of: Use preferred of_property_read_* functions
[linux-block.git] / drivers / of / property.c
CommitLineData
af6074fc 1// SPDX-License-Identifier: GPL-2.0+
1df09bc6
SA
2/*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
1df09bc6
SA
20 */
21
22#define pr_fmt(fmt) "OF: " fmt
23
24#include <linux/of.h>
8c756a0a 25#include <linux/of_address.h>
1df09bc6
SA
26#include <linux/of_device.h>
27#include <linux/of_graph.h>
4104ca77 28#include <linux/of_irq.h>
1df09bc6 29#include <linux/string.h>
a3e1d1a7 30#include <linux/moduleparam.h>
1df09bc6
SA
31
32#include "of_private.h"
33
4ec0a44b
DO
34/**
35 * of_graph_is_present() - check graph's presence
36 * @node: pointer to device_node containing graph port
37 *
38 * Return: True if @node has a port or ports (with a port) sub-node,
39 * false otherwise.
40 */
41bool of_graph_is_present(const struct device_node *node)
42{
43 struct device_node *ports, *port;
44
45 ports = of_get_child_by_name(node, "ports");
46 if (ports)
47 node = ports;
48
49 port = of_get_child_by_name(node, "port");
50 of_node_put(ports);
51 of_node_put(port);
52
53 return !!port;
54}
55EXPORT_SYMBOL(of_graph_is_present);
56
1df09bc6
SA
57/**
58 * of_property_count_elems_of_size - Count the number of elements in a property
59 *
60 * @np: device node from which the property value is to be read.
61 * @propname: name of the property to be searched.
62 * @elem_size: size of the individual element
63 *
64 * Search for a property in a device node and count the number of elements of
8c8239c2
RH
65 * size elem_size in it.
66 *
67 * Return: The number of elements on sucess, -EINVAL if the property does not
68 * exist or its length does not match a multiple of elem_size and -ENODATA if
69 * the property does not have a value.
1df09bc6
SA
70 */
71int of_property_count_elems_of_size(const struct device_node *np,
72 const char *propname, int elem_size)
73{
74 struct property *prop = of_find_property(np, propname, NULL);
75
76 if (!prop)
77 return -EINVAL;
78 if (!prop->value)
79 return -ENODATA;
80
81 if (prop->length % elem_size != 0) {
0d638a07
RH
82 pr_err("size of %s in node %pOF is not a multiple of %d\n",
83 propname, np, elem_size);
1df09bc6
SA
84 return -EINVAL;
85 }
86
87 return prop->length / elem_size;
88}
89EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
90
91/**
92 * of_find_property_value_of_size
93 *
94 * @np: device node from which the property value is to be read.
95 * @propname: name of the property to be searched.
96 * @min: minimum allowed length of property value
97 * @max: maximum allowed length of property value (0 means unlimited)
98 * @len: if !=NULL, actual length is written to here
99 *
100 * Search for a property in a device node and valid the requested size.
8c8239c2
RH
101 *
102 * Return: The property value on success, -EINVAL if the property does not
103 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1df09bc6
SA
104 * property data is too small or too large.
105 *
106 */
107static void *of_find_property_value_of_size(const struct device_node *np,
108 const char *propname, u32 min, u32 max, size_t *len)
109{
110 struct property *prop = of_find_property(np, propname, NULL);
111
112 if (!prop)
113 return ERR_PTR(-EINVAL);
114 if (!prop->value)
115 return ERR_PTR(-ENODATA);
116 if (prop->length < min)
117 return ERR_PTR(-EOVERFLOW);
118 if (max && prop->length > max)
119 return ERR_PTR(-EOVERFLOW);
120
121 if (len)
122 *len = prop->length;
123
124 return prop->value;
125}
126
127/**
128 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
129 *
130 * @np: device node from which the property value is to be read.
131 * @propname: name of the property to be searched.
132 * @index: index of the u32 in the list of values
133 * @out_value: pointer to return value, modified only if no error.
134 *
135 * Search for a property in a device node and read nth 32-bit value from
8c8239c2
RH
136 * it.
137 *
138 * Return: 0 on success, -EINVAL if the property does not exist,
1df09bc6
SA
139 * -ENODATA if property does not have a value, and -EOVERFLOW if the
140 * property data isn't large enough.
141 *
142 * The out_value is modified only if a valid u32 value can be decoded.
143 */
144int of_property_read_u32_index(const struct device_node *np,
145 const char *propname,
146 u32 index, u32 *out_value)
147{
148 const u32 *val = of_find_property_value_of_size(np, propname,
149 ((index + 1) * sizeof(*out_value)),
150 0,
151 NULL);
152
153 if (IS_ERR(val))
154 return PTR_ERR(val);
155
156 *out_value = be32_to_cpup(((__be32 *)val) + index);
157 return 0;
158}
159EXPORT_SYMBOL_GPL(of_property_read_u32_index);
160
161/**
162 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
163 *
164 * @np: device node from which the property value is to be read.
165 * @propname: name of the property to be searched.
166 * @index: index of the u64 in the list of values
167 * @out_value: pointer to return value, modified only if no error.
168 *
169 * Search for a property in a device node and read nth 64-bit value from
8c8239c2
RH
170 * it.
171 *
172 * Return: 0 on success, -EINVAL if the property does not exist,
1df09bc6
SA
173 * -ENODATA if property does not have a value, and -EOVERFLOW if the
174 * property data isn't large enough.
175 *
176 * The out_value is modified only if a valid u64 value can be decoded.
177 */
178int of_property_read_u64_index(const struct device_node *np,
179 const char *propname,
180 u32 index, u64 *out_value)
181{
182 const u64 *val = of_find_property_value_of_size(np, propname,
183 ((index + 1) * sizeof(*out_value)),
184 0, NULL);
185
186 if (IS_ERR(val))
187 return PTR_ERR(val);
188
189 *out_value = be64_to_cpup(((__be64 *)val) + index);
190 return 0;
191}
192EXPORT_SYMBOL_GPL(of_property_read_u64_index);
193
194/**
195 * of_property_read_variable_u8_array - Find and read an array of u8 from a
196 * property, with bounds on the minimum and maximum array size.
197 *
198 * @np: device node from which the property value is to be read.
199 * @propname: name of the property to be searched.
7f3fefee 200 * @out_values: pointer to found values.
1df09bc6
SA
201 * @sz_min: minimum number of array elements to read
202 * @sz_max: maximum number of array elements to read, if zero there is no
203 * upper limit on the number of elements in the dts entry but only
204 * sz_min will be read.
205 *
206 * Search for a property in a device node and read 8-bit value(s) from
8c8239c2 207 * it.
1df09bc6
SA
208 *
209 * dts entry of array should be like:
8c8239c2
RH
210 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
211 *
212 * Return: The number of elements read on success, -EINVAL if the property
213 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
214 * if the property data is smaller than sz_min or longer than sz_max.
1df09bc6
SA
215 *
216 * The out_values is modified only if a valid u8 value can be decoded.
217 */
218int of_property_read_variable_u8_array(const struct device_node *np,
219 const char *propname, u8 *out_values,
220 size_t sz_min, size_t sz_max)
221{
222 size_t sz, count;
223 const u8 *val = of_find_property_value_of_size(np, propname,
224 (sz_min * sizeof(*out_values)),
225 (sz_max * sizeof(*out_values)),
226 &sz);
227
228 if (IS_ERR(val))
229 return PTR_ERR(val);
230
231 if (!sz_max)
232 sz = sz_min;
233 else
234 sz /= sizeof(*out_values);
235
236 count = sz;
237 while (count--)
238 *out_values++ = *val++;
239
240 return sz;
241}
242EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
243
244/**
245 * of_property_read_variable_u16_array - Find and read an array of u16 from a
246 * property, with bounds on the minimum and maximum array size.
247 *
248 * @np: device node from which the property value is to be read.
249 * @propname: name of the property to be searched.
7f3fefee 250 * @out_values: pointer to found values.
1df09bc6
SA
251 * @sz_min: minimum number of array elements to read
252 * @sz_max: maximum number of array elements to read, if zero there is no
253 * upper limit on the number of elements in the dts entry but only
254 * sz_min will be read.
255 *
256 * Search for a property in a device node and read 16-bit value(s) from
8c8239c2 257 * it.
1df09bc6
SA
258 *
259 * dts entry of array should be like:
8c8239c2
RH
260 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
261 *
262 * Return: The number of elements read on success, -EINVAL if the property
263 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
264 * if the property data is smaller than sz_min or longer than sz_max.
1df09bc6
SA
265 *
266 * The out_values is modified only if a valid u16 value can be decoded.
267 */
268int of_property_read_variable_u16_array(const struct device_node *np,
269 const char *propname, u16 *out_values,
270 size_t sz_min, size_t sz_max)
271{
272 size_t sz, count;
273 const __be16 *val = of_find_property_value_of_size(np, propname,
274 (sz_min * sizeof(*out_values)),
275 (sz_max * sizeof(*out_values)),
276 &sz);
277
278 if (IS_ERR(val))
279 return PTR_ERR(val);
280
281 if (!sz_max)
282 sz = sz_min;
283 else
284 sz /= sizeof(*out_values);
285
286 count = sz;
287 while (count--)
288 *out_values++ = be16_to_cpup(val++);
289
290 return sz;
291}
292EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
293
294/**
295 * of_property_read_variable_u32_array - Find and read an array of 32 bit
296 * integers from a property, with bounds on the minimum and maximum array size.
297 *
298 * @np: device node from which the property value is to be read.
299 * @propname: name of the property to be searched.
7f3fefee 300 * @out_values: pointer to return found values.
1df09bc6
SA
301 * @sz_min: minimum number of array elements to read
302 * @sz_max: maximum number of array elements to read, if zero there is no
303 * upper limit on the number of elements in the dts entry but only
304 * sz_min will be read.
305 *
306 * Search for a property in a device node and read 32-bit value(s) from
8c8239c2
RH
307 * it.
308 *
309 * Return: The number of elements read on success, -EINVAL if the property
1df09bc6
SA
310 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
311 * if the property data is smaller than sz_min or longer than sz_max.
312 *
313 * The out_values is modified only if a valid u32 value can be decoded.
314 */
315int of_property_read_variable_u32_array(const struct device_node *np,
316 const char *propname, u32 *out_values,
317 size_t sz_min, size_t sz_max)
318{
319 size_t sz, count;
320 const __be32 *val = of_find_property_value_of_size(np, propname,
321 (sz_min * sizeof(*out_values)),
322 (sz_max * sizeof(*out_values)),
323 &sz);
324
325 if (IS_ERR(val))
326 return PTR_ERR(val);
327
328 if (!sz_max)
329 sz = sz_min;
330 else
331 sz /= sizeof(*out_values);
332
333 count = sz;
334 while (count--)
335 *out_values++ = be32_to_cpup(val++);
336
337 return sz;
338}
339EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
340
341/**
342 * of_property_read_u64 - Find and read a 64 bit integer from a property
343 * @np: device node from which the property value is to be read.
344 * @propname: name of the property to be searched.
345 * @out_value: pointer to return value, modified only if return value is 0.
346 *
347 * Search for a property in a device node and read a 64-bit value from
8c8239c2
RH
348 * it.
349 *
350 * Return: 0 on success, -EINVAL if the property does not exist,
1df09bc6
SA
351 * -ENODATA if property does not have a value, and -EOVERFLOW if the
352 * property data isn't large enough.
353 *
354 * The out_value is modified only if a valid u64 value can be decoded.
355 */
356int of_property_read_u64(const struct device_node *np, const char *propname,
357 u64 *out_value)
358{
359 const __be32 *val = of_find_property_value_of_size(np, propname,
360 sizeof(*out_value),
361 0,
362 NULL);
363
364 if (IS_ERR(val))
365 return PTR_ERR(val);
366
367 *out_value = of_read_number(val, 2);
368 return 0;
369}
370EXPORT_SYMBOL_GPL(of_property_read_u64);
371
372/**
373 * of_property_read_variable_u64_array - Find and read an array of 64 bit
374 * integers from a property, with bounds on the minimum and maximum array size.
375 *
376 * @np: device node from which the property value is to be read.
377 * @propname: name of the property to be searched.
7f3fefee 378 * @out_values: pointer to found values.
1df09bc6
SA
379 * @sz_min: minimum number of array elements to read
380 * @sz_max: maximum number of array elements to read, if zero there is no
381 * upper limit on the number of elements in the dts entry but only
382 * sz_min will be read.
383 *
384 * Search for a property in a device node and read 64-bit value(s) from
8c8239c2
RH
385 * it.
386 *
387 * Return: The number of elements read on success, -EINVAL if the property
1df09bc6
SA
388 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
389 * if the property data is smaller than sz_min or longer than sz_max.
390 *
391 * The out_values is modified only if a valid u64 value can be decoded.
392 */
393int of_property_read_variable_u64_array(const struct device_node *np,
394 const char *propname, u64 *out_values,
395 size_t sz_min, size_t sz_max)
396{
397 size_t sz, count;
398 const __be32 *val = of_find_property_value_of_size(np, propname,
399 (sz_min * sizeof(*out_values)),
400 (sz_max * sizeof(*out_values)),
401 &sz);
402
403 if (IS_ERR(val))
404 return PTR_ERR(val);
405
406 if (!sz_max)
407 sz = sz_min;
408 else
409 sz /= sizeof(*out_values);
410
411 count = sz;
412 while (count--) {
413 *out_values++ = of_read_number(val, 2);
414 val += 2;
415 }
416
417 return sz;
418}
419EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
420
421/**
422 * of_property_read_string - Find and read a string from a property
423 * @np: device node from which the property value is to be read.
424 * @propname: name of the property to be searched.
425 * @out_string: pointer to null terminated return string, modified only if
426 * return value is 0.
427 *
428 * Search for a property in a device tree node and retrieve a null
8c8239c2
RH
429 * terminated string value (pointer to data, not a copy).
430 *
431 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
432 * property does not have a value, and -EILSEQ if the string is not
433 * null-terminated within the length of the property data.
1df09bc6 434 *
f688d619
SS
435 * Note that the empty string "" has length of 1, thus -ENODATA cannot
436 * be interpreted as an empty string.
437 *
1df09bc6
SA
438 * The out_string pointer is modified only if a valid string can be decoded.
439 */
440int of_property_read_string(const struct device_node *np, const char *propname,
441 const char **out_string)
442{
443 const struct property *prop = of_find_property(np, propname, NULL);
444 if (!prop)
445 return -EINVAL;
f688d619 446 if (!prop->length)
1df09bc6
SA
447 return -ENODATA;
448 if (strnlen(prop->value, prop->length) >= prop->length)
449 return -EILSEQ;
450 *out_string = prop->value;
451 return 0;
452}
453EXPORT_SYMBOL_GPL(of_property_read_string);
454
455/**
456 * of_property_match_string() - Find string in a list and return index
457 * @np: pointer to node containing string list property
458 * @propname: string list property name
459 * @string: pointer to string to search for in string list
460 *
461 * This function searches a string list property and returns the index
462 * of a specific string value.
463 */
464int of_property_match_string(const struct device_node *np, const char *propname,
465 const char *string)
466{
467 const struct property *prop = of_find_property(np, propname, NULL);
468 size_t l;
469 int i;
470 const char *p, *end;
471
472 if (!prop)
473 return -EINVAL;
474 if (!prop->value)
475 return -ENODATA;
476
477 p = prop->value;
478 end = p + prop->length;
479
480 for (i = 0; p < end; i++, p += l) {
481 l = strnlen(p, end - p) + 1;
482 if (p + l > end)
483 return -EILSEQ;
484 pr_debug("comparing %s with %s\n", string, p);
485 if (strcmp(string, p) == 0)
486 return i; /* Found it; return index */
487 }
488 return -ENODATA;
489}
490EXPORT_SYMBOL_GPL(of_property_match_string);
491
492/**
493 * of_property_read_string_helper() - Utility helper for parsing string properties
494 * @np: device node from which the property value is to be read.
495 * @propname: name of the property to be searched.
496 * @out_strs: output array of string pointers.
497 * @sz: number of array elements to read.
498 * @skip: Number of strings to skip over at beginning of list.
499 *
500 * Don't call this function directly. It is a utility helper for the
501 * of_property_read_string*() family of functions.
502 */
503int of_property_read_string_helper(const struct device_node *np,
504 const char *propname, const char **out_strs,
505 size_t sz, int skip)
506{
507 const struct property *prop = of_find_property(np, propname, NULL);
508 int l = 0, i = 0;
509 const char *p, *end;
510
511 if (!prop)
512 return -EINVAL;
513 if (!prop->value)
514 return -ENODATA;
515 p = prop->value;
516 end = p + prop->length;
517
518 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
519 l = strnlen(p, end - p) + 1;
520 if (p + l > end)
521 return -EILSEQ;
522 if (out_strs && i >= skip)
523 *out_strs++ = p;
524 }
525 i -= skip;
526 return i <= 0 ? -ENODATA : i;
527}
528EXPORT_SYMBOL_GPL(of_property_read_string_helper);
529
530const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
531 u32 *pu)
532{
533 const void *curv = cur;
534
535 if (!prop)
536 return NULL;
537
538 if (!cur) {
539 curv = prop->value;
540 goto out_val;
541 }
542
543 curv += sizeof(*cur);
544 if (curv >= prop->value + prop->length)
545 return NULL;
546
547out_val:
548 *pu = be32_to_cpup(curv);
549 return curv;
550}
551EXPORT_SYMBOL_GPL(of_prop_next_u32);
552
553const char *of_prop_next_string(struct property *prop, const char *cur)
554{
555 const void *curv = cur;
556
557 if (!prop)
558 return NULL;
559
560 if (!cur)
561 return prop->value;
562
563 curv += strlen(cur) + 1;
564 if (curv >= prop->value + prop->length)
565 return NULL;
566
567 return curv;
568}
569EXPORT_SYMBOL_GPL(of_prop_next_string);
570
571/**
572 * of_graph_parse_endpoint() - parse common endpoint node properties
573 * @node: pointer to endpoint device_node
574 * @endpoint: pointer to the OF endpoint data structure
575 *
576 * The caller should hold a reference to @node.
577 */
578int of_graph_parse_endpoint(const struct device_node *node,
579 struct of_endpoint *endpoint)
580{
581 struct device_node *port_node = of_get_parent(node);
582
0d638a07
RH
583 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
584 __func__, node);
1df09bc6
SA
585
586 memset(endpoint, 0, sizeof(*endpoint));
587
588 endpoint->local_node = node;
589 /*
590 * It doesn't matter whether the two calls below succeed.
591 * If they don't then the default value 0 is used.
592 */
593 of_property_read_u32(port_node, "reg", &endpoint->port);
594 of_property_read_u32(node, "reg", &endpoint->id);
595
596 of_node_put(port_node);
597
598 return 0;
599}
600EXPORT_SYMBOL(of_graph_parse_endpoint);
601
602/**
603 * of_graph_get_port_by_id() - get the port matching a given id
604 * @parent: pointer to the parent device node
605 * @id: id of the port
606 *
607 * Return: A 'port' node pointer with refcount incremented. The caller
608 * has to use of_node_put() on it when done.
609 */
610struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
611{
612 struct device_node *node, *port;
613
614 node = of_get_child_by_name(parent, "ports");
615 if (node)
616 parent = node;
617
618 for_each_child_of_node(parent, port) {
619 u32 port_id = 0;
620
b3e46d1a 621 if (!of_node_name_eq(port, "port"))
1df09bc6
SA
622 continue;
623 of_property_read_u32(port, "reg", &port_id);
624 if (id == port_id)
625 break;
626 }
627
628 of_node_put(node);
629
630 return port;
631}
632EXPORT_SYMBOL(of_graph_get_port_by_id);
633
634/**
635 * of_graph_get_next_endpoint() - get next endpoint node
636 * @parent: pointer to the parent device node
637 * @prev: previous endpoint node, or NULL to get first
638 *
639 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
640 * of the passed @prev node is decremented.
641 */
642struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
643 struct device_node *prev)
644{
645 struct device_node *endpoint;
646 struct device_node *port;
647
648 if (!parent)
649 return NULL;
650
651 /*
652 * Start by locating the port node. If no previous endpoint is specified
653 * search for the first port node, otherwise get the previous endpoint
654 * parent port node.
655 */
656 if (!prev) {
657 struct device_node *node;
658
659 node = of_get_child_by_name(parent, "ports");
660 if (node)
661 parent = node;
662
663 port = of_get_child_by_name(parent, "port");
664 of_node_put(node);
665
666 if (!port) {
0d638a07 667 pr_err("graph: no port node found in %pOF\n", parent);
1df09bc6
SA
668 return NULL;
669 }
670 } else {
671 port = of_get_parent(prev);
0d638a07
RH
672 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
673 __func__, prev))
1df09bc6
SA
674 return NULL;
675 }
676
677 while (1) {
678 /*
679 * Now that we have a port node, get the next endpoint by
680 * getting the next child. If the previous endpoint is NULL this
681 * will return the first child.
682 */
683 endpoint = of_get_next_child(port, prev);
684 if (endpoint) {
685 of_node_put(port);
686 return endpoint;
687 }
688
689 /* No more endpoints under this port, try the next one. */
690 prev = NULL;
691
692 do {
693 port = of_get_next_child(parent, port);
694 if (!port)
695 return NULL;
b3e46d1a 696 } while (!of_node_name_eq(port, "port"));
1df09bc6
SA
697 }
698}
699EXPORT_SYMBOL(of_graph_get_next_endpoint);
700
701/**
702 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
703 * @parent: pointer to the parent device node
704 * @port_reg: identifier (value of reg property) of the parent port node
705 * @reg: identifier (value of reg property) of the endpoint node
706 *
707 * Return: An 'endpoint' node pointer which is identified by reg and at the same
708 * is the child of a port node identified by port_reg. reg and port_reg are
deb387d4 709 * ignored when they are -1. Use of_node_put() on the pointer when done.
1df09bc6
SA
710 */
711struct device_node *of_graph_get_endpoint_by_regs(
712 const struct device_node *parent, int port_reg, int reg)
713{
714 struct of_endpoint endpoint;
715 struct device_node *node = NULL;
716
717 for_each_endpoint_of_node(parent, node) {
718 of_graph_parse_endpoint(node, &endpoint);
719 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
720 ((reg == -1) || (endpoint.id == reg)))
721 return node;
722 }
723
724 return NULL;
725}
726EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
727
b8ba92b1
RH
728/**
729 * of_graph_get_remote_endpoint() - get remote endpoint node
730 * @node: pointer to a local endpoint device_node
731 *
732 * Return: Remote endpoint node associated with remote endpoint node linked
733 * to @node. Use of_node_put() on it when done.
734 */
735struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
736{
737 /* Get remote endpoint node. */
738 return of_parse_phandle(node, "remote-endpoint", 0);
739}
740EXPORT_SYMBOL(of_graph_get_remote_endpoint);
741
742/**
743 * of_graph_get_port_parent() - get port's parent node
744 * @node: pointer to a local endpoint device_node
745 *
746 * Return: device node associated with endpoint node linked
747 * to @node. Use of_node_put() on it when done.
748 */
749struct device_node *of_graph_get_port_parent(struct device_node *node)
750{
751 unsigned int depth;
752
c0a480d1
TL
753 if (!node)
754 return NULL;
755
756 /*
757 * Preserve usecount for passed in node as of_get_next_parent()
758 * will do of_node_put() on it.
759 */
760 of_node_get(node);
761
b8ba92b1
RH
762 /* Walk 3 levels up only if there is 'ports' node. */
763 for (depth = 3; depth && node; depth--) {
764 node = of_get_next_parent(node);
b3e46d1a 765 if (depth == 2 && !of_node_name_eq(node, "ports"))
b8ba92b1
RH
766 break;
767 }
768 return node;
769}
770EXPORT_SYMBOL(of_graph_get_port_parent);
771
1df09bc6
SA
772/**
773 * of_graph_get_remote_port_parent() - get remote port's parent node
774 * @node: pointer to a local endpoint device_node
775 *
776 * Return: Remote device node associated with remote endpoint node linked
777 * to @node. Use of_node_put() on it when done.
778 */
779struct device_node *of_graph_get_remote_port_parent(
780 const struct device_node *node)
781{
c0a480d1 782 struct device_node *np, *pp;
1df09bc6
SA
783
784 /* Get remote endpoint node. */
b8ba92b1 785 np = of_graph_get_remote_endpoint(node);
1df09bc6 786
c0a480d1
TL
787 pp = of_graph_get_port_parent(np);
788
789 of_node_put(np);
790
791 return pp;
1df09bc6
SA
792}
793EXPORT_SYMBOL(of_graph_get_remote_port_parent);
794
795/**
796 * of_graph_get_remote_port() - get remote port node
797 * @node: pointer to a local endpoint device_node
798 *
799 * Return: Remote port node associated with remote endpoint node linked
8c8239c2 800 * to @node. Use of_node_put() on it when done.
1df09bc6
SA
801 */
802struct device_node *of_graph_get_remote_port(const struct device_node *node)
803{
804 struct device_node *np;
805
806 /* Get remote endpoint node. */
b8ba92b1 807 np = of_graph_get_remote_endpoint(node);
1df09bc6
SA
808 if (!np)
809 return NULL;
810 return of_get_next_parent(np);
811}
812EXPORT_SYMBOL(of_graph_get_remote_port);
813
b8ba92b1
RH
814int of_graph_get_endpoint_count(const struct device_node *np)
815{
816 struct device_node *endpoint;
817 int num = 0;
818
819 for_each_endpoint_of_node(np, endpoint)
820 num++;
821
822 return num;
823}
824EXPORT_SYMBOL(of_graph_get_endpoint_count);
825
1df09bc6
SA
826/**
827 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
828 * @node: pointer to parent device_node containing graph port/endpoint
829 * @port: identifier (value of reg property) of the parent port node
830 * @endpoint: identifier (value of reg property) of the endpoint node
831 *
832 * Return: Remote device node associated with remote endpoint node linked
8c8239c2 833 * to @node. Use of_node_put() on it when done.
1df09bc6
SA
834 */
835struct device_node *of_graph_get_remote_node(const struct device_node *node,
836 u32 port, u32 endpoint)
837{
838 struct device_node *endpoint_node, *remote;
839
840 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
841 if (!endpoint_node) {
0d638a07
RH
842 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
843 port, endpoint, node);
1df09bc6
SA
844 return NULL;
845 }
846
847 remote = of_graph_get_remote_port_parent(endpoint_node);
848 of_node_put(endpoint_node);
849 if (!remote) {
850 pr_debug("no valid remote node\n");
851 return NULL;
852 }
853
854 if (!of_device_is_available(remote)) {
855 pr_debug("not available for remote node\n");
28b170e8 856 of_node_put(remote);
1df09bc6
SA
857 return NULL;
858 }
859
860 return remote;
861}
862EXPORT_SYMBOL(of_graph_get_remote_node);
3708184a 863
cf89a31c 864static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
3708184a 865{
cf89a31c 866 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
3708184a
SA
867}
868
869static void of_fwnode_put(struct fwnode_handle *fwnode)
870{
871 of_node_put(to_of_node(fwnode));
872}
873
37ba983c 874static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
2294b3af
SA
875{
876 return of_device_is_available(to_of_node(fwnode));
877}
878
8c756a0a
SA
879static bool of_fwnode_device_dma_supported(const struct fwnode_handle *fwnode)
880{
881 return true;
882}
883
884static enum dev_dma_attr
885of_fwnode_device_get_dma_attr(const struct fwnode_handle *fwnode)
886{
887 if (of_dma_is_coherent(to_of_node(fwnode)))
888 return DEV_DMA_COHERENT;
889 else
890 return DEV_DMA_NON_COHERENT;
891}
892
37ba983c 893static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
3708184a
SA
894 const char *propname)
895{
896 return of_property_read_bool(to_of_node(fwnode), propname);
897}
898
37ba983c 899static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
3708184a
SA
900 const char *propname,
901 unsigned int elem_size, void *val,
902 size_t nval)
903{
37ba983c 904 const struct device_node *node = to_of_node(fwnode);
3708184a
SA
905
906 if (!val)
907 return of_property_count_elems_of_size(node, propname,
908 elem_size);
909
910 switch (elem_size) {
911 case sizeof(u8):
912 return of_property_read_u8_array(node, propname, val, nval);
913 case sizeof(u16):
914 return of_property_read_u16_array(node, propname, val, nval);
915 case sizeof(u32):
916 return of_property_read_u32_array(node, propname, val, nval);
917 case sizeof(u64):
918 return of_property_read_u64_array(node, propname, val, nval);
919 }
920
921 return -ENXIO;
922}
923
37ba983c
SA
924static int
925of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
926 const char *propname, const char **val,
927 size_t nval)
3708184a 928{
37ba983c 929 const struct device_node *node = to_of_node(fwnode);
3708184a
SA
930
931 return val ?
932 of_property_read_string_array(node, propname, val, nval) :
933 of_property_count_strings(node, propname);
934}
935
bc0500c1
SA
936static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
937{
938 return kbasename(to_of_node(fwnode)->full_name);
939}
940
e7e242bc
SA
941static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
942{
943 /* Root needs no prefix here (its name is "/"). */
944 if (!to_of_node(fwnode)->parent)
945 return "";
946
947 return "/";
948}
949
37ba983c
SA
950static struct fwnode_handle *
951of_fwnode_get_parent(const struct fwnode_handle *fwnode)
3708184a
SA
952{
953 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
954}
955
956static struct fwnode_handle *
37ba983c 957of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
3708184a
SA
958 struct fwnode_handle *child)
959{
960 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
961 to_of_node(child)));
962}
963
964static struct fwnode_handle *
37ba983c 965of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
3708184a
SA
966 const char *childname)
967{
37ba983c 968 const struct device_node *node = to_of_node(fwnode);
3708184a
SA
969 struct device_node *child;
970
971 for_each_available_child_of_node(node, child)
b3e46d1a 972 if (of_node_name_eq(child, childname))
3708184a
SA
973 return of_fwnode_handle(child);
974
975 return NULL;
976}
977
3e3119d3
SA
978static int
979of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
980 const char *prop, const char *nargs_prop,
981 unsigned int nargs, unsigned int index,
982 struct fwnode_reference_args *args)
983{
984 struct of_phandle_args of_args;
985 unsigned int i;
986 int ret;
987
988 if (nargs_prop)
989 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
990 nargs_prop, index, &of_args);
991 else
992 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
993 nargs, index, &of_args);
994 if (ret < 0)
995 return ret;
60d865bd
YY
996 if (!args) {
997 of_node_put(of_args.np);
3e3119d3 998 return 0;
60d865bd 999 }
3e3119d3
SA
1000
1001 args->nargs = of_args.args_count;
1002 args->fwnode = of_fwnode_handle(of_args.np);
1003
1004 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
1005 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
1006
1007 return 0;
1008}
1009
3b27d00e 1010static struct fwnode_handle *
37ba983c 1011of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
3b27d00e
SA
1012 struct fwnode_handle *prev)
1013{
1014 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
1015 to_of_node(prev)));
1016}
1017
1018static struct fwnode_handle *
37ba983c 1019of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
3b27d00e 1020{
358155ed
KM
1021 return of_fwnode_handle(
1022 of_graph_get_remote_endpoint(to_of_node(fwnode)));
3b27d00e
SA
1023}
1024
1025static struct fwnode_handle *
1026of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1027{
1028 struct device_node *np;
1029
1030 /* Get the parent of the port */
3314c6bd 1031 np = of_get_parent(to_of_node(fwnode));
3b27d00e
SA
1032 if (!np)
1033 return NULL;
1034
1035 /* Is this the "ports" node? If not, it's the port parent. */
b3e46d1a 1036 if (!of_node_name_eq(np, "ports"))
3b27d00e
SA
1037 return of_fwnode_handle(np);
1038
1039 return of_fwnode_handle(of_get_next_parent(np));
1040}
1041
37ba983c 1042static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
3b27d00e
SA
1043 struct fwnode_endpoint *endpoint)
1044{
37ba983c 1045 const struct device_node *node = to_of_node(fwnode);
3b27d00e
SA
1046 struct device_node *port_node = of_get_parent(node);
1047
1048 endpoint->local_fwnode = fwnode;
1049
1050 of_property_read_u32(port_node, "reg", &endpoint->port);
1051 of_property_read_u32(node, "reg", &endpoint->id);
1052
1053 of_node_put(port_node);
1054
1055 return 0;
1056}
1057
67dcc26d 1058static const void *
1c2c82ea
SK
1059of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1060 const struct device *dev)
1061{
67dcc26d 1062 return of_device_get_match_data(dev);
1c2c82ea
SK
1063}
1064
a3e1d1a7
SK
1065static bool of_is_ancestor_of(struct device_node *test_ancestor,
1066 struct device_node *child)
1067{
1068 of_node_get(child);
1069 while (child) {
1070 if (child == test_ancestor) {
1071 of_node_put(child);
38835391 1072 return true;
a3e1d1a7
SK
1073 }
1074 child = of_get_next_parent(child);
1075 }
38835391 1076 return false;
a3e1d1a7
SK
1077}
1078
f7514a66
SK
1079static struct device_node *of_get_compat_node(struct device_node *np)
1080{
1081 of_node_get(np);
1082
1083 while (np) {
1084 if (!of_device_is_available(np)) {
1085 of_node_put(np);
1086 np = NULL;
1087 }
1088
2f0cb475 1089 if (of_property_present(np, "compatible"))
f7514a66
SK
1090 break;
1091
1092 np = of_get_next_parent(np);
1093 }
1094
1095 return np;
1096}
1097
3cd6bab2
UH
1098static struct device_node *of_get_compat_node_parent(struct device_node *np)
1099{
1100 struct device_node *parent, *node;
1101
1102 parent = of_get_parent(np);
1103 node = of_get_compat_node(parent);
1104 of_node_put(parent);
1105
1106 return node;
1107}
1108
bb278b14 1109/**
8a06d1ea
SK
1110 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1111 * @con_np: consumer device tree node
1112 * @sup_np: supplier device tree node
a3e1d1a7
SK
1113 *
1114 * Given a phandle to a supplier device tree node (@sup_np), this function
1115 * finds the device that owns the supplier device tree node and creates a
1116 * device link from @dev consumer device to the supplier device. This function
1117 * doesn't create device links for invalid scenarios such as trying to create a
1118 * link with a parent device as the consumer of its child device. In such
1119 * cases, it returns an error.
1120 *
1121 * Returns:
8a06d1ea 1122 * - 0 if fwnode link successfully created to supplier
a3e1d1a7 1123 * - -EINVAL if the supplier link is invalid and should not be created
8a06d1ea 1124 * - -ENODEV if struct device will never be create for supplier
a3e1d1a7 1125 */
8a06d1ea
SK
1126static int of_link_to_phandle(struct device_node *con_np,
1127 struct device_node *sup_np)
a3e1d1a7 1128{
8a06d1ea 1129 struct device *sup_dev;
a3e1d1a7
SK
1130 struct device_node *tmp_np = sup_np;
1131
a3e1d1a7
SK
1132 /*
1133 * Find the device node that contains the supplier phandle. It may be
1134 * @sup_np or it may be an ancestor of @sup_np.
1135 */
f7514a66 1136 sup_np = of_get_compat_node(sup_np);
a3e1d1a7 1137 if (!sup_np) {
8a06d1ea
SK
1138 pr_debug("Not linking %pOFP to %pOFP - No device\n",
1139 con_np, tmp_np);
a3e1d1a7
SK
1140 return -ENODEV;
1141 }
1142
1143 /*
1144 * Don't allow linking a device node as a consumer of one of its
1145 * descendant nodes. By definition, a child node can't be a functional
1146 * dependency for the parent node.
1147 */
8a06d1ea
SK
1148 if (of_is_ancestor_of(con_np, sup_np)) {
1149 pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1150 con_np, sup_np);
a3e1d1a7
SK
1151 of_node_put(sup_np);
1152 return -EINVAL;
1153 }
8a06d1ea
SK
1154
1155 /*
1156 * Don't create links to "early devices" that won't have struct devices
1157 * created for them.
1158 */
a3e1d1a7 1159 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1753c4d1
SK
1160 if (!sup_dev &&
1161 (of_node_check_flag(sup_np, OF_POPULATED) ||
1162 sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
8a06d1ea
SK
1163 pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1164 con_np, sup_np);
bb278b14 1165 of_node_put(sup_np);
ba861f8e 1166 return -ENODEV;
ba861f8e 1167 }
a3e1d1a7 1168 put_device(sup_dev);
8a06d1ea
SK
1169
1170 fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1171 of_node_put(sup_np);
1172
1173 return 0;
a3e1d1a7
SK
1174}
1175
1176/**
1177 * parse_prop_cells - Property parsing function for suppliers
1178 *
1179 * @np: Pointer to device tree node containing a list
1180 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1181 * @index: For properties holding a list of phandles, this is the index
1182 * into the list.
1183 * @list_name: Property name that is known to contain list of phandle(s) to
1184 * supplier(s)
1185 * @cells_name: property name that specifies phandles' arguments count
1186 *
1187 * This is a helper function to parse properties that have a known fixed name
1188 * and are a list of phandles and phandle arguments.
1189 *
1190 * Returns:
1191 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1192 * on it when done.
1193 * - NULL if no phandle found at index
1194 */
1195static struct device_node *parse_prop_cells(struct device_node *np,
1196 const char *prop_name, int index,
1197 const char *list_name,
1198 const char *cells_name)
1199{
1200 struct of_phandle_args sup_args;
1201
1202 if (strcmp(prop_name, list_name))
1203 return NULL;
1204
1205 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1206 &sup_args))
1207 return NULL;
1208
1209 return sup_args.np;
1210}
1211
a436ef4a
SK
1212#define DEFINE_SIMPLE_PROP(fname, name, cells) \
1213static struct device_node *parse_##fname(struct device_node *np, \
1214 const char *prop_name, int index) \
1215{ \
1216 return parse_prop_cells(np, prop_name, index, name, cells); \
a3e1d1a7
SK
1217}
1218
1219static int strcmp_suffix(const char *str, const char *suffix)
1220{
1221 unsigned int len, suffix_len;
1222
1223 len = strlen(str);
1224 suffix_len = strlen(suffix);
1225 if (len <= suffix_len)
1226 return -1;
1227 return strcmp(str + len - suffix_len, suffix);
1228}
1229
a436ef4a
SK
1230/**
1231 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1232 *
1233 * @np: Pointer to device tree node containing a list
1234 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1235 * @index: For properties holding a list of phandles, this is the index
1236 * into the list.
1237 * @suffix: Property suffix that is known to contain list of phandle(s) to
1238 * supplier(s)
1239 * @cells_name: property name that specifies phandles' arguments count
1240 *
1241 * This is a helper function to parse properties that have a known fixed suffix
1242 * and are a list of phandles and phandle arguments.
1243 *
1244 * Returns:
1245 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1246 * on it when done.
1247 * - NULL if no phandle found at index
1248 */
1249static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1250 const char *prop_name, int index,
1251 const char *suffix,
1252 const char *cells_name)
a3e1d1a7 1253{
a436ef4a
SK
1254 struct of_phandle_args sup_args;
1255
1256 if (strcmp_suffix(prop_name, suffix))
a3e1d1a7
SK
1257 return NULL;
1258
a436ef4a
SK
1259 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1260 &sup_args))
1261 return NULL;
1262
1263 return sup_args.np;
1264}
1265
1266#define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1267static struct device_node *parse_##fname(struct device_node *np, \
1268 const char *prop_name, int index) \
1269{ \
1270 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
a3e1d1a7
SK
1271}
1272
1273/**
1274 * struct supplier_bindings - Property parsing functions for suppliers
1275 *
1276 * @parse_prop: function name
1277 * parse_prop() finds the node corresponding to a supplier phandle
1278 * @parse_prop.np: Pointer to device node holding supplier phandle property
1279 * @parse_prop.prop_name: Name of property holding a phandle value
1280 * @parse_prop.index: For properties holding a list of phandles, this is the
1281 * index into the list
3915fed9 1282 * @optional: Describes whether a supplier is mandatory or not
3cd6bab2
UH
1283 * @node_not_dev: The consumer node containing the property is never converted
1284 * to a struct device. Instead, parse ancestor nodes for the
1285 * compatible property to find a node corresponding to a device.
a3e1d1a7
SK
1286 *
1287 * Returns:
1288 * parse_prop() return values are
1289 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1290 * on it when done.
1291 * - NULL if no phandle found at index
1292 */
1293struct supplier_bindings {
1294 struct device_node *(*parse_prop)(struct device_node *np,
1295 const char *prop_name, int index);
a9dd8f3c 1296 bool optional;
f7514a66 1297 bool node_not_dev;
a3e1d1a7
SK
1298};
1299
a436ef4a
SK
1300DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1301DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
8e12257d
SK
1302DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1303DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1304DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
7f00be96
SK
1305DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1306DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
2f7afc34
SK
1307DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1308DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
78056e70 1309DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
53e6a671
SK
1310DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1311DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1312DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
fb820b49
SK
1313DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1314DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1315DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1316DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1317DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1318DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1319DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1320DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1321DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
f7514a66 1322DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL)
6b2117ad
SK
1323DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1324DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
18c585c7
SK
1325DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1326DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
a436ef4a 1327DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
7f00be96 1328DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
d473d32c
IL
1329
1330static struct device_node *parse_gpios(struct device_node *np,
1331 const char *prop_name, int index)
1332{
1333 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1334 return NULL;
1335
1336 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1337 "#gpio-cells");
1338}
a436ef4a 1339
e149573b
WD
1340static struct device_node *parse_iommu_maps(struct device_node *np,
1341 const char *prop_name, int index)
1342{
1343 if (strcmp(prop_name, "iommu-map"))
1344 return NULL;
1345
1346 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1347}
1348
e13f5b7a
SK
1349static struct device_node *parse_gpio_compat(struct device_node *np,
1350 const char *prop_name, int index)
1351{
1352 struct of_phandle_args sup_args;
1353
1354 if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1355 return NULL;
1356
1357 /*
1358 * Ignore node with gpio-hog property since its gpios are all provided
1359 * by its parent.
1360 */
16b0c7ca 1361 if (of_property_read_bool(np, "gpio-hog"))
e13f5b7a
SK
1362 return NULL;
1363
1364 if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1365 &sup_args))
1366 return NULL;
1367
1368 return sup_args.np;
1369}
1370
4104ca77
SK
1371static struct device_node *parse_interrupts(struct device_node *np,
1372 const char *prop_name, int index)
1373{
f265f06a
SK
1374 struct of_phandle_args sup_args;
1375
bd6d617a
SK
1376 if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1377 return NULL;
1378
f265f06a
SK
1379 if (strcmp(prop_name, "interrupts") &&
1380 strcmp(prop_name, "interrupts-extended"))
4104ca77
SK
1381 return NULL;
1382
f265f06a 1383 return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
4104ca77
SK
1384}
1385
af1b967a 1386static const struct supplier_bindings of_supplier_bindings[] = {
a3e1d1a7
SK
1387 { .parse_prop = parse_clocks, },
1388 { .parse_prop = parse_interconnects, },
a9dd8f3c
SK
1389 { .parse_prop = parse_iommus, .optional = true, },
1390 { .parse_prop = parse_iommu_maps, .optional = true, },
8e12257d
SK
1391 { .parse_prop = parse_mboxes, },
1392 { .parse_prop = parse_io_channels, },
7f00be96 1393 { .parse_prop = parse_interrupt_parent, },
a9dd8f3c 1394 { .parse_prop = parse_dmas, .optional = true, },
2f7afc34
SK
1395 { .parse_prop = parse_power_domains, },
1396 { .parse_prop = parse_hwlocks, },
78056e70 1397 { .parse_prop = parse_extcon, },
53e6a671
SK
1398 { .parse_prop = parse_nvmem_cells, },
1399 { .parse_prop = parse_phys, },
1400 { .parse_prop = parse_wakeup_parent, },
fb820b49
SK
1401 { .parse_prop = parse_pinctrl0, },
1402 { .parse_prop = parse_pinctrl1, },
1403 { .parse_prop = parse_pinctrl2, },
1404 { .parse_prop = parse_pinctrl3, },
1405 { .parse_prop = parse_pinctrl4, },
1406 { .parse_prop = parse_pinctrl5, },
1407 { .parse_prop = parse_pinctrl6, },
1408 { .parse_prop = parse_pinctrl7, },
1409 { .parse_prop = parse_pinctrl8, },
f7514a66 1410 { .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
6b2117ad
SK
1411 { .parse_prop = parse_pwms, },
1412 { .parse_prop = parse_resets, },
18c585c7
SK
1413 { .parse_prop = parse_leds, },
1414 { .parse_prop = parse_backlight, },
e13f5b7a 1415 { .parse_prop = parse_gpio_compat, },
4104ca77 1416 { .parse_prop = parse_interrupts, },
a3e1d1a7 1417 { .parse_prop = parse_regulators, },
7f00be96
SK
1418 { .parse_prop = parse_gpio, },
1419 { .parse_prop = parse_gpios, },
af1b967a 1420 {}
a3e1d1a7
SK
1421};
1422
1423/**
1424 * of_link_property - Create device links to suppliers listed in a property
a3e1d1a7
SK
1425 * @con_np: The consumer device tree node which contains the property
1426 * @prop_name: Name of property to be parsed
1427 *
1428 * This function checks if the property @prop_name that is present in the
1429 * @con_np device tree node is one of the known common device tree bindings
1430 * that list phandles to suppliers. If @prop_name isn't one, this function
1431 * doesn't do anything.
1432 *
8a06d1ea
SK
1433 * If @prop_name is one, this function attempts to create fwnode links from the
1434 * consumer device tree node @con_np to all the suppliers device tree nodes
1435 * listed in @prop_name.
a3e1d1a7 1436 *
8a06d1ea 1437 * Any failed attempt to create a fwnode link will NOT result in an immediate
a3e1d1a7 1438 * return. of_link_property() must create links to all the available supplier
8a06d1ea
SK
1439 * device tree nodes even when attempts to create a link to one or more
1440 * suppliers fail.
a3e1d1a7 1441 */
8a06d1ea 1442static int of_link_property(struct device_node *con_np, const char *prop_name)
a3e1d1a7
SK
1443{
1444 struct device_node *phandle;
af1b967a 1445 const struct supplier_bindings *s = of_supplier_bindings;
a3e1d1a7
SK
1446 unsigned int i = 0;
1447 bool matched = false;
a3e1d1a7
SK
1448
1449 /* Do not stop at first failed link, link all available suppliers. */
1450 while (!matched && s->parse_prop) {
a9dd8f3c
SK
1451 if (s->optional && !fw_devlink_is_strict()) {
1452 s++;
1453 continue;
1454 }
1455
a3e1d1a7 1456 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
f7514a66
SK
1457 struct device_node *con_dev_np;
1458
1459 con_dev_np = s->node_not_dev
3cd6bab2 1460 ? of_get_compat_node_parent(con_np)
f7514a66 1461 : of_node_get(con_np);
a3e1d1a7
SK
1462 matched = true;
1463 i++;
f7514a66 1464 of_link_to_phandle(con_dev_np, phandle);
a3e1d1a7 1465 of_node_put(phandle);
f7514a66 1466 of_node_put(con_dev_np);
a3e1d1a7
SK
1467 }
1468 s++;
1469 }
065cac6c 1470 return 0;
a3e1d1a7
SK
1471}
1472
68b979d0
SA
1473static void __iomem *of_fwnode_iomap(struct fwnode_handle *fwnode, int index)
1474{
1475#ifdef CONFIG_OF_ADDRESS
1476 return of_iomap(to_of_node(fwnode), index);
1477#else
1478 return NULL;
1479#endif
1480}
1481
99c63707
SA
1482static int of_fwnode_irq_get(const struct fwnode_handle *fwnode,
1483 unsigned int index)
1484{
1485 return of_irq_get(to_of_node(fwnode), index);
1486}
1487
2d09e6eb 1488static int of_fwnode_add_links(struct fwnode_handle *fwnode)
a3e1d1a7 1489{
a3e1d1a7 1490 struct property *p;
8a06d1ea 1491 struct device_node *con_np = to_of_node(fwnode);
a3e1d1a7 1492
4a48b66b
SK
1493 if (IS_ENABLED(CONFIG_X86))
1494 return 0;
1495
8a06d1ea
SK
1496 if (!con_np)
1497 return -EINVAL;
a3e1d1a7 1498
8a06d1ea
SK
1499 for_each_property_of_node(con_np, p)
1500 of_link_property(con_np, p->name);
a3e1d1a7 1501
8a06d1ea 1502 return 0;
a3e1d1a7
SK
1503}
1504
3708184a
SA
1505const struct fwnode_operations of_fwnode_ops = {
1506 .get = of_fwnode_get,
1507 .put = of_fwnode_put,
2294b3af 1508 .device_is_available = of_fwnode_device_is_available,
1c2c82ea 1509 .device_get_match_data = of_fwnode_device_get_match_data,
8c756a0a
SA
1510 .device_dma_supported = of_fwnode_device_dma_supported,
1511 .device_get_dma_attr = of_fwnode_device_get_dma_attr,
3708184a
SA
1512 .property_present = of_fwnode_property_present,
1513 .property_read_int_array = of_fwnode_property_read_int_array,
1514 .property_read_string_array = of_fwnode_property_read_string_array,
bc0500c1 1515 .get_name = of_fwnode_get_name,
e7e242bc 1516 .get_name_prefix = of_fwnode_get_name_prefix,
3708184a
SA
1517 .get_parent = of_fwnode_get_parent,
1518 .get_next_child_node = of_fwnode_get_next_child_node,
1519 .get_named_child_node = of_fwnode_get_named_child_node,
3e3119d3 1520 .get_reference_args = of_fwnode_get_reference_args,
3b27d00e
SA
1521 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1522 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1523 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1524 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
68b979d0 1525 .iomap = of_fwnode_iomap,
99c63707 1526 .irq_get = of_fwnode_irq_get,
a3e1d1a7 1527 .add_links = of_fwnode_add_links,
3708184a 1528};
db3e50f3 1529EXPORT_SYMBOL_GPL(of_fwnode_ops);