generic: add common struct for dma map operations
[linux-2.6-block.git] / drivers / pci / intel-iommu.c
CommitLineData
ba395927
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
98bcef56 17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
5b6985ce 21 * Author: Fenghua Yu <fenghua.yu@intel.com>
ba395927
KA
22 */
23
24#include <linux/init.h>
25#include <linux/bitmap.h>
5e0d2a6f 26#include <linux/debugfs.h>
ba395927
KA
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
ba395927
KA
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
5e0d2a6f 35#include <linux/timer.h>
38717946 36#include <linux/iova.h>
5d450806 37#include <linux/iommu.h>
38717946 38#include <linux/intel-iommu.h>
ba395927 39#include <asm/cacheflush.h>
46a7fa27 40#include <asm/iommu.h>
ba395927
KA
41#include "pci.h"
42
5b6985ce
FY
43#define ROOT_SIZE VTD_PAGE_SIZE
44#define CONTEXT_SIZE VTD_PAGE_SIZE
45
ba395927
KA
46#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
47#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
48
49#define IOAPIC_RANGE_START (0xfee00000)
50#define IOAPIC_RANGE_END (0xfeefffff)
51#define IOVA_START_ADDR (0x1000)
52
53#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
54
ba395927
KA
55#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
56
f27be03b
MM
57#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
58#define DMA_32BIT_PFN IOVA_PFN(DMA_32BIT_MASK)
59#define DMA_64BIT_PFN IOVA_PFN(DMA_64BIT_MASK)
5e0d2a6f 60
d9630fe9
WH
61/* global iommu list, set NULL for ignored DMAR units */
62static struct intel_iommu **g_iommus;
63
46b08e1a
MM
64/*
65 * 0: Present
66 * 1-11: Reserved
67 * 12-63: Context Ptr (12 - (haw-1))
68 * 64-127: Reserved
69 */
70struct root_entry {
71 u64 val;
72 u64 rsvd1;
73};
74#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
75static inline bool root_present(struct root_entry *root)
76{
77 return (root->val & 1);
78}
79static inline void set_root_present(struct root_entry *root)
80{
81 root->val |= 1;
82}
83static inline void set_root_value(struct root_entry *root, unsigned long value)
84{
85 root->val |= value & VTD_PAGE_MASK;
86}
87
88static inline struct context_entry *
89get_context_addr_from_root(struct root_entry *root)
90{
91 return (struct context_entry *)
92 (root_present(root)?phys_to_virt(
93 root->val & VTD_PAGE_MASK) :
94 NULL);
95}
96
7a8fc25e
MM
97/*
98 * low 64 bits:
99 * 0: present
100 * 1: fault processing disable
101 * 2-3: translation type
102 * 12-63: address space root
103 * high 64 bits:
104 * 0-2: address width
105 * 3-6: aval
106 * 8-23: domain id
107 */
108struct context_entry {
109 u64 lo;
110 u64 hi;
111};
c07e7d21
MM
112
113static inline bool context_present(struct context_entry *context)
114{
115 return (context->lo & 1);
116}
117static inline void context_set_present(struct context_entry *context)
118{
119 context->lo |= 1;
120}
121
122static inline void context_set_fault_enable(struct context_entry *context)
123{
124 context->lo &= (((u64)-1) << 2) | 1;
125}
126
7a8fc25e 127#define CONTEXT_TT_MULTI_LEVEL 0
c07e7d21
MM
128
129static inline void context_set_translation_type(struct context_entry *context,
130 unsigned long value)
131{
132 context->lo &= (((u64)-1) << 4) | 3;
133 context->lo |= (value & 3) << 2;
134}
135
136static inline void context_set_address_root(struct context_entry *context,
137 unsigned long value)
138{
139 context->lo |= value & VTD_PAGE_MASK;
140}
141
142static inline void context_set_address_width(struct context_entry *context,
143 unsigned long value)
144{
145 context->hi |= value & 7;
146}
147
148static inline void context_set_domain_id(struct context_entry *context,
149 unsigned long value)
150{
151 context->hi |= (value & ((1 << 16) - 1)) << 8;
152}
153
154static inline void context_clear_entry(struct context_entry *context)
155{
156 context->lo = 0;
157 context->hi = 0;
158}
7a8fc25e 159
622ba12a
MM
160/*
161 * 0: readable
162 * 1: writable
163 * 2-6: reserved
164 * 7: super page
165 * 8-11: available
166 * 12-63: Host physcial address
167 */
168struct dma_pte {
169 u64 val;
170};
622ba12a 171
19c239ce
MM
172static inline void dma_clear_pte(struct dma_pte *pte)
173{
174 pte->val = 0;
175}
176
177static inline void dma_set_pte_readable(struct dma_pte *pte)
178{
179 pte->val |= DMA_PTE_READ;
180}
181
182static inline void dma_set_pte_writable(struct dma_pte *pte)
183{
184 pte->val |= DMA_PTE_WRITE;
185}
186
187static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
188{
189 pte->val = (pte->val & ~3) | (prot & 3);
190}
191
192static inline u64 dma_pte_addr(struct dma_pte *pte)
193{
194 return (pte->val & VTD_PAGE_MASK);
195}
196
197static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
198{
199 pte->val |= (addr & VTD_PAGE_MASK);
200}
201
202static inline bool dma_pte_present(struct dma_pte *pte)
203{
204 return (pte->val & 3) != 0;
205}
622ba12a 206
3b5410e7 207/* devices under the same p2p bridge are owned in one domain */
cdc7b837 208#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
3b5410e7 209
1ce28feb
WH
210/* domain represents a virtual machine, more than one devices
211 * across iommus may be owned in one domain, e.g. kvm guest.
212 */
213#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
214
99126f7c
MM
215struct dmar_domain {
216 int id; /* domain id */
8c11e798 217 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
99126f7c
MM
218
219 struct list_head devices; /* all devices' list */
220 struct iova_domain iovad; /* iova's that belong to this domain */
221
222 struct dma_pte *pgd; /* virtual address */
223 spinlock_t mapping_lock; /* page table lock */
224 int gaw; /* max guest address width */
225
226 /* adjusted guest address width, 0 is level 2 30-bit */
227 int agaw;
228
3b5410e7 229 int flags; /* flags to find out type of domain */
8e604097
WH
230
231 int iommu_coherency;/* indicate coherency of iommu access */
c7151a8d
WH
232 int iommu_count; /* reference count of iommu */
233 spinlock_t iommu_lock; /* protect iommu set in domain */
fe40f1e0 234 u64 max_addr; /* maximum mapped address */
99126f7c
MM
235};
236
a647dacb
MM
237/* PCI domain-device relationship */
238struct device_domain_info {
239 struct list_head link; /* link to domain siblings */
240 struct list_head global; /* link to global list */
241 u8 bus; /* PCI bus numer */
242 u8 devfn; /* PCI devfn number */
243 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
244 struct dmar_domain *domain; /* pointer to domain */
245};
246
5e0d2a6f 247static void flush_unmaps_timeout(unsigned long data);
248
249DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
250
80b20dd8 251#define HIGH_WATER_MARK 250
252struct deferred_flush_tables {
253 int next;
254 struct iova *iova[HIGH_WATER_MARK];
255 struct dmar_domain *domain[HIGH_WATER_MARK];
256};
257
258static struct deferred_flush_tables *deferred_flush;
259
5e0d2a6f 260/* bitmap for indexing intel_iommus */
5e0d2a6f 261static int g_num_of_iommus;
262
263static DEFINE_SPINLOCK(async_umap_flush_lock);
264static LIST_HEAD(unmaps_to_do);
265
266static int timer_on;
267static long list_size;
5e0d2a6f 268
ba395927
KA
269static void domain_remove_dev_info(struct dmar_domain *domain);
270
2ae21010 271int dmar_disabled;
ba395927 272static int __initdata dmar_map_gfx = 1;
7d3b03ce 273static int dmar_forcedac;
5e0d2a6f 274static int intel_iommu_strict;
ba395927
KA
275
276#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
277static DEFINE_SPINLOCK(device_domain_lock);
278static LIST_HEAD(device_domain_list);
279
a8bcbb0d
JR
280static struct iommu_ops intel_iommu_ops;
281
ba395927
KA
282static int __init intel_iommu_setup(char *str)
283{
284 if (!str)
285 return -EINVAL;
286 while (*str) {
287 if (!strncmp(str, "off", 3)) {
288 dmar_disabled = 1;
289 printk(KERN_INFO"Intel-IOMMU: disabled\n");
290 } else if (!strncmp(str, "igfx_off", 8)) {
291 dmar_map_gfx = 0;
292 printk(KERN_INFO
293 "Intel-IOMMU: disable GFX device mapping\n");
7d3b03ce 294 } else if (!strncmp(str, "forcedac", 8)) {
5e0d2a6f 295 printk(KERN_INFO
7d3b03ce
KA
296 "Intel-IOMMU: Forcing DAC for PCI devices\n");
297 dmar_forcedac = 1;
5e0d2a6f 298 } else if (!strncmp(str, "strict", 6)) {
299 printk(KERN_INFO
300 "Intel-IOMMU: disable batched IOTLB flush\n");
301 intel_iommu_strict = 1;
ba395927
KA
302 }
303
304 str += strcspn(str, ",");
305 while (*str == ',')
306 str++;
307 }
308 return 0;
309}
310__setup("intel_iommu=", intel_iommu_setup);
311
312static struct kmem_cache *iommu_domain_cache;
313static struct kmem_cache *iommu_devinfo_cache;
314static struct kmem_cache *iommu_iova_cache;
315
eb3fa7cb
KA
316static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
317{
318 unsigned int flags;
319 void *vaddr;
320
321 /* trying to avoid low memory issues */
322 flags = current->flags & PF_MEMALLOC;
323 current->flags |= PF_MEMALLOC;
324 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
325 current->flags &= (~PF_MEMALLOC | flags);
326 return vaddr;
327}
328
329
ba395927
KA
330static inline void *alloc_pgtable_page(void)
331{
eb3fa7cb
KA
332 unsigned int flags;
333 void *vaddr;
334
335 /* trying to avoid low memory issues */
336 flags = current->flags & PF_MEMALLOC;
337 current->flags |= PF_MEMALLOC;
338 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
339 current->flags &= (~PF_MEMALLOC | flags);
340 return vaddr;
ba395927
KA
341}
342
343static inline void free_pgtable_page(void *vaddr)
344{
345 free_page((unsigned long)vaddr);
346}
347
348static inline void *alloc_domain_mem(void)
349{
eb3fa7cb 350 return iommu_kmem_cache_alloc(iommu_domain_cache);
ba395927
KA
351}
352
38717946 353static void free_domain_mem(void *vaddr)
ba395927
KA
354{
355 kmem_cache_free(iommu_domain_cache, vaddr);
356}
357
358static inline void * alloc_devinfo_mem(void)
359{
eb3fa7cb 360 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
ba395927
KA
361}
362
363static inline void free_devinfo_mem(void *vaddr)
364{
365 kmem_cache_free(iommu_devinfo_cache, vaddr);
366}
367
368struct iova *alloc_iova_mem(void)
369{
eb3fa7cb 370 return iommu_kmem_cache_alloc(iommu_iova_cache);
ba395927
KA
371}
372
373void free_iova_mem(struct iova *iova)
374{
375 kmem_cache_free(iommu_iova_cache, iova);
376}
377
1b573683
WH
378
379static inline int width_to_agaw(int width);
380
381/* calculate agaw for each iommu.
382 * "SAGAW" may be different across iommus, use a default agaw, and
383 * get a supported less agaw for iommus that don't support the default agaw.
384 */
385int iommu_calculate_agaw(struct intel_iommu *iommu)
386{
387 unsigned long sagaw;
388 int agaw = -1;
389
390 sagaw = cap_sagaw(iommu->cap);
391 for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
392 agaw >= 0; agaw--) {
393 if (test_bit(agaw, &sagaw))
394 break;
395 }
396
397 return agaw;
398}
399
8c11e798
WH
400/* in native case, each domain is related to only one iommu */
401static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
402{
403 int iommu_id;
404
1ce28feb
WH
405 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
406
8c11e798
WH
407 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
408 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
409 return NULL;
410
411 return g_iommus[iommu_id];
412}
413
8e604097
WH
414/* "Coherency" capability may be different across iommus */
415static void domain_update_iommu_coherency(struct dmar_domain *domain)
416{
417 int i;
418
419 domain->iommu_coherency = 1;
420
421 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
422 for (; i < g_num_of_iommus; ) {
423 if (!ecap_coherent(g_iommus[i]->ecap)) {
424 domain->iommu_coherency = 0;
425 break;
426 }
427 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
428 }
429}
430
c7151a8d
WH
431static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn)
432{
433 struct dmar_drhd_unit *drhd = NULL;
434 int i;
435
436 for_each_drhd_unit(drhd) {
437 if (drhd->ignored)
438 continue;
439
440 for (i = 0; i < drhd->devices_cnt; i++)
441 if (drhd->devices[i]->bus->number == bus &&
442 drhd->devices[i]->devfn == devfn)
443 return drhd->iommu;
444
445 if (drhd->include_all)
446 return drhd->iommu;
447 }
448
449 return NULL;
450}
451
5331fe6f
WH
452static void domain_flush_cache(struct dmar_domain *domain,
453 void *addr, int size)
454{
455 if (!domain->iommu_coherency)
456 clflush_cache_range(addr, size);
457}
458
ba395927
KA
459/* Gets context entry for a given bus and devfn */
460static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
461 u8 bus, u8 devfn)
462{
463 struct root_entry *root;
464 struct context_entry *context;
465 unsigned long phy_addr;
466 unsigned long flags;
467
468 spin_lock_irqsave(&iommu->lock, flags);
469 root = &iommu->root_entry[bus];
470 context = get_context_addr_from_root(root);
471 if (!context) {
472 context = (struct context_entry *)alloc_pgtable_page();
473 if (!context) {
474 spin_unlock_irqrestore(&iommu->lock, flags);
475 return NULL;
476 }
5b6985ce 477 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
ba395927
KA
478 phy_addr = virt_to_phys((void *)context);
479 set_root_value(root, phy_addr);
480 set_root_present(root);
481 __iommu_flush_cache(iommu, root, sizeof(*root));
482 }
483 spin_unlock_irqrestore(&iommu->lock, flags);
484 return &context[devfn];
485}
486
487static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
488{
489 struct root_entry *root;
490 struct context_entry *context;
491 int ret;
492 unsigned long flags;
493
494 spin_lock_irqsave(&iommu->lock, flags);
495 root = &iommu->root_entry[bus];
496 context = get_context_addr_from_root(root);
497 if (!context) {
498 ret = 0;
499 goto out;
500 }
c07e7d21 501 ret = context_present(&context[devfn]);
ba395927
KA
502out:
503 spin_unlock_irqrestore(&iommu->lock, flags);
504 return ret;
505}
506
507static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
508{
509 struct root_entry *root;
510 struct context_entry *context;
511 unsigned long flags;
512
513 spin_lock_irqsave(&iommu->lock, flags);
514 root = &iommu->root_entry[bus];
515 context = get_context_addr_from_root(root);
516 if (context) {
c07e7d21 517 context_clear_entry(&context[devfn]);
ba395927
KA
518 __iommu_flush_cache(iommu, &context[devfn], \
519 sizeof(*context));
520 }
521 spin_unlock_irqrestore(&iommu->lock, flags);
522}
523
524static void free_context_table(struct intel_iommu *iommu)
525{
526 struct root_entry *root;
527 int i;
528 unsigned long flags;
529 struct context_entry *context;
530
531 spin_lock_irqsave(&iommu->lock, flags);
532 if (!iommu->root_entry) {
533 goto out;
534 }
535 for (i = 0; i < ROOT_ENTRY_NR; i++) {
536 root = &iommu->root_entry[i];
537 context = get_context_addr_from_root(root);
538 if (context)
539 free_pgtable_page(context);
540 }
541 free_pgtable_page(iommu->root_entry);
542 iommu->root_entry = NULL;
543out:
544 spin_unlock_irqrestore(&iommu->lock, flags);
545}
546
547/* page table handling */
548#define LEVEL_STRIDE (9)
549#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
550
551static inline int agaw_to_level(int agaw)
552{
553 return agaw + 2;
554}
555
556static inline int agaw_to_width(int agaw)
557{
558 return 30 + agaw * LEVEL_STRIDE;
559
560}
561
562static inline int width_to_agaw(int width)
563{
564 return (width - 30) / LEVEL_STRIDE;
565}
566
567static inline unsigned int level_to_offset_bits(int level)
568{
569 return (12 + (level - 1) * LEVEL_STRIDE);
570}
571
572static inline int address_level_offset(u64 addr, int level)
573{
574 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
575}
576
577static inline u64 level_mask(int level)
578{
579 return ((u64)-1 << level_to_offset_bits(level));
580}
581
582static inline u64 level_size(int level)
583{
584 return ((u64)1 << level_to_offset_bits(level));
585}
586
587static inline u64 align_to_level(u64 addr, int level)
588{
589 return ((addr + level_size(level) - 1) & level_mask(level));
590}
591
592static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
593{
594 int addr_width = agaw_to_width(domain->agaw);
595 struct dma_pte *parent, *pte = NULL;
596 int level = agaw_to_level(domain->agaw);
597 int offset;
598 unsigned long flags;
599
600 BUG_ON(!domain->pgd);
601
602 addr &= (((u64)1) << addr_width) - 1;
603 parent = domain->pgd;
604
605 spin_lock_irqsave(&domain->mapping_lock, flags);
606 while (level > 0) {
607 void *tmp_page;
608
609 offset = address_level_offset(addr, level);
610 pte = &parent[offset];
611 if (level == 1)
612 break;
613
19c239ce 614 if (!dma_pte_present(pte)) {
ba395927
KA
615 tmp_page = alloc_pgtable_page();
616
617 if (!tmp_page) {
618 spin_unlock_irqrestore(&domain->mapping_lock,
619 flags);
620 return NULL;
621 }
5331fe6f 622 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
19c239ce 623 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
ba395927
KA
624 /*
625 * high level table always sets r/w, last level page
626 * table control read/write
627 */
19c239ce
MM
628 dma_set_pte_readable(pte);
629 dma_set_pte_writable(pte);
5331fe6f 630 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927 631 }
19c239ce 632 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
633 level--;
634 }
635
636 spin_unlock_irqrestore(&domain->mapping_lock, flags);
637 return pte;
638}
639
640/* return address's pte at specific level */
641static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
642 int level)
643{
644 struct dma_pte *parent, *pte = NULL;
645 int total = agaw_to_level(domain->agaw);
646 int offset;
647
648 parent = domain->pgd;
649 while (level <= total) {
650 offset = address_level_offset(addr, total);
651 pte = &parent[offset];
652 if (level == total)
653 return pte;
654
19c239ce 655 if (!dma_pte_present(pte))
ba395927 656 break;
19c239ce 657 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
658 total--;
659 }
660 return NULL;
661}
662
663/* clear one page's page table */
664static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
665{
666 struct dma_pte *pte = NULL;
667
668 /* get last level pte */
669 pte = dma_addr_level_pte(domain, addr, 1);
670
671 if (pte) {
19c239ce 672 dma_clear_pte(pte);
5331fe6f 673 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
674 }
675}
676
677/* clear last level pte, a tlb flush should be followed */
678static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
679{
680 int addr_width = agaw_to_width(domain->agaw);
681
682 start &= (((u64)1) << addr_width) - 1;
683 end &= (((u64)1) << addr_width) - 1;
684 /* in case it's partial page */
5b6985ce
FY
685 start = PAGE_ALIGN(start);
686 end &= PAGE_MASK;
ba395927
KA
687
688 /* we don't need lock here, nobody else touches the iova range */
689 while (start < end) {
690 dma_pte_clear_one(domain, start);
5b6985ce 691 start += VTD_PAGE_SIZE;
ba395927
KA
692 }
693}
694
695/* free page table pages. last level pte should already be cleared */
696static void dma_pte_free_pagetable(struct dmar_domain *domain,
697 u64 start, u64 end)
698{
699 int addr_width = agaw_to_width(domain->agaw);
700 struct dma_pte *pte;
701 int total = agaw_to_level(domain->agaw);
702 int level;
703 u64 tmp;
704
705 start &= (((u64)1) << addr_width) - 1;
706 end &= (((u64)1) << addr_width) - 1;
707
708 /* we don't need lock here, nobody else touches the iova range */
709 level = 2;
710 while (level <= total) {
711 tmp = align_to_level(start, level);
712 if (tmp >= end || (tmp + level_size(level) > end))
713 return;
714
715 while (tmp < end) {
716 pte = dma_addr_level_pte(domain, tmp, level);
717 if (pte) {
718 free_pgtable_page(
19c239ce
MM
719 phys_to_virt(dma_pte_addr(pte)));
720 dma_clear_pte(pte);
5331fe6f 721 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
722 }
723 tmp += level_size(level);
724 }
725 level++;
726 }
727 /* free pgd */
728 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
729 free_pgtable_page(domain->pgd);
730 domain->pgd = NULL;
731 }
732}
733
734/* iommu handling */
735static int iommu_alloc_root_entry(struct intel_iommu *iommu)
736{
737 struct root_entry *root;
738 unsigned long flags;
739
740 root = (struct root_entry *)alloc_pgtable_page();
741 if (!root)
742 return -ENOMEM;
743
5b6985ce 744 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
745
746 spin_lock_irqsave(&iommu->lock, flags);
747 iommu->root_entry = root;
748 spin_unlock_irqrestore(&iommu->lock, flags);
749
750 return 0;
751}
752
ba395927
KA
753static void iommu_set_root_entry(struct intel_iommu *iommu)
754{
755 void *addr;
756 u32 cmd, sts;
757 unsigned long flag;
758
759 addr = iommu->root_entry;
760
761 spin_lock_irqsave(&iommu->register_lock, flag);
762 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
763
764 cmd = iommu->gcmd | DMA_GCMD_SRTP;
765 writel(cmd, iommu->reg + DMAR_GCMD_REG);
766
767 /* Make sure hardware complete it */
768 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
769 readl, (sts & DMA_GSTS_RTPS), sts);
770
771 spin_unlock_irqrestore(&iommu->register_lock, flag);
772}
773
774static void iommu_flush_write_buffer(struct intel_iommu *iommu)
775{
776 u32 val;
777 unsigned long flag;
778
779 if (!cap_rwbf(iommu->cap))
780 return;
781 val = iommu->gcmd | DMA_GCMD_WBF;
782
783 spin_lock_irqsave(&iommu->register_lock, flag);
784 writel(val, iommu->reg + DMAR_GCMD_REG);
785
786 /* Make sure hardware complete it */
787 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
788 readl, (!(val & DMA_GSTS_WBFS)), val);
789
790 spin_unlock_irqrestore(&iommu->register_lock, flag);
791}
792
793/* return value determine if we need a write buffer flush */
794static int __iommu_flush_context(struct intel_iommu *iommu,
795 u16 did, u16 source_id, u8 function_mask, u64 type,
796 int non_present_entry_flush)
797{
798 u64 val = 0;
799 unsigned long flag;
800
801 /*
802 * In the non-present entry flush case, if hardware doesn't cache
803 * non-present entry we do nothing and if hardware cache non-present
804 * entry, we flush entries of domain 0 (the domain id is used to cache
805 * any non-present entries)
806 */
807 if (non_present_entry_flush) {
808 if (!cap_caching_mode(iommu->cap))
809 return 1;
810 else
811 did = 0;
812 }
813
814 switch (type) {
815 case DMA_CCMD_GLOBAL_INVL:
816 val = DMA_CCMD_GLOBAL_INVL;
817 break;
818 case DMA_CCMD_DOMAIN_INVL:
819 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
820 break;
821 case DMA_CCMD_DEVICE_INVL:
822 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
823 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
824 break;
825 default:
826 BUG();
827 }
828 val |= DMA_CCMD_ICC;
829
830 spin_lock_irqsave(&iommu->register_lock, flag);
831 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
832
833 /* Make sure hardware complete it */
834 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
835 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
836
837 spin_unlock_irqrestore(&iommu->register_lock, flag);
838
4d235ba6 839 /* flush context entry will implicitly flush write buffer */
ba395927
KA
840 return 0;
841}
842
ba395927
KA
843/* return value determine if we need a write buffer flush */
844static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
845 u64 addr, unsigned int size_order, u64 type,
846 int non_present_entry_flush)
847{
848 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
849 u64 val = 0, val_iva = 0;
850 unsigned long flag;
851
852 /*
853 * In the non-present entry flush case, if hardware doesn't cache
854 * non-present entry we do nothing and if hardware cache non-present
855 * entry, we flush entries of domain 0 (the domain id is used to cache
856 * any non-present entries)
857 */
858 if (non_present_entry_flush) {
859 if (!cap_caching_mode(iommu->cap))
860 return 1;
861 else
862 did = 0;
863 }
864
865 switch (type) {
866 case DMA_TLB_GLOBAL_FLUSH:
867 /* global flush doesn't need set IVA_REG */
868 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
869 break;
870 case DMA_TLB_DSI_FLUSH:
871 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
872 break;
873 case DMA_TLB_PSI_FLUSH:
874 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
875 /* Note: always flush non-leaf currently */
876 val_iva = size_order | addr;
877 break;
878 default:
879 BUG();
880 }
881 /* Note: set drain read/write */
882#if 0
883 /*
884 * This is probably to be super secure.. Looks like we can
885 * ignore it without any impact.
886 */
887 if (cap_read_drain(iommu->cap))
888 val |= DMA_TLB_READ_DRAIN;
889#endif
890 if (cap_write_drain(iommu->cap))
891 val |= DMA_TLB_WRITE_DRAIN;
892
893 spin_lock_irqsave(&iommu->register_lock, flag);
894 /* Note: Only uses first TLB reg currently */
895 if (val_iva)
896 dmar_writeq(iommu->reg + tlb_offset, val_iva);
897 dmar_writeq(iommu->reg + tlb_offset + 8, val);
898
899 /* Make sure hardware complete it */
900 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
901 dmar_readq, (!(val & DMA_TLB_IVT)), val);
902
903 spin_unlock_irqrestore(&iommu->register_lock, flag);
904
905 /* check IOTLB invalidation granularity */
906 if (DMA_TLB_IAIG(val) == 0)
907 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
908 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
909 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
5b6985ce
FY
910 (unsigned long long)DMA_TLB_IIRG(type),
911 (unsigned long long)DMA_TLB_IAIG(val));
4d235ba6 912 /* flush iotlb entry will implicitly flush write buffer */
ba395927
KA
913 return 0;
914}
915
ba395927
KA
916static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
917 u64 addr, unsigned int pages, int non_present_entry_flush)
918{
f76aec76 919 unsigned int mask;
ba395927 920
5b6985ce 921 BUG_ON(addr & (~VTD_PAGE_MASK));
ba395927
KA
922 BUG_ON(pages == 0);
923
924 /* Fallback to domain selective flush if no PSI support */
925 if (!cap_pgsel_inv(iommu->cap))
a77b67d4
YS
926 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
927 DMA_TLB_DSI_FLUSH,
928 non_present_entry_flush);
ba395927
KA
929
930 /*
931 * PSI requires page size to be 2 ^ x, and the base address is naturally
932 * aligned to the size
933 */
f76aec76 934 mask = ilog2(__roundup_pow_of_two(pages));
ba395927 935 /* Fallback to domain selective flush if size is too big */
f76aec76 936 if (mask > cap_max_amask_val(iommu->cap))
a77b67d4
YS
937 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
938 DMA_TLB_DSI_FLUSH, non_present_entry_flush);
ba395927 939
a77b67d4
YS
940 return iommu->flush.flush_iotlb(iommu, did, addr, mask,
941 DMA_TLB_PSI_FLUSH,
942 non_present_entry_flush);
ba395927
KA
943}
944
f8bab735 945static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
946{
947 u32 pmen;
948 unsigned long flags;
949
950 spin_lock_irqsave(&iommu->register_lock, flags);
951 pmen = readl(iommu->reg + DMAR_PMEN_REG);
952 pmen &= ~DMA_PMEN_EPM;
953 writel(pmen, iommu->reg + DMAR_PMEN_REG);
954
955 /* wait for the protected region status bit to clear */
956 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
957 readl, !(pmen & DMA_PMEN_PRS), pmen);
958
959 spin_unlock_irqrestore(&iommu->register_lock, flags);
960}
961
ba395927
KA
962static int iommu_enable_translation(struct intel_iommu *iommu)
963{
964 u32 sts;
965 unsigned long flags;
966
967 spin_lock_irqsave(&iommu->register_lock, flags);
968 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
969
970 /* Make sure hardware complete it */
971 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
972 readl, (sts & DMA_GSTS_TES), sts);
973
974 iommu->gcmd |= DMA_GCMD_TE;
975 spin_unlock_irqrestore(&iommu->register_lock, flags);
976 return 0;
977}
978
979static int iommu_disable_translation(struct intel_iommu *iommu)
980{
981 u32 sts;
982 unsigned long flag;
983
984 spin_lock_irqsave(&iommu->register_lock, flag);
985 iommu->gcmd &= ~DMA_GCMD_TE;
986 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
987
988 /* Make sure hardware complete it */
989 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
990 readl, (!(sts & DMA_GSTS_TES)), sts);
991
992 spin_unlock_irqrestore(&iommu->register_lock, flag);
993 return 0;
994}
995
3460a6d9
KA
996/* iommu interrupt handling. Most stuff are MSI-like. */
997
d94afc6c 998static const char *fault_reason_strings[] =
3460a6d9
KA
999{
1000 "Software",
1001 "Present bit in root entry is clear",
1002 "Present bit in context entry is clear",
1003 "Invalid context entry",
1004 "Access beyond MGAW",
1005 "PTE Write access is not set",
1006 "PTE Read access is not set",
1007 "Next page table ptr is invalid",
1008 "Root table address invalid",
1009 "Context table ptr is invalid",
1010 "non-zero reserved fields in RTP",
1011 "non-zero reserved fields in CTP",
1012 "non-zero reserved fields in PTE",
3460a6d9 1013};
f8bab735 1014#define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
3460a6d9 1015
d94afc6c 1016const char *dmar_get_fault_reason(u8 fault_reason)
3460a6d9 1017{
d94afc6c 1018 if (fault_reason > MAX_FAULT_REASON_IDX)
1019 return "Unknown";
3460a6d9
KA
1020 else
1021 return fault_reason_strings[fault_reason];
1022}
1023
1024void dmar_msi_unmask(unsigned int irq)
1025{
1026 struct intel_iommu *iommu = get_irq_data(irq);
1027 unsigned long flag;
1028
1029 /* unmask it */
1030 spin_lock_irqsave(&iommu->register_lock, flag);
1031 writel(0, iommu->reg + DMAR_FECTL_REG);
1032 /* Read a reg to force flush the post write */
1033 readl(iommu->reg + DMAR_FECTL_REG);
1034 spin_unlock_irqrestore(&iommu->register_lock, flag);
1035}
1036
1037void dmar_msi_mask(unsigned int irq)
1038{
1039 unsigned long flag;
1040 struct intel_iommu *iommu = get_irq_data(irq);
1041
1042 /* mask it */
1043 spin_lock_irqsave(&iommu->register_lock, flag);
1044 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1045 /* Read a reg to force flush the post write */
1046 readl(iommu->reg + DMAR_FECTL_REG);
1047 spin_unlock_irqrestore(&iommu->register_lock, flag);
1048}
1049
1050void dmar_msi_write(int irq, struct msi_msg *msg)
1051{
1052 struct intel_iommu *iommu = get_irq_data(irq);
1053 unsigned long flag;
1054
1055 spin_lock_irqsave(&iommu->register_lock, flag);
1056 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1057 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1058 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1059 spin_unlock_irqrestore(&iommu->register_lock, flag);
1060}
1061
1062void dmar_msi_read(int irq, struct msi_msg *msg)
1063{
1064 struct intel_iommu *iommu = get_irq_data(irq);
1065 unsigned long flag;
1066
1067 spin_lock_irqsave(&iommu->register_lock, flag);
1068 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1069 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1070 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1071 spin_unlock_irqrestore(&iommu->register_lock, flag);
1072}
1073
1074static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type,
5b6985ce 1075 u8 fault_reason, u16 source_id, unsigned long long addr)
3460a6d9 1076{
d94afc6c 1077 const char *reason;
3460a6d9
KA
1078
1079 reason = dmar_get_fault_reason(fault_reason);
1080
1081 printk(KERN_ERR
1082 "DMAR:[%s] Request device [%02x:%02x.%d] "
1083 "fault addr %llx \n"
1084 "DMAR:[fault reason %02d] %s\n",
1085 (type ? "DMA Read" : "DMA Write"),
1086 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1087 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1088 return 0;
1089}
1090
1091#define PRIMARY_FAULT_REG_LEN (16)
1092static irqreturn_t iommu_page_fault(int irq, void *dev_id)
1093{
1094 struct intel_iommu *iommu = dev_id;
1095 int reg, fault_index;
1096 u32 fault_status;
1097 unsigned long flag;
1098
1099 spin_lock_irqsave(&iommu->register_lock, flag);
1100 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1101
1102 /* TBD: ignore advanced fault log currently */
1103 if (!(fault_status & DMA_FSTS_PPF))
1104 goto clear_overflow;
1105
1106 fault_index = dma_fsts_fault_record_index(fault_status);
1107 reg = cap_fault_reg_offset(iommu->cap);
1108 while (1) {
1109 u8 fault_reason;
1110 u16 source_id;
1111 u64 guest_addr;
1112 int type;
1113 u32 data;
1114
1115 /* highest 32 bits */
1116 data = readl(iommu->reg + reg +
1117 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1118 if (!(data & DMA_FRCD_F))
1119 break;
1120
1121 fault_reason = dma_frcd_fault_reason(data);
1122 type = dma_frcd_type(data);
1123
1124 data = readl(iommu->reg + reg +
1125 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1126 source_id = dma_frcd_source_id(data);
1127
1128 guest_addr = dmar_readq(iommu->reg + reg +
1129 fault_index * PRIMARY_FAULT_REG_LEN);
1130 guest_addr = dma_frcd_page_addr(guest_addr);
1131 /* clear the fault */
1132 writel(DMA_FRCD_F, iommu->reg + reg +
1133 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1134
1135 spin_unlock_irqrestore(&iommu->register_lock, flag);
1136
1137 iommu_page_fault_do_one(iommu, type, fault_reason,
1138 source_id, guest_addr);
1139
1140 fault_index++;
1141 if (fault_index > cap_num_fault_regs(iommu->cap))
1142 fault_index = 0;
1143 spin_lock_irqsave(&iommu->register_lock, flag);
1144 }
1145clear_overflow:
1146 /* clear primary fault overflow */
1147 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1148 if (fault_status & DMA_FSTS_PFO)
1149 writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG);
1150
1151 spin_unlock_irqrestore(&iommu->register_lock, flag);
1152 return IRQ_HANDLED;
1153}
1154
1155int dmar_set_interrupt(struct intel_iommu *iommu)
1156{
1157 int irq, ret;
1158
1159 irq = create_irq();
1160 if (!irq) {
1161 printk(KERN_ERR "IOMMU: no free vectors\n");
1162 return -EINVAL;
1163 }
1164
1165 set_irq_data(irq, iommu);
1166 iommu->irq = irq;
1167
1168 ret = arch_setup_dmar_msi(irq);
1169 if (ret) {
1170 set_irq_data(irq, NULL);
1171 iommu->irq = 0;
1172 destroy_irq(irq);
1173 return 0;
1174 }
1175
1176 /* Force fault register is cleared */
1177 iommu_page_fault(irq, iommu);
1178
1179 ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu);
1180 if (ret)
1181 printk(KERN_ERR "IOMMU: can't request irq\n");
1182 return ret;
1183}
1184
ba395927
KA
1185static int iommu_init_domains(struct intel_iommu *iommu)
1186{
1187 unsigned long ndomains;
1188 unsigned long nlongs;
1189
1190 ndomains = cap_ndoms(iommu->cap);
1191 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1192 nlongs = BITS_TO_LONGS(ndomains);
1193
1194 /* TBD: there might be 64K domains,
1195 * consider other allocation for future chip
1196 */
1197 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1198 if (!iommu->domain_ids) {
1199 printk(KERN_ERR "Allocating domain id array failed\n");
1200 return -ENOMEM;
1201 }
1202 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1203 GFP_KERNEL);
1204 if (!iommu->domains) {
1205 printk(KERN_ERR "Allocating domain array failed\n");
1206 kfree(iommu->domain_ids);
1207 return -ENOMEM;
1208 }
1209
e61d98d8
SS
1210 spin_lock_init(&iommu->lock);
1211
ba395927
KA
1212 /*
1213 * if Caching mode is set, then invalid translations are tagged
1214 * with domainid 0. Hence we need to pre-allocate it.
1215 */
1216 if (cap_caching_mode(iommu->cap))
1217 set_bit(0, iommu->domain_ids);
1218 return 0;
1219}
ba395927 1220
ba395927
KA
1221
1222static void domain_exit(struct dmar_domain *domain);
5e98c4b1 1223static void vm_domain_exit(struct dmar_domain *domain);
e61d98d8
SS
1224
1225void free_dmar_iommu(struct intel_iommu *iommu)
ba395927
KA
1226{
1227 struct dmar_domain *domain;
1228 int i;
c7151a8d 1229 unsigned long flags;
ba395927 1230
ba395927
KA
1231 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1232 for (; i < cap_ndoms(iommu->cap); ) {
1233 domain = iommu->domains[i];
1234 clear_bit(i, iommu->domain_ids);
c7151a8d
WH
1235
1236 spin_lock_irqsave(&domain->iommu_lock, flags);
5e98c4b1
WH
1237 if (--domain->iommu_count == 0) {
1238 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1239 vm_domain_exit(domain);
1240 else
1241 domain_exit(domain);
1242 }
c7151a8d
WH
1243 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1244
ba395927
KA
1245 i = find_next_bit(iommu->domain_ids,
1246 cap_ndoms(iommu->cap), i+1);
1247 }
1248
1249 if (iommu->gcmd & DMA_GCMD_TE)
1250 iommu_disable_translation(iommu);
1251
1252 if (iommu->irq) {
1253 set_irq_data(iommu->irq, NULL);
1254 /* This will mask the irq */
1255 free_irq(iommu->irq, iommu);
1256 destroy_irq(iommu->irq);
1257 }
1258
1259 kfree(iommu->domains);
1260 kfree(iommu->domain_ids);
1261
d9630fe9
WH
1262 g_iommus[iommu->seq_id] = NULL;
1263
1264 /* if all iommus are freed, free g_iommus */
1265 for (i = 0; i < g_num_of_iommus; i++) {
1266 if (g_iommus[i])
1267 break;
1268 }
1269
1270 if (i == g_num_of_iommus)
1271 kfree(g_iommus);
1272
ba395927
KA
1273 /* free context mapping */
1274 free_context_table(iommu);
ba395927
KA
1275}
1276
1277static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1278{
1279 unsigned long num;
1280 unsigned long ndomains;
1281 struct dmar_domain *domain;
1282 unsigned long flags;
1283
1284 domain = alloc_domain_mem();
1285 if (!domain)
1286 return NULL;
1287
1288 ndomains = cap_ndoms(iommu->cap);
1289
1290 spin_lock_irqsave(&iommu->lock, flags);
1291 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1292 if (num >= ndomains) {
1293 spin_unlock_irqrestore(&iommu->lock, flags);
1294 free_domain_mem(domain);
1295 printk(KERN_ERR "IOMMU: no free domain ids\n");
1296 return NULL;
1297 }
1298
1299 set_bit(num, iommu->domain_ids);
1300 domain->id = num;
8c11e798
WH
1301 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1302 set_bit(iommu->seq_id, &domain->iommu_bmp);
d71a2f33 1303 domain->flags = 0;
ba395927
KA
1304 iommu->domains[num] = domain;
1305 spin_unlock_irqrestore(&iommu->lock, flags);
1306
1307 return domain;
1308}
1309
1310static void iommu_free_domain(struct dmar_domain *domain)
1311{
1312 unsigned long flags;
8c11e798
WH
1313 struct intel_iommu *iommu;
1314
1315 iommu = domain_get_iommu(domain);
ba395927 1316
8c11e798
WH
1317 spin_lock_irqsave(&iommu->lock, flags);
1318 clear_bit(domain->id, iommu->domain_ids);
1319 spin_unlock_irqrestore(&iommu->lock, flags);
ba395927
KA
1320}
1321
1322static struct iova_domain reserved_iova_list;
8a443df4
MG
1323static struct lock_class_key reserved_alloc_key;
1324static struct lock_class_key reserved_rbtree_key;
ba395927
KA
1325
1326static void dmar_init_reserved_ranges(void)
1327{
1328 struct pci_dev *pdev = NULL;
1329 struct iova *iova;
1330 int i;
1331 u64 addr, size;
1332
f661197e 1333 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
ba395927 1334
8a443df4
MG
1335 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1336 &reserved_alloc_key);
1337 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1338 &reserved_rbtree_key);
1339
ba395927
KA
1340 /* IOAPIC ranges shouldn't be accessed by DMA */
1341 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1342 IOVA_PFN(IOAPIC_RANGE_END));
1343 if (!iova)
1344 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1345
1346 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1347 for_each_pci_dev(pdev) {
1348 struct resource *r;
1349
1350 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1351 r = &pdev->resource[i];
1352 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1353 continue;
1354 addr = r->start;
5b6985ce 1355 addr &= PAGE_MASK;
ba395927 1356 size = r->end - addr;
5b6985ce 1357 size = PAGE_ALIGN(size);
ba395927
KA
1358 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1359 IOVA_PFN(size + addr) - 1);
1360 if (!iova)
1361 printk(KERN_ERR "Reserve iova failed\n");
1362 }
1363 }
1364
1365}
1366
1367static void domain_reserve_special_ranges(struct dmar_domain *domain)
1368{
1369 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1370}
1371
1372static inline int guestwidth_to_adjustwidth(int gaw)
1373{
1374 int agaw;
1375 int r = (gaw - 12) % 9;
1376
1377 if (r == 0)
1378 agaw = gaw;
1379 else
1380 agaw = gaw + 9 - r;
1381 if (agaw > 64)
1382 agaw = 64;
1383 return agaw;
1384}
1385
1386static int domain_init(struct dmar_domain *domain, int guest_width)
1387{
1388 struct intel_iommu *iommu;
1389 int adjust_width, agaw;
1390 unsigned long sagaw;
1391
f661197e 1392 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
ba395927 1393 spin_lock_init(&domain->mapping_lock);
c7151a8d 1394 spin_lock_init(&domain->iommu_lock);
ba395927
KA
1395
1396 domain_reserve_special_ranges(domain);
1397
1398 /* calculate AGAW */
8c11e798 1399 iommu = domain_get_iommu(domain);
ba395927
KA
1400 if (guest_width > cap_mgaw(iommu->cap))
1401 guest_width = cap_mgaw(iommu->cap);
1402 domain->gaw = guest_width;
1403 adjust_width = guestwidth_to_adjustwidth(guest_width);
1404 agaw = width_to_agaw(adjust_width);
1405 sagaw = cap_sagaw(iommu->cap);
1406 if (!test_bit(agaw, &sagaw)) {
1407 /* hardware doesn't support it, choose a bigger one */
1408 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1409 agaw = find_next_bit(&sagaw, 5, agaw);
1410 if (agaw >= 5)
1411 return -ENODEV;
1412 }
1413 domain->agaw = agaw;
1414 INIT_LIST_HEAD(&domain->devices);
1415
8e604097
WH
1416 if (ecap_coherent(iommu->ecap))
1417 domain->iommu_coherency = 1;
1418 else
1419 domain->iommu_coherency = 0;
1420
c7151a8d
WH
1421 domain->iommu_count = 1;
1422
ba395927
KA
1423 /* always allocate the top pgd */
1424 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1425 if (!domain->pgd)
1426 return -ENOMEM;
5b6985ce 1427 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
ba395927
KA
1428 return 0;
1429}
1430
1431static void domain_exit(struct dmar_domain *domain)
1432{
1433 u64 end;
1434
1435 /* Domain 0 is reserved, so dont process it */
1436 if (!domain)
1437 return;
1438
1439 domain_remove_dev_info(domain);
1440 /* destroy iovas */
1441 put_iova_domain(&domain->iovad);
1442 end = DOMAIN_MAX_ADDR(domain->gaw);
5b6985ce 1443 end = end & (~PAGE_MASK);
ba395927
KA
1444
1445 /* clear ptes */
1446 dma_pte_clear_range(domain, 0, end);
1447
1448 /* free page tables */
1449 dma_pte_free_pagetable(domain, 0, end);
1450
1451 iommu_free_domain(domain);
1452 free_domain_mem(domain);
1453}
1454
1455static int domain_context_mapping_one(struct dmar_domain *domain,
1456 u8 bus, u8 devfn)
1457{
1458 struct context_entry *context;
ba395927 1459 unsigned long flags;
5331fe6f 1460 struct intel_iommu *iommu;
ea6606b0
WH
1461 struct dma_pte *pgd;
1462 unsigned long num;
1463 unsigned long ndomains;
1464 int id;
1465 int agaw;
ba395927
KA
1466
1467 pr_debug("Set context mapping for %02x:%02x.%d\n",
1468 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1469 BUG_ON(!domain->pgd);
5331fe6f
WH
1470
1471 iommu = device_to_iommu(bus, devfn);
1472 if (!iommu)
1473 return -ENODEV;
1474
ba395927
KA
1475 context = device_to_context_entry(iommu, bus, devfn);
1476 if (!context)
1477 return -ENOMEM;
1478 spin_lock_irqsave(&iommu->lock, flags);
c07e7d21 1479 if (context_present(context)) {
ba395927
KA
1480 spin_unlock_irqrestore(&iommu->lock, flags);
1481 return 0;
1482 }
1483
ea6606b0
WH
1484 id = domain->id;
1485 pgd = domain->pgd;
1486
1487 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1488 int found = 0;
1489
1490 /* find an available domain id for this device in iommu */
1491 ndomains = cap_ndoms(iommu->cap);
1492 num = find_first_bit(iommu->domain_ids, ndomains);
1493 for (; num < ndomains; ) {
1494 if (iommu->domains[num] == domain) {
1495 id = num;
1496 found = 1;
1497 break;
1498 }
1499 num = find_next_bit(iommu->domain_ids,
1500 cap_ndoms(iommu->cap), num+1);
1501 }
1502
1503 if (found == 0) {
1504 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1505 if (num >= ndomains) {
1506 spin_unlock_irqrestore(&iommu->lock, flags);
1507 printk(KERN_ERR "IOMMU: no free domain ids\n");
1508 return -EFAULT;
1509 }
1510
1511 set_bit(num, iommu->domain_ids);
1512 iommu->domains[num] = domain;
1513 id = num;
1514 }
1515
1516 /* Skip top levels of page tables for
1517 * iommu which has less agaw than default.
1518 */
1519 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1520 pgd = phys_to_virt(dma_pte_addr(pgd));
1521 if (!dma_pte_present(pgd)) {
1522 spin_unlock_irqrestore(&iommu->lock, flags);
1523 return -ENOMEM;
1524 }
1525 }
1526 }
1527
1528 context_set_domain_id(context, id);
1529 context_set_address_width(context, iommu->agaw);
1530 context_set_address_root(context, virt_to_phys(pgd));
c07e7d21
MM
1531 context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
1532 context_set_fault_enable(context);
1533 context_set_present(context);
5331fe6f 1534 domain_flush_cache(domain, context, sizeof(*context));
ba395927
KA
1535
1536 /* it's a non-present to present mapping */
a77b67d4
YS
1537 if (iommu->flush.flush_context(iommu, domain->id,
1538 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
1539 DMA_CCMD_DEVICE_INVL, 1))
ba395927
KA
1540 iommu_flush_write_buffer(iommu);
1541 else
a77b67d4
YS
1542 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
1543
ba395927 1544 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d
WH
1545
1546 spin_lock_irqsave(&domain->iommu_lock, flags);
1547 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1548 domain->iommu_count++;
1549 domain_update_iommu_coherency(domain);
1550 }
1551 spin_unlock_irqrestore(&domain->iommu_lock, flags);
ba395927
KA
1552 return 0;
1553}
1554
1555static int
1556domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1557{
1558 int ret;
1559 struct pci_dev *tmp, *parent;
1560
1561 ret = domain_context_mapping_one(domain, pdev->bus->number,
1562 pdev->devfn);
1563 if (ret)
1564 return ret;
1565
1566 /* dependent device mapping */
1567 tmp = pci_find_upstream_pcie_bridge(pdev);
1568 if (!tmp)
1569 return 0;
1570 /* Secondary interface's bus number and devfn 0 */
1571 parent = pdev->bus->self;
1572 while (parent != tmp) {
1573 ret = domain_context_mapping_one(domain, parent->bus->number,
1574 parent->devfn);
1575 if (ret)
1576 return ret;
1577 parent = parent->bus->self;
1578 }
1579 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1580 return domain_context_mapping_one(domain,
1581 tmp->subordinate->number, 0);
1582 else /* this is a legacy PCI bridge */
1583 return domain_context_mapping_one(domain,
1584 tmp->bus->number, tmp->devfn);
1585}
1586
5331fe6f 1587static int domain_context_mapped(struct pci_dev *pdev)
ba395927
KA
1588{
1589 int ret;
1590 struct pci_dev *tmp, *parent;
5331fe6f
WH
1591 struct intel_iommu *iommu;
1592
1593 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
1594 if (!iommu)
1595 return -ENODEV;
ba395927 1596
8c11e798 1597 ret = device_context_mapped(iommu,
ba395927
KA
1598 pdev->bus->number, pdev->devfn);
1599 if (!ret)
1600 return ret;
1601 /* dependent device mapping */
1602 tmp = pci_find_upstream_pcie_bridge(pdev);
1603 if (!tmp)
1604 return ret;
1605 /* Secondary interface's bus number and devfn 0 */
1606 parent = pdev->bus->self;
1607 while (parent != tmp) {
8c11e798 1608 ret = device_context_mapped(iommu, parent->bus->number,
ba395927
KA
1609 parent->devfn);
1610 if (!ret)
1611 return ret;
1612 parent = parent->bus->self;
1613 }
1614 if (tmp->is_pcie)
8c11e798 1615 return device_context_mapped(iommu,
ba395927
KA
1616 tmp->subordinate->number, 0);
1617 else
8c11e798 1618 return device_context_mapped(iommu,
ba395927
KA
1619 tmp->bus->number, tmp->devfn);
1620}
1621
1622static int
1623domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1624 u64 hpa, size_t size, int prot)
1625{
1626 u64 start_pfn, end_pfn;
1627 struct dma_pte *pte;
1628 int index;
5b6985ce
FY
1629 int addr_width = agaw_to_width(domain->agaw);
1630
1631 hpa &= (((u64)1) << addr_width) - 1;
ba395927
KA
1632
1633 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1634 return -EINVAL;
5b6985ce
FY
1635 iova &= PAGE_MASK;
1636 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1637 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
ba395927
KA
1638 index = 0;
1639 while (start_pfn < end_pfn) {
5b6985ce 1640 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
ba395927
KA
1641 if (!pte)
1642 return -ENOMEM;
1643 /* We don't need lock here, nobody else
1644 * touches the iova range
1645 */
19c239ce
MM
1646 BUG_ON(dma_pte_addr(pte));
1647 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1648 dma_set_pte_prot(pte, prot);
5331fe6f 1649 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
1650 start_pfn++;
1651 index++;
1652 }
1653 return 0;
1654}
1655
c7151a8d 1656static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 1657{
c7151a8d
WH
1658 if (!iommu)
1659 return;
8c11e798
WH
1660
1661 clear_context_table(iommu, bus, devfn);
1662 iommu->flush.flush_context(iommu, 0, 0, 0,
a77b67d4 1663 DMA_CCMD_GLOBAL_INVL, 0);
8c11e798 1664 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
a77b67d4 1665 DMA_TLB_GLOBAL_FLUSH, 0);
ba395927
KA
1666}
1667
1668static void domain_remove_dev_info(struct dmar_domain *domain)
1669{
1670 struct device_domain_info *info;
1671 unsigned long flags;
c7151a8d 1672 struct intel_iommu *iommu;
ba395927
KA
1673
1674 spin_lock_irqsave(&device_domain_lock, flags);
1675 while (!list_empty(&domain->devices)) {
1676 info = list_entry(domain->devices.next,
1677 struct device_domain_info, link);
1678 list_del(&info->link);
1679 list_del(&info->global);
1680 if (info->dev)
358dd8ac 1681 info->dev->dev.archdata.iommu = NULL;
ba395927
KA
1682 spin_unlock_irqrestore(&device_domain_lock, flags);
1683
c7151a8d
WH
1684 iommu = device_to_iommu(info->bus, info->devfn);
1685 iommu_detach_dev(iommu, info->bus, info->devfn);
ba395927
KA
1686 free_devinfo_mem(info);
1687
1688 spin_lock_irqsave(&device_domain_lock, flags);
1689 }
1690 spin_unlock_irqrestore(&device_domain_lock, flags);
1691}
1692
1693/*
1694 * find_domain
358dd8ac 1695 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
ba395927 1696 */
38717946 1697static struct dmar_domain *
ba395927
KA
1698find_domain(struct pci_dev *pdev)
1699{
1700 struct device_domain_info *info;
1701
1702 /* No lock here, assumes no domain exit in normal case */
358dd8ac 1703 info = pdev->dev.archdata.iommu;
ba395927
KA
1704 if (info)
1705 return info->domain;
1706 return NULL;
1707}
1708
ba395927
KA
1709/* domain is initialized */
1710static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1711{
1712 struct dmar_domain *domain, *found = NULL;
1713 struct intel_iommu *iommu;
1714 struct dmar_drhd_unit *drhd;
1715 struct device_domain_info *info, *tmp;
1716 struct pci_dev *dev_tmp;
1717 unsigned long flags;
1718 int bus = 0, devfn = 0;
1719
1720 domain = find_domain(pdev);
1721 if (domain)
1722 return domain;
1723
1724 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1725 if (dev_tmp) {
1726 if (dev_tmp->is_pcie) {
1727 bus = dev_tmp->subordinate->number;
1728 devfn = 0;
1729 } else {
1730 bus = dev_tmp->bus->number;
1731 devfn = dev_tmp->devfn;
1732 }
1733 spin_lock_irqsave(&device_domain_lock, flags);
1734 list_for_each_entry(info, &device_domain_list, global) {
1735 if (info->bus == bus && info->devfn == devfn) {
1736 found = info->domain;
1737 break;
1738 }
1739 }
1740 spin_unlock_irqrestore(&device_domain_lock, flags);
1741 /* pcie-pci bridge already has a domain, uses it */
1742 if (found) {
1743 domain = found;
1744 goto found_domain;
1745 }
1746 }
1747
1748 /* Allocate new domain for the device */
1749 drhd = dmar_find_matched_drhd_unit(pdev);
1750 if (!drhd) {
1751 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1752 pci_name(pdev));
1753 return NULL;
1754 }
1755 iommu = drhd->iommu;
1756
1757 domain = iommu_alloc_domain(iommu);
1758 if (!domain)
1759 goto error;
1760
1761 if (domain_init(domain, gaw)) {
1762 domain_exit(domain);
1763 goto error;
1764 }
1765
1766 /* register pcie-to-pci device */
1767 if (dev_tmp) {
1768 info = alloc_devinfo_mem();
1769 if (!info) {
1770 domain_exit(domain);
1771 goto error;
1772 }
1773 info->bus = bus;
1774 info->devfn = devfn;
1775 info->dev = NULL;
1776 info->domain = domain;
1777 /* This domain is shared by devices under p2p bridge */
3b5410e7 1778 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
ba395927
KA
1779
1780 /* pcie-to-pci bridge already has a domain, uses it */
1781 found = NULL;
1782 spin_lock_irqsave(&device_domain_lock, flags);
1783 list_for_each_entry(tmp, &device_domain_list, global) {
1784 if (tmp->bus == bus && tmp->devfn == devfn) {
1785 found = tmp->domain;
1786 break;
1787 }
1788 }
1789 if (found) {
1790 free_devinfo_mem(info);
1791 domain_exit(domain);
1792 domain = found;
1793 } else {
1794 list_add(&info->link, &domain->devices);
1795 list_add(&info->global, &device_domain_list);
1796 }
1797 spin_unlock_irqrestore(&device_domain_lock, flags);
1798 }
1799
1800found_domain:
1801 info = alloc_devinfo_mem();
1802 if (!info)
1803 goto error;
1804 info->bus = pdev->bus->number;
1805 info->devfn = pdev->devfn;
1806 info->dev = pdev;
1807 info->domain = domain;
1808 spin_lock_irqsave(&device_domain_lock, flags);
1809 /* somebody is fast */
1810 found = find_domain(pdev);
1811 if (found != NULL) {
1812 spin_unlock_irqrestore(&device_domain_lock, flags);
1813 if (found != domain) {
1814 domain_exit(domain);
1815 domain = found;
1816 }
1817 free_devinfo_mem(info);
1818 return domain;
1819 }
1820 list_add(&info->link, &domain->devices);
1821 list_add(&info->global, &device_domain_list);
358dd8ac 1822 pdev->dev.archdata.iommu = info;
ba395927
KA
1823 spin_unlock_irqrestore(&device_domain_lock, flags);
1824 return domain;
1825error:
1826 /* recheck it here, maybe others set it */
1827 return find_domain(pdev);
1828}
1829
5b6985ce
FY
1830static int iommu_prepare_identity_map(struct pci_dev *pdev,
1831 unsigned long long start,
1832 unsigned long long end)
ba395927
KA
1833{
1834 struct dmar_domain *domain;
1835 unsigned long size;
5b6985ce 1836 unsigned long long base;
ba395927
KA
1837 int ret;
1838
1839 printk(KERN_INFO
1840 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1841 pci_name(pdev), start, end);
1842 /* page table init */
1843 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1844 if (!domain)
1845 return -ENOMEM;
1846
1847 /* The address might not be aligned */
5b6985ce 1848 base = start & PAGE_MASK;
ba395927 1849 size = end - base;
5b6985ce 1850 size = PAGE_ALIGN(size);
ba395927
KA
1851 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1852 IOVA_PFN(base + size) - 1)) {
1853 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1854 ret = -ENOMEM;
1855 goto error;
1856 }
1857
1858 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1859 size, base, pci_name(pdev));
1860 /*
1861 * RMRR range might have overlap with physical memory range,
1862 * clear it first
1863 */
1864 dma_pte_clear_range(domain, base, base + size);
1865
1866 ret = domain_page_mapping(domain, base, base, size,
1867 DMA_PTE_READ|DMA_PTE_WRITE);
1868 if (ret)
1869 goto error;
1870
1871 /* context entry init */
1872 ret = domain_context_mapping(domain, pdev);
1873 if (!ret)
1874 return 0;
1875error:
1876 domain_exit(domain);
1877 return ret;
1878
1879}
1880
1881static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1882 struct pci_dev *pdev)
1883{
358dd8ac 1884 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
1885 return 0;
1886 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1887 rmrr->end_address + 1);
1888}
1889
e820482c 1890#ifdef CONFIG_DMAR_GFX_WA
d52d53b8
YL
1891struct iommu_prepare_data {
1892 struct pci_dev *pdev;
1893 int ret;
1894};
1895
1896static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1897 unsigned long end_pfn, void *datax)
1898{
1899 struct iommu_prepare_data *data;
1900
1901 data = (struct iommu_prepare_data *)datax;
1902
1903 data->ret = iommu_prepare_identity_map(data->pdev,
1904 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1905 return data->ret;
1906
1907}
1908
1909static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1910{
1911 int nid;
1912 struct iommu_prepare_data data;
1913
1914 data.pdev = pdev;
1915 data.ret = 0;
1916
1917 for_each_online_node(nid) {
1918 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1919 if (data.ret)
1920 return data.ret;
1921 }
1922 return data.ret;
1923}
1924
e820482c
KA
1925static void __init iommu_prepare_gfx_mapping(void)
1926{
1927 struct pci_dev *pdev = NULL;
e820482c
KA
1928 int ret;
1929
1930 for_each_pci_dev(pdev) {
358dd8ac 1931 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
e820482c
KA
1932 !IS_GFX_DEVICE(pdev))
1933 continue;
1934 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1935 pci_name(pdev));
d52d53b8
YL
1936 ret = iommu_prepare_with_active_regions(pdev);
1937 if (ret)
1938 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
e820482c
KA
1939 }
1940}
2abd7e16
MM
1941#else /* !CONFIG_DMAR_GFX_WA */
1942static inline void iommu_prepare_gfx_mapping(void)
1943{
1944 return;
1945}
e820482c
KA
1946#endif
1947
49a0429e
KA
1948#ifdef CONFIG_DMAR_FLOPPY_WA
1949static inline void iommu_prepare_isa(void)
1950{
1951 struct pci_dev *pdev;
1952 int ret;
1953
1954 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1955 if (!pdev)
1956 return;
1957
1958 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1959 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1960
1961 if (ret)
1962 printk("IOMMU: Failed to create 0-64M identity map, "
1963 "floppy might not work\n");
1964
1965}
1966#else
1967static inline void iommu_prepare_isa(void)
1968{
1969 return;
1970}
1971#endif /* !CONFIG_DMAR_FLPY_WA */
1972
519a0549 1973static int __init init_dmars(void)
ba395927
KA
1974{
1975 struct dmar_drhd_unit *drhd;
1976 struct dmar_rmrr_unit *rmrr;
1977 struct pci_dev *pdev;
1978 struct intel_iommu *iommu;
80b20dd8 1979 int i, ret, unit = 0;
ba395927
KA
1980
1981 /*
1982 * for each drhd
1983 * allocate root
1984 * initialize and program root entry to not present
1985 * endfor
1986 */
1987 for_each_drhd_unit(drhd) {
5e0d2a6f 1988 g_num_of_iommus++;
1989 /*
1990 * lock not needed as this is only incremented in the single
1991 * threaded kernel __init code path all other access are read
1992 * only
1993 */
1994 }
1995
d9630fe9
WH
1996 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1997 GFP_KERNEL);
1998 if (!g_iommus) {
1999 printk(KERN_ERR "Allocating global iommu array failed\n");
2000 ret = -ENOMEM;
2001 goto error;
2002 }
2003
80b20dd8 2004 deferred_flush = kzalloc(g_num_of_iommus *
2005 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2006 if (!deferred_flush) {
d9630fe9 2007 kfree(g_iommus);
5e0d2a6f 2008 ret = -ENOMEM;
2009 goto error;
2010 }
2011
5e0d2a6f 2012 for_each_drhd_unit(drhd) {
2013 if (drhd->ignored)
2014 continue;
1886e8a9
SS
2015
2016 iommu = drhd->iommu;
d9630fe9 2017 g_iommus[iommu->seq_id] = iommu;
ba395927 2018
e61d98d8
SS
2019 ret = iommu_init_domains(iommu);
2020 if (ret)
2021 goto error;
2022
ba395927
KA
2023 /*
2024 * TBD:
2025 * we could share the same root & context tables
2026 * amoung all IOMMU's. Need to Split it later.
2027 */
2028 ret = iommu_alloc_root_entry(iommu);
2029 if (ret) {
2030 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2031 goto error;
2032 }
2033 }
2034
a77b67d4
YS
2035 for_each_drhd_unit(drhd) {
2036 if (drhd->ignored)
2037 continue;
2038
2039 iommu = drhd->iommu;
2040 if (dmar_enable_qi(iommu)) {
2041 /*
2042 * Queued Invalidate not enabled, use Register Based
2043 * Invalidate
2044 */
2045 iommu->flush.flush_context = __iommu_flush_context;
2046 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2047 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
b4e0f9eb
FT
2048 "invalidation\n",
2049 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
2050 } else {
2051 iommu->flush.flush_context = qi_flush_context;
2052 iommu->flush.flush_iotlb = qi_flush_iotlb;
2053 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
b4e0f9eb
FT
2054 "invalidation\n",
2055 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
2056 }
2057 }
2058
ba395927
KA
2059 /*
2060 * For each rmrr
2061 * for each dev attached to rmrr
2062 * do
2063 * locate drhd for dev, alloc domain for dev
2064 * allocate free domain
2065 * allocate page table entries for rmrr
2066 * if context not allocated for bus
2067 * allocate and init context
2068 * set present in root table for this bus
2069 * init context with domain, translation etc
2070 * endfor
2071 * endfor
2072 */
2073 for_each_rmrr_units(rmrr) {
ba395927
KA
2074 for (i = 0; i < rmrr->devices_cnt; i++) {
2075 pdev = rmrr->devices[i];
2076 /* some BIOS lists non-exist devices in DMAR table */
2077 if (!pdev)
2078 continue;
2079 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2080 if (ret)
2081 printk(KERN_ERR
2082 "IOMMU: mapping reserved region failed\n");
2083 }
2084 }
2085
e820482c
KA
2086 iommu_prepare_gfx_mapping();
2087
49a0429e
KA
2088 iommu_prepare_isa();
2089
ba395927
KA
2090 /*
2091 * for each drhd
2092 * enable fault log
2093 * global invalidate context cache
2094 * global invalidate iotlb
2095 * enable translation
2096 */
2097 for_each_drhd_unit(drhd) {
2098 if (drhd->ignored)
2099 continue;
2100 iommu = drhd->iommu;
2101 sprintf (iommu->name, "dmar%d", unit++);
2102
2103 iommu_flush_write_buffer(iommu);
2104
3460a6d9
KA
2105 ret = dmar_set_interrupt(iommu);
2106 if (ret)
2107 goto error;
2108
ba395927
KA
2109 iommu_set_root_entry(iommu);
2110
a77b67d4
YS
2111 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
2112 0);
2113 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
2114 0);
f8bab735 2115 iommu_disable_protect_mem_regions(iommu);
2116
ba395927
KA
2117 ret = iommu_enable_translation(iommu);
2118 if (ret)
2119 goto error;
2120 }
2121
2122 return 0;
2123error:
2124 for_each_drhd_unit(drhd) {
2125 if (drhd->ignored)
2126 continue;
2127 iommu = drhd->iommu;
2128 free_iommu(iommu);
2129 }
d9630fe9 2130 kfree(g_iommus);
ba395927
KA
2131 return ret;
2132}
2133
2134static inline u64 aligned_size(u64 host_addr, size_t size)
2135{
2136 u64 addr;
5b6985ce
FY
2137 addr = (host_addr & (~PAGE_MASK)) + size;
2138 return PAGE_ALIGN(addr);
ba395927
KA
2139}
2140
2141struct iova *
f76aec76 2142iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
ba395927 2143{
ba395927
KA
2144 struct iova *piova;
2145
2146 /* Make sure it's in range */
ba395927 2147 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
f76aec76 2148 if (!size || (IOVA_START_ADDR + size > end))
ba395927
KA
2149 return NULL;
2150
2151 piova = alloc_iova(&domain->iovad,
5b6985ce 2152 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
ba395927
KA
2153 return piova;
2154}
2155
f76aec76
KA
2156static struct iova *
2157__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
bb9e6d65 2158 size_t size, u64 dma_mask)
ba395927 2159{
ba395927 2160 struct pci_dev *pdev = to_pci_dev(dev);
ba395927 2161 struct iova *iova = NULL;
ba395927 2162
bb9e6d65
FT
2163 if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac)
2164 iova = iommu_alloc_iova(domain, size, dma_mask);
2165 else {
ba395927
KA
2166 /*
2167 * First try to allocate an io virtual address in
2168 * DMA_32BIT_MASK and if that fails then try allocating
3609801e 2169 * from higher range
ba395927 2170 */
f76aec76 2171 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
ba395927 2172 if (!iova)
bb9e6d65 2173 iova = iommu_alloc_iova(domain, size, dma_mask);
ba395927
KA
2174 }
2175
2176 if (!iova) {
2177 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
f76aec76
KA
2178 return NULL;
2179 }
2180
2181 return iova;
2182}
2183
2184static struct dmar_domain *
2185get_valid_domain_for_dev(struct pci_dev *pdev)
2186{
2187 struct dmar_domain *domain;
2188 int ret;
2189
2190 domain = get_domain_for_dev(pdev,
2191 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2192 if (!domain) {
2193 printk(KERN_ERR
2194 "Allocating domain for %s failed", pci_name(pdev));
4fe05bbc 2195 return NULL;
ba395927
KA
2196 }
2197
2198 /* make sure context mapping is ok */
5331fe6f 2199 if (unlikely(!domain_context_mapped(pdev))) {
ba395927 2200 ret = domain_context_mapping(domain, pdev);
f76aec76
KA
2201 if (ret) {
2202 printk(KERN_ERR
2203 "Domain context map for %s failed",
2204 pci_name(pdev));
4fe05bbc 2205 return NULL;
f76aec76 2206 }
ba395927
KA
2207 }
2208
f76aec76
KA
2209 return domain;
2210}
2211
bb9e6d65
FT
2212static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2213 size_t size, int dir, u64 dma_mask)
f76aec76
KA
2214{
2215 struct pci_dev *pdev = to_pci_dev(hwdev);
f76aec76 2216 struct dmar_domain *domain;
5b6985ce 2217 phys_addr_t start_paddr;
f76aec76
KA
2218 struct iova *iova;
2219 int prot = 0;
6865f0d1 2220 int ret;
8c11e798 2221 struct intel_iommu *iommu;
f76aec76
KA
2222
2223 BUG_ON(dir == DMA_NONE);
358dd8ac 2224 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
6865f0d1 2225 return paddr;
f76aec76
KA
2226
2227 domain = get_valid_domain_for_dev(pdev);
2228 if (!domain)
2229 return 0;
2230
8c11e798 2231 iommu = domain_get_iommu(domain);
6865f0d1 2232 size = aligned_size((u64)paddr, size);
f76aec76 2233
bb9e6d65 2234 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
f76aec76
KA
2235 if (!iova)
2236 goto error;
2237
5b6985ce 2238 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
f76aec76 2239
ba395927
KA
2240 /*
2241 * Check if DMAR supports zero-length reads on write only
2242 * mappings..
2243 */
2244 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2245 !cap_zlr(iommu->cap))
ba395927
KA
2246 prot |= DMA_PTE_READ;
2247 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2248 prot |= DMA_PTE_WRITE;
2249 /*
6865f0d1 2250 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 2251 * page. Note: if two part of one page are separately mapped, we
6865f0d1 2252 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
2253 * is not a big problem
2254 */
6865f0d1 2255 ret = domain_page_mapping(domain, start_paddr,
5b6985ce 2256 ((u64)paddr) & PAGE_MASK, size, prot);
ba395927
KA
2257 if (ret)
2258 goto error;
2259
f76aec76 2260 /* it's a non-present to present mapping */
8c11e798 2261 ret = iommu_flush_iotlb_psi(iommu, domain->id,
5b6985ce 2262 start_paddr, size >> VTD_PAGE_SHIFT, 1);
f76aec76 2263 if (ret)
8c11e798 2264 iommu_flush_write_buffer(iommu);
f76aec76 2265
5b6985ce 2266 return start_paddr + ((u64)paddr & (~PAGE_MASK));
ba395927 2267
ba395927 2268error:
f76aec76
KA
2269 if (iova)
2270 __free_iova(&domain->iovad, iova);
ba395927 2271 printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
5b6985ce 2272 pci_name(pdev), size, (unsigned long long)paddr, dir);
ba395927
KA
2273 return 0;
2274}
2275
ffbbef5c
FT
2276static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2277 unsigned long offset, size_t size,
2278 enum dma_data_direction dir,
2279 struct dma_attrs *attrs)
2280{
2281 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2282 dir, to_pci_dev(dev)->dma_mask);
2283}
2284
bb9e6d65
FT
2285dma_addr_t intel_map_single(struct device *hwdev, phys_addr_t paddr,
2286 size_t size, int dir)
2287{
2288 return __intel_map_single(hwdev, paddr, size, dir,
2289 to_pci_dev(hwdev)->dma_mask);
2290}
2291
5e0d2a6f 2292static void flush_unmaps(void)
2293{
80b20dd8 2294 int i, j;
5e0d2a6f 2295
5e0d2a6f 2296 timer_on = 0;
2297
2298 /* just flush them all */
2299 for (i = 0; i < g_num_of_iommus; i++) {
a2bb8459
WH
2300 struct intel_iommu *iommu = g_iommus[i];
2301 if (!iommu)
2302 continue;
c42d9f32 2303
a2bb8459 2304 if (deferred_flush[i].next) {
a77b67d4
YS
2305 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2306 DMA_TLB_GLOBAL_FLUSH, 0);
80b20dd8 2307 for (j = 0; j < deferred_flush[i].next; j++) {
2308 __free_iova(&deferred_flush[i].domain[j]->iovad,
2309 deferred_flush[i].iova[j]);
2310 }
2311 deferred_flush[i].next = 0;
2312 }
5e0d2a6f 2313 }
2314
5e0d2a6f 2315 list_size = 0;
5e0d2a6f 2316}
2317
2318static void flush_unmaps_timeout(unsigned long data)
2319{
80b20dd8 2320 unsigned long flags;
2321
2322 spin_lock_irqsave(&async_umap_flush_lock, flags);
5e0d2a6f 2323 flush_unmaps();
80b20dd8 2324 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
5e0d2a6f 2325}
2326
2327static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2328{
2329 unsigned long flags;
80b20dd8 2330 int next, iommu_id;
8c11e798 2331 struct intel_iommu *iommu;
5e0d2a6f 2332
2333 spin_lock_irqsave(&async_umap_flush_lock, flags);
80b20dd8 2334 if (list_size == HIGH_WATER_MARK)
2335 flush_unmaps();
2336
8c11e798
WH
2337 iommu = domain_get_iommu(dom);
2338 iommu_id = iommu->seq_id;
c42d9f32 2339
80b20dd8 2340 next = deferred_flush[iommu_id].next;
2341 deferred_flush[iommu_id].domain[next] = dom;
2342 deferred_flush[iommu_id].iova[next] = iova;
2343 deferred_flush[iommu_id].next++;
5e0d2a6f 2344
2345 if (!timer_on) {
2346 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2347 timer_on = 1;
2348 }
2349 list_size++;
2350 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2351}
2352
ffbbef5c
FT
2353static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2354 size_t size, enum dma_data_direction dir,
2355 struct dma_attrs *attrs)
ba395927 2356{
ba395927 2357 struct pci_dev *pdev = to_pci_dev(dev);
f76aec76
KA
2358 struct dmar_domain *domain;
2359 unsigned long start_addr;
ba395927 2360 struct iova *iova;
8c11e798 2361 struct intel_iommu *iommu;
ba395927 2362
358dd8ac 2363 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
f76aec76 2364 return;
ba395927
KA
2365 domain = find_domain(pdev);
2366 BUG_ON(!domain);
2367
8c11e798
WH
2368 iommu = domain_get_iommu(domain);
2369
ba395927 2370 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
f76aec76 2371 if (!iova)
ba395927 2372 return;
ba395927 2373
5b6985ce 2374 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76 2375 size = aligned_size((u64)dev_addr, size);
ba395927 2376
f76aec76 2377 pr_debug("Device %s unmapping: %lx@%llx\n",
5b6985ce 2378 pci_name(pdev), size, (unsigned long long)start_addr);
ba395927 2379
f76aec76
KA
2380 /* clear the whole page */
2381 dma_pte_clear_range(domain, start_addr, start_addr + size);
2382 /* free page tables */
2383 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
5e0d2a6f 2384 if (intel_iommu_strict) {
8c11e798 2385 if (iommu_flush_iotlb_psi(iommu,
5b6985ce 2386 domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
8c11e798 2387 iommu_flush_write_buffer(iommu);
5e0d2a6f 2388 /* free iova */
2389 __free_iova(&domain->iovad, iova);
2390 } else {
2391 add_unmap(domain, iova);
2392 /*
2393 * queue up the release of the unmap to save the 1/6th of the
2394 * cpu used up by the iotlb flush operation...
2395 */
5e0d2a6f 2396 }
ba395927
KA
2397}
2398
ffbbef5c
FT
2399void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2400 int dir)
2401{
2402 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2403}
2404
5b6985ce
FY
2405void *intel_alloc_coherent(struct device *hwdev, size_t size,
2406 dma_addr_t *dma_handle, gfp_t flags)
ba395927
KA
2407{
2408 void *vaddr;
2409 int order;
2410
5b6985ce 2411 size = PAGE_ALIGN(size);
ba395927
KA
2412 order = get_order(size);
2413 flags &= ~(GFP_DMA | GFP_DMA32);
2414
2415 vaddr = (void *)__get_free_pages(flags, order);
2416 if (!vaddr)
2417 return NULL;
2418 memset(vaddr, 0, size);
2419
bb9e6d65
FT
2420 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2421 DMA_BIDIRECTIONAL,
2422 hwdev->coherent_dma_mask);
ba395927
KA
2423 if (*dma_handle)
2424 return vaddr;
2425 free_pages((unsigned long)vaddr, order);
2426 return NULL;
2427}
2428
5b6985ce
FY
2429void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2430 dma_addr_t dma_handle)
ba395927
KA
2431{
2432 int order;
2433
5b6985ce 2434 size = PAGE_ALIGN(size);
ba395927
KA
2435 order = get_order(size);
2436
2437 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2438 free_pages((unsigned long)vaddr, order);
2439}
2440
12d4d40e 2441#define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
5b6985ce
FY
2442
2443void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2444 int nelems, int dir)
ba395927
KA
2445{
2446 int i;
2447 struct pci_dev *pdev = to_pci_dev(hwdev);
2448 struct dmar_domain *domain;
f76aec76
KA
2449 unsigned long start_addr;
2450 struct iova *iova;
2451 size_t size = 0;
2452 void *addr;
c03ab37c 2453 struct scatterlist *sg;
8c11e798 2454 struct intel_iommu *iommu;
ba395927 2455
358dd8ac 2456 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
2457 return;
2458
2459 domain = find_domain(pdev);
8c11e798
WH
2460 BUG_ON(!domain);
2461
2462 iommu = domain_get_iommu(domain);
ba395927 2463
c03ab37c 2464 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
f76aec76
KA
2465 if (!iova)
2466 return;
c03ab37c 2467 for_each_sg(sglist, sg, nelems, i) {
f76aec76
KA
2468 addr = SG_ENT_VIRT_ADDRESS(sg);
2469 size += aligned_size((u64)addr, sg->length);
2470 }
2471
5b6985ce 2472 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76
KA
2473
2474 /* clear the whole page */
2475 dma_pte_clear_range(domain, start_addr, start_addr + size);
2476 /* free page tables */
2477 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2478
8c11e798 2479 if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
5b6985ce 2480 size >> VTD_PAGE_SHIFT, 0))
8c11e798 2481 iommu_flush_write_buffer(iommu);
f76aec76
KA
2482
2483 /* free iova */
2484 __free_iova(&domain->iovad, iova);
ba395927
KA
2485}
2486
ba395927 2487static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 2488 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
2489{
2490 int i;
c03ab37c 2491 struct scatterlist *sg;
ba395927 2492
c03ab37c 2493 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 2494 BUG_ON(!sg_page(sg));
c03ab37c
FT
2495 sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
2496 sg->dma_length = sg->length;
ba395927
KA
2497 }
2498 return nelems;
2499}
2500
5b6985ce
FY
2501int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2502 int dir)
ba395927
KA
2503{
2504 void *addr;
2505 int i;
ba395927
KA
2506 struct pci_dev *pdev = to_pci_dev(hwdev);
2507 struct dmar_domain *domain;
f76aec76
KA
2508 size_t size = 0;
2509 int prot = 0;
2510 size_t offset = 0;
2511 struct iova *iova = NULL;
2512 int ret;
c03ab37c 2513 struct scatterlist *sg;
f76aec76 2514 unsigned long start_addr;
8c11e798 2515 struct intel_iommu *iommu;
ba395927
KA
2516
2517 BUG_ON(dir == DMA_NONE);
358dd8ac 2518 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
c03ab37c 2519 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
ba395927 2520
f76aec76
KA
2521 domain = get_valid_domain_for_dev(pdev);
2522 if (!domain)
2523 return 0;
2524
8c11e798
WH
2525 iommu = domain_get_iommu(domain);
2526
c03ab37c 2527 for_each_sg(sglist, sg, nelems, i) {
ba395927 2528 addr = SG_ENT_VIRT_ADDRESS(sg);
f76aec76
KA
2529 addr = (void *)virt_to_phys(addr);
2530 size += aligned_size((u64)addr, sg->length);
2531 }
2532
bb9e6d65 2533 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
f76aec76 2534 if (!iova) {
c03ab37c 2535 sglist->dma_length = 0;
f76aec76
KA
2536 return 0;
2537 }
2538
2539 /*
2540 * Check if DMAR supports zero-length reads on write only
2541 * mappings..
2542 */
2543 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2544 !cap_zlr(iommu->cap))
f76aec76
KA
2545 prot |= DMA_PTE_READ;
2546 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2547 prot |= DMA_PTE_WRITE;
2548
5b6985ce 2549 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76 2550 offset = 0;
c03ab37c 2551 for_each_sg(sglist, sg, nelems, i) {
f76aec76
KA
2552 addr = SG_ENT_VIRT_ADDRESS(sg);
2553 addr = (void *)virt_to_phys(addr);
2554 size = aligned_size((u64)addr, sg->length);
2555 ret = domain_page_mapping(domain, start_addr + offset,
5b6985ce 2556 ((u64)addr) & PAGE_MASK,
f76aec76
KA
2557 size, prot);
2558 if (ret) {
2559 /* clear the page */
2560 dma_pte_clear_range(domain, start_addr,
2561 start_addr + offset);
2562 /* free page tables */
2563 dma_pte_free_pagetable(domain, start_addr,
2564 start_addr + offset);
2565 /* free iova */
2566 __free_iova(&domain->iovad, iova);
ba395927
KA
2567 return 0;
2568 }
f76aec76 2569 sg->dma_address = start_addr + offset +
5b6985ce 2570 ((u64)addr & (~PAGE_MASK));
ba395927 2571 sg->dma_length = sg->length;
f76aec76 2572 offset += size;
ba395927
KA
2573 }
2574
ba395927 2575 /* it's a non-present to present mapping */
8c11e798 2576 if (iommu_flush_iotlb_psi(iommu, domain->id,
5b6985ce 2577 start_addr, offset >> VTD_PAGE_SHIFT, 1))
8c11e798 2578 iommu_flush_write_buffer(iommu);
ba395927
KA
2579 return nelems;
2580}
2581
2582static struct dma_mapping_ops intel_dma_ops = {
2583 .alloc_coherent = intel_alloc_coherent,
2584 .free_coherent = intel_free_coherent,
ba395927
KA
2585 .map_sg = intel_map_sg,
2586 .unmap_sg = intel_unmap_sg,
ffbbef5c
FT
2587#ifdef CONFIG_X86_64
2588 .map_page = intel_map_page,
2589 .unmap_page = intel_unmap_page,
2590#endif
ba395927
KA
2591};
2592
2593static inline int iommu_domain_cache_init(void)
2594{
2595 int ret = 0;
2596
2597 iommu_domain_cache = kmem_cache_create("iommu_domain",
2598 sizeof(struct dmar_domain),
2599 0,
2600 SLAB_HWCACHE_ALIGN,
2601
2602 NULL);
2603 if (!iommu_domain_cache) {
2604 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2605 ret = -ENOMEM;
2606 }
2607
2608 return ret;
2609}
2610
2611static inline int iommu_devinfo_cache_init(void)
2612{
2613 int ret = 0;
2614
2615 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2616 sizeof(struct device_domain_info),
2617 0,
2618 SLAB_HWCACHE_ALIGN,
ba395927
KA
2619 NULL);
2620 if (!iommu_devinfo_cache) {
2621 printk(KERN_ERR "Couldn't create devinfo cache\n");
2622 ret = -ENOMEM;
2623 }
2624
2625 return ret;
2626}
2627
2628static inline int iommu_iova_cache_init(void)
2629{
2630 int ret = 0;
2631
2632 iommu_iova_cache = kmem_cache_create("iommu_iova",
2633 sizeof(struct iova),
2634 0,
2635 SLAB_HWCACHE_ALIGN,
ba395927
KA
2636 NULL);
2637 if (!iommu_iova_cache) {
2638 printk(KERN_ERR "Couldn't create iova cache\n");
2639 ret = -ENOMEM;
2640 }
2641
2642 return ret;
2643}
2644
2645static int __init iommu_init_mempool(void)
2646{
2647 int ret;
2648 ret = iommu_iova_cache_init();
2649 if (ret)
2650 return ret;
2651
2652 ret = iommu_domain_cache_init();
2653 if (ret)
2654 goto domain_error;
2655
2656 ret = iommu_devinfo_cache_init();
2657 if (!ret)
2658 return ret;
2659
2660 kmem_cache_destroy(iommu_domain_cache);
2661domain_error:
2662 kmem_cache_destroy(iommu_iova_cache);
2663
2664 return -ENOMEM;
2665}
2666
2667static void __init iommu_exit_mempool(void)
2668{
2669 kmem_cache_destroy(iommu_devinfo_cache);
2670 kmem_cache_destroy(iommu_domain_cache);
2671 kmem_cache_destroy(iommu_iova_cache);
2672
2673}
2674
ba395927
KA
2675static void __init init_no_remapping_devices(void)
2676{
2677 struct dmar_drhd_unit *drhd;
2678
2679 for_each_drhd_unit(drhd) {
2680 if (!drhd->include_all) {
2681 int i;
2682 for (i = 0; i < drhd->devices_cnt; i++)
2683 if (drhd->devices[i] != NULL)
2684 break;
2685 /* ignore DMAR unit if no pci devices exist */
2686 if (i == drhd->devices_cnt)
2687 drhd->ignored = 1;
2688 }
2689 }
2690
2691 if (dmar_map_gfx)
2692 return;
2693
2694 for_each_drhd_unit(drhd) {
2695 int i;
2696 if (drhd->ignored || drhd->include_all)
2697 continue;
2698
2699 for (i = 0; i < drhd->devices_cnt; i++)
2700 if (drhd->devices[i] &&
2701 !IS_GFX_DEVICE(drhd->devices[i]))
2702 break;
2703
2704 if (i < drhd->devices_cnt)
2705 continue;
2706
2707 /* bypass IOMMU if it is just for gfx devices */
2708 drhd->ignored = 1;
2709 for (i = 0; i < drhd->devices_cnt; i++) {
2710 if (!drhd->devices[i])
2711 continue;
358dd8ac 2712 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
2713 }
2714 }
2715}
2716
2717int __init intel_iommu_init(void)
2718{
2719 int ret = 0;
2720
ba395927
KA
2721 if (dmar_table_init())
2722 return -ENODEV;
2723
1886e8a9
SS
2724 if (dmar_dev_scope_init())
2725 return -ENODEV;
2726
2ae21010
SS
2727 /*
2728 * Check the need for DMA-remapping initialization now.
2729 * Above initialization will also be used by Interrupt-remapping.
2730 */
2731 if (no_iommu || swiotlb || dmar_disabled)
2732 return -ENODEV;
2733
ba395927
KA
2734 iommu_init_mempool();
2735 dmar_init_reserved_ranges();
2736
2737 init_no_remapping_devices();
2738
2739 ret = init_dmars();
2740 if (ret) {
2741 printk(KERN_ERR "IOMMU: dmar init failed\n");
2742 put_iova_domain(&reserved_iova_list);
2743 iommu_exit_mempool();
2744 return ret;
2745 }
2746 printk(KERN_INFO
2747 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2748
5e0d2a6f 2749 init_timer(&unmap_timer);
ba395927
KA
2750 force_iommu = 1;
2751 dma_ops = &intel_dma_ops;
a8bcbb0d
JR
2752
2753 register_iommu(&intel_iommu_ops);
2754
ba395927
KA
2755 return 0;
2756}
e820482c 2757
c7151a8d
WH
2758static int vm_domain_add_dev_info(struct dmar_domain *domain,
2759 struct pci_dev *pdev)
2760{
2761 struct device_domain_info *info;
2762 unsigned long flags;
2763
2764 info = alloc_devinfo_mem();
2765 if (!info)
2766 return -ENOMEM;
2767
2768 info->bus = pdev->bus->number;
2769 info->devfn = pdev->devfn;
2770 info->dev = pdev;
2771 info->domain = domain;
2772
2773 spin_lock_irqsave(&device_domain_lock, flags);
2774 list_add(&info->link, &domain->devices);
2775 list_add(&info->global, &device_domain_list);
2776 pdev->dev.archdata.iommu = info;
2777 spin_unlock_irqrestore(&device_domain_lock, flags);
2778
2779 return 0;
2780}
2781
2782static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2783 struct pci_dev *pdev)
2784{
2785 struct device_domain_info *info;
2786 struct intel_iommu *iommu;
2787 unsigned long flags;
2788 int found = 0;
2789 struct list_head *entry, *tmp;
2790
2791 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2792 if (!iommu)
2793 return;
2794
2795 spin_lock_irqsave(&device_domain_lock, flags);
2796 list_for_each_safe(entry, tmp, &domain->devices) {
2797 info = list_entry(entry, struct device_domain_info, link);
2798 if (info->bus == pdev->bus->number &&
2799 info->devfn == pdev->devfn) {
2800 list_del(&info->link);
2801 list_del(&info->global);
2802 if (info->dev)
2803 info->dev->dev.archdata.iommu = NULL;
2804 spin_unlock_irqrestore(&device_domain_lock, flags);
2805
2806 iommu_detach_dev(iommu, info->bus, info->devfn);
2807 free_devinfo_mem(info);
2808
2809 spin_lock_irqsave(&device_domain_lock, flags);
2810
2811 if (found)
2812 break;
2813 else
2814 continue;
2815 }
2816
2817 /* if there is no other devices under the same iommu
2818 * owned by this domain, clear this iommu in iommu_bmp
2819 * update iommu count and coherency
2820 */
2821 if (device_to_iommu(info->bus, info->devfn) == iommu)
2822 found = 1;
2823 }
2824
2825 if (found == 0) {
2826 unsigned long tmp_flags;
2827 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2828 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2829 domain->iommu_count--;
2830 domain_update_iommu_coherency(domain);
2831 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2832 }
2833
2834 spin_unlock_irqrestore(&device_domain_lock, flags);
2835}
2836
2837static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2838{
2839 struct device_domain_info *info;
2840 struct intel_iommu *iommu;
2841 unsigned long flags1, flags2;
2842
2843 spin_lock_irqsave(&device_domain_lock, flags1);
2844 while (!list_empty(&domain->devices)) {
2845 info = list_entry(domain->devices.next,
2846 struct device_domain_info, link);
2847 list_del(&info->link);
2848 list_del(&info->global);
2849 if (info->dev)
2850 info->dev->dev.archdata.iommu = NULL;
2851
2852 spin_unlock_irqrestore(&device_domain_lock, flags1);
2853
2854 iommu = device_to_iommu(info->bus, info->devfn);
2855 iommu_detach_dev(iommu, info->bus, info->devfn);
2856
2857 /* clear this iommu in iommu_bmp, update iommu count
2858 * and coherency
2859 */
2860 spin_lock_irqsave(&domain->iommu_lock, flags2);
2861 if (test_and_clear_bit(iommu->seq_id,
2862 &domain->iommu_bmp)) {
2863 domain->iommu_count--;
2864 domain_update_iommu_coherency(domain);
2865 }
2866 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2867
2868 free_devinfo_mem(info);
2869 spin_lock_irqsave(&device_domain_lock, flags1);
2870 }
2871 spin_unlock_irqrestore(&device_domain_lock, flags1);
2872}
2873
5e98c4b1
WH
2874/* domain id for virtual machine, it won't be set in context */
2875static unsigned long vm_domid;
2876
fe40f1e0
WH
2877static int vm_domain_min_agaw(struct dmar_domain *domain)
2878{
2879 int i;
2880 int min_agaw = domain->agaw;
2881
2882 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
2883 for (; i < g_num_of_iommus; ) {
2884 if (min_agaw > g_iommus[i]->agaw)
2885 min_agaw = g_iommus[i]->agaw;
2886
2887 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
2888 }
2889
2890 return min_agaw;
2891}
2892
5e98c4b1
WH
2893static struct dmar_domain *iommu_alloc_vm_domain(void)
2894{
2895 struct dmar_domain *domain;
2896
2897 domain = alloc_domain_mem();
2898 if (!domain)
2899 return NULL;
2900
2901 domain->id = vm_domid++;
2902 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
2903 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
2904
2905 return domain;
2906}
2907
2908static int vm_domain_init(struct dmar_domain *domain, int guest_width)
2909{
2910 int adjust_width;
2911
2912 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
2913 spin_lock_init(&domain->mapping_lock);
2914 spin_lock_init(&domain->iommu_lock);
2915
2916 domain_reserve_special_ranges(domain);
2917
2918 /* calculate AGAW */
2919 domain->gaw = guest_width;
2920 adjust_width = guestwidth_to_adjustwidth(guest_width);
2921 domain->agaw = width_to_agaw(adjust_width);
2922
2923 INIT_LIST_HEAD(&domain->devices);
2924
2925 domain->iommu_count = 0;
2926 domain->iommu_coherency = 0;
fe40f1e0 2927 domain->max_addr = 0;
5e98c4b1
WH
2928
2929 /* always allocate the top pgd */
2930 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
2931 if (!domain->pgd)
2932 return -ENOMEM;
2933 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
2934 return 0;
2935}
2936
2937static void iommu_free_vm_domain(struct dmar_domain *domain)
2938{
2939 unsigned long flags;
2940 struct dmar_drhd_unit *drhd;
2941 struct intel_iommu *iommu;
2942 unsigned long i;
2943 unsigned long ndomains;
2944
2945 for_each_drhd_unit(drhd) {
2946 if (drhd->ignored)
2947 continue;
2948 iommu = drhd->iommu;
2949
2950 ndomains = cap_ndoms(iommu->cap);
2951 i = find_first_bit(iommu->domain_ids, ndomains);
2952 for (; i < ndomains; ) {
2953 if (iommu->domains[i] == domain) {
2954 spin_lock_irqsave(&iommu->lock, flags);
2955 clear_bit(i, iommu->domain_ids);
2956 iommu->domains[i] = NULL;
2957 spin_unlock_irqrestore(&iommu->lock, flags);
2958 break;
2959 }
2960 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
2961 }
2962 }
2963}
2964
2965static void vm_domain_exit(struct dmar_domain *domain)
2966{
2967 u64 end;
2968
2969 /* Domain 0 is reserved, so dont process it */
2970 if (!domain)
2971 return;
2972
2973 vm_domain_remove_all_dev_info(domain);
2974 /* destroy iovas */
2975 put_iova_domain(&domain->iovad);
2976 end = DOMAIN_MAX_ADDR(domain->gaw);
2977 end = end & (~VTD_PAGE_MASK);
2978
2979 /* clear ptes */
2980 dma_pte_clear_range(domain, 0, end);
2981
2982 /* free page tables */
2983 dma_pte_free_pagetable(domain, 0, end);
2984
2985 iommu_free_vm_domain(domain);
2986 free_domain_mem(domain);
2987}
2988
5d450806 2989static int intel_iommu_domain_init(struct iommu_domain *domain)
38717946 2990{
5d450806 2991 struct dmar_domain *dmar_domain;
38717946 2992
5d450806
JR
2993 dmar_domain = iommu_alloc_vm_domain();
2994 if (!dmar_domain) {
38717946 2995 printk(KERN_ERR
5d450806
JR
2996 "intel_iommu_domain_init: dmar_domain == NULL\n");
2997 return -ENOMEM;
38717946 2998 }
5d450806 2999 if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
38717946 3000 printk(KERN_ERR
5d450806
JR
3001 "intel_iommu_domain_init() failed\n");
3002 vm_domain_exit(dmar_domain);
3003 return -ENOMEM;
38717946 3004 }
5d450806 3005 domain->priv = dmar_domain;
faa3d6f5 3006
5d450806 3007 return 0;
38717946 3008}
38717946 3009
5d450806 3010static void intel_iommu_domain_destroy(struct iommu_domain *domain)
38717946 3011{
5d450806
JR
3012 struct dmar_domain *dmar_domain = domain->priv;
3013
3014 domain->priv = NULL;
3015 vm_domain_exit(dmar_domain);
38717946 3016}
38717946 3017
4c5478c9
JR
3018static int intel_iommu_attach_device(struct iommu_domain *domain,
3019 struct device *dev)
38717946 3020{
4c5478c9
JR
3021 struct dmar_domain *dmar_domain = domain->priv;
3022 struct pci_dev *pdev = to_pci_dev(dev);
fe40f1e0
WH
3023 struct intel_iommu *iommu;
3024 int addr_width;
3025 u64 end;
faa3d6f5
WH
3026 int ret;
3027
3028 /* normally pdev is not mapped */
3029 if (unlikely(domain_context_mapped(pdev))) {
3030 struct dmar_domain *old_domain;
3031
3032 old_domain = find_domain(pdev);
3033 if (old_domain) {
4c5478c9 3034 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
faa3d6f5
WH
3035 vm_domain_remove_one_dev_info(old_domain, pdev);
3036 else
3037 domain_remove_dev_info(old_domain);
3038 }
3039 }
3040
fe40f1e0
WH
3041 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
3042 if (!iommu)
3043 return -ENODEV;
3044
3045 /* check if this iommu agaw is sufficient for max mapped address */
3046 addr_width = agaw_to_width(iommu->agaw);
3047 end = DOMAIN_MAX_ADDR(addr_width);
3048 end = end & VTD_PAGE_MASK;
4c5478c9 3049 if (end < dmar_domain->max_addr) {
fe40f1e0
WH
3050 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3051 "sufficient for the mapped address (%llx)\n",
4c5478c9 3052 __func__, iommu->agaw, dmar_domain->max_addr);
fe40f1e0
WH
3053 return -EFAULT;
3054 }
3055
4c5478c9 3056 ret = domain_context_mapping(dmar_domain, pdev);
faa3d6f5
WH
3057 if (ret)
3058 return ret;
3059
4c5478c9 3060 ret = vm_domain_add_dev_info(dmar_domain, pdev);
faa3d6f5 3061 return ret;
38717946 3062}
38717946 3063
4c5478c9
JR
3064static void intel_iommu_detach_device(struct iommu_domain *domain,
3065 struct device *dev)
38717946 3066{
4c5478c9
JR
3067 struct dmar_domain *dmar_domain = domain->priv;
3068 struct pci_dev *pdev = to_pci_dev(dev);
3069
3070 vm_domain_remove_one_dev_info(dmar_domain, pdev);
faa3d6f5 3071}
c7151a8d 3072
dde57a21
JR
3073static int intel_iommu_map_range(struct iommu_domain *domain,
3074 unsigned long iova, phys_addr_t hpa,
3075 size_t size, int iommu_prot)
faa3d6f5 3076{
dde57a21 3077 struct dmar_domain *dmar_domain = domain->priv;
fe40f1e0
WH
3078 u64 max_addr;
3079 int addr_width;
dde57a21 3080 int prot = 0;
faa3d6f5 3081 int ret;
fe40f1e0 3082
dde57a21
JR
3083 if (iommu_prot & IOMMU_READ)
3084 prot |= DMA_PTE_READ;
3085 if (iommu_prot & IOMMU_WRITE)
3086 prot |= DMA_PTE_WRITE;
3087
fe40f1e0 3088 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
dde57a21 3089 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
3090 int min_agaw;
3091 u64 end;
3092
3093 /* check if minimum agaw is sufficient for mapped address */
dde57a21 3094 min_agaw = vm_domain_min_agaw(dmar_domain);
fe40f1e0
WH
3095 addr_width = agaw_to_width(min_agaw);
3096 end = DOMAIN_MAX_ADDR(addr_width);
3097 end = end & VTD_PAGE_MASK;
3098 if (end < max_addr) {
3099 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3100 "sufficient for the mapped address (%llx)\n",
3101 __func__, min_agaw, max_addr);
3102 return -EFAULT;
3103 }
dde57a21 3104 dmar_domain->max_addr = max_addr;
fe40f1e0
WH
3105 }
3106
dde57a21 3107 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
faa3d6f5 3108 return ret;
38717946 3109}
38717946 3110
dde57a21
JR
3111static void intel_iommu_unmap_range(struct iommu_domain *domain,
3112 unsigned long iova, size_t size)
38717946 3113{
dde57a21 3114 struct dmar_domain *dmar_domain = domain->priv;
faa3d6f5
WH
3115 dma_addr_t base;
3116
3117 /* The address might not be aligned */
3118 base = iova & VTD_PAGE_MASK;
3119 size = VTD_PAGE_ALIGN(size);
dde57a21 3120 dma_pte_clear_range(dmar_domain, base, base + size);
fe40f1e0 3121
dde57a21
JR
3122 if (dmar_domain->max_addr == base + size)
3123 dmar_domain->max_addr = base;
38717946 3124}
38717946 3125
d14d6577
JR
3126static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3127 unsigned long iova)
38717946 3128{
d14d6577 3129 struct dmar_domain *dmar_domain = domain->priv;
38717946 3130 struct dma_pte *pte;
faa3d6f5 3131 u64 phys = 0;
38717946 3132
d14d6577 3133 pte = addr_to_dma_pte(dmar_domain, iova);
38717946 3134 if (pte)
faa3d6f5 3135 phys = dma_pte_addr(pte);
38717946 3136
faa3d6f5 3137 return phys;
38717946 3138}
a8bcbb0d
JR
3139
3140static struct iommu_ops intel_iommu_ops = {
3141 .domain_init = intel_iommu_domain_init,
3142 .domain_destroy = intel_iommu_domain_destroy,
3143 .attach_dev = intel_iommu_attach_device,
3144 .detach_dev = intel_iommu_detach_device,
3145 .map = intel_iommu_map_range,
3146 .unmap = intel_iommu_unmap_range,
3147 .iova_to_phys = intel_iommu_iova_to_phys,
3148};