powerpc/mm: Drop the unnecessary region check
[linux-2.6-block.git] / drivers / perf / arm_pmu_acpi.c
CommitLineData
45736a72
MR
1/*
2 * ACPI probing code for ARM performance counters.
3 *
4 * Copyright (C) 2017 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpumask.h>
13#include <linux/init.h>
43fc9a2f
MR
14#include <linux/irq.h>
15#include <linux/irqdesc.h>
45736a72
MR
16#include <linux/percpu.h>
17#include <linux/perf/arm_pmu.h>
18
19#include <asm/cputype.h>
20
21static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
22static DEFINE_PER_CPU(int, pmu_irqs);
23
24static int arm_pmu_acpi_register_irq(int cpu)
25{
26 struct acpi_madt_generic_interrupt *gicc;
27 int gsi, trigger;
28
29 gicc = acpi_cpu_get_madt_gicc(cpu);
30 if (WARN_ON(!gicc))
31 return -EINVAL;
32
33 gsi = gicc->performance_interrupt;
477c50e8
WH
34
35 /*
36 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
37 * have an interrupt. QEMU advertises this by using a GSI of zero,
38 * which is not known to be valid on any hardware despite being
39 * valid per the spec. Take the pragmatic approach and reject a
40 * GSI of zero for now.
41 */
42 if (!gsi)
43 return 0;
44
45736a72
MR
45 if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
46 trigger = ACPI_EDGE_SENSITIVE;
47 else
48 trigger = ACPI_LEVEL_SENSITIVE;
49
50 /*
51 * Helpfully, the MADT GICC doesn't have a polarity flag for the
52 * "performance interrupt". Luckily, on compliant GICs the polarity is
53 * a fixed value in HW (for both SPIs and PPIs) that we cannot change
54 * from SW.
55 *
56 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
57 * may not match the real polarity, but that should not matter.
58 *
59 * Other interrupt controllers are not supported with ACPI.
60 */
61 return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
62}
63
64static void arm_pmu_acpi_unregister_irq(int cpu)
65{
66 struct acpi_madt_generic_interrupt *gicc;
67 int gsi;
68
69 gicc = acpi_cpu_get_madt_gicc(cpu);
70 if (!gicc)
71 return;
72
73 gsi = gicc->performance_interrupt;
74 acpi_unregister_gsi(gsi);
75}
76
77static int arm_pmu_acpi_parse_irqs(void)
78{
79 int irq, cpu, irq_cpu, err;
80
81 for_each_possible_cpu(cpu) {
82 irq = arm_pmu_acpi_register_irq(cpu);
83 if (irq < 0) {
84 err = irq;
85 pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
86 cpu, err);
87 goto out_err;
88 } else if (irq == 0) {
89 pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
90 }
91
167e6143
MR
92 /*
93 * Log and request the IRQ so the core arm_pmu code can manage
94 * it. We'll have to sanity-check IRQs later when we associate
95 * them with their PMUs.
96 */
45736a72 97 per_cpu(pmu_irqs, cpu) = irq;
167e6143 98 armpmu_request_irq(irq, cpu);
45736a72
MR
99 }
100
101 return 0;
102
103out_err:
104 for_each_possible_cpu(cpu) {
105 irq = per_cpu(pmu_irqs, cpu);
106 if (!irq)
107 continue;
108
109 arm_pmu_acpi_unregister_irq(cpu);
110
111 /*
112 * Blat all copies of the IRQ so that we only unregister the
113 * corresponding GSI once (e.g. when we have PPIs).
114 */
115 for_each_possible_cpu(irq_cpu) {
116 if (per_cpu(pmu_irqs, irq_cpu) == irq)
117 per_cpu(pmu_irqs, irq_cpu) = 0;
118 }
119 }
120
121 return err;
122}
123
124static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void)
125{
126 unsigned long cpuid = read_cpuid_id();
127 struct arm_pmu *pmu;
128 int cpu;
129
130 for_each_possible_cpu(cpu) {
131 pmu = per_cpu(probed_pmus, cpu);
132 if (!pmu || pmu->acpi_cpuid != cpuid)
133 continue;
134
135 return pmu;
136 }
137
0dc1a185 138 pmu = armpmu_alloc_atomic();
45736a72
MR
139 if (!pmu) {
140 pr_warn("Unable to allocate PMU for CPU%d\n",
141 smp_processor_id());
142 return NULL;
143 }
144
145 pmu->acpi_cpuid = cpuid;
146
147 return pmu;
148}
149
43fc9a2f
MR
150/*
151 * Check whether the new IRQ is compatible with those already associated with
152 * the PMU (e.g. we don't have mismatched PPIs).
153 */
154static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
155{
156 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
157 int cpu;
158
159 if (!irq)
160 return true;
161
162 for_each_cpu(cpu, &pmu->supported_cpus) {
163 int other_irq = per_cpu(hw_events->irq, cpu);
164 if (!other_irq)
165 continue;
166
167 if (irq == other_irq)
168 continue;
169 if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
170 continue;
171
172 pr_warn("mismatched PPIs detected\n");
173 return false;
174 }
175
176 return true;
177}
178
45736a72
MR
179/*
180 * This must run before the common arm_pmu hotplug logic, so that we can
181 * associate a CPU and its interrupt before the common code tries to manage the
182 * affinity and so on.
183 *
184 * Note that hotplug events are serialized, so we cannot race with another CPU
185 * coming up. The perf core won't open events while a hotplug event is in
186 * progress.
187 */
188static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
189{
190 struct arm_pmu *pmu;
191 struct pmu_hw_events __percpu *hw_events;
192 int irq;
193
194 /* If we've already probed this CPU, we have nothing to do */
195 if (per_cpu(probed_pmus, cpu))
196 return 0;
197
198 irq = per_cpu(pmu_irqs, cpu);
199
200 pmu = arm_pmu_acpi_find_alloc_pmu();
201 if (!pmu)
202 return -ENOMEM;
203
45736a72
MR
204 per_cpu(probed_pmus, cpu) = pmu;
205
43fc9a2f
MR
206 if (pmu_irq_matches(pmu, irq)) {
207 hw_events = pmu->hw_events;
208 per_cpu(hw_events->irq, cpu) = irq;
209 }
210
211 cpumask_set_cpu(cpu, &pmu->supported_cpus);
212
45736a72
MR
213 /*
214 * Ideally, we'd probe the PMU here when we find the first matching
215 * CPU. We can't do that for several reasons; see the comment in
216 * arm_pmu_acpi_init().
217 *
218 * So for the time being, we're done.
219 */
220 return 0;
221}
222
223int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
224{
225 int pmu_idx = 0;
226 int cpu, ret;
227
45736a72
MR
228 /*
229 * Initialise and register the set of PMUs which we know about right
230 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
231 * could handle late hotplug, but this may lead to deadlock since we
232 * might try to register a hotplug notifier instance from within a
233 * hotplug notifier.
234 *
235 * There's also the problem of having access to the right init_fn,
236 * without tying this too deeply into the "real" PMU driver.
237 *
238 * For the moment, as with the platform/DT case, we need at least one
239 * of a PMU's CPUs to be online at probe time.
240 */
241 for_each_possible_cpu(cpu) {
242 struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
243 char *base_name;
244
245 if (!pmu || pmu->name)
246 continue;
247
248 ret = init_fn(pmu);
249 if (ret == -ENODEV) {
250 /* PMU not handled by this driver, or not present */
251 continue;
252 } else if (ret) {
253 pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
254 return ret;
255 }
256
257 base_name = pmu->name;
258 pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
259 if (!pmu->name) {
260 pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
261 return -ENOMEM;
262 }
263
264 ret = armpmu_register(pmu);
265 if (ret) {
266 pr_warn("Failed to register PMU for CPU%d\n", cpu);
a88dc7ba 267 kfree(pmu->name);
45736a72
MR
268 return ret;
269 }
270 }
271
272 return 0;
273}
274
275static int arm_pmu_acpi_init(void)
276{
277 int ret;
278
279 if (acpi_disabled)
280 return 0;
281
45736a72
MR
282 ret = arm_pmu_acpi_parse_irqs();
283 if (ret)
284 return ret;
285
286 ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING,
287 "perf/arm/pmu_acpi:starting",
288 arm_pmu_acpi_cpu_starting, NULL);
289
290 return ret;
291}
292subsys_initcall(arm_pmu_acpi_init)