PCI: Replace printk(KERN_INFO) with pr_info(), etc
[linux-block.git] / drivers / pci / pci.c
CommitLineData
7328c8f4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
df62ab5e 3 * PCI Bus Services, see include/linux/pci.h for further explanation.
1da177e4 4 *
df62ab5e
BH
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
1da177e4 7 *
df62ab5e 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
1da177e4
LT
9 */
10
2ab51dde 11#include <linux/acpi.h>
1da177e4
LT
12#include <linux/kernel.h>
13#include <linux/delay.h>
9d26d3a8 14#include <linux/dmi.h>
1da177e4 15#include <linux/init.h>
7c674700
LP
16#include <linux/of.h>
17#include <linux/of_pci.h>
1da177e4 18#include <linux/pci.h>
075c1771 19#include <linux/pm.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/module.h>
22#include <linux/spinlock.h>
4e57b681 23#include <linux/string.h>
229f5afd 24#include <linux/log2.h>
5745392e 25#include <linux/logic_pio.h>
c300bd2f 26#include <linux/pm_wakeup.h>
8dd7f803 27#include <linux/interrupt.h>
32a9a682 28#include <linux/device.h>
b67ea761 29#include <linux/pm_runtime.h>
608c3881 30#include <linux/pci_hotplug.h>
4d3f1384 31#include <linux/vmalloc.h>
4ebeb1ec 32#include <linux/pci-ats.h>
32a9a682 33#include <asm/setup.h>
2a2aca31 34#include <asm/dma.h>
b07461a8 35#include <linux/aer.h>
bc56b9e0 36#include "pci.h"
1da177e4 37
c4eed62a
KB
38DEFINE_MUTEX(pci_slot_mutex);
39
00240c38
AS
40const char *pci_power_names[] = {
41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42};
43EXPORT_SYMBOL_GPL(pci_power_names);
44
93177a74
RW
45int isa_dma_bridge_buggy;
46EXPORT_SYMBOL(isa_dma_bridge_buggy);
47
48int pci_pci_problems;
49EXPORT_SYMBOL(pci_pci_problems);
50
1ae861e6
RW
51unsigned int pci_pm_d3_delay;
52
df17e62e
MG
53static void pci_pme_list_scan(struct work_struct *work);
54
55static LIST_HEAD(pci_pme_list);
56static DEFINE_MUTEX(pci_pme_list_mutex);
57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62};
63
64#define PME_TIMEOUT 1000 /* How long between PME checks */
65
1ae861e6
RW
66static void pci_dev_d3_sleep(struct pci_dev *dev)
67{
68 unsigned int delay = dev->d3_delay;
69
70 if (delay < pci_pm_d3_delay)
71 delay = pci_pm_d3_delay;
72
50b2b540
AH
73 if (delay)
74 msleep(delay);
1ae861e6 75}
1da177e4 76
32a2eea7
JG
77#ifdef CONFIG_PCI_DOMAINS
78int pci_domains_supported = 1;
79#endif
80
4516a618
AN
81#define DEFAULT_CARDBUS_IO_SIZE (256)
82#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
83/* pci=cbmemsize=nnM,cbiosize=nn can override this */
84unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86
28760489
EB
87#define DEFAULT_HOTPLUG_IO_SIZE (256)
88#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
89/* pci=hpmemsize=nnM,hpiosize=nn can override this */
90unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
91unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92
e16b4660
KB
93#define DEFAULT_HOTPLUG_BUS_SIZE 1
94unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95
27d868b5 96enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
b03e7495 97
ac1aa47b
JB
98/*
99 * The default CLS is used if arch didn't set CLS explicitly and not
100 * all pci devices agree on the same value. Arch can override either
101 * the dfl or actual value as it sees fit. Don't forget this is
102 * measured in 32-bit words, not bytes.
103 */
15856ad5 104u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
ac1aa47b
JB
105u8 pci_cache_line_size;
106
96c55900
MS
107/*
108 * If we set up a device for bus mastering, we need to check the latency
109 * timer as certain BIOSes forget to set it properly.
110 */
111unsigned int pcibios_max_latency = 255;
112
6748dcc2
RW
113/* If set, the PCIe ARI capability will not be used. */
114static bool pcie_ari_disabled;
115
cef74409
GK
116/* If set, the PCIe ATS capability will not be used. */
117static bool pcie_ats_disabled;
118
11eb0e0e
SK
119/* If set, the PCI config space of each device is printed during boot. */
120bool pci_early_dump;
121
cef74409
GK
122bool pci_ats_disabled(void)
123{
124 return pcie_ats_disabled;
125}
126
9d26d3a8
MW
127/* Disable bridge_d3 for all PCIe ports */
128static bool pci_bridge_d3_disable;
129/* Force bridge_d3 for all PCIe ports */
130static bool pci_bridge_d3_force;
131
132static int __init pcie_port_pm_setup(char *str)
133{
134 if (!strcmp(str, "off"))
135 pci_bridge_d3_disable = true;
136 else if (!strcmp(str, "force"))
137 pci_bridge_d3_force = true;
138 return 1;
139}
140__setup("pcie_port_pm=", pcie_port_pm_setup);
141
a2758b6b
SK
142/* Time to wait after a reset for device to become responsive */
143#define PCIE_RESET_READY_POLL_MS 60000
144
1da177e4
LT
145/**
146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147 * @bus: pointer to PCI bus structure to search
148 *
149 * Given a PCI bus, returns the highest PCI bus number present in the set
150 * including the given PCI bus and its list of child PCI buses.
151 */
07656d83 152unsigned char pci_bus_max_busnr(struct pci_bus *bus)
1da177e4 153{
94e6a9b9 154 struct pci_bus *tmp;
1da177e4
LT
155 unsigned char max, n;
156
b918c62e 157 max = bus->busn_res.end;
94e6a9b9
YW
158 list_for_each_entry(tmp, &bus->children, node) {
159 n = pci_bus_max_busnr(tmp);
3c78bc61 160 if (n > max)
1da177e4
LT
161 max = n;
162 }
163 return max;
164}
b82db5ce 165EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
1da177e4 166
1684f5dd
AM
167#ifdef CONFIG_HAS_IOMEM
168void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169{
1f7bf3bf
BH
170 struct resource *res = &pdev->resource[bar];
171
1684f5dd
AM
172 /*
173 * Make sure the BAR is actually a memory resource, not an IO resource
174 */
646c0282 175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
7506dc79 176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
1684f5dd
AM
177 return NULL;
178 }
1f7bf3bf 179 return ioremap_nocache(res->start, resource_size(res));
1684f5dd
AM
180}
181EXPORT_SYMBOL_GPL(pci_ioremap_bar);
c43996f4
LR
182
183void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184{
185 /*
186 * Make sure the BAR is actually a memory resource, not an IO resource
187 */
188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 WARN_ON(1);
190 return NULL;
191 }
192 return ioremap_wc(pci_resource_start(pdev, bar),
193 pci_resource_len(pdev, bar));
194}
195EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
1684f5dd
AM
196#endif
197
45db3370
LG
198/**
199 * pci_dev_str_match_path - test if a path string matches a device
200 * @dev: the PCI device to test
7eb37025 201 * @path: string to match the device against
45db3370
LG
202 * @endptr: pointer to the string after the match
203 *
204 * Test if a string (typically from a kernel parameter) formatted as a
205 * path of device/function addresses matches a PCI device. The string must
206 * be of the form:
207 *
208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209 *
210 * A path for a device can be obtained using 'lspci -t'. Using a path
211 * is more robust against bus renumbering than using only a single bus,
212 * device and function address.
213 *
214 * Returns 1 if the string matches the device, 0 if it does not and
215 * a negative error code if it fails to parse the string.
216 */
217static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 const char **endptr)
219{
220 int ret;
221 int seg, bus, slot, func;
222 char *wpath, *p;
223 char end;
224
225 *endptr = strchrnul(path, ';');
226
227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 if (!wpath)
229 return -ENOMEM;
230
231 while (1) {
232 p = strrchr(wpath, '/');
233 if (!p)
234 break;
235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 if (ret != 2) {
237 ret = -EINVAL;
238 goto free_and_exit;
239 }
240
241 if (dev->devfn != PCI_DEVFN(slot, func)) {
242 ret = 0;
243 goto free_and_exit;
244 }
245
246 /*
247 * Note: we don't need to get a reference to the upstream
248 * bridge because we hold a reference to the top level
249 * device which should hold a reference to the bridge,
250 * and so on.
251 */
252 dev = pci_upstream_bridge(dev);
253 if (!dev) {
254 ret = 0;
255 goto free_and_exit;
256 }
257
258 *p = 0;
259 }
260
261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 &func, &end);
263 if (ret != 4) {
264 seg = 0;
265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 if (ret != 3) {
267 ret = -EINVAL;
268 goto free_and_exit;
269 }
270 }
271
272 ret = (seg == pci_domain_nr(dev->bus) &&
273 bus == dev->bus->number &&
274 dev->devfn == PCI_DEVFN(slot, func));
275
276free_and_exit:
277 kfree(wpath);
278 return ret;
279}
280
07d8d7e5
LG
281/**
282 * pci_dev_str_match - test if a string matches a device
283 * @dev: the PCI device to test
284 * @p: string to match the device against
285 * @endptr: pointer to the string after the match
286 *
287 * Test if a string (typically from a kernel parameter) matches a specified
288 * PCI device. The string may be of one of the following formats:
289 *
45db3370 290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
07d8d7e5
LG
291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292 *
293 * The first format specifies a PCI bus/device/function address which
294 * may change if new hardware is inserted, if motherboard firmware changes,
295 * or due to changes caused in kernel parameters. If the domain is
45db3370
LG
296 * left unspecified, it is taken to be 0. In order to be robust against
297 * bus renumbering issues, a path of PCI device/function numbers may be used
298 * to address the specific device. The path for a device can be determined
299 * through the use of 'lspci -t'.
07d8d7e5
LG
300 *
301 * The second format matches devices using IDs in the configuration
302 * space which may match multiple devices in the system. A value of 0
303 * for any field will match all devices. (Note: this differs from
304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305 * legacy reasons and convenience so users don't have to specify
306 * FFFFFFFFs on the command line.)
307 *
308 * Returns 1 if the string matches the device, 0 if it does not and
309 * a negative error code if the string cannot be parsed.
310 */
311static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 const char **endptr)
313{
314 int ret;
45db3370 315 int count;
07d8d7e5
LG
316 unsigned short vendor, device, subsystem_vendor, subsystem_device;
317
318 if (strncmp(p, "pci:", 4) == 0) {
319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 p += 4;
321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 &subsystem_vendor, &subsystem_device, &count);
323 if (ret != 4) {
324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 if (ret != 2)
326 return -EINVAL;
327
328 subsystem_vendor = 0;
329 subsystem_device = 0;
330 }
331
332 p += count;
333
334 if ((!vendor || vendor == dev->vendor) &&
335 (!device || device == dev->device) &&
336 (!subsystem_vendor ||
337 subsystem_vendor == dev->subsystem_vendor) &&
338 (!subsystem_device ||
339 subsystem_device == dev->subsystem_device))
340 goto found;
07d8d7e5 341 } else {
45db3370
LG
342 /*
343 * PCI Bus, Device, Function IDs are specified
344 * (optionally, may include a path of devfns following it)
345 */
346 ret = pci_dev_str_match_path(dev, p, &p);
347 if (ret < 0)
348 return ret;
349 else if (ret)
07d8d7e5
LG
350 goto found;
351 }
352
353 *endptr = p;
354 return 0;
355
356found:
357 *endptr = p;
358 return 1;
359}
687d5fe3
ME
360
361static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 u8 pos, int cap, int *ttl)
24a4e377
RD
363{
364 u8 id;
55db3208
SS
365 u16 ent;
366
367 pci_bus_read_config_byte(bus, devfn, pos, &pos);
24a4e377 368
687d5fe3 369 while ((*ttl)--) {
24a4e377
RD
370 if (pos < 0x40)
371 break;
372 pos &= ~3;
55db3208
SS
373 pci_bus_read_config_word(bus, devfn, pos, &ent);
374
375 id = ent & 0xff;
24a4e377
RD
376 if (id == 0xff)
377 break;
378 if (id == cap)
379 return pos;
55db3208 380 pos = (ent >> 8);
24a4e377
RD
381 }
382 return 0;
383}
384
687d5fe3
ME
385static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 u8 pos, int cap)
387{
388 int ttl = PCI_FIND_CAP_TTL;
389
390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391}
392
24a4e377
RD
393int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394{
395 return __pci_find_next_cap(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT, cap);
397}
398EXPORT_SYMBOL_GPL(pci_find_next_capability);
399
d3bac118
ME
400static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 unsigned int devfn, u8 hdr_type)
1da177e4
LT
402{
403 u16 status;
1da177e4
LT
404
405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 if (!(status & PCI_STATUS_CAP_LIST))
407 return 0;
408
409 switch (hdr_type) {
410 case PCI_HEADER_TYPE_NORMAL:
411 case PCI_HEADER_TYPE_BRIDGE:
d3bac118 412 return PCI_CAPABILITY_LIST;
1da177e4 413 case PCI_HEADER_TYPE_CARDBUS:
d3bac118 414 return PCI_CB_CAPABILITY_LIST;
1da177e4 415 }
d3bac118
ME
416
417 return 0;
1da177e4
LT
418}
419
420/**
f7625980 421 * pci_find_capability - query for devices' capabilities
1da177e4
LT
422 * @dev: PCI device to query
423 * @cap: capability code
424 *
425 * Tell if a device supports a given PCI capability.
426 * Returns the address of the requested capability structure within the
427 * device's PCI configuration space or 0 in case the device does not
428 * support it. Possible values for @cap:
429 *
f7625980
BH
430 * %PCI_CAP_ID_PM Power Management
431 * %PCI_CAP_ID_AGP Accelerated Graphics Port
432 * %PCI_CAP_ID_VPD Vital Product Data
433 * %PCI_CAP_ID_SLOTID Slot Identification
1da177e4 434 * %PCI_CAP_ID_MSI Message Signalled Interrupts
f7625980 435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
1da177e4
LT
436 * %PCI_CAP_ID_PCIX PCI-X
437 * %PCI_CAP_ID_EXP PCI Express
438 */
439int pci_find_capability(struct pci_dev *dev, int cap)
440{
d3bac118
ME
441 int pos;
442
443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 if (pos)
445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446
447 return pos;
1da177e4 448}
b7fe9434 449EXPORT_SYMBOL(pci_find_capability);
1da177e4
LT
450
451/**
f7625980 452 * pci_bus_find_capability - query for devices' capabilities
1da177e4
LT
453 * @bus: the PCI bus to query
454 * @devfn: PCI device to query
455 * @cap: capability code
456 *
457 * Like pci_find_capability() but works for pci devices that do not have a
f7625980 458 * pci_dev structure set up yet.
1da177e4
LT
459 *
460 * Returns the address of the requested capability structure within the
461 * device's PCI configuration space or 0 in case the device does not
462 * support it.
463 */
464int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465{
d3bac118 466 int pos;
1da177e4
LT
467 u8 hdr_type;
468
469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470
d3bac118
ME
471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 if (pos)
473 pos = __pci_find_next_cap(bus, devfn, pos, cap);
474
475 return pos;
1da177e4 476}
b7fe9434 477EXPORT_SYMBOL(pci_bus_find_capability);
1da177e4
LT
478
479/**
44a9a36f 480 * pci_find_next_ext_capability - Find an extended capability
1da177e4 481 * @dev: PCI device to query
44a9a36f 482 * @start: address at which to start looking (0 to start at beginning of list)
1da177e4
LT
483 * @cap: capability code
484 *
44a9a36f 485 * Returns the address of the next matching extended capability structure
1da177e4 486 * within the device's PCI configuration space or 0 if the device does
44a9a36f
BH
487 * not support it. Some capabilities can occur several times, e.g., the
488 * vendor-specific capability, and this provides a way to find them all.
1da177e4 489 */
44a9a36f 490int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
1da177e4
LT
491{
492 u32 header;
557848c3
ZY
493 int ttl;
494 int pos = PCI_CFG_SPACE_SIZE;
1da177e4 495
557848c3
ZY
496 /* minimum 8 bytes per capability */
497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498
499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
1da177e4
LT
500 return 0;
501
44a9a36f
BH
502 if (start)
503 pos = start;
504
1da177e4
LT
505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 return 0;
507
508 /*
509 * If we have no capabilities, this is indicated by cap ID,
510 * cap version and next pointer all being 0.
511 */
512 if (header == 0)
513 return 0;
514
515 while (ttl-- > 0) {
44a9a36f 516 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
1da177e4
LT
517 return pos;
518
519 pos = PCI_EXT_CAP_NEXT(header);
557848c3 520 if (pos < PCI_CFG_SPACE_SIZE)
1da177e4
LT
521 break;
522
523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 break;
525 }
526
527 return 0;
528}
44a9a36f
BH
529EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530
531/**
532 * pci_find_ext_capability - Find an extended capability
533 * @dev: PCI device to query
534 * @cap: capability code
535 *
536 * Returns the address of the requested extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
538 * not support it. Possible values for @cap:
539 *
540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
541 * %PCI_EXT_CAP_ID_VC Virtual Channel
542 * %PCI_EXT_CAP_ID_DSN Device Serial Number
543 * %PCI_EXT_CAP_ID_PWR Power Budgeting
544 */
545int pci_find_ext_capability(struct pci_dev *dev, int cap)
546{
547 return pci_find_next_ext_capability(dev, 0, cap);
548}
3a720d72 549EXPORT_SYMBOL_GPL(pci_find_ext_capability);
1da177e4 550
687d5fe3
ME
551static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552{
553 int rc, ttl = PCI_FIND_CAP_TTL;
554 u8 cap, mask;
555
556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 mask = HT_3BIT_CAP_MASK;
558 else
559 mask = HT_5BIT_CAP_MASK;
560
561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 PCI_CAP_ID_HT, &ttl);
563 while (pos) {
564 rc = pci_read_config_byte(dev, pos + 3, &cap);
565 if (rc != PCIBIOS_SUCCESSFUL)
566 return 0;
567
568 if ((cap & mask) == ht_cap)
569 return pos;
570
47a4d5be
BG
571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 pos + PCI_CAP_LIST_NEXT,
687d5fe3
ME
573 PCI_CAP_ID_HT, &ttl);
574 }
575
576 return 0;
577}
578/**
579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580 * @dev: PCI device to query
581 * @pos: Position from which to continue searching
582 * @ht_cap: Hypertransport capability code
583 *
584 * To be used in conjunction with pci_find_ht_capability() to search for
585 * all capabilities matching @ht_cap. @pos should always be a value returned
586 * from pci_find_ht_capability().
587 *
588 * NB. To be 100% safe against broken PCI devices, the caller should take
589 * steps to avoid an infinite loop.
590 */
591int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592{
593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594}
595EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596
597/**
598 * pci_find_ht_capability - query a device's Hypertransport capabilities
599 * @dev: PCI device to query
600 * @ht_cap: Hypertransport capability code
601 *
602 * Tell if a device supports a given Hypertransport capability.
603 * Returns an address within the device's PCI configuration space
604 * or 0 in case the device does not support the request capability.
605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606 * which has a Hypertransport capability matching @ht_cap.
607 */
608int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609{
610 int pos;
611
612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 if (pos)
614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615
616 return pos;
617}
618EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619
1da177e4
LT
620/**
621 * pci_find_parent_resource - return resource region of parent bus of given region
622 * @dev: PCI device structure contains resources to be searched
623 * @res: child resource record for which parent is sought
624 *
625 * For given resource region of given device, return the resource
f44116ae 626 * region of parent bus the given region is contained in.
1da177e4 627 */
3c78bc61
RD
628struct resource *pci_find_parent_resource(const struct pci_dev *dev,
629 struct resource *res)
1da177e4
LT
630{
631 const struct pci_bus *bus = dev->bus;
f44116ae 632 struct resource *r;
1da177e4 633 int i;
1da177e4 634
89a74ecc 635 pci_bus_for_each_resource(bus, r, i) {
1da177e4
LT
636 if (!r)
637 continue;
31342330 638 if (resource_contains(r, res)) {
f44116ae
BH
639
640 /*
641 * If the window is prefetchable but the BAR is
642 * not, the allocator made a mistake.
643 */
644 if (r->flags & IORESOURCE_PREFETCH &&
645 !(res->flags & IORESOURCE_PREFETCH))
646 return NULL;
647
648 /*
649 * If we're below a transparent bridge, there may
650 * be both a positively-decoded aperture and a
651 * subtractively-decoded region that contain the BAR.
652 * We want the positively-decoded one, so this depends
653 * on pci_bus_for_each_resource() giving us those
654 * first.
655 */
656 return r;
657 }
1da177e4 658 }
f44116ae 659 return NULL;
1da177e4 660}
b7fe9434 661EXPORT_SYMBOL(pci_find_parent_resource);
1da177e4 662
afd29f90
MW
663/**
664 * pci_find_resource - Return matching PCI device resource
665 * @dev: PCI device to query
666 * @res: Resource to look for
667 *
668 * Goes over standard PCI resources (BARs) and checks if the given resource
669 * is partially or fully contained in any of them. In that case the
670 * matching resource is returned, %NULL otherwise.
671 */
672struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
673{
674 int i;
675
676 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
677 struct resource *r = &dev->resource[i];
678
679 if (r->start && resource_contains(r, res))
680 return r;
681 }
682
683 return NULL;
684}
685EXPORT_SYMBOL(pci_find_resource);
686
c56d4450
HS
687/**
688 * pci_find_pcie_root_port - return PCIe Root Port
689 * @dev: PCI device to query
690 *
691 * Traverse up the parent chain and return the PCIe Root Port PCI Device
692 * for a given PCI Device.
693 */
694struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
695{
b6f6d56c 696 struct pci_dev *bridge, *highest_pcie_bridge = dev;
c56d4450
HS
697
698 bridge = pci_upstream_bridge(dev);
699 while (bridge && pci_is_pcie(bridge)) {
700 highest_pcie_bridge = bridge;
701 bridge = pci_upstream_bridge(bridge);
702 }
703
b6f6d56c
TR
704 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
705 return NULL;
c56d4450 706
b6f6d56c 707 return highest_pcie_bridge;
c56d4450
HS
708}
709EXPORT_SYMBOL(pci_find_pcie_root_port);
710
157e876f
AW
711/**
712 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
713 * @dev: the PCI device to operate on
714 * @pos: config space offset of status word
715 * @mask: mask of bit(s) to care about in status word
716 *
717 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
718 */
719int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
720{
721 int i;
722
723 /* Wait for Transaction Pending bit clean */
724 for (i = 0; i < 4; i++) {
725 u16 status;
726 if (i)
727 msleep((1 << (i - 1)) * 100);
728
729 pci_read_config_word(dev, pos, &status);
730 if (!(status & mask))
731 return 1;
732 }
733
734 return 0;
735}
736
064b53db 737/**
70675e0b 738 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
064b53db
JL
739 * @dev: PCI device to have its BARs restored
740 *
741 * Restore the BAR values for a given device, so as to make it
742 * accessible by its driver.
743 */
3c78bc61 744static void pci_restore_bars(struct pci_dev *dev)
064b53db 745{
bc5f5a82 746 int i;
064b53db 747
bc5f5a82 748 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
14add80b 749 pci_update_resource(dev, i);
064b53db
JL
750}
751
299f2ffe 752static const struct pci_platform_pm_ops *pci_platform_pm;
961d9120 753
299f2ffe 754int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
961d9120 755{
cc7cc02b 756 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
0847684c 757 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
961d9120
RW
758 return -EINVAL;
759 pci_platform_pm = ops;
760 return 0;
761}
762
763static inline bool platform_pci_power_manageable(struct pci_dev *dev)
764{
765 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
766}
767
768static inline int platform_pci_set_power_state(struct pci_dev *dev,
3c78bc61 769 pci_power_t t)
961d9120
RW
770{
771 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
772}
773
cc7cc02b
LW
774static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
775{
776 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
777}
778
961d9120
RW
779static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
780{
781 return pci_platform_pm ?
782 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
783}
8f7020d3 784
0847684c 785static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
786{
787 return pci_platform_pm ?
0847684c 788 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
b67ea761
RW
789}
790
bac2a909
RW
791static inline bool platform_pci_need_resume(struct pci_dev *dev)
792{
793 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
794}
795
26ad34d5
MW
796static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
797{
798 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
799}
800
1da177e4 801/**
44e4e66e
RW
802 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
803 * given PCI device
804 * @dev: PCI device to handle.
44e4e66e 805 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1da177e4 806 *
44e4e66e
RW
807 * RETURN VALUE:
808 * -EINVAL if the requested state is invalid.
809 * -EIO if device does not support PCI PM or its PM capabilities register has a
810 * wrong version, or device doesn't support the requested state.
811 * 0 if device already is in the requested state.
812 * 0 if device's power state has been successfully changed.
1da177e4 813 */
f00a20ef 814static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1da177e4 815{
337001b6 816 u16 pmcsr;
44e4e66e 817 bool need_restore = false;
1da177e4 818
4a865905
RW
819 /* Check if we're already there */
820 if (dev->current_state == state)
821 return 0;
822
337001b6 823 if (!dev->pm_cap)
cca03dec
AL
824 return -EIO;
825
44e4e66e
RW
826 if (state < PCI_D0 || state > PCI_D3hot)
827 return -EINVAL;
828
1da177e4 829 /* Validate current state:
f7625980 830 * Can enter D0 from any state, but if we can only go deeper
1da177e4
LT
831 * to sleep if we're already in a low power state
832 */
4a865905 833 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
44e4e66e 834 && dev->current_state > state) {
7506dc79 835 pci_err(dev, "invalid power transition (from state %d to %d)\n",
227f0647 836 dev->current_state, state);
1da177e4 837 return -EINVAL;
44e4e66e 838 }
1da177e4 839
1da177e4 840 /* check if this device supports the desired state */
337001b6
RW
841 if ((state == PCI_D1 && !dev->d1_support)
842 || (state == PCI_D2 && !dev->d2_support))
3fe9d19f 843 return -EIO;
1da177e4 844
337001b6 845 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
064b53db 846
32a36585 847 /* If we're (effectively) in D3, force entire word to 0.
1da177e4
LT
848 * This doesn't affect PME_Status, disables PME_En, and
849 * sets PowerState to 0.
850 */
32a36585 851 switch (dev->current_state) {
d3535fbb
JL
852 case PCI_D0:
853 case PCI_D1:
854 case PCI_D2:
855 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
856 pmcsr |= state;
857 break;
f62795f1
RW
858 case PCI_D3hot:
859 case PCI_D3cold:
32a36585
JL
860 case PCI_UNKNOWN: /* Boot-up */
861 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
f00a20ef 862 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
44e4e66e 863 need_restore = true;
1d09d577 864 /* Fall-through - force to D0 */
32a36585 865 default:
d3535fbb 866 pmcsr = 0;
32a36585 867 break;
1da177e4
LT
868 }
869
870 /* enter specified state */
337001b6 871 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1da177e4
LT
872
873 /* Mandatory power management transition delays */
874 /* see PCI PM 1.1 5.6.1 table 18 */
875 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1ae861e6 876 pci_dev_d3_sleep(dev);
1da177e4 877 else if (state == PCI_D2 || dev->current_state == PCI_D2)
aa8c6c93 878 udelay(PCI_PM_D2_DELAY);
1da177e4 879
e13cdbd7
RW
880 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
881 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
882 if (dev->current_state != state && printk_ratelimit())
7506dc79 883 pci_info(dev, "Refused to change power state, currently in D%d\n",
227f0647 884 dev->current_state);
064b53db 885
448bd857
HY
886 /*
887 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
064b53db
JL
888 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
889 * from D3hot to D0 _may_ perform an internal reset, thereby
890 * going to "D0 Uninitialized" rather than "D0 Initialized".
891 * For example, at least some versions of the 3c905B and the
892 * 3c556B exhibit this behaviour.
893 *
894 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
895 * devices in a D3hot state at boot. Consequently, we need to
896 * restore at least the BARs so that the device will be
897 * accessible to its driver.
898 */
899 if (need_restore)
900 pci_restore_bars(dev);
901
f00a20ef 902 if (dev->bus->self)
7d715a6c
SL
903 pcie_aspm_pm_state_change(dev->bus->self);
904
1da177e4
LT
905 return 0;
906}
907
44e4e66e 908/**
a6a64026 909 * pci_update_current_state - Read power state of given device and cache it
44e4e66e 910 * @dev: PCI device to handle.
f06fc0b6 911 * @state: State to cache in case the device doesn't have the PM capability
a6a64026
LW
912 *
913 * The power state is read from the PMCSR register, which however is
914 * inaccessible in D3cold. The platform firmware is therefore queried first
915 * to detect accessibility of the register. In case the platform firmware
916 * reports an incorrect state or the device isn't power manageable by the
917 * platform at all, we try to detect D3cold by testing accessibility of the
918 * vendor ID in config space.
44e4e66e 919 */
73410429 920void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
44e4e66e 921{
a6a64026
LW
922 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
923 !pci_device_is_present(dev)) {
924 dev->current_state = PCI_D3cold;
925 } else if (dev->pm_cap) {
44e4e66e
RW
926 u16 pmcsr;
927
337001b6 928 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
44e4e66e 929 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
f06fc0b6
RW
930 } else {
931 dev->current_state = state;
44e4e66e
RW
932 }
933}
934
db288c9c
RW
935/**
936 * pci_power_up - Put the given device into D0 forcibly
937 * @dev: PCI device to power up
938 */
939void pci_power_up(struct pci_dev *dev)
940{
941 if (platform_pci_power_manageable(dev))
942 platform_pci_set_power_state(dev, PCI_D0);
943
944 pci_raw_set_power_state(dev, PCI_D0);
945 pci_update_current_state(dev, PCI_D0);
946}
947
0e5dd46b
RW
948/**
949 * pci_platform_power_transition - Use platform to change device power state
950 * @dev: PCI device to handle.
951 * @state: State to put the device into.
952 */
953static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
954{
955 int error;
956
957 if (platform_pci_power_manageable(dev)) {
958 error = platform_pci_set_power_state(dev, state);
959 if (!error)
960 pci_update_current_state(dev, state);
769ba721 961 } else
0e5dd46b 962 error = -ENODEV;
769ba721
RW
963
964 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
965 dev->current_state = PCI_D0;
0e5dd46b
RW
966
967 return error;
968}
969
0b950f0f
SH
970/**
971 * pci_wakeup - Wake up a PCI device
972 * @pci_dev: Device to handle.
973 * @ign: ignored parameter
974 */
975static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
976{
977 pci_wakeup_event(pci_dev);
978 pm_request_resume(&pci_dev->dev);
979 return 0;
980}
981
982/**
983 * pci_wakeup_bus - Walk given bus and wake up devices on it
984 * @bus: Top bus of the subtree to walk.
985 */
2a4d2c42 986void pci_wakeup_bus(struct pci_bus *bus)
0b950f0f
SH
987{
988 if (bus)
989 pci_walk_bus(bus, pci_wakeup, NULL);
990}
991
0e5dd46b
RW
992/**
993 * __pci_start_power_transition - Start power transition of a PCI device
994 * @dev: PCI device to handle.
995 * @state: State to put the device into.
996 */
997static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
998{
448bd857 999 if (state == PCI_D0) {
0e5dd46b 1000 pci_platform_power_transition(dev, PCI_D0);
448bd857
HY
1001 /*
1002 * Mandatory power management transition delays, see
1003 * PCI Express Base Specification Revision 2.0 Section
1004 * 6.6.1: Conventional Reset. Do not delay for
1005 * devices powered on/off by corresponding bridge,
1006 * because have already delayed for the bridge.
1007 */
1008 if (dev->runtime_d3cold) {
d6112f8d 1009 if (dev->d3cold_delay && !dev->imm_ready)
50b2b540 1010 msleep(dev->d3cold_delay);
448bd857
HY
1011 /*
1012 * When powering on a bridge from D3cold, the
1013 * whole hierarchy may be powered on into
1014 * D0uninitialized state, resume them to give
1015 * them a chance to suspend again
1016 */
1017 pci_wakeup_bus(dev->subordinate);
1018 }
1019 }
1020}
1021
1022/**
1023 * __pci_dev_set_current_state - Set current state of a PCI device
1024 * @dev: Device to handle
1025 * @data: pointer to state to be set
1026 */
1027static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1028{
1029 pci_power_t state = *(pci_power_t *)data;
1030
1031 dev->current_state = state;
1032 return 0;
1033}
1034
1035/**
2a4d2c42 1036 * pci_bus_set_current_state - Walk given bus and set current state of devices
448bd857
HY
1037 * @bus: Top bus of the subtree to walk.
1038 * @state: state to be set
1039 */
2a4d2c42 1040void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
448bd857
HY
1041{
1042 if (bus)
1043 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
0e5dd46b
RW
1044}
1045
1046/**
1047 * __pci_complete_power_transition - Complete power transition of a PCI device
1048 * @dev: PCI device to handle.
1049 * @state: State to put the device into.
1050 *
1051 * This function should not be called directly by device drivers.
1052 */
1053int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1054{
448bd857
HY
1055 int ret;
1056
db288c9c 1057 if (state <= PCI_D0)
448bd857
HY
1058 return -EINVAL;
1059 ret = pci_platform_power_transition(dev, state);
1060 /* Power off the bridge may power off the whole hierarchy */
1061 if (!ret && state == PCI_D3cold)
2a4d2c42 1062 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
448bd857 1063 return ret;
0e5dd46b
RW
1064}
1065EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1066
44e4e66e
RW
1067/**
1068 * pci_set_power_state - Set the power state of a PCI device
1069 * @dev: PCI device to handle.
1070 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1071 *
877d0310 1072 * Transition a device to a new power state, using the platform firmware and/or
44e4e66e
RW
1073 * the device's PCI PM registers.
1074 *
1075 * RETURN VALUE:
1076 * -EINVAL if the requested state is invalid.
1077 * -EIO if device does not support PCI PM or its PM capabilities register has a
1078 * wrong version, or device doesn't support the requested state.
ab4b8a47 1079 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
44e4e66e 1080 * 0 if device already is in the requested state.
ab4b8a47 1081 * 0 if the transition is to D3 but D3 is not supported.
44e4e66e
RW
1082 * 0 if device's power state has been successfully changed.
1083 */
1084int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1085{
337001b6 1086 int error;
44e4e66e
RW
1087
1088 /* bound the state we're entering */
448bd857
HY
1089 if (state > PCI_D3cold)
1090 state = PCI_D3cold;
44e4e66e
RW
1091 else if (state < PCI_D0)
1092 state = PCI_D0;
1093 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1094 /*
1095 * If the device or the parent bridge do not support PCI PM,
1096 * ignore the request if we're doing anything other than putting
1097 * it into D0 (which would only happen on boot).
1098 */
1099 return 0;
1100
db288c9c
RW
1101 /* Check if we're already there */
1102 if (dev->current_state == state)
1103 return 0;
1104
0e5dd46b
RW
1105 __pci_start_power_transition(dev, state);
1106
979b1791
AC
1107 /* This device is quirked not to be put into D3, so
1108 don't put it in D3 */
448bd857 1109 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
979b1791 1110 return 0;
44e4e66e 1111
448bd857
HY
1112 /*
1113 * To put device in D3cold, we put device into D3hot in native
1114 * way, then put device into D3cold with platform ops
1115 */
1116 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1117 PCI_D3hot : state);
44e4e66e 1118
0e5dd46b
RW
1119 if (!__pci_complete_power_transition(dev, state))
1120 error = 0;
44e4e66e
RW
1121
1122 return error;
1123}
b7fe9434 1124EXPORT_SYMBOL(pci_set_power_state);
44e4e66e 1125
1da177e4
LT
1126/**
1127 * pci_choose_state - Choose the power state of a PCI device
1128 * @dev: PCI device to be suspended
1129 * @state: target sleep state for the whole system. This is the value
1130 * that is passed to suspend() function.
1131 *
1132 * Returns PCI power state suitable for given device and given system
1133 * message.
1134 */
1135
1136pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1137{
ab826ca4 1138 pci_power_t ret;
0f64474b 1139
728cdb75 1140 if (!dev->pm_cap)
1da177e4
LT
1141 return PCI_D0;
1142
961d9120
RW
1143 ret = platform_pci_choose_state(dev);
1144 if (ret != PCI_POWER_ERROR)
1145 return ret;
ca078bae
PM
1146
1147 switch (state.event) {
1148 case PM_EVENT_ON:
1149 return PCI_D0;
1150 case PM_EVENT_FREEZE:
b887d2e6
DB
1151 case PM_EVENT_PRETHAW:
1152 /* REVISIT both freeze and pre-thaw "should" use D0 */
ca078bae 1153 case PM_EVENT_SUSPEND:
3a2d5b70 1154 case PM_EVENT_HIBERNATE:
ca078bae 1155 return PCI_D3hot;
1da177e4 1156 default:
7506dc79 1157 pci_info(dev, "unrecognized suspend event %d\n",
80ccba11 1158 state.event);
1da177e4
LT
1159 BUG();
1160 }
1161 return PCI_D0;
1162}
1da177e4
LT
1163EXPORT_SYMBOL(pci_choose_state);
1164
89858517
YZ
1165#define PCI_EXP_SAVE_REGS 7
1166
fd0f7f73
AW
1167static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1168 u16 cap, bool extended)
34a4876e
YL
1169{
1170 struct pci_cap_saved_state *tmp;
34a4876e 1171
b67bfe0d 1172 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
fd0f7f73 1173 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
34a4876e
YL
1174 return tmp;
1175 }
1176 return NULL;
1177}
1178
fd0f7f73
AW
1179struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1180{
1181 return _pci_find_saved_cap(dev, cap, false);
1182}
1183
1184struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1185{
1186 return _pci_find_saved_cap(dev, cap, true);
1187}
1188
b56a5a23
MT
1189static int pci_save_pcie_state(struct pci_dev *dev)
1190{
59875ae4 1191 int i = 0;
b56a5a23
MT
1192 struct pci_cap_saved_state *save_state;
1193 u16 *cap;
1194
59875ae4 1195 if (!pci_is_pcie(dev))
b56a5a23
MT
1196 return 0;
1197
9f35575d 1198 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
b56a5a23 1199 if (!save_state) {
7506dc79 1200 pci_err(dev, "buffer not found in %s\n", __func__);
b56a5a23
MT
1201 return -ENOMEM;
1202 }
63f4898a 1203
59875ae4
JL
1204 cap = (u16 *)&save_state->cap.data[0];
1205 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1206 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1207 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1208 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1209 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1210 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1211 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
9cb604ed 1212
b56a5a23
MT
1213 return 0;
1214}
1215
1216static void pci_restore_pcie_state(struct pci_dev *dev)
1217{
59875ae4 1218 int i = 0;
b56a5a23
MT
1219 struct pci_cap_saved_state *save_state;
1220 u16 *cap;
1221
1222 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
59875ae4 1223 if (!save_state)
9cb604ed
MS
1224 return;
1225
59875ae4
JL
1226 cap = (u16 *)&save_state->cap.data[0];
1227 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1228 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1229 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1230 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1231 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1232 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1233 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
b56a5a23
MT
1234}
1235
cc692a5f
SH
1236static int pci_save_pcix_state(struct pci_dev *dev)
1237{
63f4898a 1238 int pos;
cc692a5f 1239 struct pci_cap_saved_state *save_state;
cc692a5f
SH
1240
1241 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1242 if (!pos)
cc692a5f
SH
1243 return 0;
1244
f34303de 1245 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
cc692a5f 1246 if (!save_state) {
7506dc79 1247 pci_err(dev, "buffer not found in %s\n", __func__);
cc692a5f
SH
1248 return -ENOMEM;
1249 }
cc692a5f 1250
24a4742f
AW
1251 pci_read_config_word(dev, pos + PCI_X_CMD,
1252 (u16 *)save_state->cap.data);
63f4898a 1253
cc692a5f
SH
1254 return 0;
1255}
1256
1257static void pci_restore_pcix_state(struct pci_dev *dev)
1258{
1259 int i = 0, pos;
1260 struct pci_cap_saved_state *save_state;
1261 u16 *cap;
1262
1263 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1264 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
0a1a9b49 1265 if (!save_state || !pos)
cc692a5f 1266 return;
24a4742f 1267 cap = (u16 *)&save_state->cap.data[0];
cc692a5f
SH
1268
1269 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
cc692a5f
SH
1270}
1271
dbbfadf2
BH
1272static void pci_save_ltr_state(struct pci_dev *dev)
1273{
1274 int ltr;
1275 struct pci_cap_saved_state *save_state;
1276 u16 *cap;
1277
1278 if (!pci_is_pcie(dev))
1279 return;
1280
1281 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1282 if (!ltr)
1283 return;
1284
1285 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1286 if (!save_state) {
1287 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1288 return;
1289 }
1290
1291 cap = (u16 *)&save_state->cap.data[0];
1292 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1293 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1294}
1295
1296static void pci_restore_ltr_state(struct pci_dev *dev)
1297{
1298 struct pci_cap_saved_state *save_state;
1299 int ltr;
1300 u16 *cap;
1301
1302 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1303 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1304 if (!save_state || !ltr)
1305 return;
1306
1307 cap = (u16 *)&save_state->cap.data[0];
1308 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1309 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1310}
cc692a5f 1311
1da177e4
LT
1312/**
1313 * pci_save_state - save the PCI configuration space of a device before suspending
1314 * @dev: - PCI device that we're dealing with
1da177e4 1315 */
3c78bc61 1316int pci_save_state(struct pci_dev *dev)
1da177e4
LT
1317{
1318 int i;
1319 /* XXX: 100% dword access ok here? */
1320 for (i = 0; i < 16; i++)
9e0b5b2c 1321 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
aa8c6c93 1322 dev->state_saved = true;
79e50e72
QL
1323
1324 i = pci_save_pcie_state(dev);
1325 if (i != 0)
b56a5a23 1326 return i;
79e50e72
QL
1327
1328 i = pci_save_pcix_state(dev);
1329 if (i != 0)
cc692a5f 1330 return i;
79e50e72 1331
dbbfadf2 1332 pci_save_ltr_state(dev);
4f802170 1333 pci_save_dpc_state(dev);
754834b9 1334 return pci_save_vc_state(dev);
1da177e4 1335}
b7fe9434 1336EXPORT_SYMBOL(pci_save_state);
1da177e4 1337
ebfc5b80 1338static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
08387454 1339 u32 saved_val, int retry, bool force)
ebfc5b80
RW
1340{
1341 u32 val;
1342
1343 pci_read_config_dword(pdev, offset, &val);
08387454 1344 if (!force && val == saved_val)
ebfc5b80
RW
1345 return;
1346
1347 for (;;) {
7506dc79 1348 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
227f0647 1349 offset, val, saved_val);
ebfc5b80
RW
1350 pci_write_config_dword(pdev, offset, saved_val);
1351 if (retry-- <= 0)
1352 return;
1353
1354 pci_read_config_dword(pdev, offset, &val);
1355 if (val == saved_val)
1356 return;
1357
1358 mdelay(1);
1359 }
1360}
1361
a6cb9ee7 1362static void pci_restore_config_space_range(struct pci_dev *pdev,
08387454
DD
1363 int start, int end, int retry,
1364 bool force)
ebfc5b80
RW
1365{
1366 int index;
1367
1368 for (index = end; index >= start; index--)
1369 pci_restore_config_dword(pdev, 4 * index,
1370 pdev->saved_config_space[index],
08387454 1371 retry, force);
ebfc5b80
RW
1372}
1373
a6cb9ee7
RW
1374static void pci_restore_config_space(struct pci_dev *pdev)
1375{
1376 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
08387454 1377 pci_restore_config_space_range(pdev, 10, 15, 0, false);
a6cb9ee7 1378 /* Restore BARs before the command register. */
08387454
DD
1379 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1380 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1381 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1382 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1383
1384 /*
1385 * Force rewriting of prefetch registers to avoid S3 resume
1386 * issues on Intel PCI bridges that occur when these
1387 * registers are not explicitly written.
1388 */
1389 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1390 pci_restore_config_space_range(pdev, 0, 8, 0, false);
a6cb9ee7 1391 } else {
08387454 1392 pci_restore_config_space_range(pdev, 0, 15, 0, false);
a6cb9ee7
RW
1393 }
1394}
1395
d3252ace
CK
1396static void pci_restore_rebar_state(struct pci_dev *pdev)
1397{
1398 unsigned int pos, nbars, i;
1399 u32 ctrl;
1400
1401 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1402 if (!pos)
1403 return;
1404
1405 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1406 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1407 PCI_REBAR_CTRL_NBAR_SHIFT;
1408
1409 for (i = 0; i < nbars; i++, pos += 8) {
1410 struct resource *res;
1411 int bar_idx, size;
1412
1413 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1414 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1415 res = pdev->resource + bar_idx;
1416 size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1417 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
b1277a22 1418 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
d3252ace
CK
1419 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1420 }
1421}
1422
f7625980 1423/**
1da177e4
LT
1424 * pci_restore_state - Restore the saved state of a PCI device
1425 * @dev: - PCI device that we're dealing with
1da177e4 1426 */
1d3c16a8 1427void pci_restore_state(struct pci_dev *dev)
1da177e4 1428{
c82f63e4 1429 if (!dev->state_saved)
1d3c16a8 1430 return;
4b77b0a2 1431
dbbfadf2
BH
1432 /*
1433 * Restore max latencies (in the LTR capability) before enabling
1434 * LTR itself (in the PCIe capability).
1435 */
1436 pci_restore_ltr_state(dev);
1437
b56a5a23 1438 pci_restore_pcie_state(dev);
4ebeb1ec
CT
1439 pci_restore_pasid_state(dev);
1440 pci_restore_pri_state(dev);
1900ca13 1441 pci_restore_ats_state(dev);
425c1b22 1442 pci_restore_vc_state(dev);
d3252ace 1443 pci_restore_rebar_state(dev);
4f802170 1444 pci_restore_dpc_state(dev);
b56a5a23 1445
b07461a8
TI
1446 pci_cleanup_aer_error_status_regs(dev);
1447
a6cb9ee7 1448 pci_restore_config_space(dev);
ebfc5b80 1449
cc692a5f 1450 pci_restore_pcix_state(dev);
41017f0c 1451 pci_restore_msi_state(dev);
ccbc175a
AD
1452
1453 /* Restore ACS and IOV configuration state */
1454 pci_enable_acs(dev);
8c5cdb6a 1455 pci_restore_iov_state(dev);
8fed4b65 1456
4b77b0a2 1457 dev->state_saved = false;
1da177e4 1458}
b7fe9434 1459EXPORT_SYMBOL(pci_restore_state);
1da177e4 1460
ffbdd3f7
AW
1461struct pci_saved_state {
1462 u32 config_space[16];
1463 struct pci_cap_saved_data cap[0];
1464};
1465
1466/**
1467 * pci_store_saved_state - Allocate and return an opaque struct containing
1468 * the device saved state.
1469 * @dev: PCI device that we're dealing with
1470 *
f7625980 1471 * Return NULL if no state or error.
ffbdd3f7
AW
1472 */
1473struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1474{
1475 struct pci_saved_state *state;
1476 struct pci_cap_saved_state *tmp;
1477 struct pci_cap_saved_data *cap;
ffbdd3f7
AW
1478 size_t size;
1479
1480 if (!dev->state_saved)
1481 return NULL;
1482
1483 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1484
b67bfe0d 1485 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
ffbdd3f7
AW
1486 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1487
1488 state = kzalloc(size, GFP_KERNEL);
1489 if (!state)
1490 return NULL;
1491
1492 memcpy(state->config_space, dev->saved_config_space,
1493 sizeof(state->config_space));
1494
1495 cap = state->cap;
b67bfe0d 1496 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
ffbdd3f7
AW
1497 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1498 memcpy(cap, &tmp->cap, len);
1499 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1500 }
1501 /* Empty cap_save terminates list */
1502
1503 return state;
1504}
1505EXPORT_SYMBOL_GPL(pci_store_saved_state);
1506
1507/**
1508 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1509 * @dev: PCI device that we're dealing with
1510 * @state: Saved state returned from pci_store_saved_state()
1511 */
98d9b271
KRW
1512int pci_load_saved_state(struct pci_dev *dev,
1513 struct pci_saved_state *state)
ffbdd3f7
AW
1514{
1515 struct pci_cap_saved_data *cap;
1516
1517 dev->state_saved = false;
1518
1519 if (!state)
1520 return 0;
1521
1522 memcpy(dev->saved_config_space, state->config_space,
1523 sizeof(state->config_space));
1524
1525 cap = state->cap;
1526 while (cap->size) {
1527 struct pci_cap_saved_state *tmp;
1528
fd0f7f73 1529 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
ffbdd3f7
AW
1530 if (!tmp || tmp->cap.size != cap->size)
1531 return -EINVAL;
1532
1533 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1534 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1535 sizeof(struct pci_cap_saved_data) + cap->size);
1536 }
1537
1538 dev->state_saved = true;
1539 return 0;
1540}
98d9b271 1541EXPORT_SYMBOL_GPL(pci_load_saved_state);
ffbdd3f7
AW
1542
1543/**
1544 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1545 * and free the memory allocated for it.
1546 * @dev: PCI device that we're dealing with
1547 * @state: Pointer to saved state returned from pci_store_saved_state()
1548 */
1549int pci_load_and_free_saved_state(struct pci_dev *dev,
1550 struct pci_saved_state **state)
1551{
1552 int ret = pci_load_saved_state(dev, *state);
1553 kfree(*state);
1554 *state = NULL;
1555 return ret;
1556}
1557EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1558
8a9d5609
BH
1559int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1560{
1561 return pci_enable_resources(dev, bars);
1562}
1563
38cc1302
HS
1564static int do_pci_enable_device(struct pci_dev *dev, int bars)
1565{
1566 int err;
1f6ae47e 1567 struct pci_dev *bridge;
1e2571a7
BH
1568 u16 cmd;
1569 u8 pin;
38cc1302
HS
1570
1571 err = pci_set_power_state(dev, PCI_D0);
1572 if (err < 0 && err != -EIO)
1573 return err;
1f6ae47e
VS
1574
1575 bridge = pci_upstream_bridge(dev);
1576 if (bridge)
1577 pcie_aspm_powersave_config_link(bridge);
1578
38cc1302
HS
1579 err = pcibios_enable_device(dev, bars);
1580 if (err < 0)
1581 return err;
1582 pci_fixup_device(pci_fixup_enable, dev);
1583
866d5417
BH
1584 if (dev->msi_enabled || dev->msix_enabled)
1585 return 0;
1586
1e2571a7
BH
1587 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1588 if (pin) {
1589 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1590 if (cmd & PCI_COMMAND_INTX_DISABLE)
1591 pci_write_config_word(dev, PCI_COMMAND,
1592 cmd & ~PCI_COMMAND_INTX_DISABLE);
1593 }
1594
38cc1302
HS
1595 return 0;
1596}
1597
1598/**
0b62e13b 1599 * pci_reenable_device - Resume abandoned device
38cc1302
HS
1600 * @dev: PCI device to be resumed
1601 *
1602 * Note this function is a backend of pci_default_resume and is not supposed
1603 * to be called by normal code, write proper resume handler and use it instead.
1604 */
0b62e13b 1605int pci_reenable_device(struct pci_dev *dev)
38cc1302 1606{
296ccb08 1607 if (pci_is_enabled(dev))
38cc1302
HS
1608 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1609 return 0;
1610}
b7fe9434 1611EXPORT_SYMBOL(pci_reenable_device);
38cc1302 1612
928bea96
YL
1613static void pci_enable_bridge(struct pci_dev *dev)
1614{
79272138 1615 struct pci_dev *bridge;
928bea96
YL
1616 int retval;
1617
79272138
BH
1618 bridge = pci_upstream_bridge(dev);
1619 if (bridge)
1620 pci_enable_bridge(bridge);
928bea96 1621
cf3e1feb 1622 if (pci_is_enabled(dev)) {
fbeeb822 1623 if (!dev->is_busmaster)
cf3e1feb 1624 pci_set_master(dev);
0f50a49e 1625 return;
cf3e1feb
YL
1626 }
1627
928bea96
YL
1628 retval = pci_enable_device(dev);
1629 if (retval)
7506dc79 1630 pci_err(dev, "Error enabling bridge (%d), continuing\n",
928bea96
YL
1631 retval);
1632 pci_set_master(dev);
1633}
1634
b4b4fbba 1635static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1da177e4 1636{
79272138 1637 struct pci_dev *bridge;
1da177e4 1638 int err;
b718989d 1639 int i, bars = 0;
1da177e4 1640
97c145f7
JB
1641 /*
1642 * Power state could be unknown at this point, either due to a fresh
1643 * boot or a device removal call. So get the current power state
1644 * so that things like MSI message writing will behave as expected
1645 * (e.g. if the device really is in D0 at enable time).
1646 */
1647 if (dev->pm_cap) {
1648 u16 pmcsr;
1649 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1650 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1651 }
1652
cc7ba39b 1653 if (atomic_inc_return(&dev->enable_cnt) > 1)
9fb625c3
HS
1654 return 0; /* already enabled */
1655
79272138 1656 bridge = pci_upstream_bridge(dev);
0f50a49e 1657 if (bridge)
79272138 1658 pci_enable_bridge(bridge);
928bea96 1659
497f16f2
YL
1660 /* only skip sriov related */
1661 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1662 if (dev->resource[i].flags & flags)
1663 bars |= (1 << i);
1664 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
b718989d
BH
1665 if (dev->resource[i].flags & flags)
1666 bars |= (1 << i);
1667
38cc1302 1668 err = do_pci_enable_device(dev, bars);
95a62965 1669 if (err < 0)
38cc1302 1670 atomic_dec(&dev->enable_cnt);
9fb625c3 1671 return err;
1da177e4
LT
1672}
1673
b718989d
BH
1674/**
1675 * pci_enable_device_io - Initialize a device for use with IO space
1676 * @dev: PCI device to be initialized
1677 *
1678 * Initialize device before it's used by a driver. Ask low-level code
1679 * to enable I/O resources. Wake up the device if it was suspended.
1680 * Beware, this function can fail.
1681 */
1682int pci_enable_device_io(struct pci_dev *dev)
1683{
b4b4fbba 1684 return pci_enable_device_flags(dev, IORESOURCE_IO);
b718989d 1685}
b7fe9434 1686EXPORT_SYMBOL(pci_enable_device_io);
b718989d
BH
1687
1688/**
1689 * pci_enable_device_mem - Initialize a device for use with Memory space
1690 * @dev: PCI device to be initialized
1691 *
1692 * Initialize device before it's used by a driver. Ask low-level code
1693 * to enable Memory resources. Wake up the device if it was suspended.
1694 * Beware, this function can fail.
1695 */
1696int pci_enable_device_mem(struct pci_dev *dev)
1697{
b4b4fbba 1698 return pci_enable_device_flags(dev, IORESOURCE_MEM);
b718989d 1699}
b7fe9434 1700EXPORT_SYMBOL(pci_enable_device_mem);
b718989d 1701
bae94d02
IPG
1702/**
1703 * pci_enable_device - Initialize device before it's used by a driver.
1704 * @dev: PCI device to be initialized
1705 *
1706 * Initialize device before it's used by a driver. Ask low-level code
1707 * to enable I/O and memory. Wake up the device if it was suspended.
1708 * Beware, this function can fail.
1709 *
1710 * Note we don't actually enable the device many times if we call
1711 * this function repeatedly (we just increment the count).
1712 */
1713int pci_enable_device(struct pci_dev *dev)
1714{
b4b4fbba 1715 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
bae94d02 1716}
b7fe9434 1717EXPORT_SYMBOL(pci_enable_device);
bae94d02 1718
9ac7849e
TH
1719/*
1720 * Managed PCI resources. This manages device on/off, intx/msi/msix
1721 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1722 * there's no need to track it separately. pci_devres is initialized
1723 * when a device is enabled using managed PCI device enable interface.
1724 */
1725struct pci_devres {
7f375f32
TH
1726 unsigned int enabled:1;
1727 unsigned int pinned:1;
9ac7849e
TH
1728 unsigned int orig_intx:1;
1729 unsigned int restore_intx:1;
fc0f9f4d 1730 unsigned int mwi:1;
9ac7849e
TH
1731 u32 region_mask;
1732};
1733
1734static void pcim_release(struct device *gendev, void *res)
1735{
f3d2f165 1736 struct pci_dev *dev = to_pci_dev(gendev);
9ac7849e
TH
1737 struct pci_devres *this = res;
1738 int i;
1739
1740 if (dev->msi_enabled)
1741 pci_disable_msi(dev);
1742 if (dev->msix_enabled)
1743 pci_disable_msix(dev);
1744
1745 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1746 if (this->region_mask & (1 << i))
1747 pci_release_region(dev, i);
1748
fc0f9f4d
HK
1749 if (this->mwi)
1750 pci_clear_mwi(dev);
1751
9ac7849e
TH
1752 if (this->restore_intx)
1753 pci_intx(dev, this->orig_intx);
1754
7f375f32 1755 if (this->enabled && !this->pinned)
9ac7849e
TH
1756 pci_disable_device(dev);
1757}
1758
07656d83 1759static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1760{
1761 struct pci_devres *dr, *new_dr;
1762
1763 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1764 if (dr)
1765 return dr;
1766
1767 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1768 if (!new_dr)
1769 return NULL;
1770 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1771}
1772
07656d83 1773static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
9ac7849e
TH
1774{
1775 if (pci_is_managed(pdev))
1776 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1777 return NULL;
1778}
1779
1780/**
1781 * pcim_enable_device - Managed pci_enable_device()
1782 * @pdev: PCI device to be initialized
1783 *
1784 * Managed pci_enable_device().
1785 */
1786int pcim_enable_device(struct pci_dev *pdev)
1787{
1788 struct pci_devres *dr;
1789 int rc;
1790
1791 dr = get_pci_dr(pdev);
1792 if (unlikely(!dr))
1793 return -ENOMEM;
b95d58ea
TH
1794 if (dr->enabled)
1795 return 0;
9ac7849e
TH
1796
1797 rc = pci_enable_device(pdev);
1798 if (!rc) {
1799 pdev->is_managed = 1;
7f375f32 1800 dr->enabled = 1;
9ac7849e
TH
1801 }
1802 return rc;
1803}
b7fe9434 1804EXPORT_SYMBOL(pcim_enable_device);
9ac7849e
TH
1805
1806/**
1807 * pcim_pin_device - Pin managed PCI device
1808 * @pdev: PCI device to pin
1809 *
1810 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1811 * driver detach. @pdev must have been enabled with
1812 * pcim_enable_device().
1813 */
1814void pcim_pin_device(struct pci_dev *pdev)
1815{
1816 struct pci_devres *dr;
1817
1818 dr = find_pci_dr(pdev);
7f375f32 1819 WARN_ON(!dr || !dr->enabled);
9ac7849e 1820 if (dr)
7f375f32 1821 dr->pinned = 1;
9ac7849e 1822}
b7fe9434 1823EXPORT_SYMBOL(pcim_pin_device);
9ac7849e 1824
eca0d467
MG
1825/*
1826 * pcibios_add_device - provide arch specific hooks when adding device dev
1827 * @dev: the PCI device being added
1828 *
1829 * Permits the platform to provide architecture specific functionality when
1830 * devices are added. This is the default implementation. Architecture
1831 * implementations can override this.
1832 */
3c78bc61 1833int __weak pcibios_add_device(struct pci_dev *dev)
eca0d467
MG
1834{
1835 return 0;
1836}
1837
6ae32c53
SO
1838/**
1839 * pcibios_release_device - provide arch specific hooks when releasing device dev
1840 * @dev: the PCI device being released
1841 *
1842 * Permits the platform to provide architecture specific functionality when
1843 * devices are released. This is the default implementation. Architecture
1844 * implementations can override this.
1845 */
1846void __weak pcibios_release_device(struct pci_dev *dev) {}
1847
1da177e4
LT
1848/**
1849 * pcibios_disable_device - disable arch specific PCI resources for device dev
1850 * @dev: the PCI device to disable
1851 *
1852 * Disables architecture specific PCI resources for the device. This
1853 * is the default implementation. Architecture implementations can
1854 * override this.
1855 */
ff3ce480 1856void __weak pcibios_disable_device(struct pci_dev *dev) {}
1da177e4 1857
a43ae58c
HG
1858/**
1859 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1860 * @irq: ISA IRQ to penalize
1861 * @active: IRQ active or not
1862 *
1863 * Permits the platform to provide architecture-specific functionality when
1864 * penalizing ISA IRQs. This is the default implementation. Architecture
1865 * implementations can override this.
1866 */
1867void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1868
fa58d305
RW
1869static void do_pci_disable_device(struct pci_dev *dev)
1870{
1871 u16 pci_command;
1872
1873 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1874 if (pci_command & PCI_COMMAND_MASTER) {
1875 pci_command &= ~PCI_COMMAND_MASTER;
1876 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1877 }
1878
1879 pcibios_disable_device(dev);
1880}
1881
1882/**
1883 * pci_disable_enabled_device - Disable device without updating enable_cnt
1884 * @dev: PCI device to disable
1885 *
1886 * NOTE: This function is a backend of PCI power management routines and is
1887 * not supposed to be called drivers.
1888 */
1889void pci_disable_enabled_device(struct pci_dev *dev)
1890{
296ccb08 1891 if (pci_is_enabled(dev))
fa58d305
RW
1892 do_pci_disable_device(dev);
1893}
1894
1da177e4
LT
1895/**
1896 * pci_disable_device - Disable PCI device after use
1897 * @dev: PCI device to be disabled
1898 *
1899 * Signal to the system that the PCI device is not in use by the system
1900 * anymore. This only involves disabling PCI bus-mastering, if active.
bae94d02
IPG
1901 *
1902 * Note we don't actually disable the device until all callers of
ee6583f6 1903 * pci_enable_device() have called pci_disable_device().
1da177e4 1904 */
3c78bc61 1905void pci_disable_device(struct pci_dev *dev)
1da177e4 1906{
9ac7849e 1907 struct pci_devres *dr;
99dc804d 1908
9ac7849e
TH
1909 dr = find_pci_dr(dev);
1910 if (dr)
7f375f32 1911 dr->enabled = 0;
9ac7849e 1912
fd6dceab
KK
1913 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1914 "disabling already-disabled device");
1915
cc7ba39b 1916 if (atomic_dec_return(&dev->enable_cnt) != 0)
bae94d02
IPG
1917 return;
1918
fa58d305 1919 do_pci_disable_device(dev);
1da177e4 1920
fa58d305 1921 dev->is_busmaster = 0;
1da177e4 1922}
b7fe9434 1923EXPORT_SYMBOL(pci_disable_device);
1da177e4 1924
f7bdd12d
BK
1925/**
1926 * pcibios_set_pcie_reset_state - set reset state for device dev
45e829ea 1927 * @dev: the PCIe device reset
f7bdd12d
BK
1928 * @state: Reset state to enter into
1929 *
1930 *
45e829ea 1931 * Sets the PCIe reset state for the device. This is the default
f7bdd12d
BK
1932 * implementation. Architecture implementations can override this.
1933 */
d6d88c83
BH
1934int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1935 enum pcie_reset_state state)
f7bdd12d
BK
1936{
1937 return -EINVAL;
1938}
1939
1940/**
1941 * pci_set_pcie_reset_state - set reset state for device dev
45e829ea 1942 * @dev: the PCIe device reset
f7bdd12d
BK
1943 * @state: Reset state to enter into
1944 *
1945 *
1946 * Sets the PCI reset state for the device.
1947 */
1948int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1949{
1950 return pcibios_set_pcie_reset_state(dev, state);
1951}
b7fe9434 1952EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
f7bdd12d 1953
dcb0453d
BH
1954/**
1955 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1956 * @dev: PCIe root port or event collector.
1957 */
1958void pcie_clear_root_pme_status(struct pci_dev *dev)
1959{
1960 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1961}
1962
58ff4633
RW
1963/**
1964 * pci_check_pme_status - Check if given device has generated PME.
1965 * @dev: Device to check.
1966 *
1967 * Check the PME status of the device and if set, clear it and clear PME enable
1968 * (if set). Return 'true' if PME status and PME enable were both set or
1969 * 'false' otherwise.
1970 */
1971bool pci_check_pme_status(struct pci_dev *dev)
1972{
1973 int pmcsr_pos;
1974 u16 pmcsr;
1975 bool ret = false;
1976
1977 if (!dev->pm_cap)
1978 return false;
1979
1980 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1981 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1982 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1983 return false;
1984
1985 /* Clear PME status. */
1986 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1987 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1988 /* Disable PME to avoid interrupt flood. */
1989 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1990 ret = true;
1991 }
1992
1993 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1994
1995 return ret;
1996}
1997
b67ea761
RW
1998/**
1999 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2000 * @dev: Device to handle.
379021d5 2001 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
b67ea761
RW
2002 *
2003 * Check if @dev has generated PME and queue a resume request for it in that
2004 * case.
2005 */
379021d5 2006static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
b67ea761 2007{
379021d5
RW
2008 if (pme_poll_reset && dev->pme_poll)
2009 dev->pme_poll = false;
2010
c125e96f 2011 if (pci_check_pme_status(dev)) {
c125e96f 2012 pci_wakeup_event(dev);
0f953bf6 2013 pm_request_resume(&dev->dev);
c125e96f 2014 }
b67ea761
RW
2015 return 0;
2016}
2017
2018/**
2019 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2020 * @bus: Top bus of the subtree to walk.
2021 */
2022void pci_pme_wakeup_bus(struct pci_bus *bus)
2023{
2024 if (bus)
379021d5 2025 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
b67ea761
RW
2026}
2027
448bd857 2028
eb9d0fe4
RW
2029/**
2030 * pci_pme_capable - check the capability of PCI device to generate PME#
2031 * @dev: PCI device to handle.
eb9d0fe4
RW
2032 * @state: PCI state from which device will issue PME#.
2033 */
e5899e1b 2034bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
eb9d0fe4 2035{
337001b6 2036 if (!dev->pm_cap)
eb9d0fe4
RW
2037 return false;
2038
337001b6 2039 return !!(dev->pme_support & (1 << state));
eb9d0fe4 2040}
b7fe9434 2041EXPORT_SYMBOL(pci_pme_capable);
eb9d0fe4 2042
df17e62e
MG
2043static void pci_pme_list_scan(struct work_struct *work)
2044{
379021d5 2045 struct pci_pme_device *pme_dev, *n;
df17e62e
MG
2046
2047 mutex_lock(&pci_pme_list_mutex);
ce300008
BH
2048 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2049 if (pme_dev->dev->pme_poll) {
2050 struct pci_dev *bridge;
2051
2052 bridge = pme_dev->dev->bus->self;
2053 /*
2054 * If bridge is in low power state, the
2055 * configuration space of subordinate devices
2056 * may be not accessible
2057 */
2058 if (bridge && bridge->current_state != PCI_D0)
2059 continue;
2060 pci_pme_wakeup(pme_dev->dev, NULL);
2061 } else {
2062 list_del(&pme_dev->list);
2063 kfree(pme_dev);
379021d5 2064 }
df17e62e 2065 }
ce300008 2066 if (!list_empty(&pci_pme_list))
ea00353f
LW
2067 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2068 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
2069 mutex_unlock(&pci_pme_list_mutex);
2070}
2071
2cef548a 2072static void __pci_pme_active(struct pci_dev *dev, bool enable)
eb9d0fe4
RW
2073{
2074 u16 pmcsr;
2075
ffaddbe8 2076 if (!dev->pme_support)
eb9d0fe4
RW
2077 return;
2078
337001b6 2079 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
eb9d0fe4
RW
2080 /* Clear PME_Status by writing 1 to it and enable PME# */
2081 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2082 if (!enable)
2083 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2084
337001b6 2085 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2cef548a
RW
2086}
2087
0ce3fcaf
RW
2088/**
2089 * pci_pme_restore - Restore PME configuration after config space restore.
2090 * @dev: PCI device to update.
2091 */
2092void pci_pme_restore(struct pci_dev *dev)
dc15e71e
RW
2093{
2094 u16 pmcsr;
2095
2096 if (!dev->pme_support)
2097 return;
2098
2099 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2100 if (dev->wakeup_prepared) {
2101 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
0ce3fcaf 2102 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
dc15e71e
RW
2103 } else {
2104 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2105 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2106 }
2107 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2108}
2109
2cef548a
RW
2110/**
2111 * pci_pme_active - enable or disable PCI device's PME# function
2112 * @dev: PCI device to handle.
2113 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2114 *
2115 * The caller must verify that the device is capable of generating PME# before
2116 * calling this function with @enable equal to 'true'.
2117 */
2118void pci_pme_active(struct pci_dev *dev, bool enable)
2119{
2120 __pci_pme_active(dev, enable);
eb9d0fe4 2121
6e965e0d
HY
2122 /*
2123 * PCI (as opposed to PCIe) PME requires that the device have
2124 * its PME# line hooked up correctly. Not all hardware vendors
2125 * do this, so the PME never gets delivered and the device
2126 * remains asleep. The easiest way around this is to
2127 * periodically walk the list of suspended devices and check
2128 * whether any have their PME flag set. The assumption is that
2129 * we'll wake up often enough anyway that this won't be a huge
2130 * hit, and the power savings from the devices will still be a
2131 * win.
2132 *
2133 * Although PCIe uses in-band PME message instead of PME# line
2134 * to report PME, PME does not work for some PCIe devices in
2135 * reality. For example, there are devices that set their PME
2136 * status bits, but don't really bother to send a PME message;
2137 * there are PCI Express Root Ports that don't bother to
2138 * trigger interrupts when they receive PME messages from the
2139 * devices below. So PME poll is used for PCIe devices too.
2140 */
df17e62e 2141
379021d5 2142 if (dev->pme_poll) {
df17e62e
MG
2143 struct pci_pme_device *pme_dev;
2144 if (enable) {
2145 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2146 GFP_KERNEL);
0394cb19 2147 if (!pme_dev) {
7506dc79 2148 pci_warn(dev, "can't enable PME#\n");
0394cb19
BH
2149 return;
2150 }
df17e62e
MG
2151 pme_dev->dev = dev;
2152 mutex_lock(&pci_pme_list_mutex);
2153 list_add(&pme_dev->list, &pci_pme_list);
2154 if (list_is_singular(&pci_pme_list))
ea00353f
LW
2155 queue_delayed_work(system_freezable_wq,
2156 &pci_pme_work,
2157 msecs_to_jiffies(PME_TIMEOUT));
df17e62e
MG
2158 mutex_unlock(&pci_pme_list_mutex);
2159 } else {
2160 mutex_lock(&pci_pme_list_mutex);
2161 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2162 if (pme_dev->dev == dev) {
2163 list_del(&pme_dev->list);
2164 kfree(pme_dev);
2165 break;
2166 }
2167 }
2168 mutex_unlock(&pci_pme_list_mutex);
2169 }
2170 }
2171
7506dc79 2172 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
eb9d0fe4 2173}
b7fe9434 2174EXPORT_SYMBOL(pci_pme_active);
eb9d0fe4 2175
1da177e4 2176/**
cfcadfaa 2177 * __pci_enable_wake - enable PCI device as wakeup event source
075c1771
DB
2178 * @dev: PCI device affected
2179 * @state: PCI state from which device will issue wakeup events
2180 * @enable: True to enable event generation; false to disable
2181 *
2182 * This enables the device as a wakeup event source, or disables it.
2183 * When such events involves platform-specific hooks, those hooks are
2184 * called automatically by this routine.
2185 *
2186 * Devices with legacy power management (no standard PCI PM capabilities)
eb9d0fe4 2187 * always require such platform hooks.
075c1771 2188 *
eb9d0fe4
RW
2189 * RETURN VALUE:
2190 * 0 is returned on success
2191 * -EINVAL is returned if device is not supposed to wake up the system
2192 * Error code depending on the platform is returned if both the platform and
2193 * the native mechanism fail to enable the generation of wake-up events
1da177e4 2194 */
cfcadfaa 2195static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1da177e4 2196{
5bcc2fb4 2197 int ret = 0;
075c1771 2198
baecc470 2199 /*
ac86e8ee
MW
2200 * Bridges that are not power-manageable directly only signal
2201 * wakeup on behalf of subordinate devices which is set up
2202 * elsewhere, so skip them. However, bridges that are
2203 * power-manageable may signal wakeup for themselves (for example,
2204 * on a hotplug event) and they need to be covered here.
baecc470 2205 */
ac86e8ee 2206 if (!pci_power_manageable(dev))
baecc470
RW
2207 return 0;
2208
0ce3fcaf
RW
2209 /* Don't do the same thing twice in a row for one device. */
2210 if (!!enable == !!dev->wakeup_prepared)
e80bb09d
RW
2211 return 0;
2212
eb9d0fe4
RW
2213 /*
2214 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2215 * Anderson we should be doing PME# wake enable followed by ACPI wake
2216 * enable. To disable wake-up we call the platform first, for symmetry.
075c1771 2217 */
1da177e4 2218
5bcc2fb4
RW
2219 if (enable) {
2220 int error;
1da177e4 2221
5bcc2fb4
RW
2222 if (pci_pme_capable(dev, state))
2223 pci_pme_active(dev, true);
2224 else
2225 ret = 1;
0847684c 2226 error = platform_pci_set_wakeup(dev, true);
5bcc2fb4
RW
2227 if (ret)
2228 ret = error;
e80bb09d
RW
2229 if (!ret)
2230 dev->wakeup_prepared = true;
5bcc2fb4 2231 } else {
0847684c 2232 platform_pci_set_wakeup(dev, false);
5bcc2fb4 2233 pci_pme_active(dev, false);
e80bb09d 2234 dev->wakeup_prepared = false;
5bcc2fb4 2235 }
1da177e4 2236
5bcc2fb4 2237 return ret;
eb9d0fe4 2238}
cfcadfaa
RW
2239
2240/**
2241 * pci_enable_wake - change wakeup settings for a PCI device
2242 * @pci_dev: Target device
2243 * @state: PCI state from which device will issue wakeup events
2244 * @enable: Whether or not to enable event generation
2245 *
2246 * If @enable is set, check device_may_wakeup() for the device before calling
2247 * __pci_enable_wake() for it.
2248 */
2249int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2250{
2251 if (enable && !device_may_wakeup(&pci_dev->dev))
2252 return -EINVAL;
2253
2254 return __pci_enable_wake(pci_dev, state, enable);
2255}
0847684c 2256EXPORT_SYMBOL(pci_enable_wake);
1da177e4 2257
0235c4fc
RW
2258/**
2259 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2260 * @dev: PCI device to prepare
2261 * @enable: True to enable wake-up event generation; false to disable
2262 *
2263 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2264 * and this function allows them to set that up cleanly - pci_enable_wake()
2265 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2266 * ordering constraints.
2267 *
cfcadfaa
RW
2268 * This function only returns error code if the device is not allowed to wake
2269 * up the system from sleep or it is not capable of generating PME# from both
2270 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
0235c4fc
RW
2271 */
2272int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2273{
2274 return pci_pme_capable(dev, PCI_D3cold) ?
2275 pci_enable_wake(dev, PCI_D3cold, enable) :
2276 pci_enable_wake(dev, PCI_D3hot, enable);
2277}
b7fe9434 2278EXPORT_SYMBOL(pci_wake_from_d3);
0235c4fc 2279
404cc2d8 2280/**
37139074
JB
2281 * pci_target_state - find an appropriate low power state for a given PCI dev
2282 * @dev: PCI device
666ff6f8 2283 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
37139074
JB
2284 *
2285 * Use underlying platform code to find a supported low power state for @dev.
2286 * If the platform can't manage @dev, return the deepest state from which it
2287 * can generate wake events, based on any available PME info.
404cc2d8 2288 */
666ff6f8 2289static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
404cc2d8
RW
2290{
2291 pci_power_t target_state = PCI_D3hot;
404cc2d8
RW
2292
2293 if (platform_pci_power_manageable(dev)) {
2294 /*
60ee031a 2295 * Call the platform to find the target state for the device.
404cc2d8
RW
2296 */
2297 pci_power_t state = platform_pci_choose_state(dev);
2298
2299 switch (state) {
2300 case PCI_POWER_ERROR:
2301 case PCI_UNKNOWN:
2302 break;
2303 case PCI_D1:
2304 case PCI_D2:
2305 if (pci_no_d1d2(dev))
2306 break;
1d09d577 2307 /* else, fall through */
404cc2d8
RW
2308 default:
2309 target_state = state;
404cc2d8 2310 }
4132a577
LW
2311
2312 return target_state;
2313 }
2314
2315 if (!dev->pm_cap)
d2abdf62 2316 target_state = PCI_D0;
4132a577
LW
2317
2318 /*
2319 * If the device is in D3cold even though it's not power-manageable by
2320 * the platform, it may have been powered down by non-standard means.
2321 * Best to let it slumber.
2322 */
2323 if (dev->current_state == PCI_D3cold)
2324 target_state = PCI_D3cold;
2325
666ff6f8 2326 if (wakeup) {
404cc2d8
RW
2327 /*
2328 * Find the deepest state from which the device can generate
60ee031a 2329 * PME#.
404cc2d8 2330 */
337001b6
RW
2331 if (dev->pme_support) {
2332 while (target_state
2333 && !(dev->pme_support & (1 << target_state)))
2334 target_state--;
404cc2d8
RW
2335 }
2336 }
2337
e5899e1b
RW
2338 return target_state;
2339}
2340
2341/**
2342 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2343 * @dev: Device to handle.
2344 *
2345 * Choose the power state appropriate for the device depending on whether
2346 * it can wake up the system and/or is power manageable by the platform
2347 * (PCI_D3hot is the default) and put the device into that state.
2348 */
2349int pci_prepare_to_sleep(struct pci_dev *dev)
2350{
666ff6f8
RW
2351 bool wakeup = device_may_wakeup(&dev->dev);
2352 pci_power_t target_state = pci_target_state(dev, wakeup);
e5899e1b
RW
2353 int error;
2354
2355 if (target_state == PCI_POWER_ERROR)
2356 return -EIO;
2357
666ff6f8 2358 pci_enable_wake(dev, target_state, wakeup);
c157dfa3 2359
404cc2d8
RW
2360 error = pci_set_power_state(dev, target_state);
2361
2362 if (error)
2363 pci_enable_wake(dev, target_state, false);
2364
2365 return error;
2366}
b7fe9434 2367EXPORT_SYMBOL(pci_prepare_to_sleep);
404cc2d8
RW
2368
2369/**
443bd1c4 2370 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
404cc2d8
RW
2371 * @dev: Device to handle.
2372 *
88393161 2373 * Disable device's system wake-up capability and put it into D0.
404cc2d8
RW
2374 */
2375int pci_back_from_sleep(struct pci_dev *dev)
2376{
2377 pci_enable_wake(dev, PCI_D0, false);
2378 return pci_set_power_state(dev, PCI_D0);
2379}
b7fe9434 2380EXPORT_SYMBOL(pci_back_from_sleep);
404cc2d8 2381
6cbf8214
RW
2382/**
2383 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2384 * @dev: PCI device being suspended.
2385 *
2386 * Prepare @dev to generate wake-up events at run time and put it into a low
2387 * power state.
2388 */
2389int pci_finish_runtime_suspend(struct pci_dev *dev)
2390{
666ff6f8 2391 pci_power_t target_state;
6cbf8214
RW
2392 int error;
2393
666ff6f8 2394 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
6cbf8214
RW
2395 if (target_state == PCI_POWER_ERROR)
2396 return -EIO;
2397
448bd857
HY
2398 dev->runtime_d3cold = target_state == PCI_D3cold;
2399
cfcadfaa 2400 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
6cbf8214
RW
2401
2402 error = pci_set_power_state(dev, target_state);
2403
448bd857 2404 if (error) {
0847684c 2405 pci_enable_wake(dev, target_state, false);
448bd857
HY
2406 dev->runtime_d3cold = false;
2407 }
6cbf8214
RW
2408
2409 return error;
2410}
2411
b67ea761
RW
2412/**
2413 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2414 * @dev: Device to check.
2415 *
f7625980 2416 * Return true if the device itself is capable of generating wake-up events
b67ea761
RW
2417 * (through the platform or using the native PCIe PME) or if the device supports
2418 * PME and one of its upstream bridges can generate wake-up events.
2419 */
2420bool pci_dev_run_wake(struct pci_dev *dev)
2421{
2422 struct pci_bus *bus = dev->bus;
2423
b67ea761
RW
2424 if (!dev->pme_support)
2425 return false;
2426
666ff6f8 2427 /* PME-capable in principle, but not from the target power state */
8feaec33 2428 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
6496ebd7
AS
2429 return false;
2430
8feaec33
KHF
2431 if (device_can_wakeup(&dev->dev))
2432 return true;
2433
b67ea761
RW
2434 while (bus->parent) {
2435 struct pci_dev *bridge = bus->self;
2436
de3ef1eb 2437 if (device_can_wakeup(&bridge->dev))
b67ea761
RW
2438 return true;
2439
2440 bus = bus->parent;
2441 }
2442
2443 /* We have reached the root bus. */
2444 if (bus->bridge)
de3ef1eb 2445 return device_can_wakeup(bus->bridge);
b67ea761
RW
2446
2447 return false;
2448}
2449EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2450
bac2a909
RW
2451/**
2452 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2453 * @pci_dev: Device to check.
2454 *
2455 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2456 * reconfigured due to wakeup settings difference between system and runtime
2457 * suspend and the current power state of it is suitable for the upcoming
2458 * (system) transition.
2cef548a
RW
2459 *
2460 * If the device is not configured for system wakeup, disable PME for it before
2461 * returning 'true' to prevent it from waking up the system unnecessarily.
bac2a909
RW
2462 */
2463bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2464{
2465 struct device *dev = &pci_dev->dev;
666ff6f8 2466 bool wakeup = device_may_wakeup(dev);
bac2a909
RW
2467
2468 if (!pm_runtime_suspended(dev)
666ff6f8 2469 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
c2eac4d3 2470 || platform_pci_need_resume(pci_dev))
bac2a909
RW
2471 return false;
2472
2cef548a
RW
2473 /*
2474 * At this point the device is good to go unless it's been configured
2475 * to generate PME at the runtime suspend time, but it is not supposed
2476 * to wake up the system. In that case, simply disable PME for it
2477 * (it will have to be re-enabled on exit from system resume).
2478 *
2479 * If the device's power state is D3cold and the platform check above
2480 * hasn't triggered, the device's configuration is suitable and we don't
2481 * need to manipulate it at all.
2482 */
2483 spin_lock_irq(&dev->power.lock);
2484
2485 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
666ff6f8 2486 !wakeup)
2cef548a
RW
2487 __pci_pme_active(pci_dev, false);
2488
2489 spin_unlock_irq(&dev->power.lock);
2490 return true;
2491}
2492
2493/**
2494 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2495 * @pci_dev: Device to handle.
2496 *
2497 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2498 * it might have been disabled during the prepare phase of system suspend if
2499 * the device was not configured for system wakeup.
2500 */
2501void pci_dev_complete_resume(struct pci_dev *pci_dev)
2502{
2503 struct device *dev = &pci_dev->dev;
2504
2505 if (!pci_dev_run_wake(pci_dev))
2506 return;
2507
2508 spin_lock_irq(&dev->power.lock);
2509
2510 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2511 __pci_pme_active(pci_dev, true);
2512
2513 spin_unlock_irq(&dev->power.lock);
bac2a909
RW
2514}
2515
b3c32c4f
HY
2516void pci_config_pm_runtime_get(struct pci_dev *pdev)
2517{
2518 struct device *dev = &pdev->dev;
2519 struct device *parent = dev->parent;
2520
2521 if (parent)
2522 pm_runtime_get_sync(parent);
2523 pm_runtime_get_noresume(dev);
2524 /*
2525 * pdev->current_state is set to PCI_D3cold during suspending,
2526 * so wait until suspending completes
2527 */
2528 pm_runtime_barrier(dev);
2529 /*
2530 * Only need to resume devices in D3cold, because config
2531 * registers are still accessible for devices suspended but
2532 * not in D3cold.
2533 */
2534 if (pdev->current_state == PCI_D3cold)
2535 pm_runtime_resume(dev);
2536}
2537
2538void pci_config_pm_runtime_put(struct pci_dev *pdev)
2539{
2540 struct device *dev = &pdev->dev;
2541 struct device *parent = dev->parent;
2542
2543 pm_runtime_put(dev);
2544 if (parent)
2545 pm_runtime_put_sync(parent);
2546}
2547
85b0cae8
MW
2548static const struct dmi_system_id bridge_d3_blacklist[] = {
2549#ifdef CONFIG_X86
2550 {
2551 /*
2552 * Gigabyte X299 root port is not marked as hotplug capable
2553 * which allows Linux to power manage it. However, this
2554 * confuses the BIOS SMI handler so don't power manage root
2555 * ports on that system.
2556 */
2557 .ident = "X299 DESIGNARE EX-CF",
2558 .matches = {
2559 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2560 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2561 },
2562 },
2563#endif
2564 { }
2565};
2566
9d26d3a8
MW
2567/**
2568 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2569 * @bridge: Bridge to check
2570 *
2571 * This function checks if it is possible to move the bridge to D3.
47a8e237 2572 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
9d26d3a8 2573 */
c6a63307 2574bool pci_bridge_d3_possible(struct pci_dev *bridge)
9d26d3a8 2575{
9d26d3a8
MW
2576 if (!pci_is_pcie(bridge))
2577 return false;
2578
2579 switch (pci_pcie_type(bridge)) {
2580 case PCI_EXP_TYPE_ROOT_PORT:
2581 case PCI_EXP_TYPE_UPSTREAM:
2582 case PCI_EXP_TYPE_DOWNSTREAM:
2583 if (pci_bridge_d3_disable)
2584 return false;
97a90aee
LW
2585
2586 /*
eb3b5bf1 2587 * Hotplug ports handled by firmware in System Management Mode
97a90aee 2588 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
97a90aee 2589 */
eb3b5bf1 2590 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
97a90aee
LW
2591 return false;
2592
9d26d3a8
MW
2593 if (pci_bridge_d3_force)
2594 return true;
2595
47a8e237
LW
2596 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2597 if (bridge->is_thunderbolt)
2598 return true;
2599
26ad34d5
MW
2600 /* Platform might know better if the bridge supports D3 */
2601 if (platform_pci_bridge_d3(bridge))
2602 return true;
2603
eb3b5bf1
LW
2604 /*
2605 * Hotplug ports handled natively by the OS were not validated
2606 * by vendors for runtime D3 at least until 2018 because there
2607 * was no OS support.
2608 */
2609 if (bridge->is_hotplug_bridge)
2610 return false;
2611
85b0cae8
MW
2612 if (dmi_check_system(bridge_d3_blacklist))
2613 return false;
2614
9d26d3a8
MW
2615 /*
2616 * It should be safe to put PCIe ports from 2015 or newer
2617 * to D3.
2618 */
ac95090a 2619 if (dmi_get_bios_year() >= 2015)
9d26d3a8 2620 return true;
9d26d3a8
MW
2621 break;
2622 }
2623
2624 return false;
2625}
2626
2627static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2628{
2629 bool *d3cold_ok = data;
9d26d3a8 2630
718a0609
LW
2631 if (/* The device needs to be allowed to go D3cold ... */
2632 dev->no_d3cold || !dev->d3cold_allowed ||
2633
2634 /* ... and if it is wakeup capable to do so from D3cold. */
2635 (device_may_wakeup(&dev->dev) &&
2636 !pci_pme_capable(dev, PCI_D3cold)) ||
2637
2638 /* If it is a bridge it must be allowed to go to D3. */
d98e0929 2639 !pci_power_manageable(dev))
9d26d3a8 2640
718a0609 2641 *d3cold_ok = false;
9d26d3a8 2642
718a0609 2643 return !*d3cold_ok;
9d26d3a8
MW
2644}
2645
2646/*
2647 * pci_bridge_d3_update - Update bridge D3 capabilities
2648 * @dev: PCI device which is changed
9d26d3a8
MW
2649 *
2650 * Update upstream bridge PM capabilities accordingly depending on if the
2651 * device PM configuration was changed or the device is being removed. The
2652 * change is also propagated upstream.
2653 */
1ed276a7 2654void pci_bridge_d3_update(struct pci_dev *dev)
9d26d3a8 2655{
1ed276a7 2656 bool remove = !device_is_registered(&dev->dev);
9d26d3a8
MW
2657 struct pci_dev *bridge;
2658 bool d3cold_ok = true;
2659
2660 bridge = pci_upstream_bridge(dev);
2661 if (!bridge || !pci_bridge_d3_possible(bridge))
2662 return;
2663
9d26d3a8 2664 /*
e8559b71
LW
2665 * If D3 is currently allowed for the bridge, removing one of its
2666 * children won't change that.
2667 */
2668 if (remove && bridge->bridge_d3)
2669 return;
2670
2671 /*
2672 * If D3 is currently allowed for the bridge and a child is added or
2673 * changed, disallowance of D3 can only be caused by that child, so
2674 * we only need to check that single device, not any of its siblings.
2675 *
2676 * If D3 is currently not allowed for the bridge, checking the device
2677 * first may allow us to skip checking its siblings.
9d26d3a8
MW
2678 */
2679 if (!remove)
2680 pci_dev_check_d3cold(dev, &d3cold_ok);
2681
e8559b71
LW
2682 /*
2683 * If D3 is currently not allowed for the bridge, this may be caused
2684 * either by the device being changed/removed or any of its siblings,
2685 * so we need to go through all children to find out if one of them
2686 * continues to block D3.
2687 */
2688 if (d3cold_ok && !bridge->bridge_d3)
9d26d3a8
MW
2689 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2690 &d3cold_ok);
9d26d3a8
MW
2691
2692 if (bridge->bridge_d3 != d3cold_ok) {
2693 bridge->bridge_d3 = d3cold_ok;
2694 /* Propagate change to upstream bridges */
1ed276a7 2695 pci_bridge_d3_update(bridge);
9d26d3a8 2696 }
9d26d3a8
MW
2697}
2698
9d26d3a8
MW
2699/**
2700 * pci_d3cold_enable - Enable D3cold for device
2701 * @dev: PCI device to handle
2702 *
2703 * This function can be used in drivers to enable D3cold from the device
2704 * they handle. It also updates upstream PCI bridge PM capabilities
2705 * accordingly.
2706 */
2707void pci_d3cold_enable(struct pci_dev *dev)
2708{
2709 if (dev->no_d3cold) {
2710 dev->no_d3cold = false;
1ed276a7 2711 pci_bridge_d3_update(dev);
9d26d3a8
MW
2712 }
2713}
2714EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2715
2716/**
2717 * pci_d3cold_disable - Disable D3cold for device
2718 * @dev: PCI device to handle
2719 *
2720 * This function can be used in drivers to disable D3cold from the device
2721 * they handle. It also updates upstream PCI bridge PM capabilities
2722 * accordingly.
2723 */
2724void pci_d3cold_disable(struct pci_dev *dev)
2725{
2726 if (!dev->no_d3cold) {
2727 dev->no_d3cold = true;
1ed276a7 2728 pci_bridge_d3_update(dev);
9d26d3a8
MW
2729 }
2730}
2731EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2732
eb9d0fe4
RW
2733/**
2734 * pci_pm_init - Initialize PM functions of given PCI device
2735 * @dev: PCI device to handle.
2736 */
2737void pci_pm_init(struct pci_dev *dev)
2738{
2739 int pm;
d6112f8d 2740 u16 status;
eb9d0fe4 2741 u16 pmc;
1da177e4 2742
bb910a70 2743 pm_runtime_forbid(&dev->dev);
967577b0
HY
2744 pm_runtime_set_active(&dev->dev);
2745 pm_runtime_enable(&dev->dev);
a1e4d72c 2746 device_enable_async_suspend(&dev->dev);
e80bb09d 2747 dev->wakeup_prepared = false;
bb910a70 2748
337001b6 2749 dev->pm_cap = 0;
ffaddbe8 2750 dev->pme_support = 0;
337001b6 2751
eb9d0fe4
RW
2752 /* find PCI PM capability in list */
2753 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2754 if (!pm)
50246dd4 2755 return;
eb9d0fe4
RW
2756 /* Check device's ability to generate PME# */
2757 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
075c1771 2758
eb9d0fe4 2759 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
7506dc79 2760 pci_err(dev, "unsupported PM cap regs version (%u)\n",
eb9d0fe4 2761 pmc & PCI_PM_CAP_VER_MASK);
50246dd4 2762 return;
eb9d0fe4
RW
2763 }
2764
337001b6 2765 dev->pm_cap = pm;
1ae861e6 2766 dev->d3_delay = PCI_PM_D3_WAIT;
448bd857 2767 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
9d26d3a8 2768 dev->bridge_d3 = pci_bridge_d3_possible(dev);
4f9c1397 2769 dev->d3cold_allowed = true;
337001b6
RW
2770
2771 dev->d1_support = false;
2772 dev->d2_support = false;
2773 if (!pci_no_d1d2(dev)) {
c9ed77ee 2774 if (pmc & PCI_PM_CAP_D1)
337001b6 2775 dev->d1_support = true;
c9ed77ee 2776 if (pmc & PCI_PM_CAP_D2)
337001b6 2777 dev->d2_support = true;
c9ed77ee
BH
2778
2779 if (dev->d1_support || dev->d2_support)
7506dc79 2780 pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
ec84f126
JB
2781 dev->d1_support ? " D1" : "",
2782 dev->d2_support ? " D2" : "");
337001b6
RW
2783 }
2784
2785 pmc &= PCI_PM_CAP_PME_MASK;
2786 if (pmc) {
7506dc79 2787 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
c9ed77ee
BH
2788 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2789 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2790 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2791 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2792 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
337001b6 2793 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
379021d5 2794 dev->pme_poll = true;
eb9d0fe4
RW
2795 /*
2796 * Make device's PM flags reflect the wake-up capability, but
2797 * let the user space enable it to wake up the system as needed.
2798 */
2799 device_set_wakeup_capable(&dev->dev, true);
eb9d0fe4 2800 /* Disable the PME# generation functionality */
337001b6 2801 pci_pme_active(dev, false);
eb9d0fe4 2802 }
d6112f8d
FB
2803
2804 pci_read_config_word(dev, PCI_STATUS, &status);
2805 if (status & PCI_STATUS_IMM_READY)
2806 dev->imm_ready = 1;
1da177e4
LT
2807}
2808
938174e5
SS
2809static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2810{
92efb1bd 2811 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
938174e5
SS
2812
2813 switch (prop) {
2814 case PCI_EA_P_MEM:
2815 case PCI_EA_P_VF_MEM:
2816 flags |= IORESOURCE_MEM;
2817 break;
2818 case PCI_EA_P_MEM_PREFETCH:
2819 case PCI_EA_P_VF_MEM_PREFETCH:
2820 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2821 break;
2822 case PCI_EA_P_IO:
2823 flags |= IORESOURCE_IO;
2824 break;
2825 default:
2826 return 0;
2827 }
2828
2829 return flags;
2830}
2831
2832static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2833 u8 prop)
2834{
2835 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2836 return &dev->resource[bei];
11183991
DD
2837#ifdef CONFIG_PCI_IOV
2838 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2839 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2840 return &dev->resource[PCI_IOV_RESOURCES +
2841 bei - PCI_EA_BEI_VF_BAR0];
2842#endif
938174e5
SS
2843 else if (bei == PCI_EA_BEI_ROM)
2844 return &dev->resource[PCI_ROM_RESOURCE];
2845 else
2846 return NULL;
2847}
2848
2849/* Read an Enhanced Allocation (EA) entry */
2850static int pci_ea_read(struct pci_dev *dev, int offset)
2851{
2852 struct resource *res;
2853 int ent_size, ent_offset = offset;
2854 resource_size_t start, end;
2855 unsigned long flags;
26635112 2856 u32 dw0, bei, base, max_offset;
938174e5
SS
2857 u8 prop;
2858 bool support_64 = (sizeof(resource_size_t) >= 8);
2859
2860 pci_read_config_dword(dev, ent_offset, &dw0);
2861 ent_offset += 4;
2862
2863 /* Entry size field indicates DWORDs after 1st */
2864 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2865
2866 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2867 goto out;
2868
26635112
BH
2869 bei = (dw0 & PCI_EA_BEI) >> 4;
2870 prop = (dw0 & PCI_EA_PP) >> 8;
2871
938174e5
SS
2872 /*
2873 * If the Property is in the reserved range, try the Secondary
2874 * Property instead.
2875 */
2876 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
26635112 2877 prop = (dw0 & PCI_EA_SP) >> 16;
938174e5
SS
2878 if (prop > PCI_EA_P_BRIDGE_IO)
2879 goto out;
2880
26635112 2881 res = pci_ea_get_resource(dev, bei, prop);
938174e5 2882 if (!res) {
7506dc79 2883 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
938174e5
SS
2884 goto out;
2885 }
2886
2887 flags = pci_ea_flags(dev, prop);
2888 if (!flags) {
7506dc79 2889 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
938174e5
SS
2890 goto out;
2891 }
2892
2893 /* Read Base */
2894 pci_read_config_dword(dev, ent_offset, &base);
2895 start = (base & PCI_EA_FIELD_MASK);
2896 ent_offset += 4;
2897
2898 /* Read MaxOffset */
2899 pci_read_config_dword(dev, ent_offset, &max_offset);
2900 ent_offset += 4;
2901
2902 /* Read Base MSBs (if 64-bit entry) */
2903 if (base & PCI_EA_IS_64) {
2904 u32 base_upper;
2905
2906 pci_read_config_dword(dev, ent_offset, &base_upper);
2907 ent_offset += 4;
2908
2909 flags |= IORESOURCE_MEM_64;
2910
2911 /* entry starts above 32-bit boundary, can't use */
2912 if (!support_64 && base_upper)
2913 goto out;
2914
2915 if (support_64)
2916 start |= ((u64)base_upper << 32);
2917 }
2918
2919 end = start + (max_offset | 0x03);
2920
2921 /* Read MaxOffset MSBs (if 64-bit entry) */
2922 if (max_offset & PCI_EA_IS_64) {
2923 u32 max_offset_upper;
2924
2925 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2926 ent_offset += 4;
2927
2928 flags |= IORESOURCE_MEM_64;
2929
2930 /* entry too big, can't use */
2931 if (!support_64 && max_offset_upper)
2932 goto out;
2933
2934 if (support_64)
2935 end += ((u64)max_offset_upper << 32);
2936 }
2937
2938 if (end < start) {
7506dc79 2939 pci_err(dev, "EA Entry crosses address boundary\n");
938174e5
SS
2940 goto out;
2941 }
2942
2943 if (ent_size != ent_offset - offset) {
7506dc79 2944 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
938174e5
SS
2945 ent_size, ent_offset - offset);
2946 goto out;
2947 }
2948
2949 res->name = pci_name(dev);
2950 res->start = start;
2951 res->end = end;
2952 res->flags = flags;
597becb4
BH
2953
2954 if (bei <= PCI_EA_BEI_BAR5)
7506dc79 2955 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
2956 bei, res, prop);
2957 else if (bei == PCI_EA_BEI_ROM)
7506dc79 2958 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
2959 res, prop);
2960 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
7506dc79 2961 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
2962 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2963 else
7506dc79 2964 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
597becb4
BH
2965 bei, res, prop);
2966
938174e5
SS
2967out:
2968 return offset + ent_size;
2969}
2970
dcbb408a 2971/* Enhanced Allocation Initialization */
938174e5
SS
2972void pci_ea_init(struct pci_dev *dev)
2973{
2974 int ea;
2975 u8 num_ent;
2976 int offset;
2977 int i;
2978
2979 /* find PCI EA capability in list */
2980 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2981 if (!ea)
2982 return;
2983
2984 /* determine the number of entries */
2985 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2986 &num_ent);
2987 num_ent &= PCI_EA_NUM_ENT_MASK;
2988
2989 offset = ea + PCI_EA_FIRST_ENT;
2990
2991 /* Skip DWORD 2 for type 1 functions */
2992 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2993 offset += 4;
2994
2995 /* parse each EA entry */
2996 for (i = 0; i < num_ent; ++i)
2997 offset = pci_ea_read(dev, offset);
2998}
2999
34a4876e
YL
3000static void pci_add_saved_cap(struct pci_dev *pci_dev,
3001 struct pci_cap_saved_state *new_cap)
3002{
3003 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3004}
3005
63f4898a 3006/**
fd0f7f73
AW
3007 * _pci_add_cap_save_buffer - allocate buffer for saving given
3008 * capability registers
63f4898a
RW
3009 * @dev: the PCI device
3010 * @cap: the capability to allocate the buffer for
fd0f7f73 3011 * @extended: Standard or Extended capability ID
63f4898a
RW
3012 * @size: requested size of the buffer
3013 */
fd0f7f73
AW
3014static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3015 bool extended, unsigned int size)
63f4898a
RW
3016{
3017 int pos;
3018 struct pci_cap_saved_state *save_state;
3019
fd0f7f73
AW
3020 if (extended)
3021 pos = pci_find_ext_capability(dev, cap);
3022 else
3023 pos = pci_find_capability(dev, cap);
3024
0a1a9b49 3025 if (!pos)
63f4898a
RW
3026 return 0;
3027
3028 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3029 if (!save_state)
3030 return -ENOMEM;
3031
24a4742f 3032 save_state->cap.cap_nr = cap;
fd0f7f73 3033 save_state->cap.cap_extended = extended;
24a4742f 3034 save_state->cap.size = size;
63f4898a
RW
3035 pci_add_saved_cap(dev, save_state);
3036
3037 return 0;
3038}
3039
fd0f7f73
AW
3040int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3041{
3042 return _pci_add_cap_save_buffer(dev, cap, false, size);
3043}
3044
3045int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3046{
3047 return _pci_add_cap_save_buffer(dev, cap, true, size);
3048}
3049
63f4898a
RW
3050/**
3051 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3052 * @dev: the PCI device
3053 */
3054void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3055{
3056 int error;
3057
89858517
YZ
3058 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3059 PCI_EXP_SAVE_REGS * sizeof(u16));
63f4898a 3060 if (error)
7506dc79 3061 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
63f4898a
RW
3062
3063 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3064 if (error)
7506dc79 3065 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
425c1b22 3066
dbbfadf2
BH
3067 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3068 2 * sizeof(u16));
3069 if (error)
3070 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3071
425c1b22 3072 pci_allocate_vc_save_buffers(dev);
63f4898a
RW
3073}
3074
f796841e
YL
3075void pci_free_cap_save_buffers(struct pci_dev *dev)
3076{
3077 struct pci_cap_saved_state *tmp;
b67bfe0d 3078 struct hlist_node *n;
f796841e 3079
b67bfe0d 3080 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
f796841e
YL
3081 kfree(tmp);
3082}
3083
58c3a727 3084/**
31ab2476 3085 * pci_configure_ari - enable or disable ARI forwarding
58c3a727 3086 * @dev: the PCI device
b0cc6020
YW
3087 *
3088 * If @dev and its upstream bridge both support ARI, enable ARI in the
3089 * bridge. Otherwise, disable ARI in the bridge.
58c3a727 3090 */
31ab2476 3091void pci_configure_ari(struct pci_dev *dev)
58c3a727 3092{
58c3a727 3093 u32 cap;
8113587c 3094 struct pci_dev *bridge;
58c3a727 3095
6748dcc2 3096 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
58c3a727
YZ
3097 return;
3098
8113587c 3099 bridge = dev->bus->self;
cb97ae34 3100 if (!bridge)
8113587c
ZY
3101 return;
3102
59875ae4 3103 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
58c3a727
YZ
3104 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3105 return;
3106
b0cc6020
YW
3107 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3108 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3109 PCI_EXP_DEVCTL2_ARI);
3110 bridge->ari_enabled = 1;
3111 } else {
3112 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3113 PCI_EXP_DEVCTL2_ARI);
3114 bridge->ari_enabled = 0;
3115 }
58c3a727
YZ
3116}
3117
5d990b62
CW
3118static int pci_acs_enable;
3119
3120/**
3121 * pci_request_acs - ask for ACS to be enabled if supported
3122 */
3123void pci_request_acs(void)
3124{
3125 pci_acs_enable = 1;
3126}
3127
aaca43fd
LG
3128static const char *disable_acs_redir_param;
3129
3130/**
3131 * pci_disable_acs_redir - disable ACS redirect capabilities
3132 * @dev: the PCI device
3133 *
3134 * For only devices specified in the disable_acs_redir parameter.
3135 */
3136static void pci_disable_acs_redir(struct pci_dev *dev)
3137{
3138 int ret = 0;
3139 const char *p;
3140 int pos;
3141 u16 ctrl;
3142
3143 if (!disable_acs_redir_param)
3144 return;
3145
3146 p = disable_acs_redir_param;
3147 while (*p) {
3148 ret = pci_dev_str_match(dev, p, &p);
3149 if (ret < 0) {
3150 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3151 disable_acs_redir_param);
3152
3153 break;
3154 } else if (ret == 1) {
3155 /* Found a match */
3156 break;
3157 }
3158
3159 if (*p != ';' && *p != ',') {
3160 /* End of param or invalid format */
3161 break;
3162 }
3163 p++;
3164 }
3165
3166 if (ret != 1)
3167 return;
3168
73c47dde
LG
3169 if (!pci_dev_specific_disable_acs_redir(dev))
3170 return;
3171
aaca43fd
LG
3172 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3173 if (!pos) {
3174 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3175 return;
3176 }
3177
3178 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3179
3180 /* P2P Request & Completion Redirect */
3181 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3182
3183 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3184
3185 pci_info(dev, "disabled ACS redirect\n");
3186}
3187
ae21ee65 3188/**
2c744244 3189 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
ae21ee65
AK
3190 * @dev: the PCI device
3191 */
c1d61c9b 3192static void pci_std_enable_acs(struct pci_dev *dev)
ae21ee65
AK
3193{
3194 int pos;
3195 u16 cap;
3196 u16 ctrl;
3197
ae21ee65
AK
3198 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3199 if (!pos)
c1d61c9b 3200 return;
ae21ee65
AK
3201
3202 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3203 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3204
3205 /* Source Validation */
3206 ctrl |= (cap & PCI_ACS_SV);
3207
3208 /* P2P Request Redirect */
3209 ctrl |= (cap & PCI_ACS_RR);
3210
3211 /* P2P Completion Redirect */
3212 ctrl |= (cap & PCI_ACS_CR);
3213
3214 /* Upstream Forwarding */
3215 ctrl |= (cap & PCI_ACS_UF);
3216
3217 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2c744244
AW
3218}
3219
3220/**
3221 * pci_enable_acs - enable ACS if hardware support it
3222 * @dev: the PCI device
3223 */
3224void pci_enable_acs(struct pci_dev *dev)
3225{
3226 if (!pci_acs_enable)
aaca43fd 3227 goto disable_acs_redir;
2c744244 3228
c1d61c9b 3229 if (!pci_dev_specific_enable_acs(dev))
aaca43fd 3230 goto disable_acs_redir;
2c744244 3231
c1d61c9b 3232 pci_std_enable_acs(dev);
aaca43fd
LG
3233
3234disable_acs_redir:
3235 /*
3236 * Note: pci_disable_acs_redir() must be called even if ACS was not
3237 * enabled by the kernel because it may have been enabled by
3238 * platform firmware. So if we are told to disable it, we should
3239 * always disable it after setting the kernel's default
3240 * preferences.
3241 */
3242 pci_disable_acs_redir(dev);
ae21ee65
AK
3243}
3244
0a67119f
AW
3245static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3246{
3247 int pos;
83db7e0b 3248 u16 cap, ctrl;
0a67119f
AW
3249
3250 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3251 if (!pos)
3252 return false;
3253
83db7e0b
AW
3254 /*
3255 * Except for egress control, capabilities are either required
3256 * or only required if controllable. Features missing from the
3257 * capability field can therefore be assumed as hard-wired enabled.
3258 */
3259 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3260 acs_flags &= (cap | PCI_ACS_EC);
3261
0a67119f
AW
3262 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3263 return (ctrl & acs_flags) == acs_flags;
3264}
3265
ad805758
AW
3266/**
3267 * pci_acs_enabled - test ACS against required flags for a given device
3268 * @pdev: device to test
3269 * @acs_flags: required PCI ACS flags
3270 *
3271 * Return true if the device supports the provided flags. Automatically
3272 * filters out flags that are not implemented on multifunction devices.
0a67119f
AW
3273 *
3274 * Note that this interface checks the effective ACS capabilities of the
3275 * device rather than the actual capabilities. For instance, most single
3276 * function endpoints are not required to support ACS because they have no
3277 * opportunity for peer-to-peer access. We therefore return 'true'
3278 * regardless of whether the device exposes an ACS capability. This makes
3279 * it much easier for callers of this function to ignore the actual type
3280 * or topology of the device when testing ACS support.
ad805758
AW
3281 */
3282bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3283{
0a67119f 3284 int ret;
ad805758
AW
3285
3286 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3287 if (ret >= 0)
3288 return ret > 0;
3289
0a67119f
AW
3290 /*
3291 * Conventional PCI and PCI-X devices never support ACS, either
3292 * effectively or actually. The shared bus topology implies that
3293 * any device on the bus can receive or snoop DMA.
3294 */
ad805758
AW
3295 if (!pci_is_pcie(pdev))
3296 return false;
3297
0a67119f
AW
3298 switch (pci_pcie_type(pdev)) {
3299 /*
3300 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
f7625980 3301 * but since their primary interface is PCI/X, we conservatively
0a67119f
AW
3302 * handle them as we would a non-PCIe device.
3303 */
3304 case PCI_EXP_TYPE_PCIE_BRIDGE:
3305 /*
3306 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3307 * applicable... must never implement an ACS Extended Capability...".
3308 * This seems arbitrary, but we take a conservative interpretation
3309 * of this statement.
3310 */
3311 case PCI_EXP_TYPE_PCI_BRIDGE:
3312 case PCI_EXP_TYPE_RC_EC:
3313 return false;
3314 /*
3315 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3316 * implement ACS in order to indicate their peer-to-peer capabilities,
3317 * regardless of whether they are single- or multi-function devices.
3318 */
3319 case PCI_EXP_TYPE_DOWNSTREAM:
3320 case PCI_EXP_TYPE_ROOT_PORT:
3321 return pci_acs_flags_enabled(pdev, acs_flags);
3322 /*
3323 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3324 * implemented by the remaining PCIe types to indicate peer-to-peer
f7625980 3325 * capabilities, but only when they are part of a multifunction
0a67119f
AW
3326 * device. The footnote for section 6.12 indicates the specific
3327 * PCIe types included here.
3328 */
3329 case PCI_EXP_TYPE_ENDPOINT:
3330 case PCI_EXP_TYPE_UPSTREAM:
3331 case PCI_EXP_TYPE_LEG_END:
3332 case PCI_EXP_TYPE_RC_END:
3333 if (!pdev->multifunction)
3334 break;
3335
0a67119f 3336 return pci_acs_flags_enabled(pdev, acs_flags);
ad805758
AW
3337 }
3338
0a67119f 3339 /*
f7625980 3340 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
0a67119f
AW
3341 * to single function devices with the exception of downstream ports.
3342 */
ad805758
AW
3343 return true;
3344}
3345
3346/**
3347 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3348 * @start: starting downstream device
3349 * @end: ending upstream device or NULL to search to the root bus
3350 * @acs_flags: required flags
3351 *
3352 * Walk up a device tree from start to end testing PCI ACS support. If
3353 * any step along the way does not support the required flags, return false.
3354 */
3355bool pci_acs_path_enabled(struct pci_dev *start,
3356 struct pci_dev *end, u16 acs_flags)
3357{
3358 struct pci_dev *pdev, *parent = start;
3359
3360 do {
3361 pdev = parent;
3362
3363 if (!pci_acs_enabled(pdev, acs_flags))
3364 return false;
3365
3366 if (pci_is_root_bus(pdev->bus))
3367 return (end == NULL);
3368
3369 parent = pdev->bus->self;
3370 } while (pdev != end);
3371
3372 return true;
3373}
3374
276b738d
CK
3375/**
3376 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3377 * @pdev: PCI device
3378 * @bar: BAR to find
3379 *
3380 * Helper to find the position of the ctrl register for a BAR.
3381 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3382 * Returns -ENOENT if no ctrl register for the BAR could be found.
3383 */
3384static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3385{
3386 unsigned int pos, nbars, i;
3387 u32 ctrl;
3388
3389 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3390 if (!pos)
3391 return -ENOTSUPP;
3392
3393 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3394 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3395 PCI_REBAR_CTRL_NBAR_SHIFT;
3396
3397 for (i = 0; i < nbars; i++, pos += 8) {
3398 int bar_idx;
3399
3400 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3401 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3402 if (bar_idx == bar)
3403 return pos;
3404 }
3405
3406 return -ENOENT;
3407}
3408
3409/**
3410 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3411 * @pdev: PCI device
3412 * @bar: BAR to query
3413 *
3414 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3415 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3416 */
3417u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3418{
3419 int pos;
3420 u32 cap;
3421
3422 pos = pci_rebar_find_pos(pdev, bar);
3423 if (pos < 0)
3424 return 0;
3425
3426 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3427 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3428}
3429
3430/**
3431 * pci_rebar_get_current_size - get the current size of a BAR
3432 * @pdev: PCI device
3433 * @bar: BAR to set size to
3434 *
3435 * Read the size of a BAR from the resizable BAR config.
3436 * Returns size if found or negative error code.
3437 */
3438int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3439{
3440 int pos;
3441 u32 ctrl;
3442
3443 pos = pci_rebar_find_pos(pdev, bar);
3444 if (pos < 0)
3445 return pos;
3446
3447 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
b1277a22 3448 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
276b738d
CK
3449}
3450
3451/**
3452 * pci_rebar_set_size - set a new size for a BAR
3453 * @pdev: PCI device
3454 * @bar: BAR to set size to
3455 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3456 *
3457 * Set the new size of a BAR as defined in the spec.
3458 * Returns zero if resizing was successful, error code otherwise.
3459 */
3460int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3461{
3462 int pos;
3463 u32 ctrl;
3464
3465 pos = pci_rebar_find_pos(pdev, bar);
3466 if (pos < 0)
3467 return pos;
3468
3469 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3470 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
b1277a22 3471 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
276b738d
CK
3472 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3473 return 0;
3474}
3475
430a2368
JC
3476/**
3477 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3478 * @dev: the PCI device
3479 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3480 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3481 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3482 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3483 *
3484 * Return 0 if all upstream bridges support AtomicOp routing, egress
3485 * blocking is disabled on all upstream ports, and the root port supports
3486 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3487 * AtomicOp completion), or negative otherwise.
3488 */
3489int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3490{
3491 struct pci_bus *bus = dev->bus;
3492 struct pci_dev *bridge;
3493 u32 cap, ctl2;
3494
3495 if (!pci_is_pcie(dev))
3496 return -EINVAL;
3497
3498 /*
3499 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3500 * AtomicOp requesters. For now, we only support endpoints as
3501 * requesters and root ports as completers. No endpoints as
3502 * completers, and no peer-to-peer.
3503 */
3504
3505 switch (pci_pcie_type(dev)) {
3506 case PCI_EXP_TYPE_ENDPOINT:
3507 case PCI_EXP_TYPE_LEG_END:
3508 case PCI_EXP_TYPE_RC_END:
3509 break;
3510 default:
3511 return -EINVAL;
3512 }
3513
3514 while (bus->parent) {
3515 bridge = bus->self;
3516
3517 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3518
3519 switch (pci_pcie_type(bridge)) {
3520 /* Ensure switch ports support AtomicOp routing */
3521 case PCI_EXP_TYPE_UPSTREAM:
3522 case PCI_EXP_TYPE_DOWNSTREAM:
3523 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3524 return -EINVAL;
3525 break;
3526
3527 /* Ensure root port supports all the sizes we care about */
3528 case PCI_EXP_TYPE_ROOT_PORT:
3529 if ((cap & cap_mask) != cap_mask)
3530 return -EINVAL;
3531 break;
3532 }
3533
3534 /* Ensure upstream ports don't block AtomicOps on egress */
3535 if (!bridge->has_secondary_link) {
3536 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3537 &ctl2);
3538 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3539 return -EINVAL;
3540 }
3541
3542 bus = bus->parent;
3543 }
3544
3545 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3546 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3547 return 0;
3548}
3549EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3550
57c2cf71
BH
3551/**
3552 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3553 * @dev: the PCI device
bb5c2de2 3554 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
57c2cf71
BH
3555 *
3556 * Perform INTx swizzling for a device behind one level of bridge. This is
3557 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
46b952a3
MW
3558 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3559 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3560 * the PCI Express Base Specification, Revision 2.1)
57c2cf71 3561 */
3df425f3 3562u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
57c2cf71 3563{
46b952a3
MW
3564 int slot;
3565
3566 if (pci_ari_enabled(dev->bus))
3567 slot = 0;
3568 else
3569 slot = PCI_SLOT(dev->devfn);
3570
3571 return (((pin - 1) + slot) % 4) + 1;
57c2cf71
BH
3572}
3573
3c78bc61 3574int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1da177e4
LT
3575{
3576 u8 pin;
3577
514d207d 3578 pin = dev->pin;
1da177e4
LT
3579 if (!pin)
3580 return -1;
878f2e50 3581
8784fd4d 3582 while (!pci_is_root_bus(dev->bus)) {
57c2cf71 3583 pin = pci_swizzle_interrupt_pin(dev, pin);
1da177e4
LT
3584 dev = dev->bus->self;
3585 }
3586 *bridge = dev;
3587 return pin;
3588}
3589
68feac87
BH
3590/**
3591 * pci_common_swizzle - swizzle INTx all the way to root bridge
3592 * @dev: the PCI device
3593 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3594 *
3595 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3596 * bridges all the way up to a PCI root bus.
3597 */
3598u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3599{
3600 u8 pin = *pinp;
3601
1eb39487 3602 while (!pci_is_root_bus(dev->bus)) {
68feac87
BH
3603 pin = pci_swizzle_interrupt_pin(dev, pin);
3604 dev = dev->bus->self;
3605 }
3606 *pinp = pin;
3607 return PCI_SLOT(dev->devfn);
3608}
e6b29dea 3609EXPORT_SYMBOL_GPL(pci_common_swizzle);
68feac87 3610
1da177e4
LT
3611/**
3612 * pci_release_region - Release a PCI bar
3613 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3614 * @bar: BAR to release
3615 *
3616 * Releases the PCI I/O and memory resources previously reserved by a
3617 * successful call to pci_request_region. Call this function only
3618 * after all use of the PCI regions has ceased.
3619 */
3620void pci_release_region(struct pci_dev *pdev, int bar)
3621{
9ac7849e
TH
3622 struct pci_devres *dr;
3623
1da177e4
LT
3624 if (pci_resource_len(pdev, bar) == 0)
3625 return;
3626 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3627 release_region(pci_resource_start(pdev, bar),
3628 pci_resource_len(pdev, bar));
3629 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3630 release_mem_region(pci_resource_start(pdev, bar),
3631 pci_resource_len(pdev, bar));
9ac7849e
TH
3632
3633 dr = find_pci_dr(pdev);
3634 if (dr)
3635 dr->region_mask &= ~(1 << bar);
1da177e4 3636}
b7fe9434 3637EXPORT_SYMBOL(pci_release_region);
1da177e4
LT
3638
3639/**
f5ddcac4 3640 * __pci_request_region - Reserved PCI I/O and memory resource
1da177e4
LT
3641 * @pdev: PCI device whose resources are to be reserved
3642 * @bar: BAR to be reserved
3643 * @res_name: Name to be associated with resource.
f5ddcac4 3644 * @exclusive: whether the region access is exclusive or not
1da177e4
LT
3645 *
3646 * Mark the PCI region associated with PCI device @pdev BR @bar as
3647 * being reserved by owner @res_name. Do not access any
3648 * address inside the PCI regions unless this call returns
3649 * successfully.
3650 *
f5ddcac4
RD
3651 * If @exclusive is set, then the region is marked so that userspace
3652 * is explicitly not allowed to map the resource via /dev/mem or
f7625980 3653 * sysfs MMIO access.
f5ddcac4 3654 *
1da177e4
LT
3655 * Returns 0 on success, or %EBUSY on error. A warning
3656 * message is also printed on failure.
3657 */
3c78bc61
RD
3658static int __pci_request_region(struct pci_dev *pdev, int bar,
3659 const char *res_name, int exclusive)
1da177e4 3660{
9ac7849e
TH
3661 struct pci_devres *dr;
3662
1da177e4
LT
3663 if (pci_resource_len(pdev, bar) == 0)
3664 return 0;
f7625980 3665
1da177e4
LT
3666 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3667 if (!request_region(pci_resource_start(pdev, bar),
3668 pci_resource_len(pdev, bar), res_name))
3669 goto err_out;
3c78bc61 3670 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
e8de1481
AV
3671 if (!__request_mem_region(pci_resource_start(pdev, bar),
3672 pci_resource_len(pdev, bar), res_name,
3673 exclusive))
1da177e4
LT
3674 goto err_out;
3675 }
9ac7849e
TH
3676
3677 dr = find_pci_dr(pdev);
3678 if (dr)
3679 dr->region_mask |= 1 << bar;
3680
1da177e4
LT
3681 return 0;
3682
3683err_out:
7506dc79 3684 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
096e6f67 3685 &pdev->resource[bar]);
1da177e4
LT
3686 return -EBUSY;
3687}
3688
e8de1481 3689/**
f5ddcac4 3690 * pci_request_region - Reserve PCI I/O and memory resource
e8de1481
AV
3691 * @pdev: PCI device whose resources are to be reserved
3692 * @bar: BAR to be reserved
f5ddcac4 3693 * @res_name: Name to be associated with resource
e8de1481 3694 *
f5ddcac4 3695 * Mark the PCI region associated with PCI device @pdev BAR @bar as
e8de1481
AV
3696 * being reserved by owner @res_name. Do not access any
3697 * address inside the PCI regions unless this call returns
3698 * successfully.
3699 *
3700 * Returns 0 on success, or %EBUSY on error. A warning
3701 * message is also printed on failure.
3702 */
3703int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3704{
3705 return __pci_request_region(pdev, bar, res_name, 0);
3706}
b7fe9434 3707EXPORT_SYMBOL(pci_request_region);
e8de1481
AV
3708
3709/**
3710 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3711 * @pdev: PCI device whose resources are to be reserved
3712 * @bar: BAR to be reserved
3713 * @res_name: Name to be associated with resource.
3714 *
3715 * Mark the PCI region associated with PCI device @pdev BR @bar as
3716 * being reserved by owner @res_name. Do not access any
3717 * address inside the PCI regions unless this call returns
3718 * successfully.
3719 *
3720 * Returns 0 on success, or %EBUSY on error. A warning
3721 * message is also printed on failure.
3722 *
3723 * The key difference that _exclusive makes it that userspace is
3724 * explicitly not allowed to map the resource via /dev/mem or
f7625980 3725 * sysfs.
e8de1481 3726 */
3c78bc61
RD
3727int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3728 const char *res_name)
e8de1481
AV
3729{
3730 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3731}
b7fe9434
RD
3732EXPORT_SYMBOL(pci_request_region_exclusive);
3733
c87deff7
HS
3734/**
3735 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3736 * @pdev: PCI device whose resources were previously reserved
3737 * @bars: Bitmask of BARs to be released
3738 *
3739 * Release selected PCI I/O and memory resources previously reserved.
3740 * Call this function only after all use of the PCI regions has ceased.
3741 */
3742void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3743{
3744 int i;
3745
3746 for (i = 0; i < 6; i++)
3747 if (bars & (1 << i))
3748 pci_release_region(pdev, i);
3749}
b7fe9434 3750EXPORT_SYMBOL(pci_release_selected_regions);
c87deff7 3751
9738abed 3752static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3c78bc61 3753 const char *res_name, int excl)
c87deff7
HS
3754{
3755 int i;
3756
3757 for (i = 0; i < 6; i++)
3758 if (bars & (1 << i))
e8de1481 3759 if (__pci_request_region(pdev, i, res_name, excl))
c87deff7
HS
3760 goto err_out;
3761 return 0;
3762
3763err_out:
3c78bc61 3764 while (--i >= 0)
c87deff7
HS
3765 if (bars & (1 << i))
3766 pci_release_region(pdev, i);
3767
3768 return -EBUSY;
3769}
1da177e4 3770
e8de1481
AV
3771
3772/**
3773 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3774 * @pdev: PCI device whose resources are to be reserved
3775 * @bars: Bitmask of BARs to be requested
3776 * @res_name: Name to be associated with resource
3777 */
3778int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3779 const char *res_name)
3780{
3781 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3782}
b7fe9434 3783EXPORT_SYMBOL(pci_request_selected_regions);
e8de1481 3784
3c78bc61
RD
3785int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3786 const char *res_name)
e8de1481
AV
3787{
3788 return __pci_request_selected_regions(pdev, bars, res_name,
3789 IORESOURCE_EXCLUSIVE);
3790}
b7fe9434 3791EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
e8de1481 3792
1da177e4
LT
3793/**
3794 * pci_release_regions - Release reserved PCI I/O and memory resources
3795 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3796 *
3797 * Releases all PCI I/O and memory resources previously reserved by a
3798 * successful call to pci_request_regions. Call this function only
3799 * after all use of the PCI regions has ceased.
3800 */
3801
3802void pci_release_regions(struct pci_dev *pdev)
3803{
c87deff7 3804 pci_release_selected_regions(pdev, (1 << 6) - 1);
1da177e4 3805}
b7fe9434 3806EXPORT_SYMBOL(pci_release_regions);
1da177e4
LT
3807
3808/**
3809 * pci_request_regions - Reserved PCI I/O and memory resources
3810 * @pdev: PCI device whose resources are to be reserved
3811 * @res_name: Name to be associated with resource.
3812 *
3813 * Mark all PCI regions associated with PCI device @pdev as
3814 * being reserved by owner @res_name. Do not access any
3815 * address inside the PCI regions unless this call returns
3816 * successfully.
3817 *
3818 * Returns 0 on success, or %EBUSY on error. A warning
3819 * message is also printed on failure.
3820 */
3c990e92 3821int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1da177e4 3822{
c87deff7 3823 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1da177e4 3824}
b7fe9434 3825EXPORT_SYMBOL(pci_request_regions);
1da177e4 3826
e8de1481
AV
3827/**
3828 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3829 * @pdev: PCI device whose resources are to be reserved
3830 * @res_name: Name to be associated with resource.
3831 *
3832 * Mark all PCI regions associated with PCI device @pdev as
3833 * being reserved by owner @res_name. Do not access any
3834 * address inside the PCI regions unless this call returns
3835 * successfully.
3836 *
3837 * pci_request_regions_exclusive() will mark the region so that
f7625980 3838 * /dev/mem and the sysfs MMIO access will not be allowed.
e8de1481
AV
3839 *
3840 * Returns 0 on success, or %EBUSY on error. A warning
3841 * message is also printed on failure.
3842 */
3843int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3844{
3845 return pci_request_selected_regions_exclusive(pdev,
3846 ((1 << 6) - 1), res_name);
3847}
b7fe9434 3848EXPORT_SYMBOL(pci_request_regions_exclusive);
e8de1481 3849
c5076cfe
TN
3850/*
3851 * Record the PCI IO range (expressed as CPU physical address + size).
3852 * Return a negative value if an error has occured, zero otherwise
3853 */
fcfaab30
GP
3854int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3855 resource_size_t size)
c5076cfe 3856{
5745392e 3857 int ret = 0;
c5076cfe 3858#ifdef PCI_IOBASE
5745392e 3859 struct logic_pio_hwaddr *range;
c5076cfe 3860
5745392e
ZY
3861 if (!size || addr + size < addr)
3862 return -EINVAL;
c5076cfe 3863
c5076cfe 3864 range = kzalloc(sizeof(*range), GFP_ATOMIC);
5745392e
ZY
3865 if (!range)
3866 return -ENOMEM;
c5076cfe 3867
5745392e 3868 range->fwnode = fwnode;
c5076cfe 3869 range->size = size;
5745392e
ZY
3870 range->hw_start = addr;
3871 range->flags = LOGIC_PIO_CPU_MMIO;
c5076cfe 3872
5745392e
ZY
3873 ret = logic_pio_register_range(range);
3874 if (ret)
3875 kfree(range);
c5076cfe
TN
3876#endif
3877
5745392e 3878 return ret;
c5076cfe
TN
3879}
3880
3881phys_addr_t pci_pio_to_address(unsigned long pio)
3882{
3883 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3884
3885#ifdef PCI_IOBASE
5745392e 3886 if (pio >= MMIO_UPPER_LIMIT)
c5076cfe
TN
3887 return address;
3888
5745392e 3889 address = logic_pio_to_hwaddr(pio);
c5076cfe
TN
3890#endif
3891
3892 return address;
3893}
3894
3895unsigned long __weak pci_address_to_pio(phys_addr_t address)
3896{
3897#ifdef PCI_IOBASE
5745392e 3898 return logic_pio_trans_cpuaddr(address);
c5076cfe
TN
3899#else
3900 if (address > IO_SPACE_LIMIT)
3901 return (unsigned long)-1;
3902
3903 return (unsigned long) address;
3904#endif
3905}
3906
8b921acf
LD
3907/**
3908 * pci_remap_iospace - Remap the memory mapped I/O space
3909 * @res: Resource describing the I/O space
3910 * @phys_addr: physical address of range to be mapped
3911 *
3912 * Remap the memory mapped I/O space described by the @res
3913 * and the CPU physical address @phys_addr into virtual address space.
3914 * Only architectures that have memory mapped IO functions defined
3915 * (and the PCI_IOBASE value defined) should call this function.
3916 */
7b309aef 3917int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
8b921acf
LD
3918{
3919#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3920 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3921
3922 if (!(res->flags & IORESOURCE_IO))
3923 return -EINVAL;
3924
3925 if (res->end > IO_SPACE_LIMIT)
3926 return -EINVAL;
3927
3928 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3929 pgprot_device(PAGE_KERNEL));
3930#else
3931 /* this architecture does not have memory mapped I/O space,
3932 so this function should never be called */
3933 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3934 return -ENODEV;
3935#endif
3936}
f90b0875 3937EXPORT_SYMBOL(pci_remap_iospace);
8b921acf 3938
4d3f1384
SK
3939/**
3940 * pci_unmap_iospace - Unmap the memory mapped I/O space
3941 * @res: resource to be unmapped
3942 *
3943 * Unmap the CPU virtual address @res from virtual address space.
3944 * Only architectures that have memory mapped IO functions defined
3945 * (and the PCI_IOBASE value defined) should call this function.
3946 */
3947void pci_unmap_iospace(struct resource *res)
3948{
3949#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3950 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3951
3952 unmap_kernel_range(vaddr, resource_size(res));
3953#endif
3954}
f90b0875 3955EXPORT_SYMBOL(pci_unmap_iospace);
4d3f1384 3956
a5fb9fb0
SS
3957static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3958{
3959 struct resource **res = ptr;
3960
3961 pci_unmap_iospace(*res);
3962}
3963
3964/**
3965 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3966 * @dev: Generic device to remap IO address for
3967 * @res: Resource describing the I/O space
3968 * @phys_addr: physical address of range to be mapped
3969 *
3970 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3971 * detach.
3972 */
3973int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3974 phys_addr_t phys_addr)
3975{
3976 const struct resource **ptr;
3977 int error;
3978
3979 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3980 if (!ptr)
3981 return -ENOMEM;
3982
3983 error = pci_remap_iospace(res, phys_addr);
3984 if (error) {
3985 devres_free(ptr);
3986 } else {
3987 *ptr = res;
3988 devres_add(dev, ptr);
3989 }
3990
3991 return error;
3992}
3993EXPORT_SYMBOL(devm_pci_remap_iospace);
3994
490cb6dd
LP
3995/**
3996 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3997 * @dev: Generic device to remap IO address for
3998 * @offset: Resource address to map
3999 * @size: Size of map
4000 *
4001 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4002 * detach.
4003 */
4004void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4005 resource_size_t offset,
4006 resource_size_t size)
4007{
4008 void __iomem **ptr, *addr;
4009
4010 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4011 if (!ptr)
4012 return NULL;
4013
4014 addr = pci_remap_cfgspace(offset, size);
4015 if (addr) {
4016 *ptr = addr;
4017 devres_add(dev, ptr);
4018 } else
4019 devres_free(ptr);
4020
4021 return addr;
4022}
4023EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4024
4025/**
4026 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4027 * @dev: generic device to handle the resource for
4028 * @res: configuration space resource to be handled
4029 *
4030 * Checks that a resource is a valid memory region, requests the memory
4031 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4032 * proper PCI configuration space memory attributes are guaranteed.
4033 *
4034 * All operations are managed and will be undone on driver detach.
4035 *
4036 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
505fb746 4037 * on failure. Usage example::
490cb6dd
LP
4038 *
4039 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4040 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4041 * if (IS_ERR(base))
4042 * return PTR_ERR(base);
4043 */
4044void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4045 struct resource *res)
4046{
4047 resource_size_t size;
4048 const char *name;
4049 void __iomem *dest_ptr;
4050
4051 BUG_ON(!dev);
4052
4053 if (!res || resource_type(res) != IORESOURCE_MEM) {
4054 dev_err(dev, "invalid resource\n");
4055 return IOMEM_ERR_PTR(-EINVAL);
4056 }
4057
4058 size = resource_size(res);
4059 name = res->name ?: dev_name(dev);
4060
4061 if (!devm_request_mem_region(dev, res->start, size, name)) {
4062 dev_err(dev, "can't request region for resource %pR\n", res);
4063 return IOMEM_ERR_PTR(-EBUSY);
4064 }
4065
4066 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4067 if (!dest_ptr) {
4068 dev_err(dev, "ioremap failed for resource %pR\n", res);
4069 devm_release_mem_region(dev, res->start, size);
4070 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4071 }
4072
4073 return dest_ptr;
4074}
4075EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4076
6a479079
BH
4077static void __pci_set_master(struct pci_dev *dev, bool enable)
4078{
4079 u16 old_cmd, cmd;
4080
4081 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4082 if (enable)
4083 cmd = old_cmd | PCI_COMMAND_MASTER;
4084 else
4085 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4086 if (cmd != old_cmd) {
7506dc79 4087 pci_dbg(dev, "%s bus mastering\n",
6a479079
BH
4088 enable ? "enabling" : "disabling");
4089 pci_write_config_word(dev, PCI_COMMAND, cmd);
4090 }
4091 dev->is_busmaster = enable;
4092}
e8de1481 4093
2b6f2c35
MS
4094/**
4095 * pcibios_setup - process "pci=" kernel boot arguments
4096 * @str: string used to pass in "pci=" kernel boot arguments
4097 *
4098 * Process kernel boot arguments. This is the default implementation.
4099 * Architecture specific implementations can override this as necessary.
4100 */
4101char * __weak __init pcibios_setup(char *str)
4102{
4103 return str;
4104}
4105
96c55900
MS
4106/**
4107 * pcibios_set_master - enable PCI bus-mastering for device dev
4108 * @dev: the PCI device to enable
4109 *
4110 * Enables PCI bus-mastering for the device. This is the default
4111 * implementation. Architecture specific implementations can override
4112 * this if necessary.
4113 */
4114void __weak pcibios_set_master(struct pci_dev *dev)
4115{
4116 u8 lat;
4117
f676678f
MS
4118 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4119 if (pci_is_pcie(dev))
4120 return;
4121
96c55900
MS
4122 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4123 if (lat < 16)
4124 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4125 else if (lat > pcibios_max_latency)
4126 lat = pcibios_max_latency;
4127 else
4128 return;
a006482b 4129
96c55900
MS
4130 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4131}
4132
1da177e4
LT
4133/**
4134 * pci_set_master - enables bus-mastering for device dev
4135 * @dev: the PCI device to enable
4136 *
4137 * Enables bus-mastering on the device and calls pcibios_set_master()
4138 * to do the needed arch specific settings.
4139 */
6a479079 4140void pci_set_master(struct pci_dev *dev)
1da177e4 4141{
6a479079 4142 __pci_set_master(dev, true);
1da177e4
LT
4143 pcibios_set_master(dev);
4144}
b7fe9434 4145EXPORT_SYMBOL(pci_set_master);
1da177e4 4146
6a479079
BH
4147/**
4148 * pci_clear_master - disables bus-mastering for device dev
4149 * @dev: the PCI device to disable
4150 */
4151void pci_clear_master(struct pci_dev *dev)
4152{
4153 __pci_set_master(dev, false);
4154}
b7fe9434 4155EXPORT_SYMBOL(pci_clear_master);
6a479079 4156
1da177e4 4157/**
edb2d97e
MW
4158 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4159 * @dev: the PCI device for which MWI is to be enabled
1da177e4 4160 *
edb2d97e
MW
4161 * Helper function for pci_set_mwi.
4162 * Originally copied from drivers/net/acenic.c.
1da177e4
LT
4163 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4164 *
4165 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4166 */
15ea76d4 4167int pci_set_cacheline_size(struct pci_dev *dev)
1da177e4
LT
4168{
4169 u8 cacheline_size;
4170
4171 if (!pci_cache_line_size)
15ea76d4 4172 return -EINVAL;
1da177e4
LT
4173
4174 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4175 equal to or multiple of the right value. */
4176 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4177 if (cacheline_size >= pci_cache_line_size &&
4178 (cacheline_size % pci_cache_line_size) == 0)
4179 return 0;
4180
4181 /* Write the correct value. */
4182 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4183 /* Read it back. */
4184 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4185 if (cacheline_size == pci_cache_line_size)
4186 return 0;
4187
7506dc79 4188 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
227f0647 4189 pci_cache_line_size << 2);
1da177e4
LT
4190
4191 return -EINVAL;
4192}
15ea76d4
TH
4193EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4194
1da177e4
LT
4195/**
4196 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4197 * @dev: the PCI device for which MWI is enabled
4198 *
694625c0 4199 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1da177e4
LT
4200 *
4201 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4202 */
3c78bc61 4203int pci_set_mwi(struct pci_dev *dev)
1da177e4 4204{
b7fe9434
RD
4205#ifdef PCI_DISABLE_MWI
4206 return 0;
4207#else
1da177e4
LT
4208 int rc;
4209 u16 cmd;
4210
edb2d97e 4211 rc = pci_set_cacheline_size(dev);
1da177e4
LT
4212 if (rc)
4213 return rc;
4214
4215 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3c78bc61 4216 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
7506dc79 4217 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
1da177e4
LT
4218 cmd |= PCI_COMMAND_INVALIDATE;
4219 pci_write_config_word(dev, PCI_COMMAND, cmd);
4220 }
1da177e4 4221 return 0;
b7fe9434 4222#endif
1da177e4 4223}
b7fe9434 4224EXPORT_SYMBOL(pci_set_mwi);
1da177e4 4225
fc0f9f4d
HK
4226/**
4227 * pcim_set_mwi - a device-managed pci_set_mwi()
4228 * @dev: the PCI device for which MWI is enabled
4229 *
4230 * Managed pci_set_mwi().
4231 *
4232 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4233 */
4234int pcim_set_mwi(struct pci_dev *dev)
4235{
4236 struct pci_devres *dr;
4237
4238 dr = find_pci_dr(dev);
4239 if (!dr)
4240 return -ENOMEM;
4241
4242 dr->mwi = 1;
4243 return pci_set_mwi(dev);
4244}
4245EXPORT_SYMBOL(pcim_set_mwi);
4246
694625c0
RD
4247/**
4248 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4249 * @dev: the PCI device for which MWI is enabled
4250 *
4251 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4252 * Callers are not required to check the return value.
4253 *
4254 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4255 */
4256int pci_try_set_mwi(struct pci_dev *dev)
4257{
b7fe9434
RD
4258#ifdef PCI_DISABLE_MWI
4259 return 0;
4260#else
4261 return pci_set_mwi(dev);
4262#endif
694625c0 4263}
b7fe9434 4264EXPORT_SYMBOL(pci_try_set_mwi);
694625c0 4265
1da177e4
LT
4266/**
4267 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4268 * @dev: the PCI device to disable
4269 *
4270 * Disables PCI Memory-Write-Invalidate transaction on the device
4271 */
3c78bc61 4272void pci_clear_mwi(struct pci_dev *dev)
1da177e4 4273{
b7fe9434 4274#ifndef PCI_DISABLE_MWI
1da177e4
LT
4275 u16 cmd;
4276
4277 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4278 if (cmd & PCI_COMMAND_INVALIDATE) {
4279 cmd &= ~PCI_COMMAND_INVALIDATE;
4280 pci_write_config_word(dev, PCI_COMMAND, cmd);
4281 }
b7fe9434 4282#endif
1da177e4 4283}
b7fe9434 4284EXPORT_SYMBOL(pci_clear_mwi);
1da177e4 4285
a04ce0ff
BR
4286/**
4287 * pci_intx - enables/disables PCI INTx for device dev
8f7020d3
RD
4288 * @pdev: the PCI device to operate on
4289 * @enable: boolean: whether to enable or disable PCI INTx
a04ce0ff
BR
4290 *
4291 * Enables/disables PCI INTx for device dev
4292 */
3c78bc61 4293void pci_intx(struct pci_dev *pdev, int enable)
a04ce0ff
BR
4294{
4295 u16 pci_command, new;
4296
4297 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4298
3c78bc61 4299 if (enable)
a04ce0ff 4300 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3c78bc61 4301 else
a04ce0ff 4302 new = pci_command | PCI_COMMAND_INTX_DISABLE;
a04ce0ff
BR
4303
4304 if (new != pci_command) {
9ac7849e
TH
4305 struct pci_devres *dr;
4306
2fd9d74b 4307 pci_write_config_word(pdev, PCI_COMMAND, new);
9ac7849e
TH
4308
4309 dr = find_pci_dr(pdev);
4310 if (dr && !dr->restore_intx) {
4311 dr->restore_intx = 1;
4312 dr->orig_intx = !enable;
4313 }
a04ce0ff
BR
4314 }
4315}
b7fe9434 4316EXPORT_SYMBOL_GPL(pci_intx);
a04ce0ff 4317
a2e27787
JK
4318static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4319{
4320 struct pci_bus *bus = dev->bus;
4321 bool mask_updated = true;
4322 u32 cmd_status_dword;
4323 u16 origcmd, newcmd;
4324 unsigned long flags;
4325 bool irq_pending;
4326
4327 /*
4328 * We do a single dword read to retrieve both command and status.
4329 * Document assumptions that make this possible.
4330 */
4331 BUILD_BUG_ON(PCI_COMMAND % 4);
4332 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4333
4334 raw_spin_lock_irqsave(&pci_lock, flags);
4335
4336 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4337
4338 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4339
4340 /*
4341 * Check interrupt status register to see whether our device
4342 * triggered the interrupt (when masking) or the next IRQ is
4343 * already pending (when unmasking).
4344 */
4345 if (mask != irq_pending) {
4346 mask_updated = false;
4347 goto done;
4348 }
4349
4350 origcmd = cmd_status_dword;
4351 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4352 if (mask)
4353 newcmd |= PCI_COMMAND_INTX_DISABLE;
4354 if (newcmd != origcmd)
4355 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4356
4357done:
4358 raw_spin_unlock_irqrestore(&pci_lock, flags);
4359
4360 return mask_updated;
4361}
4362
4363/**
4364 * pci_check_and_mask_intx - mask INTx on pending interrupt
6e9292c5 4365 * @dev: the PCI device to operate on
a2e27787
JK
4366 *
4367 * Check if the device dev has its INTx line asserted, mask it and
99b3c58f 4368 * return true in that case. False is returned if no interrupt was
a2e27787
JK
4369 * pending.
4370 */
4371bool pci_check_and_mask_intx(struct pci_dev *dev)
4372{
4373 return pci_check_and_set_intx_mask(dev, true);
4374}
4375EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4376
4377/**
ebd50b93 4378 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
6e9292c5 4379 * @dev: the PCI device to operate on
a2e27787
JK
4380 *
4381 * Check if the device dev has its INTx line asserted, unmask it if not
4382 * and return true. False is returned and the mask remains active if
4383 * there was still an interrupt pending.
4384 */
4385bool pci_check_and_unmask_intx(struct pci_dev *dev)
4386{
4387 return pci_check_and_set_intx_mask(dev, false);
4388}
4389EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4390
3775a209
CL
4391/**
4392 * pci_wait_for_pending_transaction - waits for pending transaction
4393 * @dev: the PCI device to operate on
4394 *
4395 * Return 0 if transaction is pending 1 otherwise.
4396 */
4397int pci_wait_for_pending_transaction(struct pci_dev *dev)
8dd7f803 4398{
157e876f
AW
4399 if (!pci_is_pcie(dev))
4400 return 1;
8c1c699f 4401
d0b4cc4e
GS
4402 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4403 PCI_EXP_DEVSTA_TRPND);
3775a209
CL
4404}
4405EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4406
a2758b6b 4407static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
5adecf81 4408{
a2758b6b 4409 int delay = 1;
5adecf81
AW
4410 u32 id;
4411
821cdad5 4412 /*
a2758b6b 4413 * After reset, the device should not silently discard config
821cdad5
SK
4414 * requests, but it may still indicate that it needs more time by
4415 * responding to them with CRS completions. The Root Port will
4416 * generally synthesize ~0 data to complete the read (except when
4417 * CRS SV is enabled and the read was for the Vendor ID; in that
4418 * case it synthesizes 0x0001 data).
4419 *
4420 * Wait for the device to return a non-CRS completion. Read the
4421 * Command register instead of Vendor ID so we don't have to
4422 * contend with the CRS SV value.
4423 */
4424 pci_read_config_dword(dev, PCI_COMMAND, &id);
4425 while (id == ~0) {
4426 if (delay > timeout) {
a2758b6b
SK
4427 pci_warn(dev, "not ready %dms after %s; giving up\n",
4428 delay - 1, reset_type);
91295d79 4429 return -ENOTTY;
821cdad5
SK
4430 }
4431
4432 if (delay > 1000)
a2758b6b
SK
4433 pci_info(dev, "not ready %dms after %s; waiting\n",
4434 delay - 1, reset_type);
821cdad5
SK
4435
4436 msleep(delay);
4437 delay *= 2;
5adecf81 4438 pci_read_config_dword(dev, PCI_COMMAND, &id);
821cdad5 4439 }
5adecf81 4440
821cdad5 4441 if (delay > 1000)
a2758b6b
SK
4442 pci_info(dev, "ready %dms after %s\n", delay - 1,
4443 reset_type);
91295d79
SK
4444
4445 return 0;
5adecf81
AW
4446}
4447
a60a2b73
CH
4448/**
4449 * pcie_has_flr - check if a device supports function level resets
4450 * @dev: device to check
4451 *
4452 * Returns true if the device advertises support for PCIe function level
4453 * resets.
4454 */
2d2917f7 4455bool pcie_has_flr(struct pci_dev *dev)
3775a209
CL
4456{
4457 u32 cap;
4458
f65fd1aa 4459 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
a60a2b73 4460 return false;
3775a209 4461
a60a2b73
CH
4462 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4463 return cap & PCI_EXP_DEVCAP_FLR;
4464}
2d2917f7 4465EXPORT_SYMBOL_GPL(pcie_has_flr);
3775a209 4466
a60a2b73
CH
4467/**
4468 * pcie_flr - initiate a PCIe function level reset
4469 * @dev: device to reset
4470 *
4471 * Initiate a function level reset on @dev. The caller should ensure the
4472 * device supports FLR before calling this function, e.g. by using the
4473 * pcie_has_flr() helper.
4474 */
91295d79 4475int pcie_flr(struct pci_dev *dev)
a60a2b73 4476{
3775a209 4477 if (!pci_wait_for_pending_transaction(dev))
7506dc79 4478 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
8c1c699f 4479
59875ae4 4480 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
a2758b6b 4481
d6112f8d
FB
4482 if (dev->imm_ready)
4483 return 0;
4484
a2758b6b
SK
4485 /*
4486 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4487 * 100ms, but may silently discard requests while the FLR is in
4488 * progress. Wait 100ms before trying to access the device.
4489 */
4490 msleep(100);
4491
4492 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
8dd7f803 4493}
a60a2b73 4494EXPORT_SYMBOL_GPL(pcie_flr);
d91cdc74 4495
8c1c699f 4496static int pci_af_flr(struct pci_dev *dev, int probe)
1ca88797 4497{
8c1c699f 4498 int pos;
1ca88797
SY
4499 u8 cap;
4500
8c1c699f
YZ
4501 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4502 if (!pos)
1ca88797 4503 return -ENOTTY;
8c1c699f 4504
f65fd1aa
SN
4505 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4506 return -ENOTTY;
4507
8c1c699f 4508 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
1ca88797
SY
4509 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4510 return -ENOTTY;
4511
4512 if (probe)
4513 return 0;
4514
d066c946
AW
4515 /*
4516 * Wait for Transaction Pending bit to clear. A word-aligned test
4517 * is used, so we use the conrol offset rather than status and shift
4518 * the test bit to match.
4519 */
bb383e28 4520 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
d066c946 4521 PCI_AF_STATUS_TP << 8))
7506dc79 4522 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
5fe5db05 4523
8c1c699f 4524 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
a2758b6b 4525
d6112f8d
FB
4526 if (dev->imm_ready)
4527 return 0;
4528
a2758b6b
SK
4529 /*
4530 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4531 * updated 27 July 2006; a device must complete an FLR within
4532 * 100ms, but may silently discard requests while the FLR is in
4533 * progress. Wait 100ms before trying to access the device.
4534 */
4535 msleep(100);
4536
4537 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
1ca88797
SY
4538}
4539
83d74e03
RW
4540/**
4541 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4542 * @dev: Device to reset.
4543 * @probe: If set, only check if the device can be reset this way.
4544 *
4545 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4546 * unset, it will be reinitialized internally when going from PCI_D3hot to
4547 * PCI_D0. If that's the case and the device is not in a low-power state
4548 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4549 *
4550 * NOTE: This causes the caller to sleep for twice the device power transition
4551 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
f7625980 4552 * by default (i.e. unless the @dev's d3_delay field has a different value).
83d74e03
RW
4553 * Moreover, only devices in D0 can be reset by this function.
4554 */
f85876ba 4555static int pci_pm_reset(struct pci_dev *dev, int probe)
d91cdc74 4556{
f85876ba
YZ
4557 u16 csr;
4558
51e53738 4559 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
f85876ba 4560 return -ENOTTY;
d91cdc74 4561
f85876ba
YZ
4562 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4563 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4564 return -ENOTTY;
d91cdc74 4565
f85876ba
YZ
4566 if (probe)
4567 return 0;
1ca88797 4568
f85876ba
YZ
4569 if (dev->current_state != PCI_D0)
4570 return -EINVAL;
4571
4572 csr &= ~PCI_PM_CTRL_STATE_MASK;
4573 csr |= PCI_D3hot;
4574 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 4575 pci_dev_d3_sleep(dev);
f85876ba
YZ
4576
4577 csr &= ~PCI_PM_CTRL_STATE_MASK;
4578 csr |= PCI_D0;
4579 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
1ae861e6 4580 pci_dev_d3_sleep(dev);
f85876ba 4581
abbcf0e2 4582 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
f85876ba 4583}
9f5a70f1
OP
4584/**
4585 * pcie_wait_for_link - Wait until link is active or inactive
4586 * @pdev: Bridge device
4587 * @active: waiting for active or inactive?
4588 *
4589 * Use this to wait till link becomes active or inactive.
4590 */
4591bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4592{
4593 int timeout = 1000;
4594 bool ret;
4595 u16 lnk_status;
4596
f0157160
KB
4597 /*
4598 * Some controllers might not implement link active reporting. In this
4599 * case, we wait for 1000 + 100 ms.
4600 */
4601 if (!pdev->link_active_reporting) {
4602 msleep(1100);
4603 return true;
4604 }
4605
4606 /*
4607 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4608 * after which we should expect an link active if the reset was
4609 * successful. If so, software must wait a minimum 100ms before sending
4610 * configuration requests to devices downstream this port.
4611 *
4612 * If the link fails to activate, either the device was physically
4613 * removed or the link is permanently failed.
4614 */
4615 if (active)
4616 msleep(20);
9f5a70f1
OP
4617 for (;;) {
4618 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4619 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4620 if (ret == active)
f0157160 4621 break;
9f5a70f1
OP
4622 if (timeout <= 0)
4623 break;
4624 msleep(10);
4625 timeout -= 10;
4626 }
f0157160
KB
4627 if (active && ret)
4628 msleep(100);
4629 else if (ret != active)
4630 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4631 active ? "set" : "cleared");
4632 return ret == active;
9f5a70f1 4633}
f85876ba 4634
9e33002f 4635void pci_reset_secondary_bus(struct pci_dev *dev)
c12ff1df
YZ
4636{
4637 u16 ctrl;
64e8674f
AW
4638
4639 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4640 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4641 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
df62ab5e 4642
de0c548c
AW
4643 /*
4644 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
f7625980 4645 * this to 2ms to ensure that we meet the minimum requirement.
de0c548c
AW
4646 */
4647 msleep(2);
64e8674f
AW
4648
4649 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4650 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
de0c548c
AW
4651
4652 /*
4653 * Trhfa for conventional PCI is 2^25 clock cycles.
4654 * Assuming a minimum 33MHz clock this results in a 1s
4655 * delay before we can consider subordinate devices to
4656 * be re-initialized. PCIe has some ways to shorten this,
4657 * but we don't make use of them yet.
4658 */
4659 ssleep(1);
64e8674f 4660}
d92a208d 4661
9e33002f
GS
4662void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4663{
4664 pci_reset_secondary_bus(dev);
4665}
4666
d92a208d 4667/**
381634ca 4668 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
d92a208d
GS
4669 * @dev: Bridge device
4670 *
4671 * Use the bridge control register to assert reset on the secondary bus.
4672 * Devices on the secondary bus are left in power-on state.
4673 */
381634ca 4674int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
d92a208d
GS
4675{
4676 pcibios_reset_secondary_bus(dev);
01fd61c0 4677
6b2f1351 4678 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
d92a208d 4679}
bfc45606 4680EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
64e8674f
AW
4681
4682static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4683{
c12ff1df
YZ
4684 struct pci_dev *pdev;
4685
f331a859
AW
4686 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4687 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
c12ff1df
YZ
4688 return -ENOTTY;
4689
4690 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4691 if (pdev != dev)
4692 return -ENOTTY;
4693
4694 if (probe)
4695 return 0;
4696
381634ca 4697 return pci_bridge_secondary_bus_reset(dev->bus->self);
c12ff1df
YZ
4698}
4699
608c3881
AW
4700static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4701{
4702 int rc = -ENOTTY;
4703
81c4b5bf 4704 if (!hotplug || !try_module_get(hotplug->owner))
608c3881
AW
4705 return rc;
4706
4707 if (hotplug->ops->reset_slot)
4708 rc = hotplug->ops->reset_slot(hotplug, probe);
4709
81c4b5bf 4710 module_put(hotplug->owner);
608c3881
AW
4711
4712 return rc;
4713}
4714
4715static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4716{
4717 struct pci_dev *pdev;
4718
f331a859
AW
4719 if (dev->subordinate || !dev->slot ||
4720 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
608c3881
AW
4721 return -ENOTTY;
4722
4723 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4724 if (pdev != dev && pdev->slot == dev->slot)
4725 return -ENOTTY;
4726
4727 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4728}
4729
77cb985a
AW
4730static void pci_dev_lock(struct pci_dev *dev)
4731{
4732 pci_cfg_access_lock(dev);
4733 /* block PM suspend, driver probe, etc. */
4734 device_lock(&dev->dev);
4735}
4736
61cf16d8
AW
4737/* Return 1 on successful lock, 0 on contention */
4738static int pci_dev_trylock(struct pci_dev *dev)
4739{
4740 if (pci_cfg_access_trylock(dev)) {
4741 if (device_trylock(&dev->dev))
4742 return 1;
4743 pci_cfg_access_unlock(dev);
4744 }
4745
4746 return 0;
4747}
4748
77cb985a
AW
4749static void pci_dev_unlock(struct pci_dev *dev)
4750{
4751 device_unlock(&dev->dev);
4752 pci_cfg_access_unlock(dev);
4753}
4754
775755ed 4755static void pci_dev_save_and_disable(struct pci_dev *dev)
3ebe7f9f
KB
4756{
4757 const struct pci_error_handlers *err_handler =
4758 dev->driver ? dev->driver->err_handler : NULL;
3ebe7f9f 4759
b014e96d 4760 /*
775755ed 4761 * dev->driver->err_handler->reset_prepare() is protected against
b014e96d
CH
4762 * races with ->remove() by the device lock, which must be held by
4763 * the caller.
4764 */
775755ed
CH
4765 if (err_handler && err_handler->reset_prepare)
4766 err_handler->reset_prepare(dev);
3ebe7f9f 4767
a6cbaade
AW
4768 /*
4769 * Wake-up device prior to save. PM registers default to D0 after
4770 * reset and a simple register restore doesn't reliably return
4771 * to a non-D0 state anyway.
4772 */
4773 pci_set_power_state(dev, PCI_D0);
4774
77cb985a
AW
4775 pci_save_state(dev);
4776 /*
4777 * Disable the device by clearing the Command register, except for
4778 * INTx-disable which is set. This not only disables MMIO and I/O port
4779 * BARs, but also prevents the device from being Bus Master, preventing
4780 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4781 * compliant devices, INTx-disable prevents legacy interrupts.
4782 */
4783 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4784}
4785
4786static void pci_dev_restore(struct pci_dev *dev)
4787{
775755ed
CH
4788 const struct pci_error_handlers *err_handler =
4789 dev->driver ? dev->driver->err_handler : NULL;
977f857c 4790
77cb985a 4791 pci_restore_state(dev);
77cb985a 4792
775755ed
CH
4793 /*
4794 * dev->driver->err_handler->reset_done() is protected against
4795 * races with ->remove() by the device lock, which must be held by
4796 * the caller.
4797 */
4798 if (err_handler && err_handler->reset_done)
4799 err_handler->reset_done(dev);
d91cdc74 4800}
3ebe7f9f 4801
6fbf9e7a
KRW
4802/**
4803 * __pci_reset_function_locked - reset a PCI device function while holding
4804 * the @dev mutex lock.
4805 * @dev: PCI device to reset
4806 *
4807 * Some devices allow an individual function to be reset without affecting
4808 * other functions in the same device. The PCI device must be responsive
4809 * to PCI config space in order to use this function.
4810 *
4811 * The device function is presumed to be unused and the caller is holding
4812 * the device mutex lock when this function is called.
4813 * Resetting the device will make the contents of PCI configuration space
4814 * random, so any caller of this must be prepared to reinitialise the
4815 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4816 * etc.
4817 *
4818 * Returns 0 if the device function was successfully reset or negative if the
4819 * device doesn't support resetting a single function.
4820 */
4821int __pci_reset_function_locked(struct pci_dev *dev)
4822{
52354b9d
CH
4823 int rc;
4824
4825 might_sleep();
4826
832c418a
BH
4827 /*
4828 * A reset method returns -ENOTTY if it doesn't support this device
4829 * and we should try the next method.
4830 *
4831 * If it returns 0 (success), we're finished. If it returns any
4832 * other error, we're also finished: this indicates that further
4833 * reset mechanisms might be broken on the device.
4834 */
52354b9d
CH
4835 rc = pci_dev_specific_reset(dev, 0);
4836 if (rc != -ENOTTY)
4837 return rc;
4838 if (pcie_has_flr(dev)) {
91295d79
SK
4839 rc = pcie_flr(dev);
4840 if (rc != -ENOTTY)
4841 return rc;
52354b9d
CH
4842 }
4843 rc = pci_af_flr(dev, 0);
4844 if (rc != -ENOTTY)
4845 return rc;
4846 rc = pci_pm_reset(dev, 0);
4847 if (rc != -ENOTTY)
4848 return rc;
4849 rc = pci_dev_reset_slot_function(dev, 0);
4850 if (rc != -ENOTTY)
4851 return rc;
4852 return pci_parent_bus_reset(dev, 0);
6fbf9e7a
KRW
4853}
4854EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4855
711d5779
MT
4856/**
4857 * pci_probe_reset_function - check whether the device can be safely reset
4858 * @dev: PCI device to reset
4859 *
4860 * Some devices allow an individual function to be reset without affecting
4861 * other functions in the same device. The PCI device must be responsive
4862 * to PCI config space in order to use this function.
4863 *
4864 * Returns 0 if the device function can be reset or negative if the
4865 * device doesn't support resetting a single function.
4866 */
4867int pci_probe_reset_function(struct pci_dev *dev)
4868{
52354b9d
CH
4869 int rc;
4870
4871 might_sleep();
4872
4873 rc = pci_dev_specific_reset(dev, 1);
4874 if (rc != -ENOTTY)
4875 return rc;
4876 if (pcie_has_flr(dev))
4877 return 0;
4878 rc = pci_af_flr(dev, 1);
4879 if (rc != -ENOTTY)
4880 return rc;
4881 rc = pci_pm_reset(dev, 1);
4882 if (rc != -ENOTTY)
4883 return rc;
4884 rc = pci_dev_reset_slot_function(dev, 1);
4885 if (rc != -ENOTTY)
4886 return rc;
4887
4888 return pci_parent_bus_reset(dev, 1);
711d5779
MT
4889}
4890
8dd7f803 4891/**
8c1c699f
YZ
4892 * pci_reset_function - quiesce and reset a PCI device function
4893 * @dev: PCI device to reset
8dd7f803
SY
4894 *
4895 * Some devices allow an individual function to be reset without affecting
4896 * other functions in the same device. The PCI device must be responsive
4897 * to PCI config space in order to use this function.
4898 *
4899 * This function does not just reset the PCI portion of a device, but
4900 * clears all the state associated with the device. This function differs
79e699b6
JS
4901 * from __pci_reset_function_locked() in that it saves and restores device state
4902 * over the reset and takes the PCI device lock.
8dd7f803 4903 *
8c1c699f 4904 * Returns 0 if the device function was successfully reset or negative if the
8dd7f803
SY
4905 * device doesn't support resetting a single function.
4906 */
4907int pci_reset_function(struct pci_dev *dev)
4908{
8c1c699f 4909 int rc;
8dd7f803 4910
204f4afa
BH
4911 if (!dev->reset_fn)
4912 return -ENOTTY;
8dd7f803 4913
b014e96d 4914 pci_dev_lock(dev);
77cb985a 4915 pci_dev_save_and_disable(dev);
8dd7f803 4916
52354b9d 4917 rc = __pci_reset_function_locked(dev);
8dd7f803 4918
77cb985a 4919 pci_dev_restore(dev);
b014e96d 4920 pci_dev_unlock(dev);
8dd7f803 4921
8c1c699f 4922 return rc;
8dd7f803
SY
4923}
4924EXPORT_SYMBOL_GPL(pci_reset_function);
4925
a477b9cd
MZ
4926/**
4927 * pci_reset_function_locked - quiesce and reset a PCI device function
4928 * @dev: PCI device to reset
4929 *
4930 * Some devices allow an individual function to be reset without affecting
4931 * other functions in the same device. The PCI device must be responsive
4932 * to PCI config space in order to use this function.
4933 *
4934 * This function does not just reset the PCI portion of a device, but
4935 * clears all the state associated with the device. This function differs
79e699b6 4936 * from __pci_reset_function_locked() in that it saves and restores device state
a477b9cd
MZ
4937 * over the reset. It also differs from pci_reset_function() in that it
4938 * requires the PCI device lock to be held.
4939 *
4940 * Returns 0 if the device function was successfully reset or negative if the
4941 * device doesn't support resetting a single function.
4942 */
4943int pci_reset_function_locked(struct pci_dev *dev)
4944{
4945 int rc;
4946
204f4afa
BH
4947 if (!dev->reset_fn)
4948 return -ENOTTY;
a477b9cd
MZ
4949
4950 pci_dev_save_and_disable(dev);
4951
4952 rc = __pci_reset_function_locked(dev);
4953
4954 pci_dev_restore(dev);
4955
4956 return rc;
4957}
4958EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4959
61cf16d8
AW
4960/**
4961 * pci_try_reset_function - quiesce and reset a PCI device function
4962 * @dev: PCI device to reset
4963 *
4964 * Same as above, except return -EAGAIN if unable to lock device.
4965 */
4966int pci_try_reset_function(struct pci_dev *dev)
4967{
4968 int rc;
4969
204f4afa
BH
4970 if (!dev->reset_fn)
4971 return -ENOTTY;
61cf16d8 4972
b014e96d
CH
4973 if (!pci_dev_trylock(dev))
4974 return -EAGAIN;
61cf16d8 4975
b014e96d 4976 pci_dev_save_and_disable(dev);
52354b9d 4977 rc = __pci_reset_function_locked(dev);
cb5e0d06 4978 pci_dev_restore(dev);
b014e96d 4979 pci_dev_unlock(dev);
61cf16d8 4980
61cf16d8
AW
4981 return rc;
4982}
4983EXPORT_SYMBOL_GPL(pci_try_reset_function);
4984
f331a859
AW
4985/* Do any devices on or below this bus prevent a bus reset? */
4986static bool pci_bus_resetable(struct pci_bus *bus)
4987{
4988 struct pci_dev *dev;
4989
35702778
DD
4990
4991 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4992 return false;
4993
f331a859
AW
4994 list_for_each_entry(dev, &bus->devices, bus_list) {
4995 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4996 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4997 return false;
4998 }
4999
5000 return true;
5001}
5002
090a3c53
AW
5003/* Lock devices from the top of the tree down */
5004static void pci_bus_lock(struct pci_bus *bus)
5005{
5006 struct pci_dev *dev;
5007
5008 list_for_each_entry(dev, &bus->devices, bus_list) {
5009 pci_dev_lock(dev);
5010 if (dev->subordinate)
5011 pci_bus_lock(dev->subordinate);
5012 }
5013}
5014
5015/* Unlock devices from the bottom of the tree up */
5016static void pci_bus_unlock(struct pci_bus *bus)
5017{
5018 struct pci_dev *dev;
5019
5020 list_for_each_entry(dev, &bus->devices, bus_list) {
5021 if (dev->subordinate)
5022 pci_bus_unlock(dev->subordinate);
5023 pci_dev_unlock(dev);
5024 }
5025}
5026
61cf16d8
AW
5027/* Return 1 on successful lock, 0 on contention */
5028static int pci_bus_trylock(struct pci_bus *bus)
5029{
5030 struct pci_dev *dev;
5031
5032 list_for_each_entry(dev, &bus->devices, bus_list) {
5033 if (!pci_dev_trylock(dev))
5034 goto unlock;
5035 if (dev->subordinate) {
5036 if (!pci_bus_trylock(dev->subordinate)) {
5037 pci_dev_unlock(dev);
5038 goto unlock;
5039 }
5040 }
5041 }
5042 return 1;
5043
5044unlock:
5045 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5046 if (dev->subordinate)
5047 pci_bus_unlock(dev->subordinate);
5048 pci_dev_unlock(dev);
5049 }
5050 return 0;
5051}
5052
f331a859
AW
5053/* Do any devices on or below this slot prevent a bus reset? */
5054static bool pci_slot_resetable(struct pci_slot *slot)
5055{
5056 struct pci_dev *dev;
5057
33ba90aa
JG
5058 if (slot->bus->self &&
5059 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5060 return false;
5061
f331a859
AW
5062 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5063 if (!dev->slot || dev->slot != slot)
5064 continue;
5065 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5066 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5067 return false;
5068 }
5069
5070 return true;
5071}
5072
090a3c53
AW
5073/* Lock devices from the top of the tree down */
5074static void pci_slot_lock(struct pci_slot *slot)
5075{
5076 struct pci_dev *dev;
5077
5078 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5079 if (!dev->slot || dev->slot != slot)
5080 continue;
5081 pci_dev_lock(dev);
5082 if (dev->subordinate)
5083 pci_bus_lock(dev->subordinate);
5084 }
5085}
5086
5087/* Unlock devices from the bottom of the tree up */
5088static void pci_slot_unlock(struct pci_slot *slot)
5089{
5090 struct pci_dev *dev;
5091
5092 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5093 if (!dev->slot || dev->slot != slot)
5094 continue;
5095 if (dev->subordinate)
5096 pci_bus_unlock(dev->subordinate);
5097 pci_dev_unlock(dev);
5098 }
5099}
5100
61cf16d8
AW
5101/* Return 1 on successful lock, 0 on contention */
5102static int pci_slot_trylock(struct pci_slot *slot)
5103{
5104 struct pci_dev *dev;
5105
5106 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5107 if (!dev->slot || dev->slot != slot)
5108 continue;
5109 if (!pci_dev_trylock(dev))
5110 goto unlock;
5111 if (dev->subordinate) {
5112 if (!pci_bus_trylock(dev->subordinate)) {
5113 pci_dev_unlock(dev);
5114 goto unlock;
5115 }
5116 }
5117 }
5118 return 1;
5119
5120unlock:
5121 list_for_each_entry_continue_reverse(dev,
5122 &slot->bus->devices, bus_list) {
5123 if (!dev->slot || dev->slot != slot)
5124 continue;
5125 if (dev->subordinate)
5126 pci_bus_unlock(dev->subordinate);
5127 pci_dev_unlock(dev);
5128 }
5129 return 0;
5130}
5131
ddefc033
AW
5132/*
5133 * Save and disable devices from the top of the tree down while holding
5134 * the @dev mutex lock for the entire tree.
5135 */
5136static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
090a3c53
AW
5137{
5138 struct pci_dev *dev;
5139
5140 list_for_each_entry(dev, &bus->devices, bus_list) {
5141 pci_dev_save_and_disable(dev);
5142 if (dev->subordinate)
ddefc033 5143 pci_bus_save_and_disable_locked(dev->subordinate);
090a3c53
AW
5144 }
5145}
5146
5147/*
ddefc033
AW
5148 * Restore devices from top of the tree down while holding @dev mutex lock
5149 * for the entire tree. Parent bridges need to be restored before we can
5150 * get to subordinate devices.
090a3c53 5151 */
ddefc033 5152static void pci_bus_restore_locked(struct pci_bus *bus)
090a3c53
AW
5153{
5154 struct pci_dev *dev;
5155
5156 list_for_each_entry(dev, &bus->devices, bus_list) {
5157 pci_dev_restore(dev);
5158 if (dev->subordinate)
ddefc033 5159 pci_bus_restore_locked(dev->subordinate);
090a3c53
AW
5160 }
5161}
5162
ddefc033
AW
5163/*
5164 * Save and disable devices from the top of the tree down while holding
5165 * the @dev mutex lock for the entire tree.
5166 */
5167static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
090a3c53
AW
5168{
5169 struct pci_dev *dev;
5170
5171 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5172 if (!dev->slot || dev->slot != slot)
5173 continue;
5174 pci_dev_save_and_disable(dev);
5175 if (dev->subordinate)
ddefc033 5176 pci_bus_save_and_disable_locked(dev->subordinate);
090a3c53
AW
5177 }
5178}
5179
5180/*
ddefc033
AW
5181 * Restore devices from top of the tree down while holding @dev mutex lock
5182 * for the entire tree. Parent bridges need to be restored before we can
5183 * get to subordinate devices.
090a3c53 5184 */
ddefc033 5185static void pci_slot_restore_locked(struct pci_slot *slot)
090a3c53
AW
5186{
5187 struct pci_dev *dev;
5188
5189 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5190 if (!dev->slot || dev->slot != slot)
5191 continue;
5192 pci_dev_restore(dev);
5193 if (dev->subordinate)
ddefc033 5194 pci_bus_restore_locked(dev->subordinate);
090a3c53
AW
5195 }
5196}
5197
5198static int pci_slot_reset(struct pci_slot *slot, int probe)
5199{
5200 int rc;
5201
f331a859 5202 if (!slot || !pci_slot_resetable(slot))
090a3c53
AW
5203 return -ENOTTY;
5204
5205 if (!probe)
5206 pci_slot_lock(slot);
5207
5208 might_sleep();
5209
5210 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5211
5212 if (!probe)
5213 pci_slot_unlock(slot);
5214
5215 return rc;
5216}
5217
9a3d2b9b
AW
5218/**
5219 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5220 * @slot: PCI slot to probe
5221 *
5222 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5223 */
5224int pci_probe_reset_slot(struct pci_slot *slot)
5225{
5226 return pci_slot_reset(slot, 1);
5227}
5228EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5229
090a3c53 5230/**
c6a44ba9 5231 * __pci_reset_slot - Try to reset a PCI slot
090a3c53
AW
5232 * @slot: PCI slot to reset
5233 *
5234 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5235 * independent of other slots. For instance, some slots may support slot power
5236 * control. In the case of a 1:1 bus to slot architecture, this function may
5237 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5238 * Generally a slot reset should be attempted before a bus reset. All of the
5239 * function of the slot and any subordinate buses behind the slot are reset
5240 * through this function. PCI config space of all devices in the slot and
5241 * behind the slot is saved before and restored after reset.
5242 *
61cf16d8
AW
5243 * Same as above except return -EAGAIN if the slot cannot be locked
5244 */
c6a44ba9 5245static int __pci_reset_slot(struct pci_slot *slot)
61cf16d8
AW
5246{
5247 int rc;
5248
5249 rc = pci_slot_reset(slot, 1);
5250 if (rc)
5251 return rc;
5252
61cf16d8 5253 if (pci_slot_trylock(slot)) {
ddefc033 5254 pci_slot_save_and_disable_locked(slot);
61cf16d8
AW
5255 might_sleep();
5256 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
ddefc033 5257 pci_slot_restore_locked(slot);
61cf16d8
AW
5258 pci_slot_unlock(slot);
5259 } else
5260 rc = -EAGAIN;
5261
61cf16d8
AW
5262 return rc;
5263}
61cf16d8 5264
090a3c53
AW
5265static int pci_bus_reset(struct pci_bus *bus, int probe)
5266{
18426238
SK
5267 int ret;
5268
f331a859 5269 if (!bus->self || !pci_bus_resetable(bus))
090a3c53
AW
5270 return -ENOTTY;
5271
5272 if (probe)
5273 return 0;
5274
5275 pci_bus_lock(bus);
5276
5277 might_sleep();
5278
381634ca 5279 ret = pci_bridge_secondary_bus_reset(bus->self);
090a3c53
AW
5280
5281 pci_bus_unlock(bus);
5282
18426238 5283 return ret;
090a3c53
AW
5284}
5285
c4eed62a
KB
5286/**
5287 * pci_bus_error_reset - reset the bridge's subordinate bus
5288 * @bridge: The parent device that connects to the bus to reset
5289 *
5290 * This function will first try to reset the slots on this bus if the method is
5291 * available. If slot reset fails or is not available, this will fall back to a
5292 * secondary bus reset.
5293 */
5294int pci_bus_error_reset(struct pci_dev *bridge)
5295{
5296 struct pci_bus *bus = bridge->subordinate;
5297 struct pci_slot *slot;
5298
5299 if (!bus)
5300 return -ENOTTY;
5301
5302 mutex_lock(&pci_slot_mutex);
5303 if (list_empty(&bus->slots))
5304 goto bus_reset;
5305
5306 list_for_each_entry(slot, &bus->slots, list)
5307 if (pci_probe_reset_slot(slot))
5308 goto bus_reset;
5309
5310 list_for_each_entry(slot, &bus->slots, list)
5311 if (pci_slot_reset(slot, 0))
5312 goto bus_reset;
5313
5314 mutex_unlock(&pci_slot_mutex);
5315 return 0;
5316bus_reset:
5317 mutex_unlock(&pci_slot_mutex);
5318 return pci_bus_reset(bridge->subordinate, 0);
5319}
5320
9a3d2b9b
AW
5321/**
5322 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5323 * @bus: PCI bus to probe
5324 *
5325 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5326 */
5327int pci_probe_reset_bus(struct pci_bus *bus)
5328{
5329 return pci_bus_reset(bus, 1);
5330}
5331EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5332
090a3c53 5333/**
c6a44ba9 5334 * __pci_reset_bus - Try to reset a PCI bus
090a3c53
AW
5335 * @bus: top level PCI bus to reset
5336 *
61cf16d8 5337 * Same as above except return -EAGAIN if the bus cannot be locked
090a3c53 5338 */
c6a44ba9 5339static int __pci_reset_bus(struct pci_bus *bus)
090a3c53
AW
5340{
5341 int rc;
5342
5343 rc = pci_bus_reset(bus, 1);
5344 if (rc)
5345 return rc;
5346
61cf16d8 5347 if (pci_bus_trylock(bus)) {
ddefc033 5348 pci_bus_save_and_disable_locked(bus);
61cf16d8 5349 might_sleep();
381634ca 5350 rc = pci_bridge_secondary_bus_reset(bus->self);
ddefc033 5351 pci_bus_restore_locked(bus);
61cf16d8
AW
5352 pci_bus_unlock(bus);
5353 } else
5354 rc = -EAGAIN;
090a3c53 5355
090a3c53
AW
5356 return rc;
5357}
090a3c53 5358
61cf16d8 5359/**
c6a44ba9 5360 * pci_reset_bus - Try to reset a PCI bus
811c5cb3 5361 * @pdev: top level PCI device to reset via slot/bus
61cf16d8
AW
5362 *
5363 * Same as above except return -EAGAIN if the bus cannot be locked
5364 */
c6a44ba9 5365int pci_reset_bus(struct pci_dev *pdev)
61cf16d8 5366{
d8a52810 5367 return (!pci_probe_reset_slot(pdev->slot)) ?
c6a44ba9 5368 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
61cf16d8 5369}
c6a44ba9 5370EXPORT_SYMBOL_GPL(pci_reset_bus);
61cf16d8 5371
d556ad4b
PO
5372/**
5373 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5374 * @dev: PCI device to query
5375 *
5376 * Returns mmrbc: maximum designed memory read count in bytes
5377 * or appropriate error value.
5378 */
5379int pcix_get_max_mmrbc(struct pci_dev *dev)
5380{
7c9e2b1c 5381 int cap;
d556ad4b
PO
5382 u32 stat;
5383
5384 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5385 if (!cap)
5386 return -EINVAL;
5387
7c9e2b1c 5388 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
d556ad4b
PO
5389 return -EINVAL;
5390
25daeb55 5391 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
d556ad4b
PO
5392}
5393EXPORT_SYMBOL(pcix_get_max_mmrbc);
5394
5395/**
5396 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5397 * @dev: PCI device to query
5398 *
5399 * Returns mmrbc: maximum memory read count in bytes
5400 * or appropriate error value.
5401 */
5402int pcix_get_mmrbc(struct pci_dev *dev)
5403{
7c9e2b1c 5404 int cap;
bdc2bda7 5405 u16 cmd;
d556ad4b
PO
5406
5407 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5408 if (!cap)
5409 return -EINVAL;
5410
7c9e2b1c
DN
5411 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5412 return -EINVAL;
d556ad4b 5413
7c9e2b1c 5414 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
d556ad4b
PO
5415}
5416EXPORT_SYMBOL(pcix_get_mmrbc);
5417
5418/**
5419 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5420 * @dev: PCI device to query
5421 * @mmrbc: maximum memory read count in bytes
5422 * valid values are 512, 1024, 2048, 4096
5423 *
5424 * If possible sets maximum memory read byte count, some bridges have erratas
5425 * that prevent this.
5426 */
5427int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5428{
7c9e2b1c 5429 int cap;
bdc2bda7
DN
5430 u32 stat, v, o;
5431 u16 cmd;
d556ad4b 5432
229f5afd 5433 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
7c9e2b1c 5434 return -EINVAL;
d556ad4b
PO
5435
5436 v = ffs(mmrbc) - 10;
5437
5438 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5439 if (!cap)
7c9e2b1c 5440 return -EINVAL;
d556ad4b 5441
7c9e2b1c
DN
5442 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5443 return -EINVAL;
d556ad4b
PO
5444
5445 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5446 return -E2BIG;
5447
7c9e2b1c
DN
5448 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5449 return -EINVAL;
d556ad4b
PO
5450
5451 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5452 if (o != v) {
809a3bf9 5453 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
d556ad4b
PO
5454 return -EIO;
5455
5456 cmd &= ~PCI_X_CMD_MAX_READ;
5457 cmd |= v << 2;
7c9e2b1c
DN
5458 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5459 return -EIO;
d556ad4b 5460 }
7c9e2b1c 5461 return 0;
d556ad4b
PO
5462}
5463EXPORT_SYMBOL(pcix_set_mmrbc);
5464
5465/**
5466 * pcie_get_readrq - get PCI Express read request size
5467 * @dev: PCI device to query
5468 *
5469 * Returns maximum memory read request in bytes
5470 * or appropriate error value.
5471 */
5472int pcie_get_readrq(struct pci_dev *dev)
5473{
d556ad4b
PO
5474 u16 ctl;
5475
59875ae4 5476 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
d556ad4b 5477
59875ae4 5478 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
d556ad4b
PO
5479}
5480EXPORT_SYMBOL(pcie_get_readrq);
5481
5482/**
5483 * pcie_set_readrq - set PCI Express maximum memory read request
5484 * @dev: PCI device to query
42e61f4a 5485 * @rq: maximum memory read count in bytes
d556ad4b
PO
5486 * valid values are 128, 256, 512, 1024, 2048, 4096
5487 *
c9b378c7 5488 * If possible sets maximum memory read request in bytes
d556ad4b
PO
5489 */
5490int pcie_set_readrq(struct pci_dev *dev, int rq)
5491{
59875ae4 5492 u16 v;
d556ad4b 5493
229f5afd 5494 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
59875ae4 5495 return -EINVAL;
d556ad4b 5496
a1c473aa
BH
5497 /*
5498 * If using the "performance" PCIe config, we clamp the
5499 * read rq size to the max packet size to prevent the
5500 * host bridge generating requests larger than we can
5501 * cope with
5502 */
5503 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5504 int mps = pcie_get_mps(dev);
5505
a1c473aa
BH
5506 if (mps < rq)
5507 rq = mps;
5508 }
5509
5510 v = (ffs(rq) - 8) << 12;
d556ad4b 5511
59875ae4
JL
5512 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5513 PCI_EXP_DEVCTL_READRQ, v);
d556ad4b
PO
5514}
5515EXPORT_SYMBOL(pcie_set_readrq);
5516
b03e7495
JM
5517/**
5518 * pcie_get_mps - get PCI Express maximum payload size
5519 * @dev: PCI device to query
5520 *
5521 * Returns maximum payload size in bytes
b03e7495
JM
5522 */
5523int pcie_get_mps(struct pci_dev *dev)
5524{
b03e7495
JM
5525 u16 ctl;
5526
59875ae4 5527 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
b03e7495 5528
59875ae4 5529 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
b03e7495 5530}
f1c66c46 5531EXPORT_SYMBOL(pcie_get_mps);
b03e7495
JM
5532
5533/**
5534 * pcie_set_mps - set PCI Express maximum payload size
5535 * @dev: PCI device to query
47c08f31 5536 * @mps: maximum payload size in bytes
b03e7495
JM
5537 * valid values are 128, 256, 512, 1024, 2048, 4096
5538 *
5539 * If possible sets maximum payload size
5540 */
5541int pcie_set_mps(struct pci_dev *dev, int mps)
5542{
59875ae4 5543 u16 v;
b03e7495
JM
5544
5545 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
59875ae4 5546 return -EINVAL;
b03e7495
JM
5547
5548 v = ffs(mps) - 8;
f7625980 5549 if (v > dev->pcie_mpss)
59875ae4 5550 return -EINVAL;
b03e7495
JM
5551 v <<= 5;
5552
59875ae4
JL
5553 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5554 PCI_EXP_DEVCTL_PAYLOAD, v);
b03e7495 5555}
f1c66c46 5556EXPORT_SYMBOL(pcie_set_mps);
b03e7495 5557
6db79a88
TG
5558/**
5559 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5560 * device and its bandwidth limitation
5561 * @dev: PCI device to query
5562 * @limiting_dev: storage for device causing the bandwidth limitation
5563 * @speed: storage for speed of limiting device
5564 * @width: storage for width of limiting device
5565 *
5566 * Walk up the PCI device chain and find the point where the minimum
5567 * bandwidth is available. Return the bandwidth available there and (if
5568 * limiting_dev, speed, and width pointers are supplied) information about
5569 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5570 * raw bandwidth.
5571 */
5572u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5573 enum pci_bus_speed *speed,
5574 enum pcie_link_width *width)
5575{
5576 u16 lnksta;
5577 enum pci_bus_speed next_speed;
5578 enum pcie_link_width next_width;
5579 u32 bw, next_bw;
5580
5581 if (speed)
5582 *speed = PCI_SPEED_UNKNOWN;
5583 if (width)
5584 *width = PCIE_LNK_WIDTH_UNKNOWN;
5585
5586 bw = 0;
5587
5588 while (dev) {
5589 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5590
5591 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5592 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5593 PCI_EXP_LNKSTA_NLW_SHIFT;
5594
5595 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5596
5597 /* Check if current device limits the total bandwidth */
5598 if (!bw || next_bw <= bw) {
5599 bw = next_bw;
5600
5601 if (limiting_dev)
5602 *limiting_dev = dev;
5603 if (speed)
5604 *speed = next_speed;
5605 if (width)
5606 *width = next_width;
5607 }
5608
5609 dev = pci_upstream_bridge(dev);
5610 }
5611
5612 return bw;
5613}
5614EXPORT_SYMBOL(pcie_bandwidth_available);
5615
6cf57be0
TG
5616/**
5617 * pcie_get_speed_cap - query for the PCI device's link speed capability
5618 * @dev: PCI device to query
5619 *
5620 * Query the PCI device speed capability. Return the maximum link speed
5621 * supported by the device.
5622 */
5623enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5624{
5625 u32 lnkcap2, lnkcap;
5626
5627 /*
f1f90e25
MP
5628 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5629 * implementation note there recommends using the Supported Link
5630 * Speeds Vector in Link Capabilities 2 when supported.
5631 *
5632 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5633 * should use the Supported Link Speeds field in Link Capabilities,
5634 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6cf57be0
TG
5635 */
5636 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5637 if (lnkcap2) { /* PCIe r3.0-compliant */
5638 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5639 return PCIE_SPEED_16_0GT;
5640 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5641 return PCIE_SPEED_8_0GT;
5642 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5643 return PCIE_SPEED_5_0GT;
5644 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5645 return PCIE_SPEED_2_5GT;
5646 return PCI_SPEED_UNKNOWN;
5647 }
5648
5649 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
f1f90e25
MP
5650 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5651 return PCIE_SPEED_5_0GT;
5652 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5653 return PCIE_SPEED_2_5GT;
6cf57be0
TG
5654
5655 return PCI_SPEED_UNKNOWN;
5656}
576c7218 5657EXPORT_SYMBOL(pcie_get_speed_cap);
6cf57be0 5658
c70b65fb
TG
5659/**
5660 * pcie_get_width_cap - query for the PCI device's link width capability
5661 * @dev: PCI device to query
5662 *
5663 * Query the PCI device width capability. Return the maximum link width
5664 * supported by the device.
5665 */
5666enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5667{
5668 u32 lnkcap;
5669
5670 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5671 if (lnkcap)
5672 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5673
5674 return PCIE_LNK_WIDTH_UNKNOWN;
5675}
576c7218 5676EXPORT_SYMBOL(pcie_get_width_cap);
c70b65fb 5677
b852f63a
TG
5678/**
5679 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5680 * @dev: PCI device
5681 * @speed: storage for link speed
5682 * @width: storage for link width
5683 *
5684 * Calculate a PCI device's link bandwidth by querying for its link speed
5685 * and width, multiplying them, and applying encoding overhead. The result
5686 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5687 */
5688u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5689 enum pcie_link_width *width)
5690{
5691 *speed = pcie_get_speed_cap(dev);
5692 *width = pcie_get_width_cap(dev);
5693
5694 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5695 return 0;
5696
5697 return *width * PCIE_SPEED2MBS_ENC(*speed);
5698}
5699
9e506a7b 5700/**
2d1ce5ec 5701 * __pcie_print_link_status - Report the PCI device's link speed and width
9e506a7b 5702 * @dev: PCI device to query
2d1ce5ec 5703 * @verbose: Print info even when enough bandwidth is available
9e506a7b 5704 *
2d1ce5ec
AG
5705 * If the available bandwidth at the device is less than the device is
5706 * capable of, report the device's maximum possible bandwidth and the
5707 * upstream link that limits its performance. If @verbose, always print
5708 * the available bandwidth, even if the device isn't constrained.
9e506a7b 5709 */
2d1ce5ec 5710void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
9e506a7b
TG
5711{
5712 enum pcie_link_width width, width_cap;
5713 enum pci_bus_speed speed, speed_cap;
5714 struct pci_dev *limiting_dev = NULL;
5715 u32 bw_avail, bw_cap;
5716
5717 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5718 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5719
2d1ce5ec 5720 if (bw_avail >= bw_cap && verbose)
0cf22d6b 5721 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
9e506a7b
TG
5722 bw_cap / 1000, bw_cap % 1000,
5723 PCIE_SPEED2STR(speed_cap), width_cap);
2d1ce5ec 5724 else if (bw_avail < bw_cap)
0cf22d6b 5725 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
9e506a7b
TG
5726 bw_avail / 1000, bw_avail % 1000,
5727 PCIE_SPEED2STR(speed), width,
5728 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5729 bw_cap / 1000, bw_cap % 1000,
5730 PCIE_SPEED2STR(speed_cap), width_cap);
5731}
2d1ce5ec
AG
5732
5733/**
5734 * pcie_print_link_status - Report the PCI device's link speed and width
5735 * @dev: PCI device to query
5736 *
5737 * Report the available bandwidth at the device.
5738 */
5739void pcie_print_link_status(struct pci_dev *dev)
5740{
5741 __pcie_print_link_status(dev, true);
5742}
9e506a7b
TG
5743EXPORT_SYMBOL(pcie_print_link_status);
5744
c87deff7
HS
5745/**
5746 * pci_select_bars - Make BAR mask from the type of resource
f95d882d 5747 * @dev: the PCI device for which BAR mask is made
c87deff7
HS
5748 * @flags: resource type mask to be selected
5749 *
5750 * This helper routine makes bar mask from the type of resource.
5751 */
5752int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5753{
5754 int i, bars = 0;
5755 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5756 if (pci_resource_flags(dev, i) & flags)
5757 bars |= (1 << i);
5758 return bars;
5759}
b7fe9434 5760EXPORT_SYMBOL(pci_select_bars);
c87deff7 5761
95a8b6ef
MT
5762/* Some architectures require additional programming to enable VGA */
5763static arch_set_vga_state_t arch_set_vga_state;
5764
5765void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5766{
5767 arch_set_vga_state = func; /* NULL disables */
5768}
5769
5770static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3c78bc61 5771 unsigned int command_bits, u32 flags)
95a8b6ef
MT
5772{
5773 if (arch_set_vga_state)
5774 return arch_set_vga_state(dev, decode, command_bits,
7ad35cf2 5775 flags);
95a8b6ef
MT
5776 return 0;
5777}
5778
deb2d2ec
BH
5779/**
5780 * pci_set_vga_state - set VGA decode state on device and parents if requested
19eea630
RD
5781 * @dev: the PCI device
5782 * @decode: true = enable decoding, false = disable decoding
5783 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3f37d622 5784 * @flags: traverse ancestors and change bridges
3448a19d 5785 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
deb2d2ec
BH
5786 */
5787int pci_set_vga_state(struct pci_dev *dev, bool decode,
3448a19d 5788 unsigned int command_bits, u32 flags)
deb2d2ec
BH
5789{
5790 struct pci_bus *bus;
5791 struct pci_dev *bridge;
5792 u16 cmd;
95a8b6ef 5793 int rc;
deb2d2ec 5794
67ebd814 5795 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
deb2d2ec 5796
95a8b6ef 5797 /* ARCH specific VGA enables */
3448a19d 5798 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
95a8b6ef
MT
5799 if (rc)
5800 return rc;
5801
3448a19d
DA
5802 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5803 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5804 if (decode == true)
5805 cmd |= command_bits;
5806 else
5807 cmd &= ~command_bits;
5808 pci_write_config_word(dev, PCI_COMMAND, cmd);
5809 }
deb2d2ec 5810
3448a19d 5811 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
deb2d2ec
BH
5812 return 0;
5813
5814 bus = dev->bus;
5815 while (bus) {
5816 bridge = bus->self;
5817 if (bridge) {
5818 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5819 &cmd);
5820 if (decode == true)
5821 cmd |= PCI_BRIDGE_CTL_VGA;
5822 else
5823 cmd &= ~PCI_BRIDGE_CTL_VGA;
5824 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5825 cmd);
5826 }
5827 bus = bus->parent;
5828 }
5829 return 0;
5830}
5831
f0af9593
BH
5832/**
5833 * pci_add_dma_alias - Add a DMA devfn alias for a device
5834 * @dev: the PCI device for which alias is added
5835 * @devfn: alias slot and function
5836 *
f778a0d2
LG
5837 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5838 * which is used to program permissible bus-devfn source addresses for DMA
5839 * requests in an IOMMU. These aliases factor into IOMMU group creation
5840 * and are useful for devices generating DMA requests beyond or different
5841 * from their logical bus-devfn. Examples include device quirks where the
5842 * device simply uses the wrong devfn, as well as non-transparent bridges
5843 * where the alias may be a proxy for devices in another domain.
5844 *
5845 * IOMMU group creation is performed during device discovery or addition,
5846 * prior to any potential DMA mapping and therefore prior to driver probing
5847 * (especially for userspace assigned devices where IOMMU group definition
5848 * cannot be left as a userspace activity). DMA aliases should therefore
5849 * be configured via quirks, such as the PCI fixup header quirk.
f0af9593
BH
5850 */
5851void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5852{
338c3149 5853 if (!dev->dma_alias_mask)
c6635792 5854 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
338c3149 5855 if (!dev->dma_alias_mask) {
7506dc79 5856 pci_warn(dev, "Unable to allocate DMA alias mask\n");
338c3149
JL
5857 return;
5858 }
5859
5860 set_bit(devfn, dev->dma_alias_mask);
7506dc79 5861 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
48c83080 5862 PCI_SLOT(devfn), PCI_FUNC(devfn));
f0af9593
BH
5863}
5864
338c3149
JL
5865bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5866{
5867 return (dev1->dma_alias_mask &&
5868 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5869 (dev2->dma_alias_mask &&
5870 test_bit(dev1->devfn, dev2->dma_alias_mask));
5871}
5872
8496e85c
RW
5873bool pci_device_is_present(struct pci_dev *pdev)
5874{
5875 u32 v;
5876
fe2bd75b
KB
5877 if (pci_dev_is_disconnected(pdev))
5878 return false;
8496e85c
RW
5879 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5880}
5881EXPORT_SYMBOL_GPL(pci_device_is_present);
5882
08249651
RW
5883void pci_ignore_hotplug(struct pci_dev *dev)
5884{
5885 struct pci_dev *bridge = dev->bus->self;
5886
5887 dev->ignore_hotplug = 1;
5888 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5889 if (bridge)
5890 bridge->ignore_hotplug = 1;
5891}
5892EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5893
0a701aa6
YX
5894resource_size_t __weak pcibios_default_alignment(void)
5895{
5896 return 0;
5897}
5898
32a9a682
YS
5899#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5900static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
e9d1e492 5901static DEFINE_SPINLOCK(resource_alignment_lock);
32a9a682
YS
5902
5903/**
5904 * pci_specified_resource_alignment - get resource alignment specified by user.
5905 * @dev: the PCI device to get
e3adec72 5906 * @resize: whether or not to change resources' size when reassigning alignment
32a9a682
YS
5907 *
5908 * RETURNS: Resource alignment if it is specified.
5909 * Zero if it is not specified.
5910 */
e3adec72
YX
5911static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5912 bool *resize)
32a9a682 5913{
07d8d7e5 5914 int align_order, count;
0a701aa6 5915 resource_size_t align = pcibios_default_alignment();
07d8d7e5
LG
5916 const char *p;
5917 int ret;
32a9a682
YS
5918
5919 spin_lock(&resource_alignment_lock);
5920 p = resource_alignment_param;
0a701aa6 5921 if (!*p && !align)
f0b99f70
YX
5922 goto out;
5923 if (pci_has_flag(PCI_PROBE_ONLY)) {
0a701aa6 5924 align = 0;
f0b99f70
YX
5925 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5926 goto out;
5927 }
5928
32a9a682
YS
5929 while (*p) {
5930 count = 0;
5931 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5932 p[count] == '@') {
5933 p += count + 1;
5934 } else {
5935 align_order = -1;
5936 }
07d8d7e5
LG
5937
5938 ret = pci_dev_str_match(dev, p, &p);
5939 if (ret == 1) {
5940 *resize = true;
5941 if (align_order == -1)
5942 align = PAGE_SIZE;
5943 else
5944 align = 1 << align_order;
5945 break;
5946 } else if (ret < 0) {
5947 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5948 p);
5949 break;
32a9a682 5950 }
07d8d7e5 5951
32a9a682
YS
5952 if (*p != ';' && *p != ',') {
5953 /* End of param or invalid format */
5954 break;
5955 }
5956 p++;
5957 }
f0b99f70 5958out:
32a9a682
YS
5959 spin_unlock(&resource_alignment_lock);
5960 return align;
5961}
5962
81a5e70e 5963static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
e3adec72 5964 resource_size_t align, bool resize)
81a5e70e
BH
5965{
5966 struct resource *r = &dev->resource[bar];
5967 resource_size_t size;
5968
5969 if (!(r->flags & IORESOURCE_MEM))
5970 return;
5971
5972 if (r->flags & IORESOURCE_PCI_FIXED) {
7506dc79 5973 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
81a5e70e
BH
5974 bar, r, (unsigned long long)align);
5975 return;
5976 }
5977
5978 size = resource_size(r);
0dde1c08
BH
5979 if (size >= align)
5980 return;
81a5e70e 5981
0dde1c08 5982 /*
e3adec72
YX
5983 * Increase the alignment of the resource. There are two ways we
5984 * can do this:
0dde1c08 5985 *
e3adec72
YX
5986 * 1) Increase the size of the resource. BARs are aligned on their
5987 * size, so when we reallocate space for this resource, we'll
5988 * allocate it with the larger alignment. This also prevents
5989 * assignment of any other BARs inside the alignment region, so
5990 * if we're requesting page alignment, this means no other BARs
5991 * will share the page.
5992 *
5993 * The disadvantage is that this makes the resource larger than
5994 * the hardware BAR, which may break drivers that compute things
5995 * based on the resource size, e.g., to find registers at a
5996 * fixed offset before the end of the BAR.
5997 *
5998 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5999 * set r->start to the desired alignment. By itself this
6000 * doesn't prevent other BARs being put inside the alignment
6001 * region, but if we realign *every* resource of every device in
6002 * the system, none of them will share an alignment region.
6003 *
6004 * When the user has requested alignment for only some devices via
6005 * the "pci=resource_alignment" argument, "resize" is true and we
6006 * use the first method. Otherwise we assume we're aligning all
6007 * devices and we use the second.
0dde1c08 6008 */
e3adec72 6009
7506dc79 6010 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
0dde1c08 6011 bar, r, (unsigned long long)align);
81a5e70e 6012
e3adec72
YX
6013 if (resize) {
6014 r->start = 0;
6015 r->end = align - 1;
6016 } else {
6017 r->flags &= ~IORESOURCE_SIZEALIGN;
6018 r->flags |= IORESOURCE_STARTALIGN;
6019 r->start = align;
6020 r->end = r->start + size - 1;
6021 }
0dde1c08 6022 r->flags |= IORESOURCE_UNSET;
81a5e70e
BH
6023}
6024
2069ecfb
YL
6025/*
6026 * This function disables memory decoding and releases memory resources
6027 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6028 * It also rounds up size to specified alignment.
6029 * Later on, the kernel will assign page-aligned memory resource back
6030 * to the device.
6031 */
6032void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6033{
6034 int i;
6035 struct resource *r;
81a5e70e 6036 resource_size_t align;
2069ecfb 6037 u16 command;
e3adec72 6038 bool resize = false;
2069ecfb 6039
62d9a78f
YX
6040 /*
6041 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6042 * 3.4.1.11. Their resources are allocated from the space
6043 * described by the VF BARx register in the PF's SR-IOV capability.
6044 * We can't influence their alignment here.
6045 */
6046 if (dev->is_virtfn)
6047 return;
6048
10c463a7 6049 /* check if specified PCI is target device to reassign */
e3adec72 6050 align = pci_specified_resource_alignment(dev, &resize);
10c463a7 6051 if (!align)
2069ecfb
YL
6052 return;
6053
6054 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6055 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
7506dc79 6056 pci_warn(dev, "Can't reassign resources to host bridge\n");
2069ecfb
YL
6057 return;
6058 }
6059
2069ecfb
YL
6060 pci_read_config_word(dev, PCI_COMMAND, &command);
6061 command &= ~PCI_COMMAND_MEMORY;
6062 pci_write_config_word(dev, PCI_COMMAND, command);
6063
81a5e70e 6064 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
e3adec72 6065 pci_request_resource_alignment(dev, i, align, resize);
f0b99f70 6066
81a5e70e
BH
6067 /*
6068 * Need to disable bridge's resource window,
2069ecfb
YL
6069 * to enable the kernel to reassign new resource
6070 * window later on.
6071 */
b2fb5cc5 6072 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
2069ecfb
YL
6073 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6074 r = &dev->resource[i];
6075 if (!(r->flags & IORESOURCE_MEM))
6076 continue;
bd064f0a 6077 r->flags |= IORESOURCE_UNSET;
2069ecfb
YL
6078 r->end = resource_size(r) - 1;
6079 r->start = 0;
6080 }
6081 pci_disable_bridge_window(dev);
6082 }
6083}
6084
9738abed 6085static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
32a9a682
YS
6086{
6087 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
6088 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
6089 spin_lock(&resource_alignment_lock);
6090 strncpy(resource_alignment_param, buf, count);
6091 resource_alignment_param[count] = '\0';
6092 spin_unlock(&resource_alignment_lock);
6093 return count;
6094}
6095
9738abed 6096static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
32a9a682
YS
6097{
6098 size_t count;
6099 spin_lock(&resource_alignment_lock);
6100 count = snprintf(buf, size, "%s", resource_alignment_param);
6101 spin_unlock(&resource_alignment_lock);
6102 return count;
6103}
6104
d61dfafc 6105static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
32a9a682
YS
6106{
6107 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
6108}
6109
d61dfafc 6110static ssize_t resource_alignment_store(struct bus_type *bus,
32a9a682
YS
6111 const char *buf, size_t count)
6112{
6113 return pci_set_resource_alignment_param(buf, count);
6114}
6115
d61dfafc 6116static BUS_ATTR_RW(resource_alignment);
32a9a682
YS
6117
6118static int __init pci_resource_alignment_sysfs_init(void)
6119{
6120 return bus_create_file(&pci_bus_type,
6121 &bus_attr_resource_alignment);
6122}
32a9a682
YS
6123late_initcall(pci_resource_alignment_sysfs_init);
6124
15856ad5 6125static void pci_no_domains(void)
32a2eea7
JG
6126{
6127#ifdef CONFIG_PCI_DOMAINS
6128 pci_domains_supported = 0;
6129#endif
6130}
6131
ae07b786 6132#ifdef CONFIG_PCI_DOMAINS_GENERIC
41e5c0f8
LD
6133static atomic_t __domain_nr = ATOMIC_INIT(-1);
6134
ae07b786 6135static int pci_get_new_domain_nr(void)
41e5c0f8
LD
6136{
6137 return atomic_inc_return(&__domain_nr);
6138}
7c674700 6139
1a4f93f7 6140static int of_pci_bus_find_domain_nr(struct device *parent)
7c674700
LP
6141{
6142 static int use_dt_domains = -1;
54c6e2dd 6143 int domain = -1;
7c674700 6144
54c6e2dd
KHC
6145 if (parent)
6146 domain = of_get_pci_domain_nr(parent->of_node);
7c674700
LP
6147 /*
6148 * Check DT domain and use_dt_domains values.
6149 *
6150 * If DT domain property is valid (domain >= 0) and
6151 * use_dt_domains != 0, the DT assignment is valid since this means
6152 * we have not previously allocated a domain number by using
6153 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6154 * 1, to indicate that we have just assigned a domain number from
6155 * DT.
6156 *
6157 * If DT domain property value is not valid (ie domain < 0), and we
6158 * have not previously assigned a domain number from DT
6159 * (use_dt_domains != 1) we should assign a domain number by
6160 * using the:
6161 *
6162 * pci_get_new_domain_nr()
6163 *
6164 * API and update the use_dt_domains value to keep track of method we
6165 * are using to assign domain numbers (use_dt_domains = 0).
6166 *
6167 * All other combinations imply we have a platform that is trying
6168 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6169 * which is a recipe for domain mishandling and it is prevented by
6170 * invalidating the domain value (domain = -1) and printing a
6171 * corresponding error.
6172 */
6173 if (domain >= 0 && use_dt_domains) {
6174 use_dt_domains = 1;
6175 } else if (domain < 0 && use_dt_domains != 1) {
6176 use_dt_domains = 0;
6177 domain = pci_get_new_domain_nr();
6178 } else {
9df1c6ec
SL
6179 if (parent)
6180 pr_err("Node %pOF has ", parent->of_node);
6181 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
7c674700
LP
6182 domain = -1;
6183 }
6184
9c7cb891 6185 return domain;
7c674700 6186}
1a4f93f7
TN
6187
6188int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6189{
2ab51dde
TN
6190 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6191 acpi_pci_bus_find_domain_nr(bus);
7c674700
LP
6192}
6193#endif
41e5c0f8 6194
0ef5f8f6 6195/**
642c92da 6196 * pci_ext_cfg_avail - can we access extended PCI config space?
0ef5f8f6
AP
6197 *
6198 * Returns 1 if we can access PCI extended config space (offsets
6199 * greater than 0xff). This is the default implementation. Architecture
6200 * implementations can override this.
6201 */
642c92da 6202int __weak pci_ext_cfg_avail(void)
0ef5f8f6
AP
6203{
6204 return 1;
6205}
6206
2d1c8618
BH
6207void __weak pci_fixup_cardbus(struct pci_bus *bus)
6208{
6209}
6210EXPORT_SYMBOL(pci_fixup_cardbus);
6211
ad04d31e 6212static int __init pci_setup(char *str)
1da177e4
LT
6213{
6214 while (str) {
6215 char *k = strchr(str, ',');
6216 if (k)
6217 *k++ = 0;
6218 if (*str && (str = pcibios_setup(str)) && *str) {
309e57df
MW
6219 if (!strcmp(str, "nomsi")) {
6220 pci_no_msi();
cef74409
GK
6221 } else if (!strncmp(str, "noats", 5)) {
6222 pr_info("PCIe: ATS is disabled\n");
6223 pcie_ats_disabled = true;
7f785763
RD
6224 } else if (!strcmp(str, "noaer")) {
6225 pci_no_aer();
11eb0e0e
SK
6226 } else if (!strcmp(str, "earlydump")) {
6227 pci_early_dump = true;
b55438fd
YL
6228 } else if (!strncmp(str, "realloc=", 8)) {
6229 pci_realloc_get_opt(str + 8);
f483d392 6230 } else if (!strncmp(str, "realloc", 7)) {
b55438fd 6231 pci_realloc_get_opt("on");
32a2eea7
JG
6232 } else if (!strcmp(str, "nodomains")) {
6233 pci_no_domains();
6748dcc2
RW
6234 } else if (!strncmp(str, "noari", 5)) {
6235 pcie_ari_disabled = true;
4516a618
AN
6236 } else if (!strncmp(str, "cbiosize=", 9)) {
6237 pci_cardbus_io_size = memparse(str + 9, &str);
6238 } else if (!strncmp(str, "cbmemsize=", 10)) {
6239 pci_cardbus_mem_size = memparse(str + 10, &str);
32a9a682
YS
6240 } else if (!strncmp(str, "resource_alignment=", 19)) {
6241 pci_set_resource_alignment_param(str + 19,
6242 strlen(str + 19));
43c16408
AP
6243 } else if (!strncmp(str, "ecrc=", 5)) {
6244 pcie_ecrc_get_policy(str + 5);
28760489
EB
6245 } else if (!strncmp(str, "hpiosize=", 9)) {
6246 pci_hotplug_io_size = memparse(str + 9, &str);
6247 } else if (!strncmp(str, "hpmemsize=", 10)) {
6248 pci_hotplug_mem_size = memparse(str + 10, &str);
e16b4660
KB
6249 } else if (!strncmp(str, "hpbussize=", 10)) {
6250 pci_hotplug_bus_size =
6251 simple_strtoul(str + 10, &str, 0);
6252 if (pci_hotplug_bus_size > 0xff)
6253 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5f39e670
JM
6254 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6255 pcie_bus_config = PCIE_BUS_TUNE_OFF;
b03e7495
JM
6256 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6257 pcie_bus_config = PCIE_BUS_SAFE;
6258 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6259 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5f39e670
JM
6260 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6261 pcie_bus_config = PCIE_BUS_PEER2PEER;
284f5f9d
BH
6262 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6263 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
aaca43fd 6264 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
d2fd6e81
LG
6265 disable_acs_redir_param =
6266 kstrdup(str + 18, GFP_KERNEL);
309e57df 6267 } else {
25da8dba 6268 pr_err("PCI: Unknown option `%s'\n", str);
309e57df 6269 }
1da177e4
LT
6270 }
6271 str = k;
6272 }
0637a70a 6273 return 0;
1da177e4 6274}
0637a70a 6275early_param("pci", pci_setup);