Merge tag 'qcom-soc-for-4.7-2' into net-next
[linux-2.6-block.git] / drivers / pci / host / pcie-iproc-msi.c
CommitLineData
3bc2b234
RJ
1/*
2 * Copyright (C) 2015 Broadcom Corporation
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation version 2.
7 *
8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9 * kind, whether express or implied; without even the implied warranty
10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14#include <linux/interrupt.h>
15#include <linux/irqchip/chained_irq.h>
16#include <linux/irqdomain.h>
17#include <linux/msi.h>
18#include <linux/of_irq.h>
19#include <linux/of_pci.h>
20#include <linux/pci.h>
21
22#include "pcie-iproc.h"
23
24#define IPROC_MSI_INTR_EN_SHIFT 11
25#define IPROC_MSI_INTR_EN BIT(IPROC_MSI_INTR_EN_SHIFT)
26#define IPROC_MSI_INT_N_EVENT_SHIFT 1
27#define IPROC_MSI_INT_N_EVENT BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
28#define IPROC_MSI_EQ_EN_SHIFT 0
29#define IPROC_MSI_EQ_EN BIT(IPROC_MSI_EQ_EN_SHIFT)
30
31#define IPROC_MSI_EQ_MASK 0x3f
32
33/* Max number of GIC interrupts */
34#define NR_HW_IRQS 6
35
36/* Number of entries in each event queue */
37#define EQ_LEN 64
38
39/* Size of each event queue memory region */
40#define EQ_MEM_REGION_SIZE SZ_4K
41
42/* Size of each MSI address region */
43#define MSI_MEM_REGION_SIZE SZ_4K
44
45enum iproc_msi_reg {
46 IPROC_MSI_EQ_PAGE = 0,
47 IPROC_MSI_EQ_PAGE_UPPER,
48 IPROC_MSI_PAGE,
49 IPROC_MSI_PAGE_UPPER,
50 IPROC_MSI_CTRL,
51 IPROC_MSI_EQ_HEAD,
52 IPROC_MSI_EQ_TAIL,
53 IPROC_MSI_INTS_EN,
54 IPROC_MSI_REG_SIZE,
55};
56
57struct iproc_msi;
58
59/**
60 * iProc MSI group
61 *
62 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
63 * event queue.
64 *
65 * @msi: pointer to iProc MSI data
66 * @gic_irq: GIC interrupt
67 * @eq: Event queue number
68 */
69struct iproc_msi_grp {
70 struct iproc_msi *msi;
71 int gic_irq;
72 unsigned int eq;
73};
74
75/**
76 * iProc event queue based MSI
77 *
78 * Only meant to be used on platforms without MSI support integrated into the
79 * GIC.
80 *
81 * @pcie: pointer to iProc PCIe data
82 * @reg_offsets: MSI register offsets
83 * @grps: MSI groups
84 * @nr_irqs: number of total interrupts connected to GIC
85 * @nr_cpus: number of toal CPUs
86 * @has_inten_reg: indicates the MSI interrupt enable register needs to be
87 * set explicitly (required for some legacy platforms)
88 * @bitmap: MSI vector bitmap
89 * @bitmap_lock: lock to protect access to the MSI bitmap
90 * @nr_msi_vecs: total number of MSI vectors
91 * @inner_domain: inner IRQ domain
92 * @msi_domain: MSI IRQ domain
93 * @nr_eq_region: required number of 4K aligned memory region for MSI event
94 * queues
95 * @nr_msi_region: required number of 4K aligned address region for MSI posted
96 * writes
97 * @eq_cpu: pointer to allocated memory region for MSI event queues
98 * @eq_dma: DMA address of MSI event queues
99 * @msi_addr: MSI address
100 */
101struct iproc_msi {
102 struct iproc_pcie *pcie;
103 const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
104 struct iproc_msi_grp *grps;
105 int nr_irqs;
106 int nr_cpus;
107 bool has_inten_reg;
108 unsigned long *bitmap;
109 struct mutex bitmap_lock;
110 unsigned int nr_msi_vecs;
111 struct irq_domain *inner_domain;
112 struct irq_domain *msi_domain;
113 unsigned int nr_eq_region;
114 unsigned int nr_msi_region;
115 void *eq_cpu;
116 dma_addr_t eq_dma;
117 phys_addr_t msi_addr;
118};
119
120static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
121 { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
122 { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
123 { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
124 { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
125 { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
126 { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
127};
128
129static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
130 { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
131 { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
132 { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
133 { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
134};
135
136static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
137 enum iproc_msi_reg reg,
138 unsigned int eq)
139{
140 struct iproc_pcie *pcie = msi->pcie;
141
142 return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
143}
144
145static inline void iproc_msi_write_reg(struct iproc_msi *msi,
146 enum iproc_msi_reg reg,
147 int eq, u32 val)
148{
149 struct iproc_pcie *pcie = msi->pcie;
150
151 writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
152}
153
154static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
155{
156 return (hwirq % msi->nr_irqs);
157}
158
159static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
160 unsigned long hwirq)
161{
162 if (msi->nr_msi_region > 1)
163 return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
164 else
165 return hwirq_to_group(msi, hwirq) * sizeof(u32);
166}
167
168static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
169{
170 if (msi->nr_eq_region > 1)
171 return eq * EQ_MEM_REGION_SIZE;
172 else
173 return eq * EQ_LEN * sizeof(u32);
174}
175
176static struct irq_chip iproc_msi_irq_chip = {
177 .name = "iProc-MSI",
178};
179
180static struct msi_domain_info iproc_msi_domain_info = {
181 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
182 MSI_FLAG_PCI_MSIX,
183 .chip = &iproc_msi_irq_chip,
184};
185
186/*
187 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
188 * dedicated event queue. Each MSI group can support up to 64 MSI vectors.
189 *
190 * The number of MSI groups varies between different iProc SoCs. The total
191 * number of CPU cores also varies. To support MSI IRQ affinity, we
192 * distribute GIC interrupts across all available CPUs. MSI vector is moved
193 * from one GIC interrupt to another to steer to the target CPU.
194 *
195 * Assuming:
196 * - the number of MSI groups is M
197 * - the number of CPU cores is N
198 * - M is always a multiple of N
199 *
200 * Total number of raw MSI vectors = M * 64
201 * Total number of supported MSI vectors = (M * 64) / N
202 */
203static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
204{
205 return (hwirq % msi->nr_cpus);
206}
207
208static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
209 unsigned long hwirq)
210{
211 return (hwirq - hwirq_to_cpu(msi, hwirq));
212}
213
214static int iproc_msi_irq_set_affinity(struct irq_data *data,
215 const struct cpumask *mask, bool force)
216{
217 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
218 int target_cpu = cpumask_first(mask);
219 int curr_cpu;
220
221 curr_cpu = hwirq_to_cpu(msi, data->hwirq);
222 if (curr_cpu == target_cpu)
223 return IRQ_SET_MASK_OK_DONE;
224
225 /* steer MSI to the target CPU */
226 data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
227
228 return IRQ_SET_MASK_OK;
229}
230
231static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
232 struct msi_msg *msg)
233{
234 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
235 dma_addr_t addr;
236
237 addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
238 msg->address_lo = lower_32_bits(addr);
239 msg->address_hi = upper_32_bits(addr);
240 msg->data = data->hwirq;
241}
242
243static struct irq_chip iproc_msi_bottom_irq_chip = {
244 .name = "MSI",
245 .irq_set_affinity = iproc_msi_irq_set_affinity,
246 .irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
247};
248
249static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
250 unsigned int virq, unsigned int nr_irqs,
251 void *args)
252{
253 struct iproc_msi *msi = domain->host_data;
254 int hwirq;
255
256 mutex_lock(&msi->bitmap_lock);
257
258 /* Allocate 'nr_cpus' number of MSI vectors each time */
259 hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0,
260 msi->nr_cpus, 0);
261 if (hwirq < msi->nr_msi_vecs) {
262 bitmap_set(msi->bitmap, hwirq, msi->nr_cpus);
263 } else {
264 mutex_unlock(&msi->bitmap_lock);
265 return -ENOSPC;
266 }
267
268 mutex_unlock(&msi->bitmap_lock);
269
270 irq_domain_set_info(domain, virq, hwirq, &iproc_msi_bottom_irq_chip,
271 domain->host_data, handle_simple_irq, NULL, NULL);
272
273 return 0;
274}
275
276static void iproc_msi_irq_domain_free(struct irq_domain *domain,
277 unsigned int virq, unsigned int nr_irqs)
278{
279 struct irq_data *data = irq_domain_get_irq_data(domain, virq);
280 struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
281 unsigned int hwirq;
282
283 mutex_lock(&msi->bitmap_lock);
284
285 hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
286 bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus);
287
288 mutex_unlock(&msi->bitmap_lock);
289
290 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
291}
292
293static const struct irq_domain_ops msi_domain_ops = {
294 .alloc = iproc_msi_irq_domain_alloc,
295 .free = iproc_msi_irq_domain_free,
296};
297
298static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
299{
300 u32 *msg, hwirq;
301 unsigned int offs;
302
303 offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
304 msg = (u32 *)(msi->eq_cpu + offs);
305 hwirq = *msg & IPROC_MSI_EQ_MASK;
306
307 /*
308 * Since we have multiple hwirq mapped to a single MSI vector,
309 * now we need to derive the hwirq at CPU0. It can then be used to
310 * mapped back to virq.
311 */
312 return hwirq_to_canonical_hwirq(msi, hwirq);
313}
314
315static void iproc_msi_handler(struct irq_desc *desc)
316{
317 struct irq_chip *chip = irq_desc_get_chip(desc);
318 struct iproc_msi_grp *grp;
319 struct iproc_msi *msi;
320 struct iproc_pcie *pcie;
321 u32 eq, head, tail, nr_events;
322 unsigned long hwirq;
323 int virq;
324
325 chained_irq_enter(chip, desc);
326
327 grp = irq_desc_get_handler_data(desc);
328 msi = grp->msi;
329 pcie = msi->pcie;
330 eq = grp->eq;
331
332 /*
333 * iProc MSI event queue is tracked by head and tail pointers. Head
334 * pointer indicates the next entry (MSI data) to be consumed by SW in
335 * the queue and needs to be updated by SW. iProc MSI core uses the
336 * tail pointer as the next data insertion point.
337 *
338 * Entries between head and tail pointers contain valid MSI data. MSI
339 * data is guaranteed to be in the event queue memory before the tail
340 * pointer is updated by the iProc MSI core.
341 */
342 head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
343 eq) & IPROC_MSI_EQ_MASK;
344 do {
345 tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
346 eq) & IPROC_MSI_EQ_MASK;
347
348 /*
349 * Figure out total number of events (MSI data) to be
350 * processed.
351 */
352 nr_events = (tail < head) ?
353 (EQ_LEN - (head - tail)) : (tail - head);
354 if (!nr_events)
355 break;
356
357 /* process all outstanding events */
358 while (nr_events--) {
359 hwirq = decode_msi_hwirq(msi, eq, head);
360 virq = irq_find_mapping(msi->inner_domain, hwirq);
361 generic_handle_irq(virq);
362
363 head++;
364 head %= EQ_LEN;
365 }
366
367 /*
368 * Now all outstanding events have been processed. Update the
369 * head pointer.
370 */
371 iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
372
373 /*
374 * Now go read the tail pointer again to see if there are new
375 * oustanding events that came in during the above window.
376 */
377 } while (true);
378
379 chained_irq_exit(chip, desc);
380}
381
382static void iproc_msi_enable(struct iproc_msi *msi)
383{
384 int i, eq;
385 u32 val;
386
387 /* Program memory region for each event queue */
388 for (i = 0; i < msi->nr_eq_region; i++) {
389 dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
390
391 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
392 lower_32_bits(addr));
393 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
394 upper_32_bits(addr));
395 }
396
397 /* Program address region for MSI posted writes */
398 for (i = 0; i < msi->nr_msi_region; i++) {
399 phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
400
401 iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
402 lower_32_bits(addr));
403 iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
404 upper_32_bits(addr));
405 }
406
407 for (eq = 0; eq < msi->nr_irqs; eq++) {
408 /* Enable MSI event queue */
409 val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
410 IPROC_MSI_EQ_EN;
411 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
412
413 /*
414 * Some legacy platforms require the MSI interrupt enable
415 * register to be set explicitly.
416 */
417 if (msi->has_inten_reg) {
418 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
419 val |= BIT(eq);
420 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
421 }
422 }
423}
424
425static void iproc_msi_disable(struct iproc_msi *msi)
426{
427 u32 eq, val;
428
429 for (eq = 0; eq < msi->nr_irqs; eq++) {
430 if (msi->has_inten_reg) {
431 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
432 val &= ~BIT(eq);
433 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
434 }
435
436 val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
437 val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
438 IPROC_MSI_EQ_EN);
439 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
440 }
441}
442
443static int iproc_msi_alloc_domains(struct device_node *node,
444 struct iproc_msi *msi)
445{
446 msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
447 &msi_domain_ops, msi);
448 if (!msi->inner_domain)
449 return -ENOMEM;
450
451 msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
452 &iproc_msi_domain_info,
453 msi->inner_domain);
454 if (!msi->msi_domain) {
455 irq_domain_remove(msi->inner_domain);
456 return -ENOMEM;
457 }
458
459 return 0;
460}
461
462static void iproc_msi_free_domains(struct iproc_msi *msi)
463{
464 if (msi->msi_domain)
465 irq_domain_remove(msi->msi_domain);
466
467 if (msi->inner_domain)
468 irq_domain_remove(msi->inner_domain);
469}
470
471static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
472{
473 int i;
474
475 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
476 irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
477 NULL, NULL);
478 }
479}
480
481static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
482{
483 int i, ret;
484 cpumask_var_t mask;
485 struct iproc_pcie *pcie = msi->pcie;
486
487 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
488 irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
489 iproc_msi_handler,
490 &msi->grps[i]);
491 /* Dedicate GIC interrupt to each CPU core */
492 if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
493 cpumask_clear(mask);
494 cpumask_set_cpu(cpu, mask);
495 ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
496 if (ret)
497 dev_err(pcie->dev,
498 "failed to set affinity for IRQ%d\n",
499 msi->grps[i].gic_irq);
500 free_cpumask_var(mask);
501 } else {
502 dev_err(pcie->dev, "failed to alloc CPU mask\n");
503 ret = -EINVAL;
504 }
505
506 if (ret) {
507 /* Free all configured/unconfigured IRQs */
508 iproc_msi_irq_free(msi, cpu);
509 return ret;
510 }
511 }
512
513 return 0;
514}
515
516int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
517{
518 struct iproc_msi *msi;
519 int i, ret;
520 unsigned int cpu;
521
522 if (!of_device_is_compatible(node, "brcm,iproc-msi"))
523 return -ENODEV;
524
525 if (!of_find_property(node, "msi-controller", NULL))
526 return -ENODEV;
527
528 if (pcie->msi)
529 return -EBUSY;
530
531 msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
532 if (!msi)
533 return -ENOMEM;
534
535 msi->pcie = pcie;
536 pcie->msi = msi;
537 msi->msi_addr = pcie->base_addr;
538 mutex_init(&msi->bitmap_lock);
539 msi->nr_cpus = num_possible_cpus();
540
541 msi->nr_irqs = of_irq_count(node);
542 if (!msi->nr_irqs) {
543 dev_err(pcie->dev, "found no MSI GIC interrupt\n");
544 return -ENODEV;
545 }
546
547 if (msi->nr_irqs > NR_HW_IRQS) {
548 dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
549 msi->nr_irqs);
550 msi->nr_irqs = NR_HW_IRQS;
551 }
552
553 if (msi->nr_irqs < msi->nr_cpus) {
554 dev_err(pcie->dev,
555 "not enough GIC interrupts for MSI affinity\n");
556 return -EINVAL;
557 }
558
559 if (msi->nr_irqs % msi->nr_cpus != 0) {
560 msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
561 dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
562 msi->nr_irqs);
563 }
564
565 switch (pcie->type) {
566 case IPROC_PCIE_PAXB:
567 msi->reg_offsets = iproc_msi_reg_paxb;
568 msi->nr_eq_region = 1;
569 msi->nr_msi_region = 1;
570 break;
571 case IPROC_PCIE_PAXC:
572 msi->reg_offsets = iproc_msi_reg_paxc;
573 msi->nr_eq_region = msi->nr_irqs;
574 msi->nr_msi_region = msi->nr_irqs;
575 break;
576 default:
577 dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
578 return -EINVAL;
579 }
580
581 if (of_find_property(node, "brcm,pcie-msi-inten", NULL))
582 msi->has_inten_reg = true;
583
584 msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
585 msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs),
586 sizeof(*msi->bitmap), GFP_KERNEL);
587 if (!msi->bitmap)
588 return -ENOMEM;
589
590 msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
591 GFP_KERNEL);
592 if (!msi->grps)
593 return -ENOMEM;
594
595 for (i = 0; i < msi->nr_irqs; i++) {
596 unsigned int irq = irq_of_parse_and_map(node, i);
597
598 if (!irq) {
599 dev_err(pcie->dev, "unable to parse/map interrupt\n");
600 ret = -ENODEV;
601 goto free_irqs;
602 }
603 msi->grps[i].gic_irq = irq;
604 msi->grps[i].msi = msi;
605 msi->grps[i].eq = i;
606 }
607
608 /* Reserve memory for event queue and make sure memories are zeroed */
609 msi->eq_cpu = dma_zalloc_coherent(pcie->dev,
610 msi->nr_eq_region * EQ_MEM_REGION_SIZE,
611 &msi->eq_dma, GFP_KERNEL);
612 if (!msi->eq_cpu) {
613 ret = -ENOMEM;
614 goto free_irqs;
615 }
616
617 ret = iproc_msi_alloc_domains(node, msi);
618 if (ret) {
619 dev_err(pcie->dev, "failed to create MSI domains\n");
620 goto free_eq_dma;
621 }
622
623 for_each_online_cpu(cpu) {
624 ret = iproc_msi_irq_setup(msi, cpu);
625 if (ret)
626 goto free_msi_irq;
627 }
628
629 iproc_msi_enable(msi);
630
631 return 0;
632
633free_msi_irq:
634 for_each_online_cpu(cpu)
635 iproc_msi_irq_free(msi, cpu);
636 iproc_msi_free_domains(msi);
637
638free_eq_dma:
639 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
640 msi->eq_cpu, msi->eq_dma);
641
642free_irqs:
643 for (i = 0; i < msi->nr_irqs; i++) {
644 if (msi->grps[i].gic_irq)
645 irq_dispose_mapping(msi->grps[i].gic_irq);
646 }
647 pcie->msi = NULL;
648 return ret;
649}
650EXPORT_SYMBOL(iproc_msi_init);
651
652void iproc_msi_exit(struct iproc_pcie *pcie)
653{
654 struct iproc_msi *msi = pcie->msi;
655 unsigned int i, cpu;
656
657 if (!msi)
658 return;
659
660 iproc_msi_disable(msi);
661
662 for_each_online_cpu(cpu)
663 iproc_msi_irq_free(msi, cpu);
664
665 iproc_msi_free_domains(msi);
666
667 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
668 msi->eq_cpu, msi->eq_dma);
669
670 for (i = 0; i < msi->nr_irqs; i++) {
671 if (msi->grps[i].gic_irq)
672 irq_dispose_mapping(msi->grps[i].gic_irq);
673 }
674}
675EXPORT_SYMBOL(iproc_msi_exit);