Merge tag 'irq_urgent_for_v6.7_rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / drivers / opp / core.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
e1f60b29
NM
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
e1f60b29
NM
9 */
10
d6d2a528
VK
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
d54974c2 13#include <linux/clk.h>
e1f60b29
NM
14#include <linux/errno.h>
15#include <linux/err.h>
51990e82 16#include <linux/device.h>
80126ce7 17#include <linux/export.h>
009acd19 18#include <linux/pm_domain.h>
9f8ea969 19#include <linux/regulator/consumer.h>
11b9b663
VK
20#include <linux/slab.h>
21#include <linux/xarray.h>
e1f60b29 22
f59d3ee8 23#include "opp.h"
e1f60b29
NM
24
25/*
2c2709dc
VK
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
e1f60b29
NM
28 * various states of availability.
29 */
f47b72a1 30LIST_HEAD(opp_tables);
7eba0c76 31
e1f60b29 32/* Lock to allow exclusive modification to the device and opp lists */
2c2709dc 33DEFINE_MUTEX(opp_table_lock);
27c09484
VK
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
e1f60b29 36
11b9b663
VK
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
9e62edac 40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
06441658 41{
2c2709dc 42 struct opp_device *opp_dev;
9e62edac 43 bool found = false;
06441658 44
9e62edac 45 mutex_lock(&opp_table->lock);
2c2709dc 46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
9e62edac
VK
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
06441658 51
9e62edac
VK
52 mutex_unlock(&opp_table->lock);
53 return found;
06441658
VK
54}
55
6ac42397 56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
5b650b38
VK
57{
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
9e62edac 61 if (_find_opp_dev(dev, opp_table)) {
5b650b38 62 _get_opp_table_kref(opp_table);
5b650b38
VK
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68}
69
e1f60b29 70/**
2c2709dc
VK
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
e1f60b29 73 *
052c6f19 74 * Search OPP table for one containing matching device.
e1f60b29 75 *
2c2709dc 76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
e1f60b29
NM
77 * -EINVAL based on type of error.
78 *
5b650b38 79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
e1f60b29 80 */
2c2709dc 81struct opp_table *_find_opp_table(struct device *dev)
e1f60b29 82{
2c2709dc 83 struct opp_table *opp_table;
e1f60b29 84
50a3cb04 85 if (IS_ERR_OR_NULL(dev)) {
e1f60b29
NM
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
5b650b38
VK
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
e1f60b29 93
5b650b38 94 return opp_table;
e1f60b29
NM
95}
96
f123ea74
VK
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table)
105{
106 return !WARN_ON(opp_table->clk_count > 1);
107}
108
e1f60b29 109/**
d6d00742 110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
e1f60b29
NM
111 * @opp: opp for which voltage has to be returned for
112 *
984f16c8 113 * Return: voltage in micro volt corresponding to the opp, else
e1f60b29
NM
114 * return 0
115 *
dfbe4678 116 * This is useful only for devices with single power supply.
e1f60b29 117 */
47d43ba7 118unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
e1f60b29 119{
052c6f19 120 if (IS_ERR_OR_NULL(opp)) {
e1f60b29 121 pr_err("%s: Invalid parameters\n", __func__);
052c6f19
VK
122 return 0;
123 }
e1f60b29 124
052c6f19 125 return opp->supplies[0].u_volt;
e1f60b29 126}
5d4879cd 127EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
e1f60b29 128
69b1af17
VK
129/**
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp: opp for which voltage has to be returned for
132 * @supplies: Placeholder for copying the supply information.
133 *
134 * Return: negative error number on failure, 0 otherwise on success after
135 * setting @supplies.
136 *
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
139 */
140int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 struct dev_pm_opp_supply *supplies)
142{
143 if (IS_ERR_OR_NULL(opp) || !supplies) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return -EINVAL;
146 }
147
148 memcpy(supplies, opp->supplies,
149 sizeof(*supplies) * opp->opp_table->regulator_count);
150 return 0;
151}
152EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153
4f9a7a1d
LL
154/**
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp: opp for which power has to be returned for
157 *
158 * Return: power in micro watt corresponding to the opp, else
159 * return 0
160 *
161 * This is useful only for devices with single power supply.
162 */
163unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164{
165 unsigned long opp_power = 0;
166 int i;
167
168 if (IS_ERR_OR_NULL(opp)) {
169 pr_err("%s: Invalid parameters\n", __func__);
170 return 0;
171 }
172 for (i = 0; i < opp->opp_table->regulator_count; i++)
173 opp_power += opp->supplies[i].u_watt;
174
175 return opp_power;
176}
177EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178
5f756d03
MS
179/**
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 * available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
184 *
185 * Return: frequency in hertz corresponding to the opp with specified index,
186 * else return 0
187 */
188unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189{
190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return 0;
193 }
194
195 return opp->rates[index];
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198
5b93ac54
RN
199/**
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp: opp for which level value has to be returned for
202 *
203 * Return: level read from device tree corresponding to the opp, else
204 * return 0.
205 */
206unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207{
208 if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 pr_err("%s: Invalid parameters\n", __func__);
210 return 0;
211 }
212
213 return opp->level;
214}
215EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216
597ff543
DO
217/**
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 * corresponding to an available opp
220 * @opp: opp for which performance state has to be returned for
221 * @index: index of the required opp
222 *
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return 0.
225 */
226unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 unsigned int index)
228{
229 if (IS_ERR_OR_NULL(opp) || !opp->available ||
7ddd8deb 230 index >= opp->opp_table->required_opp_count) {
597ff543
DO
231 pr_err("%s: Invalid parameters\n", __func__);
232 return 0;
233 }
234
7eba0c76 235 /* required-opps not fully initialized yet */
7ddd8deb 236 if (lazy_linking_pending(opp->opp_table))
7eba0c76
VK
237 return 0;
238
84cb7ff3 239 /* The required OPP table must belong to a genpd */
7ddd8deb 240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
84cb7ff3
VK
241 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 return 0;
243 }
244
7c41cdcd 245 return opp->required_opps[index]->level;
597ff543
DO
246}
247EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248
19445b25
BZ
249/**
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
252 *
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
256 *
257 * Return: true if opp is turbo opp, else false.
19445b25
BZ
258 */
259bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260{
052c6f19 261 if (IS_ERR_OR_NULL(opp) || !opp->available) {
19445b25
BZ
262 pr_err("%s: Invalid parameters\n", __func__);
263 return false;
264 }
265
052c6f19 266 return opp->turbo;
19445b25
BZ
267}
268EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269
3ca9bb33
VK
270/**
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev: device for which we do this operation
273 *
274 * Return: This function returns the max clock latency in nanoseconds.
3ca9bb33
VK
275 */
276unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277{
2c2709dc 278 struct opp_table *opp_table;
3ca9bb33
VK
279 unsigned long clock_latency_ns;
280
2c2709dc
VK
281 opp_table = _find_opp_table(dev);
282 if (IS_ERR(opp_table))
5b650b38
VK
283 return 0;
284
285 clock_latency_ns = opp_table->clock_latency_ns_max;
286
287 dev_pm_opp_put_opp_table(opp_table);
3ca9bb33 288
3ca9bb33
VK
289 return clock_latency_ns;
290}
291EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292
655c9df9
VK
293/**
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max voltage latency in nanoseconds.
655c9df9
VK
298 */
299unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300{
2c2709dc 301 struct opp_table *opp_table;
655c9df9 302 struct dev_pm_opp *opp;
478256bd 303 struct regulator *reg;
655c9df9 304 unsigned long latency_ns = 0;
dfbe4678
VK
305 int ret, i, count;
306 struct {
307 unsigned long min;
308 unsigned long max;
309 } *uV;
310
cdd3e614
VK
311 opp_table = _find_opp_table(dev);
312 if (IS_ERR(opp_table))
313 return 0;
314
dfbe4678 315 /* Regulator may not be required for the device */
90e3577b 316 if (!opp_table->regulators)
cdd3e614 317 goto put_opp_table;
dfbe4678 318
90e3577b
VK
319 count = opp_table->regulator_count;
320
dfbe4678
VK
321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 if (!uV)
478256bd 323 goto put_opp_table;
655c9df9 324
052c6f19
VK
325 mutex_lock(&opp_table->lock);
326
dfbe4678
VK
327 for (i = 0; i < count; i++) {
328 uV[i].min = ~0;
329 uV[i].max = 0;
655c9df9 330
052c6f19 331 list_for_each_entry(opp, &opp_table->opp_list, node) {
dfbe4678
VK
332 if (!opp->available)
333 continue;
334
335 if (opp->supplies[i].u_volt_min < uV[i].min)
336 uV[i].min = opp->supplies[i].u_volt_min;
337 if (opp->supplies[i].u_volt_max > uV[i].max)
338 uV[i].max = opp->supplies[i].u_volt_max;
339 }
655c9df9
VK
340 }
341
052c6f19 342 mutex_unlock(&opp_table->lock);
655c9df9
VK
343
344 /*
2c2709dc 345 * The caller needs to ensure that opp_table (and hence the regulator)
655c9df9
VK
346 * isn't freed, while we are executing this routine.
347 */
8cc31116 348 for (i = 0; i < count; i++) {
478256bd 349 reg = opp_table->regulators[i];
dfbe4678
VK
350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 if (ret > 0)
352 latency_ns += ret * 1000;
353 }
354
dfbe4678 355 kfree(uV);
cdd3e614
VK
356put_opp_table:
357 dev_pm_opp_put_opp_table(opp_table);
655c9df9
VK
358
359 return latency_ns;
360}
361EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362
21743447
VK
363/**
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365 * nanoseconds
366 * @dev: device for which we do this operation
367 *
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
21743447
VK
370 */
371unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372{
373 return dev_pm_opp_get_max_volt_latency(dev) +
374 dev_pm_opp_get_max_clock_latency(dev);
375}
376EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377
4eafbd15 378/**
3aa26a3b 379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
4eafbd15
BZ
380 * @dev: device for which we do this operation
381 *
3aa26a3b
VK
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
4eafbd15 384 */
3aa26a3b 385unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
4eafbd15 386{
2c2709dc 387 struct opp_table *opp_table;
3aa26a3b 388 unsigned long freq = 0;
4eafbd15 389
2c2709dc 390 opp_table = _find_opp_table(dev);
5b650b38
VK
391 if (IS_ERR(opp_table))
392 return 0;
3aa26a3b 393
5b650b38
VK
394 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396
397 dev_pm_opp_put_opp_table(opp_table);
4eafbd15 398
3aa26a3b 399 return freq;
4eafbd15 400}
3aa26a3b 401EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
4eafbd15 402
a1e8c136
VK
403int _get_opp_count(struct opp_table *opp_table)
404{
405 struct dev_pm_opp *opp;
406 int count = 0;
407
408 mutex_lock(&opp_table->lock);
409
410 list_for_each_entry(opp, &opp_table->opp_list, node) {
411 if (opp->available)
412 count++;
413 }
414
415 mutex_unlock(&opp_table->lock);
416
417 return count;
418}
419
e1f60b29 420/**
2c2709dc 421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
e1f60b29
NM
422 * @dev: device for which we do this operation
423 *
984f16c8 424 * Return: This function returns the number of available opps if there are any,
e1f60b29 425 * else returns 0 if none or the corresponding error value.
e1f60b29 426 */
5d4879cd 427int dev_pm_opp_get_opp_count(struct device *dev)
e1f60b29 428{
2c2709dc 429 struct opp_table *opp_table;
a1e8c136 430 int count;
e1f60b29 431
2c2709dc
VK
432 opp_table = _find_opp_table(dev);
433 if (IS_ERR(opp_table)) {
434 count = PTR_ERR(opp_table);
035ed072 435 dev_dbg(dev, "%s: OPP table not found (%d)\n",
b4718c02 436 __func__, count);
09f662f9 437 return count;
e1f60b29
NM
438 }
439
a1e8c136 440 count = _get_opp_count(opp_table);
5b650b38
VK
441 dev_pm_opp_put_opp_table(opp_table);
442
e1f60b29
NM
443 return count;
444}
5d4879cd 445EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
e1f60b29 446
aab8ced2
VK
447/* Helpers to read keys */
448static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449{
034d6aac 450 return opp->rates[index];
aab8ced2
VK
451}
452
c2ab2cb6
VK
453static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454{
455 return opp->level;
456}
457
add1dc09
VK
458static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459{
460 return opp->bandwidth[index].peak;
461}
462
aab8ced2
VK
463/* Generic comparison helpers */
464static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 unsigned long opp_key, unsigned long key)
466{
467 if (opp_key == key) {
468 *opp = temp_opp;
469 return true;
470 }
471
472 return false;
473}
474
475static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 unsigned long opp_key, unsigned long key)
477{
478 if (opp_key >= key) {
479 *opp = temp_opp;
480 return true;
481 }
482
483 return false;
484}
485
486static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 unsigned long opp_key, unsigned long key)
488{
489 if (opp_key > key)
490 return true;
491
492 *opp = temp_opp;
493 return false;
494}
495
496/* Generic key finding helpers */
497static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 unsigned long *key, int index, bool available,
499 unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
e10a4644
VK
501 unsigned long opp_key, unsigned long key),
502 bool (*assert)(struct opp_table *opp_table))
aab8ced2
VK
503{
504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505
e10a4644
VK
506 /* Assert that the requirement is met */
507 if (assert && !assert(opp_table))
508 return ERR_PTR(-EINVAL);
509
aab8ced2
VK
510 mutex_lock(&opp_table->lock);
511
512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 if (temp_opp->available == available) {
514 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 break;
516 }
517 }
518
519 /* Increment the reference count of OPP */
520 if (!IS_ERR(opp)) {
521 *key = read(opp, index);
522 dev_pm_opp_get(opp);
523 }
524
525 mutex_unlock(&opp_table->lock);
526
527 return opp;
528}
529
530static struct dev_pm_opp *
531_find_key(struct device *dev, unsigned long *key, int index, bool available,
532 unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
e10a4644
VK
534 unsigned long opp_key, unsigned long key),
535 bool (*assert)(struct opp_table *opp_table))
aab8ced2
VK
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *opp;
539
540 opp_table = _find_opp_table(dev);
541 if (IS_ERR(opp_table)) {
542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 PTR_ERR(opp_table));
544 return ERR_CAST(opp_table);
545 }
546
547 opp = _opp_table_find_key(opp_table, key, index, available, read,
e10a4644 548 compare, assert);
aab8ced2
VK
549
550 dev_pm_opp_put_opp_table(opp_table);
551
552 return opp;
553}
554
555static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 unsigned long key, int index, bool available,
e10a4644
VK
557 unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 bool (*assert)(struct opp_table *opp_table))
aab8ced2
VK
559{
560 /*
561 * The value of key will be updated here, but will be ignored as the
562 * caller doesn't need it.
563 */
e10a4644
VK
564 return _find_key(dev, &key, index, available, read, _compare_exact,
565 assert);
aab8ced2
VK
566}
567
568static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 unsigned long *key, int index, bool available,
e10a4644
VK
570 unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 bool (*assert)(struct opp_table *opp_table))
aab8ced2
VK
572{
573 return _opp_table_find_key(opp_table, key, index, available, read,
e10a4644 574 _compare_ceil, assert);
aab8ced2
VK
575}
576
577static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 int index, bool available,
e10a4644
VK
579 unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 bool (*assert)(struct opp_table *opp_table))
aab8ced2 581{
e10a4644
VK
582 return _find_key(dev, key, index, available, read, _compare_ceil,
583 assert);
aab8ced2
VK
584}
585
586static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 unsigned long *key, int index, bool available,
e10a4644
VK
588 unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 bool (*assert)(struct opp_table *opp_table))
aab8ced2 590{
e10a4644
VK
591 return _find_key(dev, key, index, available, read, _compare_floor,
592 assert);
aab8ced2
VK
593}
594
e1f60b29 595/**
5d4879cd 596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
e1f60b29
NM
597 * @dev: device for which we do this operation
598 * @freq: frequency to search for
7ae49618 599 * @available: true/false - match for available opp
e1f60b29 600 *
2c2709dc 601 * Return: Searches for exact match in the opp table and returns pointer to the
984f16c8
NM
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
0779726c
NM
604 * EINVAL: for bad pointer
605 * ERANGE: no match found for search
606 * ENODEV: if device not found in list of registered devices
e1f60b29
NM
607 *
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
611 *
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
614 *
8a31d9d9
VK
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 * use.
e1f60b29 617 */
47d43ba7 618struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
aab8ced2 619 unsigned long freq, bool available)
e1f60b29 620{
f123ea74
VK
621 return _find_key_exact(dev, freq, 0, available, _read_freq,
622 assert_single_clk);
e1f60b29 623}
5d4879cd 624EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
e1f60b29 625
a5893928
VK
626/**
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 * clock corresponding to the index
629 * @dev: Device for which we do this operation
630 * @freq: frequency to search for
631 * @index: Clock index
632 * @available: true/false - match for available opp
633 *
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
636 *
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL: for bad pointer
640 * ERANGE: no match found for search
641 * ENODEV: if device not found in list of registered devices
642 *
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
644 * use.
645 */
646struct dev_pm_opp *
647dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 u32 index, bool available)
649{
650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651}
652EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653
067b7ce0
JZ
654static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 unsigned long *freq)
656{
e10a4644 657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
f123ea74 658 assert_single_clk);
067b7ce0
JZ
659}
660
e1f60b29 661/**
5d4879cd 662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
e1f60b29
NM
663 * @dev: device for which we do this operation
664 * @freq: Start frequency
665 *
666 * Search for the matching ceil *available* OPP from a starting freq
667 * for a device.
668 *
984f16c8 669 * Return: matching *opp and refreshes *freq accordingly, else returns
0779726c
NM
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671 * values can be:
672 * EINVAL: for bad pointer
673 * ERANGE: no match found for search
674 * ENODEV: if device not found in list of registered devices
e1f60b29 675 *
8a31d9d9
VK
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
677 * use.
e1f60b29 678 */
47d43ba7
NM
679struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 unsigned long *freq)
e1f60b29 681{
f123ea74 682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
e1f60b29 683}
5d4879cd 684EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
e1f60b29 685
142e17c1
MS
686/**
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 * clock corresponding to the index
689 * @dev: Device for which we do this operation
690 * @freq: Start frequency
691 * @index: Clock index
692 *
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
695 *
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698 * values can be:
699 * EINVAL: for bad pointer
700 * ERANGE: no match found for search
701 * ENODEV: if device not found in list of registered devices
702 *
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
704 * use.
705 */
706struct dev_pm_opp *
707dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 u32 index)
709{
710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711}
712EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713
e1f60b29 714/**
5d4879cd 715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
e1f60b29
NM
716 * @dev: device for which we do this operation
717 * @freq: Start frequency
718 *
719 * Search for the matching floor *available* OPP from a starting freq
720 * for a device.
721 *
984f16c8 722 * Return: matching *opp and refreshes *freq accordingly, else returns
0779726c
NM
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724 * values can be:
725 * EINVAL: for bad pointer
726 * ERANGE: no match found for search
727 * ENODEV: if device not found in list of registered devices
e1f60b29 728 *
8a31d9d9
VK
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
730 * use.
e1f60b29 731 */
47d43ba7
NM
732struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 unsigned long *freq)
e1f60b29 734{
f123ea74 735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
e1f60b29 736}
5d4879cd 737EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
e1f60b29 738
142e17c1
MS
739/**
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 * clock corresponding to the index
742 * @dev: Device for which we do this operation
743 * @freq: Start frequency
744 * @index: Clock index
745 *
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
748 *
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751 * values can be:
752 * EINVAL: for bad pointer
753 * ERANGE: no match found for search
754 * ENODEV: if device not found in list of registered devices
755 *
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
757 * use.
758 */
759struct dev_pm_opp *
760dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 u32 index)
762{
763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764}
765EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766
22079af7
VK
767/**
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev: device for which we do this operation
770 * @level: level to search for
771 *
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL: for bad pointer
776 * ERANGE: no match found for search
777 * ENODEV: if device not found in list of registered devices
778 *
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 * use.
781 */
782struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 unsigned int level)
784{
e10a4644 785 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
22079af7
VK
786}
787EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788
789/**
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev: device for which we do this operation
792 * @level: level to search for
793 *
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL: for bad pointer
798 * ERANGE: no match found for search
799 * ENODEV: if device not found in list of registered devices
800 *
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
802 * use.
803 */
804struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 unsigned int *level)
806{
c2ab2cb6
VK
807 unsigned long temp = *level;
808 struct dev_pm_opp *opp;
22079af7 809
e10a4644 810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
c2ab2cb6 811 *level = temp;
22079af7
VK
812 return opp;
813}
814EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
815
a0242c81
K
816/**
817 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
818 * @dev: device for which we do this operation
819 * @level: Start level
820 *
821 * Search for the matching floor *available* OPP from a starting level
822 * for a device.
823 *
824 * Return: matching *opp and refreshes *level accordingly, else returns
825 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
826 * values can be:
827 * EINVAL: for bad pointer
828 * ERANGE: no match found for search
829 * ENODEV: if device not found in list of registered devices
830 *
831 * The callers are required to call dev_pm_opp_put() for the returned OPP after
832 * use.
833 */
834struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
835 unsigned long *level)
836{
837 return _find_key_floor(dev, level, 0, true, _read_level, NULL);
838}
839EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
840
00ce3873
KK
841/**
842 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
843 * @dev: device for which we do this operation
617df304 844 * @bw: start bandwidth
00ce3873
KK
845 * @index: which bandwidth to compare, in case of OPPs with several values
846 *
847 * Search for the matching floor *available* OPP from a starting bandwidth
848 * for a device.
849 *
850 * Return: matching *opp and refreshes *bw accordingly, else returns
851 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
852 * values can be:
853 * EINVAL: for bad pointer
854 * ERANGE: no match found for search
855 * ENODEV: if device not found in list of registered devices
856 *
857 * The callers are required to call dev_pm_opp_put() for the returned OPP after
858 * use.
859 */
add1dc09
VK
860struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
861 int index)
00ce3873 862{
add1dc09
VK
863 unsigned long temp = *bw;
864 struct dev_pm_opp *opp;
00ce3873 865
e10a4644 866 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
add1dc09 867 *bw = temp;
00ce3873
KK
868 return opp;
869}
870EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
871
872/**
873 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
874 * @dev: device for which we do this operation
617df304 875 * @bw: start bandwidth
00ce3873
KK
876 * @index: which bandwidth to compare, in case of OPPs with several values
877 *
878 * Search for the matching floor *available* OPP from a starting bandwidth
879 * for a device.
880 *
881 * Return: matching *opp and refreshes *bw accordingly, else returns
882 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
883 * values can be:
884 * EINVAL: for bad pointer
885 * ERANGE: no match found for search
886 * ENODEV: if device not found in list of registered devices
887 *
888 * The callers are required to call dev_pm_opp_put() for the returned OPP after
889 * use.
890 */
891struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
892 unsigned int *bw, int index)
893{
add1dc09
VK
894 unsigned long temp = *bw;
895 struct dev_pm_opp *opp;
00ce3873 896
e10a4644 897 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
add1dc09 898 *bw = temp;
00ce3873
KK
899 return opp;
900}
901EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
902
6a0712f6 903static int _set_opp_voltage(struct device *dev, struct regulator *reg,
ce31781a 904 struct dev_pm_opp_supply *supply)
6a0712f6
VK
905{
906 int ret;
907
908 /* Regulator not available for device */
909 if (IS_ERR(reg)) {
910 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
911 PTR_ERR(reg));
912 return 0;
913 }
914
ce31781a
VK
915 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
916 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
6a0712f6 917
ce31781a
VK
918 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
919 supply->u_volt, supply->u_volt_max);
6a0712f6
VK
920 if (ret)
921 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
ce31781a
VK
922 __func__, supply->u_volt_min, supply->u_volt,
923 supply->u_volt_max, ret);
6a0712f6
VK
924
925 return ret;
926}
927
2083da24
VK
928static int
929_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
930 struct dev_pm_opp *opp, void *data, bool scaling_down)
94735585 931{
1efae8d2
VK
932 unsigned long *target = data;
933 unsigned long freq;
94735585
VK
934 int ret;
935
1efae8d2
VK
936 /* One of target and opp must be available */
937 if (target) {
938 freq = *target;
939 } else if (opp) {
2083da24 940 freq = opp->rates[0];
1efae8d2
VK
941 } else {
942 WARN_ON(1);
943 return -EINVAL;
944 }
945
946 ret = clk_set_rate(opp_table->clk, freq);
94735585
VK
947 if (ret) {
948 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
949 ret);
1efae8d2
VK
950 } else {
951 opp_table->rate_clk_single = freq;
94735585
VK
952 }
953
954 return ret;
955}
956
8174a3a6
VK
957/*
958 * Simple implementation for configuring multiple clocks. Configure clocks in
959 * the order in which they are present in the array while scaling up.
960 */
961int dev_pm_opp_config_clks_simple(struct device *dev,
962 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
963 bool scaling_down)
964{
965 int ret, i;
966
967 if (scaling_down) {
968 for (i = opp_table->clk_count - 1; i >= 0; i--) {
969 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
970 if (ret) {
971 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
972 ret);
973 return ret;
974 }
975 }
976 } else {
977 for (i = 0; i < opp_table->clk_count; i++) {
978 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
979 if (ret) {
980 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
981 ret);
982 return ret;
983 }
984 }
985 }
986
d36cb843 987 return 0;
8174a3a6
VK
988}
989EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
990
c522ce8a
VK
991static int _opp_config_regulator_single(struct device *dev,
992 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
993 struct regulator **regulators, unsigned int count)
94735585 994{
c522ce8a 995 struct regulator *reg = regulators[0];
94735585
VK
996 int ret;
997
998 /* This function only supports single regulator per device */
c522ce8a 999 if (WARN_ON(count > 1)) {
94735585
VK
1000 dev_err(dev, "multiple regulators are not supported\n");
1001 return -EINVAL;
1002 }
1003
c522ce8a 1004 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
94735585 1005 if (ret)
c522ce8a 1006 return ret;
94735585 1007
8d45719c
KK
1008 /*
1009 * Enable the regulator after setting its voltages, otherwise it breaks
1010 * some boot-enabled regulators.
1011 */
c522ce8a 1012 if (unlikely(!new_opp->opp_table->enabled)) {
8d45719c
KK
1013 ret = regulator_enable(reg);
1014 if (ret < 0)
1015 dev_warn(dev, "Failed to enable regulator: %d", ret);
8d45719c
KK
1016 }
1017
94735585 1018 return 0;
94735585
VK
1019}
1020
b00e667a 1021static int _set_opp_bw(const struct opp_table *opp_table,
240ae50e 1022 struct dev_pm_opp *opp, struct device *dev)
b00e667a
VK
1023{
1024 u32 avg, peak;
1025 int i, ret;
1026
1027 if (!opp_table->paths)
1028 return 0;
1029
1030 for (i = 0; i < opp_table->path_count; i++) {
240ae50e 1031 if (!opp) {
b00e667a
VK
1032 avg = 0;
1033 peak = 0;
1034 } else {
1035 avg = opp->bandwidth[i].avg;
1036 peak = opp->bandwidth[i].peak;
1037 }
1038 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1039 if (ret) {
1040 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
240ae50e 1041 opp ? "set" : "remove", i, ret);
b00e667a
VK
1042 return ret;
1043 }
1044 }
1045
1046 return 0;
1047}
1048
528f2d8d
VK
1049static int _set_performance_state(struct device *dev, struct device *pd_dev,
1050 struct dev_pm_opp *opp, int i)
60cdeae0 1051{
7c41cdcd 1052 unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0;
60cdeae0
SG
1053 int ret;
1054
1055 if (!pd_dev)
1056 return 0;
1057
892c60c6 1058 ret = dev_pm_domain_set_performance_state(pd_dev, pstate);
60cdeae0 1059 if (ret) {
9bfb1fff 1060 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
60cdeae0
SG
1061 dev_name(pd_dev), pstate, ret);
1062 }
1063
1064 return ret;
1065}
1066
528f2d8d
VK
1067static int _opp_set_required_opps_generic(struct device *dev,
1068 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1069{
1070 dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n");
1071 return -ENOENT;
1072}
1073
1074static int _opp_set_required_opps_genpd(struct device *dev,
1075 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
ca1b5d77 1076{
29b1a92e
VK
1077 struct device **genpd_virt_devs =
1078 opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev;
48b5aaec 1079 int index, target, delta, ret;
c2bebf98
VK
1080
1081 /* Scaling up? Set required OPPs in normal order, else reverse */
1082 if (!scaling_down) {
1083 index = 0;
1084 target = opp_table->required_opp_count;
1085 delta = 1;
1086 } else {
1087 index = opp_table->required_opp_count - 1;
1088 target = -1;
1089 delta = -1;
1090 }
ca1b5d77 1091
c2bebf98
VK
1092 while (index != target) {
1093 ret = _set_performance_state(dev, genpd_virt_devs[index], opp, index);
1094 if (ret)
48b5aaec 1095 return ret;
c2bebf98
VK
1096
1097 index += delta;
ca1b5d77 1098 }
2c59138c 1099
48b5aaec 1100 return 0;
ca1b5d77
VK
1101}
1102
528f2d8d
VK
1103/* This is only called for PM domain for now */
1104static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1105 struct dev_pm_opp *opp, bool up)
1106{
1107 /* required-opps not fully initialized yet */
1108 if (lazy_linking_pending(opp_table))
1109 return -EBUSY;
1110
1111 if (opp_table->set_required_opps)
1112 return opp_table->set_required_opps(dev, opp_table, opp, up);
1113
1114 return 0;
1115}
1116
1117/* Update set_required_opps handler */
1118void _update_set_required_opps(struct opp_table *opp_table)
1119{
1120 /* Already set */
1121 if (opp_table->set_required_opps)
1122 return;
1123
1124 /* All required OPPs will belong to genpd or none */
1125 if (opp_table->required_opp_tables[0]->is_genpd)
1126 opp_table->set_required_opps = _opp_set_required_opps_genpd;
1127 else
1128 opp_table->set_required_opps = _opp_set_required_opps_generic;
1129}
1130
0025ff64
UH
1131static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1132 struct dev_pm_opp *opp)
1133{
1134 unsigned int level = 0;
1135 int ret = 0;
1136
1137 if (opp) {
1138 if (!opp->level)
1139 return 0;
1140
1141 level = opp->level;
1142 }
1143
1144 /* Request a new performance state through the device's PM domain. */
1145 ret = dev_pm_domain_set_performance_state(dev, level);
1146 if (ret)
1147 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1148 ret);
1149
1150 return ret;
1151}
1152
81c4d8a3
VK
1153static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1154{
1155 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1156 unsigned long freq;
1157
1158 if (!IS_ERR(opp_table->clk)) {
1159 freq = clk_get_rate(opp_table->clk);
1160 opp = _find_freq_ceil(opp_table, &freq);
1161 }
1162
1163 /*
1164 * Unable to find the current OPP ? Pick the first from the list since
1165 * it is in ascending order, otherwise rest of the code will need to
1166 * make special checks to validate current_opp.
1167 */
1168 if (IS_ERR(opp)) {
1169 mutex_lock(&opp_table->lock);
1170 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1171 dev_pm_opp_get(opp);
1172 mutex_unlock(&opp_table->lock);
1173 }
1174
1175 opp_table->current_opp = opp;
1176}
1177
5ad58bba 1178static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
f3364e17
VK
1179{
1180 int ret;
1181
1182 if (!opp_table->enabled)
1183 return 0;
1184
1185 /*
1186 * Some drivers need to support cases where some platforms may
1187 * have OPP table for the device, while others don't and
1188 * opp_set_rate() just needs to behave like clk_set_rate().
1189 */
1190 if (!_get_opp_count(opp_table))
1191 return 0;
1192
240ae50e 1193 ret = _set_opp_bw(opp_table, NULL, dev);
f3364e17
VK
1194 if (ret)
1195 return ret;
1196
1197 if (opp_table->regulators)
1198 regulator_disable(opp_table->regulators[0]);
1199
0025ff64
UH
1200 ret = _set_opp_level(dev, opp_table, NULL);
1201 if (ret)
1202 goto out;
1203
2c59138c 1204 ret = _set_required_opps(dev, opp_table, NULL, false);
f3364e17 1205
0025ff64 1206out:
f3364e17
VK
1207 opp_table->enabled = false;
1208 return ret;
1209}
1210
386ba854 1211static int _set_opp(struct device *dev, struct opp_table *opp_table,
1efae8d2 1212 struct dev_pm_opp *opp, void *clk_data, bool forced)
6a0712f6 1213{
386ba854 1214 struct dev_pm_opp *old_opp;
f0b88fa4 1215 int scaling_down, ret;
6a0712f6 1216
386ba854
VK
1217 if (unlikely(!opp))
1218 return _disable_opp_table(dev, opp_table);
aca48b61 1219
81c4d8a3
VK
1220 /* Find the currently set OPP if we don't know already */
1221 if (unlikely(!opp_table->current_opp))
1222 _find_current_opp(dev, opp_table);
6a0712f6 1223
81c4d8a3 1224 old_opp = opp_table->current_opp;
81c4d8a3
VK
1225
1226 /* Return early if nothing to do */
1efae8d2 1227 if (!forced && old_opp == opp && opp_table->enabled) {
9e28f7a7 1228 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
386ba854 1229 return 0;
6a0712f6
VK
1230 }
1231
f0b88fa4 1232 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
2083da24
VK
1233 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1234 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
f0b88fa4
VK
1235 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1236
2083da24 1237 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
f0b88fa4
VK
1238 if (scaling_down == -1)
1239 scaling_down = 0;
dfbe4678 1240
ca1b5d77 1241 /* Scaling up? Configure required OPPs before frequency */
f0b88fa4 1242 if (!scaling_down) {
2c59138c 1243 ret = _set_required_opps(dev, opp_table, opp, true);
870d5d96
VK
1244 if (ret) {
1245 dev_err(dev, "Failed to set required opps: %d\n", ret);
1246 return ret;
1247 }
1248
0025ff64
UH
1249 ret = _set_opp_level(dev, opp_table, opp);
1250 if (ret)
1251 return ret;
1252
870d5d96
VK
1253 ret = _set_opp_bw(opp_table, opp, dev);
1254 if (ret) {
1255 dev_err(dev, "Failed to set bw: %d\n", ret);
386ba854 1256 return ret;
870d5d96 1257 }
aee3352f
VK
1258
1259 if (opp_table->config_regulators) {
1260 ret = opp_table->config_regulators(dev, old_opp, opp,
1261 opp_table->regulators,
1262 opp_table->regulator_count);
1263 if (ret) {
1264 dev_err(dev, "Failed to set regulator voltages: %d\n",
1265 ret);
1266 return ret;
1267 }
1268 }
ca1b5d77
VK
1269 }
1270
2083da24
VK
1271 if (opp_table->config_clks) {
1272 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1273 if (ret)
1274 return ret;
1275 }
870d5d96 1276
ca1b5d77 1277 /* Scaling down? Configure required OPPs after frequency */
870d5d96 1278 if (scaling_down) {
aee3352f
VK
1279 if (opp_table->config_regulators) {
1280 ret = opp_table->config_regulators(dev, old_opp, opp,
1281 opp_table->regulators,
1282 opp_table->regulator_count);
1283 if (ret) {
1284 dev_err(dev, "Failed to set regulator voltages: %d\n",
1285 ret);
1286 return ret;
1287 }
1288 }
1289
870d5d96
VK
1290 ret = _set_opp_bw(opp_table, opp, dev);
1291 if (ret) {
1292 dev_err(dev, "Failed to set bw: %d\n", ret);
1293 return ret;
1294 }
1295
0025ff64
UH
1296 ret = _set_opp_level(dev, opp_table, opp);
1297 if (ret)
1298 return ret;
1299
2c59138c 1300 ret = _set_required_opps(dev, opp_table, opp, false);
870d5d96 1301 if (ret) {
ca1b5d77 1302 dev_err(dev, "Failed to set required opps: %d\n", ret);
870d5d96
VK
1303 return ret;
1304 }
dfbe4678
VK
1305 }
1306
870d5d96
VK
1307 opp_table->enabled = true;
1308 dev_pm_opp_put(old_opp);
81c4d8a3 1309
870d5d96
VK
1310 /* Make sure current_opp doesn't get freed */
1311 dev_pm_opp_get(opp);
1312 opp_table->current_opp = opp;
fe2af402 1313
386ba854
VK
1314 return ret;
1315}
1316
1317/**
1318 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1319 * @dev: device for which we do this operation
1320 * @target_freq: frequency to achieve
1321 *
1322 * This configures the power-supplies to the levels specified by the OPP
1323 * corresponding to the target_freq, and programs the clock to a value <=
1324 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1325 * provided by the opp, should have already rounded to the target OPP's
1326 * frequency.
1327 */
1328int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1329{
1330 struct opp_table *opp_table;
1331 unsigned long freq = 0, temp_freq;
1332 struct dev_pm_opp *opp = NULL;
1efae8d2 1333 bool forced = false;
386ba854
VK
1334 int ret;
1335
1336 opp_table = _find_opp_table(dev);
1337 if (IS_ERR(opp_table)) {
1338 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1339 return PTR_ERR(opp_table);
1340 }
1341
1342 if (target_freq) {
1343 /*
1344 * For IO devices which require an OPP on some platforms/SoCs
1345 * while just needing to scale the clock on some others
1346 * we look for empty OPP tables with just a clock handle and
1347 * scale only the clk. This makes dev_pm_opp_set_rate()
1348 * equivalent to a clk_set_rate()
1349 */
1350 if (!_get_opp_count(opp_table)) {
2083da24
VK
1351 ret = opp_table->config_clks(dev, opp_table, NULL,
1352 &target_freq, false);
386ba854
VK
1353 goto put_opp_table;
1354 }
1355
1356 freq = clk_round_rate(opp_table->clk, target_freq);
1357 if ((long)freq <= 0)
1358 freq = target_freq;
1359
1360 /*
1361 * The clock driver may support finer resolution of the
1362 * frequencies than the OPP table, don't update the frequency we
1363 * pass to clk_set_rate() here.
1364 */
1365 temp_freq = freq;
1366 opp = _find_freq_ceil(opp_table, &temp_freq);
1367 if (IS_ERR(opp)) {
1368 ret = PTR_ERR(opp);
1369 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1370 __func__, freq, ret);
1371 goto put_opp_table;
1372 }
1efae8d2
VK
1373
1374 /*
1375 * An OPP entry specifies the highest frequency at which other
1376 * properties of the OPP entry apply. Even if the new OPP is
1377 * same as the old one, we may still reach here for a different
1378 * value of the frequency. In such a case, do not abort but
1379 * configure the hardware to the desired frequency forcefully.
1380 */
1381 forced = opp_table->rate_clk_single != target_freq;
386ba854
VK
1382 }
1383
1efae8d2 1384 ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
386ba854
VK
1385
1386 if (target_freq)
1387 dev_pm_opp_put(opp);
1efae8d2 1388
052c6f19 1389put_opp_table:
5b650b38 1390 dev_pm_opp_put_opp_table(opp_table);
052c6f19 1391 return ret;
6a0712f6
VK
1392}
1393EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1394
abbe3483
VK
1395/**
1396 * dev_pm_opp_set_opp() - Configure device for OPP
1397 * @dev: device for which we do this operation
1398 * @opp: OPP to set to
1399 *
1400 * This configures the device based on the properties of the OPP passed to this
1401 * routine.
1402 *
1403 * Return: 0 on success, a negative error number otherwise.
1404 */
1405int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1406{
1407 struct opp_table *opp_table;
1408 int ret;
1409
1410 opp_table = _find_opp_table(dev);
1411 if (IS_ERR(opp_table)) {
1412 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1413 return PTR_ERR(opp_table);
1414 }
1415
1efae8d2 1416 ret = _set_opp(dev, opp_table, opp, NULL, false);
abbe3483
VK
1417 dev_pm_opp_put_opp_table(opp_table);
1418
1419 return ret;
1420}
1421EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1422
2c2709dc 1423/* OPP-dev Helpers */
2c2709dc
VK
1424static void _remove_opp_dev(struct opp_device *opp_dev,
1425 struct opp_table *opp_table)
06441658 1426{
2c2709dc
VK
1427 opp_debug_unregister(opp_dev, opp_table);
1428 list_del(&opp_dev->node);
052c6f19 1429 kfree(opp_dev);
06441658
VK
1430}
1431
ef43f01a
VK
1432struct opp_device *_add_opp_dev(const struct device *dev,
1433 struct opp_table *opp_table)
06441658 1434{
2c2709dc 1435 struct opp_device *opp_dev;
06441658 1436
2c2709dc
VK
1437 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1438 if (!opp_dev)
06441658
VK
1439 return NULL;
1440
2c2709dc
VK
1441 /* Initialize opp-dev */
1442 opp_dev->dev = dev;
3d255699 1443
ef43f01a 1444 mutex_lock(&opp_table->lock);
052c6f19 1445 list_add(&opp_dev->node, &opp_table->dev_list);
ef43f01a 1446 mutex_unlock(&opp_table->lock);
06441658 1447
2c2709dc 1448 /* Create debugfs entries for the opp_table */
a2dea4cb 1449 opp_debug_register(opp_dev, opp_table);
283d55e6
VK
1450
1451 return opp_dev;
1452}
1453
eb7c8743 1454static struct opp_table *_allocate_opp_table(struct device *dev, int index)
07cce74a 1455{
2c2709dc
VK
1456 struct opp_table *opp_table;
1457 struct opp_device *opp_dev;
d54974c2 1458 int ret;
07cce74a
VK
1459
1460 /*
2c2709dc 1461 * Allocate a new OPP table. In the infrequent case where a new
07cce74a
VK
1462 * device is needed to be added, we pay this penalty.
1463 */
2c2709dc
VK
1464 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1465 if (!opp_table)
dd461cd9 1466 return ERR_PTR(-ENOMEM);
07cce74a 1467
3d255699 1468 mutex_init(&opp_table->lock);
2c2709dc 1469 INIT_LIST_HEAD(&opp_table->dev_list);
7eba0c76 1470 INIT_LIST_HEAD(&opp_table->lazy);
06441658 1471
2083da24
VK
1472 opp_table->clk = ERR_PTR(-ENODEV);
1473
46f48aca
VK
1474 /* Mark regulator count uninitialized */
1475 opp_table->regulator_count = -1;
1476
2c2709dc
VK
1477 opp_dev = _add_opp_dev(dev, opp_table);
1478 if (!opp_dev) {
dd461cd9
SG
1479 ret = -ENOMEM;
1480 goto err;
06441658
VK
1481 }
1482
eb7c8743 1483 _of_init_opp_table(opp_table, dev, index);
50f8cfbd 1484
6d3f922c
GD
1485 /* Find interconnect path(s) for the device */
1486 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
dd461cd9
SG
1487 if (ret) {
1488 if (ret == -EPROBE_DEFER)
32439ac7 1489 goto remove_opp_dev;
dd461cd9 1490
6d3f922c
GD
1491 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1492 __func__, ret);
dd461cd9 1493 }
6d3f922c 1494
052c6f19 1495 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
2c2709dc 1496 INIT_LIST_HEAD(&opp_table->opp_list);
f067a982 1497 kref_init(&opp_table->kref);
07cce74a 1498
2c2709dc 1499 return opp_table;
dd461cd9 1500
976509bb 1501remove_opp_dev:
b2a2ab03 1502 _of_clear_opp_table(opp_table);
976509bb 1503 _remove_opp_dev(opp_dev, opp_table);
b2a2ab03 1504 mutex_destroy(&opp_table->lock);
dd461cd9
SG
1505err:
1506 kfree(opp_table);
1507 return ERR_PTR(ret);
07cce74a
VK
1508}
1509
f067a982 1510void _get_opp_table_kref(struct opp_table *opp_table)
b6160e26 1511{
f067a982
VK
1512 kref_get(&opp_table->kref);
1513}
1514
32439ac7
VK
1515static struct opp_table *_update_opp_table_clk(struct device *dev,
1516 struct opp_table *opp_table,
1517 bool getclk)
1518{
d4a4c7a4
VK
1519 int ret;
1520
32439ac7 1521 /*
2083da24 1522 * Return early if we don't need to get clk or we have already done it
32439ac7
VK
1523 * earlier.
1524 */
2083da24
VK
1525 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1526 opp_table->clks)
32439ac7
VK
1527 return opp_table;
1528
1529 /* Find clk for the device */
1530 opp_table->clk = clk_get(dev, NULL);
32439ac7 1531
d4a4c7a4 1532 ret = PTR_ERR_OR_ZERO(opp_table->clk);
2083da24
VK
1533 if (!ret) {
1534 opp_table->config_clks = _opp_config_clk_single;
1535 opp_table->clk_count = 1;
d4a4c7a4 1536 return opp_table;
2083da24 1537 }
32439ac7 1538
d4a4c7a4 1539 if (ret == -ENOENT) {
2083da24
VK
1540 /*
1541 * There are few platforms which don't want the OPP core to
1542 * manage device's clock settings. In such cases neither the
1543 * platform provides the clks explicitly to us, nor the DT
1544 * contains a valid clk entry. The OPP nodes in DT may still
1545 * contain "opp-hz" property though, which we need to parse and
1546 * allow the platform to find an OPP based on freq later on.
1547 *
1548 * This is a simple solution to take care of such corner cases,
1549 * i.e. make the clk_count 1, which lets us allocate space for
1550 * frequency in opp->rates and also parse the entries in DT.
1551 */
1552 opp_table->clk_count = 1;
1553
32439ac7 1554 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
d4a4c7a4 1555 return opp_table;
32439ac7
VK
1556 }
1557
d4a4c7a4
VK
1558 dev_pm_opp_put_opp_table(opp_table);
1559 dev_err_probe(dev, ret, "Couldn't find clock\n");
1560
1561 return ERR_PTR(ret);
32439ac7
VK
1562}
1563
27c09484
VK
1564/*
1565 * We need to make sure that the OPP table for a device doesn't get added twice,
1566 * if this routine gets called in parallel with the same device pointer.
1567 *
1568 * The simplest way to enforce that is to perform everything (find existing
1569 * table and if not found, create a new one) under the opp_table_lock, so only
1570 * one creator gets access to the same. But that expands the critical section
1571 * under the lock and may end up causing circular dependencies with frameworks
1572 * like debugfs, interconnect or clock framework as they may be direct or
1573 * indirect users of OPP core.
1574 *
1575 * And for that reason we have to go for a bit tricky implementation here, which
1576 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1577 * of adding an OPP table and others should wait for it to finish.
1578 */
32439ac7
VK
1579struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1580 bool getclk)
f067a982
VK
1581{
1582 struct opp_table *opp_table;
1583
27c09484 1584again:
f067a982
VK
1585 mutex_lock(&opp_table_lock);
1586
5b650b38
VK
1587 opp_table = _find_opp_table_unlocked(dev);
1588 if (!IS_ERR(opp_table))
f067a982 1589 goto unlock;
f067a982 1590
27c09484
VK
1591 /*
1592 * The opp_tables list or an OPP table's dev_list is getting updated by
1593 * another user, wait for it to finish.
1594 */
1595 if (unlikely(opp_tables_busy)) {
1596 mutex_unlock(&opp_table_lock);
1597 cpu_relax();
1598 goto again;
1599 }
1600
1601 opp_tables_busy = true;
283d55e6 1602 opp_table = _managed_opp(dev, index);
27c09484
VK
1603
1604 /* Drop the lock to reduce the size of critical section */
1605 mutex_unlock(&opp_table_lock);
1606
283d55e6 1607 if (opp_table) {
ef43f01a 1608 if (!_add_opp_dev(dev, opp_table)) {
283d55e6 1609 dev_pm_opp_put_opp_table(opp_table);
dd461cd9 1610 opp_table = ERR_PTR(-ENOMEM);
283d55e6 1611 }
27c09484
VK
1612
1613 mutex_lock(&opp_table_lock);
1614 } else {
1615 opp_table = _allocate_opp_table(dev, index);
1616
1617 mutex_lock(&opp_table_lock);
1618 if (!IS_ERR(opp_table))
1619 list_add(&opp_table->node, &opp_tables);
283d55e6
VK
1620 }
1621
27c09484 1622 opp_tables_busy = false;
f067a982
VK
1623
1624unlock:
1625 mutex_unlock(&opp_table_lock);
1626
32439ac7 1627 return _update_opp_table_clk(dev, opp_table, getclk);
f067a982 1628}
eb7c8743 1629
32439ac7 1630static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
eb7c8743 1631{
32439ac7 1632 return _add_opp_table_indexed(dev, 0, getclk);
eb7c8743 1633}
f067a982 1634
e77dcb0b 1635struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
eb7c8743 1636{
e77dcb0b 1637 return _find_opp_table(dev);
eb7c8743 1638}
e77dcb0b 1639EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
eb7c8743 1640
b83c1899 1641static void _opp_table_kref_release(struct kref *kref)
f067a982
VK
1642{
1643 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
cdd6ed90 1644 struct opp_device *opp_dev, *temp;
6d3f922c 1645 int i;
b6160e26 1646
e0df59de
VK
1647 /* Drop the lock as soon as we can */
1648 list_del(&opp_table->node);
1649 mutex_unlock(&opp_table_lock);
1650
81c4d8a3
VK
1651 if (opp_table->current_opp)
1652 dev_pm_opp_put(opp_table->current_opp);
1653
5d6d106f
VK
1654 _of_clear_opp_table(opp_table);
1655
2083da24 1656 /* Release automatically acquired single clk */
b6160e26
VK
1657 if (!IS_ERR(opp_table->clk))
1658 clk_put(opp_table->clk);
1659
6d3f922c
GD
1660 if (opp_table->paths) {
1661 for (i = 0; i < opp_table->path_count; i++)
1662 icc_put(opp_table->paths[i]);
1663 kfree(opp_table->paths);
1664 }
1665
cdd6ed90 1666 WARN_ON(!list_empty(&opp_table->opp_list));
b6160e26 1667
04bd2eaf 1668 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
cdd6ed90 1669 _remove_opp_dev(opp_dev, opp_table);
b6160e26 1670
37a73ec0 1671 mutex_destroy(&opp_table->lock);
052c6f19 1672 kfree(opp_table);
f067a982
VK
1673}
1674
1675void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1676{
1677 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1678 &opp_table_lock);
1679}
1680EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1681
8cd2f6e8 1682void _opp_free(struct dev_pm_opp *opp)
969fceb3
VK
1683{
1684 kfree(opp);
969fceb3
VK
1685}
1686
cf1fac94 1687static void _opp_kref_release(struct kref *kref)
129eec55 1688{
cf1fac94
VK
1689 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1690 struct opp_table *opp_table = opp->opp_table;
1691
1692 list_del(&opp->node);
1693 mutex_unlock(&opp_table->lock);
1694
129eec55
VK
1695 /*
1696 * Notify the changes in the availability of the operable
1697 * frequency/voltage list.
1698 */
052c6f19 1699 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
3466ea2c 1700 _of_clear_opp(opp_table, opp);
deaa5146 1701 opp_debug_remove_one(opp);
052c6f19 1702 kfree(opp);
1690d8bb 1703}
129eec55 1704
a88bd2a5 1705void dev_pm_opp_get(struct dev_pm_opp *opp)
8a31d9d9
VK
1706{
1707 kref_get(&opp->kref);
1708}
1709
7034764a
VK
1710void dev_pm_opp_put(struct dev_pm_opp *opp)
1711{
cf1fac94 1712 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
7034764a
VK
1713}
1714EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1715
129eec55 1716/**
2c2709dc 1717 * dev_pm_opp_remove() - Remove an OPP from OPP table
129eec55
VK
1718 * @dev: device for which we do this operation
1719 * @freq: OPP to remove with matching 'freq'
1720 *
2c2709dc 1721 * This function removes an opp from the opp table.
129eec55
VK
1722 */
1723void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1724{
95073b72 1725 struct dev_pm_opp *opp = NULL, *iter;
2c2709dc 1726 struct opp_table *opp_table;
129eec55 1727
2c2709dc
VK
1728 opp_table = _find_opp_table(dev);
1729 if (IS_ERR(opp_table))
5b650b38 1730 return;
129eec55 1731
f123ea74
VK
1732 if (!assert_single_clk(opp_table))
1733 goto put_table;
1734
37a73ec0
VK
1735 mutex_lock(&opp_table->lock);
1736
95073b72 1737 list_for_each_entry(iter, &opp_table->opp_list, node) {
2083da24 1738 if (iter->rates[0] == freq) {
95073b72 1739 opp = iter;
129eec55
VK
1740 break;
1741 }
1742 }
1743
37a73ec0
VK
1744 mutex_unlock(&opp_table->lock);
1745
95073b72 1746 if (opp) {
5b650b38 1747 dev_pm_opp_put(opp);
0ad8c623
VK
1748
1749 /* Drop the reference taken by dev_pm_opp_add() */
1750 dev_pm_opp_put_opp_table(opp_table);
5b650b38 1751 } else {
129eec55
VK
1752 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1753 __func__, freq);
129eec55
VK
1754 }
1755
f123ea74 1756put_table:
0ad8c623 1757 /* Drop the reference taken by _find_opp_table() */
5b650b38 1758 dev_pm_opp_put_opp_table(opp_table);
129eec55
VK
1759}
1760EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1761
cf1fac94
VK
1762static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1763 bool dynamic)
1764{
1765 struct dev_pm_opp *opp = NULL, *temp;
1766
1767 mutex_lock(&opp_table->lock);
1768 list_for_each_entry(temp, &opp_table->opp_list, node) {
606a5d42
BM
1769 /*
1770 * Refcount must be dropped only once for each OPP by OPP core,
1771 * do that with help of "removed" flag.
1772 */
1773 if (!temp->removed && dynamic == temp->dynamic) {
cf1fac94
VK
1774 opp = temp;
1775 break;
1776 }
1777 }
1778
1779 mutex_unlock(&opp_table->lock);
1780 return opp;
1781}
1782
606a5d42
BM
1783/*
1784 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1785 * happen lock less to avoid circular dependency issues. This routine must be
1786 * called without the opp_table->lock held.
1787 */
1788static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
03758d60 1789{
cf1fac94 1790 struct dev_pm_opp *opp;
03758d60 1791
606a5d42
BM
1792 while ((opp = _opp_get_next(opp_table, dynamic))) {
1793 opp->removed = true;
1794 dev_pm_opp_put(opp);
1795
1796 /* Drop the references taken by dev_pm_opp_add() */
1797 if (dynamic)
1798 dev_pm_opp_put_opp_table(opp_table);
1799 }
1800}
1801
1802bool _opp_remove_all_static(struct opp_table *opp_table)
1803{
03758d60
VK
1804 mutex_lock(&opp_table->lock);
1805
922ff075 1806 if (!opp_table->parsed_static_opps) {
cf1fac94
VK
1807 mutex_unlock(&opp_table->lock);
1808 return false;
922ff075
VK
1809 }
1810
cf1fac94
VK
1811 if (--opp_table->parsed_static_opps) {
1812 mutex_unlock(&opp_table->lock);
1813 return true;
03758d60
VK
1814 }
1815
03758d60 1816 mutex_unlock(&opp_table->lock);
922ff075 1817
606a5d42 1818 _opp_remove_all(opp_table, false);
cf1fac94 1819 return true;
03758d60
VK
1820}
1821
1690d8bb
VK
1822/**
1823 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1824 * @dev: device for which we do this operation
1825 *
1826 * This function removes all dynamically created OPPs from the opp table.
1827 */
1828void dev_pm_opp_remove_all_dynamic(struct device *dev)
1829{
1830 struct opp_table *opp_table;
1690d8bb
VK
1831
1832 opp_table = _find_opp_table(dev);
1833 if (IS_ERR(opp_table))
1834 return;
1835
606a5d42 1836 _opp_remove_all(opp_table, true);
1690d8bb
VK
1837
1838 /* Drop the reference taken by _find_opp_table() */
1839 dev_pm_opp_put_opp_table(opp_table);
1840}
1841EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1842
d6134583 1843struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
e1f60b29 1844{
23dacf6d 1845 struct dev_pm_opp *opp;
2083da24 1846 int supply_count, supply_size, icc_size, clk_size;
e1f60b29 1847
dfbe4678 1848 /* Allocate space for at least one supply */
d6134583
VK
1849 supply_count = opp_table->regulator_count > 0 ?
1850 opp_table->regulator_count : 1;
6d3f922c 1851 supply_size = sizeof(*opp->supplies) * supply_count;
2083da24 1852 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
d6134583 1853 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
e1f60b29 1854
dfbe4678 1855 /* allocate new OPP node and supplies structures */
2083da24 1856 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
8cd2f6e8 1857 if (!opp)
23dacf6d 1858 return NULL;
23dacf6d 1859
2083da24 1860 /* Put the supplies, bw and clock at the end of the OPP structure */
dfbe4678 1861 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
2083da24
VK
1862
1863 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1864
6d3f922c 1865 if (icc_size)
2083da24
VK
1866 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1867
dfbe4678
VK
1868 INIT_LIST_HEAD(&opp->node);
1869
23dacf6d
VK
1870 return opp;
1871}
1872
7d34d56e 1873static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
2c2709dc 1874 struct opp_table *opp_table)
7d34d56e 1875{
dfbe4678
VK
1876 struct regulator *reg;
1877 int i;
1878
90e3577b
VK
1879 if (!opp_table->regulators)
1880 return true;
1881
dfbe4678
VK
1882 for (i = 0; i < opp_table->regulator_count; i++) {
1883 reg = opp_table->regulators[i];
1884
1885 if (!regulator_is_supported_voltage(reg,
1886 opp->supplies[i].u_volt_min,
1887 opp->supplies[i].u_volt_max)) {
1888 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1889 __func__, opp->supplies[i].u_volt_min,
1890 opp->supplies[i].u_volt_max);
1891 return false;
1892 }
7d34d56e
VK
1893 }
1894
1895 return true;
1896}
1897
2083da24
VK
1898static int _opp_compare_rate(struct opp_table *opp_table,
1899 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1900{
1901 int i;
1902
1903 for (i = 0; i < opp_table->clk_count; i++) {
1904 if (opp1->rates[i] != opp2->rates[i])
1905 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1906 }
1907
1908 /* Same rates for both OPPs */
1909 return 0;
1910}
1911
274c3e83
VK
1912static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1913 struct dev_pm_opp *opp2)
1914{
1915 int i;
1916
1917 for (i = 0; i < opp_table->path_count; i++) {
1918 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1919 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1920 }
1921
1922 /* Same bw for both OPPs */
1923 return 0;
1924}
1925
8bdac14b
VK
1926/*
1927 * Returns
1928 * 0: opp1 == opp2
1929 * 1: opp1 > opp2
1930 * -1: opp1 < opp2
1931 */
2083da24
VK
1932int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1933 struct dev_pm_opp *opp2)
6c591eec 1934{
2083da24
VK
1935 int ret;
1936
1937 ret = _opp_compare_rate(opp_table, opp1, opp2);
1938 if (ret)
1939 return ret;
1940
274c3e83
VK
1941 ret = _opp_compare_bw(opp_table, opp1, opp2);
1942 if (ret)
1943 return ret;
2083da24 1944
6c591eec
SK
1945 if (opp1->level != opp2->level)
1946 return opp1->level < opp2->level ? -1 : 1;
2083da24
VK
1947
1948 /* Duplicate OPPs */
6c591eec
SK
1949 return 0;
1950}
1951
a1e8c136
VK
1952static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1953 struct opp_table *opp_table,
1954 struct list_head **head)
23dacf6d
VK
1955{
1956 struct dev_pm_opp *opp;
6c591eec 1957 int opp_cmp;
23dacf6d
VK
1958
1959 /*
1960 * Insert new OPP in order of increasing frequency and discard if
1961 * already present.
1962 *
2c2709dc 1963 * Need to use &opp_table->opp_list in the condition part of the 'for'
23dacf6d
VK
1964 * loop, don't replace it with head otherwise it will become an infinite
1965 * loop.
1966 */
052c6f19 1967 list_for_each_entry(opp, &opp_table->opp_list, node) {
2083da24 1968 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
6c591eec 1969 if (opp_cmp > 0) {
a1e8c136 1970 *head = &opp->node;
23dacf6d
VK
1971 continue;
1972 }
1973
6c591eec 1974 if (opp_cmp < 0)
a1e8c136 1975 return 0;
23dacf6d
VK
1976
1977 /* Duplicate OPPs */
06441658 1978 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
2083da24
VK
1979 __func__, opp->rates[0], opp->supplies[0].u_volt,
1980 opp->available, new_opp->rates[0],
dfbe4678 1981 new_opp->supplies[0].u_volt, new_opp->available);
23dacf6d 1982
dfbe4678 1983 /* Should we compare voltages for all regulators here ? */
a1e8c136
VK
1984 return opp->available &&
1985 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1986 }
1987
1988 return 0;
1989}
1990
7eba0c76
VK
1991void _required_opps_available(struct dev_pm_opp *opp, int count)
1992{
1993 int i;
1994
1995 for (i = 0; i < count; i++) {
1996 if (opp->required_opps[i]->available)
1997 continue;
1998
1999 opp->available = false;
2000 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
2083da24 2001 __func__, opp->required_opps[i]->np, opp->rates[0]);
7eba0c76
VK
2002 return;
2003 }
2004}
2005
a1e8c136
VK
2006/*
2007 * Returns:
2008 * 0: On success. And appropriate error message for duplicate OPPs.
2009 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2010 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2011 * sure we don't print error messages unnecessarily if different parts of
2012 * kernel try to initialize the OPP table.
2013 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2014 * should be considered an error by the callers of _opp_add().
2015 */
2016int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
4768914b 2017 struct opp_table *opp_table)
a1e8c136
VK
2018{
2019 struct list_head *head;
2020 int ret;
2021
2022 mutex_lock(&opp_table->lock);
2023 head = &opp_table->opp_list;
37a73ec0 2024
32715be4
DO
2025 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2026 if (ret) {
2027 mutex_unlock(&opp_table->lock);
2028 return ret;
23dacf6d
VK
2029 }
2030
052c6f19 2031 list_add(&new_opp->node, head);
37a73ec0
VK
2032 mutex_unlock(&opp_table->lock);
2033
2034 new_opp->opp_table = opp_table;
7034764a 2035 kref_init(&new_opp->kref);
23dacf6d 2036
a2dea4cb 2037 opp_debug_create_one(new_opp, opp_table);
deaa5146 2038
2c2709dc 2039 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
7d34d56e
VK
2040 new_opp->available = false;
2041 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2083da24 2042 __func__, new_opp->rates[0]);
7d34d56e
VK
2043 }
2044
7eba0c76
VK
2045 /* required-opps not fully initialized yet */
2046 if (lazy_linking_pending(opp_table))
2047 return 0;
cf65948d 2048
7eba0c76 2049 _required_opps_available(new_opp, opp_table->required_opp_count);
cf65948d 2050
23dacf6d
VK
2051 return 0;
2052}
2053
984f16c8 2054/**
b64b9c3f 2055 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
8cd2f6e8 2056 * @opp_table: OPP table
984f16c8 2057 * @dev: device for which we do this operation
248a38d5 2058 * @data: The OPP data for the OPP to add
984f16c8
NM
2059 * @dynamic: Dynamically added OPPs.
2060 *
2c2709dc 2061 * This function adds an opp definition to the opp table and returns status.
984f16c8
NM
2062 * The opp is made available by default and it can be controlled using
2063 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2064 *
8f8d37b2
VK
2065 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2066 * and freed by dev_pm_opp_of_remove_table.
984f16c8 2067 *
984f16c8
NM
2068 * Return:
2069 * 0 On success OR
2070 * Duplicate OPPs (both freq and volt are same) and opp->available
2071 * -EEXIST Freq are same and volt are different OR
2072 * Duplicate OPPs (both freq and volt are same) and !opp->available
2073 * -ENOMEM Memory allocation failure
2074 */
8cd2f6e8 2075int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
248a38d5 2076 struct dev_pm_opp_data *data, bool dynamic)
e1f60b29 2077{
23dacf6d 2078 struct dev_pm_opp *new_opp;
248a38d5 2079 unsigned long tol, u_volt = data->u_volt;
6ce4184d 2080 int ret;
e1f60b29 2081
f123ea74
VK
2082 if (!assert_single_clk(opp_table))
2083 return -EINVAL;
2084
8cd2f6e8
VK
2085 new_opp = _opp_allocate(opp_table);
2086 if (!new_opp)
2087 return -ENOMEM;
23dacf6d 2088
a7470db6 2089 /* populate the opp table */
248a38d5 2090 new_opp->rates[0] = data->freq;
3166383d 2091 new_opp->level = data->level;
2c2709dc 2092 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
dfbe4678
VK
2093 new_opp->supplies[0].u_volt = u_volt;
2094 new_opp->supplies[0].u_volt_min = u_volt - tol;
2095 new_opp->supplies[0].u_volt_max = u_volt + tol;
a7470db6 2096 new_opp->available = true;
23dacf6d 2097 new_opp->dynamic = dynamic;
a7470db6 2098
4768914b 2099 ret = _opp_add(dev, new_opp, opp_table);
7f8538eb
VK
2100 if (ret) {
2101 /* Don't return error for duplicate OPPs */
2102 if (ret == -EBUSY)
2103 ret = 0;
6ce4184d 2104 goto free_opp;
7f8538eb 2105 }
64ce8545 2106
03ca370f
MH
2107 /*
2108 * Notify the changes in the availability of the operable
2109 * frequency/voltage list.
2110 */
052c6f19 2111 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
e1f60b29 2112 return 0;
6ce4184d
VK
2113
2114free_opp:
8cd2f6e8
VK
2115 _opp_free(new_opp);
2116
6ce4184d 2117 return ret;
e1f60b29 2118}
38393409 2119
cca14de5 2120/*
7de36b0a
VK
2121 * This is required only for the V2 bindings, and it enables a platform to
2122 * specify the hierarchy of versions it supports. OPP layer will then enable
2123 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2124 * property.
7de36b0a 2125 */
89f03984
VK
2126static int _opp_set_supported_hw(struct opp_table *opp_table,
2127 const u32 *versions, unsigned int count)
7de36b0a 2128{
25419de1
VK
2129 /* Another CPU that shares the OPP table has set the property ? */
2130 if (opp_table->supported_hw)
89f03984 2131 return 0;
7de36b0a 2132
2c2709dc 2133 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
7de36b0a 2134 GFP_KERNEL);
89f03984
VK
2135 if (!opp_table->supported_hw)
2136 return -ENOMEM;
7de36b0a 2137
2c2709dc 2138 opp_table->supported_hw_count = count;
fa30184d 2139
89f03984 2140 return 0;
7de36b0a 2141}
7de36b0a 2142
89f03984 2143static void _opp_put_supported_hw(struct opp_table *opp_table)
7de36b0a 2144{
89f03984
VK
2145 if (opp_table->supported_hw) {
2146 kfree(opp_table->supported_hw);
2147 opp_table->supported_hw = NULL;
2148 opp_table->supported_hw_count = 0;
2149 }
9c4f220f 2150}
9c4f220f 2151
cca14de5 2152/*
01fb4d3c
VK
2153 * This is required only for the V2 bindings, and it enables a platform to
2154 * specify the extn to be used for certain property names. The properties to
2155 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2156 * should postfix the property name with -<name> while looking for them.
01fb4d3c 2157 */
298098e5 2158static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
01fb4d3c 2159{
878ec1a9 2160 /* Another CPU that shares the OPP table has set the property ? */
2c2709dc 2161 if (!opp_table->prop_name) {
298098e5
VK
2162 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2163 if (!opp_table->prop_name)
2164 return -ENOMEM;
01fb4d3c
VK
2165 }
2166
298098e5 2167 return 0;
01fb4d3c 2168}
01fb4d3c 2169
298098e5 2170static void _opp_put_prop_name(struct opp_table *opp_table)
01fb4d3c 2171{
298098e5
VK
2172 if (opp_table->prop_name) {
2173 kfree(opp_table->prop_name);
2174 opp_table->prop_name = NULL;
2175 }
01fb4d3c 2176}
01fb4d3c 2177
cca14de5 2178/*
9f8ea969 2179 * In order to support OPP switching, OPP layer needs to know the name of the
dfbe4678
VK
2180 * device's regulators, as the core would be required to switch voltages as
2181 * well.
9f8ea969
VK
2182 *
2183 * This must be called before any OPPs are initialized for the device.
9f8ea969 2184 */
b0ec0942
VK
2185static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2186 const char * const names[])
9f8ea969 2187{
87686cc8 2188 const char * const *temp = names;
9f8ea969 2189 struct regulator *reg;
87686cc8
VK
2190 int count = 0, ret, i;
2191
2192 /* Count number of regulators */
2193 while (*temp++)
2194 count++;
2195
2196 if (!count)
b0ec0942 2197 return -EINVAL;
9f8ea969 2198
779b783c
VK
2199 /* Another CPU that shares the OPP table has set the regulators ? */
2200 if (opp_table->regulators)
b0ec0942 2201 return 0;
dfbe4678
VK
2202
2203 opp_table->regulators = kmalloc_array(count,
2204 sizeof(*opp_table->regulators),
2205 GFP_KERNEL);
b0ec0942
VK
2206 if (!opp_table->regulators)
2207 return -ENOMEM;
9f8ea969 2208
dfbe4678
VK
2209 for (i = 0; i < count; i++) {
2210 reg = regulator_get_optional(dev, names[i]);
2211 if (IS_ERR(reg)) {
543256d2
KK
2212 ret = dev_err_probe(dev, PTR_ERR(reg),
2213 "%s: no regulator (%s) found\n",
2214 __func__, names[i]);
dfbe4678
VK
2215 goto free_regulators;
2216 }
2217
2218 opp_table->regulators[i] = reg;
2219 }
2220
2221 opp_table->regulator_count = count;
9f8ea969 2222
c522ce8a
VK
2223 /* Set generic config_regulators() for single regulators here */
2224 if (count == 1)
2225 opp_table->config_regulators = _opp_config_regulator_single;
2226
b0ec0942 2227 return 0;
9f8ea969 2228
dfbe4678 2229free_regulators:
24957db1
MS
2230 while (i != 0)
2231 regulator_put(opp_table->regulators[--i]);
dfbe4678
VK
2232
2233 kfree(opp_table->regulators);
2234 opp_table->regulators = NULL;
46f48aca 2235 opp_table->regulator_count = -1;
9f8ea969 2236
b0ec0942 2237 return ret;
9f8ea969 2238}
9f8ea969 2239
b0ec0942 2240static void _opp_put_regulators(struct opp_table *opp_table)
9f8ea969 2241{
dfbe4678
VK
2242 int i;
2243
779b783c 2244 if (!opp_table->regulators)
b0ec0942 2245 return;
9f8ea969 2246
72f80ce4 2247 if (opp_table->enabled) {
8d45719c
KK
2248 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2249 regulator_disable(opp_table->regulators[i]);
8d45719c
KK
2250 }
2251
24957db1 2252 for (i = opp_table->regulator_count - 1; i >= 0; i--)
dfbe4678
VK
2253 regulator_put(opp_table->regulators[i]);
2254
2255 kfree(opp_table->regulators);
2256 opp_table->regulators = NULL;
46f48aca 2257 opp_table->regulator_count = -1;
32aee78b 2258}
32aee78b 2259
2083da24
VK
2260static void _put_clks(struct opp_table *opp_table, int count)
2261{
2262 int i;
2263
2264 for (i = count - 1; i >= 0; i--)
2265 clk_put(opp_table->clks[i]);
2266
2267 kfree(opp_table->clks);
2268 opp_table->clks = NULL;
2269}
2270
cca14de5 2271/*
2368f576
VK
2272 * In order to support OPP switching, OPP layer needs to get pointers to the
2273 * clocks for the device. Simple cases work fine without using this routine
2274 * (i.e. by passing connection-id as NULL), but for a device with multiple
2275 * clocks available, the OPP core needs to know the exact names of the clks to
2276 * use.
829a4e8c
VK
2277 *
2278 * This must be called before any OPPs are initialized for the device.
2279 */
2368f576 2280static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2083da24
VK
2281 const char * const names[],
2282 config_clks_t config_clks)
829a4e8c 2283{
2368f576 2284 const char * const *temp = names;
2083da24
VK
2285 int count = 0, ret, i;
2286 struct clk *clk;
829a4e8c 2287
2368f576
VK
2288 /* Count number of clks */
2289 while (*temp++)
2290 count++;
829a4e8c 2291
2368f576
VK
2292 /*
2293 * This is a special case where we have a single clock, whose connection
2294 * id name is NULL, i.e. first two entries are NULL in the array.
2295 */
2296 if (!count && !names[1])
2297 count = 1;
2298
2083da24 2299 /* Fail early for invalid configurations */
2f71ae1a 2300 if (!count || (!config_clks && count > 1))
2368f576 2301 return -EINVAL;
829a4e8c 2302
0a43452b 2303 /* Another CPU that shares the OPP table has set the clkname ? */
2083da24 2304 if (opp_table->clks)
2368f576 2305 return 0;
0a43452b 2306
2083da24
VK
2307 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2308 GFP_KERNEL);
2309 if (!opp_table->clks)
2310 return -ENOMEM;
829a4e8c 2311
2083da24
VK
2312 /* Find clks for the device */
2313 for (i = 0; i < count; i++) {
2314 clk = clk_get(dev, names[i]);
2315 if (IS_ERR(clk)) {
2316 ret = dev_err_probe(dev, PTR_ERR(clk),
2317 "%s: Couldn't find clock with name: %s\n",
2318 __func__, names[i]);
2319 goto free_clks;
2320 }
2321
2322 opp_table->clks[i] = clk;
829a4e8c
VK
2323 }
2324
2083da24 2325 opp_table->clk_count = count;
2f71ae1a 2326 opp_table->config_clks = config_clks;
2083da24
VK
2327
2328 /* Set generic single clk set here */
2329 if (count == 1) {
2f71ae1a
VK
2330 if (!opp_table->config_clks)
2331 opp_table->config_clks = _opp_config_clk_single;
2083da24
VK
2332
2333 /*
2334 * We could have just dropped the "clk" field and used "clks"
2335 * everywhere. Instead we kept the "clk" field around for
2336 * following reasons:
2337 *
2338 * - avoiding clks[0] everywhere else.
2339 * - not running single clk helpers for multiple clk usecase by
2340 * mistake.
2341 *
2342 * Since this is single-clk case, just update the clk pointer
2343 * too.
2344 */
2345 opp_table->clk = opp_table->clks[0];
2083da24 2346 }
0a43452b 2347
2368f576 2348 return 0;
2083da24
VK
2349
2350free_clks:
2351 _put_clks(opp_table, i);
2352 return ret;
a74f681c
YL
2353}
2354
2368f576 2355static void _opp_put_clknames(struct opp_table *opp_table)
a74f681c 2356{
2083da24
VK
2357 if (!opp_table->clks)
2358 return;
2359
2360 opp_table->config_clks = NULL;
2361 opp_table->clk = ERR_PTR(-ENODEV);
2362
2363 _put_clks(opp_table, opp_table->clk_count);
a74f681c 2364}
a74f681c 2365
cca14de5 2366/*
aee3352f
VK
2367 * This is useful to support platforms with multiple regulators per device.
2368 *
2369 * This must be called before any OPPs are initialized for the device.
2370 */
2371static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2372 struct device *dev, config_regulators_t config_regulators)
2373{
2374 /* Another CPU that shares the OPP table has set the helper ? */
2375 if (!opp_table->config_regulators)
2376 opp_table->config_regulators = config_regulators;
2377
2378 return 0;
2379}
2380
aee3352f
VK
2381static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2382{
2383 if (opp_table->config_regulators)
2384 opp_table->config_regulators = NULL;
2385}
2386
48b5aaec 2387static void _opp_detach_genpd(struct opp_table *opp_table)
6319aee1
VK
2388{
2389 int index;
2390
cb60e960
VK
2391 if (!opp_table->genpd_virt_devs)
2392 return;
2393
6319aee1
VK
2394 for (index = 0; index < opp_table->required_opp_count; index++) {
2395 if (!opp_table->genpd_virt_devs[index])
2396 continue;
2397
2398 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2399 opp_table->genpd_virt_devs[index] = NULL;
2400 }
c0ab9e08
VK
2401
2402 kfree(opp_table->genpd_virt_devs);
2403 opp_table->genpd_virt_devs = NULL;
6319aee1
VK
2404}
2405
cca14de5 2406/*
4f018bc0
VK
2407 * Multiple generic power domains for a device are supported with the help of
2408 * virtual genpd devices, which are created for each consumer device - genpd
2409 * pair. These are the device structures which are attached to the power domain
2410 * and are required by the OPP core to set the performance state of the genpd.
6319aee1
VK
2411 * The same API also works for the case where single genpd is available and so
2412 * we don't need to support that separately.
4f018bc0
VK
2413 *
2414 * This helper will normally be called by the consumer driver of the device
6319aee1 2415 * "dev", as only that has details of the genpd names.
4f018bc0 2416 *
6319aee1
VK
2417 * This helper needs to be called once with a list of all genpd to attach.
2418 * Otherwise the original device structure will be used instead by the OPP core.
baea35e4
VK
2419 *
2420 * The order of entries in the names array must match the order in which
2421 * "required-opps" are added in DT.
4f018bc0 2422 */
442e7a17
VK
2423static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2424 const char * const *names, struct device ***virt_devs)
4f018bc0 2425{
6319aee1 2426 struct device *virt_dev;
baea35e4 2427 int index = 0, ret = -EINVAL;
3734b9f2 2428 const char * const *name = names;
4f018bc0 2429
cb60e960 2430 if (opp_table->genpd_virt_devs)
442e7a17 2431 return 0;
4f018bc0 2432
c0ab9e08
VK
2433 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2434 sizeof(*opp_table->genpd_virt_devs),
2435 GFP_KERNEL);
2436 if (!opp_table->genpd_virt_devs)
48b5aaec 2437 return -ENOMEM;
4f018bc0 2438
6319aee1 2439 while (*name) {
6319aee1
VK
2440 if (index >= opp_table->required_opp_count) {
2441 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2442 *name, opp_table->required_opp_count, index);
2443 goto err;
2444 }
4f018bc0 2445
6319aee1 2446 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
4ea9496c 2447 if (IS_ERR_OR_NULL(virt_dev)) {
d920920f 2448 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
6319aee1
VK
2449 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2450 goto err;
2451 }
2452
2453 opp_table->genpd_virt_devs[index] = virt_dev;
baea35e4 2454 index++;
6319aee1 2455 name++;
4f018bc0
VK
2456 }
2457
17a8f868
VK
2458 if (virt_devs)
2459 *virt_devs = opp_table->genpd_virt_devs;
4f018bc0 2460
442e7a17 2461 return 0;
6319aee1
VK
2462
2463err:
48b5aaec 2464 _opp_detach_genpd(opp_table);
442e7a17 2465 return ret;
6319aee1 2466
4f018bc0
VK
2467}
2468
11b9b663
VK
2469static void _opp_clear_config(struct opp_config_data *data)
2470{
2471 if (data->flags & OPP_CONFIG_GENPD)
442e7a17 2472 _opp_detach_genpd(data->opp_table);
11b9b663 2473 if (data->flags & OPP_CONFIG_REGULATOR)
b0ec0942 2474 _opp_put_regulators(data->opp_table);
11b9b663 2475 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
89f03984 2476 _opp_put_supported_hw(data->opp_table);
1f378c6e 2477 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
aee3352f 2478 _opp_put_config_regulators_helper(data->opp_table);
11b9b663 2479 if (data->flags & OPP_CONFIG_PROP_NAME)
298098e5 2480 _opp_put_prop_name(data->opp_table);
11b9b663 2481 if (data->flags & OPP_CONFIG_CLK)
2368f576 2482 _opp_put_clknames(data->opp_table);
11b9b663
VK
2483
2484 dev_pm_opp_put_opp_table(data->opp_table);
2485 kfree(data);
2486}
2487
2488/**
2489 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2490 * @dev: Device for which configuration is being set.
2491 * @config: OPP configuration.
2492 *
2493 * This allows all device OPP configurations to be performed at once.
2494 *
2495 * This must be called before any OPPs are initialized for the device. This may
2496 * be called multiple times for the same OPP table, for example once for each
2497 * CPU that share the same table. This must be balanced by the same number of
2498 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2499 *
2500 * This returns a token to the caller, which must be passed to
2501 * dev_pm_opp_clear_config() to free the resources later. The value of the
2502 * returned token will be >= 1 for success and negative for errors. The minimum
2503 * value of 1 is chosen here to make it easy for callers to manage the resource.
2504 */
2505int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2506{
298098e5 2507 struct opp_table *opp_table;
11b9b663
VK
2508 struct opp_config_data *data;
2509 unsigned int id;
2510 int ret;
2511
2512 data = kmalloc(sizeof(*data), GFP_KERNEL);
2513 if (!data)
2514 return -ENOMEM;
2515
2516 opp_table = _add_opp_table(dev, false);
2517 if (IS_ERR(opp_table)) {
2518 kfree(data);
2519 return PTR_ERR(opp_table);
2520 }
2521
2522 data->opp_table = opp_table;
2523 data->flags = 0;
2524
2525 /* This should be called before OPPs are initialized */
2526 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2527 ret = -EBUSY;
2528 goto err;
2529 }
2530
2531 /* Configure clocks */
2532 if (config->clk_names) {
2083da24
VK
2533 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2534 config->config_clks);
2368f576 2535 if (ret)
11b9b663 2536 goto err;
11b9b663
VK
2537
2538 data->flags |= OPP_CONFIG_CLK;
2083da24
VK
2539 } else if (config->config_clks) {
2540 /* Don't allow config callback without clocks */
2541 ret = -EINVAL;
2542 goto err;
11b9b663
VK
2543 }
2544
2545 /* Configure property names */
2546 if (config->prop_name) {
298098e5
VK
2547 ret = _opp_set_prop_name(opp_table, config->prop_name);
2548 if (ret)
11b9b663 2549 goto err;
11b9b663
VK
2550
2551 data->flags |= OPP_CONFIG_PROP_NAME;
2552 }
2553
aee3352f
VK
2554 /* Configure config_regulators helper */
2555 if (config->config_regulators) {
2556 ret = _opp_set_config_regulators_helper(opp_table, dev,
2557 config->config_regulators);
2558 if (ret)
2559 goto err;
2560
2561 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2562 }
2563
11b9b663
VK
2564 /* Configure supported hardware */
2565 if (config->supported_hw) {
89f03984
VK
2566 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2567 config->supported_hw_count);
2568 if (ret)
11b9b663 2569 goto err;
11b9b663
VK
2570
2571 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2572 }
2573
2574 /* Configure supplies */
2575 if (config->regulator_names) {
b0ec0942
VK
2576 ret = _opp_set_regulators(opp_table, dev,
2577 config->regulator_names);
2578 if (ret)
11b9b663 2579 goto err;
11b9b663
VK
2580
2581 data->flags |= OPP_CONFIG_REGULATOR;
2582 }
2583
2584 /* Attach genpds */
2585 if (config->genpd_names) {
442e7a17
VK
2586 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2587 config->virt_devs);
2588 if (ret)
11b9b663 2589 goto err;
11b9b663
VK
2590
2591 data->flags |= OPP_CONFIG_GENPD;
2592 }
2593
2594 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2595 GFP_KERNEL);
2596 if (ret)
2597 goto err;
2598
2599 return id;
2600
2601err:
2602 _opp_clear_config(data);
2603 return ret;
2604}
2605EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2606
2607/**
2608 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
cca14de5 2609 * @token: The token returned by dev_pm_opp_set_config() previously.
11b9b663
VK
2610 *
2611 * This allows all device OPP configurations to be cleared at once. This must be
2612 * called once for each call made to dev_pm_opp_set_config(), in order to free
2613 * the OPPs properly.
2614 *
2615 * Currently the first call itself ends up freeing all the OPP configurations,
2616 * while the later ones only drop the OPP table reference. This works well for
2617 * now as we would never want to use an half initialized OPP table and want to
2618 * remove the configurations together.
2619 */
2620void dev_pm_opp_clear_config(int token)
2621{
2622 struct opp_config_data *data;
2623
2624 /*
2625 * This lets the callers call this unconditionally and keep their code
2626 * simple.
2627 */
2628 if (unlikely(token <= 0))
2629 return;
2630
2631 data = xa_erase(&opp_configs, token);
2632 if (WARN_ON(!data))
2633 return;
2634
2635 _opp_clear_config(data);
2636}
2637EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2638
2639static void devm_pm_opp_config_release(void *token)
2640{
2641 dev_pm_opp_clear_config((unsigned long)token);
2642}
2643
2644/**
2645 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2646 * @dev: Device for which configuration is being set.
2647 * @config: OPP configuration.
2648 *
2649 * This allows all device OPP configurations to be performed at once.
2650 * This is a resource-managed variant of dev_pm_opp_set_config().
2651 *
2652 * Return: 0 on success and errorno otherwise.
2653 */
2654int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2655{
2656 int token = dev_pm_opp_set_config(dev, config);
2657
2658 if (token < 0)
2659 return token;
2660
2661 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2662 (void *) ((unsigned long) token));
2663}
2664EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2665
7d8658ef
SK
2666/**
2667 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2668 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2669 * @dst_table: Required OPP table of the @src_table.
2670 * @src_opp: OPP from the @src_table.
2671 *
2672 * This function returns the OPP (present in @dst_table) pointed out by the
2673 * "required-opps" property of the @src_opp (present in @src_table).
2674 *
2675 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2676 * use.
2677 *
2678 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2679 */
2680struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2681 struct opp_table *dst_table,
2682 struct dev_pm_opp *src_opp)
2683{
2684 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2685 int i;
2686
2687 if (!src_table || !dst_table || !src_opp ||
2688 !src_table->required_opp_tables)
2689 return ERR_PTR(-EINVAL);
2690
2691 /* required-opps not fully initialized yet */
2692 if (lazy_linking_pending(src_table))
2693 return ERR_PTR(-EBUSY);
2694
2695 for (i = 0; i < src_table->required_opp_count; i++) {
2696 if (src_table->required_opp_tables[i] == dst_table) {
2697 mutex_lock(&src_table->lock);
2698
2699 list_for_each_entry(opp, &src_table->opp_list, node) {
2700 if (opp == src_opp) {
2701 dest_opp = opp->required_opps[i];
2702 dev_pm_opp_get(dest_opp);
2703 break;
2704 }
2705 }
2706
2707 mutex_unlock(&src_table->lock);
2708 break;
2709 }
2710 }
2711
2712 if (IS_ERR(dest_opp)) {
2713 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2714 src_table, dst_table);
2715 }
2716
2717 return dest_opp;
2718}
2719EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2720
c8a59103
VK
2721/**
2722 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2723 * @src_table: OPP table which has dst_table as one of its required OPP table.
2724 * @dst_table: Required OPP table of the src_table.
2725 * @pstate: Current performance state of the src_table.
2726 *
2727 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2728 * "required-opps" property of the OPP (present in @src_table) which has
2729 * performance state set to @pstate.
2730 *
2731 * Return: Zero or positive performance state on success, otherwise negative
2732 * value on errors.
2733 */
2734int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2735 struct opp_table *dst_table,
2736 unsigned int pstate)
2737{
2738 struct dev_pm_opp *opp;
2739 int dest_pstate = -EINVAL;
2740 int i;
2741
c8a59103
VK
2742 /*
2743 * Normally the src_table will have the "required_opps" property set to
2744 * point to one of the OPPs in the dst_table, but in some cases the
2745 * genpd and its master have one to one mapping of performance states
2746 * and so none of them have the "required-opps" property set. Return the
2747 * pstate of the src_table as it is in such cases.
2748 */
f2f4d2b8 2749 if (!src_table || !src_table->required_opp_count)
c8a59103
VK
2750 return pstate;
2751
84cb7ff3
VK
2752 /* Both OPP tables must belong to genpds */
2753 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2754 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2755 return -EINVAL;
2756 }
2757
7eba0c76
VK
2758 /* required-opps not fully initialized yet */
2759 if (lazy_linking_pending(src_table))
2760 return -EBUSY;
2761
c8a59103
VK
2762 for (i = 0; i < src_table->required_opp_count; i++) {
2763 if (src_table->required_opp_tables[i]->np == dst_table->np)
2764 break;
2765 }
2766
2767 if (unlikely(i == src_table->required_opp_count)) {
2768 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2769 __func__, src_table, dst_table);
2770 return -EINVAL;
2771 }
2772
2773 mutex_lock(&src_table->lock);
2774
2775 list_for_each_entry(opp, &src_table->opp_list, node) {
7c41cdcd
VK
2776 if (opp->level == pstate) {
2777 dest_pstate = opp->required_opps[i]->level;
c8a59103
VK
2778 goto unlock;
2779 }
2780 }
2781
2782 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2783 dst_table);
2784
2785unlock:
2786 mutex_unlock(&src_table->lock);
2787
2788 return dest_pstate;
2789}
2790
38393409 2791/**
248a38d5
UH
2792 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2793 * @dev: The device for which we do this operation
2794 * @data: The OPP data for the OPP to add
38393409 2795 *
2c2709dc 2796 * This function adds an opp definition to the opp table and returns status.
38393409
VK
2797 * The opp is made available by default and it can be controlled using
2798 * dev_pm_opp_enable/disable functions.
2799 *
38393409 2800 * Return:
984f16c8 2801 * 0 On success OR
38393409 2802 * Duplicate OPPs (both freq and volt are same) and opp->available
984f16c8 2803 * -EEXIST Freq are same and volt are different OR
38393409 2804 * Duplicate OPPs (both freq and volt are same) and !opp->available
984f16c8 2805 * -ENOMEM Memory allocation failure
38393409 2806 */
248a38d5 2807int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
38393409 2808{
8cd2f6e8
VK
2809 struct opp_table *opp_table;
2810 int ret;
2811
32439ac7 2812 opp_table = _add_opp_table(dev, true);
dd461cd9
SG
2813 if (IS_ERR(opp_table))
2814 return PTR_ERR(opp_table);
8cd2f6e8 2815
46f48aca
VK
2816 /* Fix regulator count for dynamic OPPs */
2817 opp_table->regulator_count = 1;
2818
248a38d5 2819 ret = _opp_add_v1(opp_table, dev, data, true);
0ad8c623
VK
2820 if (ret)
2821 dev_pm_opp_put_opp_table(opp_table);
8cd2f6e8 2822
8cd2f6e8 2823 return ret;
38393409 2824}
248a38d5 2825EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
e1f60b29
NM
2826
2827/**
327854c8 2828 * _opp_set_availability() - helper to set the availability of an opp
e1f60b29
NM
2829 * @dev: device for which we do this operation
2830 * @freq: OPP frequency to modify availability
2831 * @availability_req: availability status requested for this opp
2832 *
052c6f19
VK
2833 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2834 * which is isolated here.
e1f60b29 2835 *
984f16c8 2836 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
e1a2d49c 2837 * copy operation, returns 0 if no modification was done OR modification was
e1f60b29 2838 * successful.
e1f60b29 2839 */
327854c8
NM
2840static int _opp_set_availability(struct device *dev, unsigned long freq,
2841 bool availability_req)
e1f60b29 2842{
2c2709dc 2843 struct opp_table *opp_table;
a7f3987e 2844 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
e1f60b29
NM
2845 int r = 0;
2846
2c2709dc
VK
2847 /* Find the opp_table */
2848 opp_table = _find_opp_table(dev);
2849 if (IS_ERR(opp_table)) {
2850 r = PTR_ERR(opp_table);
e1f60b29 2851 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
a7f3987e 2852 return r;
e1f60b29
NM
2853 }
2854
f123ea74
VK
2855 if (!assert_single_clk(opp_table)) {
2856 r = -EINVAL;
2857 goto put_table;
2858 }
2859
37a73ec0
VK
2860 mutex_lock(&opp_table->lock);
2861
e1f60b29 2862 /* Do we have the frequency? */
2c2709dc 2863 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2083da24 2864 if (tmp_opp->rates[0] == freq) {
e1f60b29
NM
2865 opp = tmp_opp;
2866 break;
2867 }
2868 }
37a73ec0 2869
e1f60b29
NM
2870 if (IS_ERR(opp)) {
2871 r = PTR_ERR(opp);
2872 goto unlock;
2873 }
2874
2875 /* Is update really needed? */
2876 if (opp->available == availability_req)
2877 goto unlock;
e1f60b29 2878
a7f3987e 2879 opp->available = availability_req;
e1f60b29 2880
e4d8ae00
VK
2881 dev_pm_opp_get(opp);
2882 mutex_unlock(&opp_table->lock);
2883
03ca370f
MH
2884 /* Notify the change of the OPP availability */
2885 if (availability_req)
052c6f19 2886 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
a7f3987e 2887 opp);
03ca370f 2888 else
052c6f19 2889 blocking_notifier_call_chain(&opp_table->head,
a7f3987e 2890 OPP_EVENT_DISABLE, opp);
e1f60b29 2891
e4d8ae00
VK
2892 dev_pm_opp_put(opp);
2893 goto put_table;
2894
e1f60b29 2895unlock:
5b650b38 2896 mutex_unlock(&opp_table->lock);
e4d8ae00 2897put_table:
5b650b38 2898 dev_pm_opp_put_opp_table(opp_table);
e1f60b29
NM
2899 return r;
2900}
2901
25cb20a2
SB
2902/**
2903 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2904 * @dev: device for which we do this operation
2905 * @freq: OPP frequency to adjust voltage of
2906 * @u_volt: new OPP target voltage
2907 * @u_volt_min: new OPP min voltage
2908 * @u_volt_max: new OPP max voltage
2909 *
2910 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2911 * copy operation, returns 0 if no modifcation was done OR modification was
2912 * successful.
2913 */
2914int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2915 unsigned long u_volt, unsigned long u_volt_min,
2916 unsigned long u_volt_max)
2917
2918{
2919 struct opp_table *opp_table;
2920 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2921 int r = 0;
2922
2923 /* Find the opp_table */
2924 opp_table = _find_opp_table(dev);
2925 if (IS_ERR(opp_table)) {
2926 r = PTR_ERR(opp_table);
2927 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2928 return r;
2929 }
2930
f123ea74
VK
2931 if (!assert_single_clk(opp_table)) {
2932 r = -EINVAL;
2933 goto put_table;
2934 }
2935
25cb20a2
SB
2936 mutex_lock(&opp_table->lock);
2937
2938 /* Do we have the frequency? */
2939 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2083da24 2940 if (tmp_opp->rates[0] == freq) {
25cb20a2
SB
2941 opp = tmp_opp;
2942 break;
2943 }
2944 }
2945
2946 if (IS_ERR(opp)) {
2947 r = PTR_ERR(opp);
2948 goto adjust_unlock;
2949 }
2950
2951 /* Is update really needed? */
2952 if (opp->supplies->u_volt == u_volt)
2953 goto adjust_unlock;
2954
2955 opp->supplies->u_volt = u_volt;
2956 opp->supplies->u_volt_min = u_volt_min;
2957 opp->supplies->u_volt_max = u_volt_max;
2958
2959 dev_pm_opp_get(opp);
2960 mutex_unlock(&opp_table->lock);
2961
2962 /* Notify the voltage change of the OPP */
2963 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2964 opp);
2965
2966 dev_pm_opp_put(opp);
f123ea74 2967 goto put_table;
25cb20a2
SB
2968
2969adjust_unlock:
2970 mutex_unlock(&opp_table->lock);
f123ea74 2971put_table:
25cb20a2
SB
2972 dev_pm_opp_put_opp_table(opp_table);
2973 return r;
2974}
03649154 2975EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
25cb20a2 2976
e1f60b29 2977/**
5d4879cd 2978 * dev_pm_opp_enable() - Enable a specific OPP
e1f60b29
NM
2979 * @dev: device for which we do this operation
2980 * @freq: OPP frequency to enable
2981 *
2982 * Enables a provided opp. If the operation is valid, this returns 0, else the
2983 * corresponding error value. It is meant to be used for users an OPP available
5d4879cd 2984 * after being temporarily made unavailable with dev_pm_opp_disable.
e1f60b29 2985 *
984f16c8 2986 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
e1a2d49c 2987 * copy operation, returns 0 if no modification was done OR modification was
984f16c8 2988 * successful.
e1f60b29 2989 */
5d4879cd 2990int dev_pm_opp_enable(struct device *dev, unsigned long freq)
e1f60b29 2991{
327854c8 2992 return _opp_set_availability(dev, freq, true);
e1f60b29 2993}
5d4879cd 2994EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
e1f60b29
NM
2995
2996/**
5d4879cd 2997 * dev_pm_opp_disable() - Disable a specific OPP
e1f60b29
NM
2998 * @dev: device for which we do this operation
2999 * @freq: OPP frequency to disable
3000 *
3001 * Disables a provided opp. If the operation is valid, this returns
3002 * 0, else the corresponding error value. It is meant to be a temporary
3003 * control by users to make this OPP not available until the circumstances are
5d4879cd 3004 * right to make it available again (with a call to dev_pm_opp_enable).
e1f60b29 3005 *
984f16c8 3006 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
e1a2d49c 3007 * copy operation, returns 0 if no modification was done OR modification was
984f16c8 3008 * successful.
e1f60b29 3009 */
5d4879cd 3010int dev_pm_opp_disable(struct device *dev, unsigned long freq)
e1f60b29 3011{
327854c8 3012 return _opp_set_availability(dev, freq, false);
e1f60b29 3013}
5d4879cd 3014EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
e1f60b29 3015
03ca370f 3016/**
dc2c9ad5
VK
3017 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3018 * @dev: Device for which notifier needs to be registered
3019 * @nb: Notifier block to be registered
984f16c8 3020 *
dc2c9ad5
VK
3021 * Return: 0 on success or a negative error value.
3022 */
3023int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3024{
3025 struct opp_table *opp_table;
3026 int ret;
3027
dc2c9ad5 3028 opp_table = _find_opp_table(dev);
5b650b38
VK
3029 if (IS_ERR(opp_table))
3030 return PTR_ERR(opp_table);
3031
052c6f19 3032 ret = blocking_notifier_chain_register(&opp_table->head, nb);
dc2c9ad5 3033
5b650b38 3034 dev_pm_opp_put_opp_table(opp_table);
dc2c9ad5
VK
3035
3036 return ret;
3037}
3038EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3039
3040/**
3041 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3042 * @dev: Device for which notifier needs to be unregistered
3043 * @nb: Notifier block to be unregistered
984f16c8 3044 *
dc2c9ad5 3045 * Return: 0 on success or a negative error value.
03ca370f 3046 */
dc2c9ad5
VK
3047int dev_pm_opp_unregister_notifier(struct device *dev,
3048 struct notifier_block *nb)
03ca370f 3049{
dc2c9ad5
VK
3050 struct opp_table *opp_table;
3051 int ret;
03ca370f 3052
dc2c9ad5 3053 opp_table = _find_opp_table(dev);
5b650b38
VK
3054 if (IS_ERR(opp_table))
3055 return PTR_ERR(opp_table);
dc2c9ad5 3056
052c6f19 3057 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
03ca370f 3058
5b650b38 3059 dev_pm_opp_put_opp_table(opp_table);
dc2c9ad5
VK
3060
3061 return ret;
03ca370f 3062}
dc2c9ad5 3063EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
b496dfbc 3064
8aaf6264
VK
3065/**
3066 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3067 * @dev: device pointer used to lookup OPP table.
3068 *
3069 * Free both OPPs created using static entries present in DT and the
3070 * dynamically added entries.
3071 */
3072void dev_pm_opp_remove_table(struct device *dev)
9274c892
VK
3073{
3074 struct opp_table *opp_table;
3075
2c2709dc
VK
3076 /* Check for existing table for 'dev' */
3077 opp_table = _find_opp_table(dev);
3078 if (IS_ERR(opp_table)) {
3079 int error = PTR_ERR(opp_table);
737002b5
VK
3080
3081 if (error != -ENODEV)
2c2709dc 3082 WARN(1, "%s: opp_table: %d\n",
737002b5
VK
3083 IS_ERR_OR_NULL(dev) ?
3084 "Invalid device" : dev_name(dev),
3085 error);
5b650b38 3086 return;
737002b5
VK
3087 }
3088
922ff075
VK
3089 /*
3090 * Drop the extra reference only if the OPP table was successfully added
3091 * with dev_pm_opp_of_add_table() earlier.
3092 **/
3093 if (_opp_remove_all_static(opp_table))
3094 dev_pm_opp_put_opp_table(opp_table);
cdd6ed90
VK
3095
3096 /* Drop reference taken by _find_opp_table() */
3097 dev_pm_opp_put_opp_table(opp_table);
737002b5 3098}
411466c5 3099EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
ce8073d8
DO
3100
3101/**
3102 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3103 * @dev: device for which we do this operation
3104 *
3105 * Sync voltage state of the OPP table regulators.
3106 *
3107 * Return: 0 on success or a negative error value.
3108 */
3109int dev_pm_opp_sync_regulators(struct device *dev)
3110{
3111 struct opp_table *opp_table;
3112 struct regulator *reg;
3113 int i, ret = 0;
3114
3115 /* Device may not have OPP table */
3116 opp_table = _find_opp_table(dev);
3117 if (IS_ERR(opp_table))
3118 return 0;
3119
3120 /* Regulator may not be required for the device */
3121 if (unlikely(!opp_table->regulators))
3122 goto put_table;
3123
3124 /* Nothing to sync if voltage wasn't changed */
3125 if (!opp_table->enabled)
3126 goto put_table;
3127
3128 for (i = 0; i < opp_table->regulator_count; i++) {
3129 reg = opp_table->regulators[i];
3130 ret = regulator_sync_voltage(reg);
3131 if (ret)
3132 break;
3133 }
3134put_table:
3135 /* Drop reference taken by _find_opp_table() */
3136 dev_pm_opp_put_opp_table(opp_table);
3137
3138 return ret;
3139}
3140EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);