Merge branches 'pm-cpuidle', 'pm-core' and 'pm-sleep'
[linux-block.git] / drivers / pci / pci.c
CommitLineData
7328c8f4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
df62ab5e 3 * PCI Bus Services, see include/linux/pci.h for further explanation.
1da177e4 4 *
df62ab5e
BH
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
1da177e4 7 *
df62ab5e 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
1da177e4
LT
9 */
10
2ab51dde 11#include <linux/acpi.h>
1da177e4
LT
12#include <linux/kernel.h>
13#include <linux/delay.h>
9d26d3a8 14#include <linux/dmi.h>
1da177e4 15#include <linux/init.h>
bbd8810d 16#include <linux/msi.h>
7c674700 17#include <linux/of.h>
1da177e4 18#include <linux/pci.h>
075c1771 19#include <linux/pm.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/module.h>
22#include <linux/spinlock.h>
4e57b681 23#include <linux/string.h>
229f5afd 24#include <linux/log2.h>
5745392e 25#include <linux/logic_pio.h>
c300bd2f 26#include <linux/pm_wakeup.h>
8dd7f803 27#include <linux/interrupt.h>
32a9a682 28#include <linux/device.h>
b67ea761 29#include <linux/pm_runtime.h>
608c3881 30#include <linux/pci_hotplug.h>
4d3f1384 31#include <linux/vmalloc.h>
2a2aca31 32#include <asm/dma.h>
b07461a8 33#include <linux/aer.h>
69139244 34#include <linux/bitfield.h>
bc56b9e0 35#include "pci.h"
1da177e4 36
c4eed62a
KB
37DEFINE_MUTEX(pci_slot_mutex);
38
00240c38
AS
39const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41};
42EXPORT_SYMBOL_GPL(pci_power_names);
43
abb4970a 44#ifdef CONFIG_X86_32
93177a74
RW
45int isa_dma_bridge_buggy;
46EXPORT_SYMBOL(isa_dma_bridge_buggy);
abb4970a 47#endif
93177a74
RW
48
49int pci_pci_problems;
50EXPORT_SYMBOL(pci_pci_problems);
51
3789af9a 52unsigned int pci_pm_d3hot_delay;
1ae861e6 53
df17e62e
MG
54static void pci_pme_list_scan(struct work_struct *work);
55
56static LIST_HEAD(pci_pme_list);
57static DEFINE_MUTEX(pci_pme_list_mutex);
58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63};
64
65#define PME_TIMEOUT 1000 /* How long between PME checks */
66
1ae861e6
RW
67static void pci_dev_d3_sleep(struct pci_dev *dev)
68{
3e347969
SD
69 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
70 unsigned int upper;
71
72 if (delay_ms) {
73 /* Use a 20% upper bound, 1ms minimum */
74 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
75 usleep_range(delay_ms * USEC_PER_MSEC,
76 (delay_ms + upper) * USEC_PER_MSEC);
77 }
1ae861e6 78}
1da177e4 79
e20afa06
AN
80bool pci_reset_supported(struct pci_dev *dev)
81{
82 return dev->reset_methods[0] != 0;
83}
84
32a2eea7
JG
85#ifdef CONFIG_PCI_DOMAINS
86int pci_domains_supported = 1;
87#endif
88
4516a618
AN
89#define DEFAULT_CARDBUS_IO_SIZE (256)
90#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
91/* pci=cbmemsize=nnM,cbiosize=nn can override this */
92unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
93unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
94
28760489 95#define DEFAULT_HOTPLUG_IO_SIZE (256)
d7b8a217
NJ
96#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
97#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
98/* hpiosize=nn can override this */
28760489 99unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
d7b8a217
NJ
100/*
101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
103 * pci=hpmemsize=nnM overrides both
104 */
105unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
106unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
28760489 107
e16b4660
KB
108#define DEFAULT_HOTPLUG_BUS_SIZE 1
109unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
110
b0e85c3c
JQ
111
112/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
113#ifdef CONFIG_PCIE_BUS_TUNE_OFF
114enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
115#elif defined CONFIG_PCIE_BUS_SAFE
116enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
117#elif defined CONFIG_PCIE_BUS_PERFORMANCE
118enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
119#elif defined CONFIG_PCIE_BUS_PEER2PEER
120enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
121#else
27d868b5 122enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
b0e85c3c 123#endif
b03e7495 124
ac1aa47b
JB
125/*
126 * The default CLS is used if arch didn't set CLS explicitly and not
127 * all pci devices agree on the same value. Arch can override either
128 * the dfl or actual value as it sees fit. Don't forget this is
129 * measured in 32-bit words, not bytes.
130 */
15856ad5 131u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
ac1aa47b
JB
132u8 pci_cache_line_size;
133
96c55900
MS
134/*
135 * If we set up a device for bus mastering, we need to check the latency
136 * timer as certain BIOSes forget to set it properly.
137 */
138unsigned int pcibios_max_latency = 255;
139
6748dcc2
RW
140/* If set, the PCIe ARI capability will not be used. */
141static bool pcie_ari_disabled;
142
cef74409
GK
143/* If set, the PCIe ATS capability will not be used. */
144static bool pcie_ats_disabled;
145
11eb0e0e
SK
146/* If set, the PCI config space of each device is printed during boot. */
147bool pci_early_dump;
148
cef74409
GK
149bool pci_ats_disabled(void)
150{
151 return pcie_ats_disabled;
152}
1a373a78 153EXPORT_SYMBOL_GPL(pci_ats_disabled);
cef74409 154
9d26d3a8
MW
155/* Disable bridge_d3 for all PCIe ports */
156static bool pci_bridge_d3_disable;
157/* Force bridge_d3 for all PCIe ports */
158static bool pci_bridge_d3_force;
159
160static int __init pcie_port_pm_setup(char *str)
161{
162 if (!strcmp(str, "off"))
163 pci_bridge_d3_disable = true;
164 else if (!strcmp(str, "force"))
165 pci_bridge_d3_force = true;
166 return 1;
167}
168__setup("pcie_port_pm=", pcie_port_pm_setup);
169
a2758b6b
SK
170/* Time to wait after a reset for device to become responsive */
171#define PCIE_RESET_READY_POLL_MS 60000
172
1da177e4
LT
173/**
174 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
175 * @bus: pointer to PCI bus structure to search
176 *
177 * Given a PCI bus, returns the highest PCI bus number present in the set
178 * including the given PCI bus and its list of child PCI buses.
179 */
07656d83 180unsigned char pci_bus_max_busnr(struct pci_bus *bus)
1da177e4 181{
94e6a9b9 182 struct pci_bus *tmp;
1da177e4
LT
183 unsigned char max, n;
184
b918c62e 185 max = bus->busn_res.end;
94e6a9b9
YW
186 list_for_each_entry(tmp, &bus->children, node) {
187 n = pci_bus_max_busnr(tmp);
3c78bc61 188 if (n > max)
1da177e4
LT
189 max = n;
190 }
191 return max;
192}
b82db5ce 193EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
1da177e4 194
ec5d9e87
HK
195/**
196 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
197 * @pdev: the PCI device
198 *
199 * Returns error bits set in PCI_STATUS and clears them.
200 */
201int pci_status_get_and_clear_errors(struct pci_dev *pdev)
202{
203 u16 status;
204 int ret;
205
206 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
207 if (ret != PCIBIOS_SUCCESSFUL)
208 return -EIO;
209
210 status &= PCI_STATUS_ERROR_BITS;
211 if (status)
212 pci_write_config_word(pdev, PCI_STATUS, status);
213
214 return status;
215}
216EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
217
1684f5dd 218#ifdef CONFIG_HAS_IOMEM
a67462fc
KW
219static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
220 bool write_combine)
1684f5dd 221{
1f7bf3bf 222 struct resource *res = &pdev->resource[bar];
a67462fc
KW
223 resource_size_t start = res->start;
224 resource_size_t size = resource_size(res);
1f7bf3bf 225
1684f5dd
AM
226 /*
227 * Make sure the BAR is actually a memory resource, not an IO resource
228 */
646c0282 229 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
a67462fc 230 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
1684f5dd
AM
231 return NULL;
232 }
a67462fc
KW
233
234 if (write_combine)
235 return ioremap_wc(start, size);
236
237 return ioremap(start, size);
238}
239
240void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
241{
242 return __pci_ioremap_resource(pdev, bar, false);
1684f5dd
AM
243}
244EXPORT_SYMBOL_GPL(pci_ioremap_bar);
c43996f4
LR
245
246void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
247{
a67462fc 248 return __pci_ioremap_resource(pdev, bar, true);
c43996f4
LR
249}
250EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
1684f5dd
AM
251#endif
252
45db3370
LG
253/**
254 * pci_dev_str_match_path - test if a path string matches a device
74356add
BH
255 * @dev: the PCI device to test
256 * @path: string to match the device against
45db3370
LG
257 * @endptr: pointer to the string after the match
258 *
259 * Test if a string (typically from a kernel parameter) formatted as a
260 * path of device/function addresses matches a PCI device. The string must
261 * be of the form:
262 *
263 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
264 *
265 * A path for a device can be obtained using 'lspci -t'. Using a path
266 * is more robust against bus renumbering than using only a single bus,
267 * device and function address.
268 *
269 * Returns 1 if the string matches the device, 0 if it does not and
270 * a negative error code if it fails to parse the string.
271 */
272static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
273 const char **endptr)
274{
275 int ret;
357df2fc 276 unsigned int seg, bus, slot, func;
45db3370
LG
277 char *wpath, *p;
278 char end;
279
280 *endptr = strchrnul(path, ';');
281
7eb6ea41 282 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
45db3370
LG
283 if (!wpath)
284 return -ENOMEM;
285
286 while (1) {
287 p = strrchr(wpath, '/');
288 if (!p)
289 break;
290 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
291 if (ret != 2) {
292 ret = -EINVAL;
293 goto free_and_exit;
294 }
295
296 if (dev->devfn != PCI_DEVFN(slot, func)) {
297 ret = 0;
298 goto free_and_exit;
299 }
300
301 /*
302 * Note: we don't need to get a reference to the upstream
303 * bridge because we hold a reference to the top level
304 * device which should hold a reference to the bridge,
305 * and so on.
306 */
307 dev = pci_upstream_bridge(dev);
308 if (!dev) {
309 ret = 0;
310 goto free_and_exit;
311 }
312
313 *p = 0;
314 }
315
316 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
317 &func, &end);
318 if (ret != 4) {
319 seg = 0;
320 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
321 if (ret != 3) {
322 ret = -EINVAL;
323 goto free_and_exit;
324 }
325 }
326
327 ret = (seg == pci_domain_nr(dev->bus) &&
328 bus == dev->bus->number &&
329 dev->devfn == PCI_DEVFN(slot, func));
330
331free_and_exit:
332 kfree(wpath);
333 return ret;
334}
335
07d8d7e5
LG
336/**
337 * pci_dev_str_match - test if a string matches a device
74356add
BH
338 * @dev: the PCI device to test
339 * @p: string to match the device against
07d8d7e5
LG
340 * @endptr: pointer to the string after the match
341 *
342 * Test if a string (typically from a kernel parameter) matches a specified
343 * PCI device. The string may be of one of the following formats:
344 *
45db3370 345 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
07d8d7e5
LG
346 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
347 *
348 * The first format specifies a PCI bus/device/function address which
349 * may change if new hardware is inserted, if motherboard firmware changes,
350 * or due to changes caused in kernel parameters. If the domain is
45db3370
LG
351 * left unspecified, it is taken to be 0. In order to be robust against
352 * bus renumbering issues, a path of PCI device/function numbers may be used
353 * to address the specific device. The path for a device can be determined
354 * through the use of 'lspci -t'.
07d8d7e5
LG
355 *
356 * The second format matches devices using IDs in the configuration
357 * space which may match multiple devices in the system. A value of 0
358 * for any field will match all devices. (Note: this differs from
359 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
360 * legacy reasons and convenience so users don't have to specify
361 * FFFFFFFFs on the command line.)
362 *
363 * Returns 1 if the string matches the device, 0 if it does not and
364 * a negative error code if the string cannot be parsed.
365 */
366static int pci_dev_str_match(struct pci_dev *dev, const char *p,
367 const char **endptr)
368{
369 int ret;
45db3370 370 int count;
07d8d7e5
LG
371 unsigned short vendor, device, subsystem_vendor, subsystem_device;
372
373 if (strncmp(p, "pci:", 4) == 0) {
374 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
375 p += 4;
376 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
377 &subsystem_vendor, &subsystem_device, &count);
378 if (ret != 4) {
379 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
380 if (ret != 2)
381 return -EINVAL;
382
383 subsystem_vendor = 0;
384 subsystem_device = 0;
385 }
386
387 p += count;
388
389 if ((!vendor || vendor == dev->vendor) &&
390 (!device || device == dev->device) &&
391 (!subsystem_vendor ||
392 subsystem_vendor == dev->subsystem_vendor) &&
393 (!subsystem_device ||
394 subsystem_device == dev->subsystem_device))
395 goto found;
07d8d7e5 396 } else {
45db3370
LG
397 /*
398 * PCI Bus, Device, Function IDs are specified
74356add 399 * (optionally, may include a path of devfns following it)
45db3370
LG
400 */
401 ret = pci_dev_str_match_path(dev, p, &p);
402 if (ret < 0)
403 return ret;
404 else if (ret)
07d8d7e5
LG
405 goto found;
406 }
407
408 *endptr = p;
409 return 0;
410
411found:
412 *endptr = p;
413 return 1;
414}
687d5fe3 415
f646c2a0
PM
416static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
417 u8 pos, int cap, int *ttl)
24a4e377
RD
418{
419 u8 id;
55db3208
SS
420 u16 ent;
421
422 pci_bus_read_config_byte(bus, devfn, pos, &pos);
24a4e377 423
687d5fe3 424 while ((*ttl)--) {
24a4e377
RD
425 if (pos < 0x40)
426 break;
427 pos &= ~3;
55db3208
SS
428 pci_bus_read_config_word(bus, devfn, pos, &ent);
429
430 id = ent & 0xff;
24a4e377
RD
431 if (id == 0xff)
432 break;
433 if (id == cap)
434 return pos;
55db3208 435 pos = (ent >> 8);
24a4e377
RD
436 }
437 return 0;
438}
439
f646c2a0
PM
440static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
441 u8 pos, int cap)
687d5fe3
ME
442{
443 int ttl = PCI_FIND_CAP_TTL;
444
445 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
446}
447
f646c2a0 448u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
24a4e377
RD
449{
450 return __pci_find_next_cap(dev->bus, dev->devfn,
451 pos + PCI_CAP_LIST_NEXT, cap);
452}
453EXPORT_SYMBOL_GPL(pci_find_next_capability);
454
f646c2a0 455static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
d3bac118 456 unsigned int devfn, u8 hdr_type)
1da177e4
LT
457{
458 u16 status;
1da177e4
LT
459
460 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
461 if (!(status & PCI_STATUS_CAP_LIST))
462 return 0;
463
464 switch (hdr_type) {
465 case PCI_HEADER_TYPE_NORMAL:
466 case PCI_HEADER_TYPE_BRIDGE:
d3bac118 467 return PCI_CAPABILITY_LIST;
1da177e4 468 case PCI_HEADER_TYPE_CARDBUS:
d3bac118 469 return PCI_CB_CAPABILITY_LIST;
1da177e4 470 }
d3bac118
ME
471
472 return 0;
1da177e4
LT
473}
474
475/**
f7625980 476 * pci_find_capability - query for devices' capabilities
1da177e4
LT
477 * @dev: PCI device to query
478 * @cap: capability code
479 *
480 * Tell if a device supports a given PCI capability.
481 * Returns the address of the requested capability structure within the
482 * device's PCI configuration space or 0 in case the device does not
74356add 483 * support it. Possible values for @cap include:
1da177e4 484 *
f7625980
BH
485 * %PCI_CAP_ID_PM Power Management
486 * %PCI_CAP_ID_AGP Accelerated Graphics Port
487 * %PCI_CAP_ID_VPD Vital Product Data
488 * %PCI_CAP_ID_SLOTID Slot Identification
1da177e4 489 * %PCI_CAP_ID_MSI Message Signalled Interrupts
f7625980 490 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
1da177e4
LT
491 * %PCI_CAP_ID_PCIX PCI-X
492 * %PCI_CAP_ID_EXP PCI Express
493 */
f646c2a0 494u8 pci_find_capability(struct pci_dev *dev, int cap)
1da177e4 495{
f646c2a0 496 u8 pos;
d3bac118
ME
497
498 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
499 if (pos)
500 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
501
502 return pos;
1da177e4 503}
b7fe9434 504EXPORT_SYMBOL(pci_find_capability);
1da177e4
LT
505
506/**
f7625980 507 * pci_bus_find_capability - query for devices' capabilities
74356add 508 * @bus: the PCI bus to query
1da177e4 509 * @devfn: PCI device to query
74356add 510 * @cap: capability code
1da177e4 511 *
74356add 512 * Like pci_find_capability() but works for PCI devices that do not have a
f7625980 513 * pci_dev structure set up yet.
1da177e4
LT
514 *
515 * Returns the address of the requested capability structure within the
516 * device's PCI configuration space or 0 in case the device does not
517 * support it.
518 */
f646c2a0 519u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
1da177e4 520{
f646c2a0 521 u8 hdr_type, pos;
1da177e4
LT
522
523 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
524
d3bac118
ME
525 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
526 if (pos)
527 pos = __pci_find_next_cap(bus, devfn, pos, cap);
528
529 return pos;
1da177e4 530}
b7fe9434 531EXPORT_SYMBOL(pci_bus_find_capability);
1da177e4
LT
532
533/**
44a9a36f 534 * pci_find_next_ext_capability - Find an extended capability
1da177e4 535 * @dev: PCI device to query
44a9a36f 536 * @start: address at which to start looking (0 to start at beginning of list)
1da177e4
LT
537 * @cap: capability code
538 *
44a9a36f 539 * Returns the address of the next matching extended capability structure
1da177e4 540 * within the device's PCI configuration space or 0 if the device does
44a9a36f
BH
541 * not support it. Some capabilities can occur several times, e.g., the
542 * vendor-specific capability, and this provides a way to find them all.
1da177e4 543 */
ee8b1c47 544u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
1da177e4
LT
545{
546 u32 header;
557848c3 547 int ttl;
ee8b1c47 548 u16 pos = PCI_CFG_SPACE_SIZE;
1da177e4 549
557848c3
ZY
550 /* minimum 8 bytes per capability */
551 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
552
553 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
1da177e4
LT
554 return 0;
555
44a9a36f
BH
556 if (start)
557 pos = start;
558
1da177e4
LT
559 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
560 return 0;
561
562 /*
563 * If we have no capabilities, this is indicated by cap ID,
564 * cap version and next pointer all being 0.
565 */
566 if (header == 0)
567 return 0;
568
569 while (ttl-- > 0) {
44a9a36f 570 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
1da177e4
LT
571 return pos;
572
573 pos = PCI_EXT_CAP_NEXT(header);
557848c3 574 if (pos < PCI_CFG_SPACE_SIZE)
1da177e4
LT
575 break;
576
577 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
578 break;
579 }
580
581 return 0;
582}
44a9a36f
BH
583EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
584
585/**
586 * pci_find_ext_capability - Find an extended capability
587 * @dev: PCI device to query
588 * @cap: capability code
589 *
590 * Returns the address of the requested extended capability structure
591 * within the device's PCI configuration space or 0 if the device does
74356add 592 * not support it. Possible values for @cap include:
44a9a36f
BH
593 *
594 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
595 * %PCI_EXT_CAP_ID_VC Virtual Channel
596 * %PCI_EXT_CAP_ID_DSN Device Serial Number
597 * %PCI_EXT_CAP_ID_PWR Power Budgeting
598 */
ee8b1c47 599u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
44a9a36f
BH
600{
601 return pci_find_next_ext_capability(dev, 0, cap);
602}
3a720d72 603EXPORT_SYMBOL_GPL(pci_find_ext_capability);
1da177e4 604
70c0923b
JK
605/**
606 * pci_get_dsn - Read and return the 8-byte Device Serial Number
607 * @dev: PCI device to query
608 *
609 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
610 * Number.
611 *
612 * Returns the DSN, or zero if the capability does not exist.
613 */
614u64 pci_get_dsn(struct pci_dev *dev)
615{
616 u32 dword;
617 u64 dsn;
618 int pos;
619
620 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
621 if (!pos)
622 return 0;
623
624 /*
625 * The Device Serial Number is two dwords offset 4 bytes from the
626 * capability position. The specification says that the first dword is
627 * the lower half, and the second dword is the upper half.
628 */
629 pos += 4;
630 pci_read_config_dword(dev, pos, &dword);
631 dsn = (u64)dword;
632 pci_read_config_dword(dev, pos + 4, &dword);
633 dsn |= ((u64)dword) << 32;
634
635 return dsn;
636}
637EXPORT_SYMBOL_GPL(pci_get_dsn);
638
f646c2a0 639static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
687d5fe3
ME
640{
641 int rc, ttl = PCI_FIND_CAP_TTL;
642 u8 cap, mask;
643
644 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
645 mask = HT_3BIT_CAP_MASK;
646 else
647 mask = HT_5BIT_CAP_MASK;
648
649 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
650 PCI_CAP_ID_HT, &ttl);
651 while (pos) {
652 rc = pci_read_config_byte(dev, pos + 3, &cap);
653 if (rc != PCIBIOS_SUCCESSFUL)
654 return 0;
655
656 if ((cap & mask) == ht_cap)
657 return pos;
658
47a4d5be
BG
659 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
660 pos + PCI_CAP_LIST_NEXT,
687d5fe3
ME
661 PCI_CAP_ID_HT, &ttl);
662 }
663
664 return 0;
665}
f646c2a0 666
687d5fe3 667/**
f646c2a0 668 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
687d5fe3
ME
669 * @dev: PCI device to query
670 * @pos: Position from which to continue searching
f646c2a0 671 * @ht_cap: HyperTransport capability code
687d5fe3
ME
672 *
673 * To be used in conjunction with pci_find_ht_capability() to search for
674 * all capabilities matching @ht_cap. @pos should always be a value returned
675 * from pci_find_ht_capability().
676 *
677 * NB. To be 100% safe against broken PCI devices, the caller should take
678 * steps to avoid an infinite loop.
679 */
f646c2a0 680u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
687d5fe3
ME
681{
682 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
683}
684EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
685
686/**
f646c2a0 687 * pci_find_ht_capability - query a device's HyperTransport capabilities
687d5fe3 688 * @dev: PCI device to query
f646c2a0 689 * @ht_cap: HyperTransport capability code
687d5fe3 690 *
f646c2a0 691 * Tell if a device supports a given HyperTransport capability.
687d5fe3
ME
692 * Returns an address within the device's PCI configuration space
693 * or 0 in case the device does not support the request capability.
694 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
f646c2a0 695 * which has a HyperTransport capability matching @ht_cap.
687d5fe3 696 */
f646c2a0 697u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
687d5fe3 698{
f646c2a0 699 u8 pos;
687d5fe3
ME
700
701 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
702 if (pos)
703 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
704
705 return pos;
706}
707EXPORT_SYMBOL_GPL(pci_find_ht_capability);
708
c124fd9a
GP
709/**
710 * pci_find_vsec_capability - Find a vendor-specific extended capability
711 * @dev: PCI device to query
712 * @vendor: Vendor ID for which capability is defined
713 * @cap: Vendor-specific capability ID
714 *
715 * If @dev has Vendor ID @vendor, search for a VSEC capability with
716 * VSEC ID @cap. If found, return the capability offset in
717 * config space; otherwise return 0.
718 */
719u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
720{
721 u16 vsec = 0;
722 u32 header;
723
724 if (vendor != dev->vendor)
725 return 0;
726
727 while ((vsec = pci_find_next_ext_capability(dev, vsec,
728 PCI_EXT_CAP_ID_VNDR))) {
729 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
730 &header) == PCIBIOS_SUCCESSFUL &&
731 PCI_VNDR_HEADER_ID(header) == cap)
732 return vsec;
733 }
734
735 return 0;
736}
737EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
738
ee122037
BW
739/**
740 * pci_find_dvsec_capability - Find DVSEC for vendor
741 * @dev: PCI device to query
742 * @vendor: Vendor ID to match for the DVSEC
743 * @dvsec: Designated Vendor-specific capability ID
744 *
745 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
746 * offset in config space; otherwise return 0.
747 */
748u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
749{
750 int pos;
751
752 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
753 if (!pos)
754 return 0;
755
756 while (pos) {
757 u16 v, id;
758
759 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
760 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
761 if (vendor == v && dvsec == id)
762 return pos;
763
764 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
765 }
766
767 return 0;
768}
769EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
770
1da177e4 771/**
74356add
BH
772 * pci_find_parent_resource - return resource region of parent bus of given
773 * region
1da177e4
LT
774 * @dev: PCI device structure contains resources to be searched
775 * @res: child resource record for which parent is sought
776 *
74356add
BH
777 * For given resource region of given device, return the resource region of
778 * parent bus the given region is contained in.
1da177e4 779 */
3c78bc61
RD
780struct resource *pci_find_parent_resource(const struct pci_dev *dev,
781 struct resource *res)
1da177e4
LT
782{
783 const struct pci_bus *bus = dev->bus;
f44116ae 784 struct resource *r;
1da177e4 785 int i;
1da177e4 786
89a74ecc 787 pci_bus_for_each_resource(bus, r, i) {
1da177e4
LT
788 if (!r)
789 continue;
31342330 790 if (resource_contains(r, res)) {
f44116ae
BH
791
792 /*
793 * If the window is prefetchable but the BAR is
794 * not, the allocator made a mistake.
795 */
796 if (r->flags & IORESOURCE_PREFETCH &&
797 !(res->flags & IORESOURCE_PREFETCH))
798 return NULL;
799
800 /*
801 * If we're below a transparent bridge, there may
802 * be both a positively-decoded aperture and a
803 * subtractively-decoded region that contain the BAR.
804 * We want the positively-decoded one, so this depends
805 * on pci_bus_for_each_resource() giving us those
806 * first.
807 */
808 return r;
809 }
1da177e4 810 }
f44116ae 811 return NULL;
1da177e4 812}
b7fe9434 813EXPORT_SYMBOL(pci_find_parent_resource);
1da177e4 814
afd29f90
MW
815/**
816 * pci_find_resource - Return matching PCI device resource
817 * @dev: PCI device to query
818 * @res: Resource to look for
819 *
820 * Goes over standard PCI resources (BARs) and checks if the given resource
821 * is partially or fully contained in any of them. In that case the
822 * matching resource is returned, %NULL otherwise.
823 */
824struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
825{
826 int i;
827
c9c13ba4 828 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
afd29f90
MW
829 struct resource *r = &dev->resource[i];
830
831 if (r->start && resource_contains(r, res))
832 return r;
833 }
834
835 return NULL;
836}
837EXPORT_SYMBOL(pci_find_resource);
838
157e876f
AW
839/**
840 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
841 * @dev: the PCI device to operate on
842 * @pos: config space offset of status word
843 * @mask: mask of bit(s) to care about in status word
844 *
845 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
846 */
847int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
848{
849 int i;
850
851 /* Wait for Transaction Pending bit clean */
852 for (i = 0; i < 4; i++) {
853 u16 status;
854 if (i)
855 msleep((1 << (i - 1)) * 100);
856
857 pci_read_config_word(dev, pos, &status);
858 if (!(status & mask))
859 return 1;
860 }
861
862 return 0;
863}
864
cbe42036
RJ
865static int pci_acs_enable;
866
867/**
868 * pci_request_acs - ask for ACS to be enabled if supported
869 */
870void pci_request_acs(void)
871{
872 pci_acs_enable = 1;
873}
874
875static const char *disable_acs_redir_param;
876
877/**
878 * pci_disable_acs_redir - disable ACS redirect capabilities
879 * @dev: the PCI device
880 *
881 * For only devices specified in the disable_acs_redir parameter.
882 */
883static void pci_disable_acs_redir(struct pci_dev *dev)
884{
885 int ret = 0;
886 const char *p;
887 int pos;
888 u16 ctrl;
889
890 if (!disable_acs_redir_param)
891 return;
892
893 p = disable_acs_redir_param;
894 while (*p) {
895 ret = pci_dev_str_match(dev, p, &p);
896 if (ret < 0) {
897 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
898 disable_acs_redir_param);
899
900 break;
901 } else if (ret == 1) {
902 /* Found a match */
903 break;
904 }
905
906 if (*p != ';' && *p != ',') {
907 /* End of param or invalid format */
908 break;
909 }
910 p++;
911 }
912
913 if (ret != 1)
914 return;
915
916 if (!pci_dev_specific_disable_acs_redir(dev))
917 return;
918
52fbf5bd 919 pos = dev->acs_cap;
cbe42036
RJ
920 if (!pos) {
921 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
922 return;
923 }
924
925 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
926
927 /* P2P Request & Completion Redirect */
928 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
929
930 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
931
932 pci_info(dev, "disabled ACS redirect\n");
933}
934
935/**
936 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
937 * @dev: the PCI device
938 */
939static void pci_std_enable_acs(struct pci_dev *dev)
940{
941 int pos;
942 u16 cap;
943 u16 ctrl;
944
52fbf5bd 945 pos = dev->acs_cap;
cbe42036
RJ
946 if (!pos)
947 return;
948
949 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
950 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
951
952 /* Source Validation */
953 ctrl |= (cap & PCI_ACS_SV);
954
955 /* P2P Request Redirect */
956 ctrl |= (cap & PCI_ACS_RR);
957
958 /* P2P Completion Redirect */
959 ctrl |= (cap & PCI_ACS_CR);
960
961 /* Upstream Forwarding */
962 ctrl |= (cap & PCI_ACS_UF);
963
7cae7849
AW
964 /* Enable Translation Blocking for external devices and noats */
965 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
76fc8e85
RJ
966 ctrl |= (cap & PCI_ACS_TB);
967
cbe42036
RJ
968 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
969}
970
971/**
972 * pci_enable_acs - enable ACS if hardware support it
973 * @dev: the PCI device
974 */
52fbf5bd 975static void pci_enable_acs(struct pci_dev *dev)
cbe42036
RJ
976{
977 if (!pci_acs_enable)
978 goto disable_acs_redir;
979
980 if (!pci_dev_specific_enable_acs(dev))
981 goto disable_acs_redir;
982
983 pci_std_enable_acs(dev);
984
985disable_acs_redir:
986 /*
987 * Note: pci_disable_acs_redir() must be called even if ACS was not
988 * enabled by the kernel because it may have been enabled by
989 * platform firmware. So if we are told to disable it, we should
990 * always disable it after setting the kernel's default
991 * preferences.
992 */
993 pci_disable_acs_redir(dev);
994}
995
064b53db 996/**
70675e0b 997 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
064b53db
JL
998 * @dev: PCI device to have its BARs restored
999 *
1000 * Restore the BAR values for a given device, so as to make it
1001 * accessible by its driver.
1002 */
3c78bc61 1003static void pci_restore_bars(struct pci_dev *dev)
064b53db 1004{
bc5f5a82 1005 int i;
064b53db 1006
bc5f5a82 1007 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
14add80b 1008 pci_update_resource(dev, i);
064b53db
JL
1009}
1010
961d9120
RW
1011static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1012{
d5b0d883
RW
1013 if (pci_use_mid_pm())
1014 return true;
1015
d97c5d4c 1016 return acpi_pci_power_manageable(dev);
961d9120
RW
1017}
1018
1019static inline int platform_pci_set_power_state(struct pci_dev *dev,
3c78bc61 1020 pci_power_t t)
961d9120 1021{
d5b0d883
RW
1022 if (pci_use_mid_pm())
1023 return mid_pci_set_power_state(dev, t);
1024
d97c5d4c 1025 return acpi_pci_set_power_state(dev, t);
961d9120
RW
1026}
1027
cc7cc02b
LW
1028static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1029{
d5b0d883
RW
1030 if (pci_use_mid_pm())
1031 return mid_pci_get_power_state(dev);
1032
d97c5d4c 1033 return acpi_pci_get_power_state(dev);
cc7cc02b
LW
1034}
1035
b51033e0
RW
1036static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1037{
d97c5d4c
RW
1038 if (!pci_use_mid_pm())
1039 acpi_pci_refresh_power_state(dev);
b51033e0
RW
1040}
1041
961d9120
RW
1042static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1043{
d5b0d883
RW
1044 if (pci_use_mid_pm())
1045 return PCI_POWER_ERROR;
1046
d97c5d4c 1047 return acpi_pci_choose_state(dev);
961d9120 1048}
8f7020d3 1049
0847684c 1050static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
eb9d0fe4 1051{
d5b0d883
RW
1052 if (pci_use_mid_pm())
1053 return PCI_POWER_ERROR;
1054
d97c5d4c 1055 return acpi_pci_wakeup(dev, enable);
b67ea761
RW
1056}
1057
bac2a909
RW
1058static inline bool platform_pci_need_resume(struct pci_dev *dev)
1059{
d5b0d883
RW
1060 if (pci_use_mid_pm())
1061 return false;
1062
d97c5d4c 1063 return acpi_pci_need_resume(dev);
bac2a909
RW
1064}
1065
26ad34d5
MW
1066static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1067{
d5b0d883
RW
1068 if (pci_use_mid_pm())
1069 return false;
1070
d97c5d4c 1071 return acpi_pci_bridge_d3(dev);
26ad34d5
MW
1072}
1073
44e4e66e 1074/**
a6a64026 1075 * pci_update_current_state - Read power state of given device and cache it
44e4e66e 1076 * @dev: PCI device to handle.
f06fc0b6 1077 * @state: State to cache in case the device doesn't have the PM capability
a6a64026
LW
1078 *
1079 * The power state is read from the PMCSR register, which however is
1080 * inaccessible in D3cold. The platform firmware is therefore queried first
1081 * to detect accessibility of the register. In case the platform firmware
1082 * reports an incorrect state or the device isn't power manageable by the
1083 * platform at all, we try to detect D3cold by testing accessibility of the
1084 * vendor ID in config space.
44e4e66e 1085 */
73410429 1086void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
44e4e66e 1087{
9c384ddd 1088 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
a6a64026
LW
1089 dev->current_state = PCI_D3cold;
1090 } else if (dev->pm_cap) {
44e4e66e
RW
1091 u16 pmcsr;
1092
337001b6 1093 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
9c384ddd
RW
1094 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1095 dev->current_state = PCI_D3cold;
1096 return;
1097 }
1098 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
f06fc0b6
RW
1099 } else {
1100 dev->current_state = state;
44e4e66e
RW
1101 }
1102}
1103
b51033e0
RW
1104/**
1105 * pci_refresh_power_state - Refresh the given device's power state data
1106 * @dev: Target PCI device.
1107 *
1108 * Ask the platform to refresh the devices power state information and invoke
1109 * pci_update_current_state() to update its current PCI power state.
1110 */
1111void pci_refresh_power_state(struct pci_dev *dev)
1112{
fa1a25c5 1113 platform_pci_refresh_power_state(dev);
b51033e0
RW
1114 pci_update_current_state(dev, dev->current_state);
1115}
1116
0e5dd46b
RW
1117/**
1118 * pci_platform_power_transition - Use platform to change device power state
1119 * @dev: PCI device to handle.
1120 * @state: State to put the device into.
1121 */
d6aa37cd 1122int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
0e5dd46b
RW
1123{
1124 int error;
1125
fa1a25c5
RW
1126 error = platform_pci_set_power_state(dev, state);
1127 if (!error)
1128 pci_update_current_state(dev, state);
1129 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
769ba721 1130 dev->current_state = PCI_D0;
0e5dd46b
RW
1131
1132 return error;
1133}
d6aa37cd 1134EXPORT_SYMBOL_GPL(pci_platform_power_transition);
0e5dd46b 1135
99efde6c 1136static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
0b950f0f 1137{
0b950f0f
SH
1138 pm_request_resume(&pci_dev->dev);
1139 return 0;
1140}
1141
1142/**
99efde6c 1143 * pci_resume_bus - Walk given bus and runtime resume devices on it
0b950f0f
SH
1144 * @bus: Top bus of the subtree to walk.
1145 */
99efde6c 1146void pci_resume_bus(struct pci_bus *bus)
0b950f0f
SH
1147{
1148 if (bus)
99efde6c 1149 pci_walk_bus(bus, pci_resume_one, NULL);
0b950f0f
SH
1150}
1151
bae26849
VS
1152static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1153{
1154 int delay = 1;
1155 u32 id;
1156
1157 /*
1158 * After reset, the device should not silently discard config
1159 * requests, but it may still indicate that it needs more time by
1160 * responding to them with CRS completions. The Root Port will
fa52b644
NN
1161 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1162 * the read (except when CRS SV is enabled and the read was for the
1163 * Vendor ID; in that case it synthesizes 0x0001 data).
bae26849
VS
1164 *
1165 * Wait for the device to return a non-CRS completion. Read the
1166 * Command register instead of Vendor ID so we don't have to
1167 * contend with the CRS SV value.
1168 */
1169 pci_read_config_dword(dev, PCI_COMMAND, &id);
fa52b644 1170 while (PCI_POSSIBLE_ERROR(id)) {
bae26849
VS
1171 if (delay > timeout) {
1172 pci_warn(dev, "not ready %dms after %s; giving up\n",
1173 delay - 1, reset_type);
1174 return -ENOTTY;
1175 }
1176
1177 if (delay > 1000)
1178 pci_info(dev, "not ready %dms after %s; waiting\n",
1179 delay - 1, reset_type);
1180
1181 msleep(delay);
1182 delay *= 2;
1183 pci_read_config_dword(dev, PCI_COMMAND, &id);
1184 }
1185
1186 if (delay > 1000)
1187 pci_info(dev, "ready %dms after %s\n", delay - 1,
1188 reset_type);
1189
1190 return 0;
1191}
1192
0e5dd46b 1193/**
dc2256b0
RW
1194 * pci_power_up - Put the given device into D0
1195 * @dev: PCI device to power up
e200904b
RW
1196 *
1197 * On success, return 0 or 1, depending on whether or not it is necessary to
1198 * restore the device's BARs subsequently (1 is returned in that case).
0e5dd46b 1199 */
dc2256b0 1200int pci_power_up(struct pci_dev *dev)
0e5dd46b 1201{
0b591935
RW
1202 bool need_restore;
1203 pci_power_t state;
10aa5377
RW
1204 u16 pmcsr;
1205
0b591935 1206 platform_pci_set_power_state(dev, PCI_D0);
10aa5377 1207
0b591935
RW
1208 if (!dev->pm_cap) {
1209 state = platform_pci_get_power_state(dev);
1210 if (state == PCI_UNKNOWN)
1211 dev->current_state = PCI_D0;
1212 else
1213 dev->current_state = state;
1214
1215 if (state == PCI_D0)
1216 return 0;
10aa5377 1217
10aa5377 1218 return -EIO;
0b591935 1219 }
10aa5377
RW
1220
1221 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1222 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1223 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1224 pci_power_name(dev->current_state));
1aa85bb1 1225 dev->current_state = PCI_D3cold;
10aa5377
RW
1226 return -EIO;
1227 }
1228
0b591935
RW
1229 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230
1231 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1232 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1233
e200904b 1234 if (state == PCI_D0)
0b591935 1235 goto end;
dc2256b0
RW
1236
1237 /*
f0881d38
RW
1238 * Force the entire word to 0. This doesn't affect PME_Status, disables
1239 * PME_En, and sets PowerState to 0.
dc2256b0 1240 */
f0881d38 1241 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
10aa5377
RW
1242
1243 /* Mandatory transition delays; see PCI PM 1.2. */
0b591935 1244 if (state == PCI_D3hot)
10aa5377 1245 pci_dev_d3_sleep(dev);
0b591935 1246 else if (state == PCI_D2)
10aa5377
RW
1247 udelay(PCI_PM_D2_DELAY);
1248
e200904b
RW
1249end:
1250 dev->current_state = PCI_D0;
1251 if (need_restore)
1252 return 1;
1253
1254 return 0;
1255}
1256
1257/**
1258 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1259 * @dev: PCI device to power up
1260 *
1261 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1262 * to confirm the state change, restore its BARs if they might be lost and
1263 * reconfigure ASPM in acordance with the new power state.
1264 *
1265 * If pci_restore_state() is going to be called right after a power state change
1266 * to D0, it is more efficient to use pci_power_up() directly instead of this
1267 * function.
1268 */
1269static int pci_set_full_power_state(struct pci_dev *dev)
1270{
1271 u16 pmcsr;
1272 int ret;
1273
1274 ret = pci_power_up(dev);
1275 if (ret < 0)
1276 return ret;
1277
10aa5377
RW
1278 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
0ce74a3b 1280 if (dev->current_state != PCI_D0) {
10aa5377
RW
1281 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1282 pci_power_name(dev->current_state));
0ce74a3b 1283 } else if (ret > 0) {
448bd857 1284 /*
0ce74a3b
RW
1285 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1286 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1287 * from D3hot to D0 _may_ perform an internal reset, thereby
1288 * going to "D0 Uninitialized" rather than "D0 Initialized".
1289 * For example, at least some versions of the 3c905B and the
1290 * 3c556B exhibit this behaviour.
1291 *
1292 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1293 * devices in a D3hot state at boot. Consequently, we need to
1294 * restore at least the BARs so that the device will be
1295 * accessible to its driver.
448bd857 1296 */
10aa5377 1297 pci_restore_bars(dev);
448bd857 1298 }
448bd857 1299
10aa5377 1300 return 0;
448bd857
HY
1301}
1302
1303/**
1304 * __pci_dev_set_current_state - Set current state of a PCI device
1305 * @dev: Device to handle
1306 * @data: pointer to state to be set
1307 */
1308static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1309{
1310 pci_power_t state = *(pci_power_t *)data;
1311
1312 dev->current_state = state;
1313 return 0;
1314}
1315
1316/**
2a4d2c42 1317 * pci_bus_set_current_state - Walk given bus and set current state of devices
448bd857
HY
1318 * @bus: Top bus of the subtree to walk.
1319 * @state: state to be set
1320 */
2a4d2c42 1321void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
448bd857
HY
1322{
1323 if (bus)
1324 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
0e5dd46b
RW
1325}
1326
7957d201
RW
1327/**
1328 * pci_set_low_power_state - Put a PCI device into a low-power state.
1329 * @dev: PCI device to handle.
1330 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1331 *
1332 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1333 *
1334 * RETURN VALUE:
1335 * -EINVAL if the requested state is invalid.
1336 * -EIO if device does not support PCI PM or its PM capabilities register has a
1337 * wrong version, or device doesn't support the requested state.
1338 * 0 if device already is in the requested state.
1339 * 0 if device's power state has been successfully changed.
1340 */
1341static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1342{
1343 u16 pmcsr;
1344
7957d201
RW
1345 if (!dev->pm_cap)
1346 return -EIO;
1347
7957d201
RW
1348 /*
1349 * Validate transition: We can enter D0 from any state, but if
1350 * we're already in a low-power state, we can only go deeper. E.g.,
1351 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1352 * we'd have to go from D3 to D0, then to D1.
1353 */
1354 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
0aacdc95 1355 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
7957d201
RW
1356 pci_power_name(dev->current_state),
1357 pci_power_name(state));
1358 return -EINVAL;
1359 }
1360
1361 /* Check if this device supports the desired state */
1362 if ((state == PCI_D1 && !dev->d1_support)
1363 || (state == PCI_D2 && !dev->d2_support))
1364 return -EIO;
1365
1366 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1367 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1368 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1369 pci_power_name(dev->current_state),
1370 pci_power_name(state));
1aa85bb1 1371 dev->current_state = PCI_D3cold;
7957d201
RW
1372 return -EIO;
1373 }
1374
1375 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1376 pmcsr |= state;
1377
1378 /* Enter specified state */
1379 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1380
1381 /* Mandatory power management transition delays; see PCI PM 1.2. */
1382 if (state == PCI_D3hot)
1383 pci_dev_d3_sleep(dev);
1384 else if (state == PCI_D2)
1385 udelay(PCI_PM_D2_DELAY);
1386
1387 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389 if (dev->current_state != state)
1390 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1391 pci_power_name(dev->current_state),
1392 pci_power_name(state));
1393
7957d201
RW
1394 return 0;
1395}
1396
44e4e66e
RW
1397/**
1398 * pci_set_power_state - Set the power state of a PCI device
1399 * @dev: PCI device to handle.
1400 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1401 *
877d0310 1402 * Transition a device to a new power state, using the platform firmware and/or
44e4e66e
RW
1403 * the device's PCI PM registers.
1404 *
1405 * RETURN VALUE:
1406 * -EINVAL if the requested state is invalid.
1407 * -EIO if device does not support PCI PM or its PM capabilities register has a
1408 * wrong version, or device doesn't support the requested state.
ab4b8a47 1409 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
44e4e66e 1410 * 0 if device already is in the requested state.
ab4b8a47 1411 * 0 if the transition is to D3 but D3 is not supported.
44e4e66e
RW
1412 * 0 if device's power state has been successfully changed.
1413 */
1414int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415{
337001b6 1416 int error;
44e4e66e 1417
74356add 1418 /* Bound the state we're entering */
448bd857
HY
1419 if (state > PCI_D3cold)
1420 state = PCI_D3cold;
44e4e66e
RW
1421 else if (state < PCI_D0)
1422 state = PCI_D0;
1423 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
74356add 1424
44e4e66e 1425 /*
74356add
BH
1426 * If the device or the parent bridge do not support PCI
1427 * PM, ignore the request if we're doing anything other
1428 * than putting it into D0 (which would only happen on
1429 * boot).
44e4e66e
RW
1430 */
1431 return 0;
1432
db288c9c
RW
1433 /* Check if we're already there */
1434 if (dev->current_state == state)
1435 return 0;
1436
adfac8f6 1437 if (state == PCI_D0)
e200904b 1438 return pci_set_full_power_state(dev);
0e5dd46b 1439
74356add
BH
1440 /*
1441 * This device is quirked not to be put into D3, so don't put it in
1442 * D3
1443 */
448bd857 1444 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
979b1791 1445 return 0;
44e4e66e 1446
3cc2a2b2
RW
1447 if (state == PCI_D3cold) {
1448 /*
1449 * To put the device in D3cold, put it into D3hot in the native
1450 * way, then put it into D3cold using platform ops.
1451 */
1452 error = pci_set_low_power_state(dev, PCI_D3hot);
44e4e66e 1453
3cc2a2b2
RW
1454 if (pci_platform_power_transition(dev, PCI_D3cold))
1455 return error;
44e4e66e 1456
3cc2a2b2
RW
1457 /* Powering off a bridge may power off the whole hierarchy */
1458 if (dev->current_state == PCI_D3cold)
1459 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1460 } else {
1461 error = pci_set_low_power_state(dev, state);
44e4e66e 1462
3cc2a2b2
RW
1463 if (pci_platform_power_transition(dev, state))
1464 return error;
1465 }
44e4e66e 1466
9c77e63b 1467 return 0;
45144d42 1468}
b7fe9434 1469EXPORT_SYMBOL(pci_set_power_state);
45144d42 1470
89858517
YZ
1471#define PCI_EXP_SAVE_REGS 7
1472
fd0f7f73
AW
1473static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1474 u16 cap, bool extended)
34a4876e
YL
1475{
1476 struct pci_cap_saved_state *tmp;
34a4876e 1477
b67bfe0d 1478 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
fd0f7f73 1479 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
34a4876e
YL
1480 return tmp;
1481 }
1482 return NULL;
1483}
1484
fd0f7f73
AW
1485struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1486{
1487 return _pci_find_saved_cap(dev, cap, false);
1488}
1489
1490struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1491{
1492 return _pci_find_saved_cap(dev, cap, true);
1493}
1494
b56a5a23
MT
1495static int pci_save_pcie_state(struct pci_dev *dev)
1496{
59875ae4 1497 int i = 0;
b56a5a23
MT
1498 struct pci_cap_saved_state *save_state;
1499 u16 *cap;
1500
59875ae4 1501 if (!pci_is_pcie(dev))
b56a5a23
MT
1502 return 0;
1503
9f35575d 1504 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
b56a5a23 1505 if (!save_state) {
7506dc79 1506 pci_err(dev, "buffer not found in %s\n", __func__);
b56a5a23
MT
1507 return -ENOMEM;
1508 }
63f4898a 1509
59875ae4
JL
1510 cap = (u16 *)&save_state->cap.data[0];
1511 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1512 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1513 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1514 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1515 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1516 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1517 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
9cb604ed 1518
b56a5a23
MT
1519 return 0;
1520}
1521
e1b0d0bb
MQ
1522void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1523{
1524#ifdef CONFIG_PCIEASPM
1525 struct pci_dev *bridge;
1526 u32 ctl;
1527
1528 bridge = pci_upstream_bridge(dev);
1529 if (bridge && bridge->ltr_path) {
1530 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1531 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1532 pci_dbg(bridge, "re-enabling LTR\n");
1533 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1534 PCI_EXP_DEVCTL2_LTR_EN);
1535 }
1536 }
1537#endif
1538}
1539
b56a5a23
MT
1540static void pci_restore_pcie_state(struct pci_dev *dev)
1541{
59875ae4 1542 int i = 0;
b56a5a23
MT
1543 struct pci_cap_saved_state *save_state;
1544 u16 *cap;
1545
1546 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
59875ae4 1547 if (!save_state)
9cb604ed
MS
1548 return;
1549
e1b0d0bb
MQ
1550 /*
1551 * Downstream ports reset the LTR enable bit when link goes down.
1552 * Check and re-configure the bit here before restoring device.
1553 * PCIe r5.0, sec 7.5.3.16.
1554 */
1555 pci_bridge_reconfigure_ltr(dev);
1556
59875ae4
JL
1557 cap = (u16 *)&save_state->cap.data[0];
1558 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1559 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1560 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1561 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1562 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1563 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1564 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
b56a5a23
MT
1565}
1566
cc692a5f
SH
1567static int pci_save_pcix_state(struct pci_dev *dev)
1568{
63f4898a 1569 int pos;
cc692a5f 1570 struct pci_cap_saved_state *save_state;
cc692a5f
SH
1571
1572 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1573 if (!pos)
cc692a5f
SH
1574 return 0;
1575
f34303de 1576 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
cc692a5f 1577 if (!save_state) {
7506dc79 1578 pci_err(dev, "buffer not found in %s\n", __func__);
cc692a5f
SH
1579 return -ENOMEM;
1580 }
cc692a5f 1581
24a4742f
AW
1582 pci_read_config_word(dev, pos + PCI_X_CMD,
1583 (u16 *)save_state->cap.data);
63f4898a 1584
cc692a5f
SH
1585 return 0;
1586}
1587
1588static void pci_restore_pcix_state(struct pci_dev *dev)
1589{
1590 int i = 0, pos;
1591 struct pci_cap_saved_state *save_state;
1592 u16 *cap;
1593
1594 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1595 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1596 if (!save_state || !pos)
cc692a5f 1597 return;
24a4742f 1598 cap = (u16 *)&save_state->cap.data[0];
cc692a5f
SH
1599
1600 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
cc692a5f
SH
1601}
1602
dbbfadf2
BH
1603static void pci_save_ltr_state(struct pci_dev *dev)
1604{
1605 int ltr;
1606 struct pci_cap_saved_state *save_state;
4353594e 1607 u32 *cap;
dbbfadf2
BH
1608
1609 if (!pci_is_pcie(dev))
1610 return;
1611
1612 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613 if (!ltr)
1614 return;
1615
1616 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1617 if (!save_state) {
1618 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619 return;
1620 }
1621
4353594e
RJ
1622 /* Some broken devices only support dword access to LTR */
1623 cap = &save_state->cap.data[0];
1624 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
dbbfadf2
BH
1625}
1626
1627static void pci_restore_ltr_state(struct pci_dev *dev)
1628{
1629 struct pci_cap_saved_state *save_state;
1630 int ltr;
4353594e 1631 u32 *cap;
dbbfadf2
BH
1632
1633 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1634 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1635 if (!save_state || !ltr)
1636 return;
1637
4353594e
RJ
1638 /* Some broken devices only support dword access to LTR */
1639 cap = &save_state->cap.data[0];
1640 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
dbbfadf2 1641}
cc692a5f 1642
1da177e4 1643/**
74356add
BH
1644 * pci_save_state - save the PCI configuration space of a device before
1645 * suspending
1646 * @dev: PCI device that we're dealing with
1da177e4 1647 */
3c78bc61 1648int pci_save_state(struct pci_dev *dev)
1da177e4
LT
1649{
1650 int i;
1651 /* XXX: 100% dword access ok here? */
47b802d5 1652 for (i = 0; i < 16; i++) {
9e0b5b2c 1653 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
47b802d5
CY
1654 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1655 i * 4, dev->saved_config_space[i]);
1656 }
aa8c6c93 1657 dev->state_saved = true;
79e50e72
QL
1658
1659 i = pci_save_pcie_state(dev);
1660 if (i != 0)
b56a5a23 1661 return i;
79e50e72
QL
1662
1663 i = pci_save_pcix_state(dev);
1664 if (i != 0)
cc692a5f 1665 return i;
79e50e72 1666
dbbfadf2 1667 pci_save_ltr_state(dev);
4f802170 1668 pci_save_dpc_state(dev);
af65d1ad 1669 pci_save_aer_state(dev);
39850ed5 1670 pci_save_ptm_state(dev);
754834b9 1671 return pci_save_vc_state(dev);
1da177e4 1672}
b7fe9434 1673EXPORT_SYMBOL(pci_save_state);
1da177e4 1674
ebfc5b80 1675static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
08387454 1676 u32 saved_val, int retry, bool force)
ebfc5b80
RW
1677{
1678 u32 val;
1679
1680 pci_read_config_dword(pdev, offset, &val);
08387454 1681 if (!force && val == saved_val)
ebfc5b80
RW
1682 return;
1683
1684 for (;;) {
7506dc79 1685 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
227f0647 1686 offset, val, saved_val);
ebfc5b80
RW
1687 pci_write_config_dword(pdev, offset, saved_val);
1688 if (retry-- <= 0)
1689 return;
1690
1691 pci_read_config_dword(pdev, offset, &val);
1692 if (val == saved_val)
1693 return;
1694
1695 mdelay(1);
1696 }
1697}
1698
a6cb9ee7 1699static void pci_restore_config_space_range(struct pci_dev *pdev,
08387454
DD
1700 int start, int end, int retry,
1701 bool force)
ebfc5b80
RW
1702{
1703 int index;
1704
1705 for (index = end; index >= start; index--)
1706 pci_restore_config_dword(pdev, 4 * index,
1707 pdev->saved_config_space[index],
08387454 1708 retry, force);
ebfc5b80
RW
1709}
1710
a6cb9ee7
RW
1711static void pci_restore_config_space(struct pci_dev *pdev)
1712{
1713 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
08387454 1714 pci_restore_config_space_range(pdev, 10, 15, 0, false);
a6cb9ee7 1715 /* Restore BARs before the command register. */
08387454
DD
1716 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1717 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1718 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1719 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1720
1721 /*
1722 * Force rewriting of prefetch registers to avoid S3 resume
1723 * issues on Intel PCI bridges that occur when these
1724 * registers are not explicitly written.
1725 */
1726 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1727 pci_restore_config_space_range(pdev, 0, 8, 0, false);
a6cb9ee7 1728 } else {
08387454 1729 pci_restore_config_space_range(pdev, 0, 15, 0, false);
a6cb9ee7
RW
1730 }
1731}
1732
d3252ace
CK
1733static void pci_restore_rebar_state(struct pci_dev *pdev)
1734{
1735 unsigned int pos, nbars, i;
1736 u32 ctrl;
1737
1738 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1739 if (!pos)
1740 return;
1741
1742 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1743 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1744 PCI_REBAR_CTRL_NBAR_SHIFT;
1745
1746 for (i = 0; i < nbars; i++, pos += 8) {
1747 struct resource *res;
1748 int bar_idx, size;
1749
1750 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1751 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1752 res = pdev->resource + bar_idx;
192f1bf7 1753 size = pci_rebar_bytes_to_size(resource_size(res));
d3252ace 1754 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
b1277a22 1755 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
d3252ace
CK
1756 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1757 }
1758}
1759
f7625980 1760/**
1da177e4 1761 * pci_restore_state - Restore the saved state of a PCI device
74356add 1762 * @dev: PCI device that we're dealing with
1da177e4 1763 */
1d3c16a8 1764void pci_restore_state(struct pci_dev *dev)
1da177e4 1765{
c82f63e4 1766 if (!dev->state_saved)
1d3c16a8 1767 return;
4b77b0a2 1768
dbbfadf2
BH
1769 /*
1770 * Restore max latencies (in the LTR capability) before enabling
1771 * LTR itself (in the PCIe capability).
1772 */
1773 pci_restore_ltr_state(dev);
1774
b56a5a23 1775 pci_restore_pcie_state(dev);
4ebeb1ec
CT
1776 pci_restore_pasid_state(dev);
1777 pci_restore_pri_state(dev);
1900ca13 1778 pci_restore_ats_state(dev);
425c1b22 1779 pci_restore_vc_state(dev);
d3252ace 1780 pci_restore_rebar_state(dev);
4f802170 1781 pci_restore_dpc_state(dev);
39850ed5 1782 pci_restore_ptm_state(dev);
b56a5a23 1783
894020fd 1784 pci_aer_clear_status(dev);
af65d1ad 1785 pci_restore_aer_state(dev);
b07461a8 1786
a6cb9ee7 1787 pci_restore_config_space(dev);
ebfc5b80 1788
cc692a5f 1789 pci_restore_pcix_state(dev);
41017f0c 1790 pci_restore_msi_state(dev);
ccbc175a
AD
1791
1792 /* Restore ACS and IOV configuration state */
1793 pci_enable_acs(dev);
8c5cdb6a 1794 pci_restore_iov_state(dev);
8fed4b65 1795
4b77b0a2 1796 dev->state_saved = false;
1da177e4 1797}
b7fe9434 1798EXPORT_SYMBOL(pci_restore_state);
1da177e4 1799
ffbdd3f7
AW
1800struct pci_saved_state {
1801 u32 config_space[16];
914a1951 1802 struct pci_cap_saved_data cap[];
ffbdd3f7
AW
1803};
1804
1805/**
1806 * pci_store_saved_state - Allocate and return an opaque struct containing
1807 * the device saved state.
1808 * @dev: PCI device that we're dealing with
1809 *
f7625980 1810 * Return NULL if no state or error.
ffbdd3f7
AW
1811 */
1812struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1813{
1814 struct pci_saved_state *state;
1815 struct pci_cap_saved_state *tmp;
1816 struct pci_cap_saved_data *cap;
ffbdd3f7
AW
1817 size_t size;
1818
1819 if (!dev->state_saved)
1820 return NULL;
1821
1822 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1823
b67bfe0d 1824 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
ffbdd3f7
AW
1825 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1826
1827 state = kzalloc(size, GFP_KERNEL);
1828 if (!state)
1829 return NULL;
1830
1831 memcpy(state->config_space, dev->saved_config_space,
1832 sizeof(state->config_space));
1833
1834 cap = state->cap;
b67bfe0d 1835 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
ffbdd3f7
AW
1836 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1837 memcpy(cap, &tmp->cap, len);
1838 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1839 }
1840 /* Empty cap_save terminates list */
1841
1842 return state;
1843}
1844EXPORT_SYMBOL_GPL(pci_store_saved_state);
1845
1846/**
1847 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1848 * @dev: PCI device that we're dealing with
1849 * @state: Saved state returned from pci_store_saved_state()
1850 */
98d9b271
KRW
1851int pci_load_saved_state(struct pci_dev *dev,
1852 struct pci_saved_state *state)
ffbdd3f7
AW
1853{
1854 struct pci_cap_saved_data *cap;
1855
1856 dev->state_saved = false;
1857
1858 if (!state)
1859 return 0;
1860
1861 memcpy(dev->saved_config_space, state->config_space,
1862 sizeof(state->config_space));
1863
1864 cap = state->cap;
1865 while (cap->size) {
1866 struct pci_cap_saved_state *tmp;
1867
fd0f7f73 1868 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
ffbdd3f7
AW
1869 if (!tmp || tmp->cap.size != cap->size)
1870 return -EINVAL;
1871
1872 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1873 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1874 sizeof(struct pci_cap_saved_data) + cap->size);
1875 }
1876
1877 dev->state_saved = true;
1878 return 0;
1879}
98d9b271 1880EXPORT_SYMBOL_GPL(pci_load_saved_state);
ffbdd3f7
AW
1881
1882/**
1883 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1884 * and free the memory allocated for it.
1885 * @dev: PCI device that we're dealing with
1886 * @state: Pointer to saved state returned from pci_store_saved_state()
1887 */
1888int pci_load_and_free_saved_state(struct pci_dev *dev,
1889 struct pci_saved_state **state)
1890{
1891 int ret = pci_load_saved_state(dev, *state);
1892 kfree(*state);
1893 *state = NULL;
1894 return ret;
1895}
1896EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1897
8a9d5609
BH
1898int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1899{
1900 return pci_enable_resources(dev, bars);
1901}
1902
38cc1302
HS
1903static int do_pci_enable_device(struct pci_dev *dev, int bars)
1904{
1905 int err;
1f6ae47e 1906 struct pci_dev *bridge;
1e2571a7
BH
1907 u16 cmd;
1908 u8 pin;
38cc1302
HS
1909
1910 err = pci_set_power_state(dev, PCI_D0);
1911 if (err < 0 && err != -EIO)
1912 return err;
1f6ae47e
VS
1913
1914 bridge = pci_upstream_bridge(dev);
1915 if (bridge)
1916 pcie_aspm_powersave_config_link(bridge);
1917
38cc1302
HS
1918 err = pcibios_enable_device(dev, bars);
1919 if (err < 0)
1920 return err;
1921 pci_fixup_device(pci_fixup_enable, dev);
1922
866d5417
BH
1923 if (dev->msi_enabled || dev->msix_enabled)
1924 return 0;
1925
1e2571a7
BH
1926 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1927 if (pin) {
1928 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1929 if (cmd & PCI_COMMAND_INTX_DISABLE)
1930 pci_write_config_word(dev, PCI_COMMAND,
1931 cmd & ~PCI_COMMAND_INTX_DISABLE);
1932 }
1933
38cc1302
HS
1934 return 0;
1935}
1936
1937/**
0b62e13b 1938 * pci_reenable_device - Resume abandoned device
38cc1302
HS
1939 * @dev: PCI device to be resumed
1940 *
74356add
BH
1941 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1942 * to be called by normal code, write proper resume handler and use it instead.
38cc1302 1943 */
0b62e13b 1944int pci_reenable_device(struct pci_dev *dev)
38cc1302 1945{
296ccb08 1946 if (pci_is_enabled(dev))
38cc1302
HS
1947 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1948 return 0;
1949}
b7fe9434 1950EXPORT_SYMBOL(pci_reenable_device);
38cc1302 1951
928bea96
YL
1952static void pci_enable_bridge(struct pci_dev *dev)
1953{
79272138 1954 struct pci_dev *bridge;
928bea96
YL
1955 int retval;
1956
79272138
BH
1957 bridge = pci_upstream_bridge(dev);
1958 if (bridge)
1959 pci_enable_bridge(bridge);
928bea96 1960
cf3e1feb 1961 if (pci_is_enabled(dev)) {
fbeeb822 1962 if (!dev->is_busmaster)
cf3e1feb 1963 pci_set_master(dev);
0f50a49e 1964 return;
cf3e1feb
YL
1965 }
1966
928bea96
YL
1967 retval = pci_enable_device(dev);
1968 if (retval)
7506dc79 1969 pci_err(dev, "Error enabling bridge (%d), continuing\n",
928bea96
YL
1970 retval);
1971 pci_set_master(dev);
1972}
1973
b4b4fbba 1974static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1da177e4 1975{
79272138 1976 struct pci_dev *bridge;
1da177e4 1977 int err;
b718989d 1978 int i, bars = 0;
1da177e4 1979
4d6035f9
RW
1980 /*
1981 * Power state could be unknown at this point, either due to a fresh
1982 * boot or a device removal call. So get the current power state
1983 * so that things like MSI message writing will behave as expected
1984 * (e.g. if the device really is in D0 at enable time).
1985 */
14858dcc 1986 pci_update_current_state(dev, dev->current_state);
9fb625c3 1987
4d6035f9
RW
1988 if (atomic_inc_return(&dev->enable_cnt) > 1)
1989 return 0; /* already enabled */
1990
79272138 1991 bridge = pci_upstream_bridge(dev);
0f50a49e 1992 if (bridge)
79272138 1993 pci_enable_bridge(bridge);
928bea96 1994
497f16f2
YL
1995 /* only skip sriov related */
1996 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1997 if (dev->resource[i].flags & flags)
1998 bars |= (1 << i);
1999 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
b718989d
BH
2000 if (dev->resource[i].flags & flags)
2001 bars |= (1 << i);
2002
38cc1302 2003 err = do_pci_enable_device(dev, bars);
95a62965 2004 if (err < 0)
38cc1302 2005 atomic_dec(&dev->enable_cnt);
9fb625c3 2006 return err;
1da177e4
LT
2007}
2008
b718989d
BH
2009/**
2010 * pci_enable_device_io - Initialize a device for use with IO space
2011 * @dev: PCI device to be initialized
2012 *
74356add
BH
2013 * Initialize device before it's used by a driver. Ask low-level code
2014 * to enable I/O resources. Wake up the device if it was suspended.
2015 * Beware, this function can fail.
b718989d
BH
2016 */
2017int pci_enable_device_io(struct pci_dev *dev)
2018{
b4b4fbba 2019 return pci_enable_device_flags(dev, IORESOURCE_IO);
b718989d 2020}
b7fe9434 2021EXPORT_SYMBOL(pci_enable_device_io);
b718989d
BH
2022
2023/**
2024 * pci_enable_device_mem - Initialize a device for use with Memory space
2025 * @dev: PCI device to be initialized
2026 *
74356add
BH
2027 * Initialize device before it's used by a driver. Ask low-level code
2028 * to enable Memory resources. Wake up the device if it was suspended.
2029 * Beware, this function can fail.
b718989d
BH
2030 */
2031int pci_enable_device_mem(struct pci_dev *dev)
2032{
b4b4fbba 2033 return pci_enable_device_flags(dev, IORESOURCE_MEM);
b718989d 2034}
b7fe9434 2035EXPORT_SYMBOL(pci_enable_device_mem);
b718989d 2036
bae94d02
IPG
2037/**
2038 * pci_enable_device - Initialize device before it's used by a driver.
2039 * @dev: PCI device to be initialized
2040 *
74356add
BH
2041 * Initialize device before it's used by a driver. Ask low-level code
2042 * to enable I/O and memory. Wake up the device if it was suspended.
2043 * Beware, this function can fail.
bae94d02 2044 *
74356add
BH
2045 * Note we don't actually enable the device many times if we call
2046 * this function repeatedly (we just increment the count).
bae94d02
IPG
2047 */
2048int pci_enable_device(struct pci_dev *dev)
2049{
b4b4fbba 2050 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
bae94d02 2051}
b7fe9434 2052EXPORT_SYMBOL(pci_enable_device);
bae94d02 2053
9ac7849e 2054/*
74356add
BH
2055 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2056 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
9ac7849e
TH
2057 * there's no need to track it separately. pci_devres is initialized
2058 * when a device is enabled using managed PCI device enable interface.
2059 */
2060struct pci_devres {
7f375f32
TH
2061 unsigned int enabled:1;
2062 unsigned int pinned:1;
9ac7849e
TH
2063 unsigned int orig_intx:1;
2064 unsigned int restore_intx:1;
fc0f9f4d 2065 unsigned int mwi:1;
9ac7849e
TH
2066 u32 region_mask;
2067};
2068
2069static void pcim_release(struct device *gendev, void *res)
2070{
f3d2f165 2071 struct pci_dev *dev = to_pci_dev(gendev);
9ac7849e
TH
2072 struct pci_devres *this = res;
2073 int i;
2074
9ac7849e
TH
2075 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2076 if (this->region_mask & (1 << i))
2077 pci_release_region(dev, i);
2078
fc0f9f4d
HK
2079 if (this->mwi)
2080 pci_clear_mwi(dev);
2081
9ac7849e
TH
2082 if (this->restore_intx)
2083 pci_intx(dev, this->orig_intx);
2084
7f375f32 2085 if (this->enabled && !this->pinned)
9ac7849e
TH
2086 pci_disable_device(dev);
2087}
2088
07656d83 2089static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
2090{
2091 struct pci_devres *dr, *new_dr;
2092
2093 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2094 if (dr)
2095 return dr;
2096
2097 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2098 if (!new_dr)
2099 return NULL;
2100 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2101}
2102
07656d83 2103static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
2104{
2105 if (pci_is_managed(pdev))
2106 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2107 return NULL;
2108}
2109
2110/**
2111 * pcim_enable_device - Managed pci_enable_device()
2112 * @pdev: PCI device to be initialized
2113 *
2114 * Managed pci_enable_device().
2115 */
2116int pcim_enable_device(struct pci_dev *pdev)
2117{
2118 struct pci_devres *dr;
2119 int rc;
2120
2121 dr = get_pci_dr(pdev);
2122 if (unlikely(!dr))
2123 return -ENOMEM;
b95d58ea
TH
2124 if (dr->enabled)
2125 return 0;
9ac7849e
TH
2126
2127 rc = pci_enable_device(pdev);
2128 if (!rc) {
2129 pdev->is_managed = 1;
7f375f32 2130 dr->enabled = 1;
9ac7849e
TH
2131 }
2132 return rc;
2133}
b7fe9434 2134EXPORT_SYMBOL(pcim_enable_device);
9ac7849e
TH
2135
2136/**
2137 * pcim_pin_device - Pin managed PCI device
2138 * @pdev: PCI device to pin
2139 *
2140 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2141 * driver detach. @pdev must have been enabled with
2142 * pcim_enable_device().
2143 */
2144void pcim_pin_device(struct pci_dev *pdev)
2145{
2146 struct pci_devres *dr;
2147
2148 dr = find_pci_dr(pdev);
7f375f32 2149 WARN_ON(!dr || !dr->enabled);
9ac7849e 2150 if (dr)
7f375f32 2151 dr->pinned = 1;
9ac7849e 2152}
b7fe9434 2153EXPORT_SYMBOL(pcim_pin_device);
9ac7849e 2154
eca0d467 2155/*
06dc660e 2156 * pcibios_device_add - provide arch specific hooks when adding device dev
eca0d467
MG
2157 * @dev: the PCI device being added
2158 *
2159 * Permits the platform to provide architecture specific functionality when
2160 * devices are added. This is the default implementation. Architecture
2161 * implementations can override this.
2162 */
06dc660e 2163int __weak pcibios_device_add(struct pci_dev *dev)
eca0d467
MG
2164{
2165 return 0;
2166}
2167
6ae32c53 2168/**
74356add
BH
2169 * pcibios_release_device - provide arch specific hooks when releasing
2170 * device dev
6ae32c53
SO
2171 * @dev: the PCI device being released
2172 *
2173 * Permits the platform to provide architecture specific functionality when
2174 * devices are released. This is the default implementation. Architecture
2175 * implementations can override this.
2176 */
2177void __weak pcibios_release_device(struct pci_dev *dev) {}
2178
1da177e4
LT
2179/**
2180 * pcibios_disable_device - disable arch specific PCI resources for device dev
2181 * @dev: the PCI device to disable
2182 *
2183 * Disables architecture specific PCI resources for the device. This
2184 * is the default implementation. Architecture implementations can
2185 * override this.
2186 */
ff3ce480 2187void __weak pcibios_disable_device(struct pci_dev *dev) {}
1da177e4 2188
a43ae58c
HG
2189/**
2190 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2191 * @irq: ISA IRQ to penalize
2192 * @active: IRQ active or not
2193 *
2194 * Permits the platform to provide architecture-specific functionality when
2195 * penalizing ISA IRQs. This is the default implementation. Architecture
2196 * implementations can override this.
2197 */
2198void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2199
fa58d305
RW
2200static void do_pci_disable_device(struct pci_dev *dev)
2201{
2202 u16 pci_command;
2203
2204 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2205 if (pci_command & PCI_COMMAND_MASTER) {
2206 pci_command &= ~PCI_COMMAND_MASTER;
2207 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2208 }
2209
2210 pcibios_disable_device(dev);
2211}
2212
2213/**
2214 * pci_disable_enabled_device - Disable device without updating enable_cnt
2215 * @dev: PCI device to disable
2216 *
2217 * NOTE: This function is a backend of PCI power management routines and is
2218 * not supposed to be called drivers.
2219 */
2220void pci_disable_enabled_device(struct pci_dev *dev)
2221{
296ccb08 2222 if (pci_is_enabled(dev))
fa58d305
RW
2223 do_pci_disable_device(dev);
2224}
2225
1da177e4
LT
2226/**
2227 * pci_disable_device - Disable PCI device after use
2228 * @dev: PCI device to be disabled
2229 *
2230 * Signal to the system that the PCI device is not in use by the system
2231 * anymore. This only involves disabling PCI bus-mastering, if active.
bae94d02
IPG
2232 *
2233 * Note we don't actually disable the device until all callers of
ee6583f6 2234 * pci_enable_device() have called pci_disable_device().
1da177e4 2235 */
3c78bc61 2236void pci_disable_device(struct pci_dev *dev)
1da177e4 2237{
9ac7849e 2238 struct pci_devres *dr;
99dc804d 2239
9ac7849e
TH
2240 dr = find_pci_dr(dev);
2241 if (dr)
7f375f32 2242 dr->enabled = 0;
9ac7849e 2243
fd6dceab
KK
2244 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2245 "disabling already-disabled device");
2246
cc7ba39b 2247 if (atomic_dec_return(&dev->enable_cnt) != 0)
bae94d02
IPG
2248 return;
2249
fa58d305 2250 do_pci_disable_device(dev);
1da177e4 2251
fa58d305 2252 dev->is_busmaster = 0;
1da177e4 2253}
b7fe9434 2254EXPORT_SYMBOL(pci_disable_device);
1da177e4 2255
f7bdd12d
BK
2256/**
2257 * pcibios_set_pcie_reset_state - set reset state for device dev
45e829ea 2258 * @dev: the PCIe device reset
f7bdd12d
BK
2259 * @state: Reset state to enter into
2260 *
74356add 2261 * Set the PCIe reset state for the device. This is the default
f7bdd12d
BK
2262 * implementation. Architecture implementations can override this.
2263 */
d6d88c83
BH
2264int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2265 enum pcie_reset_state state)
f7bdd12d
BK
2266{
2267 return -EINVAL;
2268}
2269
2270/**
2271 * pci_set_pcie_reset_state - set reset state for device dev
45e829ea 2272 * @dev: the PCIe device reset
f7bdd12d
BK
2273 * @state: Reset state to enter into
2274 *
f7bdd12d
BK
2275 * Sets the PCI reset state for the device.
2276 */
2277int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2278{
2279 return pcibios_set_pcie_reset_state(dev, state);
2280}
b7fe9434 2281EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
f7bdd12d 2282
f9a6c8ad 2283#ifdef CONFIG_PCIEAER
600a5b4f
BH
2284void pcie_clear_device_status(struct pci_dev *dev)
2285{
2286 u16 sta;
2287
2288 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2289 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2290}
f9a6c8ad 2291#endif
600a5b4f 2292
dcb0453d
BH
2293/**
2294 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2295 * @dev: PCIe root port or event collector.
2296 */
2297void pcie_clear_root_pme_status(struct pci_dev *dev)
2298{
2299 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2300}
2301
58ff4633
RW
2302/**
2303 * pci_check_pme_status - Check if given device has generated PME.
2304 * @dev: Device to check.
2305 *
2306 * Check the PME status of the device and if set, clear it and clear PME enable
2307 * (if set). Return 'true' if PME status and PME enable were both set or
2308 * 'false' otherwise.
2309 */
2310bool pci_check_pme_status(struct pci_dev *dev)
2311{
2312 int pmcsr_pos;
2313 u16 pmcsr;
2314 bool ret = false;
2315
2316 if (!dev->pm_cap)
2317 return false;
2318
2319 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2320 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2321 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2322 return false;
2323
2324 /* Clear PME status. */
2325 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2326 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2327 /* Disable PME to avoid interrupt flood. */
2328 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2329 ret = true;
2330 }
2331
2332 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2333
2334 return ret;
2335}
2336
b67ea761
RW
2337/**
2338 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2339 * @dev: Device to handle.
379021d5 2340 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
b67ea761
RW
2341 *
2342 * Check if @dev has generated PME and queue a resume request for it in that
2343 * case.
2344 */
379021d5 2345static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
b67ea761 2346{
379021d5
RW
2347 if (pme_poll_reset && dev->pme_poll)
2348 dev->pme_poll = false;
2349
c125e96f 2350 if (pci_check_pme_status(dev)) {
c125e96f 2351 pci_wakeup_event(dev);
0f953bf6 2352 pm_request_resume(&dev->dev);
c125e96f 2353 }
b67ea761
RW
2354 return 0;
2355}
2356
2357/**
2358 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2359 * @bus: Top bus of the subtree to walk.
2360 */
2361void pci_pme_wakeup_bus(struct pci_bus *bus)
2362{
2363 if (bus)
379021d5 2364 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
b67ea761
RW
2365}
2366
448bd857 2367
eb9d0fe4
RW
2368/**
2369 * pci_pme_capable - check the capability of PCI device to generate PME#
2370 * @dev: PCI device to handle.
eb9d0fe4
RW
2371 * @state: PCI state from which device will issue PME#.
2372 */
e5899e1b 2373bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
eb9d0fe4 2374{
337001b6 2375 if (!dev->pm_cap)
eb9d0fe4
RW
2376 return false;
2377
337001b6 2378 return !!(dev->pme_support & (1 << state));
eb9d0fe4 2379}
b7fe9434 2380EXPORT_SYMBOL(pci_pme_capable);
eb9d0fe4 2381
df17e62e
MG
2382static void pci_pme_list_scan(struct work_struct *work)
2383{
379021d5 2384 struct pci_pme_device *pme_dev, *n;
df17e62e
MG
2385
2386 mutex_lock(&pci_pme_list_mutex);
ce300008
BH
2387 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2388 if (pme_dev->dev->pme_poll) {
2389 struct pci_dev *bridge;
2390
2391 bridge = pme_dev->dev->bus->self;
2392 /*
2393 * If bridge is in low power state, the
2394 * configuration space of subordinate devices
2395 * may be not accessible
2396 */
2397 if (bridge && bridge->current_state != PCI_D0)
2398 continue;
000dd531
MW
2399 /*
2400 * If the device is in D3cold it should not be
2401 * polled either.
2402 */
2403 if (pme_dev->dev->current_state == PCI_D3cold)
2404 continue;
2405
ce300008
BH
2406 pci_pme_wakeup(pme_dev->dev, NULL);
2407 } else {
2408 list_del(&pme_dev->list);
2409 kfree(pme_dev);
379021d5 2410 }
df17e62e 2411 }
ce300008 2412 if (!list_empty(&pci_pme_list))
ea00353f
LW
2413 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2414 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
2415 mutex_unlock(&pci_pme_list_mutex);
2416}
2417
2cef548a 2418static void __pci_pme_active(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
2419{
2420 u16 pmcsr;
2421
ffaddbe8 2422 if (!dev->pme_support)
eb9d0fe4
RW
2423 return;
2424
337001b6 2425 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
eb9d0fe4
RW
2426 /* Clear PME_Status by writing 1 to it and enable PME# */
2427 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2428 if (!enable)
2429 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2430
337001b6 2431 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2cef548a
RW
2432}
2433
0ce3fcaf
RW
2434/**
2435 * pci_pme_restore - Restore PME configuration after config space restore.
2436 * @dev: PCI device to update.
2437 */
2438void pci_pme_restore(struct pci_dev *dev)
dc15e71e
RW
2439{
2440 u16 pmcsr;
2441
2442 if (!dev->pme_support)
2443 return;
2444
2445 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2446 if (dev->wakeup_prepared) {
2447 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
0ce3fcaf 2448 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
dc15e71e
RW
2449 } else {
2450 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2451 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2452 }
2453 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2454}
2455
2cef548a
RW
2456/**
2457 * pci_pme_active - enable or disable PCI device's PME# function
2458 * @dev: PCI device to handle.
2459 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2460 *
2461 * The caller must verify that the device is capable of generating PME# before
2462 * calling this function with @enable equal to 'true'.
2463 */
2464void pci_pme_active(struct pci_dev *dev, bool enable)
2465{
2466 __pci_pme_active(dev, enable);
eb9d0fe4 2467
6e965e0d
HY
2468 /*
2469 * PCI (as opposed to PCIe) PME requires that the device have
2470 * its PME# line hooked up correctly. Not all hardware vendors
2471 * do this, so the PME never gets delivered and the device
2472 * remains asleep. The easiest way around this is to
2473 * periodically walk the list of suspended devices and check
2474 * whether any have their PME flag set. The assumption is that
2475 * we'll wake up often enough anyway that this won't be a huge
2476 * hit, and the power savings from the devices will still be a
2477 * win.
2478 *
2479 * Although PCIe uses in-band PME message instead of PME# line
2480 * to report PME, PME does not work for some PCIe devices in
2481 * reality. For example, there are devices that set their PME
2482 * status bits, but don't really bother to send a PME message;
2483 * there are PCI Express Root Ports that don't bother to
2484 * trigger interrupts when they receive PME messages from the
2485 * devices below. So PME poll is used for PCIe devices too.
2486 */
df17e62e 2487
379021d5 2488 if (dev->pme_poll) {
df17e62e
MG
2489 struct pci_pme_device *pme_dev;
2490 if (enable) {
2491 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2492 GFP_KERNEL);
0394cb19 2493 if (!pme_dev) {
7506dc79 2494 pci_warn(dev, "can't enable PME#\n");
0394cb19
BH
2495 return;
2496 }
df17e62e
MG
2497 pme_dev->dev = dev;
2498 mutex_lock(&pci_pme_list_mutex);
2499 list_add(&pme_dev->list, &pci_pme_list);
2500 if (list_is_singular(&pci_pme_list))
ea00353f
LW
2501 queue_delayed_work(system_freezable_wq,
2502 &pci_pme_work,
2503 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
2504 mutex_unlock(&pci_pme_list_mutex);
2505 } else {
2506 mutex_lock(&pci_pme_list_mutex);
2507 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2508 if (pme_dev->dev == dev) {
2509 list_del(&pme_dev->list);
2510 kfree(pme_dev);
2511 break;
2512 }
2513 }
2514 mutex_unlock(&pci_pme_list_mutex);
2515 }
2516 }
2517
7506dc79 2518 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
eb9d0fe4 2519}
b7fe9434 2520EXPORT_SYMBOL(pci_pme_active);
eb9d0fe4 2521
1da177e4 2522/**
cfcadfaa 2523 * __pci_enable_wake - enable PCI device as wakeup event source
075c1771
DB
2524 * @dev: PCI device affected
2525 * @state: PCI state from which device will issue wakeup events
2526 * @enable: True to enable event generation; false to disable
2527 *
2528 * This enables the device as a wakeup event source, or disables it.
2529 * When such events involves platform-specific hooks, those hooks are
2530 * called automatically by this routine.
2531 *
2532 * Devices with legacy power management (no standard PCI PM capabilities)
eb9d0fe4 2533 * always require such platform hooks.
075c1771 2534 *
eb9d0fe4
RW
2535 * RETURN VALUE:
2536 * 0 is returned on success
2537 * -EINVAL is returned if device is not supposed to wake up the system
2538 * Error code depending on the platform is returned if both the platform and
2539 * the native mechanism fail to enable the generation of wake-up events
1da177e4 2540 */
cfcadfaa 2541static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1da177e4 2542{
5bcc2fb4 2543 int ret = 0;
075c1771 2544
baecc470 2545 /*
ac86e8ee
MW
2546 * Bridges that are not power-manageable directly only signal
2547 * wakeup on behalf of subordinate devices which is set up
2548 * elsewhere, so skip them. However, bridges that are
2549 * power-manageable may signal wakeup for themselves (for example,
2550 * on a hotplug event) and they need to be covered here.
baecc470 2551 */
ac86e8ee 2552 if (!pci_power_manageable(dev))
baecc470
RW
2553 return 0;
2554
0ce3fcaf
RW
2555 /* Don't do the same thing twice in a row for one device. */
2556 if (!!enable == !!dev->wakeup_prepared)
e80bb09d
RW
2557 return 0;
2558
eb9d0fe4
RW
2559 /*
2560 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2561 * Anderson we should be doing PME# wake enable followed by ACPI wake
2562 * enable. To disable wake-up we call the platform first, for symmetry.
075c1771 2563 */
1da177e4 2564
5bcc2fb4
RW
2565 if (enable) {
2566 int error;
1da177e4 2567
0e00392a
RW
2568 /*
2569 * Enable PME signaling if the device can signal PME from
2570 * D3cold regardless of whether or not it can signal PME from
2571 * the current target state, because that will allow it to
2572 * signal PME when the hierarchy above it goes into D3cold and
2573 * the device itself ends up in D3cold as a result of that.
2574 */
2575 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
5bcc2fb4
RW
2576 pci_pme_active(dev, true);
2577 else
2578 ret = 1;
0847684c 2579 error = platform_pci_set_wakeup(dev, true);
5bcc2fb4
RW
2580 if (ret)
2581 ret = error;
e80bb09d
RW
2582 if (!ret)
2583 dev->wakeup_prepared = true;
5bcc2fb4 2584 } else {
0847684c 2585 platform_pci_set_wakeup(dev, false);
5bcc2fb4 2586 pci_pme_active(dev, false);
e80bb09d 2587 dev->wakeup_prepared = false;
5bcc2fb4 2588 }
1da177e4 2589
5bcc2fb4 2590 return ret;
eb9d0fe4 2591}
cfcadfaa
RW
2592
2593/**
2594 * pci_enable_wake - change wakeup settings for a PCI device
2595 * @pci_dev: Target device
2596 * @state: PCI state from which device will issue wakeup events
2597 * @enable: Whether or not to enable event generation
2598 *
2599 * If @enable is set, check device_may_wakeup() for the device before calling
2600 * __pci_enable_wake() for it.
2601 */
2602int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2603{
2604 if (enable && !device_may_wakeup(&pci_dev->dev))
2605 return -EINVAL;
2606
2607 return __pci_enable_wake(pci_dev, state, enable);
2608}
0847684c 2609EXPORT_SYMBOL(pci_enable_wake);
1da177e4 2610
0235c4fc
RW
2611/**
2612 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2613 * @dev: PCI device to prepare
2614 * @enable: True to enable wake-up event generation; false to disable
2615 *
2616 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2617 * and this function allows them to set that up cleanly - pci_enable_wake()
2618 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2619 * ordering constraints.
2620 *
cfcadfaa
RW
2621 * This function only returns error code if the device is not allowed to wake
2622 * up the system from sleep or it is not capable of generating PME# from both
2623 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
0235c4fc
RW
2624 */
2625int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2626{
2627 return pci_pme_capable(dev, PCI_D3cold) ?
2628 pci_enable_wake(dev, PCI_D3cold, enable) :
2629 pci_enable_wake(dev, PCI_D3hot, enable);
2630}
b7fe9434 2631EXPORT_SYMBOL(pci_wake_from_d3);
0235c4fc 2632
404cc2d8 2633/**
37139074
JB
2634 * pci_target_state - find an appropriate low power state for a given PCI dev
2635 * @dev: PCI device
666ff6f8 2636 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
37139074
JB
2637 *
2638 * Use underlying platform code to find a supported low power state for @dev.
2639 * If the platform can't manage @dev, return the deepest state from which it
2640 * can generate wake events, based on any available PME info.
404cc2d8 2641 */
666ff6f8 2642static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
404cc2d8 2643{
404cc2d8
RW
2644 if (platform_pci_power_manageable(dev)) {
2645 /*
60ee031a 2646 * Call the platform to find the target state for the device.
404cc2d8
RW
2647 */
2648 pci_power_t state = platform_pci_choose_state(dev);
2649
2650 switch (state) {
2651 case PCI_POWER_ERROR:
2652 case PCI_UNKNOWN:
bf39c929
RW
2653 return PCI_D3hot;
2654
404cc2d8
RW
2655 case PCI_D1:
2656 case PCI_D2:
2657 if (pci_no_d1d2(dev))
bf39c929 2658 return PCI_D3hot;
404cc2d8 2659 }
4132a577 2660
bf39c929 2661 return state;
4132a577
LW
2662 }
2663
4132a577
LW
2664 /*
2665 * If the device is in D3cold even though it's not power-manageable by
2666 * the platform, it may have been powered down by non-standard means.
2667 * Best to let it slumber.
2668 */
2669 if (dev->current_state == PCI_D3cold)
bf39c929
RW
2670 return PCI_D3cold;
2671 else if (!dev->pm_cap)
2672 return PCI_D0;
4132a577 2673
da9f2150 2674 if (wakeup && dev->pme_support) {
bf39c929 2675 pci_power_t state = PCI_D3hot;
da9f2150 2676
404cc2d8
RW
2677 /*
2678 * Find the deepest state from which the device can generate
60ee031a 2679 * PME#.
404cc2d8 2680 */
da9f2150
RW
2681 while (state && !(dev->pme_support & (1 << state)))
2682 state--;
2683
2684 if (state)
2685 return state;
2686 else if (dev->pme_support & 1)
2687 return PCI_D0;
404cc2d8
RW
2688 }
2689
bf39c929 2690 return PCI_D3hot;
e5899e1b
RW
2691}
2692
2693/**
74356add
BH
2694 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2695 * into a sleep state
e5899e1b
RW
2696 * @dev: Device to handle.
2697 *
2698 * Choose the power state appropriate for the device depending on whether
2699 * it can wake up the system and/or is power manageable by the platform
2700 * (PCI_D3hot is the default) and put the device into that state.
2701 */
2702int pci_prepare_to_sleep(struct pci_dev *dev)
2703{
666ff6f8
RW
2704 bool wakeup = device_may_wakeup(&dev->dev);
2705 pci_power_t target_state = pci_target_state(dev, wakeup);
e5899e1b
RW
2706 int error;
2707
2708 if (target_state == PCI_POWER_ERROR)
2709 return -EIO;
2710
666ff6f8 2711 pci_enable_wake(dev, target_state, wakeup);
c157dfa3 2712
404cc2d8
RW
2713 error = pci_set_power_state(dev, target_state);
2714
c01163db 2715 if (error)
404cc2d8
RW
2716 pci_enable_wake(dev, target_state, false);
2717
2718 return error;
2719}
b7fe9434 2720EXPORT_SYMBOL(pci_prepare_to_sleep);
404cc2d8
RW
2721
2722/**
74356add
BH
2723 * pci_back_from_sleep - turn PCI device on during system-wide transition
2724 * into working state
404cc2d8
RW
2725 * @dev: Device to handle.
2726 *
88393161 2727 * Disable device's system wake-up capability and put it into D0.
404cc2d8
RW
2728 */
2729int pci_back_from_sleep(struct pci_dev *dev)
2730{
6f9f0eef
RW
2731 int ret = pci_set_power_state(dev, PCI_D0);
2732
2733 if (ret)
2734 return ret;
2735
404cc2d8 2736 pci_enable_wake(dev, PCI_D0, false);
6f9f0eef 2737 return 0;
404cc2d8 2738}
b7fe9434 2739EXPORT_SYMBOL(pci_back_from_sleep);
404cc2d8 2740
6cbf8214
RW
2741/**
2742 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2743 * @dev: PCI device being suspended.
2744 *
2745 * Prepare @dev to generate wake-up events at run time and put it into a low
2746 * power state.
2747 */
2748int pci_finish_runtime_suspend(struct pci_dev *dev)
2749{
666ff6f8 2750 pci_power_t target_state;
6cbf8214
RW
2751 int error;
2752
666ff6f8 2753 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
6cbf8214
RW
2754 if (target_state == PCI_POWER_ERROR)
2755 return -EIO;
2756
cfcadfaa 2757 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
6cbf8214
RW
2758
2759 error = pci_set_power_state(dev, target_state);
2760
c01163db 2761 if (error)
0847684c 2762 pci_enable_wake(dev, target_state, false);
6cbf8214
RW
2763
2764 return error;
2765}
2766
b67ea761
RW
2767/**
2768 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2769 * @dev: Device to check.
2770 *
f7625980 2771 * Return true if the device itself is capable of generating wake-up events
b67ea761
RW
2772 * (through the platform or using the native PCIe PME) or if the device supports
2773 * PME and one of its upstream bridges can generate wake-up events.
2774 */
2775bool pci_dev_run_wake(struct pci_dev *dev)
2776{
2777 struct pci_bus *bus = dev->bus;
2778
b67ea761
RW
2779 if (!dev->pme_support)
2780 return false;
2781
666ff6f8 2782 /* PME-capable in principle, but not from the target power state */
8feaec33 2783 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
6496ebd7
AS
2784 return false;
2785
8feaec33
KHF
2786 if (device_can_wakeup(&dev->dev))
2787 return true;
2788
b67ea761
RW
2789 while (bus->parent) {
2790 struct pci_dev *bridge = bus->self;
2791
de3ef1eb 2792 if (device_can_wakeup(&bridge->dev))
b67ea761
RW
2793 return true;
2794
2795 bus = bus->parent;
2796 }
2797
2798 /* We have reached the root bus. */
2799 if (bus->bridge)
de3ef1eb 2800 return device_can_wakeup(bus->bridge);
b67ea761
RW
2801
2802 return false;
2803}
2804EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2805
bac2a909 2806/**
0c7376ad 2807 * pci_dev_need_resume - Check if it is necessary to resume the device.
bac2a909
RW
2808 * @pci_dev: Device to check.
2809 *
0c7376ad 2810 * Return 'true' if the device is not runtime-suspended or it has to be
bac2a909 2811 * reconfigured due to wakeup settings difference between system and runtime
0c7376ad
RW
2812 * suspend, or the current power state of it is not suitable for the upcoming
2813 * (system-wide) transition.
bac2a909 2814 */
0c7376ad 2815bool pci_dev_need_resume(struct pci_dev *pci_dev)
bac2a909
RW
2816{
2817 struct device *dev = &pci_dev->dev;
234f223d
RW
2818 pci_power_t target_state;
2819
2820 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
0c7376ad 2821 return true;
bac2a909 2822
0c7376ad 2823 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
234f223d
RW
2824
2825 /*
2826 * If the earlier platform check has not triggered, D3cold is just power
2827 * removal on top of D3hot, so no need to resume the device in that
2828 * case.
2829 */
0c7376ad
RW
2830 return target_state != pci_dev->current_state &&
2831 target_state != PCI_D3cold &&
2832 pci_dev->current_state != PCI_D3hot;
2833}
2834
2835/**
2836 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2837 * @pci_dev: Device to check.
2838 *
2839 * If the device is suspended and it is not configured for system wakeup,
2840 * disable PME for it to prevent it from waking up the system unnecessarily.
2841 *
2842 * Note that if the device's power state is D3cold and the platform check in
2843 * pci_dev_need_resume() has not triggered, the device's configuration need not
2844 * be changed.
2845 */
2846void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2847{
2848 struct device *dev = &pci_dev->dev;
bac2a909 2849
2cef548a
RW
2850 spin_lock_irq(&dev->power.lock);
2851
0c7376ad
RW
2852 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2853 pci_dev->current_state < PCI_D3cold)
2cef548a
RW
2854 __pci_pme_active(pci_dev, false);
2855
2856 spin_unlock_irq(&dev->power.lock);
2cef548a
RW
2857}
2858
2859/**
2860 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2861 * @pci_dev: Device to handle.
2862 *
2863 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2864 * it might have been disabled during the prepare phase of system suspend if
2865 * the device was not configured for system wakeup.
2866 */
2867void pci_dev_complete_resume(struct pci_dev *pci_dev)
2868{
2869 struct device *dev = &pci_dev->dev;
2870
2871 if (!pci_dev_run_wake(pci_dev))
2872 return;
2873
2874 spin_lock_irq(&dev->power.lock);
2875
2876 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2877 __pci_pme_active(pci_dev, true);
2878
2879 spin_unlock_irq(&dev->power.lock);
bac2a909
RW
2880}
2881
6407e5ec
RW
2882/**
2883 * pci_choose_state - Choose the power state of a PCI device.
2884 * @dev: Target PCI device.
2885 * @state: Target state for the whole system.
2886 *
2887 * Returns PCI power state suitable for @dev and @state.
2888 */
2889pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2890{
2891 if (state.event == PM_EVENT_ON)
2892 return PCI_D0;
2893
2894 return pci_target_state(dev, false);
2895}
2896EXPORT_SYMBOL(pci_choose_state);
2897
b3c32c4f
HY
2898void pci_config_pm_runtime_get(struct pci_dev *pdev)
2899{
2900 struct device *dev = &pdev->dev;
2901 struct device *parent = dev->parent;
2902
2903 if (parent)
2904 pm_runtime_get_sync(parent);
2905 pm_runtime_get_noresume(dev);
2906 /*
2907 * pdev->current_state is set to PCI_D3cold during suspending,
2908 * so wait until suspending completes
2909 */
2910 pm_runtime_barrier(dev);
2911 /*
2912 * Only need to resume devices in D3cold, because config
2913 * registers are still accessible for devices suspended but
2914 * not in D3cold.
2915 */
2916 if (pdev->current_state == PCI_D3cold)
2917 pm_runtime_resume(dev);
2918}
2919
2920void pci_config_pm_runtime_put(struct pci_dev *pdev)
2921{
2922 struct device *dev = &pdev->dev;
2923 struct device *parent = dev->parent;
2924
2925 pm_runtime_put(dev);
2926 if (parent)
2927 pm_runtime_put_sync(parent);
2928}
2929
85b0cae8
MW
2930static const struct dmi_system_id bridge_d3_blacklist[] = {
2931#ifdef CONFIG_X86
2932 {
2933 /*
2934 * Gigabyte X299 root port is not marked as hotplug capable
2935 * which allows Linux to power manage it. However, this
2936 * confuses the BIOS SMI handler so don't power manage root
2937 * ports on that system.
2938 */
2939 .ident = "X299 DESIGNARE EX-CF",
2940 .matches = {
2941 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2942 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2943 },
12068bb3
BH
2944 },
2945 {
92597f97
RW
2946 /*
2947 * Downstream device is not accessible after putting a root port
2948 * into D3cold and back into D0 on Elo i2.
2949 */
2950 .ident = "Elo i2",
2951 .matches = {
2952 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2953 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2954 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2955 },
85b0cae8
MW
2956 },
2957#endif
2958 { }
2959};
2960
9d26d3a8
MW
2961/**
2962 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2963 * @bridge: Bridge to check
2964 *
2965 * This function checks if it is possible to move the bridge to D3.
47a8e237 2966 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
9d26d3a8 2967 */
c6a63307 2968bool pci_bridge_d3_possible(struct pci_dev *bridge)
9d26d3a8 2969{
9d26d3a8
MW
2970 if (!pci_is_pcie(bridge))
2971 return false;
2972
2973 switch (pci_pcie_type(bridge)) {
2974 case PCI_EXP_TYPE_ROOT_PORT:
2975 case PCI_EXP_TYPE_UPSTREAM:
2976 case PCI_EXP_TYPE_DOWNSTREAM:
2977 if (pci_bridge_d3_disable)
2978 return false;
97a90aee
LW
2979
2980 /*
eb3b5bf1 2981 * Hotplug ports handled by firmware in System Management Mode
97a90aee 2982 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
97a90aee 2983 */
eb3b5bf1 2984 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
97a90aee
LW
2985 return false;
2986
9d26d3a8
MW
2987 if (pci_bridge_d3_force)
2988 return true;
2989
47a8e237
LW
2990 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2991 if (bridge->is_thunderbolt)
2992 return true;
2993
26ad34d5
MW
2994 /* Platform might know better if the bridge supports D3 */
2995 if (platform_pci_bridge_d3(bridge))
2996 return true;
2997
eb3b5bf1
LW
2998 /*
2999 * Hotplug ports handled natively by the OS were not validated
3000 * by vendors for runtime D3 at least until 2018 because there
3001 * was no OS support.
3002 */
3003 if (bridge->is_hotplug_bridge)
3004 return false;
3005
85b0cae8
MW
3006 if (dmi_check_system(bridge_d3_blacklist))
3007 return false;
3008
9d26d3a8
MW
3009 /*
3010 * It should be safe to put PCIe ports from 2015 or newer
3011 * to D3.
3012 */
ac95090a 3013 if (dmi_get_bios_year() >= 2015)
9d26d3a8 3014 return true;
9d26d3a8
MW
3015 break;
3016 }
3017
3018 return false;
3019}
3020
3021static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3022{
3023 bool *d3cold_ok = data;
9d26d3a8 3024
718a0609
LW
3025 if (/* The device needs to be allowed to go D3cold ... */
3026 dev->no_d3cold || !dev->d3cold_allowed ||
3027
3028 /* ... and if it is wakeup capable to do so from D3cold. */
3029 (device_may_wakeup(&dev->dev) &&
3030 !pci_pme_capable(dev, PCI_D3cold)) ||
3031
3032 /* If it is a bridge it must be allowed to go to D3. */
d98e0929 3033 !pci_power_manageable(dev))
9d26d3a8 3034
718a0609 3035 *d3cold_ok = false;
9d26d3a8 3036
718a0609 3037 return !*d3cold_ok;
9d26d3a8
MW
3038}
3039
3040/*
3041 * pci_bridge_d3_update - Update bridge D3 capabilities
3042 * @dev: PCI device which is changed
9d26d3a8
MW
3043 *
3044 * Update upstream bridge PM capabilities accordingly depending on if the
3045 * device PM configuration was changed or the device is being removed. The
3046 * change is also propagated upstream.
3047 */
1ed276a7 3048void pci_bridge_d3_update(struct pci_dev *dev)
9d26d3a8 3049{
1ed276a7 3050 bool remove = !device_is_registered(&dev->dev);
9d26d3a8
MW
3051 struct pci_dev *bridge;
3052 bool d3cold_ok = true;
3053
3054 bridge = pci_upstream_bridge(dev);
3055 if (!bridge || !pci_bridge_d3_possible(bridge))
3056 return;
3057
9d26d3a8 3058 /*
e8559b71
LW
3059 * If D3 is currently allowed for the bridge, removing one of its
3060 * children won't change that.
3061 */
3062 if (remove && bridge->bridge_d3)
3063 return;
3064
3065 /*
3066 * If D3 is currently allowed for the bridge and a child is added or
3067 * changed, disallowance of D3 can only be caused by that child, so
3068 * we only need to check that single device, not any of its siblings.
3069 *
3070 * If D3 is currently not allowed for the bridge, checking the device
3071 * first may allow us to skip checking its siblings.
9d26d3a8
MW
3072 */
3073 if (!remove)
3074 pci_dev_check_d3cold(dev, &d3cold_ok);
3075
e8559b71
LW
3076 /*
3077 * If D3 is currently not allowed for the bridge, this may be caused
3078 * either by the device being changed/removed or any of its siblings,
3079 * so we need to go through all children to find out if one of them
3080 * continues to block D3.
3081 */
3082 if (d3cold_ok && !bridge->bridge_d3)
9d26d3a8
MW
3083 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3084 &d3cold_ok);
9d26d3a8
MW
3085
3086 if (bridge->bridge_d3 != d3cold_ok) {
3087 bridge->bridge_d3 = d3cold_ok;
3088 /* Propagate change to upstream bridges */
1ed276a7 3089 pci_bridge_d3_update(bridge);
9d26d3a8 3090 }
9d26d3a8
MW
3091}
3092
9d26d3a8
MW
3093/**
3094 * pci_d3cold_enable - Enable D3cold for device
3095 * @dev: PCI device to handle
3096 *
3097 * This function can be used in drivers to enable D3cold from the device
3098 * they handle. It also updates upstream PCI bridge PM capabilities
3099 * accordingly.
3100 */
3101void pci_d3cold_enable(struct pci_dev *dev)
3102{
3103 if (dev->no_d3cold) {
3104 dev->no_d3cold = false;
1ed276a7 3105 pci_bridge_d3_update(dev);
9d26d3a8
MW
3106 }
3107}
3108EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3109
3110/**
3111 * pci_d3cold_disable - Disable D3cold for device
3112 * @dev: PCI device to handle
3113 *
3114 * This function can be used in drivers to disable D3cold from the device
3115 * they handle. It also updates upstream PCI bridge PM capabilities
3116 * accordingly.
3117 */
3118void pci_d3cold_disable(struct pci_dev *dev)
3119{
3120 if (!dev->no_d3cold) {
3121 dev->no_d3cold = true;
1ed276a7 3122 pci_bridge_d3_update(dev);
9d26d3a8
MW
3123 }
3124}
3125EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3126
eb9d0fe4
RW
3127/**
3128 * pci_pm_init - Initialize PM functions of given PCI device
3129 * @dev: PCI device to handle.
3130 */
3131void pci_pm_init(struct pci_dev *dev)
3132{
3133 int pm;
d6112f8d 3134 u16 status;
eb9d0fe4 3135 u16 pmc;
1da177e4 3136
bb910a70 3137 pm_runtime_forbid(&dev->dev);
967577b0
HY
3138 pm_runtime_set_active(&dev->dev);
3139 pm_runtime_enable(&dev->dev);
a1e4d72c 3140 device_enable_async_suspend(&dev->dev);
e80bb09d 3141 dev->wakeup_prepared = false;
bb910a70 3142
337001b6 3143 dev->pm_cap = 0;
ffaddbe8 3144 dev->pme_support = 0;
337001b6 3145
eb9d0fe4
RW
3146 /* find PCI PM capability in list */
3147 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3148 if (!pm)
50246dd4 3149 return;
eb9d0fe4
RW
3150 /* Check device's ability to generate PME# */
3151 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
075c1771 3152
eb9d0fe4 3153 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
7506dc79 3154 pci_err(dev, "unsupported PM cap regs version (%u)\n",
eb9d0fe4 3155 pmc & PCI_PM_CAP_VER_MASK);
50246dd4 3156 return;
eb9d0fe4
RW
3157 }
3158
337001b6 3159 dev->pm_cap = pm;
3789af9a 3160 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
448bd857 3161 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
9d26d3a8 3162 dev->bridge_d3 = pci_bridge_d3_possible(dev);
4f9c1397 3163 dev->d3cold_allowed = true;
337001b6
RW
3164
3165 dev->d1_support = false;
3166 dev->d2_support = false;
3167 if (!pci_no_d1d2(dev)) {
c9ed77ee 3168 if (pmc & PCI_PM_CAP_D1)
337001b6 3169 dev->d1_support = true;
c9ed77ee 3170 if (pmc & PCI_PM_CAP_D2)
337001b6 3171 dev->d2_support = true;
c9ed77ee
BH
3172
3173 if (dev->d1_support || dev->d2_support)
34c6b710 3174 pci_info(dev, "supports%s%s\n",
ec84f126
JB
3175 dev->d1_support ? " D1" : "",
3176 dev->d2_support ? " D2" : "");
337001b6
RW
3177 }
3178
3179 pmc &= PCI_PM_CAP_PME_MASK;
3180 if (pmc) {
34c6b710 3181 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
c9ed77ee
BH
3182 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3183 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3184 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3789af9a 3185 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
c9ed77ee 3186 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
337001b6 3187 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
379021d5 3188 dev->pme_poll = true;
eb9d0fe4
RW
3189 /*
3190 * Make device's PM flags reflect the wake-up capability, but
3191 * let the user space enable it to wake up the system as needed.
3192 */
3193 device_set_wakeup_capable(&dev->dev, true);
eb9d0fe4 3194 /* Disable the PME# generation functionality */
337001b6 3195 pci_pme_active(dev, false);
eb9d0fe4 3196 }
d6112f8d
FB
3197
3198 pci_read_config_word(dev, PCI_STATUS, &status);
3199 if (status & PCI_STATUS_IMM_READY)
3200 dev->imm_ready = 1;
1da177e4
LT
3201}
3202
938174e5
SS
3203static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3204{
92efb1bd 3205 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
938174e5
SS
3206
3207 switch (prop) {
3208 case PCI_EA_P_MEM:
3209 case PCI_EA_P_VF_MEM:
3210 flags |= IORESOURCE_MEM;
3211 break;
3212 case PCI_EA_P_MEM_PREFETCH:
3213 case PCI_EA_P_VF_MEM_PREFETCH:
3214 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3215 break;
3216 case PCI_EA_P_IO:
3217 flags |= IORESOURCE_IO;
3218 break;
3219 default:
3220 return 0;
3221 }
3222
3223 return flags;
3224}
3225
3226static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3227 u8 prop)
3228{
3229 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3230 return &dev->resource[bei];
11183991
DD
3231#ifdef CONFIG_PCI_IOV
3232 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3233 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3234 return &dev->resource[PCI_IOV_RESOURCES +
3235 bei - PCI_EA_BEI_VF_BAR0];
3236#endif
938174e5
SS
3237 else if (bei == PCI_EA_BEI_ROM)
3238 return &dev->resource[PCI_ROM_RESOURCE];
3239 else
3240 return NULL;
3241}
3242
3243/* Read an Enhanced Allocation (EA) entry */
3244static int pci_ea_read(struct pci_dev *dev, int offset)
3245{
3246 struct resource *res;
3247 int ent_size, ent_offset = offset;
3248 resource_size_t start, end;
3249 unsigned long flags;
26635112 3250 u32 dw0, bei, base, max_offset;
938174e5
SS
3251 u8 prop;
3252 bool support_64 = (sizeof(resource_size_t) >= 8);
3253
3254 pci_read_config_dword(dev, ent_offset, &dw0);
3255 ent_offset += 4;
3256
3257 /* Entry size field indicates DWORDs after 1st */
3258 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3259
3260 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3261 goto out;
3262
26635112
BH
3263 bei = (dw0 & PCI_EA_BEI) >> 4;
3264 prop = (dw0 & PCI_EA_PP) >> 8;
3265
938174e5
SS
3266 /*
3267 * If the Property is in the reserved range, try the Secondary
3268 * Property instead.
3269 */
3270 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
26635112 3271 prop = (dw0 & PCI_EA_SP) >> 16;
938174e5
SS
3272 if (prop > PCI_EA_P_BRIDGE_IO)
3273 goto out;
3274
26635112 3275 res = pci_ea_get_resource(dev, bei, prop);
938174e5 3276 if (!res) {
7506dc79 3277 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
938174e5
SS
3278 goto out;
3279 }
3280
3281 flags = pci_ea_flags(dev, prop);
3282 if (!flags) {
7506dc79 3283 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
938174e5
SS
3284 goto out;
3285 }
3286
3287 /* Read Base */
3288 pci_read_config_dword(dev, ent_offset, &base);
3289 start = (base & PCI_EA_FIELD_MASK);
3290 ent_offset += 4;
3291
3292 /* Read MaxOffset */
3293 pci_read_config_dword(dev, ent_offset, &max_offset);
3294 ent_offset += 4;
3295
3296 /* Read Base MSBs (if 64-bit entry) */
3297 if (base & PCI_EA_IS_64) {
3298 u32 base_upper;
3299
3300 pci_read_config_dword(dev, ent_offset, &base_upper);
3301 ent_offset += 4;
3302
3303 flags |= IORESOURCE_MEM_64;
3304
3305 /* entry starts above 32-bit boundary, can't use */
3306 if (!support_64 && base_upper)
3307 goto out;
3308
3309 if (support_64)
3310 start |= ((u64)base_upper << 32);
3311 }
3312
3313 end = start + (max_offset | 0x03);
3314
3315 /* Read MaxOffset MSBs (if 64-bit entry) */
3316 if (max_offset & PCI_EA_IS_64) {
3317 u32 max_offset_upper;
3318
3319 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3320 ent_offset += 4;
3321
3322 flags |= IORESOURCE_MEM_64;
3323
3324 /* entry too big, can't use */
3325 if (!support_64 && max_offset_upper)
3326 goto out;
3327
3328 if (support_64)
3329 end += ((u64)max_offset_upper << 32);
3330 }
3331
3332 if (end < start) {
7506dc79 3333 pci_err(dev, "EA Entry crosses address boundary\n");
938174e5
SS
3334 goto out;
3335 }
3336
3337 if (ent_size != ent_offset - offset) {
7506dc79 3338 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
938174e5
SS
3339 ent_size, ent_offset - offset);
3340 goto out;
3341 }
3342
3343 res->name = pci_name(dev);
3344 res->start = start;
3345 res->end = end;
3346 res->flags = flags;
597becb4
BH
3347
3348 if (bei <= PCI_EA_BEI_BAR5)
34c6b710 3349 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3350 bei, res, prop);
3351 else if (bei == PCI_EA_BEI_ROM)
34c6b710 3352 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3353 res, prop);
3354 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
34c6b710 3355 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3356 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3357 else
34c6b710 3358 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
3359 bei, res, prop);
3360
938174e5
SS
3361out:
3362 return offset + ent_size;
3363}
3364
dcbb408a 3365/* Enhanced Allocation Initialization */
938174e5
SS
3366void pci_ea_init(struct pci_dev *dev)
3367{
3368 int ea;
3369 u8 num_ent;
3370 int offset;
3371 int i;
3372
3373 /* find PCI EA capability in list */
3374 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3375 if (!ea)
3376 return;
3377
3378 /* determine the number of entries */
3379 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3380 &num_ent);
3381 num_ent &= PCI_EA_NUM_ENT_MASK;
3382
3383 offset = ea + PCI_EA_FIRST_ENT;
3384
3385 /* Skip DWORD 2 for type 1 functions */
3386 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3387 offset += 4;
3388
3389 /* parse each EA entry */
3390 for (i = 0; i < num_ent; ++i)
3391 offset = pci_ea_read(dev, offset);
3392}
3393
34a4876e
YL
3394static void pci_add_saved_cap(struct pci_dev *pci_dev,
3395 struct pci_cap_saved_state *new_cap)
3396{
3397 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3398}
3399
63f4898a 3400/**
fd0f7f73 3401 * _pci_add_cap_save_buffer - allocate buffer for saving given
74356add 3402 * capability registers
63f4898a
RW
3403 * @dev: the PCI device
3404 * @cap: the capability to allocate the buffer for
fd0f7f73 3405 * @extended: Standard or Extended capability ID
63f4898a
RW
3406 * @size: requested size of the buffer
3407 */
fd0f7f73
AW
3408static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3409 bool extended, unsigned int size)
63f4898a
RW
3410{
3411 int pos;
3412 struct pci_cap_saved_state *save_state;
3413
fd0f7f73
AW
3414 if (extended)
3415 pos = pci_find_ext_capability(dev, cap);
3416 else
3417 pos = pci_find_capability(dev, cap);
3418
0a1a9b49 3419 if (!pos)
63f4898a
RW
3420 return 0;
3421
3422 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3423 if (!save_state)
3424 return -ENOMEM;
3425
24a4742f 3426 save_state->cap.cap_nr = cap;
fd0f7f73 3427 save_state->cap.cap_extended = extended;
24a4742f 3428 save_state->cap.size = size;
63f4898a
RW
3429 pci_add_saved_cap(dev, save_state);
3430
3431 return 0;
3432}
3433
fd0f7f73
AW
3434int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3435{
3436 return _pci_add_cap_save_buffer(dev, cap, false, size);
3437}
3438
3439int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3440{
3441 return _pci_add_cap_save_buffer(dev, cap, true, size);
3442}
3443
63f4898a
RW
3444/**
3445 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3446 * @dev: the PCI device
3447 */
3448void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3449{
3450 int error;
3451
89858517
YZ
3452 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3453 PCI_EXP_SAVE_REGS * sizeof(u16));
63f4898a 3454 if (error)
7506dc79 3455 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
63f4898a
RW
3456
3457 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3458 if (error)
7506dc79 3459 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
425c1b22 3460
dbbfadf2
BH
3461 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3462 2 * sizeof(u16));
3463 if (error)
3464 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3465
425c1b22 3466 pci_allocate_vc_save_buffers(dev);
63f4898a
RW
3467}
3468
f796841e
YL
3469void pci_free_cap_save_buffers(struct pci_dev *dev)
3470{
3471 struct pci_cap_saved_state *tmp;
b67bfe0d 3472 struct hlist_node *n;
f796841e 3473
b67bfe0d 3474 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
f796841e
YL
3475 kfree(tmp);
3476}
3477
58c3a727 3478/**
31ab2476 3479 * pci_configure_ari - enable or disable ARI forwarding
58c3a727 3480 * @dev: the PCI device
b0cc6020
YW
3481 *
3482 * If @dev and its upstream bridge both support ARI, enable ARI in the
3483 * bridge. Otherwise, disable ARI in the bridge.
58c3a727 3484 */
31ab2476 3485void pci_configure_ari(struct pci_dev *dev)
58c3a727 3486{
58c3a727 3487 u32 cap;
8113587c 3488 struct pci_dev *bridge;
58c3a727 3489
6748dcc2 3490 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
58c3a727
YZ
3491 return;
3492
8113587c 3493 bridge = dev->bus->self;
cb97ae34 3494 if (!bridge)
8113587c
ZY
3495 return;
3496
59875ae4 3497 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
58c3a727
YZ
3498 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3499 return;
3500
b0cc6020
YW
3501 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3502 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3503 PCI_EXP_DEVCTL2_ARI);
3504 bridge->ari_enabled = 1;
3505 } else {
3506 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3507 PCI_EXP_DEVCTL2_ARI);
3508 bridge->ari_enabled = 0;
3509 }
58c3a727
YZ
3510}
3511
0a67119f
AW
3512static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3513{
3514 int pos;
83db7e0b 3515 u16 cap, ctrl;
0a67119f 3516
52fbf5bd 3517 pos = pdev->acs_cap;
0a67119f
AW
3518 if (!pos)
3519 return false;
3520
83db7e0b
AW
3521 /*
3522 * Except for egress control, capabilities are either required
3523 * or only required if controllable. Features missing from the
3524 * capability field can therefore be assumed as hard-wired enabled.
3525 */
3526 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3527 acs_flags &= (cap | PCI_ACS_EC);
3528
0a67119f
AW
3529 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3530 return (ctrl & acs_flags) == acs_flags;
3531}
3532
ad805758
AW
3533/**
3534 * pci_acs_enabled - test ACS against required flags for a given device
3535 * @pdev: device to test
3536 * @acs_flags: required PCI ACS flags
3537 *
3538 * Return true if the device supports the provided flags. Automatically
3539 * filters out flags that are not implemented on multifunction devices.
0a67119f
AW
3540 *
3541 * Note that this interface checks the effective ACS capabilities of the
3542 * device rather than the actual capabilities. For instance, most single
3543 * function endpoints are not required to support ACS because they have no
3544 * opportunity for peer-to-peer access. We therefore return 'true'
3545 * regardless of whether the device exposes an ACS capability. This makes
3546 * it much easier for callers of this function to ignore the actual type
3547 * or topology of the device when testing ACS support.
ad805758
AW
3548 */
3549bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3550{
0a67119f 3551 int ret;
ad805758
AW
3552
3553 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3554 if (ret >= 0)
3555 return ret > 0;
3556
0a67119f
AW
3557 /*
3558 * Conventional PCI and PCI-X devices never support ACS, either
3559 * effectively or actually. The shared bus topology implies that
3560 * any device on the bus can receive or snoop DMA.
3561 */
ad805758
AW
3562 if (!pci_is_pcie(pdev))
3563 return false;
3564
0a67119f
AW
3565 switch (pci_pcie_type(pdev)) {
3566 /*
3567 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
f7625980 3568 * but since their primary interface is PCI/X, we conservatively
0a67119f
AW
3569 * handle them as we would a non-PCIe device.
3570 */
3571 case PCI_EXP_TYPE_PCIE_BRIDGE:
3572 /*
3573 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3574 * applicable... must never implement an ACS Extended Capability...".
3575 * This seems arbitrary, but we take a conservative interpretation
3576 * of this statement.
3577 */
3578 case PCI_EXP_TYPE_PCI_BRIDGE:
3579 case PCI_EXP_TYPE_RC_EC:
3580 return false;
3581 /*
3582 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3583 * implement ACS in order to indicate their peer-to-peer capabilities,
3584 * regardless of whether they are single- or multi-function devices.
3585 */
3586 case PCI_EXP_TYPE_DOWNSTREAM:
3587 case PCI_EXP_TYPE_ROOT_PORT:
3588 return pci_acs_flags_enabled(pdev, acs_flags);
3589 /*
3590 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3591 * implemented by the remaining PCIe types to indicate peer-to-peer
f7625980 3592 * capabilities, but only when they are part of a multifunction
0a67119f
AW
3593 * device. The footnote for section 6.12 indicates the specific
3594 * PCIe types included here.
3595 */
3596 case PCI_EXP_TYPE_ENDPOINT:
3597 case PCI_EXP_TYPE_UPSTREAM:
3598 case PCI_EXP_TYPE_LEG_END:
3599 case PCI_EXP_TYPE_RC_END:
3600 if (!pdev->multifunction)
3601 break;
3602
0a67119f 3603 return pci_acs_flags_enabled(pdev, acs_flags);
ad805758
AW
3604 }
3605
0a67119f 3606 /*
f7625980 3607 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
0a67119f
AW
3608 * to single function devices with the exception of downstream ports.
3609 */
ad805758
AW
3610 return true;
3611}
3612
3613/**
2f0cd59c 3614 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
ad805758
AW
3615 * @start: starting downstream device
3616 * @end: ending upstream device or NULL to search to the root bus
3617 * @acs_flags: required flags
3618 *
3619 * Walk up a device tree from start to end testing PCI ACS support. If
3620 * any step along the way does not support the required flags, return false.
3621 */
3622bool pci_acs_path_enabled(struct pci_dev *start,
3623 struct pci_dev *end, u16 acs_flags)
3624{
3625 struct pci_dev *pdev, *parent = start;
3626
3627 do {
3628 pdev = parent;
3629
3630 if (!pci_acs_enabled(pdev, acs_flags))
3631 return false;
3632
3633 if (pci_is_root_bus(pdev->bus))
3634 return (end == NULL);
3635
3636 parent = pdev->bus->self;
3637 } while (pdev != end);
3638
3639 return true;
3640}
3641
52fbf5bd
RJ
3642/**
3643 * pci_acs_init - Initialize ACS if hardware supports it
3644 * @dev: the PCI device
3645 */
3646void pci_acs_init(struct pci_dev *dev)
3647{
3648 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3649
462b58fb
RJ
3650 /*
3651 * Attempt to enable ACS regardless of capability because some Root
3652 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3653 * the standard ACS capability but still support ACS via those
3654 * quirks.
3655 */
3656 pci_enable_acs(dev);
52fbf5bd
RJ
3657}
3658
276b738d
CK
3659/**
3660 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3661 * @pdev: PCI device
3662 * @bar: BAR to find
3663 *
3664 * Helper to find the position of the ctrl register for a BAR.
3665 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3666 * Returns -ENOENT if no ctrl register for the BAR could be found.
3667 */
3668static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3669{
3670 unsigned int pos, nbars, i;
3671 u32 ctrl;
3672
3673 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3674 if (!pos)
3675 return -ENOTSUPP;
3676
3677 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3678 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3679 PCI_REBAR_CTRL_NBAR_SHIFT;
3680
3681 for (i = 0; i < nbars; i++, pos += 8) {
3682 int bar_idx;
3683
3684 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3686 if (bar_idx == bar)
3687 return pos;
3688 }
3689
3690 return -ENOENT;
3691}
3692
3693/**
3694 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3695 * @pdev: PCI device
3696 * @bar: BAR to query
3697 *
3698 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3699 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3700 */
3701u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3702{
3703 int pos;
3704 u32 cap;
3705
3706 pos = pci_rebar_find_pos(pdev, bar);
3707 if (pos < 0)
3708 return 0;
3709
3710 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
907830b0
ND
3711 cap &= PCI_REBAR_CAP_SIZES;
3712
3713 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3714 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3715 bar == 0 && cap == 0x7000)
3716 cap = 0x3f000;
3717
3718 return cap >> 4;
276b738d 3719}
8fbdbb66 3720EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
276b738d
CK
3721
3722/**
3723 * pci_rebar_get_current_size - get the current size of a BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to set size to
3726 *
3727 * Read the size of a BAR from the resizable BAR config.
3728 * Returns size if found or negative error code.
3729 */
3730int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3731{
3732 int pos;
3733 u32 ctrl;
3734
3735 pos = pci_rebar_find_pos(pdev, bar);
3736 if (pos < 0)
3737 return pos;
3738
3739 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
b1277a22 3740 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
276b738d
CK
3741}
3742
3743/**
3744 * pci_rebar_set_size - set a new size for a BAR
3745 * @pdev: PCI device
3746 * @bar: BAR to set size to
3747 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3748 *
3749 * Set the new size of a BAR as defined in the spec.
3750 * Returns zero if resizing was successful, error code otherwise.
3751 */
3752int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3753{
3754 int pos;
3755 u32 ctrl;
3756
3757 pos = pci_rebar_find_pos(pdev, bar);
3758 if (pos < 0)
3759 return pos;
3760
3761 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
b1277a22 3763 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
276b738d
CK
3764 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3765 return 0;
3766}
3767
430a2368
JC
3768/**
3769 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3770 * @dev: the PCI device
3771 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3772 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3773 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3774 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3775 *
3776 * Return 0 if all upstream bridges support AtomicOp routing, egress
3777 * blocking is disabled on all upstream ports, and the root port supports
3778 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3779 * AtomicOp completion), or negative otherwise.
3780 */
3781int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3782{
3783 struct pci_bus *bus = dev->bus;
3784 struct pci_dev *bridge;
3785 u32 cap, ctl2;
3786
5ec0a6fc
SX
3787 /*
3788 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3789 * in Device Control 2 is reserved in VFs and the PF value applies
3790 * to all associated VFs.
3791 */
3792 if (dev->is_virtfn)
3793 return -EINVAL;
3794
430a2368
JC
3795 if (!pci_is_pcie(dev))
3796 return -EINVAL;
3797
3798 /*
3799 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3800 * AtomicOp requesters. For now, we only support endpoints as
3801 * requesters and root ports as completers. No endpoints as
3802 * completers, and no peer-to-peer.
3803 */
3804
3805 switch (pci_pcie_type(dev)) {
3806 case PCI_EXP_TYPE_ENDPOINT:
3807 case PCI_EXP_TYPE_LEG_END:
3808 case PCI_EXP_TYPE_RC_END:
3809 break;
3810 default:
3811 return -EINVAL;
3812 }
3813
3814 while (bus->parent) {
3815 bridge = bus->self;
3816
3817 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3818
3819 switch (pci_pcie_type(bridge)) {
3820 /* Ensure switch ports support AtomicOp routing */
3821 case PCI_EXP_TYPE_UPSTREAM:
3822 case PCI_EXP_TYPE_DOWNSTREAM:
3823 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3824 return -EINVAL;
3825 break;
3826
3827 /* Ensure root port supports all the sizes we care about */
3828 case PCI_EXP_TYPE_ROOT_PORT:
3829 if ((cap & cap_mask) != cap_mask)
3830 return -EINVAL;
3831 break;
3832 }
3833
3834 /* Ensure upstream ports don't block AtomicOps on egress */
ca784104 3835 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
430a2368
JC
3836 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3837 &ctl2);
3838 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3839 return -EINVAL;
3840 }
3841
3842 bus = bus->parent;
3843 }
3844
3845 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3846 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3847 return 0;
3848}
3849EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3850
57c2cf71
BH
3851/**
3852 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3853 * @dev: the PCI device
bb5c2de2 3854 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
57c2cf71
BH
3855 *
3856 * Perform INTx swizzling for a device behind one level of bridge. This is
3857 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
46b952a3
MW
3858 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3859 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3860 * the PCI Express Base Specification, Revision 2.1)
57c2cf71 3861 */
3df425f3 3862u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
57c2cf71 3863{
46b952a3
MW
3864 int slot;
3865
3866 if (pci_ari_enabled(dev->bus))
3867 slot = 0;
3868 else
3869 slot = PCI_SLOT(dev->devfn);
3870
3871 return (((pin - 1) + slot) % 4) + 1;
57c2cf71
BH
3872}
3873
3c78bc61 3874int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1da177e4
LT
3875{
3876 u8 pin;
3877
514d207d 3878 pin = dev->pin;
1da177e4
LT
3879 if (!pin)
3880 return -1;
878f2e50 3881
8784fd4d 3882 while (!pci_is_root_bus(dev->bus)) {
57c2cf71 3883 pin = pci_swizzle_interrupt_pin(dev, pin);
1da177e4
LT
3884 dev = dev->bus->self;
3885 }
3886 *bridge = dev;
3887 return pin;
3888}
3889
68feac87
BH
3890/**
3891 * pci_common_swizzle - swizzle INTx all the way to root bridge
3892 * @dev: the PCI device
3893 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3894 *
3895 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3896 * bridges all the way up to a PCI root bus.
3897 */
3898u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3899{
3900 u8 pin = *pinp;
3901
1eb39487 3902 while (!pci_is_root_bus(dev->bus)) {
68feac87
BH
3903 pin = pci_swizzle_interrupt_pin(dev, pin);
3904 dev = dev->bus->self;
3905 }
3906 *pinp = pin;
3907 return PCI_SLOT(dev->devfn);
3908}
e6b29dea 3909EXPORT_SYMBOL_GPL(pci_common_swizzle);
68feac87 3910
1da177e4 3911/**
74356add
BH
3912 * pci_release_region - Release a PCI bar
3913 * @pdev: PCI device whose resources were previously reserved by
3914 * pci_request_region()
3915 * @bar: BAR to release
1da177e4 3916 *
74356add
BH
3917 * Releases the PCI I/O and memory resources previously reserved by a
3918 * successful call to pci_request_region(). Call this function only
3919 * after all use of the PCI regions has ceased.
1da177e4
LT
3920 */
3921void pci_release_region(struct pci_dev *pdev, int bar)
3922{
9ac7849e
TH
3923 struct pci_devres *dr;
3924
1da177e4
LT
3925 if (pci_resource_len(pdev, bar) == 0)
3926 return;
3927 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3928 release_region(pci_resource_start(pdev, bar),
3929 pci_resource_len(pdev, bar));
3930 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3931 release_mem_region(pci_resource_start(pdev, bar),
3932 pci_resource_len(pdev, bar));
9ac7849e
TH
3933
3934 dr = find_pci_dr(pdev);
3935 if (dr)
3936 dr->region_mask &= ~(1 << bar);
1da177e4 3937}
b7fe9434 3938EXPORT_SYMBOL(pci_release_region);
1da177e4
LT
3939
3940/**
74356add
BH
3941 * __pci_request_region - Reserved PCI I/O and memory resource
3942 * @pdev: PCI device whose resources are to be reserved
3943 * @bar: BAR to be reserved
3944 * @res_name: Name to be associated with resource.
3945 * @exclusive: whether the region access is exclusive or not
1da177e4 3946 *
74356add
BH
3947 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3948 * being reserved by owner @res_name. Do not access any
3949 * address inside the PCI regions unless this call returns
3950 * successfully.
1da177e4 3951 *
74356add
BH
3952 * If @exclusive is set, then the region is marked so that userspace
3953 * is explicitly not allowed to map the resource via /dev/mem or
3954 * sysfs MMIO access.
f5ddcac4 3955 *
74356add
BH
3956 * Returns 0 on success, or %EBUSY on error. A warning
3957 * message is also printed on failure.
1da177e4 3958 */
3c78bc61
RD
3959static int __pci_request_region(struct pci_dev *pdev, int bar,
3960 const char *res_name, int exclusive)
1da177e4 3961{
9ac7849e
TH
3962 struct pci_devres *dr;
3963
1da177e4
LT
3964 if (pci_resource_len(pdev, bar) == 0)
3965 return 0;
f7625980 3966
1da177e4
LT
3967 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3968 if (!request_region(pci_resource_start(pdev, bar),
3969 pci_resource_len(pdev, bar), res_name))
3970 goto err_out;
3c78bc61 3971 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
e8de1481
AV
3972 if (!__request_mem_region(pci_resource_start(pdev, bar),
3973 pci_resource_len(pdev, bar), res_name,
3974 exclusive))
1da177e4
LT
3975 goto err_out;
3976 }
9ac7849e
TH
3977
3978 dr = find_pci_dr(pdev);
3979 if (dr)
3980 dr->region_mask |= 1 << bar;
3981
1da177e4
LT
3982 return 0;
3983
3984err_out:
7506dc79 3985 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
096e6f67 3986 &pdev->resource[bar]);
1da177e4
LT
3987 return -EBUSY;
3988}
3989
e8de1481 3990/**
74356add
BH
3991 * pci_request_region - Reserve PCI I/O and memory resource
3992 * @pdev: PCI device whose resources are to be reserved
3993 * @bar: BAR to be reserved
3994 * @res_name: Name to be associated with resource
e8de1481 3995 *
74356add
BH
3996 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3997 * being reserved by owner @res_name. Do not access any
3998 * address inside the PCI regions unless this call returns
3999 * successfully.
e8de1481 4000 *
74356add
BH
4001 * Returns 0 on success, or %EBUSY on error. A warning
4002 * message is also printed on failure.
e8de1481
AV
4003 */
4004int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4005{
4006 return __pci_request_region(pdev, bar, res_name, 0);
4007}
b7fe9434 4008EXPORT_SYMBOL(pci_request_region);
e8de1481 4009
c87deff7
HS
4010/**
4011 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4012 * @pdev: PCI device whose resources were previously reserved
4013 * @bars: Bitmask of BARs to be released
4014 *
4015 * Release selected PCI I/O and memory resources previously reserved.
4016 * Call this function only after all use of the PCI regions has ceased.
4017 */
4018void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4019{
4020 int i;
4021
c9c13ba4 4022 for (i = 0; i < PCI_STD_NUM_BARS; i++)
c87deff7
HS
4023 if (bars & (1 << i))
4024 pci_release_region(pdev, i);
4025}
b7fe9434 4026EXPORT_SYMBOL(pci_release_selected_regions);
c87deff7 4027
9738abed 4028static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3c78bc61 4029 const char *res_name, int excl)
c87deff7
HS
4030{
4031 int i;
4032
c9c13ba4 4033 for (i = 0; i < PCI_STD_NUM_BARS; i++)
c87deff7 4034 if (bars & (1 << i))
e8de1481 4035 if (__pci_request_region(pdev, i, res_name, excl))
c87deff7
HS
4036 goto err_out;
4037 return 0;
4038
4039err_out:
3c78bc61 4040 while (--i >= 0)
c87deff7
HS
4041 if (bars & (1 << i))
4042 pci_release_region(pdev, i);
4043
4044 return -EBUSY;
4045}
1da177e4 4046
e8de1481
AV
4047
4048/**
4049 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4050 * @pdev: PCI device whose resources are to be reserved
4051 * @bars: Bitmask of BARs to be requested
4052 * @res_name: Name to be associated with resource
4053 */
4054int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4055 const char *res_name)
4056{
4057 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4058}
b7fe9434 4059EXPORT_SYMBOL(pci_request_selected_regions);
e8de1481 4060
3c78bc61
RD
4061int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4062 const char *res_name)
e8de1481
AV
4063{
4064 return __pci_request_selected_regions(pdev, bars, res_name,
4065 IORESOURCE_EXCLUSIVE);
4066}
b7fe9434 4067EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
e8de1481 4068
1da177e4 4069/**
74356add
BH
4070 * pci_release_regions - Release reserved PCI I/O and memory resources
4071 * @pdev: PCI device whose resources were previously reserved by
4072 * pci_request_regions()
1da177e4 4073 *
74356add
BH
4074 * Releases all PCI I/O and memory resources previously reserved by a
4075 * successful call to pci_request_regions(). Call this function only
4076 * after all use of the PCI regions has ceased.
1da177e4
LT
4077 */
4078
4079void pci_release_regions(struct pci_dev *pdev)
4080{
c9c13ba4 4081 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
1da177e4 4082}
b7fe9434 4083EXPORT_SYMBOL(pci_release_regions);
1da177e4
LT
4084
4085/**
74356add
BH
4086 * pci_request_regions - Reserve PCI I/O and memory resources
4087 * @pdev: PCI device whose resources are to be reserved
4088 * @res_name: Name to be associated with resource.
1da177e4 4089 *
74356add
BH
4090 * Mark all PCI regions associated with PCI device @pdev as
4091 * being reserved by owner @res_name. Do not access any
4092 * address inside the PCI regions unless this call returns
4093 * successfully.
1da177e4 4094 *
74356add
BH
4095 * Returns 0 on success, or %EBUSY on error. A warning
4096 * message is also printed on failure.
1da177e4 4097 */
3c990e92 4098int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1da177e4 4099{
c9c13ba4
DE
4100 return pci_request_selected_regions(pdev,
4101 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
1da177e4 4102}
b7fe9434 4103EXPORT_SYMBOL(pci_request_regions);
1da177e4 4104
e8de1481 4105/**
74356add
BH
4106 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4107 * @pdev: PCI device whose resources are to be reserved
4108 * @res_name: Name to be associated with resource.
e8de1481 4109 *
74356add
BH
4110 * Mark all PCI regions associated with PCI device @pdev as being reserved
4111 * by owner @res_name. Do not access any address inside the PCI regions
4112 * unless this call returns successfully.
e8de1481 4113 *
74356add
BH
4114 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4115 * and the sysfs MMIO access will not be allowed.
e8de1481 4116 *
74356add
BH
4117 * Returns 0 on success, or %EBUSY on error. A warning message is also
4118 * printed on failure.
e8de1481
AV
4119 */
4120int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4121{
4122 return pci_request_selected_regions_exclusive(pdev,
c9c13ba4 4123 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
e8de1481 4124}
b7fe9434 4125EXPORT_SYMBOL(pci_request_regions_exclusive);
e8de1481 4126
c5076cfe
TN
4127/*
4128 * Record the PCI IO range (expressed as CPU physical address + size).
74356add 4129 * Return a negative value if an error has occurred, zero otherwise
c5076cfe 4130 */
fcfaab30
GP
4131int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4132 resource_size_t size)
c5076cfe 4133{
5745392e 4134 int ret = 0;
c5076cfe 4135#ifdef PCI_IOBASE
5745392e 4136 struct logic_pio_hwaddr *range;
c5076cfe 4137
5745392e
ZY
4138 if (!size || addr + size < addr)
4139 return -EINVAL;
c5076cfe 4140
c5076cfe 4141 range = kzalloc(sizeof(*range), GFP_ATOMIC);
5745392e
ZY
4142 if (!range)
4143 return -ENOMEM;
c5076cfe 4144
5745392e 4145 range->fwnode = fwnode;
c5076cfe 4146 range->size = size;
5745392e
ZY
4147 range->hw_start = addr;
4148 range->flags = LOGIC_PIO_CPU_MMIO;
c5076cfe 4149
5745392e
ZY
4150 ret = logic_pio_register_range(range);
4151 if (ret)
4152 kfree(range);
f6bda644
GU
4153
4154 /* Ignore duplicates due to deferred probing */
4155 if (ret == -EEXIST)
4156 ret = 0;
c5076cfe
TN
4157#endif
4158
5745392e 4159 return ret;
c5076cfe
TN
4160}
4161
4162phys_addr_t pci_pio_to_address(unsigned long pio)
4163{
4164 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4165
4166#ifdef PCI_IOBASE
5745392e 4167 if (pio >= MMIO_UPPER_LIMIT)
c5076cfe
TN
4168 return address;
4169
5745392e 4170 address = logic_pio_to_hwaddr(pio);
c5076cfe
TN
4171#endif
4172
4173 return address;
4174}
9cc74207 4175EXPORT_SYMBOL_GPL(pci_pio_to_address);
c5076cfe
TN
4176
4177unsigned long __weak pci_address_to_pio(phys_addr_t address)
4178{
4179#ifdef PCI_IOBASE
5745392e 4180 return logic_pio_trans_cpuaddr(address);
c5076cfe
TN
4181#else
4182 if (address > IO_SPACE_LIMIT)
4183 return (unsigned long)-1;
4184
4185 return (unsigned long) address;
4186#endif
4187}
4188
8b921acf 4189/**
74356add
BH
4190 * pci_remap_iospace - Remap the memory mapped I/O space
4191 * @res: Resource describing the I/O space
4192 * @phys_addr: physical address of range to be mapped
8b921acf 4193 *
74356add
BH
4194 * Remap the memory mapped I/O space described by the @res and the CPU
4195 * physical address @phys_addr into virtual address space. Only
4196 * architectures that have memory mapped IO functions defined (and the
4197 * PCI_IOBASE value defined) should call this function.
8b921acf 4198 */
7c2584fa 4199#ifndef pci_remap_iospace
7b309aef 4200int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
8b921acf
LD
4201{
4202#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4203 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4204
4205 if (!(res->flags & IORESOURCE_IO))
4206 return -EINVAL;
4207
4208 if (res->end > IO_SPACE_LIMIT)
4209 return -EINVAL;
4210
4211 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4212 pgprot_device(PAGE_KERNEL));
4213#else
74356add
BH
4214 /*
4215 * This architecture does not have memory mapped I/O space,
4216 * so this function should never be called
4217 */
8b921acf
LD
4218 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4219 return -ENODEV;
4220#endif
4221}
f90b0875 4222EXPORT_SYMBOL(pci_remap_iospace);
7c2584fa 4223#endif
8b921acf 4224
4d3f1384 4225/**
74356add
BH
4226 * pci_unmap_iospace - Unmap the memory mapped I/O space
4227 * @res: resource to be unmapped
4d3f1384 4228 *
74356add
BH
4229 * Unmap the CPU virtual address @res from virtual address space. Only
4230 * architectures that have memory mapped IO functions defined (and the
4231 * PCI_IOBASE value defined) should call this function.
4d3f1384
SK
4232 */
4233void pci_unmap_iospace(struct resource *res)
4234{
4235#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4236 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4237
4ad0ae8c 4238 vunmap_range(vaddr, vaddr + resource_size(res));
4d3f1384
SK
4239#endif
4240}
f90b0875 4241EXPORT_SYMBOL(pci_unmap_iospace);
4d3f1384 4242
a5fb9fb0
SS
4243static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4244{
4245 struct resource **res = ptr;
4246
4247 pci_unmap_iospace(*res);
4248}
4249
4250/**
4251 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4252 * @dev: Generic device to remap IO address for
4253 * @res: Resource describing the I/O space
4254 * @phys_addr: physical address of range to be mapped
4255 *
4256 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4257 * detach.
4258 */
4259int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4260 phys_addr_t phys_addr)
4261{
4262 const struct resource **ptr;
4263 int error;
4264
4265 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4266 if (!ptr)
4267 return -ENOMEM;
4268
4269 error = pci_remap_iospace(res, phys_addr);
4270 if (error) {
4271 devres_free(ptr);
4272 } else {
4273 *ptr = res;
4274 devres_add(dev, ptr);
4275 }
4276
4277 return error;
4278}
4279EXPORT_SYMBOL(devm_pci_remap_iospace);
4280
490cb6dd
LP
4281/**
4282 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4283 * @dev: Generic device to remap IO address for
4284 * @offset: Resource address to map
4285 * @size: Size of map
4286 *
4287 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4288 * detach.
4289 */
4290void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4291 resource_size_t offset,
4292 resource_size_t size)
4293{
4294 void __iomem **ptr, *addr;
4295
4296 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4297 if (!ptr)
4298 return NULL;
4299
4300 addr = pci_remap_cfgspace(offset, size);
4301 if (addr) {
4302 *ptr = addr;
4303 devres_add(dev, ptr);
4304 } else
4305 devres_free(ptr);
4306
4307 return addr;
4308}
4309EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4310
4311/**
4312 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4313 * @dev: generic device to handle the resource for
4314 * @res: configuration space resource to be handled
4315 *
4316 * Checks that a resource is a valid memory region, requests the memory
4317 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4318 * proper PCI configuration space memory attributes are guaranteed.
4319 *
4320 * All operations are managed and will be undone on driver detach.
4321 *
4322 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
505fb746 4323 * on failure. Usage example::
490cb6dd
LP
4324 *
4325 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4326 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4327 * if (IS_ERR(base))
4328 * return PTR_ERR(base);
4329 */
4330void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4331 struct resource *res)
4332{
4333 resource_size_t size;
4334 const char *name;
4335 void __iomem *dest_ptr;
4336
4337 BUG_ON(!dev);
4338
4339 if (!res || resource_type(res) != IORESOURCE_MEM) {
4340 dev_err(dev, "invalid resource\n");
4341 return IOMEM_ERR_PTR(-EINVAL);
4342 }
4343
4344 size = resource_size(res);
0af6e21e
AL
4345
4346 if (res->name)
4347 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4348 res->name);
4349 else
4350 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4351 if (!name)
4352 return IOMEM_ERR_PTR(-ENOMEM);
490cb6dd
LP
4353
4354 if (!devm_request_mem_region(dev, res->start, size, name)) {
4355 dev_err(dev, "can't request region for resource %pR\n", res);
4356 return IOMEM_ERR_PTR(-EBUSY);
4357 }
4358
4359 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4360 if (!dest_ptr) {
4361 dev_err(dev, "ioremap failed for resource %pR\n", res);
4362 devm_release_mem_region(dev, res->start, size);
4363 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4364 }
4365
4366 return dest_ptr;
4367}
4368EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4369
6a479079
BH
4370static void __pci_set_master(struct pci_dev *dev, bool enable)
4371{
4372 u16 old_cmd, cmd;
4373
4374 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4375 if (enable)
4376 cmd = old_cmd | PCI_COMMAND_MASTER;
4377 else
4378 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4379 if (cmd != old_cmd) {
7506dc79 4380 pci_dbg(dev, "%s bus mastering\n",
6a479079
BH
4381 enable ? "enabling" : "disabling");
4382 pci_write_config_word(dev, PCI_COMMAND, cmd);
4383 }
4384 dev->is_busmaster = enable;
4385}
e8de1481 4386
2b6f2c35
MS
4387/**
4388 * pcibios_setup - process "pci=" kernel boot arguments
4389 * @str: string used to pass in "pci=" kernel boot arguments
4390 *
4391 * Process kernel boot arguments. This is the default implementation.
4392 * Architecture specific implementations can override this as necessary.
4393 */
4394char * __weak __init pcibios_setup(char *str)
4395{
4396 return str;
4397}
4398
96c55900
MS
4399/**
4400 * pcibios_set_master - enable PCI bus-mastering for device dev
4401 * @dev: the PCI device to enable
4402 *
4403 * Enables PCI bus-mastering for the device. This is the default
4404 * implementation. Architecture specific implementations can override
4405 * this if necessary.
4406 */
4407void __weak pcibios_set_master(struct pci_dev *dev)
4408{
4409 u8 lat;
4410
f676678f
MS
4411 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4412 if (pci_is_pcie(dev))
4413 return;
4414
96c55900
MS
4415 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4416 if (lat < 16)
4417 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4418 else if (lat > pcibios_max_latency)
4419 lat = pcibios_max_latency;
4420 else
4421 return;
a006482b 4422
96c55900
MS
4423 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4424}
4425
1da177e4
LT
4426/**
4427 * pci_set_master - enables bus-mastering for device dev
4428 * @dev: the PCI device to enable
4429 *
4430 * Enables bus-mastering on the device and calls pcibios_set_master()
4431 * to do the needed arch specific settings.
4432 */
6a479079 4433void pci_set_master(struct pci_dev *dev)
1da177e4 4434{
6a479079 4435 __pci_set_master(dev, true);
1da177e4
LT
4436 pcibios_set_master(dev);
4437}
b7fe9434 4438EXPORT_SYMBOL(pci_set_master);
1da177e4 4439
6a479079
BH
4440/**
4441 * pci_clear_master - disables bus-mastering for device dev
4442 * @dev: the PCI device to disable
4443 */
4444void pci_clear_master(struct pci_dev *dev)
4445{
4446 __pci_set_master(dev, false);
4447}
b7fe9434 4448EXPORT_SYMBOL(pci_clear_master);
6a479079 4449
1da177e4 4450/**
edb2d97e
MW
4451 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4452 * @dev: the PCI device for which MWI is to be enabled
1da177e4 4453 *
edb2d97e
MW
4454 * Helper function for pci_set_mwi.
4455 * Originally copied from drivers/net/acenic.c.
1da177e4
LT
4456 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4457 *
4458 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4459 */
15ea76d4 4460int pci_set_cacheline_size(struct pci_dev *dev)
1da177e4
LT
4461{
4462 u8 cacheline_size;
4463
4464 if (!pci_cache_line_size)
15ea76d4 4465 return -EINVAL;
1da177e4
LT
4466
4467 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4468 equal to or multiple of the right value. */
4469 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4470 if (cacheline_size >= pci_cache_line_size &&
4471 (cacheline_size % pci_cache_line_size) == 0)
4472 return 0;
4473
4474 /* Write the correct value. */
4475 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4476 /* Read it back. */
4477 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4478 if (cacheline_size == pci_cache_line_size)
4479 return 0;
4480
0aec75a5 4481 pci_dbg(dev, "cache line size of %d is not supported\n",
227f0647 4482 pci_cache_line_size << 2);
1da177e4
LT
4483
4484 return -EINVAL;
4485}
15ea76d4
TH
4486EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4487
1da177e4
LT
4488/**
4489 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4490 * @dev: the PCI device for which MWI is enabled
4491 *
694625c0 4492 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1da177e4
LT
4493 *
4494 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4495 */
3c78bc61 4496int pci_set_mwi(struct pci_dev *dev)
1da177e4 4497{
b7fe9434
RD
4498#ifdef PCI_DISABLE_MWI
4499 return 0;
4500#else
1da177e4
LT
4501 int rc;
4502 u16 cmd;
4503
edb2d97e 4504 rc = pci_set_cacheline_size(dev);
1da177e4
LT
4505 if (rc)
4506 return rc;
4507
4508 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3c78bc61 4509 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
7506dc79 4510 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
1da177e4
LT
4511 cmd |= PCI_COMMAND_INVALIDATE;
4512 pci_write_config_word(dev, PCI_COMMAND, cmd);
4513 }
1da177e4 4514 return 0;
b7fe9434 4515#endif
1da177e4 4516}
b7fe9434 4517EXPORT_SYMBOL(pci_set_mwi);
1da177e4 4518
fc0f9f4d
HK
4519/**
4520 * pcim_set_mwi - a device-managed pci_set_mwi()
4521 * @dev: the PCI device for which MWI is enabled
4522 *
4523 * Managed pci_set_mwi().
4524 *
4525 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4526 */
4527int pcim_set_mwi(struct pci_dev *dev)
4528{
4529 struct pci_devres *dr;
4530
4531 dr = find_pci_dr(dev);
4532 if (!dr)
4533 return -ENOMEM;
4534
4535 dr->mwi = 1;
4536 return pci_set_mwi(dev);
4537}
4538EXPORT_SYMBOL(pcim_set_mwi);
4539
694625c0
RD
4540/**
4541 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4542 * @dev: the PCI device for which MWI is enabled
4543 *
4544 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4545 * Callers are not required to check the return value.
4546 *
4547 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4548 */
4549int pci_try_set_mwi(struct pci_dev *dev)
4550{
b7fe9434
RD
4551#ifdef PCI_DISABLE_MWI
4552 return 0;
4553#else
4554 return pci_set_mwi(dev);
4555#endif
694625c0 4556}
b7fe9434 4557EXPORT_SYMBOL(pci_try_set_mwi);
694625c0 4558
1da177e4
LT
4559/**
4560 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4561 * @dev: the PCI device to disable
4562 *
4563 * Disables PCI Memory-Write-Invalidate transaction on the device
4564 */
3c78bc61 4565void pci_clear_mwi(struct pci_dev *dev)
1da177e4 4566{
b7fe9434 4567#ifndef PCI_DISABLE_MWI
1da177e4
LT
4568 u16 cmd;
4569
4570 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4571 if (cmd & PCI_COMMAND_INVALIDATE) {
4572 cmd &= ~PCI_COMMAND_INVALIDATE;
4573 pci_write_config_word(dev, PCI_COMMAND, cmd);
4574 }
b7fe9434 4575#endif
1da177e4 4576}
b7fe9434 4577EXPORT_SYMBOL(pci_clear_mwi);
1da177e4 4578
1fd3dde5
BH
4579/**
4580 * pci_disable_parity - disable parity checking for device
4581 * @dev: the PCI device to operate on
4582 *
4583 * Disable parity checking for device @dev
4584 */
4585void pci_disable_parity(struct pci_dev *dev)
4586{
4587 u16 cmd;
4588
4589 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4590 if (cmd & PCI_COMMAND_PARITY) {
4591 cmd &= ~PCI_COMMAND_PARITY;
4592 pci_write_config_word(dev, PCI_COMMAND, cmd);
4593 }
4594}
4595
a04ce0ff
BR
4596/**
4597 * pci_intx - enables/disables PCI INTx for device dev
8f7020d3
RD
4598 * @pdev: the PCI device to operate on
4599 * @enable: boolean: whether to enable or disable PCI INTx
a04ce0ff 4600 *
74356add 4601 * Enables/disables PCI INTx for device @pdev
a04ce0ff 4602 */
3c78bc61 4603void pci_intx(struct pci_dev *pdev, int enable)
a04ce0ff
BR
4604{
4605 u16 pci_command, new;
4606
4607 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4608
3c78bc61 4609 if (enable)
a04ce0ff 4610 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3c78bc61 4611 else
a04ce0ff 4612 new = pci_command | PCI_COMMAND_INTX_DISABLE;
a04ce0ff
BR
4613
4614 if (new != pci_command) {
9ac7849e
TH
4615 struct pci_devres *dr;
4616
2fd9d74b 4617 pci_write_config_word(pdev, PCI_COMMAND, new);
9ac7849e
TH
4618
4619 dr = find_pci_dr(pdev);
4620 if (dr && !dr->restore_intx) {
4621 dr->restore_intx = 1;
4622 dr->orig_intx = !enable;
4623 }
a04ce0ff
BR
4624 }
4625}
b7fe9434 4626EXPORT_SYMBOL_GPL(pci_intx);
a04ce0ff 4627
a2e27787
JK
4628static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4629{
4630 struct pci_bus *bus = dev->bus;
4631 bool mask_updated = true;
4632 u32 cmd_status_dword;
4633 u16 origcmd, newcmd;
4634 unsigned long flags;
4635 bool irq_pending;
4636
4637 /*
4638 * We do a single dword read to retrieve both command and status.
4639 * Document assumptions that make this possible.
4640 */
4641 BUILD_BUG_ON(PCI_COMMAND % 4);
4642 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4643
4644 raw_spin_lock_irqsave(&pci_lock, flags);
4645
4646 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4647
4648 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4649
4650 /*
4651 * Check interrupt status register to see whether our device
4652 * triggered the interrupt (when masking) or the next IRQ is
4653 * already pending (when unmasking).
4654 */
4655 if (mask != irq_pending) {
4656 mask_updated = false;
4657 goto done;
4658 }
4659
4660 origcmd = cmd_status_dword;
4661 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4662 if (mask)
4663 newcmd |= PCI_COMMAND_INTX_DISABLE;
4664 if (newcmd != origcmd)
4665 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4666
4667done:
4668 raw_spin_unlock_irqrestore(&pci_lock, flags);
4669
4670 return mask_updated;
4671}
4672
4673/**
4674 * pci_check_and_mask_intx - mask INTx on pending interrupt
6e9292c5 4675 * @dev: the PCI device to operate on
a2e27787 4676 *
74356add
BH
4677 * Check if the device dev has its INTx line asserted, mask it and return
4678 * true in that case. False is returned if no interrupt was pending.
a2e27787
JK
4679 */
4680bool pci_check_and_mask_intx(struct pci_dev *dev)
4681{
4682 return pci_check_and_set_intx_mask(dev, true);
4683}
4684EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4685
4686/**
ebd50b93 4687 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
6e9292c5 4688 * @dev: the PCI device to operate on
a2e27787 4689 *
74356add
BH
4690 * Check if the device dev has its INTx line asserted, unmask it if not and
4691 * return true. False is returned and the mask remains active if there was
4692 * still an interrupt pending.
a2e27787
JK
4693 */
4694bool pci_check_and_unmask_intx(struct pci_dev *dev)
4695{
4696 return pci_check_and_set_intx_mask(dev, false);
4697}
4698EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4699
3775a209 4700/**
74356add 4701 * pci_wait_for_pending_transaction - wait for pending transaction
3775a209
CL
4702 * @dev: the PCI device to operate on
4703 *
4704 * Return 0 if transaction is pending 1 otherwise.
4705 */
4706int pci_wait_for_pending_transaction(struct pci_dev *dev)
8dd7f803 4707{
157e876f
AW
4708 if (!pci_is_pcie(dev))
4709 return 1;
8c1c699f 4710
d0b4cc4e
GS
4711 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4712 PCI_EXP_DEVSTA_TRPND);
3775a209
CL
4713}
4714EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4715
a60a2b73
CH
4716/**
4717 * pcie_flr - initiate a PCIe function level reset
74356add 4718 * @dev: device to reset
a60a2b73 4719 *
56f107d7
AN
4720 * Initiate a function level reset unconditionally on @dev without
4721 * checking any flags and DEVCAP
a60a2b73 4722 */
91295d79 4723int pcie_flr(struct pci_dev *dev)
a60a2b73 4724{
3775a209 4725 if (!pci_wait_for_pending_transaction(dev))
7506dc79 4726 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
8c1c699f 4727
59875ae4 4728 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
a2758b6b 4729
d6112f8d
FB
4730 if (dev->imm_ready)
4731 return 0;
4732
a2758b6b
SK
4733 /*
4734 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4735 * 100ms, but may silently discard requests while the FLR is in
4736 * progress. Wait 100ms before trying to access the device.
4737 */
4738 msleep(100);
4739
4740 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
8dd7f803 4741}
a60a2b73 4742EXPORT_SYMBOL_GPL(pcie_flr);
d91cdc74 4743
56f107d7
AN
4744/**
4745 * pcie_reset_flr - initiate a PCIe function level reset
4746 * @dev: device to reset
9bdc81ce 4747 * @probe: if true, return 0 if device can be reset this way
56f107d7
AN
4748 *
4749 * Initiate a function level reset on @dev.
4750 */
9bdc81ce 4751int pcie_reset_flr(struct pci_dev *dev, bool probe)
56f107d7
AN
4752{
4753 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4754 return -ENOTTY;
4755
4756 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4757 return -ENOTTY;
4758
4759 if (probe)
4760 return 0;
4761
4762 return pcie_flr(dev);
4763}
4764EXPORT_SYMBOL_GPL(pcie_reset_flr);
4765
9bdc81ce 4766static int pci_af_flr(struct pci_dev *dev, bool probe)
1ca88797 4767{
8c1c699f 4768 int pos;
1ca88797
SY
4769 u8 cap;
4770
8c1c699f
YZ
4771 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4772 if (!pos)
1ca88797 4773 return -ENOTTY;
8c1c699f 4774
f65fd1aa
SN
4775 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4776 return -ENOTTY;
4777
8c1c699f 4778 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
1ca88797
SY
4779 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4780 return -ENOTTY;
4781
4782 if (probe)
4783 return 0;
4784
d066c946
AW
4785 /*
4786 * Wait for Transaction Pending bit to clear. A word-aligned test
f6b6aefe 4787 * is used, so we use the control offset rather than status and shift
d066c946
AW
4788 * the test bit to match.
4789 */
bb383e28 4790 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
d066c946 4791 PCI_AF_STATUS_TP << 8))
7506dc79 4792 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
5fe5db05 4793
8c1c699f 4794 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
a2758b6b 4795
d6112f8d
FB
4796 if (dev->imm_ready)
4797 return 0;
4798
a2758b6b
SK
4799 /*
4800 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4801 * updated 27 July 2006; a device must complete an FLR within
4802 * 100ms, but may silently discard requests while the FLR is in
4803 * progress. Wait 100ms before trying to access the device.
4804 */
4805 msleep(100);
4806
4807 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
1ca88797
SY
4808}
4809
83d74e03
RW
4810/**
4811 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4812 * @dev: Device to reset.
9bdc81ce 4813 * @probe: if true, return 0 if the device can be reset this way.
83d74e03
RW
4814 *
4815 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4816 * unset, it will be reinitialized internally when going from PCI_D3hot to
4817 * PCI_D0. If that's the case and the device is not in a low-power state
4818 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4819 *
4820 * NOTE: This causes the caller to sleep for twice the device power transition
4821 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3789af9a 4822 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
83d74e03
RW
4823 * Moreover, only devices in D0 can be reset by this function.
4824 */
9bdc81ce 4825static int pci_pm_reset(struct pci_dev *dev, bool probe)
d91cdc74 4826{
f85876ba
YZ
4827 u16 csr;
4828
51e53738 4829 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
f85876ba 4830 return -ENOTTY;
d91cdc74 4831
f85876ba
YZ
4832 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4833 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4834 return -ENOTTY;
d91cdc74 4835
f85876ba
YZ
4836 if (probe)
4837 return 0;
1ca88797 4838
f85876ba
YZ
4839 if (dev->current_state != PCI_D0)
4840 return -EINVAL;
4841
4842 csr &= ~PCI_PM_CTRL_STATE_MASK;
4843 csr |= PCI_D3hot;
4844 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 4845 pci_dev_d3_sleep(dev);
f85876ba
YZ
4846
4847 csr &= ~PCI_PM_CTRL_STATE_MASK;
4848 csr |= PCI_D0;
4849 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 4850 pci_dev_d3_sleep(dev);
f85876ba 4851
993cc6d1 4852 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
f85876ba 4853}
4827d638 4854
9f5a70f1 4855/**
4827d638 4856 * pcie_wait_for_link_delay - Wait until link is active or inactive
9f5a70f1
OP
4857 * @pdev: Bridge device
4858 * @active: waiting for active or inactive?
d08c30d7 4859 * @delay: Delay to wait after link has become active (in ms)
9f5a70f1
OP
4860 *
4861 * Use this to wait till link becomes active or inactive.
4862 */
4827d638
MW
4863static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4864 int delay)
9f5a70f1
OP
4865{
4866 int timeout = 1000;
4867 bool ret;
4868 u16 lnk_status;
4869
f0157160
KB
4870 /*
4871 * Some controllers might not implement link active reporting. In this
f044baaf 4872 * case, we wait for 1000 ms + any delay requested by the caller.
f0157160
KB
4873 */
4874 if (!pdev->link_active_reporting) {
f044baaf 4875 msleep(timeout + delay);
f0157160
KB
4876 return true;
4877 }
4878
4879 /*
4880 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4881 * after which we should expect an link active if the reset was
4882 * successful. If so, software must wait a minimum 100ms before sending
4883 * configuration requests to devices downstream this port.
4884 *
4885 * If the link fails to activate, either the device was physically
4886 * removed or the link is permanently failed.
4887 */
4888 if (active)
4889 msleep(20);
9f5a70f1
OP
4890 for (;;) {
4891 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4892 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4893 if (ret == active)
f0157160 4894 break;
9f5a70f1
OP
4895 if (timeout <= 0)
4896 break;
4897 msleep(10);
4898 timeout -= 10;
4899 }
d08c30d7 4900 if (active && ret)
4827d638 4901 msleep(delay);
8a614499 4902
f0157160 4903 return ret == active;
9f5a70f1 4904}
f85876ba 4905
4827d638
MW
4906/**
4907 * pcie_wait_for_link - Wait until link is active or inactive
4908 * @pdev: Bridge device
4909 * @active: waiting for active or inactive?
4910 *
4911 * Use this to wait till link becomes active or inactive.
4912 */
4913bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4914{
4915 return pcie_wait_for_link_delay(pdev, active, 100);
4916}
4917
ad9001f2
MW
4918/*
4919 * Find maximum D3cold delay required by all the devices on the bus. The
4920 * spec says 100 ms, but firmware can lower it and we allow drivers to
4921 * increase it as well.
4922 *
4923 * Called with @pci_bus_sem locked for reading.
4924 */
4925static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4926{
4927 const struct pci_dev *pdev;
4928 int min_delay = 100;
4929 int max_delay = 0;
4930
4931 list_for_each_entry(pdev, &bus->devices, bus_list) {
4932 if (pdev->d3cold_delay < min_delay)
4933 min_delay = pdev->d3cold_delay;
4934 if (pdev->d3cold_delay > max_delay)
4935 max_delay = pdev->d3cold_delay;
4936 }
4937
4938 return max(min_delay, max_delay);
4939}
4940
4941/**
4942 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4943 * @dev: PCI bridge
4944 *
4945 * Handle necessary delays before access to the devices on the secondary
4946 * side of the bridge are permitted after D3cold to D0 transition.
4947 *
4948 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4949 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4950 * 4.3.2.
4951 */
4952void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4953{
4954 struct pci_dev *child;
4955 int delay;
4956
4957 if (pci_dev_is_disconnected(dev))
4958 return;
4959
4960 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4961 return;
4962
4963 down_read(&pci_bus_sem);
4964
4965 /*
4966 * We only deal with devices that are present currently on the bus.
4967 * For any hot-added devices the access delay is handled in pciehp
4968 * board_added(). In case of ACPI hotplug the firmware is expected
4969 * to configure the devices before OS is notified.
4970 */
4971 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4972 up_read(&pci_bus_sem);
4973 return;
4974 }
4975
4976 /* Take d3cold_delay requirements into account */
4977 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4978 if (!delay) {
4979 up_read(&pci_bus_sem);
4980 return;
4981 }
4982
4983 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4984 bus_list);
4985 up_read(&pci_bus_sem);
4986
4987 /*
4988 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4989 * accessing the device after reset (that is 1000 ms + 100 ms). In
4990 * practice this should not be needed because we don't do power
4991 * management for them (see pci_bridge_d3_possible()).
4992 */
4993 if (!pci_is_pcie(dev)) {
4994 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4995 msleep(1000 + delay);
4996 return;
4997 }
4998
4999 /*
5000 * For PCIe downstream and root ports that do not support speeds
5001 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5002 * speeds (gen3) we need to wait first for the data link layer to
5003 * become active.
5004 *
5005 * However, 100 ms is the minimum and the PCIe spec says the
5006 * software must allow at least 1s before it can determine that the
5007 * device that did not respond is a broken device. There is
5008 * evidence that 100 ms is not always enough, for example certain
5009 * Titan Ridge xHCI controller does not always respond to
5010 * configuration requests if we only wait for 100 ms (see
5011 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5012 *
5013 * Therefore we wait for 100 ms and check for the device presence.
5014 * If it is still not present give it an additional 100 ms.
5015 */
5016 if (!pcie_downstream_port(dev))
5017 return;
5018
d08c30d7
BH
5019 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5020 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5021 msleep(delay);
5022 } else {
5023 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5024 delay);
5025 if (!pcie_wait_for_link_delay(dev, true, delay)) {
ad9001f2 5026 /* Did not train, no need to wait any further */
8a614499 5027 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
ad9001f2
MW
5028 return;
5029 }
5030 }
5031
5032 if (!pci_device_is_present(child)) {
5033 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5034 msleep(delay);
5035 }
5036}
5037
9e33002f 5038void pci_reset_secondary_bus(struct pci_dev *dev)
c12ff1df
YZ
5039{
5040 u16 ctrl;
64e8674f
AW
5041
5042 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5043 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5044 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
df62ab5e 5045
de0c548c
AW
5046 /*
5047 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
f7625980 5048 * this to 2ms to ensure that we meet the minimum requirement.
de0c548c
AW
5049 */
5050 msleep(2);
64e8674f
AW
5051
5052 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5053 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
5054
5055 /*
5056 * Trhfa for conventional PCI is 2^25 clock cycles.
5057 * Assuming a minimum 33MHz clock this results in a 1s
5058 * delay before we can consider subordinate devices to
5059 * be re-initialized. PCIe has some ways to shorten this,
5060 * but we don't make use of them yet.
5061 */
5062 ssleep(1);
64e8674f 5063}
d92a208d 5064
9e33002f
GS
5065void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5066{
5067 pci_reset_secondary_bus(dev);
5068}
5069
d92a208d 5070/**
381634ca 5071 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
d92a208d
GS
5072 * @dev: Bridge device
5073 *
5074 * Use the bridge control register to assert reset on the secondary bus.
5075 * Devices on the secondary bus are left in power-on state.
5076 */
381634ca 5077int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
d92a208d
GS
5078{
5079 pcibios_reset_secondary_bus(dev);
01fd61c0 5080
6b2f1351 5081 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
d92a208d 5082}
bfc45606 5083EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
64e8674f 5084
9bdc81ce 5085static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
64e8674f 5086{
c12ff1df
YZ
5087 struct pci_dev *pdev;
5088
f331a859
AW
5089 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5090 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
c12ff1df
YZ
5091 return -ENOTTY;
5092
5093 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5094 if (pdev != dev)
5095 return -ENOTTY;
5096
5097 if (probe)
5098 return 0;
5099
381634ca 5100 return pci_bridge_secondary_bus_reset(dev->bus->self);
c12ff1df
YZ
5101}
5102
9bdc81ce 5103static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
608c3881
AW
5104{
5105 int rc = -ENOTTY;
5106
81c4b5bf 5107 if (!hotplug || !try_module_get(hotplug->owner))
608c3881
AW
5108 return rc;
5109
5110 if (hotplug->ops->reset_slot)
5111 rc = hotplug->ops->reset_slot(hotplug, probe);
5112
81c4b5bf 5113 module_put(hotplug->owner);
608c3881
AW
5114
5115 return rc;
5116}
5117
9bdc81ce 5118static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
608c3881 5119{
10791141 5120 if (dev->multifunction || dev->subordinate || !dev->slot ||
f331a859 5121 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
608c3881
AW
5122 return -ENOTTY;
5123
608c3881
AW
5124 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5125}
5126
9bdc81ce 5127static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
0dad3ce5
RN
5128{
5129 int rc;
5130
5131 rc = pci_dev_reset_slot_function(dev, probe);
5132 if (rc != -ENOTTY)
5133 return rc;
5134 return pci_parent_bus_reset(dev, probe);
5135}
5136
dfd5bb23 5137void pci_dev_lock(struct pci_dev *dev)
77cb985a 5138{
77cb985a
AW
5139 /* block PM suspend, driver probe, etc. */
5140 device_lock(&dev->dev);
a91ee0e9 5141 pci_cfg_access_lock(dev);
77cb985a 5142}
dfd5bb23 5143EXPORT_SYMBOL_GPL(pci_dev_lock);
77cb985a 5144
61cf16d8 5145/* Return 1 on successful lock, 0 on contention */
e3a9b121 5146int pci_dev_trylock(struct pci_dev *dev)
61cf16d8 5147{
a91ee0e9
YY
5148 if (device_trylock(&dev->dev)) {
5149 if (pci_cfg_access_trylock(dev))
61cf16d8 5150 return 1;
a91ee0e9 5151 device_unlock(&dev->dev);
61cf16d8
AW
5152 }
5153
5154 return 0;
5155}
e3a9b121 5156EXPORT_SYMBOL_GPL(pci_dev_trylock);
61cf16d8 5157
e3a9b121 5158void pci_dev_unlock(struct pci_dev *dev)
77cb985a 5159{
77cb985a 5160 pci_cfg_access_unlock(dev);
a91ee0e9 5161 device_unlock(&dev->dev);
77cb985a 5162}
e3a9b121 5163EXPORT_SYMBOL_GPL(pci_dev_unlock);
77cb985a 5164
775755ed 5165static void pci_dev_save_and_disable(struct pci_dev *dev)
3ebe7f9f
KB
5166{
5167 const struct pci_error_handlers *err_handler =
e0217c5b 5168 dev->driver ? dev->driver->err_handler : NULL;
3ebe7f9f 5169
b014e96d 5170 /*
e0217c5b
BH
5171 * dev->driver->err_handler->reset_prepare() is protected against
5172 * races with ->remove() by the device lock, which must be held by
5173 * the caller.
b014e96d 5174 */
775755ed
CH
5175 if (err_handler && err_handler->reset_prepare)
5176 err_handler->reset_prepare(dev);
3ebe7f9f 5177
a6cbaade
AW
5178 /*
5179 * Wake-up device prior to save. PM registers default to D0 after
5180 * reset and a simple register restore doesn't reliably return
5181 * to a non-D0 state anyway.
5182 */
5183 pci_set_power_state(dev, PCI_D0);
5184
77cb985a
AW
5185 pci_save_state(dev);
5186 /*
5187 * Disable the device by clearing the Command register, except for
5188 * INTx-disable which is set. This not only disables MMIO and I/O port
5189 * BARs, but also prevents the device from being Bus Master, preventing
5190 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5191 * compliant devices, INTx-disable prevents legacy interrupts.
5192 */
5193 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5194}
5195
5196static void pci_dev_restore(struct pci_dev *dev)
5197{
775755ed 5198 const struct pci_error_handlers *err_handler =
e0217c5b 5199 dev->driver ? dev->driver->err_handler : NULL;
977f857c 5200
77cb985a 5201 pci_restore_state(dev);
77cb985a 5202
775755ed 5203 /*
e0217c5b
BH
5204 * dev->driver->err_handler->reset_done() is protected against
5205 * races with ->remove() by the device lock, which must be held by
5206 * the caller.
775755ed
CH
5207 */
5208 if (err_handler && err_handler->reset_done)
5209 err_handler->reset_done(dev);
d91cdc74 5210}
3ebe7f9f 5211
e20afa06
AN
5212/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5213static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5214 { },
5215 { pci_dev_specific_reset, .name = "device_specific" },
6937b7dd 5216 { pci_dev_acpi_reset, .name = "acpi" },
e20afa06
AN
5217 { pcie_reset_flr, .name = "flr" },
5218 { pci_af_flr, .name = "af_flr" },
5219 { pci_pm_reset, .name = "pm" },
5220 { pci_reset_bus_function, .name = "bus" },
5221};
5222
d88f521d
AN
5223static ssize_t reset_method_show(struct device *dev,
5224 struct device_attribute *attr, char *buf)
5225{
5226 struct pci_dev *pdev = to_pci_dev(dev);
5227 ssize_t len = 0;
5228 int i, m;
5229
5230 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5231 m = pdev->reset_methods[i];
5232 if (!m)
5233 break;
5234
5235 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5236 pci_reset_fn_methods[m].name);
5237 }
5238
5239 if (len)
5240 len += sysfs_emit_at(buf, len, "\n");
5241
5242 return len;
5243}
5244
5245static int reset_method_lookup(const char *name)
5246{
5247 int m;
5248
5249 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5250 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5251 return m;
5252 }
5253
5254 return 0; /* not found */
5255}
5256
5257static ssize_t reset_method_store(struct device *dev,
5258 struct device_attribute *attr,
5259 const char *buf, size_t count)
5260{
5261 struct pci_dev *pdev = to_pci_dev(dev);
5262 char *options, *name;
5263 int m, n;
5264 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5265
5266 if (sysfs_streq(buf, "")) {
5267 pdev->reset_methods[0] = 0;
5268 pci_warn(pdev, "All device reset methods disabled by user");
5269 return count;
5270 }
5271
5272 if (sysfs_streq(buf, "default")) {
5273 pci_init_reset_methods(pdev);
5274 return count;
5275 }
5276
5277 options = kstrndup(buf, count, GFP_KERNEL);
5278 if (!options)
5279 return -ENOMEM;
5280
5281 n = 0;
5282 while ((name = strsep(&options, " ")) != NULL) {
5283 if (sysfs_streq(name, ""))
5284 continue;
5285
5286 name = strim(name);
5287
5288 m = reset_method_lookup(name);
5289 if (!m) {
5290 pci_err(pdev, "Invalid reset method '%s'", name);
5291 goto error;
5292 }
5293
9bdc81ce 5294 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
d88f521d
AN
5295 pci_err(pdev, "Unsupported reset method '%s'", name);
5296 goto error;
5297 }
5298
5299 if (n == PCI_NUM_RESET_METHODS - 1) {
5300 pci_err(pdev, "Too many reset methods\n");
5301 goto error;
5302 }
5303
5304 reset_methods[n++] = m;
5305 }
5306
5307 reset_methods[n] = 0;
5308
5309 /* Warn if dev-specific supported but not highest priority */
9bdc81ce 5310 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
d88f521d
AN
5311 reset_methods[0] != 1)
5312 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5313 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5314 kfree(options);
5315 return count;
5316
5317error:
5318 /* Leave previous methods unchanged */
5319 kfree(options);
5320 return -EINVAL;
5321}
5322static DEVICE_ATTR_RW(reset_method);
5323
5324static struct attribute *pci_dev_reset_method_attrs[] = {
5325 &dev_attr_reset_method.attr,
5326 NULL,
5327};
5328
5329static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5330 struct attribute *a, int n)
5331{
5332 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5333
5334 if (!pci_reset_supported(pdev))
5335 return 0;
5336
5337 return a->mode;
5338}
5339
5340const struct attribute_group pci_dev_reset_method_attr_group = {
5341 .attrs = pci_dev_reset_method_attrs,
5342 .is_visible = pci_dev_reset_method_attr_is_visible,
5343};
5344
6fbf9e7a
KRW
5345/**
5346 * __pci_reset_function_locked - reset a PCI device function while holding
5347 * the @dev mutex lock.
5348 * @dev: PCI device to reset
5349 *
5350 * Some devices allow an individual function to be reset without affecting
5351 * other functions in the same device. The PCI device must be responsive
5352 * to PCI config space in order to use this function.
5353 *
5354 * The device function is presumed to be unused and the caller is holding
5355 * the device mutex lock when this function is called.
74356add 5356 *
6fbf9e7a
KRW
5357 * Resetting the device will make the contents of PCI configuration space
5358 * random, so any caller of this must be prepared to reinitialise the
5359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5360 * etc.
5361 *
5362 * Returns 0 if the device function was successfully reset or negative if the
5363 * device doesn't support resetting a single function.
5364 */
5365int __pci_reset_function_locked(struct pci_dev *dev)
5366{
ff5d3bb6 5367 int i, m, rc;
52354b9d
CH
5368
5369 might_sleep();
5370
832c418a 5371 /*
e20afa06
AN
5372 * A reset method returns -ENOTTY if it doesn't support this device and
5373 * we should try the next method.
832c418a 5374 *
e20afa06
AN
5375 * If it returns 0 (success), we're finished. If it returns any other
5376 * error, we're also finished: this indicates that further reset
5377 * mechanisms might be broken on the device.
832c418a 5378 */
e20afa06
AN
5379 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5380 m = dev->reset_methods[i];
5381 if (!m)
5382 return -ENOTTY;
5383
9bdc81ce 5384 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
e20afa06
AN
5385 if (!rc)
5386 return 0;
91295d79
SK
5387 if (rc != -ENOTTY)
5388 return rc;
52354b9d 5389 }
e20afa06
AN
5390
5391 return -ENOTTY;
6fbf9e7a
KRW
5392}
5393EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5394
711d5779 5395/**
e20afa06
AN
5396 * pci_init_reset_methods - check whether device can be safely reset
5397 * and store supported reset mechanisms.
5398 * @dev: PCI device to check for reset mechanisms
711d5779
MT
5399 *
5400 * Some devices allow an individual function to be reset without affecting
e20afa06
AN
5401 * other functions in the same device. The PCI device must be in D0-D3hot
5402 * state.
711d5779 5403 *
e20afa06
AN
5404 * Stores reset mechanisms supported by device in reset_methods byte array
5405 * which is a member of struct pci_dev.
711d5779 5406 */
e20afa06 5407void pci_init_reset_methods(struct pci_dev *dev)
711d5779 5408{
e20afa06
AN
5409 int m, i, rc;
5410
5411 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
52354b9d
CH
5412
5413 might_sleep();
5414
e20afa06
AN
5415 i = 0;
5416 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
9bdc81ce 5417 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
e20afa06
AN
5418 if (!rc)
5419 dev->reset_methods[i++] = m;
5420 else if (rc != -ENOTTY)
5421 break;
5422 }
52354b9d 5423
e20afa06 5424 dev->reset_methods[i] = 0;
711d5779
MT
5425}
5426
8dd7f803 5427/**
8c1c699f
YZ
5428 * pci_reset_function - quiesce and reset a PCI device function
5429 * @dev: PCI device to reset
8dd7f803
SY
5430 *
5431 * Some devices allow an individual function to be reset without affecting
5432 * other functions in the same device. The PCI device must be responsive
5433 * to PCI config space in order to use this function.
5434 *
5435 * This function does not just reset the PCI portion of a device, but
5436 * clears all the state associated with the device. This function differs
79e699b6
JS
5437 * from __pci_reset_function_locked() in that it saves and restores device state
5438 * over the reset and takes the PCI device lock.
8dd7f803 5439 *
8c1c699f 5440 * Returns 0 if the device function was successfully reset or negative if the
8dd7f803
SY
5441 * device doesn't support resetting a single function.
5442 */
5443int pci_reset_function(struct pci_dev *dev)
5444{
8c1c699f 5445 int rc;
8dd7f803 5446
4ec36dfe 5447 if (!pci_reset_supported(dev))
204f4afa 5448 return -ENOTTY;
8dd7f803 5449
b014e96d 5450 pci_dev_lock(dev);
77cb985a 5451 pci_dev_save_and_disable(dev);
8dd7f803 5452
52354b9d 5453 rc = __pci_reset_function_locked(dev);
8dd7f803 5454
77cb985a 5455 pci_dev_restore(dev);
b014e96d 5456 pci_dev_unlock(dev);
8dd7f803 5457
8c1c699f 5458 return rc;
8dd7f803
SY
5459}
5460EXPORT_SYMBOL_GPL(pci_reset_function);
5461
a477b9cd
MZ
5462/**
5463 * pci_reset_function_locked - quiesce and reset a PCI device function
5464 * @dev: PCI device to reset
5465 *
5466 * Some devices allow an individual function to be reset without affecting
5467 * other functions in the same device. The PCI device must be responsive
5468 * to PCI config space in order to use this function.
5469 *
5470 * This function does not just reset the PCI portion of a device, but
5471 * clears all the state associated with the device. This function differs
79e699b6 5472 * from __pci_reset_function_locked() in that it saves and restores device state
a477b9cd
MZ
5473 * over the reset. It also differs from pci_reset_function() in that it
5474 * requires the PCI device lock to be held.
5475 *
5476 * Returns 0 if the device function was successfully reset or negative if the
5477 * device doesn't support resetting a single function.
5478 */
5479int pci_reset_function_locked(struct pci_dev *dev)
5480{
5481 int rc;
5482
4ec36dfe 5483 if (!pci_reset_supported(dev))
204f4afa 5484 return -ENOTTY;
a477b9cd
MZ
5485
5486 pci_dev_save_and_disable(dev);
5487
5488 rc = __pci_reset_function_locked(dev);
5489
5490 pci_dev_restore(dev);
5491
5492 return rc;
5493}
5494EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5495
61cf16d8
AW
5496/**
5497 * pci_try_reset_function - quiesce and reset a PCI device function
5498 * @dev: PCI device to reset
5499 *
5500 * Same as above, except return -EAGAIN if unable to lock device.
5501 */
5502int pci_try_reset_function(struct pci_dev *dev)
5503{
5504 int rc;
5505
4ec36dfe 5506 if (!pci_reset_supported(dev))
204f4afa 5507 return -ENOTTY;
61cf16d8 5508
b014e96d
CH
5509 if (!pci_dev_trylock(dev))
5510 return -EAGAIN;
61cf16d8 5511
b014e96d 5512 pci_dev_save_and_disable(dev);
52354b9d 5513 rc = __pci_reset_function_locked(dev);
cb5e0d06 5514 pci_dev_restore(dev);
b014e96d 5515 pci_dev_unlock(dev);
61cf16d8 5516
61cf16d8
AW
5517 return rc;
5518}
5519EXPORT_SYMBOL_GPL(pci_try_reset_function);
5520
f331a859
AW
5521/* Do any devices on or below this bus prevent a bus reset? */
5522static bool pci_bus_resetable(struct pci_bus *bus)
5523{
5524 struct pci_dev *dev;
5525
35702778
DD
5526
5527 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5528 return false;
5529
f331a859
AW
5530 list_for_each_entry(dev, &bus->devices, bus_list) {
5531 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5532 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5533 return false;
5534 }
5535
5536 return true;
5537}
5538
090a3c53
AW
5539/* Lock devices from the top of the tree down */
5540static void pci_bus_lock(struct pci_bus *bus)
5541{
5542 struct pci_dev *dev;
5543
5544 list_for_each_entry(dev, &bus->devices, bus_list) {
5545 pci_dev_lock(dev);
5546 if (dev->subordinate)
5547 pci_bus_lock(dev->subordinate);
5548 }
5549}
5550
5551/* Unlock devices from the bottom of the tree up */
5552static void pci_bus_unlock(struct pci_bus *bus)
5553{
5554 struct pci_dev *dev;
5555
5556 list_for_each_entry(dev, &bus->devices, bus_list) {
5557 if (dev->subordinate)
5558 pci_bus_unlock(dev->subordinate);
5559 pci_dev_unlock(dev);
5560 }
5561}
5562
61cf16d8
AW
5563/* Return 1 on successful lock, 0 on contention */
5564static int pci_bus_trylock(struct pci_bus *bus)
5565{
5566 struct pci_dev *dev;
5567
5568 list_for_each_entry(dev, &bus->devices, bus_list) {
5569 if (!pci_dev_trylock(dev))
5570 goto unlock;
5571 if (dev->subordinate) {
5572 if (!pci_bus_trylock(dev->subordinate)) {
5573 pci_dev_unlock(dev);
5574 goto unlock;
5575 }
5576 }
5577 }
5578 return 1;
5579
5580unlock:
5581 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5582 if (dev->subordinate)
5583 pci_bus_unlock(dev->subordinate);
5584 pci_dev_unlock(dev);
5585 }
5586 return 0;
5587}
5588
f331a859
AW
5589/* Do any devices on or below this slot prevent a bus reset? */
5590static bool pci_slot_resetable(struct pci_slot *slot)
5591{
5592 struct pci_dev *dev;
5593
33ba90aa
JG
5594 if (slot->bus->self &&
5595 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5596 return false;
5597
f331a859
AW
5598 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5599 if (!dev->slot || dev->slot != slot)
5600 continue;
5601 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5602 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5603 return false;
5604 }
5605
5606 return true;
5607}
5608
090a3c53
AW
5609/* Lock devices from the top of the tree down */
5610static void pci_slot_lock(struct pci_slot *slot)
5611{
5612 struct pci_dev *dev;
5613
5614 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5615 if (!dev->slot || dev->slot != slot)
5616 continue;
5617 pci_dev_lock(dev);
5618 if (dev->subordinate)
5619 pci_bus_lock(dev->subordinate);
5620 }
5621}
5622
5623/* Unlock devices from the bottom of the tree up */
5624static void pci_slot_unlock(struct pci_slot *slot)
5625{
5626 struct pci_dev *dev;
5627
5628 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5629 if (!dev->slot || dev->slot != slot)
5630 continue;
5631 if (dev->subordinate)
5632 pci_bus_unlock(dev->subordinate);
5633 pci_dev_unlock(dev);
5634 }
5635}
5636
61cf16d8
AW
5637/* Return 1 on successful lock, 0 on contention */
5638static int pci_slot_trylock(struct pci_slot *slot)
5639{
5640 struct pci_dev *dev;
5641
5642 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5643 if (!dev->slot || dev->slot != slot)
5644 continue;
5645 if (!pci_dev_trylock(dev))
5646 goto unlock;
5647 if (dev->subordinate) {
5648 if (!pci_bus_trylock(dev->subordinate)) {
5649 pci_dev_unlock(dev);
5650 goto unlock;
5651 }
5652 }
5653 }
5654 return 1;
5655
5656unlock:
5657 list_for_each_entry_continue_reverse(dev,
5658 &slot->bus->devices, bus_list) {
5659 if (!dev->slot || dev->slot != slot)
5660 continue;
5661 if (dev->subordinate)
5662 pci_bus_unlock(dev->subordinate);
5663 pci_dev_unlock(dev);
5664 }
5665 return 0;
5666}
5667
ddefc033
AW
5668/*
5669 * Save and disable devices from the top of the tree down while holding
5670 * the @dev mutex lock for the entire tree.
5671 */
5672static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
090a3c53
AW
5673{
5674 struct pci_dev *dev;
5675
5676 list_for_each_entry(dev, &bus->devices, bus_list) {
5677 pci_dev_save_and_disable(dev);
5678 if (dev->subordinate)
ddefc033 5679 pci_bus_save_and_disable_locked(dev->subordinate);
090a3c53
AW
5680 }
5681}
5682
5683/*
ddefc033
AW
5684 * Restore devices from top of the tree down while holding @dev mutex lock
5685 * for the entire tree. Parent bridges need to be restored before we can
5686 * get to subordinate devices.
090a3c53 5687 */
ddefc033 5688static void pci_bus_restore_locked(struct pci_bus *bus)
090a3c53
AW
5689{
5690 struct pci_dev *dev;
5691
5692 list_for_each_entry(dev, &bus->devices, bus_list) {
5693 pci_dev_restore(dev);
5694 if (dev->subordinate)
ddefc033 5695 pci_bus_restore_locked(dev->subordinate);
090a3c53
AW
5696 }
5697}
5698
ddefc033
AW
5699/*
5700 * Save and disable devices from the top of the tree down while holding
5701 * the @dev mutex lock for the entire tree.
5702 */
5703static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
090a3c53
AW
5704{
5705 struct pci_dev *dev;
5706
5707 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5708 if (!dev->slot || dev->slot != slot)
5709 continue;
5710 pci_dev_save_and_disable(dev);
5711 if (dev->subordinate)
ddefc033 5712 pci_bus_save_and_disable_locked(dev->subordinate);
090a3c53
AW
5713 }
5714}
5715
5716/*
ddefc033
AW
5717 * Restore devices from top of the tree down while holding @dev mutex lock
5718 * for the entire tree. Parent bridges need to be restored before we can
5719 * get to subordinate devices.
090a3c53 5720 */
ddefc033 5721static void pci_slot_restore_locked(struct pci_slot *slot)
090a3c53
AW
5722{
5723 struct pci_dev *dev;
5724
5725 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5726 if (!dev->slot || dev->slot != slot)
5727 continue;
5728 pci_dev_restore(dev);
5729 if (dev->subordinate)
ddefc033 5730 pci_bus_restore_locked(dev->subordinate);
090a3c53
AW
5731 }
5732}
5733
9bdc81ce 5734static int pci_slot_reset(struct pci_slot *slot, bool probe)
090a3c53
AW
5735{
5736 int rc;
5737
f331a859 5738 if (!slot || !pci_slot_resetable(slot))
090a3c53
AW
5739 return -ENOTTY;
5740
5741 if (!probe)
5742 pci_slot_lock(slot);
5743
5744 might_sleep();
5745
5746 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5747
5748 if (!probe)
5749 pci_slot_unlock(slot);
5750
5751 return rc;
5752}
5753
9a3d2b9b
AW
5754/**
5755 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5756 * @slot: PCI slot to probe
5757 *
5758 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5759 */
5760int pci_probe_reset_slot(struct pci_slot *slot)
5761{
9bdc81ce 5762 return pci_slot_reset(slot, PCI_RESET_PROBE);
9a3d2b9b
AW
5763}
5764EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5765
090a3c53 5766/**
c6a44ba9 5767 * __pci_reset_slot - Try to reset a PCI slot
090a3c53
AW
5768 * @slot: PCI slot to reset
5769 *
5770 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5771 * independent of other slots. For instance, some slots may support slot power
5772 * control. In the case of a 1:1 bus to slot architecture, this function may
5773 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5774 * Generally a slot reset should be attempted before a bus reset. All of the
5775 * function of the slot and any subordinate buses behind the slot are reset
5776 * through this function. PCI config space of all devices in the slot and
5777 * behind the slot is saved before and restored after reset.
5778 *
61cf16d8
AW
5779 * Same as above except return -EAGAIN if the slot cannot be locked
5780 */
c6a44ba9 5781static int __pci_reset_slot(struct pci_slot *slot)
61cf16d8
AW
5782{
5783 int rc;
5784
9bdc81ce 5785 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
61cf16d8
AW
5786 if (rc)
5787 return rc;
5788
61cf16d8 5789 if (pci_slot_trylock(slot)) {
ddefc033 5790 pci_slot_save_and_disable_locked(slot);
61cf16d8 5791 might_sleep();
9bdc81ce 5792 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
ddefc033 5793 pci_slot_restore_locked(slot);
61cf16d8
AW
5794 pci_slot_unlock(slot);
5795 } else
5796 rc = -EAGAIN;
5797
61cf16d8
AW
5798 return rc;
5799}
61cf16d8 5800
9bdc81ce 5801static int pci_bus_reset(struct pci_bus *bus, bool probe)
090a3c53 5802{
18426238
SK
5803 int ret;
5804
f331a859 5805 if (!bus->self || !pci_bus_resetable(bus))
090a3c53
AW
5806 return -ENOTTY;
5807
5808 if (probe)
5809 return 0;
5810
5811 pci_bus_lock(bus);
5812
5813 might_sleep();
5814
381634ca 5815 ret = pci_bridge_secondary_bus_reset(bus->self);
090a3c53
AW
5816
5817 pci_bus_unlock(bus);
5818
18426238 5819 return ret;
090a3c53
AW
5820}
5821
c4eed62a
KB
5822/**
5823 * pci_bus_error_reset - reset the bridge's subordinate bus
5824 * @bridge: The parent device that connects to the bus to reset
5825 *
5826 * This function will first try to reset the slots on this bus if the method is
5827 * available. If slot reset fails or is not available, this will fall back to a
5828 * secondary bus reset.
5829 */
5830int pci_bus_error_reset(struct pci_dev *bridge)
5831{
5832 struct pci_bus *bus = bridge->subordinate;
5833 struct pci_slot *slot;
5834
5835 if (!bus)
5836 return -ENOTTY;
5837
5838 mutex_lock(&pci_slot_mutex);
5839 if (list_empty(&bus->slots))
5840 goto bus_reset;
5841
5842 list_for_each_entry(slot, &bus->slots, list)
5843 if (pci_probe_reset_slot(slot))
5844 goto bus_reset;
5845
5846 list_for_each_entry(slot, &bus->slots, list)
9bdc81ce 5847 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
c4eed62a
KB
5848 goto bus_reset;
5849
5850 mutex_unlock(&pci_slot_mutex);
5851 return 0;
5852bus_reset:
5853 mutex_unlock(&pci_slot_mutex);
9bdc81ce 5854 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
c4eed62a
KB
5855}
5856
9a3d2b9b
AW
5857/**
5858 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5859 * @bus: PCI bus to probe
5860 *
5861 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5862 */
5863int pci_probe_reset_bus(struct pci_bus *bus)
5864{
9bdc81ce 5865 return pci_bus_reset(bus, PCI_RESET_PROBE);
9a3d2b9b
AW
5866}
5867EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5868
090a3c53 5869/**
c6a44ba9 5870 * __pci_reset_bus - Try to reset a PCI bus
090a3c53
AW
5871 * @bus: top level PCI bus to reset
5872 *
61cf16d8 5873 * Same as above except return -EAGAIN if the bus cannot be locked
090a3c53 5874 */
c6a44ba9 5875static int __pci_reset_bus(struct pci_bus *bus)
090a3c53
AW
5876{
5877 int rc;
5878
9bdc81ce 5879 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
090a3c53
AW
5880 if (rc)
5881 return rc;
5882
61cf16d8 5883 if (pci_bus_trylock(bus)) {
ddefc033 5884 pci_bus_save_and_disable_locked(bus);
61cf16d8 5885 might_sleep();
381634ca 5886 rc = pci_bridge_secondary_bus_reset(bus->self);
ddefc033 5887 pci_bus_restore_locked(bus);
61cf16d8
AW
5888 pci_bus_unlock(bus);
5889 } else
5890 rc = -EAGAIN;
090a3c53 5891
090a3c53
AW
5892 return rc;
5893}
090a3c53 5894
61cf16d8 5895/**
c6a44ba9 5896 * pci_reset_bus - Try to reset a PCI bus
811c5cb3 5897 * @pdev: top level PCI device to reset via slot/bus
61cf16d8
AW
5898 *
5899 * Same as above except return -EAGAIN if the bus cannot be locked
5900 */
c6a44ba9 5901int pci_reset_bus(struct pci_dev *pdev)
61cf16d8 5902{
d8a52810 5903 return (!pci_probe_reset_slot(pdev->slot)) ?
c6a44ba9 5904 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
61cf16d8 5905}
c6a44ba9 5906EXPORT_SYMBOL_GPL(pci_reset_bus);
61cf16d8 5907
d556ad4b
PO
5908/**
5909 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5910 * @dev: PCI device to query
5911 *
74356add
BH
5912 * Returns mmrbc: maximum designed memory read count in bytes or
5913 * appropriate error value.
d556ad4b
PO
5914 */
5915int pcix_get_max_mmrbc(struct pci_dev *dev)
5916{
7c9e2b1c 5917 int cap;
d556ad4b
PO
5918 u32 stat;
5919
5920 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5921 if (!cap)
5922 return -EINVAL;
5923
7c9e2b1c 5924 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
d556ad4b
PO
5925 return -EINVAL;
5926
25daeb55 5927 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
d556ad4b
PO
5928}
5929EXPORT_SYMBOL(pcix_get_max_mmrbc);
5930
5931/**
5932 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5933 * @dev: PCI device to query
5934 *
74356add
BH
5935 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5936 * value.
d556ad4b
PO
5937 */
5938int pcix_get_mmrbc(struct pci_dev *dev)
5939{
7c9e2b1c 5940 int cap;
bdc2bda7 5941 u16 cmd;
d556ad4b
PO
5942
5943 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5944 if (!cap)
5945 return -EINVAL;
5946
7c9e2b1c
DN
5947 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5948 return -EINVAL;
d556ad4b 5949
7c9e2b1c 5950 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
d556ad4b
PO
5951}
5952EXPORT_SYMBOL(pcix_get_mmrbc);
5953
5954/**
5955 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5956 * @dev: PCI device to query
5957 * @mmrbc: maximum memory read count in bytes
5958 * valid values are 512, 1024, 2048, 4096
5959 *
74356add 5960 * If possible sets maximum memory read byte count, some bridges have errata
d556ad4b
PO
5961 * that prevent this.
5962 */
5963int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5964{
7c9e2b1c 5965 int cap;
bdc2bda7
DN
5966 u32 stat, v, o;
5967 u16 cmd;
d556ad4b 5968
229f5afd 5969 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
7c9e2b1c 5970 return -EINVAL;
d556ad4b
PO
5971
5972 v = ffs(mmrbc) - 10;
5973
5974 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5975 if (!cap)
7c9e2b1c 5976 return -EINVAL;
d556ad4b 5977
7c9e2b1c
DN
5978 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5979 return -EINVAL;
d556ad4b
PO
5980
5981 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5982 return -E2BIG;
5983
7c9e2b1c
DN
5984 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5985 return -EINVAL;
d556ad4b
PO
5986
5987 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5988 if (o != v) {
809a3bf9 5989 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
d556ad4b
PO
5990 return -EIO;
5991
5992 cmd &= ~PCI_X_CMD_MAX_READ;
5993 cmd |= v << 2;
7c9e2b1c
DN
5994 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5995 return -EIO;
d556ad4b 5996 }
7c9e2b1c 5997 return 0;
d556ad4b
PO
5998}
5999EXPORT_SYMBOL(pcix_set_mmrbc);
6000
6001/**
6002 * pcie_get_readrq - get PCI Express read request size
6003 * @dev: PCI device to query
6004 *
74356add 6005 * Returns maximum memory read request in bytes or appropriate error value.
d556ad4b
PO
6006 */
6007int pcie_get_readrq(struct pci_dev *dev)
6008{
d556ad4b
PO
6009 u16 ctl;
6010
59875ae4 6011 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
d556ad4b 6012
59875ae4 6013 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
d556ad4b
PO
6014}
6015EXPORT_SYMBOL(pcie_get_readrq);
6016
6017/**
6018 * pcie_set_readrq - set PCI Express maximum memory read request
6019 * @dev: PCI device to query
42e61f4a 6020 * @rq: maximum memory read count in bytes
d556ad4b
PO
6021 * valid values are 128, 256, 512, 1024, 2048, 4096
6022 *
c9b378c7 6023 * If possible sets maximum memory read request in bytes
d556ad4b
PO
6024 */
6025int pcie_set_readrq(struct pci_dev *dev, int rq)
6026{
59875ae4 6027 u16 v;
d20df83b 6028 int ret;
d556ad4b 6029
229f5afd 6030 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
59875ae4 6031 return -EINVAL;
d556ad4b 6032
a1c473aa 6033 /*
74356add
BH
6034 * If using the "performance" PCIe config, we clamp the read rq
6035 * size to the max packet size to keep the host bridge from
6036 * generating requests larger than we can cope with.
a1c473aa
BH
6037 */
6038 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6039 int mps = pcie_get_mps(dev);
6040
a1c473aa
BH
6041 if (mps < rq)
6042 rq = mps;
6043 }
6044
6045 v = (ffs(rq) - 8) << 12;
d556ad4b 6046
d20df83b 6047 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
59875ae4 6048 PCI_EXP_DEVCTL_READRQ, v);
d20df83b
BOS
6049
6050 return pcibios_err_to_errno(ret);
d556ad4b
PO
6051}
6052EXPORT_SYMBOL(pcie_set_readrq);
6053
b03e7495
JM
6054/**
6055 * pcie_get_mps - get PCI Express maximum payload size
6056 * @dev: PCI device to query
6057 *
6058 * Returns maximum payload size in bytes
b03e7495
JM
6059 */
6060int pcie_get_mps(struct pci_dev *dev)
6061{
b03e7495
JM
6062 u16 ctl;
6063
59875ae4 6064 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
b03e7495 6065
59875ae4 6066 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
b03e7495 6067}
f1c66c46 6068EXPORT_SYMBOL(pcie_get_mps);
b03e7495
JM
6069
6070/**
6071 * pcie_set_mps - set PCI Express maximum payload size
6072 * @dev: PCI device to query
47c08f31 6073 * @mps: maximum payload size in bytes
b03e7495
JM
6074 * valid values are 128, 256, 512, 1024, 2048, 4096
6075 *
6076 * If possible sets maximum payload size
6077 */
6078int pcie_set_mps(struct pci_dev *dev, int mps)
6079{
59875ae4 6080 u16 v;
d20df83b 6081 int ret;
b03e7495
JM
6082
6083 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
59875ae4 6084 return -EINVAL;
b03e7495
JM
6085
6086 v = ffs(mps) - 8;
f7625980 6087 if (v > dev->pcie_mpss)
59875ae4 6088 return -EINVAL;
b03e7495
JM
6089 v <<= 5;
6090
d20df83b 6091 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
59875ae4 6092 PCI_EXP_DEVCTL_PAYLOAD, v);
d20df83b
BOS
6093
6094 return pcibios_err_to_errno(ret);
b03e7495 6095}
f1c66c46 6096EXPORT_SYMBOL(pcie_set_mps);
b03e7495 6097
6db79a88
TG
6098/**
6099 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6100 * device and its bandwidth limitation
6101 * @dev: PCI device to query
6102 * @limiting_dev: storage for device causing the bandwidth limitation
6103 * @speed: storage for speed of limiting device
6104 * @width: storage for width of limiting device
6105 *
6106 * Walk up the PCI device chain and find the point where the minimum
6107 * bandwidth is available. Return the bandwidth available there and (if
6108 * limiting_dev, speed, and width pointers are supplied) information about
6109 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6110 * raw bandwidth.
6111 */
6112u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6113 enum pci_bus_speed *speed,
6114 enum pcie_link_width *width)
6115{
6116 u16 lnksta;
6117 enum pci_bus_speed next_speed;
6118 enum pcie_link_width next_width;
6119 u32 bw, next_bw;
6120
6121 if (speed)
6122 *speed = PCI_SPEED_UNKNOWN;
6123 if (width)
6124 *width = PCIE_LNK_WIDTH_UNKNOWN;
6125
6126 bw = 0;
6127
6128 while (dev) {
6129 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6130
6131 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6132 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6133 PCI_EXP_LNKSTA_NLW_SHIFT;
6134
6135 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6136
6137 /* Check if current device limits the total bandwidth */
6138 if (!bw || next_bw <= bw) {
6139 bw = next_bw;
6140
6141 if (limiting_dev)
6142 *limiting_dev = dev;
6143 if (speed)
6144 *speed = next_speed;
6145 if (width)
6146 *width = next_width;
6147 }
6148
6149 dev = pci_upstream_bridge(dev);
6150 }
6151
6152 return bw;
6153}
6154EXPORT_SYMBOL(pcie_bandwidth_available);
6155
6cf57be0
TG
6156/**
6157 * pcie_get_speed_cap - query for the PCI device's link speed capability
6158 * @dev: PCI device to query
6159 *
6160 * Query the PCI device speed capability. Return the maximum link speed
6161 * supported by the device.
6162 */
6163enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6164{
6165 u32 lnkcap2, lnkcap;
6166
6167 /*
f1f90e25
MP
6168 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6169 * implementation note there recommends using the Supported Link
6170 * Speeds Vector in Link Capabilities 2 when supported.
6171 *
6172 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6173 * should use the Supported Link Speeds field in Link Capabilities,
6174 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6cf57be0
TG
6175 */
6176 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
757bfaa2
YY
6177
6178 /* PCIe r3.0-compliant */
6179 if (lnkcap2)
6180 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6cf57be0
TG
6181
6182 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
f1f90e25
MP
6183 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6184 return PCIE_SPEED_5_0GT;
6185 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6186 return PCIE_SPEED_2_5GT;
6cf57be0
TG
6187
6188 return PCI_SPEED_UNKNOWN;
6189}
576c7218 6190EXPORT_SYMBOL(pcie_get_speed_cap);
6cf57be0 6191
c70b65fb
TG
6192/**
6193 * pcie_get_width_cap - query for the PCI device's link width capability
6194 * @dev: PCI device to query
6195 *
6196 * Query the PCI device width capability. Return the maximum link width
6197 * supported by the device.
6198 */
6199enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6200{
6201 u32 lnkcap;
6202
6203 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6204 if (lnkcap)
6205 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6206
6207 return PCIE_LNK_WIDTH_UNKNOWN;
6208}
576c7218 6209EXPORT_SYMBOL(pcie_get_width_cap);
c70b65fb 6210
b852f63a
TG
6211/**
6212 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6213 * @dev: PCI device
6214 * @speed: storage for link speed
6215 * @width: storage for link width
6216 *
6217 * Calculate a PCI device's link bandwidth by querying for its link speed
6218 * and width, multiplying them, and applying encoding overhead. The result
6219 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6220 */
6221u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6222 enum pcie_link_width *width)
6223{
6224 *speed = pcie_get_speed_cap(dev);
6225 *width = pcie_get_width_cap(dev);
6226
6227 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6228 return 0;
6229
6230 return *width * PCIE_SPEED2MBS_ENC(*speed);
6231}
6232
9e506a7b 6233/**
2d1ce5ec 6234 * __pcie_print_link_status - Report the PCI device's link speed and width
9e506a7b 6235 * @dev: PCI device to query
2d1ce5ec 6236 * @verbose: Print info even when enough bandwidth is available
9e506a7b 6237 *
2d1ce5ec
AG
6238 * If the available bandwidth at the device is less than the device is
6239 * capable of, report the device's maximum possible bandwidth and the
6240 * upstream link that limits its performance. If @verbose, always print
6241 * the available bandwidth, even if the device isn't constrained.
9e506a7b 6242 */
2d1ce5ec 6243void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
9e506a7b
TG
6244{
6245 enum pcie_link_width width, width_cap;
6246 enum pci_bus_speed speed, speed_cap;
6247 struct pci_dev *limiting_dev = NULL;
6248 u32 bw_avail, bw_cap;
6249
6250 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6251 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6252
2d1ce5ec 6253 if (bw_avail >= bw_cap && verbose)
0cf22d6b 6254 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
9e506a7b 6255 bw_cap / 1000, bw_cap % 1000,
6348a34d 6256 pci_speed_string(speed_cap), width_cap);
2d1ce5ec 6257 else if (bw_avail < bw_cap)
0cf22d6b 6258 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
9e506a7b 6259 bw_avail / 1000, bw_avail % 1000,
6348a34d 6260 pci_speed_string(speed), width,
9e506a7b
TG
6261 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6262 bw_cap / 1000, bw_cap % 1000,
6348a34d 6263 pci_speed_string(speed_cap), width_cap);
9e506a7b 6264}
2d1ce5ec
AG
6265
6266/**
6267 * pcie_print_link_status - Report the PCI device's link speed and width
6268 * @dev: PCI device to query
6269 *
6270 * Report the available bandwidth at the device.
6271 */
6272void pcie_print_link_status(struct pci_dev *dev)
6273{
6274 __pcie_print_link_status(dev, true);
6275}
9e506a7b
TG
6276EXPORT_SYMBOL(pcie_print_link_status);
6277
c87deff7
HS
6278/**
6279 * pci_select_bars - Make BAR mask from the type of resource
f95d882d 6280 * @dev: the PCI device for which BAR mask is made
c87deff7
HS
6281 * @flags: resource type mask to be selected
6282 *
6283 * This helper routine makes bar mask from the type of resource.
6284 */
6285int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6286{
6287 int i, bars = 0;
6288 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6289 if (pci_resource_flags(dev, i) & flags)
6290 bars |= (1 << i);
6291 return bars;
6292}
b7fe9434 6293EXPORT_SYMBOL(pci_select_bars);
c87deff7 6294
95a8b6ef
MT
6295/* Some architectures require additional programming to enable VGA */
6296static arch_set_vga_state_t arch_set_vga_state;
6297
6298void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6299{
6300 arch_set_vga_state = func; /* NULL disables */
6301}
6302
6303static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3c78bc61 6304 unsigned int command_bits, u32 flags)
95a8b6ef
MT
6305{
6306 if (arch_set_vga_state)
6307 return arch_set_vga_state(dev, decode, command_bits,
7ad35cf2 6308 flags);
95a8b6ef
MT
6309 return 0;
6310}
6311
deb2d2ec
BH
6312/**
6313 * pci_set_vga_state - set VGA decode state on device and parents if requested
19eea630
RD
6314 * @dev: the PCI device
6315 * @decode: true = enable decoding, false = disable decoding
6316 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3f37d622 6317 * @flags: traverse ancestors and change bridges
3448a19d 6318 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
deb2d2ec
BH
6319 */
6320int pci_set_vga_state(struct pci_dev *dev, bool decode,
3448a19d 6321 unsigned int command_bits, u32 flags)
deb2d2ec
BH
6322{
6323 struct pci_bus *bus;
6324 struct pci_dev *bridge;
6325 u16 cmd;
95a8b6ef 6326 int rc;
deb2d2ec 6327
67ebd814 6328 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
deb2d2ec 6329
95a8b6ef 6330 /* ARCH specific VGA enables */
3448a19d 6331 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
95a8b6ef
MT
6332 if (rc)
6333 return rc;
6334
3448a19d
DA
6335 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6336 pci_read_config_word(dev, PCI_COMMAND, &cmd);
0a98bb98 6337 if (decode)
3448a19d
DA
6338 cmd |= command_bits;
6339 else
6340 cmd &= ~command_bits;
6341 pci_write_config_word(dev, PCI_COMMAND, cmd);
6342 }
deb2d2ec 6343
3448a19d 6344 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
deb2d2ec
BH
6345 return 0;
6346
6347 bus = dev->bus;
6348 while (bus) {
6349 bridge = bus->self;
6350 if (bridge) {
6351 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6352 &cmd);
0a98bb98 6353 if (decode)
deb2d2ec
BH
6354 cmd |= PCI_BRIDGE_CTL_VGA;
6355 else
6356 cmd &= ~PCI_BRIDGE_CTL_VGA;
6357 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6358 cmd);
6359 }
6360 bus = bus->parent;
6361 }
6362 return 0;
6363}
6364
52525b7a
KHF
6365#ifdef CONFIG_ACPI
6366bool pci_pr3_present(struct pci_dev *pdev)
6367{
6368 struct acpi_device *adev;
6369
6370 if (acpi_disabled)
6371 return false;
6372
6373 adev = ACPI_COMPANION(&pdev->dev);
6374 if (!adev)
6375 return false;
6376
6377 return adev->power.flags.power_resources &&
6378 acpi_has_method(adev->handle, "_PR3");
6379}
6380EXPORT_SYMBOL_GPL(pci_pr3_present);
6381#endif
6382
f0af9593
BH
6383/**
6384 * pci_add_dma_alias - Add a DMA devfn alias for a device
6385 * @dev: the PCI device for which alias is added
09298542
JS
6386 * @devfn_from: alias slot and function
6387 * @nr_devfns: number of subsequent devfns to alias
f0af9593 6388 *
f778a0d2
LG
6389 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6390 * which is used to program permissible bus-devfn source addresses for DMA
6391 * requests in an IOMMU. These aliases factor into IOMMU group creation
6392 * and are useful for devices generating DMA requests beyond or different
6393 * from their logical bus-devfn. Examples include device quirks where the
6394 * device simply uses the wrong devfn, as well as non-transparent bridges
6395 * where the alias may be a proxy for devices in another domain.
6396 *
6397 * IOMMU group creation is performed during device discovery or addition,
6398 * prior to any potential DMA mapping and therefore prior to driver probing
6399 * (especially for userspace assigned devices where IOMMU group definition
6400 * cannot be left as a userspace activity). DMA aliases should therefore
6401 * be configured via quirks, such as the PCI fixup header quirk.
f0af9593 6402 */
fd1ae23b
KW
6403void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6404 unsigned int nr_devfns)
f0af9593 6405{
09298542
JS
6406 int devfn_to;
6407
fd1ae23b 6408 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
09298542
JS
6409 devfn_to = devfn_from + nr_devfns - 1;
6410
338c3149 6411 if (!dev->dma_alias_mask)
f8bf2aeb 6412 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
338c3149 6413 if (!dev->dma_alias_mask) {
7506dc79 6414 pci_warn(dev, "Unable to allocate DMA alias mask\n");
338c3149
JL
6415 return;
6416 }
6417
09298542
JS
6418 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6419
6420 if (nr_devfns == 1)
6421 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6422 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6423 else if (nr_devfns > 1)
6424 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6425 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6426 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
f0af9593
BH
6427}
6428
338c3149
JL
6429bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6430{
6431 return (dev1->dma_alias_mask &&
6432 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6433 (dev2->dma_alias_mask &&
2856ba60
JD
6434 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6435 pci_real_dma_dev(dev1) == dev2 ||
6436 pci_real_dma_dev(dev2) == dev1;
338c3149
JL
6437}
6438
8496e85c
RW
6439bool pci_device_is_present(struct pci_dev *pdev)
6440{
6441 u32 v;
6442
98b04dd0
MT
6443 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6444 pdev = pci_physfn(pdev);
fe2bd75b
KB
6445 if (pci_dev_is_disconnected(pdev))
6446 return false;
8496e85c
RW
6447 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6448}
6449EXPORT_SYMBOL_GPL(pci_device_is_present);
6450
08249651
RW
6451void pci_ignore_hotplug(struct pci_dev *dev)
6452{
6453 struct pci_dev *bridge = dev->bus->self;
6454
6455 dev->ignore_hotplug = 1;
6456 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6457 if (bridge)
6458 bridge->ignore_hotplug = 1;
6459}
6460EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6461
2856ba60
JD
6462/**
6463 * pci_real_dma_dev - Get PCI DMA device for PCI device
6464 * @dev: the PCI device that may have a PCI DMA alias
6465 *
6466 * Permits the platform to provide architecture-specific functionality to
6467 * devices needing to alias DMA to another PCI device on another PCI bus. If
6468 * the PCI device is on the same bus, it is recommended to use
6469 * pci_add_dma_alias(). This is the default implementation. Architecture
6470 * implementations can override this.
6471 */
6472struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6473{
6474 return dev;
6475}
6476
0a701aa6
YX
6477resource_size_t __weak pcibios_default_alignment(void)
6478{
6479 return 0;
6480}
6481
b8074aa2
DE
6482/*
6483 * Arches that don't want to expose struct resource to userland as-is in
6484 * sysfs and /proc can implement their own pci_resource_to_user().
6485 */
6486void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6487 const struct resource *rsrc,
6488 resource_size_t *start, resource_size_t *end)
6489{
6490 *start = rsrc->start;
6491 *end = rsrc->end;
6492}
6493
70aaf61a 6494static char *resource_alignment_param;
e9d1e492 6495static DEFINE_SPINLOCK(resource_alignment_lock);
32a9a682
YS
6496
6497/**
6498 * pci_specified_resource_alignment - get resource alignment specified by user.
6499 * @dev: the PCI device to get
e3adec72 6500 * @resize: whether or not to change resources' size when reassigning alignment
32a9a682
YS
6501 *
6502 * RETURNS: Resource alignment if it is specified.
6503 * Zero if it is not specified.
6504 */
e3adec72
YX
6505static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6506 bool *resize)
32a9a682 6507{
07d8d7e5 6508 int align_order, count;
0a701aa6 6509 resource_size_t align = pcibios_default_alignment();
07d8d7e5
LG
6510 const char *p;
6511 int ret;
32a9a682
YS
6512
6513 spin_lock(&resource_alignment_lock);
6514 p = resource_alignment_param;
70aaf61a 6515 if (!p || !*p)
f0b99f70
YX
6516 goto out;
6517 if (pci_has_flag(PCI_PROBE_ONLY)) {
0a701aa6 6518 align = 0;
f0b99f70
YX
6519 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6520 goto out;
6521 }
6522
32a9a682
YS
6523 while (*p) {
6524 count = 0;
6525 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6534aac1 6526 p[count] == '@') {
32a9a682 6527 p += count + 1;
6534aac1
BH
6528 if (align_order > 63) {
6529 pr_err("PCI: Invalid requested alignment (order %d)\n",
6530 align_order);
6531 align_order = PAGE_SHIFT;
6532 }
32a9a682 6533 } else {
6534aac1 6534 align_order = PAGE_SHIFT;
32a9a682 6535 }
07d8d7e5
LG
6536
6537 ret = pci_dev_str_match(dev, p, &p);
6538 if (ret == 1) {
6539 *resize = true;
cc73eb32 6540 align = 1ULL << align_order;
07d8d7e5
LG
6541 break;
6542 } else if (ret < 0) {
6543 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6544 p);
6545 break;
32a9a682 6546 }
07d8d7e5 6547
32a9a682
YS
6548 if (*p != ';' && *p != ',') {
6549 /* End of param or invalid format */
6550 break;
6551 }
6552 p++;
6553 }
f0b99f70 6554out:
32a9a682
YS
6555 spin_unlock(&resource_alignment_lock);
6556 return align;
6557}
6558
81a5e70e 6559static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
e3adec72 6560 resource_size_t align, bool resize)
81a5e70e
BH
6561{
6562 struct resource *r = &dev->resource[bar];
6563 resource_size_t size;
6564
6565 if (!(r->flags & IORESOURCE_MEM))
6566 return;
6567
6568 if (r->flags & IORESOURCE_PCI_FIXED) {
7506dc79 6569 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
81a5e70e
BH
6570 bar, r, (unsigned long long)align);
6571 return;
6572 }
6573
6574 size = resource_size(r);
0dde1c08
BH
6575 if (size >= align)
6576 return;
81a5e70e 6577
0dde1c08 6578 /*
e3adec72
YX
6579 * Increase the alignment of the resource. There are two ways we
6580 * can do this:
0dde1c08 6581 *
e3adec72
YX
6582 * 1) Increase the size of the resource. BARs are aligned on their
6583 * size, so when we reallocate space for this resource, we'll
6584 * allocate it with the larger alignment. This also prevents
6585 * assignment of any other BARs inside the alignment region, so
6586 * if we're requesting page alignment, this means no other BARs
6587 * will share the page.
6588 *
6589 * The disadvantage is that this makes the resource larger than
6590 * the hardware BAR, which may break drivers that compute things
6591 * based on the resource size, e.g., to find registers at a
6592 * fixed offset before the end of the BAR.
6593 *
6594 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6595 * set r->start to the desired alignment. By itself this
6596 * doesn't prevent other BARs being put inside the alignment
6597 * region, but if we realign *every* resource of every device in
6598 * the system, none of them will share an alignment region.
6599 *
6600 * When the user has requested alignment for only some devices via
6601 * the "pci=resource_alignment" argument, "resize" is true and we
6602 * use the first method. Otherwise we assume we're aligning all
6603 * devices and we use the second.
0dde1c08 6604 */
e3adec72 6605
7506dc79 6606 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
0dde1c08 6607 bar, r, (unsigned long long)align);
81a5e70e 6608
e3adec72
YX
6609 if (resize) {
6610 r->start = 0;
6611 r->end = align - 1;
6612 } else {
6613 r->flags &= ~IORESOURCE_SIZEALIGN;
6614 r->flags |= IORESOURCE_STARTALIGN;
6615 r->start = align;
6616 r->end = r->start + size - 1;
6617 }
0dde1c08 6618 r->flags |= IORESOURCE_UNSET;
81a5e70e
BH
6619}
6620
2069ecfb
YL
6621/*
6622 * This function disables memory decoding and releases memory resources
6623 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6624 * It also rounds up size to specified alignment.
6625 * Later on, the kernel will assign page-aligned memory resource back
6626 * to the device.
6627 */
6628void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6629{
6630 int i;
6631 struct resource *r;
81a5e70e 6632 resource_size_t align;
2069ecfb 6633 u16 command;
e3adec72 6634 bool resize = false;
2069ecfb 6635
62d9a78f
YX
6636 /*
6637 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6638 * 3.4.1.11. Their resources are allocated from the space
6639 * described by the VF BARx register in the PF's SR-IOV capability.
6640 * We can't influence their alignment here.
6641 */
6642 if (dev->is_virtfn)
6643 return;
6644
10c463a7 6645 /* check if specified PCI is target device to reassign */
e3adec72 6646 align = pci_specified_resource_alignment(dev, &resize);
10c463a7 6647 if (!align)
2069ecfb
YL
6648 return;
6649
6650 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6651 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
7506dc79 6652 pci_warn(dev, "Can't reassign resources to host bridge\n");
2069ecfb
YL
6653 return;
6654 }
6655
2069ecfb
YL
6656 pci_read_config_word(dev, PCI_COMMAND, &command);
6657 command &= ~PCI_COMMAND_MEMORY;
6658 pci_write_config_word(dev, PCI_COMMAND, command);
6659
81a5e70e 6660 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
e3adec72 6661 pci_request_resource_alignment(dev, i, align, resize);
f0b99f70 6662
81a5e70e
BH
6663 /*
6664 * Need to disable bridge's resource window,
2069ecfb
YL
6665 * to enable the kernel to reassign new resource
6666 * window later on.
6667 */
b2fb5cc5 6668 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
2069ecfb
YL
6669 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6670 r = &dev->resource[i];
6671 if (!(r->flags & IORESOURCE_MEM))
6672 continue;
bd064f0a 6673 r->flags |= IORESOURCE_UNSET;
2069ecfb
YL
6674 r->end = resource_size(r) - 1;
6675 r->start = 0;
6676 }
6677 pci_disable_bridge_window(dev);
6678 }
6679}
6680
273b177c 6681static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
32a9a682 6682{
70aaf61a 6683 size_t count = 0;
32a9a682 6684
32a9a682 6685 spin_lock(&resource_alignment_lock);
70aaf61a 6686 if (resource_alignment_param)
381bd3fa 6687 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
32a9a682 6688 spin_unlock(&resource_alignment_lock);
32a9a682 6689
32a9a682 6690 return count;
32a9a682
YS
6691}
6692
d61dfafc 6693static ssize_t resource_alignment_store(struct bus_type *bus,
32a9a682
YS
6694 const char *buf, size_t count)
6695{
381bd3fa
KW
6696 char *param, *old, *end;
6697
6698 if (count >= (PAGE_SIZE - 1))
6699 return -EINVAL;
273b177c 6700
381bd3fa 6701 param = kstrndup(buf, count, GFP_KERNEL);
273b177c
LG
6702 if (!param)
6703 return -ENOMEM;
6704
381bd3fa
KW
6705 end = strchr(param, '\n');
6706 if (end)
6707 *end = '\0';
6708
273b177c 6709 spin_lock(&resource_alignment_lock);
381bd3fa
KW
6710 old = resource_alignment_param;
6711 if (strlen(param)) {
6712 resource_alignment_param = param;
6713 } else {
6714 kfree(param);
6715 resource_alignment_param = NULL;
6716 }
273b177c 6717 spin_unlock(&resource_alignment_lock);
381bd3fa
KW
6718
6719 kfree(old);
6720
273b177c 6721 return count;
32a9a682
YS
6722}
6723
d61dfafc 6724static BUS_ATTR_RW(resource_alignment);
32a9a682
YS
6725
6726static int __init pci_resource_alignment_sysfs_init(void)
6727{
6728 return bus_create_file(&pci_bus_type,
6729 &bus_attr_resource_alignment);
6730}
32a9a682
YS
6731late_initcall(pci_resource_alignment_sysfs_init);
6732
15856ad5 6733static void pci_no_domains(void)
32a2eea7
JG
6734{
6735#ifdef CONFIG_PCI_DOMAINS
6736 pci_domains_supported = 0;
6737#endif
6738}
6739
ae07b786 6740#ifdef CONFIG_PCI_DOMAINS_GENERIC
c14f7ccc
PR
6741static DEFINE_IDA(pci_domain_nr_static_ida);
6742static DEFINE_IDA(pci_domain_nr_dynamic_ida);
41e5c0f8 6743
c14f7ccc 6744static void of_pci_reserve_static_domain_nr(void)
41e5c0f8 6745{
c14f7ccc
PR
6746 struct device_node *np;
6747 int domain_nr;
6748
6749 for_each_node_by_type(np, "pci") {
6750 domain_nr = of_get_pci_domain_nr(np);
6751 if (domain_nr < 0)
6752 continue;
6753 /*
6754 * Permanently allocate domain_nr in dynamic_ida
6755 * to prevent it from dynamic allocation.
6756 */
6757 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6758 domain_nr, domain_nr, GFP_KERNEL);
6759 }
41e5c0f8 6760}
7c674700 6761
1a4f93f7 6762static int of_pci_bus_find_domain_nr(struct device *parent)
7c674700 6763{
c14f7ccc
PR
6764 static bool static_domains_reserved = false;
6765 int domain_nr;
7c674700 6766
c14f7ccc
PR
6767 /* On the first call scan device tree for static allocations. */
6768 if (!static_domains_reserved) {
6769 of_pci_reserve_static_domain_nr();
6770 static_domains_reserved = true;
6771 }
6772
6773 if (parent) {
6774 /*
6775 * If domain is in DT, allocate it in static IDA. This
6776 * prevents duplicate static allocations in case of errors
6777 * in DT.
6778 */
6779 domain_nr = of_get_pci_domain_nr(parent->of_node);
6780 if (domain_nr >= 0)
6781 return ida_alloc_range(&pci_domain_nr_static_ida,
6782 domain_nr, domain_nr,
6783 GFP_KERNEL);
6784 }
74356add 6785
7c674700 6786 /*
c14f7ccc
PR
6787 * If domain was not specified in DT, choose a free ID from dynamic
6788 * allocations. All domain numbers from DT are permanently in
6789 * dynamic allocations to prevent assigning them to other DT nodes
6790 * without static domain.
7c674700 6791 */
c14f7ccc
PR
6792 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6793}
7c674700 6794
c14f7ccc
PR
6795static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6796{
6797 if (bus->domain_nr < 0)
6798 return;
6799
6800 /* Release domain from IDA where it was allocated. */
6801 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6802 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6803 else
6804 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
7c674700 6805}
1a4f93f7
TN
6806
6807int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6808{
2ab51dde
TN
6809 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6810 acpi_pci_bus_find_domain_nr(bus);
7c674700 6811}
c14f7ccc
PR
6812
6813void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6814{
6815 if (!acpi_disabled)
6816 return;
6817 of_pci_bus_release_domain_nr(bus, parent);
6818}
7c674700 6819#endif
41e5c0f8 6820
0ef5f8f6 6821/**
642c92da 6822 * pci_ext_cfg_avail - can we access extended PCI config space?
0ef5f8f6
AP
6823 *
6824 * Returns 1 if we can access PCI extended config space (offsets
6825 * greater than 0xff). This is the default implementation. Architecture
6826 * implementations can override this.
6827 */
642c92da 6828int __weak pci_ext_cfg_avail(void)
0ef5f8f6
AP
6829{
6830 return 1;
6831}
6832
2d1c8618
BH
6833void __weak pci_fixup_cardbus(struct pci_bus *bus)
6834{
6835}
6836EXPORT_SYMBOL(pci_fixup_cardbus);
6837
ad04d31e 6838static int __init pci_setup(char *str)
1da177e4
LT
6839{
6840 while (str) {
6841 char *k = strchr(str, ',');
6842 if (k)
6843 *k++ = 0;
6844 if (*str && (str = pcibios_setup(str)) && *str) {
309e57df
MW
6845 if (!strcmp(str, "nomsi")) {
6846 pci_no_msi();
cef74409
GK
6847 } else if (!strncmp(str, "noats", 5)) {
6848 pr_info("PCIe: ATS is disabled\n");
6849 pcie_ats_disabled = true;
7f785763
RD
6850 } else if (!strcmp(str, "noaer")) {
6851 pci_no_aer();
11eb0e0e
SK
6852 } else if (!strcmp(str, "earlydump")) {
6853 pci_early_dump = true;
b55438fd
YL
6854 } else if (!strncmp(str, "realloc=", 8)) {
6855 pci_realloc_get_opt(str + 8);
f483d392 6856 } else if (!strncmp(str, "realloc", 7)) {
b55438fd 6857 pci_realloc_get_opt("on");
32a2eea7
JG
6858 } else if (!strcmp(str, "nodomains")) {
6859 pci_no_domains();
6748dcc2
RW
6860 } else if (!strncmp(str, "noari", 5)) {
6861 pcie_ari_disabled = true;
4516a618
AN
6862 } else if (!strncmp(str, "cbiosize=", 9)) {
6863 pci_cardbus_io_size = memparse(str + 9, &str);
6864 } else if (!strncmp(str, "cbmemsize=", 10)) {
6865 pci_cardbus_mem_size = memparse(str + 10, &str);
32a9a682 6866 } else if (!strncmp(str, "resource_alignment=", 19)) {
70aaf61a 6867 resource_alignment_param = str + 19;
43c16408
AP
6868 } else if (!strncmp(str, "ecrc=", 5)) {
6869 pcie_ecrc_get_policy(str + 5);
28760489
EB
6870 } else if (!strncmp(str, "hpiosize=", 9)) {
6871 pci_hotplug_io_size = memparse(str + 9, &str);
d7b8a217
NJ
6872 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6873 pci_hotplug_mmio_size = memparse(str + 11, &str);
6874 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6875 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
28760489 6876 } else if (!strncmp(str, "hpmemsize=", 10)) {
d7b8a217
NJ
6877 pci_hotplug_mmio_size = memparse(str + 10, &str);
6878 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
e16b4660
KB
6879 } else if (!strncmp(str, "hpbussize=", 10)) {
6880 pci_hotplug_bus_size =
6881 simple_strtoul(str + 10, &str, 0);
6882 if (pci_hotplug_bus_size > 0xff)
6883 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5f39e670
JM
6884 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6885 pcie_bus_config = PCIE_BUS_TUNE_OFF;
b03e7495
JM
6886 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6887 pcie_bus_config = PCIE_BUS_SAFE;
6888 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6889 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5f39e670
JM
6890 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6891 pcie_bus_config = PCIE_BUS_PEER2PEER;
284f5f9d
BH
6892 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6893 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
aaca43fd 6894 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
d5bc73f3 6895 disable_acs_redir_param = str + 18;
309e57df 6896 } else {
25da8dba 6897 pr_err("PCI: Unknown option `%s'\n", str);
309e57df 6898 }
1da177e4
LT
6899 }
6900 str = k;
6901 }
0637a70a 6902 return 0;
1da177e4 6903}
0637a70a 6904early_param("pci", pci_setup);
d5bc73f3
LG
6905
6906/*
70aaf61a
LG
6907 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6908 * in pci_setup(), above, to point to data in the __initdata section which
6909 * will be freed after the init sequence is complete. We can't allocate memory
6910 * in pci_setup() because some architectures do not have any memory allocation
6911 * service available during an early_param() call. So we allocate memory and
6912 * copy the variable here before the init section is freed.
6913 *
d5bc73f3
LG
6914 */
6915static int __init pci_realloc_setup_params(void)
6916{
70aaf61a
LG
6917 resource_alignment_param = kstrdup(resource_alignment_param,
6918 GFP_KERNEL);
d5bc73f3
LG
6919 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6920
6921 return 0;
6922}
6923pure_initcall(pci_realloc_setup_params);