549 /* Start the CC */
550 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
551 AB8500_RTC_CC_CONF_REG,
552 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
553 if (ret)
554 goto fail;
555 } else {
556 di->turn_off_fg = false;
557 }
558
559 /* Return and WFI */
560 INIT_COMPLETION(di->ab8500_fg_complete);
561 enable_irq(di->irq);
562
563 /* Note: cc_lock is still locked */
564 return 0;
565fail:
566 mutex_unlock(&di->cc_lock);
567 return ret;
568}
569
570/**
571 * ab8500_fg_inst_curr_done() - check if fg conversion is done
572 * @di: pointer to the ab8500_fg structure
573 *
574 * Returns 1 if conversion done, 0 if still waiting
575 */
576int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
577{
578 return completion_done(&di->ab8500_fg_complete);
579}
580
581/**
582 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
583 * @di: pointer to the ab8500_fg structure
584 * @res: battery instantenous current(on success)
585 *
586 * Returns 0 or an error code
587 * Note: This is part "two" and has to be called at earliest 250 ms
588 * after ab8500_fg_inst_curr_start()
589 */
590int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
591{
592 u8 low, high;
593 int val;
594 int ret;
595 int timeout;
596
597 if (!completion_done(&di->ab8500_fg_complete)) {
598 timeout = wait_for_completion_timeout(&di->ab8500_fg_complete,
599 INS_CURR_TIMEOUT);
600 dev_dbg(di->dev, "Finalize time: %d ms\n",
601 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
602 if (!timeout) {
603 ret = -ETIME;
604 disable_irq(di->irq);
605 dev_err(di->dev, "completion timed out [%d]\n",
606 __LINE__);
607 goto fail;
608 }
609 }
610
611 disable_irq(di->irq);
612
613 ret = abx500_mask_and_set_register_interruptible(di->dev,
614 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
615 READ_REQ, READ_REQ);
616
617 /* 100uS between read request and read is needed */
618 usleep_range(100, 100);
619
620 /* Read CC Sample conversion value Low and high */
621 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
622 AB8500_GASG_CC_SMPL_CNVL_REG, &low);
623 if (ret < 0)
624 goto fail;
625
626 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
627 AB8500_GASG_CC_SMPL_CNVH_REG, &high);
628 if (ret < 0)
629 goto fail;
630
631 /*
632 * negative value for Discharging
633 * convert 2's compliment into decimal
634 */
635 if (high & 0x10)
636 val = (low | (high << 8) | 0xFFFFE000);
637 else
638 val = (low | (high << 8));
639
640 /*
641 * Convert to unit value in mA
642 * Full scale input voltage is
643 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
644 * Given a 250ms conversion cycle time the LSB corresponds
645 * to 112.9 nAh. Convert to current by dividing by the conversion
646 * time in hours (250ms = 1 / (3600 * 4)h)
647 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
648 */
649 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
650 (1000 * di->bat->fg_res);
651
652 if (di->turn_off_fg) {
653 dev_dbg(di->dev, "%s Disable FG\n", __func__);
654
655 /* Clear any pending read requests */
656 ret = abx500_set_register_interruptible(di->dev,
657 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
658 if (ret)
659 goto fail;
660
661 /* Stop the CC */
662 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
663 AB8500_RTC_CC_CONF_REG, 0);
664 if (ret)
665 goto fail;
666 }
667 mutex_unlock(&di->cc_lock);
668 (*res) = val;
669
670 return 0;
671fail:
672 mutex_unlock(&di->cc_lock);
673 return ret;
674}
675
676/**
677 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
678 * @di: pointer to the ab8500_fg structure
679 * @res: battery instantenous current(on success)
680 *
681 * Returns 0 else error code
682 */
683int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
684{
685 int ret;
686 int res = 0;
687
688 ret = ab8500_fg_inst_curr_start(di);
689 if (ret) {
690 dev_err(di->dev, "Failed to initialize fg_inst\n");
691 return 0;
692 }
693
694 ret = ab8500_fg_inst_curr_finalize(di, &res);
695 if (ret) {
696 dev_err(di->dev, "Failed to finalize fg_inst\n");
697 return 0;
698 }
699
700 return res;
701}
702
703/**
704 * ab8500_fg_acc_cur_work() - average battery current
705 * @work: pointer to the work_struct structure
706 *
707 * Updated the average battery current obtained from the
708 * coulomb counter.
709 */
710static void ab8500_fg_acc_cur_work(struct work_struct *work)
711{
712 int val;
713 int ret;
714 u8 low, med, high;
715
716 struct ab8500_fg *di = container_of(work,
717 struct ab8500_fg, fg_acc_cur_work);
718
719 mutex_lock(&di->cc_lock);
720 ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
721 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
722 if (ret)
723 goto exit;
724
725 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
726 AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
727 if (ret < 0)
728 goto exit;
729
730 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
731 AB8500_GASG_CC_NCOV_ACCU_MED, &med);
732 if (ret < 0)
733 goto exit;
734
735 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
736 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
737 if (ret < 0)
738 goto exit;
739
740 /* Check for sign bit in case of negative value, 2's compliment */
741 if (high & 0x10)
742 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
743 else
744 val = (low | (med << 8) | (high << 16));
745
746 /*
747 * Convert to uAh
748 * Given a 250ms conversion cycle time the LSB corresponds
749 * to 112.9 nAh.
750 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
751 */
752 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
753 (100 * di->bat->fg_res);
754
755 /*
756 * Convert to unit value in mA
757 * Full scale input voltage is
758 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
759 * Given a 250ms conversion cycle time the LSB corresponds
760 * to 112.9 nAh. Convert to current by dividing by the conversion
761 * time in hours (= samples / (3600 * 4)h)
762 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
763 */
764 di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
765 (1000 * di->bat->fg_res * (di->fg_samples / 4));
766
767 di->flags.conv_done = true;
768
769 mutex_unlock(&di->cc_lock);
770
771 queue_work(di->fg_wq, &di->fg_work);
772
773 return;
774exit:
775 dev_err(di->dev,
776 "Failed to read or write gas gauge registers\n");
777 mutex_unlock(&di->cc_lock);
778 queue_work(di->fg_wq, &di->fg_work);
779}
780
781/**
782 * ab8500_fg_bat_voltage() - get battery voltage
783 * @di: pointer to the ab8500_fg structure
784 *
785 * Returns battery voltage(on success) else error code
786 */
787static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
788{
789 int vbat;
790 static int prev;
791
792 vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
793 if (vbat < 0) {
794 dev_err(di->dev,
795 "%s gpadc conversion failed, using previous value\n",
796 __func__);
797 return prev;
798 }
799
800 prev = vbat;
801 return vbat;
802}
803
804/**
805 * ab8500_fg_volt_to_capacity() - Voltage based capacity
806 * @di: pointer to the ab8500_fg structure
807 * @voltage: The voltage to convert to a capacity
808 *
809 * Returns battery capacity in per mille based on voltage
810 */
811static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
812{
813 int i, tbl_size;
450ceb2b 814 struct abx500_v_to_cap *tbl;
13151631
AM
815 int cap = 0;
816
817 tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl,
818 tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements;
819
820 for (i = 0; i < tbl_size; ++i) {
821 if (voltage > tbl[i].voltage)
822 break;
823 }
824
825 if ((i > 0) && (i < tbl_size)) {
826 cap = interpolate(voltage,
827 tbl[i].voltage,
828 tbl[i].capacity * 10,
829 tbl[i-1].voltage,
830 tbl[i-1].capacity * 10);
831 } else if (i == 0) {
832 cap = 1000;
833 } else {
834 cap = 0;
835 }
836
837 dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
838 __func__, voltage, cap);
839
840 return cap;
841}
842
843/**
844 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
845 * @di: pointer to the ab8500_fg structure
846 *
847 * Returns battery capacity based on battery voltage that is not compensated
848 * for the voltage drop due to the load
849 */
850static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
851{
852 di->vbat = ab8500_fg_bat_voltage(di);
853 return ab8500_fg_volt_to_capacity(di, di->vbat);
854}
855
856/**
857 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
858 * @di: pointer to the ab8500_fg structure
859 *
860 * Returns battery inner resistance added with the fuel gauge resistor value
861 * to get the total resistance in the whole link from gnd to bat+ node.
862 */
863static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
864{
865 int i, tbl_size;
866 struct batres_vs_temp *tbl;
867 int resist = 0;
868
869 tbl = di->bat->bat_type[di->bat->batt_id].batres_tbl;
870 tbl_size = di->bat->bat_type[di->bat->batt_id].n_batres_tbl_elements;
871
872 for (i = 0; i < tbl_size; ++i) {
873 if (di->bat_temp / 10 > tbl[i].temp)
874 break;
875 }
876
877 if ((i > 0) && (i < tbl_size)) {
878 resist = interpolate(di->bat_temp / 10,
879 tbl[i].temp,
880 tbl[i].resist,
881 tbl[i-1].temp,
882 tbl[i-1].resist);
883 } else if (i == 0) {
884 resist = tbl[0].resist;
885 } else {
886 resist = tbl[tbl_size - 1].resist;
887 }
888
889 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
890 " fg resistance %d, total: %d (mOhm)\n",
891 __func__, di->bat_temp, resist, di->bat->fg_res / 10,
892 (di->bat->fg_res / 10) + resist);
893
894 /* fg_res variable is in 0.1mOhm */
895 resist += di->bat->fg_res / 10;
896
897 return resist;
898}
899
900/**
901 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
902 * @di: pointer to the ab8500_fg structure
903 *
904 * Returns battery capacity based on battery voltage that is load compensated
905 * for the voltage drop
906 */
907static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
908{
909 int vbat_comp, res;
910 int i = 0;
911 int vbat = 0;
912
913 ab8500_fg_inst_curr_start(di);
914
915 do {
916 vbat += ab8500_fg_bat_voltage(di);
917 i++;
918 msleep(5);
919 } while (!ab8500_fg_inst_curr_done(di));
920
921 ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
922
923 di->vbat = vbat / i;
924 res = ab8500_fg_battery_resistance(di);
925
926 /* Use Ohms law to get the load compensated voltage */
927 vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
928
929 dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
930 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
931 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
932
933 return ab8500_fg_volt_to_capacity(di, vbat_comp);
934}
935
936/**
937 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
938 * @di: pointer to the ab8500_fg structure
939 * @cap_mah: capacity in mAh
940 *
941 * Converts capacity in mAh to capacity in permille
942 */
943static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
944{
945 return (cap_mah * 1000) / di->bat_cap.max_mah_design;
946}
947
948/**
949 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
950 * @di: pointer to the ab8500_fg structure
951 * @cap_pm: capacity in permille
952 *
953 * Converts capacity in permille to capacity in mAh
954 */
955static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
956{
957 return cap_pm * di->bat_cap.max_mah_design / 1000;
958}
959
960/**
961 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
962 * @di: pointer to the ab8500_fg structure
963 * @cap_mah: capacity in mAh
964 *
965 * Converts capacity in mAh to capacity in uWh
966 */
967static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
968{
969 u64 div_res;
970 u32 div_rem;
971
972 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
973 div_rem = do_div(div_res, 1000);
974
975 /* Make sure to round upwards if necessary */
976 if (div_rem >= 1000 / 2)
977 div_res++;
978
979 return (int) div_res;
980}
981
982/**
983 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
984 * @di: pointer to the ab8500_fg structure
985 *
986 * Return the capacity in mAh based on previous calculated capcity and the FG
987 * accumulator register value. The filter is filled with this capacity
988 */
989static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
990{
991 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
992 __func__,
993 di->bat_cap.mah,
994 di->accu_charge);
995
996 /* Capacity should not be less than 0 */
997 if (di->bat_cap.mah + di->accu_charge > 0)
998 di->bat_cap.mah += di->accu_charge;
999 else
1000 di->bat_cap.mah = 0;
1001 /*
1002 * We force capacity to 100% once when the algorithm
1003 * reports that it's full.
1004 */
1005 if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1006 di->flags.force_full) {
1007 di->bat_cap.mah = di->bat_cap.max_mah_design;
1008 }
1009
1010 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1011 di->bat_cap.permille =
1012 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1013
1014 /* We need to update battery voltage and inst current when charging */
1015 di->vbat = ab8500_fg_bat_voltage(di);
1016 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1017
1018 return di->bat_cap.mah;
1019}
1020
1021/**
1022 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1023 * @di: pointer to the ab8500_fg structure
1024 * @comp: if voltage should be load compensated before capacity calc
1025 *
1026 * Return the capacity in mAh based on the battery voltage. The voltage can
1027 * either be load compensated or not. This value is added to the filter and a
1028 * new mean value is calculated and returned.
1029 */
1030static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1031{
1032 int permille, mah;
1033
1034 if (comp)
1035 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1036 else
1037 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1038
1039 mah = ab8500_fg_convert_permille_to_mah(di, permille);
1040
1041 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1042 di->bat_cap.permille =
1043 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1044
1045 return di->bat_cap.mah;
1046}
1047
1048/**
1049 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1050 * @di: pointer to the ab8500_fg structure
1051 *
1052 * Return the capacity in mAh based on previous calculated capcity and the FG
1053 * accumulator register value. This value is added to the filter and a
1054 * new mean value is calculated and returned.
1055 */
1056static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1057{
1058 int permille_volt, permille;
1059
1060 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1061 __func__,
1062 di->bat_cap.mah,
1063 di->accu_charge);
1064
1065 /* Capacity should not be less than 0 */
1066 if (di->bat_cap.mah + di->accu_charge > 0)
1067 di->bat_cap.mah += di->accu_charge;
1068 else
1069 di->bat_cap.mah = 0;
1070
1071 if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1072 di->bat_cap.mah = di->bat_cap.max_mah_design;
1073
1074 /*
1075 * Check against voltage based capacity. It can not be lower
1076 * than what the uncompensated voltage says
1077 */
1078 permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1079 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1080
1081 if (permille < permille_volt) {
1082 di->bat_cap.permille = permille_volt;
1083 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1084 di->bat_cap.permille);
1085
1086 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1087 __func__,
1088 permille,
1089 permille_volt);
1090
1091 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1092 } else {
1093 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1094 di->bat_cap.permille =
1095 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1096 }
1097
1098 return di->bat_cap.mah;
1099}
1100
1101/**
1102 * ab8500_fg_capacity_level() - Get the battery capacity level
1103 * @di: pointer to the ab8500_fg structure
1104 *
1105 * Get the battery capacity level based on the capacity in percent
1106 */
1107static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1108{
1109 int ret, percent;
1110
1111 percent = di->bat_cap.permille / 10;
1112
1113 if (percent <= di->bat->cap_levels->critical ||
1114 di->flags.low_bat)
1115 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1116 else if (percent <= di->bat->cap_levels->low)
1117 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1118 else if (percent <= di->bat->cap_levels->normal)
1119 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1120 else if (percent <= di->bat->cap_levels->high)
1121 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1122 else
1123 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1124
1125 return ret;
1126}
1127
1128/**
1129 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1130 * @di: pointer to the ab8500_fg structure
1131 * @init: capacity is allowed to go up in init mode
1132 *
1133 * Check if capacity or capacity limit has changed and notify the system
1134 * about it using the power_supply framework
1135 */
1136static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1137{
1138 bool changed = false;
1139
1140 di->bat_cap.level = ab8500_fg_capacity_level(di);
1141
1142 if (di->bat_cap.level != di->bat_cap.prev_level) {
1143 /*
1144 * We do not allow reported capacity level to go up
1145 * unless we're charging or if we're in init
1146 */
1147 if (!(!di->flags.charging && di->bat_cap.level >
1148 di->bat_cap.prev_level) || init) {
1149 dev_dbg(di->dev, "level changed from %d to %d\n",
1150 di->bat_cap.prev_level,
1151 di->bat_cap.level);
1152 di->bat_cap.prev_level = di->bat_cap.level;
1153 changed = true;
1154 } else {
1155 dev_dbg(di->dev, "level not allowed to go up "
1156 "since no charger is connected: %d to %d\n",
1157 di->bat_cap.prev_level,
1158 di->bat_cap.level);
1159 }
1160 }
1161
1162 /*
1163 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1164 * shutdown
1165 */
1166 if (di->flags.low_bat) {
1167 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1168 di->bat_cap.prev_percent = 0;
1169 di->bat_cap.permille = 0;
1170 di->bat_cap.prev_mah = 0;
1171 di->bat_cap.mah = 0;
1172 changed = true;
1173 } else if (di->flags.fully_charged) {
1174 /*
1175 * We report 100% if algorithm reported fully charged
1176 * unless capacity drops too much
1177 */
1178 if (di->flags.force_full) {
1179 di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1180 di->bat_cap.prev_mah = di->bat_cap.mah;
1181 } else if (!di->flags.force_full &&
1182 di->bat_cap.prev_percent !=
1183 (di->bat_cap.permille) / 10 &&
1184 (di->bat_cap.permille / 10) <
1185 di->bat->fg_params->maint_thres) {
1186 dev_dbg(di->dev,
1187 "battery reported full "
1188 "but capacity dropping: %d\n",
1189 di->bat_cap.permille / 10);
1190 di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1191 di->bat_cap.prev_mah = di->bat_cap.mah;
1192
1193 changed = true;
1194 }
1195 } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) {
1196 if (di->bat_cap.permille / 10 == 0) {
1197 /*
1198 * We will not report 0% unless we've got
1199 * the LOW_BAT IRQ, no matter what the FG
1200 * algorithm says.
1201 */
1202 di->bat_cap.prev_percent = 1;
1203 di->bat_cap.permille = 1;
1204 di->bat_cap.prev_mah = 1;
1205 di->bat_cap.mah = 1;
1206
1207 changed = true;
1208 } else if (!(!di->flags.charging &&
1209 (di->bat_cap.permille / 10) >
1210 di->bat_cap.prev_percent) || init) {
1211 /*
1212 * We do not allow reported capacity to go up
1213 * unless we're charging or if we're in init
1214 */
1215 dev_dbg(di->dev,
1216 "capacity changed from %d to %d (%d)\n",
1217 di->bat_cap.prev_percent,
1218 di->bat_cap.permille / 10,
1219 di->bat_cap.permille);
1220 di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1221 di->bat_cap.prev_mah = di->bat_cap.mah;
1222
1223 changed = true;
1224 } else {
1225 dev_dbg(di->dev, "capacity not allowed to go up since "
1226 "no charger is connected: %d to %d (%d)\n",
1227 di->bat_cap.prev_percent,
1228 di->bat_cap.permille / 10,
1229 di->bat_cap.permille);
1230 }
1231 }
1232
1233 if (changed) {
1234 power_supply_changed(&di->fg_psy);
1235 if (di->flags.fully_charged && di->flags.force_full) {
1236 dev_dbg(di->dev, "Battery full, notifying.\n");
1237 di->flags.force_full = false;
1238 sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1239 }
1240 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1241 }
1242}
1243
1244static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1245 enum ab8500_fg_charge_state new_state)
1246{
1247 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1248 di->charge_state,
1249 charge_state[di->charge_state],
1250 new_state,
1251 charge_state[new_state]);
1252
1253 di->charge_state = new_state;
1254}
1255
1256static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
0fff22ee 1257 enum ab8500_fg_discharge_state new_state)
13151631
AM
1258{
1259 dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1260 di->discharge_state,
1261 discharge_state[di->discharge_state],
1262 new_state,
1263 discharge_state[new_state]);
1264
1265 di->discharge_state = new_state;
1266}
1267
1268/**
1269 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1270 * @di: pointer to the ab8500_fg structure
1271 *
1272 * Battery capacity calculation state machine for when we're charging
1273 */
1274static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1275{
1276 /*
1277 * If we change to discharge mode
1278 * we should start with recovery
1279 */
1280 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1281 ab8500_fg_discharge_state_to(di,
1282 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1283
1284 switch (di->charge_state) {
1285 case AB8500_FG_CHARGE_INIT:
1286 di->fg_samples = SEC_TO_SAMPLE(
1287 di->bat->fg_params->accu_charging);
1288
1289 ab8500_fg_coulomb_counter(di, true);
1290 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1291
1292 break;
1293
1294 case AB8500_FG_CHARGE_READOUT:
1295 /*
1296 * Read the FG and calculate the new capacity
1297 */
1298 mutex_lock(&di->cc_lock);
1299 if (!di->flags.conv_done) {
1300 /* Wasn't the CC IRQ that got us here */
1301 mutex_unlock(&di->cc_lock);
1302 dev_dbg(di->dev, "%s CC conv not done\n",
1303 __func__);
1304
1305 break;
1306 }
1307 di->flags.conv_done = false;
1308 mutex_unlock(&di->cc_lock);
1309
1310 ab8500_fg_calc_cap_charging(di);
1311
1312 break;
1313
1314 default:
1315 break;
1316 }
1317
1318 /* Check capacity limits */
1319 ab8500_fg_check_capacity_limits(di, false);
1320}
1321
1322static void force_capacity(struct ab8500_fg *di)
1323{
1324 int cap;
1325
1326 ab8500_fg_clear_cap_samples(di);
1327 cap = di->bat_cap.user_mah;
1328 if (cap > di->bat_cap.max_mah_design) {
1329 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1330 " %d\n", cap, di->bat_cap.max_mah_design);
1331 cap = di->bat_cap.max_mah_design;
1332 }
1333 ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1334 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1335 di->bat_cap.mah = cap;
1336 ab8500_fg_check_capacity_limits(di, true);
1337}
1338
1339static bool check_sysfs_capacity(struct ab8500_fg *di)
1340{
1341 int cap, lower, upper;
1342 int cap_permille;
1343
1344 cap = di->bat_cap.user_mah;
1345
1346 cap_permille = ab8500_fg_convert_mah_to_permille(di,
1347 di->bat_cap.user_mah);
1348
1349 lower = di->bat_cap.permille - di->bat->fg_params->user_cap_limit * 10;
1350 upper = di->bat_cap.permille + di->bat->fg_params->user_cap_limit * 10;
1351
1352 if (lower < 0)
1353 lower = 0;
1354 /* 1000 is permille, -> 100 percent */
1355 if (upper > 1000)
1356 upper = 1000;
1357
1358 dev_dbg(di->dev, "Capacity limits:"
1359 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1360 lower, cap_permille, upper, cap, di->bat_cap.mah);
1361
1362 /* If within limits, use the saved capacity and exit estimation...*/
1363 if (cap_permille > lower && cap_permille < upper) {
1364 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1365 force_capacity(di);
1366 return true;
1367 }
1368 dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1369 return false;
1370}
1371
1372/**
1373 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1374 * @di: pointer to the ab8500_fg structure
1375 *
1376 * Battery capacity calculation state machine for when we're discharging
1377 */
1378static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1379{
1380 int sleep_time;
1381
1382 /* If we change to charge mode we should start with init */
1383 if (di->charge_state != AB8500_FG_CHARGE_INIT)
1384 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1385
1386 switch (di->discharge_state) {
1387 case AB8500_FG_DISCHARGE_INIT:
1388 /* We use the FG IRQ to work on */
1389 di->init_cnt = 0;
1390 di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
1391 ab8500_fg_coulomb_counter(di, true);
1392 ab8500_fg_discharge_state_to(di,
1393 AB8500_FG_DISCHARGE_INITMEASURING);
1394
1395 /* Intentional fallthrough */
1396 case AB8500_FG_DISCHARGE_INITMEASURING:
1397 /*
1398 * Discard a number of samples during startup.
1399 * After that, use compensated voltage for a few
1400 * samples to get an initial capacity.
1401 * Then go to READOUT
1402 */
1403 sleep_time = di->bat->fg_params->init_timer;
1404
1405 /* Discard the first [x] seconds */
1406 if (di->init_cnt >
1407 di->bat->fg_params->init_discard_time) {
1408 ab8500_fg_calc_cap_discharge_voltage(di, true);
1409
1410 ab8500_fg_check_capacity_limits(di, true);
1411 }
1412
1413 di->init_cnt += sleep_time;
1414 if (di->init_cnt > di->bat->fg_params->init_total_time)
1415 ab8500_fg_discharge_state_to(di,
1416 AB8500_FG_DISCHARGE_READOUT_INIT);
1417
1418 break;
1419
1420 case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1421 di->recovery_cnt = 0;
1422 di->recovery_needed = true;
1423 ab8500_fg_discharge_state_to(di,
1424 AB8500_FG_DISCHARGE_RECOVERY);
1425
1426 /* Intentional fallthrough */
1427
1428 case AB8500_FG_DISCHARGE_RECOVERY:
1429 sleep_time = di->bat->fg_params->recovery_sleep_timer;
1430
1431 /*
1432 * We should check the power consumption
1433 * If low, go to READOUT (after x min) or
1434 * RECOVERY_SLEEP if time left.
1435 * If high, go to READOUT
1436 */
1437 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1438
1439 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1440 if (di->recovery_cnt >
1441 di->bat->fg_params->recovery_total_time) {
1442 di->fg_samples = SEC_TO_SAMPLE(
1443 di->bat->fg_params->accu_high_curr);
1444 ab8500_fg_coulomb_counter(di, true);
1445 ab8500_fg_discharge_state_to(di,
1446 AB8500_FG_DISCHARGE_READOUT);
1447 di->recovery_needed = false;
1448 } else {
1449 queue_delayed_work(di->fg_wq,
1450 &di->fg_periodic_work,
1451 sleep_time * HZ);
1452 }
1453 di->recovery_cnt += sleep_time;
1454 } else {
1455 di->fg_samples = SEC_TO_SAMPLE(
1456 di->bat->fg_params->accu_high_curr);
1457 ab8500_fg_coulomb_counter(di, true);
1458 ab8500_fg_discharge_state_to(di,
1459 AB8500_FG_DISCHARGE_READOUT);
1460 }
1461 break;
1462
1463 case AB8500_FG_DISCHARGE_READOUT_INIT:
1464 di->fg_samples = SEC_TO_SAMPLE(
1465 di->bat->fg_params->accu_high_curr);
1466 ab8500_fg_coulomb_counter(di, true);
1467 ab8500_fg_discharge_state_to(di,
1468 AB8500_FG_DISCHARGE_READOUT);
1469 break;
1470
1471 case AB8500_FG_DISCHARGE_READOUT:
1472 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1473
1474 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1475 /* Detect mode change */
1476 if (di->high_curr_mode) {
1477 di->high_curr_mode = false;
1478 di->high_curr_cnt = 0;
1479 }
1480
1481 if (di->recovery_needed) {
1482 ab8500_fg_discharge_state_to(di,
1483 AB8500_FG_DISCHARGE_RECOVERY);
1484
1485 queue_delayed_work(di->fg_wq,
1486 &di->fg_periodic_work, 0);
1487
1488 break;
1489 }
1490
1491 ab8500_fg_calc_cap_discharge_voltage(di, true);
1492 } else {
1493 mutex_lock(&di->cc_lock);
1494 if (!di->flags.conv_done) {
1495 /* Wasn't the CC IRQ that got us here */
1496 mutex_unlock(&di->cc_lock);
1497 dev_dbg(di->dev, "%s CC conv not done\n",
1498 __func__);
1499
1500 break;
1501 }
1502 di->flags.conv_done = false;
1503 mutex_unlock(&di->cc_lock);
1504
1505 /* Detect mode change */
1506 if (!di->high_curr_mode) {
1507 di->high_curr_mode = true;
1508 di->high_curr_cnt = 0;
1509 }
1510
1511 di->high_curr_cnt +=
1512 di->bat->fg_params->accu_high_curr;
1513 if (di->high_curr_cnt >
1514 di->bat->fg_params->high_curr_time)
1515 di->recovery_needed = true;
1516
1517 ab8500_fg_calc_cap_discharge_fg(di);
1518 }
1519
1520 ab8500_fg_check_capacity_limits(di, false);
1521
1522 break;
1523
1524 case AB8500_FG_DISCHARGE_WAKEUP:
1525 ab8500_fg_coulomb_counter(di, true);
1526 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1527
1528 ab8500_fg_calc_cap_discharge_voltage(di, true);
1529
1530 di->fg_samples = SEC_TO_SAMPLE(
1531 di->bat->fg_params->accu_high_curr);
1532 ab8500_fg_coulomb_counter(di, true);
1533 ab8500_fg_discharge_state_to(di,
1534 AB8500_FG_DISCHARGE_READOUT);
1535
1536 ab8500_fg_check_capacity_limits(di, false);
1537
1538 break;
1539
1540 default:
1541 break;
1542 }
1543}
1544
1545/**
1546 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1547 * @di: pointer to the ab8500_fg structure
1548 *
1549 */
1550static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1551{
1552 int ret;
1553
1554 switch (di->calib_state) {
1555 case AB8500_FG_CALIB_INIT:
1556 dev_dbg(di->dev, "Calibration ongoing...\n");
1557
1558 ret = abx500_mask_and_set_register_interruptible(di->dev,
1559 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1560 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1561 if (ret < 0)
1562 goto err;
1563
1564 ret = abx500_mask_and_set_register_interruptible(di->dev,
1565 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1566 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1567 if (ret < 0)
1568 goto err;
1569 di->calib_state = AB8500_FG_CALIB_WAIT;
1570 break;
1571 case AB8500_FG_CALIB_END:
1572 ret = abx500_mask_and_set_register_interruptible(di->dev,
1573 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1574 CC_MUXOFFSET, CC_MUXOFFSET);
1575 if (ret < 0)
1576 goto err;
1577 di->flags.calibrate = false;
1578 dev_dbg(di->dev, "Calibration done...\n");
1579 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1580 break;
1581 case AB8500_FG_CALIB_WAIT:
1582 dev_dbg(di->dev, "Calibration WFI\n");
1583 default:
1584 break;
1585 }
1586 return;
1587err:
1588 /* Something went wrong, don't calibrate then */
1589 dev_err(di->dev, "failed to calibrate the CC\n");
1590 di->flags.calibrate = false;
1591 di->calib_state = AB8500_FG_CALIB_INIT;
1592 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1593}
1594
1595/**
1596 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1597 * @di: pointer to the ab8500_fg structure
1598 *
1599 * Entry point for the battery capacity calculation state machine
1600 */
1601static void ab8500_fg_algorithm(struct ab8500_fg *di)
1602{
1603 if (di->flags.calibrate)
1604 ab8500_fg_algorithm_calibrate(di);
1605 else {
1606 if (di->flags.charging)
1607 ab8500_fg_algorithm_charging(di);
1608 else
1609 ab8500_fg_algorithm_discharging(di);
1610 }
1611
1612 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1613 "%d %d %d %d %d %d %d\n",
1614 di->bat_cap.max_mah_design,
1615 di->bat_cap.mah,
1616 di->bat_cap.permille,
1617 di->bat_cap.level,
1618 di->bat_cap.prev_mah,
1619 di->bat_cap.prev_percent,
1620 di->bat_cap.prev_level,
1621 di->vbat,
1622 di->inst_curr,
1623 di->avg_curr,
1624 di->accu_charge,
1625 di->flags.charging,
1626 di->charge_state,
1627 di->discharge_state,
1628 di->high_curr_mode,
1629 di->recovery_needed);
1630}
1631
1632/**
1633 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1634 * @work: pointer to the work_struct structure
1635 *
1636 * Work queue function for periodic work
1637 */
1638static void ab8500_fg_periodic_work(struct work_struct *work)
1639{
1640 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1641 fg_periodic_work.work);
1642
1643 if (di->init_capacity) {
1644 /* A dummy read that will return 0 */
1645 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1646 /* Get an initial capacity calculation */
1647 ab8500_fg_calc_cap_discharge_voltage(di, true);
1648 ab8500_fg_check_capacity_limits(di, true);
1649 di->init_capacity = false;
1650
1651 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1652 } else if (di->flags.user_cap) {
1653 if (check_sysfs_capacity(di)) {
1654 ab8500_fg_check_capacity_limits(di, true);
1655 if (di->flags.charging)
1656 ab8500_fg_charge_state_to(di,
1657 AB8500_FG_CHARGE_INIT);
1658 else
1659 ab8500_fg_discharge_state_to(di,
1660 AB8500_FG_DISCHARGE_READOUT_INIT);
1661 }
1662 di->flags.user_cap = false;
1663 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1664 } else
1665 ab8500_fg_algorithm(di);
1666
1667}
1668
1669/**
1670 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1671 * @work: pointer to the work_struct structure
1672 *
1673 * Work queue function for checking the OVV_BAT condition
1674 */
1675static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1676{
1677 int ret;
1678 u8 reg_value;
1679
1680 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1681 fg_check_hw_failure_work.work);
1682
1683 /*
1684 * If we have had a battery over-voltage situation,
1685 * check ovv-bit to see if it should be reset.
1686 */
1687 if (di->flags.bat_ovv) {
1688 ret = abx500_get_register_interruptible(di->dev,
1689 AB8500_CHARGER, AB8500_CH_STAT_REG,
1690 &reg_value);
1691 if (ret < 0) {
1692 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1693 return;
1694 }
1695 if ((reg_value & BATT_OVV) != BATT_OVV) {
1696 dev_dbg(di->dev, "Battery recovered from OVV\n");
1697 di->flags.bat_ovv = false;
1698 power_supply_changed(&di->fg_psy);
1699 return;
1700 }
1701
1702 /* Not yet recovered from ovv, reschedule this test */
1703 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1704 round_jiffies(HZ));
1705 }
1706}
1707
1708/**
1709 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1710 * @work: pointer to the work_struct structure
1711 *
1712 * Work queue function for checking the LOW_BAT condition
1713 */
1714static void ab8500_fg_low_bat_work(struct work_struct *work)
1715{
1716 int vbat;
1717
1718 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1719 fg_low_bat_work.work);
1720
1721 vbat = ab8500_fg_bat_voltage(di);
1722
1723 /* Check if LOW_BAT still fulfilled */
1724 if (vbat < di->bat->fg_params->lowbat_threshold) {
1725 di->flags.low_bat = true;
1726 dev_warn(di->dev, "Battery voltage still LOW\n");
1727
1728 /*
1729 * We need to re-schedule this check to be able to detect
1730 * if the voltage increases again during charging
1731 */
1732 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1733 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1734 } else {
1735 di->flags.low_bat = false;
1736 dev_warn(di->dev, "Battery voltage OK again\n");
1737 }
1738
1739 /* This is needed to dispatch LOW_BAT */
1740 ab8500_fg_check_capacity_limits(di, false);
1741
1742 /* Set this flag to check if LOW_BAT IRQ still occurs */
1743 di->flags.low_bat_delay = false;
1744}
1745
1746/**
1747 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1748 * to the target voltage.
1749 * @di: pointer to the ab8500_fg structure
1750 * @target target voltage
1751 *
1752 * Returns bit pattern closest to the target voltage
1753 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1754 */
1755
1756static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1757{
1758 if (target > BATT_OK_MIN +
1759 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1760 return BATT_OK_MAX_NR_INCREMENTS;
1761 if (target < BATT_OK_MIN)
1762 return 0;
1763 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1764}
1765
1766/**
1767 * ab8500_fg_battok_init_hw_register - init battok levels
1768 * @di: pointer to the ab8500_fg structure
1769 *
1770 */
1771
1772static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1773{
1774 int selected;
1775 int sel0;
1776 int sel1;
1777 int cbp_sel0;
1778 int cbp_sel1;
1779 int ret;
1780 int new_val;
1781
1782 sel0 = di->bat->fg_params->battok_falling_th_sel0;
1783 sel1 = di->bat->fg_params->battok_raising_th_sel1;
1784
1785 cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1786 cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1787
1788 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1789
1790 if (selected != sel0)
1791 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1792 sel0, selected, cbp_sel0);
1793
1794 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1795
1796 if (selected != sel1)
1797 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1798 sel1, selected, cbp_sel1);
1799
1800 new_val = cbp_sel0 | (cbp_sel1 << 4);
1801
1802 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1803 ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1804 AB8500_BATT_OK_REG, new_val);
1805 return ret;
1806}
1807
1808/**
1809 * ab8500_fg_instant_work() - Run the FG state machine instantly
1810 * @work: pointer to the work_struct structure
1811 *
1812 * Work queue function for instant work
1813 */
1814static void ab8500_fg_instant_work(struct work_struct *work)
1815{
1816 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1817
1818 ab8500_fg_algorithm(di);
1819}
1820
1821/**
1822 * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1823 * @irq: interrupt number
1824 * @_di: pointer to the ab8500_fg structure
1825 *
1826 * Returns IRQ status(IRQ_HANDLED)
1827 */
1828static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1829{
1830 struct ab8500_fg *di = _di;
1831 complete(&di->ab8500_fg_complete);
1832 return IRQ_HANDLED;
1833}
1834
1835/**
1836 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1837 * @irq: interrupt number
1838 * @_di: pointer to the ab8500_fg structure
1839 *
1840 * Returns IRQ status(IRQ_HANDLED)
1841 */
1842static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
1843{
1844 struct ab8500_fg *di = _di;
1845 di->calib_state = AB8500_FG_CALIB_END;
1846 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1847 return IRQ_HANDLED;
1848}
1849
1850/**
1851 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1852 * @irq: interrupt number
1853 * @_di: pointer to the ab8500_fg structure
1854 *
1855 * Returns IRQ status(IRQ_HANDLED)
1856 */
1857static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
1858{
1859 struct ab8500_fg *di = _di;
1860
1861 queue_work(di->fg_wq, &di->fg_acc_cur_work);
1862
1863 return IRQ_HANDLED;
1864}
1865
1866/**
1867 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
1868 * @irq: interrupt number
1869 * @_di: pointer to the ab8500_fg structure
1870 *
1871 * Returns IRQ status(IRQ_HANDLED)
1872 */
1873static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
1874{
1875 struct ab8500_fg *di = _di;
1876
1877 dev_dbg(di->dev, "Battery OVV\n");
1878 di->flags.bat_ovv = true;
1879 power_supply_changed(&di->fg_psy);
1880
1881 /* Schedule a new HW failure check */
1882 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
1883
1884 return IRQ_HANDLED;
1885}
1886
1887/**
1888 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
1889 * @irq: interrupt number
1890 * @_di: pointer to the ab8500_fg structure
1891 *
1892 * Returns IRQ status(IRQ_HANDLED)
1893 */
1894static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
1895{
1896 struct ab8500_fg *di = _di;
1897
1898 if (!di->flags.low_bat_delay) {
1899 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
1900 di->flags.low_bat_delay = true;
1901 /*
1902 * Start a timer to check LOW_BAT again after some time
1903 * This is done to avoid shutdown on single voltage dips
1904 */
1905 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1906 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1907 }
1908 return IRQ_HANDLED;
1909}
1910
1911/**
1912 * ab8500_fg_get_property() - get the fg properties
1913 * @psy: pointer to the power_supply structure
1914 * @psp: pointer to the power_supply_property structure
1915 * @val: pointer to the power_supply_propval union
1916 *
1917 * This function gets called when an application tries to get the
1918 * fg properties by reading the sysfs files.
1919 * voltage_now: battery voltage
1920 * current_now: battery instant current
1921 * current_avg: battery average current
1922 * charge_full_design: capacity where battery is considered full
1923 * charge_now: battery capacity in nAh
1924 * capacity: capacity in percent
1925 * capacity_level: capacity level
1926 *
1927 * Returns error code in case of failure else 0 on success
1928 */
1929static int ab8500_fg_get_property(struct power_supply *psy,
1930 enum power_supply_property psp,
1931 union power_supply_propval *val)
1932{
1933 struct ab8500_fg *di;
1934
1935 di = to_ab8500_fg_device_info(psy);
1936
1937 /*
1938 * If battery is identified as unknown and charging of unknown
1939 * batteries is disabled, we always report 100% capacity and
1940 * capacity level UNKNOWN, since we can't calculate
1941 * remaining capacity
1942 */
1943
1944 switch (psp) {
1945 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1946 if (di->flags.bat_ovv)
1947 val->intval = BATT_OVV_VALUE * 1000;
1948 else
1949 val->intval = di->vbat * 1000;
1950 break;
1951 case POWER_SUPPLY_PROP_CURRENT_NOW:
1952 val->intval = di->inst_curr * 1000;
1953 break;
1954 case POWER_SUPPLY_PROP_CURRENT_AVG:
1955 val->intval = di->avg_curr * 1000;
1956 break;
1957 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
1958 val->intval = ab8500_fg_convert_mah_to_uwh(di,
1959 di->bat_cap.max_mah_design);
1960 break;
1961 case POWER_SUPPLY_PROP_ENERGY_FULL:
1962 val->intval = ab8500_fg_convert_mah_to_uwh(di,
1963 di->bat_cap.max_mah);
1964 break;
1965 case POWER_SUPPLY_PROP_ENERGY_NOW:
1966 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1967 di->flags.batt_id_received)
1968 val->intval = ab8500_fg_convert_mah_to_uwh(di,
1969 di->bat_cap.max_mah);
1970 else
1971 val->intval = ab8500_fg_convert_mah_to_uwh(di,
1972 di->bat_cap.prev_mah);
1973 break;
1974 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
1975 val->intval = di->bat_cap.max_mah_design;
1976 break;
1977 case POWER_SUPPLY_PROP_CHARGE_FULL:
1978 val->intval = di->bat_cap.max_mah;
1979 break;
1980 case POWER_SUPPLY_PROP_CHARGE_NOW:
1981 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1982 di->flags.batt_id_received)
1983 val->intval = di->bat_cap.max_mah;
1984 else
1985 val->intval = di->bat_cap.prev_mah;
1986 break;
1987 case POWER_SUPPLY_PROP_CAPACITY:
1988 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1989 di->flags.batt_id_received)
1990 val->intval = 100;
1991 else
1992 val->intval = di->bat_cap.prev_percent;
1993 break;
1994 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1995 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1996 di->flags.batt_id_received)
1997 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1998 else
1999 val->intval = di->bat_cap.prev_level;
2000 break;
2001 default:
2002 return -EINVAL;
2003 }
2004 return 0;
2005}
2006
2007static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2008{
2009 struct power_supply *psy;
2010 struct power_supply *ext;
2011 struct ab8500_fg *di;
2012 union power_supply_propval ret;
2013 int i, j;
2014 bool psy_found = false;
2015
2016 psy = (struct power_supply *)data;
2017 ext = dev_get_drvdata(dev);
2018 di = to_ab8500_fg_device_info(psy);
2019
2020 /*
2021 * For all psy where the name of your driver
2022 * appears in any supplied_to
2023 */
2024 for (i = 0; i < ext->num_supplicants; i++) {
2025 if (!strcmp(ext->supplied_to[i], psy->name))
2026 psy_found = true;
2027 }
2028
2029 if (!psy_found)
2030 return 0;
2031
2032 /* Go through all properties for the psy */
2033 for (j = 0; j < ext->num_properties; j++) {
2034 enum power_supply_property prop;
2035 prop = ext->properties[j];
2036
2037 if (ext->get_property(ext, prop, &ret))
2038 continue;
2039
2040 switch (prop) {
2041 case POWER_SUPPLY_PROP_STATUS:
2042 switch (ext->type) {
2043 case POWER_SUPPLY_TYPE_BATTERY:
2044 switch (ret.intval) {
2045 case POWER_SUPPLY_STATUS_UNKNOWN:
2046 case POWER_SUPPLY_STATUS_DISCHARGING:
2047 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2048 if (!di->flags.charging)
2049 break;
2050 di->flags.charging = false;
2051 di->flags.fully_charged = false;
2052 queue_work(di->fg_wq, &di->fg_work);
2053 break;
2054 case POWER_SUPPLY_STATUS_FULL:
2055 if (di->flags.fully_charged)
2056 break;
2057 di->flags.fully_charged = true;
2058 di->flags.force_full = true;
2059 /* Save current capacity as maximum */
2060 di->bat_cap.max_mah = di->bat_cap.mah;
2061 queue_work(di->fg_wq, &di->fg_work);
2062 break;
2063 case POWER_SUPPLY_STATUS_CHARGING:
2064 if (di->flags.charging)
2065 break;
2066 di->flags.charging = true;
2067 di->flags.fully_charged = false;
2068 queue_work(di->fg_wq, &di->fg_work);
2069 break;
2070 };
2071 default:
2072 break;
2073 };
2074 break;
2075 case POWER_SUPPLY_PROP_TECHNOLOGY:
2076 switch (ext->type) {
2077 case POWER_SUPPLY_TYPE_BATTERY:
2078 if (!di->flags.batt_id_received) {
c34a61b4
AV
2079 const struct abx500_battery_type *b;
2080
13151631
AM
2081 b = &(di->bat->bat_type[di->bat->batt_id]);
2082
2083 di->flags.batt_id_received = true;
2084
2085 di->bat_cap.max_mah_design =
2086 MILLI_TO_MICRO *
2087 b->charge_full_design;
2088
2089 di->bat_cap.max_mah =
2090 di->bat_cap.max_mah_design;
2091
2092 di->vbat_nom = b->nominal_voltage;
2093 }
2094
2095 if (ret.intval)
2096 di->flags.batt_unknown = false;
2097 else
2098 di->flags.batt_unknown = true;
2099 break;
2100 default:
2101 break;
2102 }
2103 break;
2104 case POWER_SUPPLY_PROP_TEMP:
2105 switch (ext->type) {
2106 case POWER_SUPPLY_TYPE_BATTERY:
2107 if (di->flags.batt_id_received)
2108 di->bat_temp = ret.intval;
2109 break;
2110 default:
2111 break;
2112 }
2113 break;
2114 default:
2115 break;
2116 }
2117 }
2118 return 0;
2119}
2120
2121/**
2122 * ab8500_fg_init_hw_registers() - Set up FG related registers
2123 * @di: pointer to the ab8500_fg structure
2124 *
2125 * Set up battery OVV, low battery voltage registers
2126 */
2127static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2128{
2129 int ret;
2130
2131 /* Set VBAT OVV threshold */
2132 ret = abx500_mask_and_set_register_interruptible(di->dev,
2133 AB8500_CHARGER,
2134 AB8500_BATT_OVV,
2135 BATT_OVV_TH_4P75,
2136 BATT_OVV_TH_4P75);
2137 if (ret) {
2138 dev_err(di->dev, "failed to set BATT_OVV\n");
2139 goto out;
2140 }
2141
2142 /* Enable VBAT OVV detection */
2143 ret = abx500_mask_and_set_register_interruptible(di->dev,
2144 AB8500_CHARGER,
2145 AB8500_BATT_OVV,
2146 BATT_OVV_ENA,
2147 BATT_OVV_ENA);
2148 if (ret) {
2149 dev_err(di->dev, "failed to enable BATT_OVV\n");
2150 goto out;
2151 }
2152
2153 /* Low Battery Voltage */
2154 ret = abx500_set_register_interruptible(di->dev,
2155 AB8500_SYS_CTRL2_BLOCK,
2156 AB8500_LOW_BAT_REG,
2157 ab8500_volt_to_regval(
2158 di->bat->fg_params->lowbat_threshold) << 1 |
2159 LOW_BAT_ENABLE);
2160 if (ret) {
2161 dev_err(di->dev, "%s write failed\n", __func__);
2162 goto out;
2163 }
2164
2165 /* Battery OK threshold */
2166 ret = ab8500_fg_battok_init_hw_register(di);
2167 if (ret) {
2168 dev_err(di->dev, "BattOk init write failed.\n");
2169 goto out;
2170 }
2171out:
2172 return ret;
2173}
2174
2175/**
2176 * ab8500_fg_external_power_changed() - callback for power supply changes
2177 * @psy: pointer to the structure power_supply
2178 *
2179 * This function is the entry point of the pointer external_power_changed
2180 * of the structure power_supply.
2181 * This function gets executed when there is a change in any external power
2182 * supply that this driver needs to be notified of.
2183 */
2184static void ab8500_fg_external_power_changed(struct power_supply *psy)
2185{
2186 struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2187
2188 class_for_each_device(power_supply_class, NULL,
2189 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2190}
2191
2192/**
2193 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2194 * @work: pointer to the work_struct structure
2195 *
2196 * Used to reset the current battery capacity to be able to
2197 * retrigger a new voltage base capacity calculation. For
2198 * test and verification purpose.
2199 */
2200static void ab8500_fg_reinit_work(struct work_struct *work)
2201{
2202 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2203 fg_reinit_work.work);
2204
2205 if (di->flags.calibrate == false) {
2206 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2207 ab8500_fg_clear_cap_samples(di);
2208 ab8500_fg_calc_cap_discharge_voltage(di, true);
2209 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2210 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2211 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2212
2213 } else {
2214 dev_err(di->dev, "Residual offset calibration ongoing "
2215 "retrying..\n");
2216 /* Wait one second until next try*/
2217 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2218 round_jiffies(1));
2219 }
2220}
2221
2222/**
2223 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2224 *
2225 * This function can be used to force the FG algorithm to recalculate a new
2226 * voltage based battery capacity.
2227 */
2228void ab8500_fg_reinit(void)
2229{
2230 struct ab8500_fg *di = ab8500_fg_get();
2231 /* User won't be notified if a null pointer returned. */
2232 if (di != NULL)
2233 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2234}
2235
2236/* Exposure to the sysfs interface */
2237
2238struct ab8500_fg_sysfs_entry {
2239 struct attribute attr;
2240 ssize_t (*show)(struct ab8500_fg *, char *);
2241 ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2242};
2243
2244static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2245{
2246 return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2247}
2248
2249static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2250 size_t count)
2251{
2252 unsigned long charge_full;
2253 ssize_t ret = -EINVAL;
2254
2255 ret = strict_strtoul(buf, 10, &charge_full);
2256
5ae2b822 2257 dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
13151631
AM
2258
2259 if (!ret) {
2260 di->bat_cap.max_mah = (int) charge_full;
2261 ret = count;
2262 }
2263 return ret;
2264}
2265
2266static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2267{
2268 return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2269}
2270
2271static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2272 size_t count)
2273{
2274 unsigned long charge_now;
2275 ssize_t ret;
2276
2277 ret = strict_strtoul(buf, 10, &charge_now);
2278
5ae2b822 2279 dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
13151631
AM
2280 ret, charge_now, di->bat_cap.prev_mah);
2281
2282 if (!ret) {
2283 di->bat_cap.user_mah = (int) charge_now;
2284 di->flags.user_cap = true;
2285 ret = count;
2286 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2287 }
2288 return ret;
2289}
2290
2291static struct ab8500_fg_sysfs_entry charge_full_attr =
2292 __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2293
2294static struct ab8500_fg_sysfs_entry charge_now_attr =
2295 __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2296
2297static ssize_t
2298ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2299{
2300 struct ab8500_fg_sysfs_entry *entry;
2301 struct ab8500_fg *di;
2302
2303 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2304 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2305
2306 if (!entry->show)
2307 return -EIO;
2308
2309 return entry->show(di, buf);
2310}
2311static ssize_t
2312ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2313 size_t count)
2314{
2315 struct ab8500_fg_sysfs_entry *entry;
2316 struct ab8500_fg *di;
2317
2318 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2319 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2320
2321 if (!entry->store)
2322 return -EIO;
2323
2324 return entry->store(di, buf, count);
2325}
2326
64eb9b02 2327static const struct sysfs_ops ab8500_fg_sysfs_ops = {
13151631
AM
2328 .show = ab8500_fg_show,
2329 .store = ab8500_fg_store,
2330};
2331
2332static struct attribute *ab8500_fg_attrs[] = {
2333 &charge_full_attr.attr,
2334 &charge_now_attr.attr,
2335 NULL,
2336};
2337
2338static struct kobj_type ab8500_fg_ktype = {
2339 .sysfs_ops = &ab8500_fg_sysfs_ops,
2340 .default_attrs = ab8500_fg_attrs,
2341};
2342
2343/**
2344 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2345 * @di: pointer to the struct ab8500_chargalg
2346 *
2347 * This function removes the entry in sysfs.
2348 */
2349static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2350{
2351 kobject_del(&di->fg_kobject);
2352}
2353
2354/**
2355 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2356 * @di: pointer to the struct ab8500_chargalg
2357 *
2358 * This function adds an entry in sysfs.
2359 * Returns error code in case of failure else 0(on success)
2360 */
2361static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2362{
2363 int ret = 0;
2364
2365 ret = kobject_init_and_add(&di->fg_kobject,
2366 &ab8500_fg_ktype,
2367 NULL, "battery");
2368 if (ret < 0)
2369 dev_err(di->dev, "failed to create sysfs entry\n");
2370
2371 return ret;
2372}
2373/* Exposure to the sysfs interface <<END>> */
2374
2375#if defined(CONFIG_PM)
2376static int ab8500_fg_resume(struct platform_device *pdev)
2377{
2378 struct ab8500_fg *di = platform_get_drvdata(pdev);
2379
2380 /*
2381 * Change state if we're not charging. If we're charging we will wake
2382 * up on the FG IRQ
2383 */
2384 if (!di->flags.charging) {
2385 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2386 queue_work(di->fg_wq, &di->fg_work);
2387 }
2388
2389 return 0;
2390}
2391
2392static int ab8500_fg_suspend(struct platform_device *pdev,
2393 pm_message_t state)
2394{
2395 struct ab8500_fg *di = platform_get_drvdata(pdev);
2396
2397 flush_delayed_work(&di->fg_periodic_work);
2398
2399 /*
2400 * If the FG is enabled we will disable it before going to suspend
2401 * only if we're not charging
2402 */
2403 if (di->flags.fg_enabled && !di->flags.charging)
2404 ab8500_fg_coulomb_counter(di, false);
2405
2406 return 0;
2407}
2408#else
2409#define ab8500_fg_suspend NULL
2410#define ab8500_fg_resume NULL
2411#endif
2412
2413static int __devexit ab8500_fg_remove(struct platform_device *pdev)
2414{
2415 int ret = 0;
2416 struct ab8500_fg *di = platform_get_drvdata(pdev);
2417
2418 list_del(&di->node);
2419
2420 /* Disable coulomb counter */
2421 ret = ab8500_fg_coulomb_counter(di, false);
2422 if (ret)
2423 dev_err(di->dev, "failed to disable coulomb counter\n");
2424
2425 destroy_workqueue(di->fg_wq);
2426 ab8500_fg_sysfs_exit(di);
2427
2428 flush_scheduled_work();
2429 power_supply_unregister(&di->fg_psy);
2430 platform_set_drvdata(pdev, NULL);
13151631
AM
2431 return ret;
2432}
2433
2434/* ab8500 fg driver interrupts and their respective isr */
2435static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2436 {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2437 {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2438 {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2439 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2440 {"CCEOC", ab8500_fg_cc_data_end_handler},
2441};
2442
e0f1abeb
R
2443static char *supply_interface[] = {
2444 "ab8500_chargalg",
2445 "ab8500_usb",
2446};
2447
13151631
AM
2448static int __devinit ab8500_fg_probe(struct platform_device *pdev)
2449{
e0f1abeb
R
2450 struct device_node *np = pdev->dev.of_node;
2451 struct ab8500_fg *di;
13151631
AM
2452 int i, irq;
2453 int ret = 0;
13151631 2454
e0f1abeb
R
2455 di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
2456 if (!di) {
2457 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
13151631 2458 return -ENOMEM;
e0f1abeb
R
2459 }
2460 di->bat = pdev->mfd_cell->platform_data;
2461 if (!di->bat) {
2462 if (np) {
2463 ret = bmdevs_of_probe(&pdev->dev, np, &di->bat);
2464 if (ret) {
2465 dev_err(&pdev->dev,
2466 "failed to get battery information\n");
2467 return ret;
2468 }
2469 } else {
2470 dev_err(&pdev->dev, "missing dt node for ab8500_fg\n");
2471 return -EINVAL;
2472 }
2473 } else {
2474 dev_info(&pdev->dev, "falling back to legacy platform data\n");
2475 }
13151631
AM
2476
2477 mutex_init(&di->cc_lock);
2478
2479 /* get parent data */
2480 di->dev = &pdev->dev;
2481 di->parent = dev_get_drvdata(pdev->dev.parent);
2482 di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2483
13151631
AM
2484 di->fg_psy.name = "ab8500_fg";
2485 di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2486 di->fg_psy.properties = ab8500_fg_props;
2487 di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2488 di->fg_psy.get_property = ab8500_fg_get_property;
e0f1abeb
R
2489 di->fg_psy.supplied_to = supply_interface;
2490 di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
13151631
AM
2491 di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2492
2493 di->bat_cap.max_mah_design = MILLI_TO_MICRO *
2494 di->bat->bat_type[di->bat->batt_id].charge_full_design;
2495
2496 di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2497
2498 di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage;
2499
2500 di->init_capacity = true;
2501
2502 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2503 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2504
2505 /* Create a work queue for running the FG algorithm */
2506 di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2507 if (di->fg_wq == NULL) {
2508 dev_err(di->dev, "failed to create work queue\n");
e0f1abeb 2509 return -ENOMEM;
13151631
AM
2510 }
2511
2512 /* Init work for running the fg algorithm instantly */
2513 INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2514
2515 /* Init work for getting the battery accumulated current */
2516 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2517
2518 /* Init work for reinitialising the fg algorithm */
203b42f7 2519 INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
13151631
AM
2520 ab8500_fg_reinit_work);
2521
2522 /* Work delayed Queue to run the state machine */
203b42f7 2523 INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
13151631
AM
2524 ab8500_fg_periodic_work);
2525
2526 /* Work to check low battery condition */
203b42f7 2527 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
13151631
AM
2528 ab8500_fg_low_bat_work);
2529
2530 /* Init work for HW failure check */
203b42f7 2531 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
13151631
AM
2532 ab8500_fg_check_hw_failure_work);
2533
2534 /* Initialize OVV, and other registers */
2535 ret = ab8500_fg_init_hw_registers(di);
2536 if (ret) {
2537 dev_err(di->dev, "failed to initialize registers\n");
2538 goto free_inst_curr_wq;
2539 }
2540
2541 /* Consider battery unknown until we're informed otherwise */
2542 di->flags.batt_unknown = true;
2543 di->flags.batt_id_received = false;
2544
2545 /* Register FG power supply class */
2546 ret = power_supply_register(di->dev, &di->fg_psy);
2547 if (ret) {
2548 dev_err(di->dev, "failed to register FG psy\n");
2549 goto free_inst_curr_wq;
2550 }
2551
2552 di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
2553 ab8500_fg_coulomb_counter(di, true);
2554
2555 /* Initialize completion used to notify completion of inst current */
2556 init_completion(&di->ab8500_fg_complete);
2557
2558 /* Register interrupts */
2559 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2560 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2561 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2562 IRQF_SHARED | IRQF_NO_SUSPEND,
2563 ab8500_fg_irq[i].name, di);
2564
2565 if (ret != 0) {
2566 dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2567 , ab8500_fg_irq[i].name, irq, ret);
2568 goto free_irq;
2569 }
2570 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2571 ab8500_fg_irq[i].name, irq, ret);
2572 }
2573 di->irq = platform_get_irq_byname(pdev, "CCEOC");
2574 disable_irq(di->irq);
2575
2576 platform_set_drvdata(pdev, di);
2577
2578 ret = ab8500_fg_sysfs_init(di);
2579 if (ret) {
2580 dev_err(di->dev, "failed to create sysfs entry\n");
2581 goto free_irq;
2582 }
2583
2584 /* Calibrate the fg first time */
2585 di->flags.calibrate = true;
2586 di->calib_state = AB8500_FG_CALIB_INIT;
2587
2588 /* Use room temp as default value until we get an update from driver. */
2589 di->bat_temp = 210;
2590
2591 /* Run the FG algorithm */
2592 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2593
2594 list_add_tail(&di->node, &ab8500_fg_list);
2595
2596 return ret;
2597
2598free_irq:
2599 power_supply_unregister(&di->fg_psy);
2600
2601 /* We also have to free all successfully registered irqs */
2602 for (i = i - 1; i >= 0; i--) {
2603 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2604 free_irq(irq, di);
2605 }
2606free_inst_curr_wq:
2607 destroy_workqueue(di->fg_wq);
13151631
AM
2608 return ret;
2609}
2610
e0f1abeb
R
2611static const struct of_device_id ab8500_fg_match[] = {
2612 { .compatible = "stericsson,ab8500-fg", },
2613 { },
2614};
2615
13151631
AM
2616static struct platform_driver ab8500_fg_driver = {
2617 .probe = ab8500_fg_probe,
2618 .remove = __devexit_p(ab8500_fg_remove),
2619 .suspend = ab8500_fg_suspend,
2620 .resume = ab8500_fg_resume,
2621 .driver = {
2622 .name = "ab8500-fg",
2623 .owner = THIS_MODULE,
e0f1abeb 2624 .of_match_table = ab8500_fg_match,
13151631
AM
2625 },
2626};
2627
2628static int __init ab8500_fg_init(void)
2629{
2630 return platform_driver_register(&ab8500_fg_driver);
2631}
2632
2633static void __exit ab8500_fg_exit(void)
2634{
2635 platform_driver_unregister(&ab8500_fg_driver);
2636}
2637
2638subsys_initcall_sync(ab8500_fg_init);
2639module_exit(ab8500_fg_exit);
2640
2641MODULE_LICENSE("GPL v2");
2642MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2643MODULE_ALIAS("platform:ab8500-fg");
2644MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");