drm/exynos/exynos7_drm_decon: Fix incorrect naming of 'decon_shadow_protect_win()'
[linux-block.git] / drivers / phy / xilinx / phy-zynqmp.c
CommitLineData
4a33bea0
AKV
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
4 *
5 * Copyright (C) 2018-2020 Xilinx Inc.
6 *
7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 *
11 * This driver is tested for USB, SATA and Display Port currently.
12 * Other controllers PCIe and SGMII should also work but that is
13 * experimental as of now.
14 */
15
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/io.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/phy/phy.h>
23#include <linux/platform_device.h>
24#include <linux/slab.h>
25
26#include <dt-bindings/phy/phy.h>
27
28/*
29 * Lane Registers
30 */
31
32/* TX De-emphasis parameters */
33#define L0_TX_ANA_TM_18 0x0048
34#define L0_TX_ANA_TM_118 0x01d8
35#define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0)
36
37/* DN Resistor calibration code parameters */
38#define L0_TXPMA_ST_3 0x0b0c
39#define L0_DN_CALIB_CODE 0x3f
40
41/* PMA control parameters */
42#define L0_TXPMD_TM_45 0x0cb4
43#define L0_TXPMD_TM_48 0x0cc0
44#define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0)
45#define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1)
46#define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2)
47#define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3)
48#define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4)
49#define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5)
50
51/* PCS control parameters */
52#define L0_TM_DIG_6 0x106c
53#define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f
54#define L0_TX_DIG_61 0x00f4
55#define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f
56
57/* PLL Test Mode register parameters */
58#define L0_TM_PLL_DIG_37 0x2094
59#define L0_TM_COARSE_CODE_LIMIT 0x10
60
61/* PLL SSC step size offsets */
62#define L0_PLL_SS_STEPS_0_LSB 0x2368
63#define L0_PLL_SS_STEPS_1_MSB 0x236c
64#define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370
65#define L0_PLL_SS_STEP_SIZE_1 0x2374
66#define L0_PLL_SS_STEP_SIZE_2 0x2378
67#define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c
68#define L0_PLL_STATUS_READ_1 0x23e4
69
70/* SSC step size parameters */
71#define STEP_SIZE_0_MASK 0xff
72#define STEP_SIZE_1_MASK 0xff
73#define STEP_SIZE_2_MASK 0xff
74#define STEP_SIZE_3_MASK 0x3
75#define STEP_SIZE_SHIFT 8
76#define FORCE_STEP_SIZE 0x10
77#define FORCE_STEPS 0x20
78#define STEPS_0_MASK 0xff
79#define STEPS_1_MASK 0x07
80
81/* Reference clock selection parameters */
82#define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4)
83#define L0_REF_CLK_SEL_MASK 0x8f
84
85/* Calibration digital logic parameters */
86#define L3_TM_CALIB_DIG19 0xec4c
87#define L3_CALIB_DONE_STATUS 0xef14
88#define L3_TM_CALIB_DIG18 0xec48
89#define L3_TM_CALIB_DIG19_NSW 0x07
90#define L3_TM_CALIB_DIG18_NSW 0xe0
91#define L3_TM_OVERRIDE_NSW_CODE 0x20
92#define L3_CALIB_DONE 0x02
93#define L3_NSW_SHIFT 5
94#define L3_NSW_PIPE_SHIFT 4
95#define L3_NSW_CALIB_SHIFT 3
96
97#define PHY_REG_OFFSET 0x4000
98
99/*
100 * Global Registers
101 */
102
103/* Refclk selection parameters */
104#define PLL_REF_SEL(n) (0x10000 + (n) * 4)
105#define PLL_FREQ_MASK 0x1f
106#define PLL_STATUS_LOCKED 0x10
107
108/* Inter Connect Matrix parameters */
109#define ICM_CFG0 0x10010
110#define ICM_CFG1 0x10014
111#define ICM_CFG0_L0_MASK 0x07
112#define ICM_CFG0_L1_MASK 0x70
113#define ICM_CFG1_L2_MASK 0x07
114#define ICM_CFG2_L3_MASK 0x70
115#define ICM_CFG_SHIFT 4
116
117/* Inter Connect Matrix allowed protocols */
118#define ICM_PROTOCOL_PD 0x0
119#define ICM_PROTOCOL_PCIE 0x1
120#define ICM_PROTOCOL_SATA 0x2
121#define ICM_PROTOCOL_USB 0x3
122#define ICM_PROTOCOL_DP 0x4
123#define ICM_PROTOCOL_SGMII 0x5
124
125/* Test Mode common reset control parameters */
126#define TM_CMN_RST 0x10018
127#define TM_CMN_RST_EN 0x1
128#define TM_CMN_RST_SET 0x2
129#define TM_CMN_RST_MASK 0x3
130
131/* Bus width parameters */
132#define TX_PROT_BUS_WIDTH 0x10040
133#define RX_PROT_BUS_WIDTH 0x10044
134#define PROT_BUS_WIDTH_10 0x0
135#define PROT_BUS_WIDTH_20 0x1
136#define PROT_BUS_WIDTH_40 0x2
137#define PROT_BUS_WIDTH_SHIFT 2
138
139/* Number of GT lanes */
140#define NUM_LANES 4
141
142/* SIOU SATA control register */
143#define SATA_CONTROL_OFFSET 0x0100
144
145/* Total number of controllers */
146#define CONTROLLERS_PER_LANE 5
147
148/* Protocol Type parameters */
149#define XPSGTR_TYPE_USB0 0 /* USB controller 0 */
150#define XPSGTR_TYPE_USB1 1 /* USB controller 1 */
151#define XPSGTR_TYPE_SATA_0 2 /* SATA controller lane 0 */
152#define XPSGTR_TYPE_SATA_1 3 /* SATA controller lane 1 */
153#define XPSGTR_TYPE_PCIE_0 4 /* PCIe controller lane 0 */
154#define XPSGTR_TYPE_PCIE_1 5 /* PCIe controller lane 1 */
155#define XPSGTR_TYPE_PCIE_2 6 /* PCIe controller lane 2 */
156#define XPSGTR_TYPE_PCIE_3 7 /* PCIe controller lane 3 */
157#define XPSGTR_TYPE_DP_0 8 /* Display Port controller lane 0 */
158#define XPSGTR_TYPE_DP_1 9 /* Display Port controller lane 1 */
159#define XPSGTR_TYPE_SGMII0 10 /* Ethernet SGMII controller 0 */
160#define XPSGTR_TYPE_SGMII1 11 /* Ethernet SGMII controller 1 */
161#define XPSGTR_TYPE_SGMII2 12 /* Ethernet SGMII controller 2 */
162#define XPSGTR_TYPE_SGMII3 13 /* Ethernet SGMII controller 3 */
163
164/* Timeout values */
165#define TIMEOUT_US 1000
166
167struct xpsgtr_dev;
168
169/**
170 * struct xpsgtr_ssc - structure to hold SSC settings for a lane
171 * @refclk_rate: PLL reference clock frequency
172 * @pll_ref_clk: value to be written to register for corresponding ref clk rate
173 * @steps: number of steps of SSC (Spread Spectrum Clock)
174 * @step_size: step size of each step
175 */
176struct xpsgtr_ssc {
177 u32 refclk_rate;
178 u8 pll_ref_clk;
179 u32 steps;
180 u32 step_size;
181};
182
183/**
184 * struct xpsgtr_phy - representation of a lane
185 * @phy: pointer to the kernel PHY device
186 * @type: controller which uses this lane
187 * @lane: lane number
188 * @protocol: protocol in which the lane operates
189 * @skip_phy_init: skip phy_init() if true
190 * @dev: pointer to the xpsgtr_dev instance
191 * @refclk: reference clock index
192 */
193struct xpsgtr_phy {
194 struct phy *phy;
195 u8 type;
196 u8 lane;
197 u8 protocol;
198 bool skip_phy_init;
199 struct xpsgtr_dev *dev;
200 unsigned int refclk;
201};
202
203/**
204 * struct xpsgtr_dev - representation of a ZynMP GT device
205 * @dev: pointer to device
206 * @serdes: serdes base address
207 * @siou: siou base address
208 * @gtr_mutex: mutex for locking
209 * @phys: PHY lanes
210 * @refclk_sscs: spread spectrum settings for the reference clocks
67097754 211 * @clk: reference clocks
4a33bea0
AKV
212 * @tx_term_fix: fix for GT issue
213 * @saved_icm_cfg0: stored value of ICM CFG0 register
214 * @saved_icm_cfg1: stored value of ICM CFG1 register
215 */
216struct xpsgtr_dev {
217 struct device *dev;
218 void __iomem *serdes;
219 void __iomem *siou;
220 struct mutex gtr_mutex; /* mutex for locking */
221 struct xpsgtr_phy phys[NUM_LANES];
222 const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
67097754 223 struct clk *clk[NUM_LANES];
4a33bea0
AKV
224 bool tx_term_fix;
225 unsigned int saved_icm_cfg0;
226 unsigned int saved_icm_cfg1;
227};
228
229/*
230 * Configuration Data
231 */
232
233/* lookup table to hold all settings needed for a ref clock frequency */
234static const struct xpsgtr_ssc ssc_lookup[] = {
235 { 19200000, 0x05, 608, 264020 },
236 { 20000000, 0x06, 634, 243454 },
237 { 24000000, 0x07, 760, 168973 },
238 { 26000000, 0x08, 824, 143860 },
239 { 27000000, 0x09, 856, 86551 },
240 { 38400000, 0x0a, 1218, 65896 },
241 { 40000000, 0x0b, 634, 243454 },
242 { 52000000, 0x0c, 824, 143860 },
243 { 100000000, 0x0d, 1058, 87533 },
244 { 108000000, 0x0e, 856, 86551 },
245 { 125000000, 0x0f, 992, 119497 },
246 { 135000000, 0x10, 1070, 55393 },
247 { 150000000, 0x11, 792, 187091 }
248};
249
250/*
251 * I/O Accessors
252 */
253
254static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
255{
256 return readl(gtr_dev->serdes + reg);
257}
258
259static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
260{
261 writel(value, gtr_dev->serdes + reg);
262}
263
264static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
265 u32 clr, u32 set)
266{
267 u32 value = xpsgtr_read(gtr_dev, reg);
268
269 value &= ~clr;
270 value |= set;
271 xpsgtr_write(gtr_dev, reg, value);
272}
273
274static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
275{
276 void __iomem *addr = gtr_phy->dev->serdes
277 + gtr_phy->lane * PHY_REG_OFFSET + reg;
278
279 return readl(addr);
280}
281
282static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
283 u32 reg, u32 value)
284{
285 void __iomem *addr = gtr_phy->dev->serdes
286 + gtr_phy->lane * PHY_REG_OFFSET + reg;
287
288 writel(value, addr);
289}
290
291static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
292 u32 reg, u32 clr, u32 set)
293{
294 void __iomem *addr = gtr_phy->dev->serdes
295 + gtr_phy->lane * PHY_REG_OFFSET + reg;
296
297 writel((readl(addr) & ~clr) | set, addr);
298}
299
300/*
301 * Hardware Configuration
302 */
303
304/* Wait for the PLL to lock (with a timeout). */
305static int xpsgtr_wait_pll_lock(struct phy *phy)
306{
307 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
308 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
309 unsigned int timeout = TIMEOUT_US;
310 int ret;
311
312 dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
313
314 while (1) {
315 u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
316
317 if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
318 ret = 0;
319 break;
320 }
321
322 if (--timeout == 0) {
323 ret = -ETIMEDOUT;
324 break;
325 }
326
327 udelay(1);
328 }
329
330 if (ret == -ETIMEDOUT)
331 dev_err(gtr_dev->dev,
332 "lane %u (type %u, protocol %u): PLL lock timeout\n",
333 gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
334
335 return ret;
336}
337
338/* Configure PLL and spread-sprectrum clock. */
339static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
340{
341 const struct xpsgtr_ssc *ssc;
342 u32 step_size;
343
344 ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
345 step_size = ssc->step_size;
346
347 xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
348 PLL_FREQ_MASK, ssc->pll_ref_clk);
349
350 /* Enable lane clock sharing, if required */
351 if (gtr_phy->refclk != gtr_phy->lane) {
352 /* Lane3 Ref Clock Selection Register */
353 xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
354 L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
355 }
356
357 /* SSC step size [7:0] */
358 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
359 STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
360
361 /* SSC step size [15:8] */
362 step_size >>= STEP_SIZE_SHIFT;
363 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
364 STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
365
366 /* SSC step size [23:16] */
367 step_size >>= STEP_SIZE_SHIFT;
368 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
369 STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
370
371 /* SSC steps [7:0] */
372 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
373 STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
374
375 /* SSC steps [10:8] */
376 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
377 STEPS_1_MASK,
378 (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
379
380 /* SSC step size [24:25] */
381 step_size >>= STEP_SIZE_SHIFT;
382 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
383 STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
384 FORCE_STEP_SIZE | FORCE_STEPS);
385}
386
387/* Configure the lane protocol. */
388static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
389{
390 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
391 u8 protocol = gtr_phy->protocol;
392
393 switch (gtr_phy->lane) {
394 case 0:
395 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
396 break;
397 case 1:
398 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
399 protocol << ICM_CFG_SHIFT);
400 break;
401 case 2:
402 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
403 break;
404 case 3:
405 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
406 protocol << ICM_CFG_SHIFT);
407 break;
408 default:
409 /* We already checked 0 <= lane <= 3 */
410 break;
411 }
412}
413
414/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
415static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
416{
417 xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
418 xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
419}
420
421/* DP-specific initialization. */
422static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
423{
424 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
425 L0_TXPMD_TM_45_OVER_DP_MAIN |
426 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
427 L0_TXPMD_TM_45_OVER_DP_POST1 |
428 L0_TXPMD_TM_45_OVER_DP_POST2 |
429 L0_TXPMD_TM_45_ENABLE_DP_POST2);
430 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
431 L0_TX_ANA_TM_118_FORCE_17_0);
432}
433
434/* SATA-specific initialization. */
435static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
436{
437 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
438
439 xpsgtr_bypass_scrambler_8b10b(gtr_phy);
440
441 writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
442}
443
444/* SGMII-specific initialization. */
445static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
446{
447 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
448
449 /* Set SGMII protocol TX and RX bus width to 10 bits. */
450 xpsgtr_write(gtr_dev, TX_PROT_BUS_WIDTH,
451 PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT));
452 xpsgtr_write(gtr_dev, RX_PROT_BUS_WIDTH,
453 PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT));
454
455 xpsgtr_bypass_scrambler_8b10b(gtr_phy);
456}
457
458/* Configure TX de-emphasis and margining for DP. */
459static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
460 unsigned int voltage)
461{
462 static const u8 voltage_swing[4][4] = {
463 { 0x2a, 0x27, 0x24, 0x20 },
464 { 0x27, 0x23, 0x20, 0xff },
465 { 0x24, 0x20, 0xff, 0xff },
466 { 0xff, 0xff, 0xff, 0xff }
467 };
468 static const u8 pre_emphasis[4][4] = {
469 { 0x02, 0x02, 0x02, 0x02 },
470 { 0x01, 0x01, 0x01, 0xff },
471 { 0x00, 0x00, 0xff, 0xff },
472 { 0xff, 0xff, 0xff, 0xff }
473 };
474
475 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
476 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
477}
478
479/*
480 * PHY Operations
481 */
482
483static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
484{
485 /*
486 * As USB may save the snapshot of the states during hibernation, doing
487 * phy_init() will put the USB controller into reset, resulting in the
488 * losing of the saved snapshot. So try to avoid phy_init() for USB
489 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
490 * shutdown during suspend or when gt lane is changed from current one)
491 */
492 if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
493 return false;
494 else
495 return true;
496}
497
498/*
499 * There is a functional issue in the GT. The TX termination resistance can be
500 * out of spec due to a issue in the calibration logic. This is the workaround
501 * to fix it, required for XCZU9EG silicon.
502 */
503static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
504{
505 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
506 u32 timeout = TIMEOUT_US;
507 u32 nsw;
508
509 /* Enabling Test Mode control for CMN Rest */
510 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
511
512 /* Set Test Mode reset */
513 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
514
515 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
516 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
517
518 /*
519 * As a part of work around sequence for PMOS calibration fix,
520 * we need to configure any lane ICM_CFG to valid protocol. This
521 * will deassert the CMN_Resetn signal.
522 */
523 xpsgtr_lane_set_protocol(gtr_phy);
524
525 /* Clear Test Mode reset */
526 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
527
528 dev_dbg(gtr_dev->dev, "calibrating...\n");
529
530 do {
531 u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
532
533 if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
534 break;
535
536 if (!--timeout) {
537 dev_err(gtr_dev->dev, "calibration time out\n");
538 return -ETIMEDOUT;
539 }
540
541 udelay(1);
542 } while (timeout > 0);
543
544 dev_dbg(gtr_dev->dev, "calibration done\n");
545
546 /* Reading NMOS Register Code */
547 nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
548
549 /* Set Test Mode reset */
550 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
551
552 /* Writing NMOS register values back [5:3] */
553 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
554
555 /* Writing NMOS register value [2:0] */
556 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
557 ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
558 (1 << L3_NSW_PIPE_SHIFT));
559
560 /* Clear Test Mode reset */
561 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
562
563 return 0;
564}
565
566static int xpsgtr_phy_init(struct phy *phy)
567{
568 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
569 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
570 int ret = 0;
571
572 mutex_lock(&gtr_dev->gtr_mutex);
573
574 /* Skip initialization if not required. */
575 if (!xpsgtr_phy_init_required(gtr_phy))
576 goto out;
577
578 if (gtr_dev->tx_term_fix) {
579 ret = xpsgtr_phy_tx_term_fix(gtr_phy);
580 if (ret < 0)
581 goto out;
582
583 gtr_dev->tx_term_fix = false;
584 }
585
586 /* Enable coarse code saturation limiting logic. */
587 xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
588
589 /*
590 * Configure the PLL, the lane protocol, and perform protocol-specific
591 * initialization.
592 */
593 xpsgtr_configure_pll(gtr_phy);
594 xpsgtr_lane_set_protocol(gtr_phy);
595
596 switch (gtr_phy->protocol) {
597 case ICM_PROTOCOL_DP:
598 xpsgtr_phy_init_dp(gtr_phy);
599 break;
600
601 case ICM_PROTOCOL_SATA:
602 xpsgtr_phy_init_sata(gtr_phy);
603 break;
604
605 case ICM_PROTOCOL_SGMII:
606 xpsgtr_phy_init_sgmii(gtr_phy);
607 break;
608 }
609
610out:
611 mutex_unlock(&gtr_dev->gtr_mutex);
612 return ret;
613}
614
615static int xpsgtr_phy_exit(struct phy *phy)
616{
617 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
618
619 gtr_phy->skip_phy_init = false;
620
621 return 0;
622}
623
624static int xpsgtr_phy_power_on(struct phy *phy)
625{
626 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
627 int ret = 0;
628
629 /*
630 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
631 * cumulating waits for both lanes. The user is expected to initialize
632 * lane 0 last.
633 */
634 if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
635 gtr_phy->type == XPSGTR_TYPE_DP_0)
636 ret = xpsgtr_wait_pll_lock(phy);
637
638 return ret;
639}
640
641static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
642{
643 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
644
645 if (gtr_phy->protocol != ICM_PROTOCOL_DP)
646 return 0;
647
648 xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
649
650 return 0;
651}
652
653static const struct phy_ops xpsgtr_phyops = {
654 .init = xpsgtr_phy_init,
655 .exit = xpsgtr_phy_exit,
656 .power_on = xpsgtr_phy_power_on,
657 .configure = xpsgtr_phy_configure,
658 .owner = THIS_MODULE,
659};
660
661/*
662 * OF Xlate Support
663 */
664
665/* Set the lane type and protocol based on the PHY type and instance number. */
666static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
667 unsigned int phy_instance)
668{
669 unsigned int num_phy_types;
670 const int *phy_types;
671
672 switch (phy_type) {
673 case PHY_TYPE_SATA: {
674 static const int types[] = {
675 XPSGTR_TYPE_SATA_0,
676 XPSGTR_TYPE_SATA_1,
677 };
678
679 phy_types = types;
680 num_phy_types = ARRAY_SIZE(types);
681 gtr_phy->protocol = ICM_PROTOCOL_SATA;
682 break;
683 }
684 case PHY_TYPE_USB3: {
685 static const int types[] = {
686 XPSGTR_TYPE_USB0,
687 XPSGTR_TYPE_USB1,
688 };
689
690 phy_types = types;
691 num_phy_types = ARRAY_SIZE(types);
692 gtr_phy->protocol = ICM_PROTOCOL_USB;
693 break;
694 }
695 case PHY_TYPE_DP: {
696 static const int types[] = {
697 XPSGTR_TYPE_DP_0,
698 XPSGTR_TYPE_DP_1,
699 };
700
701 phy_types = types;
702 num_phy_types = ARRAY_SIZE(types);
703 gtr_phy->protocol = ICM_PROTOCOL_DP;
704 break;
705 }
706 case PHY_TYPE_PCIE: {
707 static const int types[] = {
708 XPSGTR_TYPE_PCIE_0,
709 XPSGTR_TYPE_PCIE_1,
710 XPSGTR_TYPE_PCIE_2,
711 XPSGTR_TYPE_PCIE_3,
712 };
713
714 phy_types = types;
715 num_phy_types = ARRAY_SIZE(types);
716 gtr_phy->protocol = ICM_PROTOCOL_PCIE;
717 break;
718 }
719 case PHY_TYPE_SGMII: {
720 static const int types[] = {
721 XPSGTR_TYPE_SGMII0,
722 XPSGTR_TYPE_SGMII1,
723 XPSGTR_TYPE_SGMII2,
724 XPSGTR_TYPE_SGMII3,
725 };
726
727 phy_types = types;
728 num_phy_types = ARRAY_SIZE(types);
729 gtr_phy->protocol = ICM_PROTOCOL_SGMII;
730 break;
731 }
732 default:
733 return -EINVAL;
734 }
735
736 if (phy_instance >= num_phy_types)
737 return -EINVAL;
738
739 gtr_phy->type = phy_types[phy_instance];
740 return 0;
741}
742
743/*
744 * Valid combinations of controllers and lanes (Interconnect Matrix).
745 */
746static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
747 { XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
748 XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
749 { XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
750 XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
751 { XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
752 XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
753 { XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
754 XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
755};
756
757/* Translate OF phandle and args to PHY instance. */
758static struct phy *xpsgtr_xlate(struct device *dev,
759 struct of_phandle_args *args)
760{
761 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
762 struct xpsgtr_phy *gtr_phy;
763 unsigned int phy_instance;
764 unsigned int phy_lane;
765 unsigned int phy_type;
766 unsigned int refclk;
767 unsigned int i;
768 int ret;
769
770 if (args->args_count != 4) {
771 dev_err(dev, "Invalid number of cells in 'phy' property\n");
772 return ERR_PTR(-EINVAL);
773 }
774
775 /*
776 * Get the PHY parameters from the OF arguments and derive the lane
777 * type.
778 */
779 phy_lane = args->args[0];
780 if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
781 dev_err(dev, "Invalid lane number %u\n", phy_lane);
782 return ERR_PTR(-ENODEV);
783 }
784
785 gtr_phy = &gtr_dev->phys[phy_lane];
786 phy_type = args->args[1];
787 phy_instance = args->args[2];
788
789 ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
790 if (ret < 0) {
791 dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
792 return ERR_PTR(ret);
793 }
794
795 refclk = args->args[3];
796 if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
797 !gtr_dev->refclk_sscs[refclk]) {
798 dev_err(dev, "Invalid reference clock number %u\n", refclk);
799 return ERR_PTR(-EINVAL);
800 }
801
802 gtr_phy->refclk = refclk;
803
804 /*
805 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
806 * is allowed to operate on the lane.
807 */
808 for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
809 if (icm_matrix[phy_lane][i] == gtr_phy->type)
810 return gtr_phy->phy;
811 }
812
813 return ERR_PTR(-EINVAL);
814}
815
816/*
817 * Power Management
818 */
819
1c59c2d9 820static int __maybe_unused xpsgtr_suspend(struct device *dev)
4a33bea0
AKV
821{
822 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
67097754 823 unsigned int i;
4a33bea0
AKV
824
825 /* Save the snapshot ICM_CFG registers. */
826 gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
827 gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
828
67097754
MN
829 for (i = 0; i < ARRAY_SIZE(gtr_dev->clk); i++)
830 clk_disable_unprepare(gtr_dev->clk[i]);
831
4a33bea0
AKV
832 return 0;
833}
834
1c59c2d9 835static int __maybe_unused xpsgtr_resume(struct device *dev)
4a33bea0
AKV
836{
837 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
838 unsigned int icm_cfg0, icm_cfg1;
839 unsigned int i;
840 bool skip_phy_init;
67097754
MN
841 int err;
842
843 for (i = 0; i < ARRAY_SIZE(gtr_dev->clk); i++) {
844 err = clk_prepare_enable(gtr_dev->clk[i]);
845 if (err)
846 goto err_clk_put;
847 }
4a33bea0
AKV
848
849 icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
850 icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
851
852 /* Return if no GT lanes got configured before suspend. */
853 if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
854 return 0;
855
856 /* Check if the ICM configurations changed after suspend. */
857 if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
858 icm_cfg1 == gtr_dev->saved_icm_cfg1)
859 skip_phy_init = true;
860 else
861 skip_phy_init = false;
862
863 /* Update the skip_phy_init for all gtr_phy instances. */
864 for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
865 gtr_dev->phys[i].skip_phy_init = skip_phy_init;
866
867 return 0;
67097754
MN
868
869err_clk_put:
870 while (i--)
871 clk_disable_unprepare(gtr_dev->clk[i]);
872
873 return err;
4a33bea0 874}
4a33bea0
AKV
875
876static const struct dev_pm_ops xpsgtr_pm_ops = {
877 SET_SYSTEM_SLEEP_PM_OPS(xpsgtr_suspend, xpsgtr_resume)
878};
879
880/*
881 * Probe & Platform Driver
882 */
883
884static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
885{
886 unsigned int refclk;
67097754 887 int ret;
4a33bea0
AKV
888
889 for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
890 unsigned long rate;
891 unsigned int i;
892 struct clk *clk;
893 char name[8];
894
895 snprintf(name, sizeof(name), "ref%u", refclk);
896 clk = devm_clk_get_optional(gtr_dev->dev, name);
67097754
MN
897 if (IS_ERR(clk)) {
898 ret = dev_err_probe(gtr_dev->dev, PTR_ERR(clk),
899 "Failed to get reference clock %u\n",
900 refclk);
901 goto err_clk_put;
902 }
4a33bea0
AKV
903
904 if (!clk)
905 continue;
906
67097754
MN
907 ret = clk_prepare_enable(clk);
908 if (ret)
909 goto err_clk_put;
910
911 gtr_dev->clk[refclk] = clk;
912
4a33bea0
AKV
913 /*
914 * Get the spread spectrum (SSC) settings for the reference
915 * clock rate.
916 */
917 rate = clk_get_rate(clk);
918
919 for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
920 if (rate == ssc_lookup[i].refclk_rate) {
921 gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
922 break;
923 }
924 }
925
926 if (i == ARRAY_SIZE(ssc_lookup)) {
927 dev_err(gtr_dev->dev,
928 "Invalid rate %lu for reference clock %u\n",
929 rate, refclk);
67097754
MN
930 ret = -EINVAL;
931 goto err_clk_put;
4a33bea0
AKV
932 }
933 }
934
935 return 0;
67097754
MN
936
937err_clk_put:
938 while (refclk--)
939 clk_disable_unprepare(gtr_dev->clk[refclk]);
940
941 return ret;
4a33bea0
AKV
942}
943
944static int xpsgtr_probe(struct platform_device *pdev)
945{
946 struct device_node *np = pdev->dev.of_node;
947 struct xpsgtr_dev *gtr_dev;
948 struct phy_provider *provider;
949 unsigned int port;
67097754 950 unsigned int i;
4a33bea0
AKV
951 int ret;
952
953 gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
954 if (!gtr_dev)
955 return -ENOMEM;
956
957 gtr_dev->dev = &pdev->dev;
958 platform_set_drvdata(pdev, gtr_dev);
959
960 mutex_init(&gtr_dev->gtr_mutex);
961
962 if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
963 gtr_dev->tx_term_fix =
964 of_property_read_bool(np, "xlnx,tx-termination-fix");
965
966 /* Acquire resources. */
967 gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
968 if (IS_ERR(gtr_dev->serdes))
969 return PTR_ERR(gtr_dev->serdes);
970
971 gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
972 if (IS_ERR(gtr_dev->siou))
973 return PTR_ERR(gtr_dev->siou);
974
975 ret = xpsgtr_get_ref_clocks(gtr_dev);
976 if (ret)
977 return ret;
978
979 /* Create PHYs. */
980 for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
981 struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
982 struct phy *phy;
983
984 gtr_phy->lane = port;
985 gtr_phy->dev = gtr_dev;
986
987 phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
988 if (IS_ERR(phy)) {
989 dev_err(&pdev->dev, "failed to create PHY\n");
67097754
MN
990 ret = PTR_ERR(phy);
991 goto err_clk_put;
4a33bea0
AKV
992 }
993
994 gtr_phy->phy = phy;
995 phy_set_drvdata(phy, gtr_phy);
996 }
997
998 /* Register the PHY provider. */
999 provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
1000 if (IS_ERR(provider)) {
1001 dev_err(&pdev->dev, "registering provider failed\n");
67097754
MN
1002 ret = PTR_ERR(provider);
1003 goto err_clk_put;
4a33bea0
AKV
1004 }
1005 return 0;
67097754
MN
1006
1007err_clk_put:
1008 for (i = 0; i < ARRAY_SIZE(gtr_dev->clk); i++)
1009 clk_disable_unprepare(gtr_dev->clk[i]);
1010
1011 return ret;
4a33bea0
AKV
1012}
1013
1014static const struct of_device_id xpsgtr_of_match[] = {
1015 { .compatible = "xlnx,zynqmp-psgtr", },
1016 { .compatible = "xlnx,zynqmp-psgtr-v1.1", },
1017 {},
1018};
1019MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
1020
1021static struct platform_driver xpsgtr_driver = {
1022 .probe = xpsgtr_probe,
1023 .driver = {
1024 .name = "xilinx-psgtr",
1025 .of_match_table = xpsgtr_of_match,
1026 .pm = &xpsgtr_pm_ops,
1027 },
1028};
1029
1030module_platform_driver(xpsgtr_driver);
1031
1032MODULE_AUTHOR("Xilinx Inc.");
1033MODULE_LICENSE("GPL v2");
1034MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");