Linux 4.12-rc1
[linux-2.6-block.git] / drivers / pci / pci.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
2ab51dde 10#include <linux/acpi.h>
1da177e4
LT
11#include <linux/kernel.h>
12#include <linux/delay.h>
9d26d3a8 13#include <linux/dmi.h>
1da177e4 14#include <linux/init.h>
7c674700
LP
15#include <linux/of.h>
16#include <linux/of_pci.h>
1da177e4 17#include <linux/pci.h>
075c1771 18#include <linux/pm.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/module.h>
21#include <linux/spinlock.h>
4e57b681 22#include <linux/string.h>
229f5afd 23#include <linux/log2.h>
7d715a6c 24#include <linux/pci-aspm.h>
c300bd2f 25#include <linux/pm_wakeup.h>
8dd7f803 26#include <linux/interrupt.h>
32a9a682 27#include <linux/device.h>
b67ea761 28#include <linux/pm_runtime.h>
608c3881 29#include <linux/pci_hotplug.h>
4d3f1384 30#include <linux/vmalloc.h>
32a9a682 31#include <asm/setup.h>
2a2aca31 32#include <asm/dma.h>
b07461a8 33#include <linux/aer.h>
bc56b9e0 34#include "pci.h"
1da177e4 35
00240c38
AS
36const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38};
39EXPORT_SYMBOL_GPL(pci_power_names);
40
93177a74
RW
41int isa_dma_bridge_buggy;
42EXPORT_SYMBOL(isa_dma_bridge_buggy);
43
44int pci_pci_problems;
45EXPORT_SYMBOL(pci_pci_problems);
46
1ae861e6
RW
47unsigned int pci_pm_d3_delay;
48
df17e62e
MG
49static void pci_pme_list_scan(struct work_struct *work);
50
51static LIST_HEAD(pci_pme_list);
52static DEFINE_MUTEX(pci_pme_list_mutex);
53static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54
55struct pci_pme_device {
56 struct list_head list;
57 struct pci_dev *dev;
58};
59
60#define PME_TIMEOUT 1000 /* How long between PME checks */
61
1ae861e6
RW
62static void pci_dev_d3_sleep(struct pci_dev *dev)
63{
64 unsigned int delay = dev->d3_delay;
65
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
68
50b2b540
AH
69 if (delay)
70 msleep(delay);
1ae861e6 71}
1da177e4 72
32a2eea7
JG
73#ifdef CONFIG_PCI_DOMAINS
74int pci_domains_supported = 1;
75#endif
76
4516a618
AN
77#define DEFAULT_CARDBUS_IO_SIZE (256)
78#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
79/* pci=cbmemsize=nnM,cbiosize=nn can override this */
80unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
81unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
82
28760489
EB
83#define DEFAULT_HOTPLUG_IO_SIZE (256)
84#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
85/* pci=hpmemsize=nnM,hpiosize=nn can override this */
86unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
87unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
88
e16b4660
KB
89#define DEFAULT_HOTPLUG_BUS_SIZE 1
90unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
91
27d868b5 92enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
b03e7495 93
ac1aa47b
JB
94/*
95 * The default CLS is used if arch didn't set CLS explicitly and not
96 * all pci devices agree on the same value. Arch can override either
97 * the dfl or actual value as it sees fit. Don't forget this is
98 * measured in 32-bit words, not bytes.
99 */
15856ad5 100u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
ac1aa47b
JB
101u8 pci_cache_line_size;
102
96c55900
MS
103/*
104 * If we set up a device for bus mastering, we need to check the latency
105 * timer as certain BIOSes forget to set it properly.
106 */
107unsigned int pcibios_max_latency = 255;
108
6748dcc2
RW
109/* If set, the PCIe ARI capability will not be used. */
110static bool pcie_ari_disabled;
111
9d26d3a8
MW
112/* Disable bridge_d3 for all PCIe ports */
113static bool pci_bridge_d3_disable;
114/* Force bridge_d3 for all PCIe ports */
115static bool pci_bridge_d3_force;
116
117static int __init pcie_port_pm_setup(char *str)
118{
119 if (!strcmp(str, "off"))
120 pci_bridge_d3_disable = true;
121 else if (!strcmp(str, "force"))
122 pci_bridge_d3_force = true;
123 return 1;
124}
125__setup("pcie_port_pm=", pcie_port_pm_setup);
126
1da177e4
LT
127/**
128 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
129 * @bus: pointer to PCI bus structure to search
130 *
131 * Given a PCI bus, returns the highest PCI bus number present in the set
132 * including the given PCI bus and its list of child PCI buses.
133 */
07656d83 134unsigned char pci_bus_max_busnr(struct pci_bus *bus)
1da177e4 135{
94e6a9b9 136 struct pci_bus *tmp;
1da177e4
LT
137 unsigned char max, n;
138
b918c62e 139 max = bus->busn_res.end;
94e6a9b9
YW
140 list_for_each_entry(tmp, &bus->children, node) {
141 n = pci_bus_max_busnr(tmp);
3c78bc61 142 if (n > max)
1da177e4
LT
143 max = n;
144 }
145 return max;
146}
b82db5ce 147EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
1da177e4 148
1684f5dd
AM
149#ifdef CONFIG_HAS_IOMEM
150void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
151{
1f7bf3bf
BH
152 struct resource *res = &pdev->resource[bar];
153
1684f5dd
AM
154 /*
155 * Make sure the BAR is actually a memory resource, not an IO resource
156 */
646c0282 157 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
1f7bf3bf 158 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
1684f5dd
AM
159 return NULL;
160 }
1f7bf3bf 161 return ioremap_nocache(res->start, resource_size(res));
1684f5dd
AM
162}
163EXPORT_SYMBOL_GPL(pci_ioremap_bar);
c43996f4
LR
164
165void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
166{
167 /*
168 * Make sure the BAR is actually a memory resource, not an IO resource
169 */
170 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
171 WARN_ON(1);
172 return NULL;
173 }
174 return ioremap_wc(pci_resource_start(pdev, bar),
175 pci_resource_len(pdev, bar));
176}
177EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
1684f5dd
AM
178#endif
179
687d5fe3
ME
180
181static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
182 u8 pos, int cap, int *ttl)
24a4e377
RD
183{
184 u8 id;
55db3208
SS
185 u16 ent;
186
187 pci_bus_read_config_byte(bus, devfn, pos, &pos);
24a4e377 188
687d5fe3 189 while ((*ttl)--) {
24a4e377
RD
190 if (pos < 0x40)
191 break;
192 pos &= ~3;
55db3208
SS
193 pci_bus_read_config_word(bus, devfn, pos, &ent);
194
195 id = ent & 0xff;
24a4e377
RD
196 if (id == 0xff)
197 break;
198 if (id == cap)
199 return pos;
55db3208 200 pos = (ent >> 8);
24a4e377
RD
201 }
202 return 0;
203}
204
687d5fe3
ME
205static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
206 u8 pos, int cap)
207{
208 int ttl = PCI_FIND_CAP_TTL;
209
210 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
211}
212
24a4e377
RD
213int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
214{
215 return __pci_find_next_cap(dev->bus, dev->devfn,
216 pos + PCI_CAP_LIST_NEXT, cap);
217}
218EXPORT_SYMBOL_GPL(pci_find_next_capability);
219
d3bac118
ME
220static int __pci_bus_find_cap_start(struct pci_bus *bus,
221 unsigned int devfn, u8 hdr_type)
1da177e4
LT
222{
223 u16 status;
1da177e4
LT
224
225 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
226 if (!(status & PCI_STATUS_CAP_LIST))
227 return 0;
228
229 switch (hdr_type) {
230 case PCI_HEADER_TYPE_NORMAL:
231 case PCI_HEADER_TYPE_BRIDGE:
d3bac118 232 return PCI_CAPABILITY_LIST;
1da177e4 233 case PCI_HEADER_TYPE_CARDBUS:
d3bac118 234 return PCI_CB_CAPABILITY_LIST;
1da177e4 235 }
d3bac118
ME
236
237 return 0;
1da177e4
LT
238}
239
240/**
f7625980 241 * pci_find_capability - query for devices' capabilities
1da177e4
LT
242 * @dev: PCI device to query
243 * @cap: capability code
244 *
245 * Tell if a device supports a given PCI capability.
246 * Returns the address of the requested capability structure within the
247 * device's PCI configuration space or 0 in case the device does not
248 * support it. Possible values for @cap:
249 *
f7625980
BH
250 * %PCI_CAP_ID_PM Power Management
251 * %PCI_CAP_ID_AGP Accelerated Graphics Port
252 * %PCI_CAP_ID_VPD Vital Product Data
253 * %PCI_CAP_ID_SLOTID Slot Identification
1da177e4 254 * %PCI_CAP_ID_MSI Message Signalled Interrupts
f7625980 255 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
1da177e4
LT
256 * %PCI_CAP_ID_PCIX PCI-X
257 * %PCI_CAP_ID_EXP PCI Express
258 */
259int pci_find_capability(struct pci_dev *dev, int cap)
260{
d3bac118
ME
261 int pos;
262
263 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
264 if (pos)
265 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
266
267 return pos;
1da177e4 268}
b7fe9434 269EXPORT_SYMBOL(pci_find_capability);
1da177e4
LT
270
271/**
f7625980 272 * pci_bus_find_capability - query for devices' capabilities
1da177e4
LT
273 * @bus: the PCI bus to query
274 * @devfn: PCI device to query
275 * @cap: capability code
276 *
277 * Like pci_find_capability() but works for pci devices that do not have a
f7625980 278 * pci_dev structure set up yet.
1da177e4
LT
279 *
280 * Returns the address of the requested capability structure within the
281 * device's PCI configuration space or 0 in case the device does not
282 * support it.
283 */
284int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
285{
d3bac118 286 int pos;
1da177e4
LT
287 u8 hdr_type;
288
289 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
290
d3bac118
ME
291 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
292 if (pos)
293 pos = __pci_find_next_cap(bus, devfn, pos, cap);
294
295 return pos;
1da177e4 296}
b7fe9434 297EXPORT_SYMBOL(pci_bus_find_capability);
1da177e4
LT
298
299/**
44a9a36f 300 * pci_find_next_ext_capability - Find an extended capability
1da177e4 301 * @dev: PCI device to query
44a9a36f 302 * @start: address at which to start looking (0 to start at beginning of list)
1da177e4
LT
303 * @cap: capability code
304 *
44a9a36f 305 * Returns the address of the next matching extended capability structure
1da177e4 306 * within the device's PCI configuration space or 0 if the device does
44a9a36f
BH
307 * not support it. Some capabilities can occur several times, e.g., the
308 * vendor-specific capability, and this provides a way to find them all.
1da177e4 309 */
44a9a36f 310int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
1da177e4
LT
311{
312 u32 header;
557848c3
ZY
313 int ttl;
314 int pos = PCI_CFG_SPACE_SIZE;
1da177e4 315
557848c3
ZY
316 /* minimum 8 bytes per capability */
317 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
318
319 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
1da177e4
LT
320 return 0;
321
44a9a36f
BH
322 if (start)
323 pos = start;
324
1da177e4
LT
325 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
326 return 0;
327
328 /*
329 * If we have no capabilities, this is indicated by cap ID,
330 * cap version and next pointer all being 0.
331 */
332 if (header == 0)
333 return 0;
334
335 while (ttl-- > 0) {
44a9a36f 336 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
1da177e4
LT
337 return pos;
338
339 pos = PCI_EXT_CAP_NEXT(header);
557848c3 340 if (pos < PCI_CFG_SPACE_SIZE)
1da177e4
LT
341 break;
342
343 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
344 break;
345 }
346
347 return 0;
348}
44a9a36f
BH
349EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
350
351/**
352 * pci_find_ext_capability - Find an extended capability
353 * @dev: PCI device to query
354 * @cap: capability code
355 *
356 * Returns the address of the requested extended capability structure
357 * within the device's PCI configuration space or 0 if the device does
358 * not support it. Possible values for @cap:
359 *
360 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
361 * %PCI_EXT_CAP_ID_VC Virtual Channel
362 * %PCI_EXT_CAP_ID_DSN Device Serial Number
363 * %PCI_EXT_CAP_ID_PWR Power Budgeting
364 */
365int pci_find_ext_capability(struct pci_dev *dev, int cap)
366{
367 return pci_find_next_ext_capability(dev, 0, cap);
368}
3a720d72 369EXPORT_SYMBOL_GPL(pci_find_ext_capability);
1da177e4 370
687d5fe3
ME
371static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
372{
373 int rc, ttl = PCI_FIND_CAP_TTL;
374 u8 cap, mask;
375
376 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
377 mask = HT_3BIT_CAP_MASK;
378 else
379 mask = HT_5BIT_CAP_MASK;
380
381 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
382 PCI_CAP_ID_HT, &ttl);
383 while (pos) {
384 rc = pci_read_config_byte(dev, pos + 3, &cap);
385 if (rc != PCIBIOS_SUCCESSFUL)
386 return 0;
387
388 if ((cap & mask) == ht_cap)
389 return pos;
390
47a4d5be
BG
391 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
392 pos + PCI_CAP_LIST_NEXT,
687d5fe3
ME
393 PCI_CAP_ID_HT, &ttl);
394 }
395
396 return 0;
397}
398/**
399 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
400 * @dev: PCI device to query
401 * @pos: Position from which to continue searching
402 * @ht_cap: Hypertransport capability code
403 *
404 * To be used in conjunction with pci_find_ht_capability() to search for
405 * all capabilities matching @ht_cap. @pos should always be a value returned
406 * from pci_find_ht_capability().
407 *
408 * NB. To be 100% safe against broken PCI devices, the caller should take
409 * steps to avoid an infinite loop.
410 */
411int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
412{
413 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
414}
415EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
416
417/**
418 * pci_find_ht_capability - query a device's Hypertransport capabilities
419 * @dev: PCI device to query
420 * @ht_cap: Hypertransport capability code
421 *
422 * Tell if a device supports a given Hypertransport capability.
423 * Returns an address within the device's PCI configuration space
424 * or 0 in case the device does not support the request capability.
425 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
426 * which has a Hypertransport capability matching @ht_cap.
427 */
428int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
429{
430 int pos;
431
432 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
433 if (pos)
434 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
435
436 return pos;
437}
438EXPORT_SYMBOL_GPL(pci_find_ht_capability);
439
1da177e4
LT
440/**
441 * pci_find_parent_resource - return resource region of parent bus of given region
442 * @dev: PCI device structure contains resources to be searched
443 * @res: child resource record for which parent is sought
444 *
445 * For given resource region of given device, return the resource
f44116ae 446 * region of parent bus the given region is contained in.
1da177e4 447 */
3c78bc61
RD
448struct resource *pci_find_parent_resource(const struct pci_dev *dev,
449 struct resource *res)
1da177e4
LT
450{
451 const struct pci_bus *bus = dev->bus;
f44116ae 452 struct resource *r;
1da177e4 453 int i;
1da177e4 454
89a74ecc 455 pci_bus_for_each_resource(bus, r, i) {
1da177e4
LT
456 if (!r)
457 continue;
f44116ae
BH
458 if (res->start && resource_contains(r, res)) {
459
460 /*
461 * If the window is prefetchable but the BAR is
462 * not, the allocator made a mistake.
463 */
464 if (r->flags & IORESOURCE_PREFETCH &&
465 !(res->flags & IORESOURCE_PREFETCH))
466 return NULL;
467
468 /*
469 * If we're below a transparent bridge, there may
470 * be both a positively-decoded aperture and a
471 * subtractively-decoded region that contain the BAR.
472 * We want the positively-decoded one, so this depends
473 * on pci_bus_for_each_resource() giving us those
474 * first.
475 */
476 return r;
477 }
1da177e4 478 }
f44116ae 479 return NULL;
1da177e4 480}
b7fe9434 481EXPORT_SYMBOL(pci_find_parent_resource);
1da177e4 482
afd29f90
MW
483/**
484 * pci_find_resource - Return matching PCI device resource
485 * @dev: PCI device to query
486 * @res: Resource to look for
487 *
488 * Goes over standard PCI resources (BARs) and checks if the given resource
489 * is partially or fully contained in any of them. In that case the
490 * matching resource is returned, %NULL otherwise.
491 */
492struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
493{
494 int i;
495
496 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
497 struct resource *r = &dev->resource[i];
498
499 if (r->start && resource_contains(r, res))
500 return r;
501 }
502
503 return NULL;
504}
505EXPORT_SYMBOL(pci_find_resource);
506
c56d4450
HS
507/**
508 * pci_find_pcie_root_port - return PCIe Root Port
509 * @dev: PCI device to query
510 *
511 * Traverse up the parent chain and return the PCIe Root Port PCI Device
512 * for a given PCI Device.
513 */
514struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
515{
516 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
517
518 bridge = pci_upstream_bridge(dev);
519 while (bridge && pci_is_pcie(bridge)) {
520 highest_pcie_bridge = bridge;
521 bridge = pci_upstream_bridge(bridge);
522 }
523
524 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
525 return NULL;
526
527 return highest_pcie_bridge;
528}
529EXPORT_SYMBOL(pci_find_pcie_root_port);
530
157e876f
AW
531/**
532 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
533 * @dev: the PCI device to operate on
534 * @pos: config space offset of status word
535 * @mask: mask of bit(s) to care about in status word
536 *
537 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
538 */
539int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
540{
541 int i;
542
543 /* Wait for Transaction Pending bit clean */
544 for (i = 0; i < 4; i++) {
545 u16 status;
546 if (i)
547 msleep((1 << (i - 1)) * 100);
548
549 pci_read_config_word(dev, pos, &status);
550 if (!(status & mask))
551 return 1;
552 }
553
554 return 0;
555}
556
064b53db 557/**
70675e0b 558 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
064b53db
JL
559 * @dev: PCI device to have its BARs restored
560 *
561 * Restore the BAR values for a given device, so as to make it
562 * accessible by its driver.
563 */
3c78bc61 564static void pci_restore_bars(struct pci_dev *dev)
064b53db 565{
bc5f5a82 566 int i;
064b53db 567
bc5f5a82 568 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
14add80b 569 pci_update_resource(dev, i);
064b53db
JL
570}
571
299f2ffe 572static const struct pci_platform_pm_ops *pci_platform_pm;
961d9120 573
299f2ffe 574int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
961d9120 575{
cc7cc02b
LW
576 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
577 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
578 !ops->need_resume)
961d9120
RW
579 return -EINVAL;
580 pci_platform_pm = ops;
581 return 0;
582}
583
584static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585{
586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
587}
588
589static inline int platform_pci_set_power_state(struct pci_dev *dev,
3c78bc61 590 pci_power_t t)
961d9120
RW
591{
592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
593}
594
cc7cc02b
LW
595static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596{
597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
598}
599
961d9120
RW
600static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601{
602 return pci_platform_pm ?
603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
604}
8f7020d3 605
eb9d0fe4
RW
606static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
607{
608 return pci_platform_pm ?
609 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
610}
611
b67ea761
RW
612static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
613{
614 return pci_platform_pm ?
615 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
616}
617
bac2a909
RW
618static inline bool platform_pci_need_resume(struct pci_dev *dev)
619{
620 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
621}
622
1da177e4 623/**
44e4e66e
RW
624 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
625 * given PCI device
626 * @dev: PCI device to handle.
44e4e66e 627 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1da177e4 628 *
44e4e66e
RW
629 * RETURN VALUE:
630 * -EINVAL if the requested state is invalid.
631 * -EIO if device does not support PCI PM or its PM capabilities register has a
632 * wrong version, or device doesn't support the requested state.
633 * 0 if device already is in the requested state.
634 * 0 if device's power state has been successfully changed.
1da177e4 635 */
f00a20ef 636static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1da177e4 637{
337001b6 638 u16 pmcsr;
44e4e66e 639 bool need_restore = false;
1da177e4 640
4a865905
RW
641 /* Check if we're already there */
642 if (dev->current_state == state)
643 return 0;
644
337001b6 645 if (!dev->pm_cap)
cca03dec
AL
646 return -EIO;
647
44e4e66e
RW
648 if (state < PCI_D0 || state > PCI_D3hot)
649 return -EINVAL;
650
1da177e4 651 /* Validate current state:
f7625980 652 * Can enter D0 from any state, but if we can only go deeper
1da177e4
LT
653 * to sleep if we're already in a low power state
654 */
4a865905 655 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
44e4e66e 656 && dev->current_state > state) {
227f0647
RD
657 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
658 dev->current_state, state);
1da177e4 659 return -EINVAL;
44e4e66e 660 }
1da177e4 661
1da177e4 662 /* check if this device supports the desired state */
337001b6
RW
663 if ((state == PCI_D1 && !dev->d1_support)
664 || (state == PCI_D2 && !dev->d2_support))
3fe9d19f 665 return -EIO;
1da177e4 666
337001b6 667 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
064b53db 668
32a36585 669 /* If we're (effectively) in D3, force entire word to 0.
1da177e4
LT
670 * This doesn't affect PME_Status, disables PME_En, and
671 * sets PowerState to 0.
672 */
32a36585 673 switch (dev->current_state) {
d3535fbb
JL
674 case PCI_D0:
675 case PCI_D1:
676 case PCI_D2:
677 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
678 pmcsr |= state;
679 break;
f62795f1
RW
680 case PCI_D3hot:
681 case PCI_D3cold:
32a36585
JL
682 case PCI_UNKNOWN: /* Boot-up */
683 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
f00a20ef 684 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
44e4e66e 685 need_restore = true;
32a36585 686 /* Fall-through: force to D0 */
32a36585 687 default:
d3535fbb 688 pmcsr = 0;
32a36585 689 break;
1da177e4
LT
690 }
691
692 /* enter specified state */
337001b6 693 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1da177e4
LT
694
695 /* Mandatory power management transition delays */
696 /* see PCI PM 1.1 5.6.1 table 18 */
697 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1ae861e6 698 pci_dev_d3_sleep(dev);
1da177e4 699 else if (state == PCI_D2 || dev->current_state == PCI_D2)
aa8c6c93 700 udelay(PCI_PM_D2_DELAY);
1da177e4 701
e13cdbd7
RW
702 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
703 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
704 if (dev->current_state != state && printk_ratelimit())
227f0647
RD
705 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
706 dev->current_state);
064b53db 707
448bd857
HY
708 /*
709 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
064b53db
JL
710 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
711 * from D3hot to D0 _may_ perform an internal reset, thereby
712 * going to "D0 Uninitialized" rather than "D0 Initialized".
713 * For example, at least some versions of the 3c905B and the
714 * 3c556B exhibit this behaviour.
715 *
716 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
717 * devices in a D3hot state at boot. Consequently, we need to
718 * restore at least the BARs so that the device will be
719 * accessible to its driver.
720 */
721 if (need_restore)
722 pci_restore_bars(dev);
723
f00a20ef 724 if (dev->bus->self)
7d715a6c
SL
725 pcie_aspm_pm_state_change(dev->bus->self);
726
1da177e4
LT
727 return 0;
728}
729
44e4e66e 730/**
a6a64026 731 * pci_update_current_state - Read power state of given device and cache it
44e4e66e 732 * @dev: PCI device to handle.
f06fc0b6 733 * @state: State to cache in case the device doesn't have the PM capability
a6a64026
LW
734 *
735 * The power state is read from the PMCSR register, which however is
736 * inaccessible in D3cold. The platform firmware is therefore queried first
737 * to detect accessibility of the register. In case the platform firmware
738 * reports an incorrect state or the device isn't power manageable by the
739 * platform at all, we try to detect D3cold by testing accessibility of the
740 * vendor ID in config space.
44e4e66e 741 */
73410429 742void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
44e4e66e 743{
a6a64026
LW
744 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
745 !pci_device_is_present(dev)) {
746 dev->current_state = PCI_D3cold;
747 } else if (dev->pm_cap) {
44e4e66e
RW
748 u16 pmcsr;
749
337001b6 750 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
44e4e66e 751 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
f06fc0b6
RW
752 } else {
753 dev->current_state = state;
44e4e66e
RW
754 }
755}
756
db288c9c
RW
757/**
758 * pci_power_up - Put the given device into D0 forcibly
759 * @dev: PCI device to power up
760 */
761void pci_power_up(struct pci_dev *dev)
762{
763 if (platform_pci_power_manageable(dev))
764 platform_pci_set_power_state(dev, PCI_D0);
765
766 pci_raw_set_power_state(dev, PCI_D0);
767 pci_update_current_state(dev, PCI_D0);
768}
769
0e5dd46b
RW
770/**
771 * pci_platform_power_transition - Use platform to change device power state
772 * @dev: PCI device to handle.
773 * @state: State to put the device into.
774 */
775static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
776{
777 int error;
778
779 if (platform_pci_power_manageable(dev)) {
780 error = platform_pci_set_power_state(dev, state);
781 if (!error)
782 pci_update_current_state(dev, state);
769ba721 783 } else
0e5dd46b 784 error = -ENODEV;
769ba721
RW
785
786 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
787 dev->current_state = PCI_D0;
0e5dd46b
RW
788
789 return error;
790}
791
0b950f0f
SH
792/**
793 * pci_wakeup - Wake up a PCI device
794 * @pci_dev: Device to handle.
795 * @ign: ignored parameter
796 */
797static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
798{
799 pci_wakeup_event(pci_dev);
800 pm_request_resume(&pci_dev->dev);
801 return 0;
802}
803
804/**
805 * pci_wakeup_bus - Walk given bus and wake up devices on it
806 * @bus: Top bus of the subtree to walk.
807 */
808static void pci_wakeup_bus(struct pci_bus *bus)
809{
810 if (bus)
811 pci_walk_bus(bus, pci_wakeup, NULL);
812}
813
0e5dd46b
RW
814/**
815 * __pci_start_power_transition - Start power transition of a PCI device
816 * @dev: PCI device to handle.
817 * @state: State to put the device into.
818 */
819static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
820{
448bd857 821 if (state == PCI_D0) {
0e5dd46b 822 pci_platform_power_transition(dev, PCI_D0);
448bd857
HY
823 /*
824 * Mandatory power management transition delays, see
825 * PCI Express Base Specification Revision 2.0 Section
826 * 6.6.1: Conventional Reset. Do not delay for
827 * devices powered on/off by corresponding bridge,
828 * because have already delayed for the bridge.
829 */
830 if (dev->runtime_d3cold) {
50b2b540
AH
831 if (dev->d3cold_delay)
832 msleep(dev->d3cold_delay);
448bd857
HY
833 /*
834 * When powering on a bridge from D3cold, the
835 * whole hierarchy may be powered on into
836 * D0uninitialized state, resume them to give
837 * them a chance to suspend again
838 */
839 pci_wakeup_bus(dev->subordinate);
840 }
841 }
842}
843
844/**
845 * __pci_dev_set_current_state - Set current state of a PCI device
846 * @dev: Device to handle
847 * @data: pointer to state to be set
848 */
849static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
850{
851 pci_power_t state = *(pci_power_t *)data;
852
853 dev->current_state = state;
854 return 0;
855}
856
857/**
858 * __pci_bus_set_current_state - Walk given bus and set current state of devices
859 * @bus: Top bus of the subtree to walk.
860 * @state: state to be set
861 */
862static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
863{
864 if (bus)
865 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
0e5dd46b
RW
866}
867
868/**
869 * __pci_complete_power_transition - Complete power transition of a PCI device
870 * @dev: PCI device to handle.
871 * @state: State to put the device into.
872 *
873 * This function should not be called directly by device drivers.
874 */
875int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
876{
448bd857
HY
877 int ret;
878
db288c9c 879 if (state <= PCI_D0)
448bd857
HY
880 return -EINVAL;
881 ret = pci_platform_power_transition(dev, state);
882 /* Power off the bridge may power off the whole hierarchy */
883 if (!ret && state == PCI_D3cold)
884 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
885 return ret;
0e5dd46b
RW
886}
887EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
888
44e4e66e
RW
889/**
890 * pci_set_power_state - Set the power state of a PCI device
891 * @dev: PCI device to handle.
892 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
893 *
877d0310 894 * Transition a device to a new power state, using the platform firmware and/or
44e4e66e
RW
895 * the device's PCI PM registers.
896 *
897 * RETURN VALUE:
898 * -EINVAL if the requested state is invalid.
899 * -EIO if device does not support PCI PM or its PM capabilities register has a
900 * wrong version, or device doesn't support the requested state.
901 * 0 if device already is in the requested state.
902 * 0 if device's power state has been successfully changed.
903 */
904int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
905{
337001b6 906 int error;
44e4e66e
RW
907
908 /* bound the state we're entering */
448bd857
HY
909 if (state > PCI_D3cold)
910 state = PCI_D3cold;
44e4e66e
RW
911 else if (state < PCI_D0)
912 state = PCI_D0;
913 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
914 /*
915 * If the device or the parent bridge do not support PCI PM,
916 * ignore the request if we're doing anything other than putting
917 * it into D0 (which would only happen on boot).
918 */
919 return 0;
920
db288c9c
RW
921 /* Check if we're already there */
922 if (dev->current_state == state)
923 return 0;
924
0e5dd46b
RW
925 __pci_start_power_transition(dev, state);
926
979b1791
AC
927 /* This device is quirked not to be put into D3, so
928 don't put it in D3 */
448bd857 929 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
979b1791 930 return 0;
44e4e66e 931
448bd857
HY
932 /*
933 * To put device in D3cold, we put device into D3hot in native
934 * way, then put device into D3cold with platform ops
935 */
936 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
937 PCI_D3hot : state);
44e4e66e 938
0e5dd46b
RW
939 if (!__pci_complete_power_transition(dev, state))
940 error = 0;
44e4e66e
RW
941
942 return error;
943}
b7fe9434 944EXPORT_SYMBOL(pci_set_power_state);
44e4e66e 945
1da177e4
LT
946/**
947 * pci_choose_state - Choose the power state of a PCI device
948 * @dev: PCI device to be suspended
949 * @state: target sleep state for the whole system. This is the value
950 * that is passed to suspend() function.
951 *
952 * Returns PCI power state suitable for given device and given system
953 * message.
954 */
955
956pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
957{
ab826ca4 958 pci_power_t ret;
0f64474b 959
728cdb75 960 if (!dev->pm_cap)
1da177e4
LT
961 return PCI_D0;
962
961d9120
RW
963 ret = platform_pci_choose_state(dev);
964 if (ret != PCI_POWER_ERROR)
965 return ret;
ca078bae
PM
966
967 switch (state.event) {
968 case PM_EVENT_ON:
969 return PCI_D0;
970 case PM_EVENT_FREEZE:
b887d2e6
DB
971 case PM_EVENT_PRETHAW:
972 /* REVISIT both freeze and pre-thaw "should" use D0 */
ca078bae 973 case PM_EVENT_SUSPEND:
3a2d5b70 974 case PM_EVENT_HIBERNATE:
ca078bae 975 return PCI_D3hot;
1da177e4 976 default:
80ccba11
BH
977 dev_info(&dev->dev, "unrecognized suspend event %d\n",
978 state.event);
1da177e4
LT
979 BUG();
980 }
981 return PCI_D0;
982}
1da177e4
LT
983EXPORT_SYMBOL(pci_choose_state);
984
89858517
YZ
985#define PCI_EXP_SAVE_REGS 7
986
fd0f7f73
AW
987static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
988 u16 cap, bool extended)
34a4876e
YL
989{
990 struct pci_cap_saved_state *tmp;
34a4876e 991
b67bfe0d 992 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
fd0f7f73 993 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
34a4876e
YL
994 return tmp;
995 }
996 return NULL;
997}
998
fd0f7f73
AW
999struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1000{
1001 return _pci_find_saved_cap(dev, cap, false);
1002}
1003
1004struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1005{
1006 return _pci_find_saved_cap(dev, cap, true);
1007}
1008
b56a5a23
MT
1009static int pci_save_pcie_state(struct pci_dev *dev)
1010{
59875ae4 1011 int i = 0;
b56a5a23
MT
1012 struct pci_cap_saved_state *save_state;
1013 u16 *cap;
1014
59875ae4 1015 if (!pci_is_pcie(dev))
b56a5a23
MT
1016 return 0;
1017
9f35575d 1018 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
b56a5a23 1019 if (!save_state) {
e496b617 1020 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
b56a5a23
MT
1021 return -ENOMEM;
1022 }
63f4898a 1023
59875ae4
JL
1024 cap = (u16 *)&save_state->cap.data[0];
1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1030 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1031 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
9cb604ed 1032
b56a5a23
MT
1033 return 0;
1034}
1035
1036static void pci_restore_pcie_state(struct pci_dev *dev)
1037{
59875ae4 1038 int i = 0;
b56a5a23
MT
1039 struct pci_cap_saved_state *save_state;
1040 u16 *cap;
1041
1042 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
59875ae4 1043 if (!save_state)
9cb604ed
MS
1044 return;
1045
59875ae4
JL
1046 cap = (u16 *)&save_state->cap.data[0];
1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1052 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1053 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
b56a5a23
MT
1054}
1055
cc692a5f
SH
1056
1057static int pci_save_pcix_state(struct pci_dev *dev)
1058{
63f4898a 1059 int pos;
cc692a5f 1060 struct pci_cap_saved_state *save_state;
cc692a5f
SH
1061
1062 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1063 if (!pos)
cc692a5f
SH
1064 return 0;
1065
f34303de 1066 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
cc692a5f 1067 if (!save_state) {
e496b617 1068 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
cc692a5f
SH
1069 return -ENOMEM;
1070 }
cc692a5f 1071
24a4742f
AW
1072 pci_read_config_word(dev, pos + PCI_X_CMD,
1073 (u16 *)save_state->cap.data);
63f4898a 1074
cc692a5f
SH
1075 return 0;
1076}
1077
1078static void pci_restore_pcix_state(struct pci_dev *dev)
1079{
1080 int i = 0, pos;
1081 struct pci_cap_saved_state *save_state;
1082 u16 *cap;
1083
1084 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1085 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1086 if (!save_state || !pos)
cc692a5f 1087 return;
24a4742f 1088 cap = (u16 *)&save_state->cap.data[0];
cc692a5f
SH
1089
1090 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
cc692a5f
SH
1091}
1092
1093
1da177e4
LT
1094/**
1095 * pci_save_state - save the PCI configuration space of a device before suspending
1096 * @dev: - PCI device that we're dealing with
1da177e4 1097 */
3c78bc61 1098int pci_save_state(struct pci_dev *dev)
1da177e4
LT
1099{
1100 int i;
1101 /* XXX: 100% dword access ok here? */
1102 for (i = 0; i < 16; i++)
9e0b5b2c 1103 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
aa8c6c93 1104 dev->state_saved = true;
79e50e72
QL
1105
1106 i = pci_save_pcie_state(dev);
1107 if (i != 0)
b56a5a23 1108 return i;
79e50e72
QL
1109
1110 i = pci_save_pcix_state(dev);
1111 if (i != 0)
cc692a5f 1112 return i;
79e50e72 1113
754834b9 1114 return pci_save_vc_state(dev);
1da177e4 1115}
b7fe9434 1116EXPORT_SYMBOL(pci_save_state);
1da177e4 1117
ebfc5b80
RW
1118static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1119 u32 saved_val, int retry)
1120{
1121 u32 val;
1122
1123 pci_read_config_dword(pdev, offset, &val);
1124 if (val == saved_val)
1125 return;
1126
1127 for (;;) {
227f0647
RD
1128 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1129 offset, val, saved_val);
ebfc5b80
RW
1130 pci_write_config_dword(pdev, offset, saved_val);
1131 if (retry-- <= 0)
1132 return;
1133
1134 pci_read_config_dword(pdev, offset, &val);
1135 if (val == saved_val)
1136 return;
1137
1138 mdelay(1);
1139 }
1140}
1141
a6cb9ee7
RW
1142static void pci_restore_config_space_range(struct pci_dev *pdev,
1143 int start, int end, int retry)
ebfc5b80
RW
1144{
1145 int index;
1146
1147 for (index = end; index >= start; index--)
1148 pci_restore_config_dword(pdev, 4 * index,
1149 pdev->saved_config_space[index],
1150 retry);
1151}
1152
a6cb9ee7
RW
1153static void pci_restore_config_space(struct pci_dev *pdev)
1154{
1155 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1156 pci_restore_config_space_range(pdev, 10, 15, 0);
1157 /* Restore BARs before the command register. */
1158 pci_restore_config_space_range(pdev, 4, 9, 10);
1159 pci_restore_config_space_range(pdev, 0, 3, 0);
1160 } else {
1161 pci_restore_config_space_range(pdev, 0, 15, 0);
1162 }
1163}
1164
f7625980 1165/**
1da177e4
LT
1166 * pci_restore_state - Restore the saved state of a PCI device
1167 * @dev: - PCI device that we're dealing with
1da177e4 1168 */
1d3c16a8 1169void pci_restore_state(struct pci_dev *dev)
1da177e4 1170{
c82f63e4 1171 if (!dev->state_saved)
1d3c16a8 1172 return;
4b77b0a2 1173
b56a5a23
MT
1174 /* PCI Express register must be restored first */
1175 pci_restore_pcie_state(dev);
1900ca13 1176 pci_restore_ats_state(dev);
425c1b22 1177 pci_restore_vc_state(dev);
b56a5a23 1178
b07461a8
TI
1179 pci_cleanup_aer_error_status_regs(dev);
1180
a6cb9ee7 1181 pci_restore_config_space(dev);
ebfc5b80 1182
cc692a5f 1183 pci_restore_pcix_state(dev);
41017f0c 1184 pci_restore_msi_state(dev);
ccbc175a
AD
1185
1186 /* Restore ACS and IOV configuration state */
1187 pci_enable_acs(dev);
8c5cdb6a 1188 pci_restore_iov_state(dev);
8fed4b65 1189
4b77b0a2 1190 dev->state_saved = false;
1da177e4 1191}
b7fe9434 1192EXPORT_SYMBOL(pci_restore_state);
1da177e4 1193
ffbdd3f7
AW
1194struct pci_saved_state {
1195 u32 config_space[16];
1196 struct pci_cap_saved_data cap[0];
1197};
1198
1199/**
1200 * pci_store_saved_state - Allocate and return an opaque struct containing
1201 * the device saved state.
1202 * @dev: PCI device that we're dealing with
1203 *
f7625980 1204 * Return NULL if no state or error.
ffbdd3f7
AW
1205 */
1206struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1207{
1208 struct pci_saved_state *state;
1209 struct pci_cap_saved_state *tmp;
1210 struct pci_cap_saved_data *cap;
ffbdd3f7
AW
1211 size_t size;
1212
1213 if (!dev->state_saved)
1214 return NULL;
1215
1216 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1217
b67bfe0d 1218 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
ffbdd3f7
AW
1219 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1220
1221 state = kzalloc(size, GFP_KERNEL);
1222 if (!state)
1223 return NULL;
1224
1225 memcpy(state->config_space, dev->saved_config_space,
1226 sizeof(state->config_space));
1227
1228 cap = state->cap;
b67bfe0d 1229 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
ffbdd3f7
AW
1230 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1231 memcpy(cap, &tmp->cap, len);
1232 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1233 }
1234 /* Empty cap_save terminates list */
1235
1236 return state;
1237}
1238EXPORT_SYMBOL_GPL(pci_store_saved_state);
1239
1240/**
1241 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1242 * @dev: PCI device that we're dealing with
1243 * @state: Saved state returned from pci_store_saved_state()
1244 */
98d9b271
KRW
1245int pci_load_saved_state(struct pci_dev *dev,
1246 struct pci_saved_state *state)
ffbdd3f7
AW
1247{
1248 struct pci_cap_saved_data *cap;
1249
1250 dev->state_saved = false;
1251
1252 if (!state)
1253 return 0;
1254
1255 memcpy(dev->saved_config_space, state->config_space,
1256 sizeof(state->config_space));
1257
1258 cap = state->cap;
1259 while (cap->size) {
1260 struct pci_cap_saved_state *tmp;
1261
fd0f7f73 1262 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
ffbdd3f7
AW
1263 if (!tmp || tmp->cap.size != cap->size)
1264 return -EINVAL;
1265
1266 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1267 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1268 sizeof(struct pci_cap_saved_data) + cap->size);
1269 }
1270
1271 dev->state_saved = true;
1272 return 0;
1273}
98d9b271 1274EXPORT_SYMBOL_GPL(pci_load_saved_state);
ffbdd3f7
AW
1275
1276/**
1277 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1278 * and free the memory allocated for it.
1279 * @dev: PCI device that we're dealing with
1280 * @state: Pointer to saved state returned from pci_store_saved_state()
1281 */
1282int pci_load_and_free_saved_state(struct pci_dev *dev,
1283 struct pci_saved_state **state)
1284{
1285 int ret = pci_load_saved_state(dev, *state);
1286 kfree(*state);
1287 *state = NULL;
1288 return ret;
1289}
1290EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1291
8a9d5609
BH
1292int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1293{
1294 return pci_enable_resources(dev, bars);
1295}
1296
38cc1302
HS
1297static int do_pci_enable_device(struct pci_dev *dev, int bars)
1298{
1299 int err;
1f6ae47e 1300 struct pci_dev *bridge;
1e2571a7
BH
1301 u16 cmd;
1302 u8 pin;
38cc1302
HS
1303
1304 err = pci_set_power_state(dev, PCI_D0);
1305 if (err < 0 && err != -EIO)
1306 return err;
1f6ae47e
VS
1307
1308 bridge = pci_upstream_bridge(dev);
1309 if (bridge)
1310 pcie_aspm_powersave_config_link(bridge);
1311
38cc1302
HS
1312 err = pcibios_enable_device(dev, bars);
1313 if (err < 0)
1314 return err;
1315 pci_fixup_device(pci_fixup_enable, dev);
1316
866d5417
BH
1317 if (dev->msi_enabled || dev->msix_enabled)
1318 return 0;
1319
1e2571a7
BH
1320 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1321 if (pin) {
1322 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1323 if (cmd & PCI_COMMAND_INTX_DISABLE)
1324 pci_write_config_word(dev, PCI_COMMAND,
1325 cmd & ~PCI_COMMAND_INTX_DISABLE);
1326 }
1327
38cc1302
HS
1328 return 0;
1329}
1330
1331/**
0b62e13b 1332 * pci_reenable_device - Resume abandoned device
38cc1302
HS
1333 * @dev: PCI device to be resumed
1334 *
1335 * Note this function is a backend of pci_default_resume and is not supposed
1336 * to be called by normal code, write proper resume handler and use it instead.
1337 */
0b62e13b 1338int pci_reenable_device(struct pci_dev *dev)
38cc1302 1339{
296ccb08 1340 if (pci_is_enabled(dev))
38cc1302
HS
1341 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1342 return 0;
1343}
b7fe9434 1344EXPORT_SYMBOL(pci_reenable_device);
38cc1302 1345
928bea96
YL
1346static void pci_enable_bridge(struct pci_dev *dev)
1347{
79272138 1348 struct pci_dev *bridge;
928bea96
YL
1349 int retval;
1350
79272138
BH
1351 bridge = pci_upstream_bridge(dev);
1352 if (bridge)
1353 pci_enable_bridge(bridge);
928bea96 1354
cf3e1feb 1355 if (pci_is_enabled(dev)) {
fbeeb822 1356 if (!dev->is_busmaster)
cf3e1feb 1357 pci_set_master(dev);
928bea96 1358 return;
cf3e1feb
YL
1359 }
1360
928bea96
YL
1361 retval = pci_enable_device(dev);
1362 if (retval)
1363 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1364 retval);
1365 pci_set_master(dev);
1366}
1367
b4b4fbba 1368static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1da177e4 1369{
79272138 1370 struct pci_dev *bridge;
1da177e4 1371 int err;
b718989d 1372 int i, bars = 0;
1da177e4 1373
97c145f7
JB
1374 /*
1375 * Power state could be unknown at this point, either due to a fresh
1376 * boot or a device removal call. So get the current power state
1377 * so that things like MSI message writing will behave as expected
1378 * (e.g. if the device really is in D0 at enable time).
1379 */
1380 if (dev->pm_cap) {
1381 u16 pmcsr;
1382 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1383 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1384 }
1385
cc7ba39b 1386 if (atomic_inc_return(&dev->enable_cnt) > 1)
9fb625c3
HS
1387 return 0; /* already enabled */
1388
79272138
BH
1389 bridge = pci_upstream_bridge(dev);
1390 if (bridge)
1391 pci_enable_bridge(bridge);
928bea96 1392
497f16f2
YL
1393 /* only skip sriov related */
1394 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1395 if (dev->resource[i].flags & flags)
1396 bars |= (1 << i);
1397 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
b718989d
BH
1398 if (dev->resource[i].flags & flags)
1399 bars |= (1 << i);
1400
38cc1302 1401 err = do_pci_enable_device(dev, bars);
95a62965 1402 if (err < 0)
38cc1302 1403 atomic_dec(&dev->enable_cnt);
9fb625c3 1404 return err;
1da177e4
LT
1405}
1406
b718989d
BH
1407/**
1408 * pci_enable_device_io - Initialize a device for use with IO space
1409 * @dev: PCI device to be initialized
1410 *
1411 * Initialize device before it's used by a driver. Ask low-level code
1412 * to enable I/O resources. Wake up the device if it was suspended.
1413 * Beware, this function can fail.
1414 */
1415int pci_enable_device_io(struct pci_dev *dev)
1416{
b4b4fbba 1417 return pci_enable_device_flags(dev, IORESOURCE_IO);
b718989d 1418}
b7fe9434 1419EXPORT_SYMBOL(pci_enable_device_io);
b718989d
BH
1420
1421/**
1422 * pci_enable_device_mem - Initialize a device for use with Memory space
1423 * @dev: PCI device to be initialized
1424 *
1425 * Initialize device before it's used by a driver. Ask low-level code
1426 * to enable Memory resources. Wake up the device if it was suspended.
1427 * Beware, this function can fail.
1428 */
1429int pci_enable_device_mem(struct pci_dev *dev)
1430{
b4b4fbba 1431 return pci_enable_device_flags(dev, IORESOURCE_MEM);
b718989d 1432}
b7fe9434 1433EXPORT_SYMBOL(pci_enable_device_mem);
b718989d 1434
bae94d02
IPG
1435/**
1436 * pci_enable_device - Initialize device before it's used by a driver.
1437 * @dev: PCI device to be initialized
1438 *
1439 * Initialize device before it's used by a driver. Ask low-level code
1440 * to enable I/O and memory. Wake up the device if it was suspended.
1441 * Beware, this function can fail.
1442 *
1443 * Note we don't actually enable the device many times if we call
1444 * this function repeatedly (we just increment the count).
1445 */
1446int pci_enable_device(struct pci_dev *dev)
1447{
b4b4fbba 1448 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
bae94d02 1449}
b7fe9434 1450EXPORT_SYMBOL(pci_enable_device);
bae94d02 1451
9ac7849e
TH
1452/*
1453 * Managed PCI resources. This manages device on/off, intx/msi/msix
1454 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1455 * there's no need to track it separately. pci_devres is initialized
1456 * when a device is enabled using managed PCI device enable interface.
1457 */
1458struct pci_devres {
7f375f32
TH
1459 unsigned int enabled:1;
1460 unsigned int pinned:1;
9ac7849e
TH
1461 unsigned int orig_intx:1;
1462 unsigned int restore_intx:1;
1463 u32 region_mask;
1464};
1465
1466static void pcim_release(struct device *gendev, void *res)
1467{
f3d2f165 1468 struct pci_dev *dev = to_pci_dev(gendev);
9ac7849e
TH
1469 struct pci_devres *this = res;
1470 int i;
1471
1472 if (dev->msi_enabled)
1473 pci_disable_msi(dev);
1474 if (dev->msix_enabled)
1475 pci_disable_msix(dev);
1476
1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1478 if (this->region_mask & (1 << i))
1479 pci_release_region(dev, i);
1480
1481 if (this->restore_intx)
1482 pci_intx(dev, this->orig_intx);
1483
7f375f32 1484 if (this->enabled && !this->pinned)
9ac7849e
TH
1485 pci_disable_device(dev);
1486}
1487
07656d83 1488static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1489{
1490 struct pci_devres *dr, *new_dr;
1491
1492 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1493 if (dr)
1494 return dr;
1495
1496 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1497 if (!new_dr)
1498 return NULL;
1499 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1500}
1501
07656d83 1502static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1503{
1504 if (pci_is_managed(pdev))
1505 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1506 return NULL;
1507}
1508
1509/**
1510 * pcim_enable_device - Managed pci_enable_device()
1511 * @pdev: PCI device to be initialized
1512 *
1513 * Managed pci_enable_device().
1514 */
1515int pcim_enable_device(struct pci_dev *pdev)
1516{
1517 struct pci_devres *dr;
1518 int rc;
1519
1520 dr = get_pci_dr(pdev);
1521 if (unlikely(!dr))
1522 return -ENOMEM;
b95d58ea
TH
1523 if (dr->enabled)
1524 return 0;
9ac7849e
TH
1525
1526 rc = pci_enable_device(pdev);
1527 if (!rc) {
1528 pdev->is_managed = 1;
7f375f32 1529 dr->enabled = 1;
9ac7849e
TH
1530 }
1531 return rc;
1532}
b7fe9434 1533EXPORT_SYMBOL(pcim_enable_device);
9ac7849e
TH
1534
1535/**
1536 * pcim_pin_device - Pin managed PCI device
1537 * @pdev: PCI device to pin
1538 *
1539 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1540 * driver detach. @pdev must have been enabled with
1541 * pcim_enable_device().
1542 */
1543void pcim_pin_device(struct pci_dev *pdev)
1544{
1545 struct pci_devres *dr;
1546
1547 dr = find_pci_dr(pdev);
7f375f32 1548 WARN_ON(!dr || !dr->enabled);
9ac7849e 1549 if (dr)
7f375f32 1550 dr->pinned = 1;
9ac7849e 1551}
b7fe9434 1552EXPORT_SYMBOL(pcim_pin_device);
9ac7849e 1553
eca0d467
MG
1554/*
1555 * pcibios_add_device - provide arch specific hooks when adding device dev
1556 * @dev: the PCI device being added
1557 *
1558 * Permits the platform to provide architecture specific functionality when
1559 * devices are added. This is the default implementation. Architecture
1560 * implementations can override this.
1561 */
3c78bc61 1562int __weak pcibios_add_device(struct pci_dev *dev)
eca0d467
MG
1563{
1564 return 0;
1565}
1566
6ae32c53
SO
1567/**
1568 * pcibios_release_device - provide arch specific hooks when releasing device dev
1569 * @dev: the PCI device being released
1570 *
1571 * Permits the platform to provide architecture specific functionality when
1572 * devices are released. This is the default implementation. Architecture
1573 * implementations can override this.
1574 */
1575void __weak pcibios_release_device(struct pci_dev *dev) {}
1576
1da177e4
LT
1577/**
1578 * pcibios_disable_device - disable arch specific PCI resources for device dev
1579 * @dev: the PCI device to disable
1580 *
1581 * Disables architecture specific PCI resources for the device. This
1582 * is the default implementation. Architecture implementations can
1583 * override this.
1584 */
ff3ce480 1585void __weak pcibios_disable_device(struct pci_dev *dev) {}
1da177e4 1586
a43ae58c
HG
1587/**
1588 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1589 * @irq: ISA IRQ to penalize
1590 * @active: IRQ active or not
1591 *
1592 * Permits the platform to provide architecture-specific functionality when
1593 * penalizing ISA IRQs. This is the default implementation. Architecture
1594 * implementations can override this.
1595 */
1596void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1597
fa58d305
RW
1598static void do_pci_disable_device(struct pci_dev *dev)
1599{
1600 u16 pci_command;
1601
1602 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1603 if (pci_command & PCI_COMMAND_MASTER) {
1604 pci_command &= ~PCI_COMMAND_MASTER;
1605 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1606 }
1607
1608 pcibios_disable_device(dev);
1609}
1610
1611/**
1612 * pci_disable_enabled_device - Disable device without updating enable_cnt
1613 * @dev: PCI device to disable
1614 *
1615 * NOTE: This function is a backend of PCI power management routines and is
1616 * not supposed to be called drivers.
1617 */
1618void pci_disable_enabled_device(struct pci_dev *dev)
1619{
296ccb08 1620 if (pci_is_enabled(dev))
fa58d305
RW
1621 do_pci_disable_device(dev);
1622}
1623
1da177e4
LT
1624/**
1625 * pci_disable_device - Disable PCI device after use
1626 * @dev: PCI device to be disabled
1627 *
1628 * Signal to the system that the PCI device is not in use by the system
1629 * anymore. This only involves disabling PCI bus-mastering, if active.
bae94d02
IPG
1630 *
1631 * Note we don't actually disable the device until all callers of
ee6583f6 1632 * pci_enable_device() have called pci_disable_device().
1da177e4 1633 */
3c78bc61 1634void pci_disable_device(struct pci_dev *dev)
1da177e4 1635{
9ac7849e 1636 struct pci_devres *dr;
99dc804d 1637
9ac7849e
TH
1638 dr = find_pci_dr(dev);
1639 if (dr)
7f375f32 1640 dr->enabled = 0;
9ac7849e 1641
fd6dceab
KK
1642 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1643 "disabling already-disabled device");
1644
cc7ba39b 1645 if (atomic_dec_return(&dev->enable_cnt) != 0)
bae94d02
IPG
1646 return;
1647
fa58d305 1648 do_pci_disable_device(dev);
1da177e4 1649
fa58d305 1650 dev->is_busmaster = 0;
1da177e4 1651}
b7fe9434 1652EXPORT_SYMBOL(pci_disable_device);
1da177e4 1653
f7bdd12d
BK
1654/**
1655 * pcibios_set_pcie_reset_state - set reset state for device dev
45e829ea 1656 * @dev: the PCIe device reset
f7bdd12d
BK
1657 * @state: Reset state to enter into
1658 *
1659 *
45e829ea 1660 * Sets the PCIe reset state for the device. This is the default
f7bdd12d
BK
1661 * implementation. Architecture implementations can override this.
1662 */
d6d88c83
BH
1663int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1664 enum pcie_reset_state state)
f7bdd12d
BK
1665{
1666 return -EINVAL;
1667}
1668
1669/**
1670 * pci_set_pcie_reset_state - set reset state for device dev
45e829ea 1671 * @dev: the PCIe device reset
f7bdd12d
BK
1672 * @state: Reset state to enter into
1673 *
1674 *
1675 * Sets the PCI reset state for the device.
1676 */
1677int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1678{
1679 return pcibios_set_pcie_reset_state(dev, state);
1680}
b7fe9434 1681EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
f7bdd12d 1682
58ff4633
RW
1683/**
1684 * pci_check_pme_status - Check if given device has generated PME.
1685 * @dev: Device to check.
1686 *
1687 * Check the PME status of the device and if set, clear it and clear PME enable
1688 * (if set). Return 'true' if PME status and PME enable were both set or
1689 * 'false' otherwise.
1690 */
1691bool pci_check_pme_status(struct pci_dev *dev)
1692{
1693 int pmcsr_pos;
1694 u16 pmcsr;
1695 bool ret = false;
1696
1697 if (!dev->pm_cap)
1698 return false;
1699
1700 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1701 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1702 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1703 return false;
1704
1705 /* Clear PME status. */
1706 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1707 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1708 /* Disable PME to avoid interrupt flood. */
1709 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1710 ret = true;
1711 }
1712
1713 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1714
1715 return ret;
1716}
1717
b67ea761
RW
1718/**
1719 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1720 * @dev: Device to handle.
379021d5 1721 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
b67ea761
RW
1722 *
1723 * Check if @dev has generated PME and queue a resume request for it in that
1724 * case.
1725 */
379021d5 1726static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
b67ea761 1727{
379021d5
RW
1728 if (pme_poll_reset && dev->pme_poll)
1729 dev->pme_poll = false;
1730
c125e96f 1731 if (pci_check_pme_status(dev)) {
c125e96f 1732 pci_wakeup_event(dev);
0f953bf6 1733 pm_request_resume(&dev->dev);
c125e96f 1734 }
b67ea761
RW
1735 return 0;
1736}
1737
1738/**
1739 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1740 * @bus: Top bus of the subtree to walk.
1741 */
1742void pci_pme_wakeup_bus(struct pci_bus *bus)
1743{
1744 if (bus)
379021d5 1745 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
b67ea761
RW
1746}
1747
448bd857 1748
eb9d0fe4
RW
1749/**
1750 * pci_pme_capable - check the capability of PCI device to generate PME#
1751 * @dev: PCI device to handle.
eb9d0fe4
RW
1752 * @state: PCI state from which device will issue PME#.
1753 */
e5899e1b 1754bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
eb9d0fe4 1755{
337001b6 1756 if (!dev->pm_cap)
eb9d0fe4
RW
1757 return false;
1758
337001b6 1759 return !!(dev->pme_support & (1 << state));
eb9d0fe4 1760}
b7fe9434 1761EXPORT_SYMBOL(pci_pme_capable);
eb9d0fe4 1762
df17e62e
MG
1763static void pci_pme_list_scan(struct work_struct *work)
1764{
379021d5 1765 struct pci_pme_device *pme_dev, *n;
df17e62e
MG
1766
1767 mutex_lock(&pci_pme_list_mutex);
ce300008
BH
1768 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1769 if (pme_dev->dev->pme_poll) {
1770 struct pci_dev *bridge;
1771
1772 bridge = pme_dev->dev->bus->self;
1773 /*
1774 * If bridge is in low power state, the
1775 * configuration space of subordinate devices
1776 * may be not accessible
1777 */
1778 if (bridge && bridge->current_state != PCI_D0)
1779 continue;
1780 pci_pme_wakeup(pme_dev->dev, NULL);
1781 } else {
1782 list_del(&pme_dev->list);
1783 kfree(pme_dev);
379021d5 1784 }
df17e62e 1785 }
ce300008 1786 if (!list_empty(&pci_pme_list))
ea00353f
LW
1787 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1788 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
1789 mutex_unlock(&pci_pme_list_mutex);
1790}
1791
2cef548a 1792static void __pci_pme_active(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
1793{
1794 u16 pmcsr;
1795
ffaddbe8 1796 if (!dev->pme_support)
eb9d0fe4
RW
1797 return;
1798
337001b6 1799 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
eb9d0fe4
RW
1800 /* Clear PME_Status by writing 1 to it and enable PME# */
1801 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1802 if (!enable)
1803 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1804
337001b6 1805 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2cef548a
RW
1806}
1807
1808/**
1809 * pci_pme_active - enable or disable PCI device's PME# function
1810 * @dev: PCI device to handle.
1811 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1812 *
1813 * The caller must verify that the device is capable of generating PME# before
1814 * calling this function with @enable equal to 'true'.
1815 */
1816void pci_pme_active(struct pci_dev *dev, bool enable)
1817{
1818 __pci_pme_active(dev, enable);
eb9d0fe4 1819
6e965e0d
HY
1820 /*
1821 * PCI (as opposed to PCIe) PME requires that the device have
1822 * its PME# line hooked up correctly. Not all hardware vendors
1823 * do this, so the PME never gets delivered and the device
1824 * remains asleep. The easiest way around this is to
1825 * periodically walk the list of suspended devices and check
1826 * whether any have their PME flag set. The assumption is that
1827 * we'll wake up often enough anyway that this won't be a huge
1828 * hit, and the power savings from the devices will still be a
1829 * win.
1830 *
1831 * Although PCIe uses in-band PME message instead of PME# line
1832 * to report PME, PME does not work for some PCIe devices in
1833 * reality. For example, there are devices that set their PME
1834 * status bits, but don't really bother to send a PME message;
1835 * there are PCI Express Root Ports that don't bother to
1836 * trigger interrupts when they receive PME messages from the
1837 * devices below. So PME poll is used for PCIe devices too.
1838 */
df17e62e 1839
379021d5 1840 if (dev->pme_poll) {
df17e62e
MG
1841 struct pci_pme_device *pme_dev;
1842 if (enable) {
1843 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1844 GFP_KERNEL);
0394cb19
BH
1845 if (!pme_dev) {
1846 dev_warn(&dev->dev, "can't enable PME#\n");
1847 return;
1848 }
df17e62e
MG
1849 pme_dev->dev = dev;
1850 mutex_lock(&pci_pme_list_mutex);
1851 list_add(&pme_dev->list, &pci_pme_list);
1852 if (list_is_singular(&pci_pme_list))
ea00353f
LW
1853 queue_delayed_work(system_freezable_wq,
1854 &pci_pme_work,
1855 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
1856 mutex_unlock(&pci_pme_list_mutex);
1857 } else {
1858 mutex_lock(&pci_pme_list_mutex);
1859 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1860 if (pme_dev->dev == dev) {
1861 list_del(&pme_dev->list);
1862 kfree(pme_dev);
1863 break;
1864 }
1865 }
1866 mutex_unlock(&pci_pme_list_mutex);
1867 }
1868 }
1869
85b8582d 1870 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
eb9d0fe4 1871}
b7fe9434 1872EXPORT_SYMBOL(pci_pme_active);
eb9d0fe4 1873
1da177e4 1874/**
6cbf8214 1875 * __pci_enable_wake - enable PCI device as wakeup event source
075c1771
DB
1876 * @dev: PCI device affected
1877 * @state: PCI state from which device will issue wakeup events
6cbf8214 1878 * @runtime: True if the events are to be generated at run time
075c1771
DB
1879 * @enable: True to enable event generation; false to disable
1880 *
1881 * This enables the device as a wakeup event source, or disables it.
1882 * When such events involves platform-specific hooks, those hooks are
1883 * called automatically by this routine.
1884 *
1885 * Devices with legacy power management (no standard PCI PM capabilities)
eb9d0fe4 1886 * always require such platform hooks.
075c1771 1887 *
eb9d0fe4
RW
1888 * RETURN VALUE:
1889 * 0 is returned on success
1890 * -EINVAL is returned if device is not supposed to wake up the system
1891 * Error code depending on the platform is returned if both the platform and
1892 * the native mechanism fail to enable the generation of wake-up events
1da177e4 1893 */
6cbf8214
RW
1894int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1895 bool runtime, bool enable)
1da177e4 1896{
5bcc2fb4 1897 int ret = 0;
075c1771 1898
6cbf8214 1899 if (enable && !runtime && !device_may_wakeup(&dev->dev))
eb9d0fe4 1900 return -EINVAL;
1da177e4 1901
e80bb09d
RW
1902 /* Don't do the same thing twice in a row for one device. */
1903 if (!!enable == !!dev->wakeup_prepared)
1904 return 0;
1905
eb9d0fe4
RW
1906 /*
1907 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1908 * Anderson we should be doing PME# wake enable followed by ACPI wake
1909 * enable. To disable wake-up we call the platform first, for symmetry.
075c1771 1910 */
1da177e4 1911
5bcc2fb4
RW
1912 if (enable) {
1913 int error;
1da177e4 1914
5bcc2fb4
RW
1915 if (pci_pme_capable(dev, state))
1916 pci_pme_active(dev, true);
1917 else
1918 ret = 1;
6cbf8214
RW
1919 error = runtime ? platform_pci_run_wake(dev, true) :
1920 platform_pci_sleep_wake(dev, true);
5bcc2fb4
RW
1921 if (ret)
1922 ret = error;
e80bb09d
RW
1923 if (!ret)
1924 dev->wakeup_prepared = true;
5bcc2fb4 1925 } else {
6cbf8214
RW
1926 if (runtime)
1927 platform_pci_run_wake(dev, false);
1928 else
1929 platform_pci_sleep_wake(dev, false);
5bcc2fb4 1930 pci_pme_active(dev, false);
e80bb09d 1931 dev->wakeup_prepared = false;
5bcc2fb4 1932 }
1da177e4 1933
5bcc2fb4 1934 return ret;
eb9d0fe4 1935}
6cbf8214 1936EXPORT_SYMBOL(__pci_enable_wake);
1da177e4 1937
0235c4fc
RW
1938/**
1939 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1940 * @dev: PCI device to prepare
1941 * @enable: True to enable wake-up event generation; false to disable
1942 *
1943 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1944 * and this function allows them to set that up cleanly - pci_enable_wake()
1945 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1946 * ordering constraints.
1947 *
1948 * This function only returns error code if the device is not capable of
1949 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1950 * enable wake-up power for it.
1951 */
1952int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1953{
1954 return pci_pme_capable(dev, PCI_D3cold) ?
1955 pci_enable_wake(dev, PCI_D3cold, enable) :
1956 pci_enable_wake(dev, PCI_D3hot, enable);
1957}
b7fe9434 1958EXPORT_SYMBOL(pci_wake_from_d3);
0235c4fc 1959
404cc2d8 1960/**
37139074
JB
1961 * pci_target_state - find an appropriate low power state for a given PCI dev
1962 * @dev: PCI device
1963 *
1964 * Use underlying platform code to find a supported low power state for @dev.
1965 * If the platform can't manage @dev, return the deepest state from which it
1966 * can generate wake events, based on any available PME info.
404cc2d8 1967 */
0b950f0f 1968static pci_power_t pci_target_state(struct pci_dev *dev)
404cc2d8
RW
1969{
1970 pci_power_t target_state = PCI_D3hot;
404cc2d8
RW
1971
1972 if (platform_pci_power_manageable(dev)) {
1973 /*
1974 * Call the platform to choose the target state of the device
1975 * and enable wake-up from this state if supported.
1976 */
1977 pci_power_t state = platform_pci_choose_state(dev);
1978
1979 switch (state) {
1980 case PCI_POWER_ERROR:
1981 case PCI_UNKNOWN:
1982 break;
1983 case PCI_D1:
1984 case PCI_D2:
1985 if (pci_no_d1d2(dev))
1986 break;
1987 default:
1988 target_state = state;
404cc2d8 1989 }
4132a577
LW
1990
1991 return target_state;
1992 }
1993
1994 if (!dev->pm_cap)
d2abdf62 1995 target_state = PCI_D0;
4132a577
LW
1996
1997 /*
1998 * If the device is in D3cold even though it's not power-manageable by
1999 * the platform, it may have been powered down by non-standard means.
2000 * Best to let it slumber.
2001 */
2002 if (dev->current_state == PCI_D3cold)
2003 target_state = PCI_D3cold;
2004
2005 if (device_may_wakeup(&dev->dev)) {
404cc2d8
RW
2006 /*
2007 * Find the deepest state from which the device can generate
2008 * wake-up events, make it the target state and enable device
2009 * to generate PME#.
2010 */
337001b6
RW
2011 if (dev->pme_support) {
2012 while (target_state
2013 && !(dev->pme_support & (1 << target_state)))
2014 target_state--;
404cc2d8
RW
2015 }
2016 }
2017
e5899e1b
RW
2018 return target_state;
2019}
2020
2021/**
2022 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2023 * @dev: Device to handle.
2024 *
2025 * Choose the power state appropriate for the device depending on whether
2026 * it can wake up the system and/or is power manageable by the platform
2027 * (PCI_D3hot is the default) and put the device into that state.
2028 */
2029int pci_prepare_to_sleep(struct pci_dev *dev)
2030{
2031 pci_power_t target_state = pci_target_state(dev);
2032 int error;
2033
2034 if (target_state == PCI_POWER_ERROR)
2035 return -EIO;
2036
8efb8c76 2037 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
c157dfa3 2038
404cc2d8
RW
2039 error = pci_set_power_state(dev, target_state);
2040
2041 if (error)
2042 pci_enable_wake(dev, target_state, false);
2043
2044 return error;
2045}
b7fe9434 2046EXPORT_SYMBOL(pci_prepare_to_sleep);
404cc2d8
RW
2047
2048/**
443bd1c4 2049 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
404cc2d8
RW
2050 * @dev: Device to handle.
2051 *
88393161 2052 * Disable device's system wake-up capability and put it into D0.
404cc2d8
RW
2053 */
2054int pci_back_from_sleep(struct pci_dev *dev)
2055{
2056 pci_enable_wake(dev, PCI_D0, false);
2057 return pci_set_power_state(dev, PCI_D0);
2058}
b7fe9434 2059EXPORT_SYMBOL(pci_back_from_sleep);
404cc2d8 2060
6cbf8214
RW
2061/**
2062 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2063 * @dev: PCI device being suspended.
2064 *
2065 * Prepare @dev to generate wake-up events at run time and put it into a low
2066 * power state.
2067 */
2068int pci_finish_runtime_suspend(struct pci_dev *dev)
2069{
2070 pci_power_t target_state = pci_target_state(dev);
2071 int error;
2072
2073 if (target_state == PCI_POWER_ERROR)
2074 return -EIO;
2075
448bd857
HY
2076 dev->runtime_d3cold = target_state == PCI_D3cold;
2077
6cbf8214
RW
2078 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2079
2080 error = pci_set_power_state(dev, target_state);
2081
448bd857 2082 if (error) {
6cbf8214 2083 __pci_enable_wake(dev, target_state, true, false);
448bd857
HY
2084 dev->runtime_d3cold = false;
2085 }
6cbf8214
RW
2086
2087 return error;
2088}
2089
b67ea761
RW
2090/**
2091 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2092 * @dev: Device to check.
2093 *
f7625980 2094 * Return true if the device itself is capable of generating wake-up events
b67ea761
RW
2095 * (through the platform or using the native PCIe PME) or if the device supports
2096 * PME and one of its upstream bridges can generate wake-up events.
2097 */
2098bool pci_dev_run_wake(struct pci_dev *dev)
2099{
2100 struct pci_bus *bus = dev->bus;
2101
2102 if (device_run_wake(&dev->dev))
2103 return true;
2104
2105 if (!dev->pme_support)
2106 return false;
2107
6496ebd7
AS
2108 /* PME-capable in principle, but not from the intended sleep state */
2109 if (!pci_pme_capable(dev, pci_target_state(dev)))
2110 return false;
2111
b67ea761
RW
2112 while (bus->parent) {
2113 struct pci_dev *bridge = bus->self;
2114
2115 if (device_run_wake(&bridge->dev))
2116 return true;
2117
2118 bus = bus->parent;
2119 }
2120
2121 /* We have reached the root bus. */
2122 if (bus->bridge)
2123 return device_run_wake(bus->bridge);
2124
2125 return false;
2126}
2127EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2128
bac2a909
RW
2129/**
2130 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2131 * @pci_dev: Device to check.
2132 *
2133 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2134 * reconfigured due to wakeup settings difference between system and runtime
2135 * suspend and the current power state of it is suitable for the upcoming
2136 * (system) transition.
2cef548a
RW
2137 *
2138 * If the device is not configured for system wakeup, disable PME for it before
2139 * returning 'true' to prevent it from waking up the system unnecessarily.
bac2a909
RW
2140 */
2141bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2142{
2143 struct device *dev = &pci_dev->dev;
2144
2145 if (!pm_runtime_suspended(dev)
2cef548a 2146 || pci_target_state(pci_dev) != pci_dev->current_state
bac2a909
RW
2147 || platform_pci_need_resume(pci_dev))
2148 return false;
2149
2cef548a
RW
2150 /*
2151 * At this point the device is good to go unless it's been configured
2152 * to generate PME at the runtime suspend time, but it is not supposed
2153 * to wake up the system. In that case, simply disable PME for it
2154 * (it will have to be re-enabled on exit from system resume).
2155 *
2156 * If the device's power state is D3cold and the platform check above
2157 * hasn't triggered, the device's configuration is suitable and we don't
2158 * need to manipulate it at all.
2159 */
2160 spin_lock_irq(&dev->power.lock);
2161
2162 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2163 !device_may_wakeup(dev))
2164 __pci_pme_active(pci_dev, false);
2165
2166 spin_unlock_irq(&dev->power.lock);
2167 return true;
2168}
2169
2170/**
2171 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2172 * @pci_dev: Device to handle.
2173 *
2174 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2175 * it might have been disabled during the prepare phase of system suspend if
2176 * the device was not configured for system wakeup.
2177 */
2178void pci_dev_complete_resume(struct pci_dev *pci_dev)
2179{
2180 struct device *dev = &pci_dev->dev;
2181
2182 if (!pci_dev_run_wake(pci_dev))
2183 return;
2184
2185 spin_lock_irq(&dev->power.lock);
2186
2187 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2188 __pci_pme_active(pci_dev, true);
2189
2190 spin_unlock_irq(&dev->power.lock);
bac2a909
RW
2191}
2192
b3c32c4f
HY
2193void pci_config_pm_runtime_get(struct pci_dev *pdev)
2194{
2195 struct device *dev = &pdev->dev;
2196 struct device *parent = dev->parent;
2197
2198 if (parent)
2199 pm_runtime_get_sync(parent);
2200 pm_runtime_get_noresume(dev);
2201 /*
2202 * pdev->current_state is set to PCI_D3cold during suspending,
2203 * so wait until suspending completes
2204 */
2205 pm_runtime_barrier(dev);
2206 /*
2207 * Only need to resume devices in D3cold, because config
2208 * registers are still accessible for devices suspended but
2209 * not in D3cold.
2210 */
2211 if (pdev->current_state == PCI_D3cold)
2212 pm_runtime_resume(dev);
2213}
2214
2215void pci_config_pm_runtime_put(struct pci_dev *pdev)
2216{
2217 struct device *dev = &pdev->dev;
2218 struct device *parent = dev->parent;
2219
2220 pm_runtime_put(dev);
2221 if (parent)
2222 pm_runtime_put_sync(parent);
2223}
2224
9d26d3a8
MW
2225/**
2226 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2227 * @bridge: Bridge to check
2228 *
2229 * This function checks if it is possible to move the bridge to D3.
2230 * Currently we only allow D3 for recent enough PCIe ports.
2231 */
c6a63307 2232bool pci_bridge_d3_possible(struct pci_dev *bridge)
9d26d3a8
MW
2233{
2234 unsigned int year;
2235
2236 if (!pci_is_pcie(bridge))
2237 return false;
2238
2239 switch (pci_pcie_type(bridge)) {
2240 case PCI_EXP_TYPE_ROOT_PORT:
2241 case PCI_EXP_TYPE_UPSTREAM:
2242 case PCI_EXP_TYPE_DOWNSTREAM:
2243 if (pci_bridge_d3_disable)
2244 return false;
97a90aee
LW
2245
2246 /*
d98e0929
BH
2247 * Hotplug interrupts cannot be delivered if the link is down,
2248 * so parents of a hotplug port must stay awake. In addition,
2249 * hotplug ports handled by firmware in System Management Mode
97a90aee 2250 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
d98e0929 2251 * For simplicity, disallow in general for now.
97a90aee 2252 */
d98e0929 2253 if (bridge->is_hotplug_bridge)
97a90aee
LW
2254 return false;
2255
9d26d3a8
MW
2256 if (pci_bridge_d3_force)
2257 return true;
2258
2259 /*
2260 * It should be safe to put PCIe ports from 2015 or newer
2261 * to D3.
2262 */
2263 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2264 year >= 2015) {
2265 return true;
2266 }
2267 break;
2268 }
2269
2270 return false;
2271}
2272
2273static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2274{
2275 bool *d3cold_ok = data;
9d26d3a8 2276
718a0609
LW
2277 if (/* The device needs to be allowed to go D3cold ... */
2278 dev->no_d3cold || !dev->d3cold_allowed ||
2279
2280 /* ... and if it is wakeup capable to do so from D3cold. */
2281 (device_may_wakeup(&dev->dev) &&
2282 !pci_pme_capable(dev, PCI_D3cold)) ||
2283
2284 /* If it is a bridge it must be allowed to go to D3. */
d98e0929 2285 !pci_power_manageable(dev))
9d26d3a8 2286
718a0609 2287 *d3cold_ok = false;
9d26d3a8 2288
718a0609 2289 return !*d3cold_ok;
9d26d3a8
MW
2290}
2291
2292/*
2293 * pci_bridge_d3_update - Update bridge D3 capabilities
2294 * @dev: PCI device which is changed
9d26d3a8
MW
2295 *
2296 * Update upstream bridge PM capabilities accordingly depending on if the
2297 * device PM configuration was changed or the device is being removed. The
2298 * change is also propagated upstream.
2299 */
1ed276a7 2300void pci_bridge_d3_update(struct pci_dev *dev)
9d26d3a8 2301{
1ed276a7 2302 bool remove = !device_is_registered(&dev->dev);
9d26d3a8
MW
2303 struct pci_dev *bridge;
2304 bool d3cold_ok = true;
2305
2306 bridge = pci_upstream_bridge(dev);
2307 if (!bridge || !pci_bridge_d3_possible(bridge))
2308 return;
2309
9d26d3a8 2310 /*
e8559b71
LW
2311 * If D3 is currently allowed for the bridge, removing one of its
2312 * children won't change that.
2313 */
2314 if (remove && bridge->bridge_d3)
2315 return;
2316
2317 /*
2318 * If D3 is currently allowed for the bridge and a child is added or
2319 * changed, disallowance of D3 can only be caused by that child, so
2320 * we only need to check that single device, not any of its siblings.
2321 *
2322 * If D3 is currently not allowed for the bridge, checking the device
2323 * first may allow us to skip checking its siblings.
9d26d3a8
MW
2324 */
2325 if (!remove)
2326 pci_dev_check_d3cold(dev, &d3cold_ok);
2327
e8559b71
LW
2328 /*
2329 * If D3 is currently not allowed for the bridge, this may be caused
2330 * either by the device being changed/removed or any of its siblings,
2331 * so we need to go through all children to find out if one of them
2332 * continues to block D3.
2333 */
2334 if (d3cold_ok && !bridge->bridge_d3)
9d26d3a8
MW
2335 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2336 &d3cold_ok);
9d26d3a8
MW
2337
2338 if (bridge->bridge_d3 != d3cold_ok) {
2339 bridge->bridge_d3 = d3cold_ok;
2340 /* Propagate change to upstream bridges */
1ed276a7 2341 pci_bridge_d3_update(bridge);
9d26d3a8 2342 }
9d26d3a8
MW
2343}
2344
9d26d3a8
MW
2345/**
2346 * pci_d3cold_enable - Enable D3cold for device
2347 * @dev: PCI device to handle
2348 *
2349 * This function can be used in drivers to enable D3cold from the device
2350 * they handle. It also updates upstream PCI bridge PM capabilities
2351 * accordingly.
2352 */
2353void pci_d3cold_enable(struct pci_dev *dev)
2354{
2355 if (dev->no_d3cold) {
2356 dev->no_d3cold = false;
1ed276a7 2357 pci_bridge_d3_update(dev);
9d26d3a8
MW
2358 }
2359}
2360EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2361
2362/**
2363 * pci_d3cold_disable - Disable D3cold for device
2364 * @dev: PCI device to handle
2365 *
2366 * This function can be used in drivers to disable D3cold from the device
2367 * they handle. It also updates upstream PCI bridge PM capabilities
2368 * accordingly.
2369 */
2370void pci_d3cold_disable(struct pci_dev *dev)
2371{
2372 if (!dev->no_d3cold) {
2373 dev->no_d3cold = true;
1ed276a7 2374 pci_bridge_d3_update(dev);
9d26d3a8
MW
2375 }
2376}
2377EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2378
eb9d0fe4
RW
2379/**
2380 * pci_pm_init - Initialize PM functions of given PCI device
2381 * @dev: PCI device to handle.
2382 */
2383void pci_pm_init(struct pci_dev *dev)
2384{
2385 int pm;
2386 u16 pmc;
1da177e4 2387
bb910a70 2388 pm_runtime_forbid(&dev->dev);
967577b0
HY
2389 pm_runtime_set_active(&dev->dev);
2390 pm_runtime_enable(&dev->dev);
a1e4d72c 2391 device_enable_async_suspend(&dev->dev);
e80bb09d 2392 dev->wakeup_prepared = false;
bb910a70 2393
337001b6 2394 dev->pm_cap = 0;
ffaddbe8 2395 dev->pme_support = 0;
337001b6 2396
eb9d0fe4
RW
2397 /* find PCI PM capability in list */
2398 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2399 if (!pm)
50246dd4 2400 return;
eb9d0fe4
RW
2401 /* Check device's ability to generate PME# */
2402 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
075c1771 2403
eb9d0fe4
RW
2404 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2405 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2406 pmc & PCI_PM_CAP_VER_MASK);
50246dd4 2407 return;
eb9d0fe4
RW
2408 }
2409
337001b6 2410 dev->pm_cap = pm;
1ae861e6 2411 dev->d3_delay = PCI_PM_D3_WAIT;
448bd857 2412 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
9d26d3a8 2413 dev->bridge_d3 = pci_bridge_d3_possible(dev);
4f9c1397 2414 dev->d3cold_allowed = true;
337001b6
RW
2415
2416 dev->d1_support = false;
2417 dev->d2_support = false;
2418 if (!pci_no_d1d2(dev)) {
c9ed77ee 2419 if (pmc & PCI_PM_CAP_D1)
337001b6 2420 dev->d1_support = true;
c9ed77ee 2421 if (pmc & PCI_PM_CAP_D2)
337001b6 2422 dev->d2_support = true;
c9ed77ee
BH
2423
2424 if (dev->d1_support || dev->d2_support)
2425 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
ec84f126
JB
2426 dev->d1_support ? " D1" : "",
2427 dev->d2_support ? " D2" : "");
337001b6
RW
2428 }
2429
2430 pmc &= PCI_PM_CAP_PME_MASK;
2431 if (pmc) {
10c3d71d
BH
2432 dev_printk(KERN_DEBUG, &dev->dev,
2433 "PME# supported from%s%s%s%s%s\n",
c9ed77ee
BH
2434 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2435 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2436 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2437 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2438 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
337001b6 2439 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
379021d5 2440 dev->pme_poll = true;
eb9d0fe4
RW
2441 /*
2442 * Make device's PM flags reflect the wake-up capability, but
2443 * let the user space enable it to wake up the system as needed.
2444 */
2445 device_set_wakeup_capable(&dev->dev, true);
eb9d0fe4 2446 /* Disable the PME# generation functionality */
337001b6 2447 pci_pme_active(dev, false);
eb9d0fe4 2448 }
1da177e4
LT
2449}
2450
938174e5
SS
2451static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2452{
92efb1bd 2453 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
938174e5
SS
2454
2455 switch (prop) {
2456 case PCI_EA_P_MEM:
2457 case PCI_EA_P_VF_MEM:
2458 flags |= IORESOURCE_MEM;
2459 break;
2460 case PCI_EA_P_MEM_PREFETCH:
2461 case PCI_EA_P_VF_MEM_PREFETCH:
2462 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2463 break;
2464 case PCI_EA_P_IO:
2465 flags |= IORESOURCE_IO;
2466 break;
2467 default:
2468 return 0;
2469 }
2470
2471 return flags;
2472}
2473
2474static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2475 u8 prop)
2476{
2477 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2478 return &dev->resource[bei];
11183991
DD
2479#ifdef CONFIG_PCI_IOV
2480 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2481 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2482 return &dev->resource[PCI_IOV_RESOURCES +
2483 bei - PCI_EA_BEI_VF_BAR0];
2484#endif
938174e5
SS
2485 else if (bei == PCI_EA_BEI_ROM)
2486 return &dev->resource[PCI_ROM_RESOURCE];
2487 else
2488 return NULL;
2489}
2490
2491/* Read an Enhanced Allocation (EA) entry */
2492static int pci_ea_read(struct pci_dev *dev, int offset)
2493{
2494 struct resource *res;
2495 int ent_size, ent_offset = offset;
2496 resource_size_t start, end;
2497 unsigned long flags;
26635112 2498 u32 dw0, bei, base, max_offset;
938174e5
SS
2499 u8 prop;
2500 bool support_64 = (sizeof(resource_size_t) >= 8);
2501
2502 pci_read_config_dword(dev, ent_offset, &dw0);
2503 ent_offset += 4;
2504
2505 /* Entry size field indicates DWORDs after 1st */
2506 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2507
2508 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2509 goto out;
2510
26635112
BH
2511 bei = (dw0 & PCI_EA_BEI) >> 4;
2512 prop = (dw0 & PCI_EA_PP) >> 8;
2513
938174e5
SS
2514 /*
2515 * If the Property is in the reserved range, try the Secondary
2516 * Property instead.
2517 */
2518 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
26635112 2519 prop = (dw0 & PCI_EA_SP) >> 16;
938174e5
SS
2520 if (prop > PCI_EA_P_BRIDGE_IO)
2521 goto out;
2522
26635112 2523 res = pci_ea_get_resource(dev, bei, prop);
938174e5 2524 if (!res) {
26635112 2525 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
938174e5
SS
2526 goto out;
2527 }
2528
2529 flags = pci_ea_flags(dev, prop);
2530 if (!flags) {
2531 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2532 goto out;
2533 }
2534
2535 /* Read Base */
2536 pci_read_config_dword(dev, ent_offset, &base);
2537 start = (base & PCI_EA_FIELD_MASK);
2538 ent_offset += 4;
2539
2540 /* Read MaxOffset */
2541 pci_read_config_dword(dev, ent_offset, &max_offset);
2542 ent_offset += 4;
2543
2544 /* Read Base MSBs (if 64-bit entry) */
2545 if (base & PCI_EA_IS_64) {
2546 u32 base_upper;
2547
2548 pci_read_config_dword(dev, ent_offset, &base_upper);
2549 ent_offset += 4;
2550
2551 flags |= IORESOURCE_MEM_64;
2552
2553 /* entry starts above 32-bit boundary, can't use */
2554 if (!support_64 && base_upper)
2555 goto out;
2556
2557 if (support_64)
2558 start |= ((u64)base_upper << 32);
2559 }
2560
2561 end = start + (max_offset | 0x03);
2562
2563 /* Read MaxOffset MSBs (if 64-bit entry) */
2564 if (max_offset & PCI_EA_IS_64) {
2565 u32 max_offset_upper;
2566
2567 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2568 ent_offset += 4;
2569
2570 flags |= IORESOURCE_MEM_64;
2571
2572 /* entry too big, can't use */
2573 if (!support_64 && max_offset_upper)
2574 goto out;
2575
2576 if (support_64)
2577 end += ((u64)max_offset_upper << 32);
2578 }
2579
2580 if (end < start) {
2581 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2582 goto out;
2583 }
2584
2585 if (ent_size != ent_offset - offset) {
2586 dev_err(&dev->dev,
2587 "EA Entry Size (%d) does not match length read (%d)\n",
2588 ent_size, ent_offset - offset);
2589 goto out;
2590 }
2591
2592 res->name = pci_name(dev);
2593 res->start = start;
2594 res->end = end;
2595 res->flags = flags;
597becb4
BH
2596
2597 if (bei <= PCI_EA_BEI_BAR5)
2598 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2599 bei, res, prop);
2600 else if (bei == PCI_EA_BEI_ROM)
2601 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2602 res, prop);
2603 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2604 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2605 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2606 else
2607 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2608 bei, res, prop);
2609
938174e5
SS
2610out:
2611 return offset + ent_size;
2612}
2613
dcbb408a 2614/* Enhanced Allocation Initialization */
938174e5
SS
2615void pci_ea_init(struct pci_dev *dev)
2616{
2617 int ea;
2618 u8 num_ent;
2619 int offset;
2620 int i;
2621
2622 /* find PCI EA capability in list */
2623 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2624 if (!ea)
2625 return;
2626
2627 /* determine the number of entries */
2628 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2629 &num_ent);
2630 num_ent &= PCI_EA_NUM_ENT_MASK;
2631
2632 offset = ea + PCI_EA_FIRST_ENT;
2633
2634 /* Skip DWORD 2 for type 1 functions */
2635 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2636 offset += 4;
2637
2638 /* parse each EA entry */
2639 for (i = 0; i < num_ent; ++i)
2640 offset = pci_ea_read(dev, offset);
2641}
2642
34a4876e
YL
2643static void pci_add_saved_cap(struct pci_dev *pci_dev,
2644 struct pci_cap_saved_state *new_cap)
2645{
2646 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2647}
2648
63f4898a 2649/**
fd0f7f73
AW
2650 * _pci_add_cap_save_buffer - allocate buffer for saving given
2651 * capability registers
63f4898a
RW
2652 * @dev: the PCI device
2653 * @cap: the capability to allocate the buffer for
fd0f7f73 2654 * @extended: Standard or Extended capability ID
63f4898a
RW
2655 * @size: requested size of the buffer
2656 */
fd0f7f73
AW
2657static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2658 bool extended, unsigned int size)
63f4898a
RW
2659{
2660 int pos;
2661 struct pci_cap_saved_state *save_state;
2662
fd0f7f73
AW
2663 if (extended)
2664 pos = pci_find_ext_capability(dev, cap);
2665 else
2666 pos = pci_find_capability(dev, cap);
2667
0a1a9b49 2668 if (!pos)
63f4898a
RW
2669 return 0;
2670
2671 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2672 if (!save_state)
2673 return -ENOMEM;
2674
24a4742f 2675 save_state->cap.cap_nr = cap;
fd0f7f73 2676 save_state->cap.cap_extended = extended;
24a4742f 2677 save_state->cap.size = size;
63f4898a
RW
2678 pci_add_saved_cap(dev, save_state);
2679
2680 return 0;
2681}
2682
fd0f7f73
AW
2683int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2684{
2685 return _pci_add_cap_save_buffer(dev, cap, false, size);
2686}
2687
2688int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2689{
2690 return _pci_add_cap_save_buffer(dev, cap, true, size);
2691}
2692
63f4898a
RW
2693/**
2694 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2695 * @dev: the PCI device
2696 */
2697void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2698{
2699 int error;
2700
89858517
YZ
2701 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2702 PCI_EXP_SAVE_REGS * sizeof(u16));
63f4898a
RW
2703 if (error)
2704 dev_err(&dev->dev,
2705 "unable to preallocate PCI Express save buffer\n");
2706
2707 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2708 if (error)
2709 dev_err(&dev->dev,
2710 "unable to preallocate PCI-X save buffer\n");
425c1b22
AW
2711
2712 pci_allocate_vc_save_buffers(dev);
63f4898a
RW
2713}
2714
f796841e
YL
2715void pci_free_cap_save_buffers(struct pci_dev *dev)
2716{
2717 struct pci_cap_saved_state *tmp;
b67bfe0d 2718 struct hlist_node *n;
f796841e 2719
b67bfe0d 2720 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
f796841e
YL
2721 kfree(tmp);
2722}
2723
58c3a727 2724/**
31ab2476 2725 * pci_configure_ari - enable or disable ARI forwarding
58c3a727 2726 * @dev: the PCI device
b0cc6020
YW
2727 *
2728 * If @dev and its upstream bridge both support ARI, enable ARI in the
2729 * bridge. Otherwise, disable ARI in the bridge.
58c3a727 2730 */
31ab2476 2731void pci_configure_ari(struct pci_dev *dev)
58c3a727 2732{
58c3a727 2733 u32 cap;
8113587c 2734 struct pci_dev *bridge;
58c3a727 2735
6748dcc2 2736 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
58c3a727
YZ
2737 return;
2738
8113587c 2739 bridge = dev->bus->self;
cb97ae34 2740 if (!bridge)
8113587c
ZY
2741 return;
2742
59875ae4 2743 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
58c3a727
YZ
2744 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2745 return;
2746
b0cc6020
YW
2747 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2748 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2749 PCI_EXP_DEVCTL2_ARI);
2750 bridge->ari_enabled = 1;
2751 } else {
2752 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2753 PCI_EXP_DEVCTL2_ARI);
2754 bridge->ari_enabled = 0;
2755 }
58c3a727
YZ
2756}
2757
5d990b62
CW
2758static int pci_acs_enable;
2759
2760/**
2761 * pci_request_acs - ask for ACS to be enabled if supported
2762 */
2763void pci_request_acs(void)
2764{
2765 pci_acs_enable = 1;
2766}
2767
ae21ee65 2768/**
2c744244 2769 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
ae21ee65
AK
2770 * @dev: the PCI device
2771 */
c1d61c9b 2772static void pci_std_enable_acs(struct pci_dev *dev)
ae21ee65
AK
2773{
2774 int pos;
2775 u16 cap;
2776 u16 ctrl;
2777
ae21ee65
AK
2778 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2779 if (!pos)
c1d61c9b 2780 return;
ae21ee65
AK
2781
2782 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2783 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2784
2785 /* Source Validation */
2786 ctrl |= (cap & PCI_ACS_SV);
2787
2788 /* P2P Request Redirect */
2789 ctrl |= (cap & PCI_ACS_RR);
2790
2791 /* P2P Completion Redirect */
2792 ctrl |= (cap & PCI_ACS_CR);
2793
2794 /* Upstream Forwarding */
2795 ctrl |= (cap & PCI_ACS_UF);
2796
2797 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2c744244
AW
2798}
2799
2800/**
2801 * pci_enable_acs - enable ACS if hardware support it
2802 * @dev: the PCI device
2803 */
2804void pci_enable_acs(struct pci_dev *dev)
2805{
2806 if (!pci_acs_enable)
2807 return;
2808
c1d61c9b 2809 if (!pci_dev_specific_enable_acs(dev))
2c744244
AW
2810 return;
2811
c1d61c9b 2812 pci_std_enable_acs(dev);
ae21ee65
AK
2813}
2814
0a67119f
AW
2815static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2816{
2817 int pos;
83db7e0b 2818 u16 cap, ctrl;
0a67119f
AW
2819
2820 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2821 if (!pos)
2822 return false;
2823
83db7e0b
AW
2824 /*
2825 * Except for egress control, capabilities are either required
2826 * or only required if controllable. Features missing from the
2827 * capability field can therefore be assumed as hard-wired enabled.
2828 */
2829 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2830 acs_flags &= (cap | PCI_ACS_EC);
2831
0a67119f
AW
2832 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2833 return (ctrl & acs_flags) == acs_flags;
2834}
2835
ad805758
AW
2836/**
2837 * pci_acs_enabled - test ACS against required flags for a given device
2838 * @pdev: device to test
2839 * @acs_flags: required PCI ACS flags
2840 *
2841 * Return true if the device supports the provided flags. Automatically
2842 * filters out flags that are not implemented on multifunction devices.
0a67119f
AW
2843 *
2844 * Note that this interface checks the effective ACS capabilities of the
2845 * device rather than the actual capabilities. For instance, most single
2846 * function endpoints are not required to support ACS because they have no
2847 * opportunity for peer-to-peer access. We therefore return 'true'
2848 * regardless of whether the device exposes an ACS capability. This makes
2849 * it much easier for callers of this function to ignore the actual type
2850 * or topology of the device when testing ACS support.
ad805758
AW
2851 */
2852bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2853{
0a67119f 2854 int ret;
ad805758
AW
2855
2856 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2857 if (ret >= 0)
2858 return ret > 0;
2859
0a67119f
AW
2860 /*
2861 * Conventional PCI and PCI-X devices never support ACS, either
2862 * effectively or actually. The shared bus topology implies that
2863 * any device on the bus can receive or snoop DMA.
2864 */
ad805758
AW
2865 if (!pci_is_pcie(pdev))
2866 return false;
2867
0a67119f
AW
2868 switch (pci_pcie_type(pdev)) {
2869 /*
2870 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
f7625980 2871 * but since their primary interface is PCI/X, we conservatively
0a67119f
AW
2872 * handle them as we would a non-PCIe device.
2873 */
2874 case PCI_EXP_TYPE_PCIE_BRIDGE:
2875 /*
2876 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2877 * applicable... must never implement an ACS Extended Capability...".
2878 * This seems arbitrary, but we take a conservative interpretation
2879 * of this statement.
2880 */
2881 case PCI_EXP_TYPE_PCI_BRIDGE:
2882 case PCI_EXP_TYPE_RC_EC:
2883 return false;
2884 /*
2885 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2886 * implement ACS in order to indicate their peer-to-peer capabilities,
2887 * regardless of whether they are single- or multi-function devices.
2888 */
2889 case PCI_EXP_TYPE_DOWNSTREAM:
2890 case PCI_EXP_TYPE_ROOT_PORT:
2891 return pci_acs_flags_enabled(pdev, acs_flags);
2892 /*
2893 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2894 * implemented by the remaining PCIe types to indicate peer-to-peer
f7625980 2895 * capabilities, but only when they are part of a multifunction
0a67119f
AW
2896 * device. The footnote for section 6.12 indicates the specific
2897 * PCIe types included here.
2898 */
2899 case PCI_EXP_TYPE_ENDPOINT:
2900 case PCI_EXP_TYPE_UPSTREAM:
2901 case PCI_EXP_TYPE_LEG_END:
2902 case PCI_EXP_TYPE_RC_END:
2903 if (!pdev->multifunction)
2904 break;
2905
0a67119f 2906 return pci_acs_flags_enabled(pdev, acs_flags);
ad805758
AW
2907 }
2908
0a67119f 2909 /*
f7625980 2910 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
0a67119f
AW
2911 * to single function devices with the exception of downstream ports.
2912 */
ad805758
AW
2913 return true;
2914}
2915
2916/**
2917 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2918 * @start: starting downstream device
2919 * @end: ending upstream device or NULL to search to the root bus
2920 * @acs_flags: required flags
2921 *
2922 * Walk up a device tree from start to end testing PCI ACS support. If
2923 * any step along the way does not support the required flags, return false.
2924 */
2925bool pci_acs_path_enabled(struct pci_dev *start,
2926 struct pci_dev *end, u16 acs_flags)
2927{
2928 struct pci_dev *pdev, *parent = start;
2929
2930 do {
2931 pdev = parent;
2932
2933 if (!pci_acs_enabled(pdev, acs_flags))
2934 return false;
2935
2936 if (pci_is_root_bus(pdev->bus))
2937 return (end == NULL);
2938
2939 parent = pdev->bus->self;
2940 } while (pdev != end);
2941
2942 return true;
2943}
2944
57c2cf71
BH
2945/**
2946 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2947 * @dev: the PCI device
bb5c2de2 2948 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
57c2cf71
BH
2949 *
2950 * Perform INTx swizzling for a device behind one level of bridge. This is
2951 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
46b952a3
MW
2952 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2953 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2954 * the PCI Express Base Specification, Revision 2.1)
57c2cf71 2955 */
3df425f3 2956u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
57c2cf71 2957{
46b952a3
MW
2958 int slot;
2959
2960 if (pci_ari_enabled(dev->bus))
2961 slot = 0;
2962 else
2963 slot = PCI_SLOT(dev->devfn);
2964
2965 return (((pin - 1) + slot) % 4) + 1;
57c2cf71
BH
2966}
2967
3c78bc61 2968int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1da177e4
LT
2969{
2970 u8 pin;
2971
514d207d 2972 pin = dev->pin;
1da177e4
LT
2973 if (!pin)
2974 return -1;
878f2e50 2975
8784fd4d 2976 while (!pci_is_root_bus(dev->bus)) {
57c2cf71 2977 pin = pci_swizzle_interrupt_pin(dev, pin);
1da177e4
LT
2978 dev = dev->bus->self;
2979 }
2980 *bridge = dev;
2981 return pin;
2982}
2983
68feac87
BH
2984/**
2985 * pci_common_swizzle - swizzle INTx all the way to root bridge
2986 * @dev: the PCI device
2987 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2988 *
2989 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2990 * bridges all the way up to a PCI root bus.
2991 */
2992u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2993{
2994 u8 pin = *pinp;
2995
1eb39487 2996 while (!pci_is_root_bus(dev->bus)) {
68feac87
BH
2997 pin = pci_swizzle_interrupt_pin(dev, pin);
2998 dev = dev->bus->self;
2999 }
3000 *pinp = pin;
3001 return PCI_SLOT(dev->devfn);
3002}
e6b29dea 3003EXPORT_SYMBOL_GPL(pci_common_swizzle);
68feac87 3004
1da177e4
LT
3005/**
3006 * pci_release_region - Release a PCI bar
3007 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3008 * @bar: BAR to release
3009 *
3010 * Releases the PCI I/O and memory resources previously reserved by a
3011 * successful call to pci_request_region. Call this function only
3012 * after all use of the PCI regions has ceased.
3013 */
3014void pci_release_region(struct pci_dev *pdev, int bar)
3015{
9ac7849e
TH
3016 struct pci_devres *dr;
3017
1da177e4
LT
3018 if (pci_resource_len(pdev, bar) == 0)
3019 return;
3020 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3021 release_region(pci_resource_start(pdev, bar),
3022 pci_resource_len(pdev, bar));
3023 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3024 release_mem_region(pci_resource_start(pdev, bar),
3025 pci_resource_len(pdev, bar));
9ac7849e
TH
3026
3027 dr = find_pci_dr(pdev);
3028 if (dr)
3029 dr->region_mask &= ~(1 << bar);
1da177e4 3030}
b7fe9434 3031EXPORT_SYMBOL(pci_release_region);
1da177e4
LT
3032
3033/**
f5ddcac4 3034 * __pci_request_region - Reserved PCI I/O and memory resource
1da177e4
LT
3035 * @pdev: PCI device whose resources are to be reserved
3036 * @bar: BAR to be reserved
3037 * @res_name: Name to be associated with resource.
f5ddcac4 3038 * @exclusive: whether the region access is exclusive or not
1da177e4
LT
3039 *
3040 * Mark the PCI region associated with PCI device @pdev BR @bar as
3041 * being reserved by owner @res_name. Do not access any
3042 * address inside the PCI regions unless this call returns
3043 * successfully.
3044 *
f5ddcac4
RD
3045 * If @exclusive is set, then the region is marked so that userspace
3046 * is explicitly not allowed to map the resource via /dev/mem or
f7625980 3047 * sysfs MMIO access.
f5ddcac4 3048 *
1da177e4
LT
3049 * Returns 0 on success, or %EBUSY on error. A warning
3050 * message is also printed on failure.
3051 */
3c78bc61
RD
3052static int __pci_request_region(struct pci_dev *pdev, int bar,
3053 const char *res_name, int exclusive)
1da177e4 3054{
9ac7849e
TH
3055 struct pci_devres *dr;
3056
1da177e4
LT
3057 if (pci_resource_len(pdev, bar) == 0)
3058 return 0;
f7625980 3059
1da177e4
LT
3060 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3061 if (!request_region(pci_resource_start(pdev, bar),
3062 pci_resource_len(pdev, bar), res_name))
3063 goto err_out;
3c78bc61 3064 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
e8de1481
AV
3065 if (!__request_mem_region(pci_resource_start(pdev, bar),
3066 pci_resource_len(pdev, bar), res_name,
3067 exclusive))
1da177e4
LT
3068 goto err_out;
3069 }
9ac7849e
TH
3070
3071 dr = find_pci_dr(pdev);
3072 if (dr)
3073 dr->region_mask |= 1 << bar;
3074
1da177e4
LT
3075 return 0;
3076
3077err_out:
c7dabef8 3078 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
096e6f67 3079 &pdev->resource[bar]);
1da177e4
LT
3080 return -EBUSY;
3081}
3082
e8de1481 3083/**
f5ddcac4 3084 * pci_request_region - Reserve PCI I/O and memory resource
e8de1481
AV
3085 * @pdev: PCI device whose resources are to be reserved
3086 * @bar: BAR to be reserved
f5ddcac4 3087 * @res_name: Name to be associated with resource
e8de1481 3088 *
f5ddcac4 3089 * Mark the PCI region associated with PCI device @pdev BAR @bar as
e8de1481
AV
3090 * being reserved by owner @res_name. Do not access any
3091 * address inside the PCI regions unless this call returns
3092 * successfully.
3093 *
3094 * Returns 0 on success, or %EBUSY on error. A warning
3095 * message is also printed on failure.
3096 */
3097int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3098{
3099 return __pci_request_region(pdev, bar, res_name, 0);
3100}
b7fe9434 3101EXPORT_SYMBOL(pci_request_region);
e8de1481
AV
3102
3103/**
3104 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3105 * @pdev: PCI device whose resources are to be reserved
3106 * @bar: BAR to be reserved
3107 * @res_name: Name to be associated with resource.
3108 *
3109 * Mark the PCI region associated with PCI device @pdev BR @bar as
3110 * being reserved by owner @res_name. Do not access any
3111 * address inside the PCI regions unless this call returns
3112 * successfully.
3113 *
3114 * Returns 0 on success, or %EBUSY on error. A warning
3115 * message is also printed on failure.
3116 *
3117 * The key difference that _exclusive makes it that userspace is
3118 * explicitly not allowed to map the resource via /dev/mem or
f7625980 3119 * sysfs.
e8de1481 3120 */
3c78bc61
RD
3121int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3122 const char *res_name)
e8de1481
AV
3123{
3124 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3125}
b7fe9434
RD
3126EXPORT_SYMBOL(pci_request_region_exclusive);
3127
c87deff7
HS
3128/**
3129 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3130 * @pdev: PCI device whose resources were previously reserved
3131 * @bars: Bitmask of BARs to be released
3132 *
3133 * Release selected PCI I/O and memory resources previously reserved.
3134 * Call this function only after all use of the PCI regions has ceased.
3135 */
3136void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3137{
3138 int i;
3139
3140 for (i = 0; i < 6; i++)
3141 if (bars & (1 << i))
3142 pci_release_region(pdev, i);
3143}
b7fe9434 3144EXPORT_SYMBOL(pci_release_selected_regions);
c87deff7 3145
9738abed 3146static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3c78bc61 3147 const char *res_name, int excl)
c87deff7
HS
3148{
3149 int i;
3150
3151 for (i = 0; i < 6; i++)
3152 if (bars & (1 << i))
e8de1481 3153 if (__pci_request_region(pdev, i, res_name, excl))
c87deff7
HS
3154 goto err_out;
3155 return 0;
3156
3157err_out:
3c78bc61 3158 while (--i >= 0)
c87deff7
HS
3159 if (bars & (1 << i))
3160 pci_release_region(pdev, i);
3161
3162 return -EBUSY;
3163}
1da177e4 3164
e8de1481
AV
3165
3166/**
3167 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3168 * @pdev: PCI device whose resources are to be reserved
3169 * @bars: Bitmask of BARs to be requested
3170 * @res_name: Name to be associated with resource
3171 */
3172int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3173 const char *res_name)
3174{
3175 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3176}
b7fe9434 3177EXPORT_SYMBOL(pci_request_selected_regions);
e8de1481 3178
3c78bc61
RD
3179int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3180 const char *res_name)
e8de1481
AV
3181{
3182 return __pci_request_selected_regions(pdev, bars, res_name,
3183 IORESOURCE_EXCLUSIVE);
3184}
b7fe9434 3185EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
e8de1481 3186
1da177e4
LT
3187/**
3188 * pci_release_regions - Release reserved PCI I/O and memory resources
3189 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3190 *
3191 * Releases all PCI I/O and memory resources previously reserved by a
3192 * successful call to pci_request_regions. Call this function only
3193 * after all use of the PCI regions has ceased.
3194 */
3195
3196void pci_release_regions(struct pci_dev *pdev)
3197{
c87deff7 3198 pci_release_selected_regions(pdev, (1 << 6) - 1);
1da177e4 3199}
b7fe9434 3200EXPORT_SYMBOL(pci_release_regions);
1da177e4
LT
3201
3202/**
3203 * pci_request_regions - Reserved PCI I/O and memory resources
3204 * @pdev: PCI device whose resources are to be reserved
3205 * @res_name: Name to be associated with resource.
3206 *
3207 * Mark all PCI regions associated with PCI device @pdev as
3208 * being reserved by owner @res_name. Do not access any
3209 * address inside the PCI regions unless this call returns
3210 * successfully.
3211 *
3212 * Returns 0 on success, or %EBUSY on error. A warning
3213 * message is also printed on failure.
3214 */
3c990e92 3215int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1da177e4 3216{
c87deff7 3217 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1da177e4 3218}
b7fe9434 3219EXPORT_SYMBOL(pci_request_regions);
1da177e4 3220
e8de1481
AV
3221/**
3222 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3223 * @pdev: PCI device whose resources are to be reserved
3224 * @res_name: Name to be associated with resource.
3225 *
3226 * Mark all PCI regions associated with PCI device @pdev as
3227 * being reserved by owner @res_name. Do not access any
3228 * address inside the PCI regions unless this call returns
3229 * successfully.
3230 *
3231 * pci_request_regions_exclusive() will mark the region so that
f7625980 3232 * /dev/mem and the sysfs MMIO access will not be allowed.
e8de1481
AV
3233 *
3234 * Returns 0 on success, or %EBUSY on error. A warning
3235 * message is also printed on failure.
3236 */
3237int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3238{
3239 return pci_request_selected_regions_exclusive(pdev,
3240 ((1 << 6) - 1), res_name);
3241}
b7fe9434 3242EXPORT_SYMBOL(pci_request_regions_exclusive);
e8de1481 3243
c5076cfe
TN
3244#ifdef PCI_IOBASE
3245struct io_range {
3246 struct list_head list;
3247 phys_addr_t start;
3248 resource_size_t size;
3249};
3250
3251static LIST_HEAD(io_range_list);
3252static DEFINE_SPINLOCK(io_range_lock);
3253#endif
3254
3255/*
3256 * Record the PCI IO range (expressed as CPU physical address + size).
3257 * Return a negative value if an error has occured, zero otherwise
3258 */
3259int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3260{
3261 int err = 0;
3262
3263#ifdef PCI_IOBASE
3264 struct io_range *range;
3265 resource_size_t allocated_size = 0;
3266
3267 /* check if the range hasn't been previously recorded */
3268 spin_lock(&io_range_lock);
3269 list_for_each_entry(range, &io_range_list, list) {
3270 if (addr >= range->start && addr + size <= range->start + size) {
3271 /* range already registered, bail out */
3272 goto end_register;
3273 }
3274 allocated_size += range->size;
3275 }
3276
3277 /* range not registed yet, check for available space */
3278 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3279 /* if it's too big check if 64K space can be reserved */
3280 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3281 err = -E2BIG;
3282 goto end_register;
3283 }
3284
3285 size = SZ_64K;
3286 pr_warn("Requested IO range too big, new size set to 64K\n");
3287 }
3288
3289 /* add the range to the list */
3290 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3291 if (!range) {
3292 err = -ENOMEM;
3293 goto end_register;
3294 }
3295
3296 range->start = addr;
3297 range->size = size;
3298
3299 list_add_tail(&range->list, &io_range_list);
3300
3301end_register:
3302 spin_unlock(&io_range_lock);
3303#endif
3304
3305 return err;
3306}
3307
3308phys_addr_t pci_pio_to_address(unsigned long pio)
3309{
3310 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3311
3312#ifdef PCI_IOBASE
3313 struct io_range *range;
3314 resource_size_t allocated_size = 0;
3315
3316 if (pio > IO_SPACE_LIMIT)
3317 return address;
3318
3319 spin_lock(&io_range_lock);
3320 list_for_each_entry(range, &io_range_list, list) {
3321 if (pio >= allocated_size && pio < allocated_size + range->size) {
3322 address = range->start + pio - allocated_size;
3323 break;
3324 }
3325 allocated_size += range->size;
3326 }
3327 spin_unlock(&io_range_lock);
3328#endif
3329
3330 return address;
3331}
3332
3333unsigned long __weak pci_address_to_pio(phys_addr_t address)
3334{
3335#ifdef PCI_IOBASE
3336 struct io_range *res;
3337 resource_size_t offset = 0;
3338 unsigned long addr = -1;
3339
3340 spin_lock(&io_range_lock);
3341 list_for_each_entry(res, &io_range_list, list) {
3342 if (address >= res->start && address < res->start + res->size) {
3343 addr = address - res->start + offset;
3344 break;
3345 }
3346 offset += res->size;
3347 }
3348 spin_unlock(&io_range_lock);
3349
3350 return addr;
3351#else
3352 if (address > IO_SPACE_LIMIT)
3353 return (unsigned long)-1;
3354
3355 return (unsigned long) address;
3356#endif
3357}
3358
8b921acf
LD
3359/**
3360 * pci_remap_iospace - Remap the memory mapped I/O space
3361 * @res: Resource describing the I/O space
3362 * @phys_addr: physical address of range to be mapped
3363 *
3364 * Remap the memory mapped I/O space described by the @res
3365 * and the CPU physical address @phys_addr into virtual address space.
3366 * Only architectures that have memory mapped IO functions defined
3367 * (and the PCI_IOBASE value defined) should call this function.
3368 */
7b309aef 3369int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
8b921acf
LD
3370{
3371#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3372 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3373
3374 if (!(res->flags & IORESOURCE_IO))
3375 return -EINVAL;
3376
3377 if (res->end > IO_SPACE_LIMIT)
3378 return -EINVAL;
3379
3380 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3381 pgprot_device(PAGE_KERNEL));
3382#else
3383 /* this architecture does not have memory mapped I/O space,
3384 so this function should never be called */
3385 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3386 return -ENODEV;
3387#endif
3388}
f90b0875 3389EXPORT_SYMBOL(pci_remap_iospace);
8b921acf 3390
4d3f1384
SK
3391/**
3392 * pci_unmap_iospace - Unmap the memory mapped I/O space
3393 * @res: resource to be unmapped
3394 *
3395 * Unmap the CPU virtual address @res from virtual address space.
3396 * Only architectures that have memory mapped IO functions defined
3397 * (and the PCI_IOBASE value defined) should call this function.
3398 */
3399void pci_unmap_iospace(struct resource *res)
3400{
3401#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3402 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3403
3404 unmap_kernel_range(vaddr, resource_size(res));
3405#endif
3406}
f90b0875 3407EXPORT_SYMBOL(pci_unmap_iospace);
4d3f1384 3408
490cb6dd
LP
3409/**
3410 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3411 * @dev: Generic device to remap IO address for
3412 * @offset: Resource address to map
3413 * @size: Size of map
3414 *
3415 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3416 * detach.
3417 */
3418void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3419 resource_size_t offset,
3420 resource_size_t size)
3421{
3422 void __iomem **ptr, *addr;
3423
3424 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3425 if (!ptr)
3426 return NULL;
3427
3428 addr = pci_remap_cfgspace(offset, size);
3429 if (addr) {
3430 *ptr = addr;
3431 devres_add(dev, ptr);
3432 } else
3433 devres_free(ptr);
3434
3435 return addr;
3436}
3437EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3438
3439/**
3440 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3441 * @dev: generic device to handle the resource for
3442 * @res: configuration space resource to be handled
3443 *
3444 * Checks that a resource is a valid memory region, requests the memory
3445 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3446 * proper PCI configuration space memory attributes are guaranteed.
3447 *
3448 * All operations are managed and will be undone on driver detach.
3449 *
3450 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3451 * on failure. Usage example:
3452 *
3453 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3454 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3455 * if (IS_ERR(base))
3456 * return PTR_ERR(base);
3457 */
3458void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3459 struct resource *res)
3460{
3461 resource_size_t size;
3462 const char *name;
3463 void __iomem *dest_ptr;
3464
3465 BUG_ON(!dev);
3466
3467 if (!res || resource_type(res) != IORESOURCE_MEM) {
3468 dev_err(dev, "invalid resource\n");
3469 return IOMEM_ERR_PTR(-EINVAL);
3470 }
3471
3472 size = resource_size(res);
3473 name = res->name ?: dev_name(dev);
3474
3475 if (!devm_request_mem_region(dev, res->start, size, name)) {
3476 dev_err(dev, "can't request region for resource %pR\n", res);
3477 return IOMEM_ERR_PTR(-EBUSY);
3478 }
3479
3480 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3481 if (!dest_ptr) {
3482 dev_err(dev, "ioremap failed for resource %pR\n", res);
3483 devm_release_mem_region(dev, res->start, size);
3484 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3485 }
3486
3487 return dest_ptr;
3488}
3489EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3490
6a479079
BH
3491static void __pci_set_master(struct pci_dev *dev, bool enable)
3492{
3493 u16 old_cmd, cmd;
3494
3495 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3496 if (enable)
3497 cmd = old_cmd | PCI_COMMAND_MASTER;
3498 else
3499 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3500 if (cmd != old_cmd) {
3501 dev_dbg(&dev->dev, "%s bus mastering\n",
3502 enable ? "enabling" : "disabling");
3503 pci_write_config_word(dev, PCI_COMMAND, cmd);
3504 }
3505 dev->is_busmaster = enable;
3506}
e8de1481 3507
2b6f2c35
MS
3508/**
3509 * pcibios_setup - process "pci=" kernel boot arguments
3510 * @str: string used to pass in "pci=" kernel boot arguments
3511 *
3512 * Process kernel boot arguments. This is the default implementation.
3513 * Architecture specific implementations can override this as necessary.
3514 */
3515char * __weak __init pcibios_setup(char *str)
3516{
3517 return str;
3518}
3519
96c55900
MS
3520/**
3521 * pcibios_set_master - enable PCI bus-mastering for device dev
3522 * @dev: the PCI device to enable
3523 *
3524 * Enables PCI bus-mastering for the device. This is the default
3525 * implementation. Architecture specific implementations can override
3526 * this if necessary.
3527 */
3528void __weak pcibios_set_master(struct pci_dev *dev)
3529{
3530 u8 lat;
3531
f676678f
MS
3532 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3533 if (pci_is_pcie(dev))
3534 return;
3535
96c55900
MS
3536 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3537 if (lat < 16)
3538 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3539 else if (lat > pcibios_max_latency)
3540 lat = pcibios_max_latency;
3541 else
3542 return;
a006482b 3543
96c55900
MS
3544 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3545}
3546
1da177e4
LT
3547/**
3548 * pci_set_master - enables bus-mastering for device dev
3549 * @dev: the PCI device to enable
3550 *
3551 * Enables bus-mastering on the device and calls pcibios_set_master()
3552 * to do the needed arch specific settings.
3553 */
6a479079 3554void pci_set_master(struct pci_dev *dev)
1da177e4 3555{
6a479079 3556 __pci_set_master(dev, true);
1da177e4
LT
3557 pcibios_set_master(dev);
3558}
b7fe9434 3559EXPORT_SYMBOL(pci_set_master);
1da177e4 3560
6a479079
BH
3561/**
3562 * pci_clear_master - disables bus-mastering for device dev
3563 * @dev: the PCI device to disable
3564 */
3565void pci_clear_master(struct pci_dev *dev)
3566{
3567 __pci_set_master(dev, false);
3568}
b7fe9434 3569EXPORT_SYMBOL(pci_clear_master);
6a479079 3570
1da177e4 3571/**
edb2d97e
MW
3572 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3573 * @dev: the PCI device for which MWI is to be enabled
1da177e4 3574 *
edb2d97e
MW
3575 * Helper function for pci_set_mwi.
3576 * Originally copied from drivers/net/acenic.c.
1da177e4
LT
3577 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3578 *
3579 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3580 */
15ea76d4 3581int pci_set_cacheline_size(struct pci_dev *dev)
1da177e4
LT
3582{
3583 u8 cacheline_size;
3584
3585 if (!pci_cache_line_size)
15ea76d4 3586 return -EINVAL;
1da177e4
LT
3587
3588 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3589 equal to or multiple of the right value. */
3590 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3591 if (cacheline_size >= pci_cache_line_size &&
3592 (cacheline_size % pci_cache_line_size) == 0)
3593 return 0;
3594
3595 /* Write the correct value. */
3596 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3597 /* Read it back. */
3598 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3599 if (cacheline_size == pci_cache_line_size)
3600 return 0;
3601
227f0647
RD
3602 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3603 pci_cache_line_size << 2);
1da177e4
LT
3604
3605 return -EINVAL;
3606}
15ea76d4
TH
3607EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3608
1da177e4
LT
3609/**
3610 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3611 * @dev: the PCI device for which MWI is enabled
3612 *
694625c0 3613 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1da177e4
LT
3614 *
3615 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3616 */
3c78bc61 3617int pci_set_mwi(struct pci_dev *dev)
1da177e4 3618{
b7fe9434
RD
3619#ifdef PCI_DISABLE_MWI
3620 return 0;
3621#else
1da177e4
LT
3622 int rc;
3623 u16 cmd;
3624
edb2d97e 3625 rc = pci_set_cacheline_size(dev);
1da177e4
LT
3626 if (rc)
3627 return rc;
3628
3629 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3c78bc61 3630 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
80ccba11 3631 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1da177e4
LT
3632 cmd |= PCI_COMMAND_INVALIDATE;
3633 pci_write_config_word(dev, PCI_COMMAND, cmd);
3634 }
1da177e4 3635 return 0;
b7fe9434 3636#endif
1da177e4 3637}
b7fe9434 3638EXPORT_SYMBOL(pci_set_mwi);
1da177e4 3639
694625c0
RD
3640/**
3641 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3642 * @dev: the PCI device for which MWI is enabled
3643 *
3644 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3645 * Callers are not required to check the return value.
3646 *
3647 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3648 */
3649int pci_try_set_mwi(struct pci_dev *dev)
3650{
b7fe9434
RD
3651#ifdef PCI_DISABLE_MWI
3652 return 0;
3653#else
3654 return pci_set_mwi(dev);
3655#endif
694625c0 3656}
b7fe9434 3657EXPORT_SYMBOL(pci_try_set_mwi);
694625c0 3658
1da177e4
LT
3659/**
3660 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3661 * @dev: the PCI device to disable
3662 *
3663 * Disables PCI Memory-Write-Invalidate transaction on the device
3664 */
3c78bc61 3665void pci_clear_mwi(struct pci_dev *dev)
1da177e4 3666{
b7fe9434 3667#ifndef PCI_DISABLE_MWI
1da177e4
LT
3668 u16 cmd;
3669
3670 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3671 if (cmd & PCI_COMMAND_INVALIDATE) {
3672 cmd &= ~PCI_COMMAND_INVALIDATE;
3673 pci_write_config_word(dev, PCI_COMMAND, cmd);
3674 }
b7fe9434 3675#endif
1da177e4 3676}
b7fe9434 3677EXPORT_SYMBOL(pci_clear_mwi);
1da177e4 3678
a04ce0ff
BR
3679/**
3680 * pci_intx - enables/disables PCI INTx for device dev
8f7020d3
RD
3681 * @pdev: the PCI device to operate on
3682 * @enable: boolean: whether to enable or disable PCI INTx
a04ce0ff
BR
3683 *
3684 * Enables/disables PCI INTx for device dev
3685 */
3c78bc61 3686void pci_intx(struct pci_dev *pdev, int enable)
a04ce0ff
BR
3687{
3688 u16 pci_command, new;
3689
3690 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3691
3c78bc61 3692 if (enable)
a04ce0ff 3693 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3c78bc61 3694 else
a04ce0ff 3695 new = pci_command | PCI_COMMAND_INTX_DISABLE;
a04ce0ff
BR
3696
3697 if (new != pci_command) {
9ac7849e
TH
3698 struct pci_devres *dr;
3699
2fd9d74b 3700 pci_write_config_word(pdev, PCI_COMMAND, new);
9ac7849e
TH
3701
3702 dr = find_pci_dr(pdev);
3703 if (dr && !dr->restore_intx) {
3704 dr->restore_intx = 1;
3705 dr->orig_intx = !enable;
3706 }
a04ce0ff
BR
3707 }
3708}
b7fe9434 3709EXPORT_SYMBOL_GPL(pci_intx);
a04ce0ff 3710
a2e27787
JK
3711/**
3712 * pci_intx_mask_supported - probe for INTx masking support
6e9292c5 3713 * @dev: the PCI device to operate on
a2e27787
JK
3714 *
3715 * Check if the device dev support INTx masking via the config space
3716 * command word.
3717 */
3718bool pci_intx_mask_supported(struct pci_dev *dev)
3719{
3720 bool mask_supported = false;
3721 u16 orig, new;
3722
fbebb9fd
BH
3723 if (dev->broken_intx_masking)
3724 return false;
3725
a2e27787
JK
3726 pci_cfg_access_lock(dev);
3727
3728 pci_read_config_word(dev, PCI_COMMAND, &orig);
3729 pci_write_config_word(dev, PCI_COMMAND,
3730 orig ^ PCI_COMMAND_INTX_DISABLE);
3731 pci_read_config_word(dev, PCI_COMMAND, &new);
3732
3733 /*
3734 * There's no way to protect against hardware bugs or detect them
3735 * reliably, but as long as we know what the value should be, let's
3736 * go ahead and check it.
3737 */
3738 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
227f0647
RD
3739 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3740 orig, new);
a2e27787
JK
3741 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3742 mask_supported = true;
3743 pci_write_config_word(dev, PCI_COMMAND, orig);
3744 }
3745
3746 pci_cfg_access_unlock(dev);
3747 return mask_supported;
3748}
3749EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3750
3751static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3752{
3753 struct pci_bus *bus = dev->bus;
3754 bool mask_updated = true;
3755 u32 cmd_status_dword;
3756 u16 origcmd, newcmd;
3757 unsigned long flags;
3758 bool irq_pending;
3759
3760 /*
3761 * We do a single dword read to retrieve both command and status.
3762 * Document assumptions that make this possible.
3763 */
3764 BUILD_BUG_ON(PCI_COMMAND % 4);
3765 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3766
3767 raw_spin_lock_irqsave(&pci_lock, flags);
3768
3769 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3770
3771 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3772
3773 /*
3774 * Check interrupt status register to see whether our device
3775 * triggered the interrupt (when masking) or the next IRQ is
3776 * already pending (when unmasking).
3777 */
3778 if (mask != irq_pending) {
3779 mask_updated = false;
3780 goto done;
3781 }
3782
3783 origcmd = cmd_status_dword;
3784 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3785 if (mask)
3786 newcmd |= PCI_COMMAND_INTX_DISABLE;
3787 if (newcmd != origcmd)
3788 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3789
3790done:
3791 raw_spin_unlock_irqrestore(&pci_lock, flags);
3792
3793 return mask_updated;
3794}
3795
3796/**
3797 * pci_check_and_mask_intx - mask INTx on pending interrupt
6e9292c5 3798 * @dev: the PCI device to operate on
a2e27787
JK
3799 *
3800 * Check if the device dev has its INTx line asserted, mask it and
3801 * return true in that case. False is returned if not interrupt was
3802 * pending.
3803 */
3804bool pci_check_and_mask_intx(struct pci_dev *dev)
3805{
3806 return pci_check_and_set_intx_mask(dev, true);
3807}
3808EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3809
3810/**
ebd50b93 3811 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
6e9292c5 3812 * @dev: the PCI device to operate on
a2e27787
JK
3813 *
3814 * Check if the device dev has its INTx line asserted, unmask it if not
3815 * and return true. False is returned and the mask remains active if
3816 * there was still an interrupt pending.
3817 */
3818bool pci_check_and_unmask_intx(struct pci_dev *dev)
3819{
3820 return pci_check_and_set_intx_mask(dev, false);
3821}
3822EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3823
3775a209
CL
3824/**
3825 * pci_wait_for_pending_transaction - waits for pending transaction
3826 * @dev: the PCI device to operate on
3827 *
3828 * Return 0 if transaction is pending 1 otherwise.
3829 */
3830int pci_wait_for_pending_transaction(struct pci_dev *dev)
8dd7f803 3831{
157e876f
AW
3832 if (!pci_is_pcie(dev))
3833 return 1;
8c1c699f 3834
d0b4cc4e
GS
3835 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3836 PCI_EXP_DEVSTA_TRPND);
3775a209
CL
3837}
3838EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3839
5adecf81
AW
3840/*
3841 * We should only need to wait 100ms after FLR, but some devices take longer.
3842 * Wait for up to 1000ms for config space to return something other than -1.
3843 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3844 * dword because VFs don't implement the 1st dword.
3845 */
3846static void pci_flr_wait(struct pci_dev *dev)
3847{
3848 int i = 0;
3849 u32 id;
3850
3851 do {
3852 msleep(100);
3853 pci_read_config_dword(dev, PCI_COMMAND, &id);
3854 } while (i++ < 10 && id == ~0);
3855
3856 if (id == ~0)
3857 dev_warn(&dev->dev, "Failed to return from FLR\n");
3858 else if (i > 1)
3859 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3860 (i - 1) * 100);
3861}
3862
a60a2b73
CH
3863/**
3864 * pcie_has_flr - check if a device supports function level resets
3865 * @dev: device to check
3866 *
3867 * Returns true if the device advertises support for PCIe function level
3868 * resets.
3869 */
3870static bool pcie_has_flr(struct pci_dev *dev)
3775a209
CL
3871{
3872 u32 cap;
3873
f65fd1aa 3874 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
a60a2b73 3875 return false;
3775a209 3876
a60a2b73
CH
3877 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3878 return cap & PCI_EXP_DEVCAP_FLR;
3879}
3775a209 3880
a60a2b73
CH
3881/**
3882 * pcie_flr - initiate a PCIe function level reset
3883 * @dev: device to reset
3884 *
3885 * Initiate a function level reset on @dev. The caller should ensure the
3886 * device supports FLR before calling this function, e.g. by using the
3887 * pcie_has_flr() helper.
3888 */
3889void pcie_flr(struct pci_dev *dev)
3890{
3775a209 3891 if (!pci_wait_for_pending_transaction(dev))
bb383e28 3892 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
8c1c699f 3893
59875ae4 3894 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
5adecf81 3895 pci_flr_wait(dev);
8dd7f803 3896}
a60a2b73 3897EXPORT_SYMBOL_GPL(pcie_flr);
d91cdc74 3898
8c1c699f 3899static int pci_af_flr(struct pci_dev *dev, int probe)
1ca88797 3900{
8c1c699f 3901 int pos;
1ca88797
SY
3902 u8 cap;
3903
8c1c699f
YZ
3904 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3905 if (!pos)
1ca88797 3906 return -ENOTTY;
8c1c699f 3907
f65fd1aa
SN
3908 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3909 return -ENOTTY;
3910
8c1c699f 3911 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
1ca88797
SY
3912 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3913 return -ENOTTY;
3914
3915 if (probe)
3916 return 0;
3917
d066c946
AW
3918 /*
3919 * Wait for Transaction Pending bit to clear. A word-aligned test
3920 * is used, so we use the conrol offset rather than status and shift
3921 * the test bit to match.
3922 */
bb383e28 3923 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
d066c946 3924 PCI_AF_STATUS_TP << 8))
bb383e28 3925 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
5fe5db05 3926
8c1c699f 3927 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
5adecf81 3928 pci_flr_wait(dev);
1ca88797
SY
3929 return 0;
3930}
3931
83d74e03
RW
3932/**
3933 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3934 * @dev: Device to reset.
3935 * @probe: If set, only check if the device can be reset this way.
3936 *
3937 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3938 * unset, it will be reinitialized internally when going from PCI_D3hot to
3939 * PCI_D0. If that's the case and the device is not in a low-power state
3940 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3941 *
3942 * NOTE: This causes the caller to sleep for twice the device power transition
3943 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
f7625980 3944 * by default (i.e. unless the @dev's d3_delay field has a different value).
83d74e03
RW
3945 * Moreover, only devices in D0 can be reset by this function.
3946 */
f85876ba 3947static int pci_pm_reset(struct pci_dev *dev, int probe)
d91cdc74 3948{
f85876ba
YZ
3949 u16 csr;
3950
51e53738 3951 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
f85876ba 3952 return -ENOTTY;
d91cdc74 3953
f85876ba
YZ
3954 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3955 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3956 return -ENOTTY;
d91cdc74 3957
f85876ba
YZ
3958 if (probe)
3959 return 0;
1ca88797 3960
f85876ba
YZ
3961 if (dev->current_state != PCI_D0)
3962 return -EINVAL;
3963
3964 csr &= ~PCI_PM_CTRL_STATE_MASK;
3965 csr |= PCI_D3hot;
3966 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 3967 pci_dev_d3_sleep(dev);
f85876ba
YZ
3968
3969 csr &= ~PCI_PM_CTRL_STATE_MASK;
3970 csr |= PCI_D0;
3971 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 3972 pci_dev_d3_sleep(dev);
f85876ba
YZ
3973
3974 return 0;
3975}
3976
9e33002f 3977void pci_reset_secondary_bus(struct pci_dev *dev)
c12ff1df
YZ
3978{
3979 u16 ctrl;
64e8674f
AW
3980
3981 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3982 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3983 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
3984 /*
3985 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
f7625980 3986 * this to 2ms to ensure that we meet the minimum requirement.
de0c548c
AW
3987 */
3988 msleep(2);
64e8674f
AW
3989
3990 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3991 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
3992
3993 /*
3994 * Trhfa for conventional PCI is 2^25 clock cycles.
3995 * Assuming a minimum 33MHz clock this results in a 1s
3996 * delay before we can consider subordinate devices to
3997 * be re-initialized. PCIe has some ways to shorten this,
3998 * but we don't make use of them yet.
3999 */
4000 ssleep(1);
64e8674f 4001}
d92a208d 4002
9e33002f
GS
4003void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4004{
4005 pci_reset_secondary_bus(dev);
4006}
4007
d92a208d
GS
4008/**
4009 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4010 * @dev: Bridge device
4011 *
4012 * Use the bridge control register to assert reset on the secondary bus.
4013 * Devices on the secondary bus are left in power-on state.
4014 */
4015void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4016{
4017 pcibios_reset_secondary_bus(dev);
4018}
64e8674f
AW
4019EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4020
4021static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4022{
c12ff1df
YZ
4023 struct pci_dev *pdev;
4024
f331a859
AW
4025 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4026 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
c12ff1df
YZ
4027 return -ENOTTY;
4028
4029 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4030 if (pdev != dev)
4031 return -ENOTTY;
4032
4033 if (probe)
4034 return 0;
4035
64e8674f 4036 pci_reset_bridge_secondary_bus(dev->bus->self);
c12ff1df
YZ
4037
4038 return 0;
4039}
4040
608c3881
AW
4041static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4042{
4043 int rc = -ENOTTY;
4044
4045 if (!hotplug || !try_module_get(hotplug->ops->owner))
4046 return rc;
4047
4048 if (hotplug->ops->reset_slot)
4049 rc = hotplug->ops->reset_slot(hotplug, probe);
4050
4051 module_put(hotplug->ops->owner);
4052
4053 return rc;
4054}
4055
4056static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4057{
4058 struct pci_dev *pdev;
4059
f331a859
AW
4060 if (dev->subordinate || !dev->slot ||
4061 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
608c3881
AW
4062 return -ENOTTY;
4063
4064 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4065 if (pdev != dev && pdev->slot == dev->slot)
4066 return -ENOTTY;
4067
4068 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4069}
4070
977f857c 4071static int __pci_dev_reset(struct pci_dev *dev, int probe)
d91cdc74 4072{
8c1c699f
YZ
4073 int rc;
4074
4075 might_sleep();
4076
b9c3b266
DC
4077 rc = pci_dev_specific_reset(dev, probe);
4078 if (rc != -ENOTTY)
4079 goto done;
4080
a60a2b73
CH
4081 if (pcie_has_flr(dev)) {
4082 if (!probe)
4083 pcie_flr(dev);
4084 rc = 0;
8c1c699f 4085 goto done;
a60a2b73 4086 }
d91cdc74 4087
8c1c699f 4088 rc = pci_af_flr(dev, probe);
f85876ba
YZ
4089 if (rc != -ENOTTY)
4090 goto done;
4091
4092 rc = pci_pm_reset(dev, probe);
c12ff1df
YZ
4093 if (rc != -ENOTTY)
4094 goto done;
4095
608c3881
AW
4096 rc = pci_dev_reset_slot_function(dev, probe);
4097 if (rc != -ENOTTY)
4098 goto done;
4099
c12ff1df 4100 rc = pci_parent_bus_reset(dev, probe);
8c1c699f 4101done:
977f857c
KRW
4102 return rc;
4103}
4104
77cb985a
AW
4105static void pci_dev_lock(struct pci_dev *dev)
4106{
4107 pci_cfg_access_lock(dev);
4108 /* block PM suspend, driver probe, etc. */
4109 device_lock(&dev->dev);
4110}
4111
61cf16d8
AW
4112/* Return 1 on successful lock, 0 on contention */
4113static int pci_dev_trylock(struct pci_dev *dev)
4114{
4115 if (pci_cfg_access_trylock(dev)) {
4116 if (device_trylock(&dev->dev))
4117 return 1;
4118 pci_cfg_access_unlock(dev);
4119 }
4120
4121 return 0;
4122}
4123
77cb985a
AW
4124static void pci_dev_unlock(struct pci_dev *dev)
4125{
4126 device_unlock(&dev->dev);
4127 pci_cfg_access_unlock(dev);
4128}
4129
3ebe7f9f
KB
4130/**
4131 * pci_reset_notify - notify device driver of reset
4132 * @dev: device to be notified of reset
4133 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4134 * completed
4135 *
4136 * Must be called prior to device access being disabled and after device
4137 * access is restored.
4138 */
4139static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4140{
4141 const struct pci_error_handlers *err_handler =
4142 dev->driver ? dev->driver->err_handler : NULL;
4143 if (err_handler && err_handler->reset_notify)
4144 err_handler->reset_notify(dev, prepare);
4145}
4146
77cb985a
AW
4147static void pci_dev_save_and_disable(struct pci_dev *dev)
4148{
3ebe7f9f
KB
4149 pci_reset_notify(dev, true);
4150
a6cbaade
AW
4151 /*
4152 * Wake-up device prior to save. PM registers default to D0 after
4153 * reset and a simple register restore doesn't reliably return
4154 * to a non-D0 state anyway.
4155 */
4156 pci_set_power_state(dev, PCI_D0);
4157
77cb985a
AW
4158 pci_save_state(dev);
4159 /*
4160 * Disable the device by clearing the Command register, except for
4161 * INTx-disable which is set. This not only disables MMIO and I/O port
4162 * BARs, but also prevents the device from being Bus Master, preventing
4163 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4164 * compliant devices, INTx-disable prevents legacy interrupts.
4165 */
4166 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4167}
4168
4169static void pci_dev_restore(struct pci_dev *dev)
4170{
4171 pci_restore_state(dev);
3ebe7f9f 4172 pci_reset_notify(dev, false);
77cb985a
AW
4173}
4174
977f857c
KRW
4175static int pci_dev_reset(struct pci_dev *dev, int probe)
4176{
4177 int rc;
4178
77cb985a
AW
4179 if (!probe)
4180 pci_dev_lock(dev);
977f857c
KRW
4181
4182 rc = __pci_dev_reset(dev, probe);
4183
77cb985a
AW
4184 if (!probe)
4185 pci_dev_unlock(dev);
4186
8c1c699f 4187 return rc;
d91cdc74 4188}
3ebe7f9f 4189
d91cdc74 4190/**
8c1c699f
YZ
4191 * __pci_reset_function - reset a PCI device function
4192 * @dev: PCI device to reset
d91cdc74
SY
4193 *
4194 * Some devices allow an individual function to be reset without affecting
4195 * other functions in the same device. The PCI device must be responsive
4196 * to PCI config space in order to use this function.
4197 *
4198 * The device function is presumed to be unused when this function is called.
4199 * Resetting the device will make the contents of PCI configuration space
4200 * random, so any caller of this must be prepared to reinitialise the
4201 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4202 * etc.
4203 *
8c1c699f 4204 * Returns 0 if the device function was successfully reset or negative if the
d91cdc74
SY
4205 * device doesn't support resetting a single function.
4206 */
8c1c699f 4207int __pci_reset_function(struct pci_dev *dev)
d91cdc74 4208{
8c1c699f 4209 return pci_dev_reset(dev, 0);
d91cdc74 4210}
8c1c699f 4211EXPORT_SYMBOL_GPL(__pci_reset_function);
8dd7f803 4212
6fbf9e7a
KRW
4213/**
4214 * __pci_reset_function_locked - reset a PCI device function while holding
4215 * the @dev mutex lock.
4216 * @dev: PCI device to reset
4217 *
4218 * Some devices allow an individual function to be reset without affecting
4219 * other functions in the same device. The PCI device must be responsive
4220 * to PCI config space in order to use this function.
4221 *
4222 * The device function is presumed to be unused and the caller is holding
4223 * the device mutex lock when this function is called.
4224 * Resetting the device will make the contents of PCI configuration space
4225 * random, so any caller of this must be prepared to reinitialise the
4226 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4227 * etc.
4228 *
4229 * Returns 0 if the device function was successfully reset or negative if the
4230 * device doesn't support resetting a single function.
4231 */
4232int __pci_reset_function_locked(struct pci_dev *dev)
4233{
977f857c 4234 return __pci_dev_reset(dev, 0);
6fbf9e7a
KRW
4235}
4236EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4237
711d5779
MT
4238/**
4239 * pci_probe_reset_function - check whether the device can be safely reset
4240 * @dev: PCI device to reset
4241 *
4242 * Some devices allow an individual function to be reset without affecting
4243 * other functions in the same device. The PCI device must be responsive
4244 * to PCI config space in order to use this function.
4245 *
4246 * Returns 0 if the device function can be reset or negative if the
4247 * device doesn't support resetting a single function.
4248 */
4249int pci_probe_reset_function(struct pci_dev *dev)
4250{
4251 return pci_dev_reset(dev, 1);
4252}
4253
8dd7f803 4254/**
8c1c699f
YZ
4255 * pci_reset_function - quiesce and reset a PCI device function
4256 * @dev: PCI device to reset
8dd7f803
SY
4257 *
4258 * Some devices allow an individual function to be reset without affecting
4259 * other functions in the same device. The PCI device must be responsive
4260 * to PCI config space in order to use this function.
4261 *
4262 * This function does not just reset the PCI portion of a device, but
4263 * clears all the state associated with the device. This function differs
8c1c699f 4264 * from __pci_reset_function in that it saves and restores device state
8dd7f803
SY
4265 * over the reset.
4266 *
8c1c699f 4267 * Returns 0 if the device function was successfully reset or negative if the
8dd7f803
SY
4268 * device doesn't support resetting a single function.
4269 */
4270int pci_reset_function(struct pci_dev *dev)
4271{
8c1c699f 4272 int rc;
8dd7f803 4273
8c1c699f
YZ
4274 rc = pci_dev_reset(dev, 1);
4275 if (rc)
4276 return rc;
8dd7f803 4277
77cb985a 4278 pci_dev_save_and_disable(dev);
8dd7f803 4279
8c1c699f 4280 rc = pci_dev_reset(dev, 0);
8dd7f803 4281
77cb985a 4282 pci_dev_restore(dev);
8dd7f803 4283
8c1c699f 4284 return rc;
8dd7f803
SY
4285}
4286EXPORT_SYMBOL_GPL(pci_reset_function);
4287
61cf16d8
AW
4288/**
4289 * pci_try_reset_function - quiesce and reset a PCI device function
4290 * @dev: PCI device to reset
4291 *
4292 * Same as above, except return -EAGAIN if unable to lock device.
4293 */
4294int pci_try_reset_function(struct pci_dev *dev)
4295{
4296 int rc;
4297
4298 rc = pci_dev_reset(dev, 1);
4299 if (rc)
4300 return rc;
4301
4302 pci_dev_save_and_disable(dev);
4303
4304 if (pci_dev_trylock(dev)) {
4305 rc = __pci_dev_reset(dev, 0);
4306 pci_dev_unlock(dev);
4307 } else
4308 rc = -EAGAIN;
4309
4310 pci_dev_restore(dev);
4311
4312 return rc;
4313}
4314EXPORT_SYMBOL_GPL(pci_try_reset_function);
4315
f331a859
AW
4316/* Do any devices on or below this bus prevent a bus reset? */
4317static bool pci_bus_resetable(struct pci_bus *bus)
4318{
4319 struct pci_dev *dev;
4320
4321 list_for_each_entry(dev, &bus->devices, bus_list) {
4322 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4323 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4324 return false;
4325 }
4326
4327 return true;
4328}
4329
090a3c53
AW
4330/* Lock devices from the top of the tree down */
4331static void pci_bus_lock(struct pci_bus *bus)
4332{
4333 struct pci_dev *dev;
4334
4335 list_for_each_entry(dev, &bus->devices, bus_list) {
4336 pci_dev_lock(dev);
4337 if (dev->subordinate)
4338 pci_bus_lock(dev->subordinate);
4339 }
4340}
4341
4342/* Unlock devices from the bottom of the tree up */
4343static void pci_bus_unlock(struct pci_bus *bus)
4344{
4345 struct pci_dev *dev;
4346
4347 list_for_each_entry(dev, &bus->devices, bus_list) {
4348 if (dev->subordinate)
4349 pci_bus_unlock(dev->subordinate);
4350 pci_dev_unlock(dev);
4351 }
4352}
4353
61cf16d8
AW
4354/* Return 1 on successful lock, 0 on contention */
4355static int pci_bus_trylock(struct pci_bus *bus)
4356{
4357 struct pci_dev *dev;
4358
4359 list_for_each_entry(dev, &bus->devices, bus_list) {
4360 if (!pci_dev_trylock(dev))
4361 goto unlock;
4362 if (dev->subordinate) {
4363 if (!pci_bus_trylock(dev->subordinate)) {
4364 pci_dev_unlock(dev);
4365 goto unlock;
4366 }
4367 }
4368 }
4369 return 1;
4370
4371unlock:
4372 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4373 if (dev->subordinate)
4374 pci_bus_unlock(dev->subordinate);
4375 pci_dev_unlock(dev);
4376 }
4377 return 0;
4378}
4379
f331a859
AW
4380/* Do any devices on or below this slot prevent a bus reset? */
4381static bool pci_slot_resetable(struct pci_slot *slot)
4382{
4383 struct pci_dev *dev;
4384
4385 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4386 if (!dev->slot || dev->slot != slot)
4387 continue;
4388 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4389 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4390 return false;
4391 }
4392
4393 return true;
4394}
4395
090a3c53
AW
4396/* Lock devices from the top of the tree down */
4397static void pci_slot_lock(struct pci_slot *slot)
4398{
4399 struct pci_dev *dev;
4400
4401 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4402 if (!dev->slot || dev->slot != slot)
4403 continue;
4404 pci_dev_lock(dev);
4405 if (dev->subordinate)
4406 pci_bus_lock(dev->subordinate);
4407 }
4408}
4409
4410/* Unlock devices from the bottom of the tree up */
4411static void pci_slot_unlock(struct pci_slot *slot)
4412{
4413 struct pci_dev *dev;
4414
4415 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4416 if (!dev->slot || dev->slot != slot)
4417 continue;
4418 if (dev->subordinate)
4419 pci_bus_unlock(dev->subordinate);
4420 pci_dev_unlock(dev);
4421 }
4422}
4423
61cf16d8
AW
4424/* Return 1 on successful lock, 0 on contention */
4425static int pci_slot_trylock(struct pci_slot *slot)
4426{
4427 struct pci_dev *dev;
4428
4429 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4430 if (!dev->slot || dev->slot != slot)
4431 continue;
4432 if (!pci_dev_trylock(dev))
4433 goto unlock;
4434 if (dev->subordinate) {
4435 if (!pci_bus_trylock(dev->subordinate)) {
4436 pci_dev_unlock(dev);
4437 goto unlock;
4438 }
4439 }
4440 }
4441 return 1;
4442
4443unlock:
4444 list_for_each_entry_continue_reverse(dev,
4445 &slot->bus->devices, bus_list) {
4446 if (!dev->slot || dev->slot != slot)
4447 continue;
4448 if (dev->subordinate)
4449 pci_bus_unlock(dev->subordinate);
4450 pci_dev_unlock(dev);
4451 }
4452 return 0;
4453}
4454
090a3c53
AW
4455/* Save and disable devices from the top of the tree down */
4456static void pci_bus_save_and_disable(struct pci_bus *bus)
4457{
4458 struct pci_dev *dev;
4459
4460 list_for_each_entry(dev, &bus->devices, bus_list) {
4461 pci_dev_save_and_disable(dev);
4462 if (dev->subordinate)
4463 pci_bus_save_and_disable(dev->subordinate);
4464 }
4465}
4466
4467/*
4468 * Restore devices from top of the tree down - parent bridges need to be
4469 * restored before we can get to subordinate devices.
4470 */
4471static void pci_bus_restore(struct pci_bus *bus)
4472{
4473 struct pci_dev *dev;
4474
4475 list_for_each_entry(dev, &bus->devices, bus_list) {
4476 pci_dev_restore(dev);
4477 if (dev->subordinate)
4478 pci_bus_restore(dev->subordinate);
4479 }
4480}
4481
4482/* Save and disable devices from the top of the tree down */
4483static void pci_slot_save_and_disable(struct pci_slot *slot)
4484{
4485 struct pci_dev *dev;
4486
4487 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4488 if (!dev->slot || dev->slot != slot)
4489 continue;
4490 pci_dev_save_and_disable(dev);
4491 if (dev->subordinate)
4492 pci_bus_save_and_disable(dev->subordinate);
4493 }
4494}
4495
4496/*
4497 * Restore devices from top of the tree down - parent bridges need to be
4498 * restored before we can get to subordinate devices.
4499 */
4500static void pci_slot_restore(struct pci_slot *slot)
4501{
4502 struct pci_dev *dev;
4503
4504 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4505 if (!dev->slot || dev->slot != slot)
4506 continue;
4507 pci_dev_restore(dev);
4508 if (dev->subordinate)
4509 pci_bus_restore(dev->subordinate);
4510 }
4511}
4512
4513static int pci_slot_reset(struct pci_slot *slot, int probe)
4514{
4515 int rc;
4516
f331a859 4517 if (!slot || !pci_slot_resetable(slot))
090a3c53
AW
4518 return -ENOTTY;
4519
4520 if (!probe)
4521 pci_slot_lock(slot);
4522
4523 might_sleep();
4524
4525 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4526
4527 if (!probe)
4528 pci_slot_unlock(slot);
4529
4530 return rc;
4531}
4532
9a3d2b9b
AW
4533/**
4534 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4535 * @slot: PCI slot to probe
4536 *
4537 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4538 */
4539int pci_probe_reset_slot(struct pci_slot *slot)
4540{
4541 return pci_slot_reset(slot, 1);
4542}
4543EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4544
090a3c53
AW
4545/**
4546 * pci_reset_slot - reset a PCI slot
4547 * @slot: PCI slot to reset
4548 *
4549 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4550 * independent of other slots. For instance, some slots may support slot power
4551 * control. In the case of a 1:1 bus to slot architecture, this function may
4552 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4553 * Generally a slot reset should be attempted before a bus reset. All of the
4554 * function of the slot and any subordinate buses behind the slot are reset
4555 * through this function. PCI config space of all devices in the slot and
4556 * behind the slot is saved before and restored after reset.
4557 *
4558 * Return 0 on success, non-zero on error.
4559 */
4560int pci_reset_slot(struct pci_slot *slot)
4561{
4562 int rc;
4563
4564 rc = pci_slot_reset(slot, 1);
4565 if (rc)
4566 return rc;
4567
4568 pci_slot_save_and_disable(slot);
4569
4570 rc = pci_slot_reset(slot, 0);
4571
4572 pci_slot_restore(slot);
4573
4574 return rc;
4575}
4576EXPORT_SYMBOL_GPL(pci_reset_slot);
4577
61cf16d8
AW
4578/**
4579 * pci_try_reset_slot - Try to reset a PCI slot
4580 * @slot: PCI slot to reset
4581 *
4582 * Same as above except return -EAGAIN if the slot cannot be locked
4583 */
4584int pci_try_reset_slot(struct pci_slot *slot)
4585{
4586 int rc;
4587
4588 rc = pci_slot_reset(slot, 1);
4589 if (rc)
4590 return rc;
4591
4592 pci_slot_save_and_disable(slot);
4593
4594 if (pci_slot_trylock(slot)) {
4595 might_sleep();
4596 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4597 pci_slot_unlock(slot);
4598 } else
4599 rc = -EAGAIN;
4600
4601 pci_slot_restore(slot);
4602
4603 return rc;
4604}
4605EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4606
090a3c53
AW
4607static int pci_bus_reset(struct pci_bus *bus, int probe)
4608{
f331a859 4609 if (!bus->self || !pci_bus_resetable(bus))
090a3c53
AW
4610 return -ENOTTY;
4611
4612 if (probe)
4613 return 0;
4614
4615 pci_bus_lock(bus);
4616
4617 might_sleep();
4618
4619 pci_reset_bridge_secondary_bus(bus->self);
4620
4621 pci_bus_unlock(bus);
4622
4623 return 0;
4624}
4625
9a3d2b9b
AW
4626/**
4627 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4628 * @bus: PCI bus to probe
4629 *
4630 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4631 */
4632int pci_probe_reset_bus(struct pci_bus *bus)
4633{
4634 return pci_bus_reset(bus, 1);
4635}
4636EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4637
090a3c53
AW
4638/**
4639 * pci_reset_bus - reset a PCI bus
4640 * @bus: top level PCI bus to reset
4641 *
4642 * Do a bus reset on the given bus and any subordinate buses, saving
4643 * and restoring state of all devices.
4644 *
4645 * Return 0 on success, non-zero on error.
4646 */
4647int pci_reset_bus(struct pci_bus *bus)
4648{
4649 int rc;
4650
4651 rc = pci_bus_reset(bus, 1);
4652 if (rc)
4653 return rc;
4654
4655 pci_bus_save_and_disable(bus);
4656
4657 rc = pci_bus_reset(bus, 0);
4658
4659 pci_bus_restore(bus);
4660
4661 return rc;
4662}
4663EXPORT_SYMBOL_GPL(pci_reset_bus);
4664
61cf16d8
AW
4665/**
4666 * pci_try_reset_bus - Try to reset a PCI bus
4667 * @bus: top level PCI bus to reset
4668 *
4669 * Same as above except return -EAGAIN if the bus cannot be locked
4670 */
4671int pci_try_reset_bus(struct pci_bus *bus)
4672{
4673 int rc;
4674
4675 rc = pci_bus_reset(bus, 1);
4676 if (rc)
4677 return rc;
4678
4679 pci_bus_save_and_disable(bus);
4680
4681 if (pci_bus_trylock(bus)) {
4682 might_sleep();
4683 pci_reset_bridge_secondary_bus(bus->self);
4684 pci_bus_unlock(bus);
4685 } else
4686 rc = -EAGAIN;
4687
4688 pci_bus_restore(bus);
4689
4690 return rc;
4691}
4692EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4693
d556ad4b
PO
4694/**
4695 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4696 * @dev: PCI device to query
4697 *
4698 * Returns mmrbc: maximum designed memory read count in bytes
4699 * or appropriate error value.
4700 */
4701int pcix_get_max_mmrbc(struct pci_dev *dev)
4702{
7c9e2b1c 4703 int cap;
d556ad4b
PO
4704 u32 stat;
4705
4706 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4707 if (!cap)
4708 return -EINVAL;
4709
7c9e2b1c 4710 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
d556ad4b
PO
4711 return -EINVAL;
4712
25daeb55 4713 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
d556ad4b
PO
4714}
4715EXPORT_SYMBOL(pcix_get_max_mmrbc);
4716
4717/**
4718 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4719 * @dev: PCI device to query
4720 *
4721 * Returns mmrbc: maximum memory read count in bytes
4722 * or appropriate error value.
4723 */
4724int pcix_get_mmrbc(struct pci_dev *dev)
4725{
7c9e2b1c 4726 int cap;
bdc2bda7 4727 u16 cmd;
d556ad4b
PO
4728
4729 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4730 if (!cap)
4731 return -EINVAL;
4732
7c9e2b1c
DN
4733 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4734 return -EINVAL;
d556ad4b 4735
7c9e2b1c 4736 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
d556ad4b
PO
4737}
4738EXPORT_SYMBOL(pcix_get_mmrbc);
4739
4740/**
4741 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4742 * @dev: PCI device to query
4743 * @mmrbc: maximum memory read count in bytes
4744 * valid values are 512, 1024, 2048, 4096
4745 *
4746 * If possible sets maximum memory read byte count, some bridges have erratas
4747 * that prevent this.
4748 */
4749int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4750{
7c9e2b1c 4751 int cap;
bdc2bda7
DN
4752 u32 stat, v, o;
4753 u16 cmd;
d556ad4b 4754
229f5afd 4755 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
7c9e2b1c 4756 return -EINVAL;
d556ad4b
PO
4757
4758 v = ffs(mmrbc) - 10;
4759
4760 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4761 if (!cap)
7c9e2b1c 4762 return -EINVAL;
d556ad4b 4763
7c9e2b1c
DN
4764 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4765 return -EINVAL;
d556ad4b
PO
4766
4767 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4768 return -E2BIG;
4769
7c9e2b1c
DN
4770 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4771 return -EINVAL;
d556ad4b
PO
4772
4773 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4774 if (o != v) {
809a3bf9 4775 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
d556ad4b
PO
4776 return -EIO;
4777
4778 cmd &= ~PCI_X_CMD_MAX_READ;
4779 cmd |= v << 2;
7c9e2b1c
DN
4780 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4781 return -EIO;
d556ad4b 4782 }
7c9e2b1c 4783 return 0;
d556ad4b
PO
4784}
4785EXPORT_SYMBOL(pcix_set_mmrbc);
4786
4787/**
4788 * pcie_get_readrq - get PCI Express read request size
4789 * @dev: PCI device to query
4790 *
4791 * Returns maximum memory read request in bytes
4792 * or appropriate error value.
4793 */
4794int pcie_get_readrq(struct pci_dev *dev)
4795{
d556ad4b
PO
4796 u16 ctl;
4797
59875ae4 4798 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
d556ad4b 4799
59875ae4 4800 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
d556ad4b
PO
4801}
4802EXPORT_SYMBOL(pcie_get_readrq);
4803
4804/**
4805 * pcie_set_readrq - set PCI Express maximum memory read request
4806 * @dev: PCI device to query
42e61f4a 4807 * @rq: maximum memory read count in bytes
d556ad4b
PO
4808 * valid values are 128, 256, 512, 1024, 2048, 4096
4809 *
c9b378c7 4810 * If possible sets maximum memory read request in bytes
d556ad4b
PO
4811 */
4812int pcie_set_readrq(struct pci_dev *dev, int rq)
4813{
59875ae4 4814 u16 v;
d556ad4b 4815
229f5afd 4816 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
59875ae4 4817 return -EINVAL;
d556ad4b 4818
a1c473aa
BH
4819 /*
4820 * If using the "performance" PCIe config, we clamp the
4821 * read rq size to the max packet size to prevent the
4822 * host bridge generating requests larger than we can
4823 * cope with
4824 */
4825 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4826 int mps = pcie_get_mps(dev);
4827
a1c473aa
BH
4828 if (mps < rq)
4829 rq = mps;
4830 }
4831
4832 v = (ffs(rq) - 8) << 12;
d556ad4b 4833
59875ae4
JL
4834 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4835 PCI_EXP_DEVCTL_READRQ, v);
d556ad4b
PO
4836}
4837EXPORT_SYMBOL(pcie_set_readrq);
4838
b03e7495
JM
4839/**
4840 * pcie_get_mps - get PCI Express maximum payload size
4841 * @dev: PCI device to query
4842 *
4843 * Returns maximum payload size in bytes
b03e7495
JM
4844 */
4845int pcie_get_mps(struct pci_dev *dev)
4846{
b03e7495
JM
4847 u16 ctl;
4848
59875ae4 4849 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
b03e7495 4850
59875ae4 4851 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
b03e7495 4852}
f1c66c46 4853EXPORT_SYMBOL(pcie_get_mps);
b03e7495
JM
4854
4855/**
4856 * pcie_set_mps - set PCI Express maximum payload size
4857 * @dev: PCI device to query
47c08f31 4858 * @mps: maximum payload size in bytes
b03e7495
JM
4859 * valid values are 128, 256, 512, 1024, 2048, 4096
4860 *
4861 * If possible sets maximum payload size
4862 */
4863int pcie_set_mps(struct pci_dev *dev, int mps)
4864{
59875ae4 4865 u16 v;
b03e7495
JM
4866
4867 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
59875ae4 4868 return -EINVAL;
b03e7495
JM
4869
4870 v = ffs(mps) - 8;
f7625980 4871 if (v > dev->pcie_mpss)
59875ae4 4872 return -EINVAL;
b03e7495
JM
4873 v <<= 5;
4874
59875ae4
JL
4875 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4876 PCI_EXP_DEVCTL_PAYLOAD, v);
b03e7495 4877}
f1c66c46 4878EXPORT_SYMBOL(pcie_set_mps);
b03e7495 4879
81377c8d
JK
4880/**
4881 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4882 * @dev: PCI device to query
4883 * @speed: storage for minimum speed
4884 * @width: storage for minimum width
4885 *
4886 * This function will walk up the PCI device chain and determine the minimum
4887 * link width and speed of the device.
4888 */
4889int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4890 enum pcie_link_width *width)
4891{
4892 int ret;
4893
4894 *speed = PCI_SPEED_UNKNOWN;
4895 *width = PCIE_LNK_WIDTH_UNKNOWN;
4896
4897 while (dev) {
4898 u16 lnksta;
4899 enum pci_bus_speed next_speed;
4900 enum pcie_link_width next_width;
4901
4902 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4903 if (ret)
4904 return ret;
4905
4906 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4907 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4908 PCI_EXP_LNKSTA_NLW_SHIFT;
4909
4910 if (next_speed < *speed)
4911 *speed = next_speed;
4912
4913 if (next_width < *width)
4914 *width = next_width;
4915
4916 dev = dev->bus->self;
4917 }
4918
4919 return 0;
4920}
4921EXPORT_SYMBOL(pcie_get_minimum_link);
4922
c87deff7
HS
4923/**
4924 * pci_select_bars - Make BAR mask from the type of resource
f95d882d 4925 * @dev: the PCI device for which BAR mask is made
c87deff7
HS
4926 * @flags: resource type mask to be selected
4927 *
4928 * This helper routine makes bar mask from the type of resource.
4929 */
4930int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4931{
4932 int i, bars = 0;
4933 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4934 if (pci_resource_flags(dev, i) & flags)
4935 bars |= (1 << i);
4936 return bars;
4937}
b7fe9434 4938EXPORT_SYMBOL(pci_select_bars);
c87deff7 4939
95a8b6ef
MT
4940/* Some architectures require additional programming to enable VGA */
4941static arch_set_vga_state_t arch_set_vga_state;
4942
4943void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4944{
4945 arch_set_vga_state = func; /* NULL disables */
4946}
4947
4948static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3c78bc61 4949 unsigned int command_bits, u32 flags)
95a8b6ef
MT
4950{
4951 if (arch_set_vga_state)
4952 return arch_set_vga_state(dev, decode, command_bits,
7ad35cf2 4953 flags);
95a8b6ef
MT
4954 return 0;
4955}
4956
deb2d2ec
BH
4957/**
4958 * pci_set_vga_state - set VGA decode state on device and parents if requested
19eea630
RD
4959 * @dev: the PCI device
4960 * @decode: true = enable decoding, false = disable decoding
4961 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3f37d622 4962 * @flags: traverse ancestors and change bridges
3448a19d 4963 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
deb2d2ec
BH
4964 */
4965int pci_set_vga_state(struct pci_dev *dev, bool decode,
3448a19d 4966 unsigned int command_bits, u32 flags)
deb2d2ec
BH
4967{
4968 struct pci_bus *bus;
4969 struct pci_dev *bridge;
4970 u16 cmd;
95a8b6ef 4971 int rc;
deb2d2ec 4972
67ebd814 4973 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
deb2d2ec 4974
95a8b6ef 4975 /* ARCH specific VGA enables */
3448a19d 4976 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
95a8b6ef
MT
4977 if (rc)
4978 return rc;
4979
3448a19d
DA
4980 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4981 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4982 if (decode == true)
4983 cmd |= command_bits;
4984 else
4985 cmd &= ~command_bits;
4986 pci_write_config_word(dev, PCI_COMMAND, cmd);
4987 }
deb2d2ec 4988
3448a19d 4989 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
deb2d2ec
BH
4990 return 0;
4991
4992 bus = dev->bus;
4993 while (bus) {
4994 bridge = bus->self;
4995 if (bridge) {
4996 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4997 &cmd);
4998 if (decode == true)
4999 cmd |= PCI_BRIDGE_CTL_VGA;
5000 else
5001 cmd &= ~PCI_BRIDGE_CTL_VGA;
5002 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5003 cmd);
5004 }
5005 bus = bus->parent;
5006 }
5007 return 0;
5008}
5009
f0af9593
BH
5010/**
5011 * pci_add_dma_alias - Add a DMA devfn alias for a device
5012 * @dev: the PCI device for which alias is added
5013 * @devfn: alias slot and function
5014 *
5015 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5016 * It should be called early, preferably as PCI fixup header quirk.
5017 */
5018void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5019{
338c3149
JL
5020 if (!dev->dma_alias_mask)
5021 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5022 sizeof(long), GFP_KERNEL);
5023 if (!dev->dma_alias_mask) {
5024 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5025 return;
5026 }
5027
5028 set_bit(devfn, dev->dma_alias_mask);
48c83080
BH
5029 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5030 PCI_SLOT(devfn), PCI_FUNC(devfn));
f0af9593
BH
5031}
5032
338c3149
JL
5033bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5034{
5035 return (dev1->dma_alias_mask &&
5036 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5037 (dev2->dma_alias_mask &&
5038 test_bit(dev1->devfn, dev2->dma_alias_mask));
5039}
5040
8496e85c
RW
5041bool pci_device_is_present(struct pci_dev *pdev)
5042{
5043 u32 v;
5044
fe2bd75b
KB
5045 if (pci_dev_is_disconnected(pdev))
5046 return false;
8496e85c
RW
5047 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5048}
5049EXPORT_SYMBOL_GPL(pci_device_is_present);
5050
08249651
RW
5051void pci_ignore_hotplug(struct pci_dev *dev)
5052{
5053 struct pci_dev *bridge = dev->bus->self;
5054
5055 dev->ignore_hotplug = 1;
5056 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5057 if (bridge)
5058 bridge->ignore_hotplug = 1;
5059}
5060EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5061
0a701aa6
YX
5062resource_size_t __weak pcibios_default_alignment(void)
5063{
5064 return 0;
5065}
5066
32a9a682
YS
5067#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5068static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
e9d1e492 5069static DEFINE_SPINLOCK(resource_alignment_lock);
32a9a682
YS
5070
5071/**
5072 * pci_specified_resource_alignment - get resource alignment specified by user.
5073 * @dev: the PCI device to get
e3adec72 5074 * @resize: whether or not to change resources' size when reassigning alignment
32a9a682
YS
5075 *
5076 * RETURNS: Resource alignment if it is specified.
5077 * Zero if it is not specified.
5078 */
e3adec72
YX
5079static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5080 bool *resize)
32a9a682
YS
5081{
5082 int seg, bus, slot, func, align_order, count;
644a544f 5083 unsigned short vendor, device, subsystem_vendor, subsystem_device;
0a701aa6 5084 resource_size_t align = pcibios_default_alignment();
32a9a682
YS
5085 char *p;
5086
5087 spin_lock(&resource_alignment_lock);
5088 p = resource_alignment_param;
0a701aa6 5089 if (!*p && !align)
f0b99f70
YX
5090 goto out;
5091 if (pci_has_flag(PCI_PROBE_ONLY)) {
0a701aa6 5092 align = 0;
f0b99f70
YX
5093 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5094 goto out;
5095 }
5096
32a9a682
YS
5097 while (*p) {
5098 count = 0;
5099 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5100 p[count] == '@') {
5101 p += count + 1;
5102 } else {
5103 align_order = -1;
5104 }
644a544f
KMEE
5105 if (strncmp(p, "pci:", 4) == 0) {
5106 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5107 p += 4;
5108 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5109 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5110 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5111 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5112 p);
5113 break;
5114 }
5115 subsystem_vendor = subsystem_device = 0;
5116 }
5117 p += count;
5118 if ((!vendor || (vendor == dev->vendor)) &&
5119 (!device || (device == dev->device)) &&
5120 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5121 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
e3adec72 5122 *resize = true;
644a544f
KMEE
5123 if (align_order == -1)
5124 align = PAGE_SIZE;
5125 else
5126 align = 1 << align_order;
5127 /* Found */
32a9a682
YS
5128 break;
5129 }
5130 }
644a544f
KMEE
5131 else {
5132 if (sscanf(p, "%x:%x:%x.%x%n",
5133 &seg, &bus, &slot, &func, &count) != 4) {
5134 seg = 0;
5135 if (sscanf(p, "%x:%x.%x%n",
5136 &bus, &slot, &func, &count) != 3) {
5137 /* Invalid format */
5138 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5139 p);
5140 break;
5141 }
5142 }
5143 p += count;
5144 if (seg == pci_domain_nr(dev->bus) &&
5145 bus == dev->bus->number &&
5146 slot == PCI_SLOT(dev->devfn) &&
5147 func == PCI_FUNC(dev->devfn)) {
e3adec72 5148 *resize = true;
644a544f
KMEE
5149 if (align_order == -1)
5150 align = PAGE_SIZE;
5151 else
5152 align = 1 << align_order;
5153 /* Found */
5154 break;
5155 }
32a9a682
YS
5156 }
5157 if (*p != ';' && *p != ',') {
5158 /* End of param or invalid format */
5159 break;
5160 }
5161 p++;
5162 }
f0b99f70 5163out:
32a9a682
YS
5164 spin_unlock(&resource_alignment_lock);
5165 return align;
5166}
5167
81a5e70e 5168static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
e3adec72 5169 resource_size_t align, bool resize)
81a5e70e
BH
5170{
5171 struct resource *r = &dev->resource[bar];
5172 resource_size_t size;
5173
5174 if (!(r->flags & IORESOURCE_MEM))
5175 return;
5176
5177 if (r->flags & IORESOURCE_PCI_FIXED) {
5178 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5179 bar, r, (unsigned long long)align);
5180 return;
5181 }
5182
5183 size = resource_size(r);
0dde1c08
BH
5184 if (size >= align)
5185 return;
81a5e70e 5186
0dde1c08 5187 /*
e3adec72
YX
5188 * Increase the alignment of the resource. There are two ways we
5189 * can do this:
0dde1c08 5190 *
e3adec72
YX
5191 * 1) Increase the size of the resource. BARs are aligned on their
5192 * size, so when we reallocate space for this resource, we'll
5193 * allocate it with the larger alignment. This also prevents
5194 * assignment of any other BARs inside the alignment region, so
5195 * if we're requesting page alignment, this means no other BARs
5196 * will share the page.
5197 *
5198 * The disadvantage is that this makes the resource larger than
5199 * the hardware BAR, which may break drivers that compute things
5200 * based on the resource size, e.g., to find registers at a
5201 * fixed offset before the end of the BAR.
5202 *
5203 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5204 * set r->start to the desired alignment. By itself this
5205 * doesn't prevent other BARs being put inside the alignment
5206 * region, but if we realign *every* resource of every device in
5207 * the system, none of them will share an alignment region.
5208 *
5209 * When the user has requested alignment for only some devices via
5210 * the "pci=resource_alignment" argument, "resize" is true and we
5211 * use the first method. Otherwise we assume we're aligning all
5212 * devices and we use the second.
0dde1c08 5213 */
e3adec72 5214
0dde1c08
BH
5215 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5216 bar, r, (unsigned long long)align);
81a5e70e 5217
e3adec72
YX
5218 if (resize) {
5219 r->start = 0;
5220 r->end = align - 1;
5221 } else {
5222 r->flags &= ~IORESOURCE_SIZEALIGN;
5223 r->flags |= IORESOURCE_STARTALIGN;
5224 r->start = align;
5225 r->end = r->start + size - 1;
5226 }
0dde1c08 5227 r->flags |= IORESOURCE_UNSET;
81a5e70e
BH
5228}
5229
2069ecfb
YL
5230/*
5231 * This function disables memory decoding and releases memory resources
5232 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5233 * It also rounds up size to specified alignment.
5234 * Later on, the kernel will assign page-aligned memory resource back
5235 * to the device.
5236 */
5237void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5238{
5239 int i;
5240 struct resource *r;
81a5e70e 5241 resource_size_t align;
2069ecfb 5242 u16 command;
e3adec72 5243 bool resize = false;
2069ecfb 5244
62d9a78f
YX
5245 /*
5246 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5247 * 3.4.1.11. Their resources are allocated from the space
5248 * described by the VF BARx register in the PF's SR-IOV capability.
5249 * We can't influence their alignment here.
5250 */
5251 if (dev->is_virtfn)
5252 return;
5253
10c463a7 5254 /* check if specified PCI is target device to reassign */
e3adec72 5255 align = pci_specified_resource_alignment(dev, &resize);
10c463a7 5256 if (!align)
2069ecfb
YL
5257 return;
5258
5259 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5260 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5261 dev_warn(&dev->dev,
5262 "Can't reassign resources to host bridge.\n");
5263 return;
5264 }
5265
5266 dev_info(&dev->dev,
5267 "Disabling memory decoding and releasing memory resources.\n");
5268 pci_read_config_word(dev, PCI_COMMAND, &command);
5269 command &= ~PCI_COMMAND_MEMORY;
5270 pci_write_config_word(dev, PCI_COMMAND, command);
5271
81a5e70e 5272 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
e3adec72 5273 pci_request_resource_alignment(dev, i, align, resize);
f0b99f70 5274
81a5e70e
BH
5275 /*
5276 * Need to disable bridge's resource window,
2069ecfb
YL
5277 * to enable the kernel to reassign new resource
5278 * window later on.
5279 */
5280 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5281 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5282 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5283 r = &dev->resource[i];
5284 if (!(r->flags & IORESOURCE_MEM))
5285 continue;
bd064f0a 5286 r->flags |= IORESOURCE_UNSET;
2069ecfb
YL
5287 r->end = resource_size(r) - 1;
5288 r->start = 0;
5289 }
5290 pci_disable_bridge_window(dev);
5291 }
5292}
5293
9738abed 5294static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
32a9a682
YS
5295{
5296 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5297 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5298 spin_lock(&resource_alignment_lock);
5299 strncpy(resource_alignment_param, buf, count);
5300 resource_alignment_param[count] = '\0';
5301 spin_unlock(&resource_alignment_lock);
5302 return count;
5303}
5304
9738abed 5305static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
32a9a682
YS
5306{
5307 size_t count;
5308 spin_lock(&resource_alignment_lock);
5309 count = snprintf(buf, size, "%s", resource_alignment_param);
5310 spin_unlock(&resource_alignment_lock);
5311 return count;
5312}
5313
5314static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5315{
5316 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5317}
5318
5319static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5320 const char *buf, size_t count)
5321{
5322 return pci_set_resource_alignment_param(buf, count);
5323}
5324
21751a9a 5325static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
32a9a682
YS
5326 pci_resource_alignment_store);
5327
5328static int __init pci_resource_alignment_sysfs_init(void)
5329{
5330 return bus_create_file(&pci_bus_type,
5331 &bus_attr_resource_alignment);
5332}
32a9a682
YS
5333late_initcall(pci_resource_alignment_sysfs_init);
5334
15856ad5 5335static void pci_no_domains(void)
32a2eea7
JG
5336{
5337#ifdef CONFIG_PCI_DOMAINS
5338 pci_domains_supported = 0;
5339#endif
5340}
5341
41e5c0f8
LD
5342#ifdef CONFIG_PCI_DOMAINS
5343static atomic_t __domain_nr = ATOMIC_INIT(-1);
5344
5345int pci_get_new_domain_nr(void)
5346{
5347 return atomic_inc_return(&__domain_nr);
5348}
7c674700
LP
5349
5350#ifdef CONFIG_PCI_DOMAINS_GENERIC
1a4f93f7 5351static int of_pci_bus_find_domain_nr(struct device *parent)
7c674700
LP
5352{
5353 static int use_dt_domains = -1;
54c6e2dd 5354 int domain = -1;
7c674700 5355
54c6e2dd
KHC
5356 if (parent)
5357 domain = of_get_pci_domain_nr(parent->of_node);
7c674700
LP
5358 /*
5359 * Check DT domain and use_dt_domains values.
5360 *
5361 * If DT domain property is valid (domain >= 0) and
5362 * use_dt_domains != 0, the DT assignment is valid since this means
5363 * we have not previously allocated a domain number by using
5364 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5365 * 1, to indicate that we have just assigned a domain number from
5366 * DT.
5367 *
5368 * If DT domain property value is not valid (ie domain < 0), and we
5369 * have not previously assigned a domain number from DT
5370 * (use_dt_domains != 1) we should assign a domain number by
5371 * using the:
5372 *
5373 * pci_get_new_domain_nr()
5374 *
5375 * API and update the use_dt_domains value to keep track of method we
5376 * are using to assign domain numbers (use_dt_domains = 0).
5377 *
5378 * All other combinations imply we have a platform that is trying
5379 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5380 * which is a recipe for domain mishandling and it is prevented by
5381 * invalidating the domain value (domain = -1) and printing a
5382 * corresponding error.
5383 */
5384 if (domain >= 0 && use_dt_domains) {
5385 use_dt_domains = 1;
5386 } else if (domain < 0 && use_dt_domains != 1) {
5387 use_dt_domains = 0;
5388 domain = pci_get_new_domain_nr();
5389 } else {
5390 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5391 parent->of_node->full_name);
5392 domain = -1;
5393 }
5394
9c7cb891 5395 return domain;
7c674700 5396}
1a4f93f7
TN
5397
5398int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5399{
2ab51dde
TN
5400 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5401 acpi_pci_bus_find_domain_nr(bus);
7c674700
LP
5402}
5403#endif
41e5c0f8
LD
5404#endif
5405
0ef5f8f6 5406/**
642c92da 5407 * pci_ext_cfg_avail - can we access extended PCI config space?
0ef5f8f6
AP
5408 *
5409 * Returns 1 if we can access PCI extended config space (offsets
5410 * greater than 0xff). This is the default implementation. Architecture
5411 * implementations can override this.
5412 */
642c92da 5413int __weak pci_ext_cfg_avail(void)
0ef5f8f6
AP
5414{
5415 return 1;
5416}
5417
2d1c8618
BH
5418void __weak pci_fixup_cardbus(struct pci_bus *bus)
5419{
5420}
5421EXPORT_SYMBOL(pci_fixup_cardbus);
5422
ad04d31e 5423static int __init pci_setup(char *str)
1da177e4
LT
5424{
5425 while (str) {
5426 char *k = strchr(str, ',');
5427 if (k)
5428 *k++ = 0;
5429 if (*str && (str = pcibios_setup(str)) && *str) {
309e57df
MW
5430 if (!strcmp(str, "nomsi")) {
5431 pci_no_msi();
7f785763
RD
5432 } else if (!strcmp(str, "noaer")) {
5433 pci_no_aer();
b55438fd
YL
5434 } else if (!strncmp(str, "realloc=", 8)) {
5435 pci_realloc_get_opt(str + 8);
f483d392 5436 } else if (!strncmp(str, "realloc", 7)) {
b55438fd 5437 pci_realloc_get_opt("on");
32a2eea7
JG
5438 } else if (!strcmp(str, "nodomains")) {
5439 pci_no_domains();
6748dcc2
RW
5440 } else if (!strncmp(str, "noari", 5)) {
5441 pcie_ari_disabled = true;
4516a618
AN
5442 } else if (!strncmp(str, "cbiosize=", 9)) {
5443 pci_cardbus_io_size = memparse(str + 9, &str);
5444 } else if (!strncmp(str, "cbmemsize=", 10)) {
5445 pci_cardbus_mem_size = memparse(str + 10, &str);
32a9a682
YS
5446 } else if (!strncmp(str, "resource_alignment=", 19)) {
5447 pci_set_resource_alignment_param(str + 19,
5448 strlen(str + 19));
43c16408
AP
5449 } else if (!strncmp(str, "ecrc=", 5)) {
5450 pcie_ecrc_get_policy(str + 5);
28760489
EB
5451 } else if (!strncmp(str, "hpiosize=", 9)) {
5452 pci_hotplug_io_size = memparse(str + 9, &str);
5453 } else if (!strncmp(str, "hpmemsize=", 10)) {
5454 pci_hotplug_mem_size = memparse(str + 10, &str);
e16b4660
KB
5455 } else if (!strncmp(str, "hpbussize=", 10)) {
5456 pci_hotplug_bus_size =
5457 simple_strtoul(str + 10, &str, 0);
5458 if (pci_hotplug_bus_size > 0xff)
5459 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5f39e670
JM
5460 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5461 pcie_bus_config = PCIE_BUS_TUNE_OFF;
b03e7495
JM
5462 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5463 pcie_bus_config = PCIE_BUS_SAFE;
5464 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5465 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5f39e670
JM
5466 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5467 pcie_bus_config = PCIE_BUS_PEER2PEER;
284f5f9d
BH
5468 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5469 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
309e57df
MW
5470 } else {
5471 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5472 str);
5473 }
1da177e4
LT
5474 }
5475 str = k;
5476 }
0637a70a 5477 return 0;
1da177e4 5478}
0637a70a 5479early_param("pci", pci_setup);