nvme-pci: split the initial probe from the rest path
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
5f37396d 1// SPDX-License-Identifier: GPL-2.0
b60503ba
MW
2/*
3 * NVM Express device driver
6eb0d698 4 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
5 */
6
df4f9bc4 7#include <linux/acpi.h>
a0a3408e 8#include <linux/aer.h>
18119775 9#include <linux/async.h>
b60503ba 10#include <linux/blkdev.h>
a4aea562 11#include <linux/blk-mq.h>
dca51e78 12#include <linux/blk-mq-pci.h>
fe45e630 13#include <linux/blk-integrity.h>
ff5350a8 14#include <linux/dmi.h>
b60503ba
MW
15#include <linux/init.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
dc90f084 18#include <linux/memremap.h>
b60503ba
MW
19#include <linux/mm.h>
20#include <linux/module.h>
77bf25ea 21#include <linux/mutex.h>
d0877473 22#include <linux/once.h>
b60503ba 23#include <linux/pci.h>
d916b1be 24#include <linux/suspend.h>
e1e5e564 25#include <linux/t10-pi.h>
b60503ba 26#include <linux/types.h>
2f8e2c87 27#include <linux/io-64-nonatomic-lo-hi.h>
20d3bb92 28#include <linux/io-64-nonatomic-hi-lo.h>
a98e58e5 29#include <linux/sed-opal.h>
0f238ff5 30#include <linux/pci-p2pdma.h>
797a796a 31
604c01d5 32#include "trace.h"
f11bb3e2
CH
33#include "nvme.h"
34
c1e0cc7e 35#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
8a1d09a6 36#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
c965809c 37
a7a7cbe3 38#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 39
943e942e
JA
40/*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44#define NVME_MAX_KB_SZ 4096
45#define NVME_MAX_SEGS 127
46
58ffacb5 47static int use_threaded_interrupts;
2e21e445 48module_param(use_threaded_interrupts, int, 0444);
58ffacb5 49
8ffaadf7 50static bool use_cmb_sqes = true;
69f4eb9f 51module_param(use_cmb_sqes, bool, 0444);
8ffaadf7
JD
52MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
87ad72a5
CH
54static unsigned int max_host_mem_size_mb = 128;
55module_param(max_host_mem_size_mb, uint, 0444);
56MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 58
a7a7cbe3
CK
59static unsigned int sgl_threshold = SZ_32K;
60module_param(sgl_threshold, uint, 0644);
61MODULE_PARM_DESC(sgl_threshold,
62 "Use SGLs when average request segment size is larger or equal to "
63 "this size. Use 0 to disable SGLs.");
64
27453b45
SG
65#define NVME_PCI_MIN_QUEUE_SIZE 2
66#define NVME_PCI_MAX_QUEUE_SIZE 4095
b27c1e68 67static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68static const struct kernel_param_ops io_queue_depth_ops = {
69 .set = io_queue_depth_set,
61f3b896 70 .get = param_get_uint,
b27c1e68 71};
72
61f3b896 73static unsigned int io_queue_depth = 1024;
b27c1e68 74module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
27453b45 75MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
b27c1e68 76
9c9e76d5
WZ
77static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78{
79 unsigned int n;
80 int ret;
81
82 ret = kstrtouint(val, 10, &n);
83 if (ret != 0 || n > num_possible_cpus())
84 return -EINVAL;
85 return param_set_uint(val, kp);
86}
87
88static const struct kernel_param_ops io_queue_count_ops = {
89 .set = io_queue_count_set,
90 .get = param_get_uint,
91};
92
3f68baf7 93static unsigned int write_queues;
9c9e76d5 94module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
3b6592f7
JA
95MODULE_PARM_DESC(write_queues,
96 "Number of queues to use for writes. If not set, reads and writes "
97 "will share a queue set.");
98
3f68baf7 99static unsigned int poll_queues;
9c9e76d5 100module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
4b04cc6a
JA
101MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102
df4f9bc4
DB
103static bool noacpi;
104module_param(noacpi, bool, 0444);
105MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106
1c63dc66
CH
107struct nvme_dev;
108struct nvme_queue;
b3fffdef 109
a5cdb68c 110static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
8fae268b 111static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
d4b4ff8e 112
1c63dc66
CH
113/*
114 * Represents an NVM Express device. Each nvme_dev is a PCI function.
115 */
116struct nvme_dev {
147b27e4 117 struct nvme_queue *queues;
1c63dc66
CH
118 struct blk_mq_tag_set tagset;
119 struct blk_mq_tag_set admin_tagset;
120 u32 __iomem *dbs;
121 struct device *dev;
122 struct dma_pool *prp_page_pool;
123 struct dma_pool *prp_small_pool;
1c63dc66
CH
124 unsigned online_queues;
125 unsigned max_qid;
e20ba6e1 126 unsigned io_queues[HCTX_MAX_TYPES];
22b55601 127 unsigned int num_vecs;
7442ddce 128 u32 q_depth;
c1e0cc7e 129 int io_sqes;
1c63dc66 130 u32 db_stride;
1c63dc66 131 void __iomem *bar;
97f6ef64 132 unsigned long bar_mapped_size;
5c8809e6 133 struct work_struct remove_work;
77bf25ea 134 struct mutex shutdown_lock;
1c63dc66 135 bool subsystem;
1c63dc66 136 u64 cmb_size;
0f238ff5 137 bool cmb_use_sqes;
1c63dc66 138 u32 cmbsz;
202021c1 139 u32 cmbloc;
1c63dc66 140 struct nvme_ctrl ctrl;
d916b1be 141 u32 last_ps;
a5df5e79 142 bool hmb;
87ad72a5 143
943e942e
JA
144 mempool_t *iod_mempool;
145
87ad72a5 146 /* shadow doorbell buffer support: */
f9f38e33
HK
147 u32 *dbbuf_dbs;
148 dma_addr_t dbbuf_dbs_dma_addr;
149 u32 *dbbuf_eis;
150 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
151
152 /* host memory buffer support: */
153 u64 host_mem_size;
154 u32 nr_host_mem_descs;
4033f35d 155 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
156 struct nvme_host_mem_buf_desc *host_mem_descs;
157 void **host_mem_desc_bufs;
2a5bcfdd
WZ
158 unsigned int nr_allocated_queues;
159 unsigned int nr_write_queues;
160 unsigned int nr_poll_queues;
4d115420 161};
1fa6aead 162
b27c1e68 163static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
164{
27453b45
SG
165 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
166 NVME_PCI_MAX_QUEUE_SIZE);
b27c1e68 167}
168
f9f38e33
HK
169static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170{
171 return qid * 2 * stride;
172}
173
174static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175{
176 return (qid * 2 + 1) * stride;
177}
178
1c63dc66
CH
179static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180{
181 return container_of(ctrl, struct nvme_dev, ctrl);
182}
183
b60503ba
MW
184/*
185 * An NVM Express queue. Each device has at least two (one for admin
186 * commands and one for I/O commands).
187 */
188struct nvme_queue {
091b6092 189 struct nvme_dev *dev;
1ab0cd69 190 spinlock_t sq_lock;
c1e0cc7e 191 void *sq_cmds;
3a7afd8e
CH
192 /* only used for poll queues: */
193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
74943d45 194 struct nvme_completion *cqes;
b60503ba
MW
195 dma_addr_t sq_dma_addr;
196 dma_addr_t cq_dma_addr;
b60503ba 197 u32 __iomem *q_db;
7442ddce 198 u32 q_depth;
7c349dde 199 u16 cq_vector;
b60503ba 200 u16 sq_tail;
38210800 201 u16 last_sq_tail;
b60503ba 202 u16 cq_head;
c30341dc 203 u16 qid;
e9539f47 204 u8 cq_phase;
c1e0cc7e 205 u8 sqes;
4e224106
CH
206 unsigned long flags;
207#define NVMEQ_ENABLED 0
63223078 208#define NVMEQ_SQ_CMB 1
d1ed6aa1 209#define NVMEQ_DELETE_ERROR 2
7c349dde 210#define NVMEQ_POLLED 3
f9f38e33
HK
211 u32 *dbbuf_sq_db;
212 u32 *dbbuf_cq_db;
213 u32 *dbbuf_sq_ei;
214 u32 *dbbuf_cq_ei;
d1ed6aa1 215 struct completion delete_done;
b60503ba
MW
216};
217
71bd150c 218/*
9b048119
CH
219 * The nvme_iod describes the data in an I/O.
220 *
221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222 * to the actual struct scatterlist.
71bd150c
CH
223 */
224struct nvme_iod {
d49187e9 225 struct nvme_request req;
af7fae85 226 struct nvme_command cmd;
a7a7cbe3 227 bool use_sgl;
52da4f3f 228 bool aborted;
c372cdd1
KB
229 s8 nr_allocations; /* PRP list pool allocations. 0 means small
230 pool in use */
dff824b2 231 unsigned int dma_len; /* length of single DMA segment mapping */
c4c22c52 232 dma_addr_t first_dma;
783b94bd 233 dma_addr_t meta_dma;
91fb2b60 234 struct sg_table sgt;
b60503ba
MW
235};
236
2a5bcfdd 237static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
3b6592f7 238{
2a5bcfdd 239 return dev->nr_allocated_queues * 8 * dev->db_stride;
f9f38e33
HK
240}
241
65a54646 242static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
f9f38e33 243{
2a5bcfdd 244 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33 245
65a54646
CH
246 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
247 return;
248
58847f12
KB
249 if (dev->dbbuf_dbs) {
250 /*
251 * Clear the dbbuf memory so the driver doesn't observe stale
252 * values from the previous instantiation.
253 */
254 memset(dev->dbbuf_dbs, 0, mem_size);
255 memset(dev->dbbuf_eis, 0, mem_size);
65a54646 256 return;
58847f12 257 }
f9f38e33
HK
258
259 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260 &dev->dbbuf_dbs_dma_addr,
261 GFP_KERNEL);
262 if (!dev->dbbuf_dbs)
65a54646 263 goto fail;
f9f38e33
HK
264 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265 &dev->dbbuf_eis_dma_addr,
266 GFP_KERNEL);
65a54646
CH
267 if (!dev->dbbuf_eis)
268 goto fail_free_dbbuf_dbs;
269 return;
f9f38e33 270
65a54646
CH
271fail_free_dbbuf_dbs:
272 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
273 dev->dbbuf_dbs_dma_addr);
274 dev->dbbuf_dbs = NULL;
275fail:
276 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
f9f38e33
HK
277}
278
279static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
280{
2a5bcfdd 281 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33
HK
282
283 if (dev->dbbuf_dbs) {
284 dma_free_coherent(dev->dev, mem_size,
285 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
286 dev->dbbuf_dbs = NULL;
287 }
288 if (dev->dbbuf_eis) {
289 dma_free_coherent(dev->dev, mem_size,
290 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
291 dev->dbbuf_eis = NULL;
292 }
293}
294
295static void nvme_dbbuf_init(struct nvme_dev *dev,
296 struct nvme_queue *nvmeq, int qid)
297{
298 if (!dev->dbbuf_dbs || !qid)
299 return;
300
301 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
302 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
303 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
304 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
305}
306
0f0d2c87
MI
307static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
308{
309 if (!nvmeq->qid)
310 return;
311
312 nvmeq->dbbuf_sq_db = NULL;
313 nvmeq->dbbuf_cq_db = NULL;
314 nvmeq->dbbuf_sq_ei = NULL;
315 nvmeq->dbbuf_cq_ei = NULL;
316}
317
f9f38e33
HK
318static void nvme_dbbuf_set(struct nvme_dev *dev)
319{
f66e2804 320 struct nvme_command c = { };
0f0d2c87 321 unsigned int i;
f9f38e33
HK
322
323 if (!dev->dbbuf_dbs)
324 return;
325
f9f38e33
HK
326 c.dbbuf.opcode = nvme_admin_dbbuf;
327 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
328 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
329
330 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 331 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
332 /* Free memory and continue on */
333 nvme_dbbuf_dma_free(dev);
0f0d2c87
MI
334
335 for (i = 1; i <= dev->online_queues; i++)
336 nvme_dbbuf_free(&dev->queues[i]);
f9f38e33
HK
337 }
338}
339
340static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
341{
342 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
343}
344
345/* Update dbbuf and return true if an MMIO is required */
346static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
347 volatile u32 *dbbuf_ei)
348{
349 if (dbbuf_db) {
350 u16 old_value;
351
352 /*
353 * Ensure that the queue is written before updating
354 * the doorbell in memory
355 */
356 wmb();
357
358 old_value = *dbbuf_db;
359 *dbbuf_db = value;
360
f1ed3df2
MW
361 /*
362 * Ensure that the doorbell is updated before reading the event
363 * index from memory. The controller needs to provide similar
364 * ordering to ensure the envent index is updated before reading
365 * the doorbell.
366 */
367 mb();
368
f9f38e33
HK
369 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
370 return false;
371 }
372
373 return true;
b60503ba
MW
374}
375
ac3dd5bd
JA
376/*
377 * Will slightly overestimate the number of pages needed. This is OK
378 * as it only leads to a small amount of wasted memory for the lifetime of
379 * the I/O.
380 */
b13c6393 381static int nvme_pci_npages_prp(void)
ac3dd5bd 382{
b13c6393 383 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
6c3c05b0 384 NVME_CTRL_PAGE_SIZE);
ac3dd5bd
JA
385 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
386}
387
a7a7cbe3
CK
388/*
389 * Calculates the number of pages needed for the SGL segments. For example a 4k
390 * page can accommodate 256 SGL descriptors.
391 */
b13c6393 392static int nvme_pci_npages_sgl(void)
ac3dd5bd 393{
b13c6393
CK
394 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
395 PAGE_SIZE);
f4800d6d 396}
ac3dd5bd 397
a4aea562
MB
398static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
399 unsigned int hctx_idx)
e85248e5 400{
a4aea562 401 struct nvme_dev *dev = data;
147b27e4 402 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 403
42483228
KB
404 WARN_ON(hctx_idx != 0);
405 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
42483228 406
a4aea562
MB
407 hctx->driver_data = nvmeq;
408 return 0;
e85248e5
MW
409}
410
a4aea562
MB
411static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
412 unsigned int hctx_idx)
b60503ba 413{
a4aea562 414 struct nvme_dev *dev = data;
147b27e4 415 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 416
42483228 417 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
418 hctx->driver_data = nvmeq;
419 return 0;
b60503ba
MW
420}
421
e559398f
CH
422static int nvme_pci_init_request(struct blk_mq_tag_set *set,
423 struct request *req, unsigned int hctx_idx,
424 unsigned int numa_node)
b60503ba 425{
d6296d39 426 struct nvme_dev *dev = set->driver_data;
f4800d6d 427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
59e29ce6
SG
428
429 nvme_req(req)->ctrl = &dev->ctrl;
f4b9e6c9 430 nvme_req(req)->cmd = &iod->cmd;
a4aea562
MB
431 return 0;
432}
433
3b6592f7
JA
434static int queue_irq_offset(struct nvme_dev *dev)
435{
436 /* if we have more than 1 vec, admin queue offsets us by 1 */
437 if (dev->num_vecs > 1)
438 return 1;
439
440 return 0;
441}
442
a4e1d0b7 443static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
dca51e78
CH
444{
445 struct nvme_dev *dev = set->driver_data;
3b6592f7
JA
446 int i, qoff, offset;
447
448 offset = queue_irq_offset(dev);
449 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
450 struct blk_mq_queue_map *map = &set->map[i];
451
452 map->nr_queues = dev->io_queues[i];
453 if (!map->nr_queues) {
e20ba6e1 454 BUG_ON(i == HCTX_TYPE_DEFAULT);
7e849dd9 455 continue;
3b6592f7
JA
456 }
457
4b04cc6a
JA
458 /*
459 * The poll queue(s) doesn't have an IRQ (and hence IRQ
460 * affinity), so use the regular blk-mq cpu mapping
461 */
3b6592f7 462 map->queue_offset = qoff;
cb9e0e50 463 if (i != HCTX_TYPE_POLL && offset)
4b04cc6a
JA
464 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
465 else
466 blk_mq_map_queues(map);
3b6592f7
JA
467 qoff += map->nr_queues;
468 offset += map->nr_queues;
469 }
dca51e78
CH
470}
471
38210800
KB
472/*
473 * Write sq tail if we are asked to, or if the next command would wrap.
474 */
475static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
04f3eafd 476{
38210800
KB
477 if (!write_sq) {
478 u16 next_tail = nvmeq->sq_tail + 1;
479
480 if (next_tail == nvmeq->q_depth)
481 next_tail = 0;
482 if (next_tail != nvmeq->last_sq_tail)
483 return;
484 }
485
04f3eafd
JA
486 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
487 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
488 writel(nvmeq->sq_tail, nvmeq->q_db);
38210800 489 nvmeq->last_sq_tail = nvmeq->sq_tail;
04f3eafd
JA
490}
491
3233b94c
JA
492static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
493 struct nvme_command *cmd)
b60503ba 494{
c1e0cc7e 495 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
3233b94c 496 absolute_pointer(cmd), sizeof(*cmd));
90ea5ca4
CH
497 if (++nvmeq->sq_tail == nvmeq->q_depth)
498 nvmeq->sq_tail = 0;
04f3eafd
JA
499}
500
501static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
502{
503 struct nvme_queue *nvmeq = hctx->driver_data;
504
505 spin_lock(&nvmeq->sq_lock);
38210800
KB
506 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
507 nvme_write_sq_db(nvmeq, true);
90ea5ca4 508 spin_unlock(&nvmeq->sq_lock);
b60503ba
MW
509}
510
a7a7cbe3 511static void **nvme_pci_iod_list(struct request *req)
b60503ba 512{
f4800d6d 513 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
91fb2b60 514 return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
b60503ba
MW
515}
516
955b1b5a
MI
517static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
518{
a53232cb 519 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
20469a37 520 int nseg = blk_rq_nr_phys_segments(req);
955b1b5a
MI
521 unsigned int avg_seg_size;
522
20469a37 523 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a 524
253a0b76 525 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
955b1b5a 526 return false;
a53232cb 527 if (!nvmeq->qid)
955b1b5a
MI
528 return false;
529 if (!sgl_threshold || avg_seg_size < sgl_threshold)
530 return false;
531 return true;
532}
533
9275c206 534static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
b60503ba 535{
6c3c05b0 536 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
9275c206
CH
537 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
538 dma_addr_t dma_addr = iod->first_dma;
eca18b23 539 int i;
eca18b23 540
c372cdd1 541 for (i = 0; i < iod->nr_allocations; i++) {
9275c206
CH
542 __le64 *prp_list = nvme_pci_iod_list(req)[i];
543 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
544
545 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
546 dma_addr = next_dma_addr;
7fe07d14 547 }
9275c206 548}
dff824b2 549
9275c206
CH
550static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
551{
552 const int last_sg = SGES_PER_PAGE - 1;
553 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
554 dma_addr_t dma_addr = iod->first_dma;
555 int i;
dff824b2 556
c372cdd1 557 for (i = 0; i < iod->nr_allocations; i++) {
9275c206
CH
558 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
559 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
dff824b2 560
9275c206
CH
561 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
562 dma_addr = next_dma_addr;
563 }
9275c206 564}
a7a7cbe3 565
9275c206
CH
566static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
567{
568 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 569
9275c206
CH
570 if (iod->dma_len) {
571 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
572 rq_dma_dir(req));
573 return;
eca18b23 574 }
ac3dd5bd 575
91fb2b60
LG
576 WARN_ON_ONCE(!iod->sgt.nents);
577
578 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
9275c206 579
c372cdd1 580 if (iod->nr_allocations == 0)
9275c206
CH
581 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
582 iod->first_dma);
583 else if (iod->use_sgl)
584 nvme_free_sgls(dev, req);
585 else
586 nvme_free_prps(dev, req);
91fb2b60 587 mempool_free(iod->sgt.sgl, dev->iod_mempool);
b4ff9c8d
KB
588}
589
d0877473
KB
590static void nvme_print_sgl(struct scatterlist *sgl, int nents)
591{
592 int i;
593 struct scatterlist *sg;
594
595 for_each_sg(sgl, sg, nents, i) {
596 dma_addr_t phys = sg_phys(sg);
597 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
598 "dma_address:%pad dma_length:%d\n",
599 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
600 sg_dma_len(sg));
601 }
602}
603
a7a7cbe3
CK
604static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
605 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 606{
f4800d6d 607 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 608 struct dma_pool *pool;
b131c61d 609 int length = blk_rq_payload_bytes(req);
91fb2b60 610 struct scatterlist *sg = iod->sgt.sgl;
ff22b54f
MW
611 int dma_len = sg_dma_len(sg);
612 u64 dma_addr = sg_dma_address(sg);
6c3c05b0 613 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
e025344c 614 __le64 *prp_list;
a7a7cbe3 615 void **list = nvme_pci_iod_list(req);
e025344c 616 dma_addr_t prp_dma;
eca18b23 617 int nprps, i;
ff22b54f 618
6c3c05b0 619 length -= (NVME_CTRL_PAGE_SIZE - offset);
5228b328
JS
620 if (length <= 0) {
621 iod->first_dma = 0;
a7a7cbe3 622 goto done;
5228b328 623 }
ff22b54f 624
6c3c05b0 625 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f 626 if (dma_len) {
6c3c05b0 627 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f
MW
628 } else {
629 sg = sg_next(sg);
630 dma_addr = sg_dma_address(sg);
631 dma_len = sg_dma_len(sg);
632 }
633
6c3c05b0 634 if (length <= NVME_CTRL_PAGE_SIZE) {
edd10d33 635 iod->first_dma = dma_addr;
a7a7cbe3 636 goto done;
e025344c
SMM
637 }
638
6c3c05b0 639 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
99802a7a
MW
640 if (nprps <= (256 / 8)) {
641 pool = dev->prp_small_pool;
c372cdd1 642 iod->nr_allocations = 0;
99802a7a
MW
643 } else {
644 pool = dev->prp_page_pool;
c372cdd1 645 iod->nr_allocations = 1;
99802a7a
MW
646 }
647
69d2b571 648 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 649 if (!prp_list) {
c372cdd1 650 iod->nr_allocations = -1;
86eea289 651 return BLK_STS_RESOURCE;
b77954cb 652 }
eca18b23
MW
653 list[0] = prp_list;
654 iod->first_dma = prp_dma;
e025344c
SMM
655 i = 0;
656 for (;;) {
6c3c05b0 657 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
e025344c 658 __le64 *old_prp_list = prp_list;
69d2b571 659 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 660 if (!prp_list)
fa073216 661 goto free_prps;
c372cdd1 662 list[iod->nr_allocations++] = prp_list;
7523d834
MW
663 prp_list[0] = old_prp_list[i - 1];
664 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
665 i = 1;
e025344c
SMM
666 }
667 prp_list[i++] = cpu_to_le64(dma_addr);
6c3c05b0
CK
668 dma_len -= NVME_CTRL_PAGE_SIZE;
669 dma_addr += NVME_CTRL_PAGE_SIZE;
670 length -= NVME_CTRL_PAGE_SIZE;
e025344c
SMM
671 if (length <= 0)
672 break;
673 if (dma_len > 0)
674 continue;
86eea289
KB
675 if (unlikely(dma_len < 0))
676 goto bad_sgl;
e025344c
SMM
677 sg = sg_next(sg);
678 dma_addr = sg_dma_address(sg);
679 dma_len = sg_dma_len(sg);
ff22b54f 680 }
a7a7cbe3 681done:
91fb2b60 682 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
a7a7cbe3 683 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
86eea289 684 return BLK_STS_OK;
fa073216
CH
685free_prps:
686 nvme_free_prps(dev, req);
687 return BLK_STS_RESOURCE;
688bad_sgl:
91fb2b60 689 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
d0877473 690 "Invalid SGL for payload:%d nents:%d\n",
91fb2b60 691 blk_rq_payload_bytes(req), iod->sgt.nents);
86eea289 692 return BLK_STS_IOERR;
ff22b54f
MW
693}
694
a7a7cbe3
CK
695static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
696 struct scatterlist *sg)
697{
698 sge->addr = cpu_to_le64(sg_dma_address(sg));
699 sge->length = cpu_to_le32(sg_dma_len(sg));
700 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
701}
702
703static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
704 dma_addr_t dma_addr, int entries)
705{
706 sge->addr = cpu_to_le64(dma_addr);
707 if (entries < SGES_PER_PAGE) {
708 sge->length = cpu_to_le32(entries * sizeof(*sge));
709 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
710 } else {
711 sge->length = cpu_to_le32(PAGE_SIZE);
712 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
713 }
714}
715
716static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
91fb2b60 717 struct request *req, struct nvme_rw_command *cmd)
a7a7cbe3
CK
718{
719 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
720 struct dma_pool *pool;
721 struct nvme_sgl_desc *sg_list;
91fb2b60
LG
722 struct scatterlist *sg = iod->sgt.sgl;
723 unsigned int entries = iod->sgt.nents;
a7a7cbe3 724 dma_addr_t sgl_dma;
b0f2853b 725 int i = 0;
a7a7cbe3 726
a7a7cbe3
CK
727 /* setting the transfer type as SGL */
728 cmd->flags = NVME_CMD_SGL_METABUF;
729
b0f2853b 730 if (entries == 1) {
a7a7cbe3
CK
731 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
732 return BLK_STS_OK;
733 }
734
735 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
736 pool = dev->prp_small_pool;
c372cdd1 737 iod->nr_allocations = 0;
a7a7cbe3
CK
738 } else {
739 pool = dev->prp_page_pool;
c372cdd1 740 iod->nr_allocations = 1;
a7a7cbe3
CK
741 }
742
743 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
744 if (!sg_list) {
c372cdd1 745 iod->nr_allocations = -1;
a7a7cbe3
CK
746 return BLK_STS_RESOURCE;
747 }
748
749 nvme_pci_iod_list(req)[0] = sg_list;
750 iod->first_dma = sgl_dma;
751
752 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
753
754 do {
755 if (i == SGES_PER_PAGE) {
756 struct nvme_sgl_desc *old_sg_desc = sg_list;
757 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
758
759 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
760 if (!sg_list)
fa073216 761 goto free_sgls;
a7a7cbe3
CK
762
763 i = 0;
c372cdd1 764 nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
a7a7cbe3
CK
765 sg_list[i++] = *link;
766 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
767 }
768
769 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 770 sg = sg_next(sg);
b0f2853b 771 } while (--entries > 0);
a7a7cbe3 772
a7a7cbe3 773 return BLK_STS_OK;
fa073216
CH
774free_sgls:
775 nvme_free_sgls(dev, req);
776 return BLK_STS_RESOURCE;
a7a7cbe3
CK
777}
778
dff824b2
CH
779static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
780 struct request *req, struct nvme_rw_command *cmnd,
781 struct bio_vec *bv)
782{
783 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
6c3c05b0
CK
784 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
785 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
dff824b2
CH
786
787 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
788 if (dma_mapping_error(dev->dev, iod->first_dma))
789 return BLK_STS_RESOURCE;
790 iod->dma_len = bv->bv_len;
791
792 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
793 if (bv->bv_len > first_prp_len)
794 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
359c1f88 795 return BLK_STS_OK;
dff824b2
CH
796}
797
29791057
CH
798static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
799 struct request *req, struct nvme_rw_command *cmnd,
800 struct bio_vec *bv)
801{
802 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
803
804 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
805 if (dma_mapping_error(dev->dev, iod->first_dma))
806 return BLK_STS_RESOURCE;
807 iod->dma_len = bv->bv_len;
808
049bf372 809 cmnd->flags = NVME_CMD_SGL_METABUF;
29791057
CH
810 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
811 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
812 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
359c1f88 813 return BLK_STS_OK;
29791057
CH
814}
815
fc17b653 816static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 817 struct nvme_command *cmnd)
d29ec824 818{
f4800d6d 819 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
70479b71 820 blk_status_t ret = BLK_STS_RESOURCE;
91fb2b60 821 int rc;
d29ec824 822
dff824b2 823 if (blk_rq_nr_phys_segments(req) == 1) {
a53232cb 824 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
dff824b2
CH
825 struct bio_vec bv = req_bvec(req);
826
827 if (!is_pci_p2pdma_page(bv.bv_page)) {
6c3c05b0 828 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
dff824b2
CH
829 return nvme_setup_prp_simple(dev, req,
830 &cmnd->rw, &bv);
29791057 831
a53232cb 832 if (nvmeq->qid && sgl_threshold &&
253a0b76 833 nvme_ctrl_sgl_supported(&dev->ctrl))
29791057
CH
834 return nvme_setup_sgl_simple(dev, req,
835 &cmnd->rw, &bv);
dff824b2
CH
836 }
837 }
838
839 iod->dma_len = 0;
91fb2b60
LG
840 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
841 if (!iod->sgt.sgl)
d43f1ccf 842 return BLK_STS_RESOURCE;
91fb2b60
LG
843 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
844 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
845 if (!iod->sgt.orig_nents)
fa073216 846 goto out_free_sg;
d29ec824 847
91fb2b60
LG
848 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
849 DMA_ATTR_NO_WARN);
850 if (rc) {
851 if (rc == -EREMOTEIO)
852 ret = BLK_STS_TARGET;
fa073216 853 goto out_free_sg;
91fb2b60 854 }
d29ec824 855
70479b71 856 iod->use_sgl = nvme_pci_use_sgls(dev, req);
955b1b5a 857 if (iod->use_sgl)
91fb2b60 858 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
a7a7cbe3
CK
859 else
860 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
86eea289 861 if (ret != BLK_STS_OK)
fa073216
CH
862 goto out_unmap_sg;
863 return BLK_STS_OK;
864
865out_unmap_sg:
91fb2b60 866 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
fa073216 867out_free_sg:
91fb2b60 868 mempool_free(iod->sgt.sgl, dev->iod_mempool);
4aedb705
CH
869 return ret;
870}
3045c0d0 871
4aedb705
CH
872static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
873 struct nvme_command *cmnd)
874{
875 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
00df5cb4 876
4aedb705
CH
877 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
878 rq_dma_dir(req), 0);
879 if (dma_mapping_error(dev->dev, iod->meta_dma))
880 return BLK_STS_IOERR;
881 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
359c1f88 882 return BLK_STS_OK;
00df5cb4
MW
883}
884
62451a2b 885static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
edd10d33 886{
9b048119 887 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ebe6d874 888 blk_status_t ret;
e1e5e564 889
52da4f3f 890 iod->aborted = false;
c372cdd1 891 iod->nr_allocations = -1;
91fb2b60 892 iod->sgt.nents = 0;
9b048119 893
62451a2b 894 ret = nvme_setup_cmd(req->q->queuedata, req);
fc17b653 895 if (ret)
f4800d6d 896 return ret;
a4aea562 897
fc17b653 898 if (blk_rq_nr_phys_segments(req)) {
62451a2b 899 ret = nvme_map_data(dev, req, &iod->cmd);
fc17b653 900 if (ret)
9b048119 901 goto out_free_cmd;
fc17b653 902 }
a4aea562 903
4aedb705 904 if (blk_integrity_rq(req)) {
62451a2b 905 ret = nvme_map_metadata(dev, req, &iod->cmd);
4aedb705
CH
906 if (ret)
907 goto out_unmap_data;
908 }
909
aae239e1 910 blk_mq_start_request(req);
fc17b653 911 return BLK_STS_OK;
4aedb705
CH
912out_unmap_data:
913 nvme_unmap_data(dev, req);
f9d03f96
CH
914out_free_cmd:
915 nvme_cleanup_cmd(req);
ba1ca37e 916 return ret;
b60503ba 917}
e1e5e564 918
62451a2b
JA
919/*
920 * NOTE: ns is NULL when called on the admin queue.
921 */
922static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
923 const struct blk_mq_queue_data *bd)
924{
925 struct nvme_queue *nvmeq = hctx->driver_data;
926 struct nvme_dev *dev = nvmeq->dev;
927 struct request *req = bd->rq;
928 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
929 blk_status_t ret;
930
931 /*
932 * We should not need to do this, but we're still using this to
933 * ensure we can drain requests on a dying queue.
934 */
935 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
936 return BLK_STS_IOERR;
937
938 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
939 return nvme_fail_nonready_command(&dev->ctrl, req);
940
941 ret = nvme_prep_rq(dev, req);
942 if (unlikely(ret))
943 return ret;
944 spin_lock(&nvmeq->sq_lock);
945 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
946 nvme_write_sq_db(nvmeq, bd->last);
947 spin_unlock(&nvmeq->sq_lock);
948 return BLK_STS_OK;
949}
950
d62cbcf6
JA
951static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
952{
953 spin_lock(&nvmeq->sq_lock);
954 while (!rq_list_empty(*rqlist)) {
955 struct request *req = rq_list_pop(rqlist);
956 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
957
958 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
959 }
960 nvme_write_sq_db(nvmeq, true);
961 spin_unlock(&nvmeq->sq_lock);
962}
963
964static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
965{
966 /*
967 * We should not need to do this, but we're still using this to
968 * ensure we can drain requests on a dying queue.
969 */
970 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
971 return false;
972 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
973 return false;
974
975 req->mq_hctx->tags->rqs[req->tag] = req;
976 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
977}
978
979static void nvme_queue_rqs(struct request **rqlist)
980{
6bfec799 981 struct request *req, *next, *prev = NULL;
d62cbcf6
JA
982 struct request *requeue_list = NULL;
983
6bfec799 984 rq_list_for_each_safe(rqlist, req, next) {
d62cbcf6
JA
985 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
986
987 if (!nvme_prep_rq_batch(nvmeq, req)) {
988 /* detach 'req' and add to remainder list */
6bfec799
KB
989 rq_list_move(rqlist, &requeue_list, req, prev);
990
991 req = prev;
992 if (!req)
993 continue;
d62cbcf6
JA
994 }
995
6bfec799 996 if (!next || req->mq_hctx != next->mq_hctx) {
d62cbcf6 997 /* detach rest of list, and submit */
6bfec799 998 req->rq_next = NULL;
d62cbcf6 999 nvme_submit_cmds(nvmeq, rqlist);
6bfec799
KB
1000 *rqlist = next;
1001 prev = NULL;
1002 } else
1003 prev = req;
1004 }
d62cbcf6
JA
1005
1006 *rqlist = requeue_list;
1007}
1008
c234a653 1009static __always_inline void nvme_pci_unmap_rq(struct request *req)
eee417b0 1010{
a53232cb
KB
1011 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1012 struct nvme_dev *dev = nvmeq->dev;
1013
1014 if (blk_integrity_rq(req)) {
1015 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 1016
4aedb705
CH
1017 dma_unmap_page(dev->dev, iod->meta_dma,
1018 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
a53232cb
KB
1019 }
1020
b15c592d 1021 if (blk_rq_nr_phys_segments(req))
4aedb705 1022 nvme_unmap_data(dev, req);
c234a653
JA
1023}
1024
1025static void nvme_pci_complete_rq(struct request *req)
1026{
1027 nvme_pci_unmap_rq(req);
77f02a7a 1028 nvme_complete_rq(req);
b60503ba
MW
1029}
1030
c234a653
JA
1031static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1032{
1033 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1034}
1035
d783e0bd 1036/* We read the CQE phase first to check if the rest of the entry is valid */
750dde44 1037static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
d783e0bd 1038{
74943d45
KB
1039 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1040
1041 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
d783e0bd
MR
1042}
1043
eb281c82 1044static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 1045{
eb281c82 1046 u16 head = nvmeq->cq_head;
adf68f21 1047
397c699f
KB
1048 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1049 nvmeq->dbbuf_cq_ei))
1050 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
eb281c82 1051}
aae239e1 1052
cfa27356
CH
1053static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1054{
1055 if (!nvmeq->qid)
1056 return nvmeq->dev->admin_tagset.tags[0];
1057 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1058}
1059
c234a653
JA
1060static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1061 struct io_comp_batch *iob, u16 idx)
83a12fb7 1062{
74943d45 1063 struct nvme_completion *cqe = &nvmeq->cqes[idx];
62df8016 1064 __u16 command_id = READ_ONCE(cqe->command_id);
83a12fb7 1065 struct request *req;
adf68f21 1066
83a12fb7
SG
1067 /*
1068 * AEN requests are special as they don't time out and can
1069 * survive any kind of queue freeze and often don't respond to
1070 * aborts. We don't even bother to allocate a struct request
1071 * for them but rather special case them here.
1072 */
62df8016 1073 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
83a12fb7
SG
1074 nvme_complete_async_event(&nvmeq->dev->ctrl,
1075 cqe->status, &cqe->result);
a0fa9647 1076 return;
83a12fb7 1077 }
b60503ba 1078
e7006de6 1079 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
50b7c243
XT
1080 if (unlikely(!req)) {
1081 dev_warn(nvmeq->dev->ctrl.device,
1082 "invalid id %d completed on queue %d\n",
62df8016 1083 command_id, le16_to_cpu(cqe->sq_id));
50b7c243
XT
1084 return;
1085 }
1086
604c01d5 1087 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
c234a653
JA
1088 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1089 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1090 nvme_pci_complete_batch))
ff029451 1091 nvme_pci_complete_rq(req);
83a12fb7 1092}
b60503ba 1093
5cb525c8
JA
1094static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1095{
a0aac973 1096 u32 tmp = nvmeq->cq_head + 1;
a8de6639
AD
1097
1098 if (tmp == nvmeq->q_depth) {
5cb525c8 1099 nvmeq->cq_head = 0;
e2a366a4 1100 nvmeq->cq_phase ^= 1;
a8de6639
AD
1101 } else {
1102 nvmeq->cq_head = tmp;
b60503ba 1103 }
a0fa9647
JA
1104}
1105
c234a653
JA
1106static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1107 struct io_comp_batch *iob)
a0fa9647 1108{
1052b8ac 1109 int found = 0;
b60503ba 1110
1052b8ac 1111 while (nvme_cqe_pending(nvmeq)) {
bf392a5d 1112 found++;
b69e2ef2
KB
1113 /*
1114 * load-load control dependency between phase and the rest of
1115 * the cqe requires a full read memory barrier
1116 */
1117 dma_rmb();
c234a653 1118 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
5cb525c8 1119 nvme_update_cq_head(nvmeq);
920d13a8 1120 }
eb281c82 1121
324b494c 1122 if (found)
920d13a8 1123 nvme_ring_cq_doorbell(nvmeq);
5cb525c8 1124 return found;
b60503ba
MW
1125}
1126
1127static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5 1128{
58ffacb5 1129 struct nvme_queue *nvmeq = data;
4f502245 1130 DEFINE_IO_COMP_BATCH(iob);
5cb525c8 1131
4f502245
JA
1132 if (nvme_poll_cq(nvmeq, &iob)) {
1133 if (!rq_list_empty(iob.req_list))
1134 nvme_pci_complete_batch(&iob);
05fae499 1135 return IRQ_HANDLED;
4f502245 1136 }
05fae499 1137 return IRQ_NONE;
58ffacb5
MW
1138}
1139
1140static irqreturn_t nvme_irq_check(int irq, void *data)
1141{
1142 struct nvme_queue *nvmeq = data;
4e523547 1143
750dde44 1144 if (nvme_cqe_pending(nvmeq))
d783e0bd
MR
1145 return IRQ_WAKE_THREAD;
1146 return IRQ_NONE;
58ffacb5
MW
1147}
1148
0b2a8a9f 1149/*
fa059b85 1150 * Poll for completions for any interrupt driven queue
0b2a8a9f
CH
1151 * Can be called from any context.
1152 */
fa059b85 1153static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
a0fa9647 1154{
3a7afd8e 1155 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
a0fa9647 1156
fa059b85 1157 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
442e19b7 1158
fa059b85 1159 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
c234a653 1160 nvme_poll_cq(nvmeq, NULL);
fa059b85 1161 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
a0fa9647
JA
1162}
1163
5a72e899 1164static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
dabcefab
JA
1165{
1166 struct nvme_queue *nvmeq = hctx->driver_data;
dabcefab
JA
1167 bool found;
1168
1169 if (!nvme_cqe_pending(nvmeq))
1170 return 0;
1171
3a7afd8e 1172 spin_lock(&nvmeq->cq_poll_lock);
c234a653 1173 found = nvme_poll_cq(nvmeq, iob);
3a7afd8e 1174 spin_unlock(&nvmeq->cq_poll_lock);
dabcefab 1175
dabcefab
JA
1176 return found;
1177}
1178
ad22c355 1179static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 1180{
f866fc42 1181 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 1182 struct nvme_queue *nvmeq = &dev->queues[0];
f66e2804 1183 struct nvme_command c = { };
b60503ba 1184
a4aea562 1185 c.common.opcode = nvme_admin_async_event;
ad22c355 1186 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
3233b94c
JA
1187
1188 spin_lock(&nvmeq->sq_lock);
1189 nvme_sq_copy_cmd(nvmeq, &c);
1190 nvme_write_sq_db(nvmeq, true);
1191 spin_unlock(&nvmeq->sq_lock);
f705f837
CH
1192}
1193
b60503ba 1194static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1195{
f66e2804 1196 struct nvme_command c = { };
b60503ba 1197
b60503ba
MW
1198 c.delete_queue.opcode = opcode;
1199 c.delete_queue.qid = cpu_to_le16(id);
1200
1c63dc66 1201 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1202}
1203
b60503ba 1204static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
a8e3e0bb 1205 struct nvme_queue *nvmeq, s16 vector)
b60503ba 1206{
f66e2804 1207 struct nvme_command c = { };
4b04cc6a
JA
1208 int flags = NVME_QUEUE_PHYS_CONTIG;
1209
7c349dde 1210 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
4b04cc6a 1211 flags |= NVME_CQ_IRQ_ENABLED;
b60503ba 1212
d29ec824 1213 /*
16772ae6 1214 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1215 * is attached to the request.
1216 */
b60503ba
MW
1217 c.create_cq.opcode = nvme_admin_create_cq;
1218 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1219 c.create_cq.cqid = cpu_to_le16(qid);
1220 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1221 c.create_cq.cq_flags = cpu_to_le16(flags);
7c349dde 1222 c.create_cq.irq_vector = cpu_to_le16(vector);
b60503ba 1223
1c63dc66 1224 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1225}
1226
1227static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1228 struct nvme_queue *nvmeq)
1229{
9abd68ef 1230 struct nvme_ctrl *ctrl = &dev->ctrl;
f66e2804 1231 struct nvme_command c = { };
81c1cd98 1232 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1233
9abd68ef
JA
1234 /*
1235 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1236 * set. Since URGENT priority is zeroes, it makes all queues
1237 * URGENT.
1238 */
1239 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1240 flags |= NVME_SQ_PRIO_MEDIUM;
1241
d29ec824 1242 /*
16772ae6 1243 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1244 * is attached to the request.
1245 */
b60503ba
MW
1246 c.create_sq.opcode = nvme_admin_create_sq;
1247 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1248 c.create_sq.sqid = cpu_to_le16(qid);
1249 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1250 c.create_sq.sq_flags = cpu_to_le16(flags);
1251 c.create_sq.cqid = cpu_to_le16(qid);
1252
1c63dc66 1253 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1254}
1255
1256static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1257{
1258 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1259}
1260
1261static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1262{
1263 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1264}
1265
de671d61 1266static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1267{
a53232cb 1268 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
e44ac588 1269
27fa9bc5
CH
1270 dev_warn(nvmeq->dev->ctrl.device,
1271 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1272 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1273 blk_mq_free_request(req);
de671d61 1274 return RQ_END_IO_NONE;
bc5fc7e4
MW
1275}
1276
b2a0eb1a
KB
1277static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1278{
b2a0eb1a
KB
1279 /* If true, indicates loss of adapter communication, possibly by a
1280 * NVMe Subsystem reset.
1281 */
1282 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1283
ad70062c
JW
1284 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1285 switch (dev->ctrl.state) {
1286 case NVME_CTRL_RESETTING:
ad6a0a52 1287 case NVME_CTRL_CONNECTING:
b2a0eb1a 1288 return false;
ad70062c
JW
1289 default:
1290 break;
1291 }
b2a0eb1a
KB
1292
1293 /* We shouldn't reset unless the controller is on fatal error state
1294 * _or_ if we lost the communication with it.
1295 */
1296 if (!(csts & NVME_CSTS_CFS) && !nssro)
1297 return false;
1298
b2a0eb1a
KB
1299 return true;
1300}
1301
1302static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1303{
1304 /* Read a config register to help see what died. */
1305 u16 pci_status;
1306 int result;
1307
1308 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1309 &pci_status);
1310 if (result == PCIBIOS_SUCCESSFUL)
1311 dev_warn(dev->ctrl.device,
1312 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1313 csts, pci_status);
1314 else
1315 dev_warn(dev->ctrl.device,
1316 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1317 csts, result);
4641a8e6
KB
1318
1319 if (csts != ~0)
1320 return;
1321
1322 dev_warn(dev->ctrl.device,
1323 "Does your device have a faulty power saving mode enabled?\n");
1324 dev_warn(dev->ctrl.device,
1325 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
b2a0eb1a
KB
1326}
1327
9bdb4833 1328static enum blk_eh_timer_return nvme_timeout(struct request *req)
c30341dc 1329{
f4800d6d 1330 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a53232cb 1331 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
c30341dc 1332 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1333 struct request *abort_req;
f66e2804 1334 struct nvme_command cmd = { };
b2a0eb1a
KB
1335 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1336
651438bb
WX
1337 /* If PCI error recovery process is happening, we cannot reset or
1338 * the recovery mechanism will surely fail.
1339 */
1340 mb();
1341 if (pci_channel_offline(to_pci_dev(dev->dev)))
1342 return BLK_EH_RESET_TIMER;
1343
b2a0eb1a
KB
1344 /*
1345 * Reset immediately if the controller is failed
1346 */
1347 if (nvme_should_reset(dev, csts)) {
1348 nvme_warn_reset(dev, csts);
1349 nvme_dev_disable(dev, false);
d86c4d8e 1350 nvme_reset_ctrl(&dev->ctrl);
db8c48e4 1351 return BLK_EH_DONE;
b2a0eb1a 1352 }
c30341dc 1353
7776db1c
KB
1354 /*
1355 * Did we miss an interrupt?
1356 */
fa059b85 1357 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
5a72e899 1358 nvme_poll(req->mq_hctx, NULL);
fa059b85
KB
1359 else
1360 nvme_poll_irqdisable(nvmeq);
1361
bf392a5d 1362 if (blk_mq_request_completed(req)) {
7776db1c
KB
1363 dev_warn(dev->ctrl.device,
1364 "I/O %d QID %d timeout, completion polled\n",
1365 req->tag, nvmeq->qid);
db8c48e4 1366 return BLK_EH_DONE;
7776db1c
KB
1367 }
1368
31c7c7d2 1369 /*
fd634f41
CH
1370 * Shutdown immediately if controller times out while starting. The
1371 * reset work will see the pci device disabled when it gets the forced
1372 * cancellation error. All outstanding requests are completed on
db8c48e4 1373 * shutdown, so we return BLK_EH_DONE.
fd634f41 1374 */
4244140d
KB
1375 switch (dev->ctrl.state) {
1376 case NVME_CTRL_CONNECTING:
2036f726 1377 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
df561f66 1378 fallthrough;
2036f726 1379 case NVME_CTRL_DELETING:
b9cac43c 1380 dev_warn_ratelimited(dev->ctrl.device,
fd634f41
CH
1381 "I/O %d QID %d timeout, disable controller\n",
1382 req->tag, nvmeq->qid);
27fa9bc5 1383 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
7ad92f65 1384 nvme_dev_disable(dev, true);
db8c48e4 1385 return BLK_EH_DONE;
39a9dd81
KB
1386 case NVME_CTRL_RESETTING:
1387 return BLK_EH_RESET_TIMER;
4244140d
KB
1388 default:
1389 break;
c30341dc
KB
1390 }
1391
fd634f41 1392 /*
ee0d96d3
BW
1393 * Shutdown the controller immediately and schedule a reset if the
1394 * command was already aborted once before and still hasn't been
1395 * returned to the driver, or if this is the admin queue.
31c7c7d2 1396 */
f4800d6d 1397 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1398 dev_warn(dev->ctrl.device,
e1569a16
KB
1399 "I/O %d QID %d timeout, reset controller\n",
1400 req->tag, nvmeq->qid);
7ad92f65 1401 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
a5cdb68c 1402 nvme_dev_disable(dev, false);
d86c4d8e 1403 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1404
db8c48e4 1405 return BLK_EH_DONE;
c30341dc 1406 }
c30341dc 1407
e7a2a87d 1408 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1409 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1410 return BLK_EH_RESET_TIMER;
6bf25d16 1411 }
52da4f3f 1412 iod->aborted = true;
a4aea562 1413
c30341dc 1414 cmd.abort.opcode = nvme_admin_abort_cmd;
85f74acf 1415 cmd.abort.cid = nvme_cid(req);
c30341dc 1416 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1417
1b3c47c1 1418 dev_warn(nvmeq->dev->ctrl.device,
86141440
CH
1419 "I/O %d (%s) QID %d timeout, aborting\n",
1420 req->tag,
1421 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1422 nvmeq->qid);
e7a2a87d 1423
e559398f
CH
1424 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1425 BLK_MQ_REQ_NOWAIT);
e7a2a87d
CH
1426 if (IS_ERR(abort_req)) {
1427 atomic_inc(&dev->ctrl.abort_limit);
1428 return BLK_EH_RESET_TIMER;
1429 }
e559398f 1430 nvme_init_request(abort_req, &cmd);
e7a2a87d 1431
e2e53086 1432 abort_req->end_io = abort_endio;
e7a2a87d 1433 abort_req->end_io_data = NULL;
128126a7 1434 abort_req->rq_flags |= RQF_QUIET;
e2e53086 1435 blk_execute_rq_nowait(abort_req, false);
c30341dc 1436
31c7c7d2
CH
1437 /*
1438 * The aborted req will be completed on receiving the abort req.
1439 * We enable the timer again. If hit twice, it'll cause a device reset,
1440 * as the device then is in a faulty state.
1441 */
1442 return BLK_EH_RESET_TIMER;
c30341dc
KB
1443}
1444
a4aea562
MB
1445static void nvme_free_queue(struct nvme_queue *nvmeq)
1446{
8a1d09a6 1447 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
9e866774 1448 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
63223078
CH
1449 if (!nvmeq->sq_cmds)
1450 return;
0f238ff5 1451
63223078 1452 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
88a041f4 1453 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
8a1d09a6 1454 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1455 } else {
8a1d09a6 1456 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
63223078 1457 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
0f238ff5 1458 }
9e866774
MW
1459}
1460
a1a5ef99 1461static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1462{
1463 int i;
1464
d858e5f0 1465 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1466 dev->ctrl.queue_count--;
147b27e4 1467 nvme_free_queue(&dev->queues[i]);
121c7ad4 1468 }
22404274
KB
1469}
1470
4d115420
KB
1471/**
1472 * nvme_suspend_queue - put queue into suspended state
40581d1a 1473 * @nvmeq: queue to suspend
4d115420
KB
1474 */
1475static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1476{
4e224106 1477 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
2b25d981 1478 return 1;
a09115b2 1479
4e224106 1480 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
d1f06f4a 1481 mb();
a09115b2 1482
4e224106 1483 nvmeq->dev->online_queues--;
1c63dc66 1484 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
6ca1d902 1485 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
7c349dde
KB
1486 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1487 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
4d115420
KB
1488 return 0;
1489}
b60503ba 1490
8fae268b
KB
1491static void nvme_suspend_io_queues(struct nvme_dev *dev)
1492{
1493 int i;
1494
1495 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1496 nvme_suspend_queue(&dev->queues[i]);
1497}
1498
a5cdb68c 1499static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1500{
147b27e4 1501 struct nvme_queue *nvmeq = &dev->queues[0];
4d115420 1502
a5cdb68c
KB
1503 if (shutdown)
1504 nvme_shutdown_ctrl(&dev->ctrl);
1505 else
b5b05048 1506 nvme_disable_ctrl(&dev->ctrl);
07836e65 1507
bf392a5d 1508 nvme_poll_irqdisable(nvmeq);
b60503ba
MW
1509}
1510
fa46c6fb
KB
1511/*
1512 * Called only on a device that has been disabled and after all other threads
9210c075
DZ
1513 * that can check this device's completion queues have synced, except
1514 * nvme_poll(). This is the last chance for the driver to see a natural
1515 * completion before nvme_cancel_request() terminates all incomplete requests.
fa46c6fb
KB
1516 */
1517static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1518{
fa46c6fb
KB
1519 int i;
1520
9210c075
DZ
1521 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1522 spin_lock(&dev->queues[i].cq_poll_lock);
c234a653 1523 nvme_poll_cq(&dev->queues[i], NULL);
9210c075
DZ
1524 spin_unlock(&dev->queues[i].cq_poll_lock);
1525 }
fa46c6fb
KB
1526}
1527
8ffaadf7
JD
1528static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1529 int entry_size)
1530{
1531 int q_depth = dev->q_depth;
5fd4ce1b 1532 unsigned q_size_aligned = roundup(q_depth * entry_size,
6c3c05b0 1533 NVME_CTRL_PAGE_SIZE);
8ffaadf7
JD
1534
1535 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1536 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
4e523547 1537
6c3c05b0 1538 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
c45f5c99 1539 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1540
1541 /*
1542 * Ensure the reduced q_depth is above some threshold where it
1543 * would be better to map queues in system memory with the
1544 * original depth
1545 */
1546 if (q_depth < 64)
1547 return -ENOMEM;
1548 }
1549
1550 return q_depth;
1551}
1552
1553static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
8a1d09a6 1554 int qid)
8ffaadf7 1555{
0f238ff5
LG
1556 struct pci_dev *pdev = to_pci_dev(dev->dev);
1557
1558 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
8a1d09a6 1559 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
bfac8e9f
AM
1560 if (nvmeq->sq_cmds) {
1561 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1562 nvmeq->sq_cmds);
1563 if (nvmeq->sq_dma_addr) {
1564 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1565 return 0;
1566 }
1567
8a1d09a6 1568 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1569 }
0f238ff5 1570 }
8ffaadf7 1571
8a1d09a6 1572 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
63223078 1573 &nvmeq->sq_dma_addr, GFP_KERNEL);
815c6704
KB
1574 if (!nvmeq->sq_cmds)
1575 return -ENOMEM;
8ffaadf7
JD
1576 return 0;
1577}
1578
a6ff7262 1579static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1580{
147b27e4 1581 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1582
62314e40
KB
1583 if (dev->ctrl.queue_count > qid)
1584 return 0;
b60503ba 1585
c1e0cc7e 1586 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
8a1d09a6
BH
1587 nvmeq->q_depth = depth;
1588 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
750afb08 1589 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1590 if (!nvmeq->cqes)
1591 goto free_nvmeq;
b60503ba 1592
8a1d09a6 1593 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
b60503ba
MW
1594 goto free_cqdma;
1595
091b6092 1596 nvmeq->dev = dev;
1ab0cd69 1597 spin_lock_init(&nvmeq->sq_lock);
3a7afd8e 1598 spin_lock_init(&nvmeq->cq_poll_lock);
b60503ba 1599 nvmeq->cq_head = 0;
82123460 1600 nvmeq->cq_phase = 1;
b80d5ccc 1601 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
c30341dc 1602 nvmeq->qid = qid;
d858e5f0 1603 dev->ctrl.queue_count++;
36a7e993 1604
147b27e4 1605 return 0;
b60503ba
MW
1606
1607 free_cqdma:
8a1d09a6
BH
1608 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1609 nvmeq->cq_dma_addr);
b60503ba 1610 free_nvmeq:
147b27e4 1611 return -ENOMEM;
b60503ba
MW
1612}
1613
dca51e78 1614static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1615{
0ff199cb
CH
1616 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1617 int nr = nvmeq->dev->ctrl.instance;
1618
1619 if (use_threaded_interrupts) {
1620 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1621 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1622 } else {
1623 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1624 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1625 }
3001082c
MW
1626}
1627
22404274 1628static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1629{
22404274 1630 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1631
22404274 1632 nvmeq->sq_tail = 0;
38210800 1633 nvmeq->last_sq_tail = 0;
22404274
KB
1634 nvmeq->cq_head = 0;
1635 nvmeq->cq_phase = 1;
b80d5ccc 1636 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
8a1d09a6 1637 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
f9f38e33 1638 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1639 dev->online_queues++;
3a7afd8e 1640 wmb(); /* ensure the first interrupt sees the initialization */
22404274
KB
1641}
1642
e4b9852a
CC
1643/*
1644 * Try getting shutdown_lock while setting up IO queues.
1645 */
1646static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1647{
1648 /*
1649 * Give up if the lock is being held by nvme_dev_disable.
1650 */
1651 if (!mutex_trylock(&dev->shutdown_lock))
1652 return -ENODEV;
1653
1654 /*
1655 * Controller is in wrong state, fail early.
1656 */
1657 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1658 mutex_unlock(&dev->shutdown_lock);
1659 return -ENODEV;
1660 }
1661
1662 return 0;
1663}
1664
4b04cc6a 1665static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
22404274
KB
1666{
1667 struct nvme_dev *dev = nvmeq->dev;
1668 int result;
7c349dde 1669 u16 vector = 0;
3f85d50b 1670
d1ed6aa1
CH
1671 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1672
22b55601
KB
1673 /*
1674 * A queue's vector matches the queue identifier unless the controller
1675 * has only one vector available.
1676 */
4b04cc6a
JA
1677 if (!polled)
1678 vector = dev->num_vecs == 1 ? 0 : qid;
1679 else
7c349dde 1680 set_bit(NVMEQ_POLLED, &nvmeq->flags);
4b04cc6a 1681
a8e3e0bb 1682 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
ded45505
KB
1683 if (result)
1684 return result;
b60503ba
MW
1685
1686 result = adapter_alloc_sq(dev, qid, nvmeq);
1687 if (result < 0)
ded45505 1688 return result;
c80b36cd 1689 if (result)
b60503ba
MW
1690 goto release_cq;
1691
a8e3e0bb 1692 nvmeq->cq_vector = vector;
4b04cc6a 1693
e4b9852a
CC
1694 result = nvme_setup_io_queues_trylock(dev);
1695 if (result)
1696 return result;
1697 nvme_init_queue(nvmeq, qid);
7c349dde 1698 if (!polled) {
4b04cc6a
JA
1699 result = queue_request_irq(nvmeq);
1700 if (result < 0)
1701 goto release_sq;
1702 }
b60503ba 1703
4e224106 1704 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
e4b9852a 1705 mutex_unlock(&dev->shutdown_lock);
22404274 1706 return result;
b60503ba 1707
a8e3e0bb 1708release_sq:
f25a2dfc 1709 dev->online_queues--;
e4b9852a 1710 mutex_unlock(&dev->shutdown_lock);
b60503ba 1711 adapter_delete_sq(dev, qid);
a8e3e0bb 1712release_cq:
b60503ba 1713 adapter_delete_cq(dev, qid);
22404274 1714 return result;
b60503ba
MW
1715}
1716
f363b089 1717static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1718 .queue_rq = nvme_queue_rq,
77f02a7a 1719 .complete = nvme_pci_complete_rq,
a4aea562 1720 .init_hctx = nvme_admin_init_hctx,
e559398f 1721 .init_request = nvme_pci_init_request,
a4aea562
MB
1722 .timeout = nvme_timeout,
1723};
1724
f363b089 1725static const struct blk_mq_ops nvme_mq_ops = {
376f7ef8 1726 .queue_rq = nvme_queue_rq,
d62cbcf6 1727 .queue_rqs = nvme_queue_rqs,
376f7ef8
CH
1728 .complete = nvme_pci_complete_rq,
1729 .commit_rqs = nvme_commit_rqs,
1730 .init_hctx = nvme_init_hctx,
e559398f 1731 .init_request = nvme_pci_init_request,
376f7ef8
CH
1732 .map_queues = nvme_pci_map_queues,
1733 .timeout = nvme_timeout,
1734 .poll = nvme_poll,
dabcefab
JA
1735};
1736
ea191d2f
KB
1737static void nvme_dev_remove_admin(struct nvme_dev *dev)
1738{
1c63dc66 1739 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1740 /*
1741 * If the controller was reset during removal, it's possible
1742 * user requests may be waiting on a stopped queue. Start the
1743 * queue to flush these to completion.
1744 */
6ca1d902 1745 nvme_start_admin_queue(&dev->ctrl);
6f8191fd 1746 blk_mq_destroy_queue(dev->ctrl.admin_q);
96ef1be5 1747 blk_put_queue(dev->ctrl.admin_q);
ea191d2f
KB
1748 blk_mq_free_tag_set(&dev->admin_tagset);
1749 }
1750}
1751
f91b727c 1752static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
a4aea562 1753{
f91b727c 1754 struct blk_mq_tag_set *set = &dev->admin_tagset;
e3e9d50c 1755
f91b727c
CH
1756 set->ops = &nvme_mq_admin_ops;
1757 set->nr_hw_queues = 1;
a4aea562 1758
f91b727c
CH
1759 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1760 set->timeout = NVME_ADMIN_TIMEOUT;
1761 set->numa_node = dev->ctrl.numa_node;
1762 set->cmd_size = sizeof(struct nvme_iod);
1763 set->flags = BLK_MQ_F_NO_SCHED;
1764 set->driver_data = dev;
a4aea562 1765
f91b727c
CH
1766 if (blk_mq_alloc_tag_set(set))
1767 return -ENOMEM;
1768 dev->ctrl.admin_tagset = set;
a4aea562 1769
f91b727c
CH
1770 dev->ctrl.admin_q = blk_mq_init_queue(set);
1771 if (IS_ERR(dev->ctrl.admin_q)) {
1772 blk_mq_free_tag_set(set);
1773 dev->ctrl.admin_q = NULL;
1774 return -ENOMEM;
1775 }
a4aea562
MB
1776 return 0;
1777}
1778
97f6ef64
XY
1779static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1780{
1781 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1782}
1783
1784static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1785{
1786 struct pci_dev *pdev = to_pci_dev(dev->dev);
1787
1788 if (size <= dev->bar_mapped_size)
1789 return 0;
1790 if (size > pci_resource_len(pdev, 0))
1791 return -ENOMEM;
1792 if (dev->bar)
1793 iounmap(dev->bar);
1794 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1795 if (!dev->bar) {
1796 dev->bar_mapped_size = 0;
1797 return -ENOMEM;
1798 }
1799 dev->bar_mapped_size = size;
1800 dev->dbs = dev->bar + NVME_REG_DBS;
1801
1802 return 0;
1803}
1804
01ad0990 1805static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1806{
ba47e386 1807 int result;
b60503ba
MW
1808 u32 aqa;
1809 struct nvme_queue *nvmeq;
1810
97f6ef64
XY
1811 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1812 if (result < 0)
1813 return result;
1814
8ef2074d 1815 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1816 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1817
7a67cbea
CH
1818 if (dev->subsystem &&
1819 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1820 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1821
b5b05048 1822 result = nvme_disable_ctrl(&dev->ctrl);
ba47e386
MW
1823 if (result < 0)
1824 return result;
b60503ba 1825
a6ff7262 1826 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1827 if (result)
1828 return result;
b60503ba 1829
635333e4
MG
1830 dev->ctrl.numa_node = dev_to_node(dev->dev);
1831
147b27e4 1832 nvmeq = &dev->queues[0];
b60503ba
MW
1833 aqa = nvmeq->q_depth - 1;
1834 aqa |= aqa << 16;
1835
7a67cbea
CH
1836 writel(aqa, dev->bar + NVME_REG_AQA);
1837 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1838 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1839
c0f2f45b 1840 result = nvme_enable_ctrl(&dev->ctrl);
025c557a 1841 if (result)
d4875622 1842 return result;
a4aea562 1843
2b25d981 1844 nvmeq->cq_vector = 0;
161b8be2 1845 nvme_init_queue(nvmeq, 0);
dca51e78 1846 result = queue_request_irq(nvmeq);
758dd7fd 1847 if (result) {
7c349dde 1848 dev->online_queues--;
d4875622 1849 return result;
758dd7fd 1850 }
025c557a 1851
4e224106 1852 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
b60503ba
MW
1853 return result;
1854}
1855
749941f2 1856static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1857{
4b04cc6a 1858 unsigned i, max, rw_queues;
749941f2 1859 int ret = 0;
42f61420 1860
d858e5f0 1861 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1862 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1863 ret = -ENOMEM;
42f61420 1864 break;
749941f2
CH
1865 }
1866 }
42f61420 1867
d858e5f0 1868 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
e20ba6e1
CH
1869 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1870 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1871 dev->io_queues[HCTX_TYPE_READ];
4b04cc6a
JA
1872 } else {
1873 rw_queues = max;
1874 }
1875
949928c1 1876 for (i = dev->online_queues; i <= max; i++) {
4b04cc6a
JA
1877 bool polled = i > rw_queues;
1878
1879 ret = nvme_create_queue(&dev->queues[i], i, polled);
d4875622 1880 if (ret)
42f61420 1881 break;
27e8166c 1882 }
749941f2
CH
1883
1884 /*
1885 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1886 * than the desired amount of queues, and even a controller without
1887 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1888 * be useful to upgrade a buggy firmware for example.
1889 */
1890 return ret >= 0 ? 0 : ret;
b60503ba
MW
1891}
1892
88de4598 1893static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1894{
88de4598
CH
1895 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1896
1897 return 1ULL << (12 + 4 * szu);
1898}
1899
1900static u32 nvme_cmb_size(struct nvme_dev *dev)
1901{
1902 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1903}
1904
f65efd6d 1905static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1906{
88de4598 1907 u64 size, offset;
8ffaadf7
JD
1908 resource_size_t bar_size;
1909 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1910 int bar;
8ffaadf7 1911
9fe5c59f
KB
1912 if (dev->cmb_size)
1913 return;
1914
20d3bb92
KJ
1915 if (NVME_CAP_CMBS(dev->ctrl.cap))
1916 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1917
7a67cbea 1918 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1919 if (!dev->cmbsz)
1920 return;
202021c1 1921 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1922
88de4598
CH
1923 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1924 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1925 bar = NVME_CMB_BIR(dev->cmbloc);
1926 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1927
1928 if (offset > bar_size)
f65efd6d 1929 return;
8ffaadf7 1930
20d3bb92
KJ
1931 /*
1932 * Tell the controller about the host side address mapping the CMB,
1933 * and enable CMB decoding for the NVMe 1.4+ scheme:
1934 */
1935 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1936 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1937 (pci_bus_address(pdev, bar) + offset),
1938 dev->bar + NVME_REG_CMBMSC);
1939 }
1940
8ffaadf7
JD
1941 /*
1942 * Controllers may support a CMB size larger than their BAR,
1943 * for example, due to being behind a bridge. Reduce the CMB to
1944 * the reported size of the BAR
1945 */
1946 if (size > bar_size - offset)
1947 size = bar_size - offset;
1948
0f238ff5
LG
1949 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1950 dev_warn(dev->ctrl.device,
1951 "failed to register the CMB\n");
f65efd6d 1952 return;
0f238ff5
LG
1953 }
1954
8ffaadf7 1955 dev->cmb_size = size;
0f238ff5
LG
1956 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1957
1958 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1959 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1960 pci_p2pmem_publish(pdev, true);
8ffaadf7
JD
1961}
1962
87ad72a5
CH
1963static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1964{
6c3c05b0 1965 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
4033f35d 1966 u64 dma_addr = dev->host_mem_descs_dma;
f66e2804 1967 struct nvme_command c = { };
87ad72a5
CH
1968 int ret;
1969
87ad72a5
CH
1970 c.features.opcode = nvme_admin_set_features;
1971 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1972 c.features.dword11 = cpu_to_le32(bits);
6c3c05b0 1973 c.features.dword12 = cpu_to_le32(host_mem_size);
87ad72a5
CH
1974 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1975 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1976 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1977
1978 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1979 if (ret) {
1980 dev_warn(dev->ctrl.device,
1981 "failed to set host mem (err %d, flags %#x).\n",
1982 ret, bits);
a5df5e79
KB
1983 } else
1984 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1985
87ad72a5
CH
1986 return ret;
1987}
1988
1989static void nvme_free_host_mem(struct nvme_dev *dev)
1990{
1991 int i;
1992
1993 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1994 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
6c3c05b0 1995 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 1996
cc667f6d
LD
1997 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1998 le64_to_cpu(desc->addr),
1999 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
2000 }
2001
2002 kfree(dev->host_mem_desc_bufs);
2003 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
2004 dma_free_coherent(dev->dev,
2005 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2006 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 2007 dev->host_mem_descs = NULL;
7e5dd57e 2008 dev->nr_host_mem_descs = 0;
87ad72a5
CH
2009}
2010
92dc6895
CH
2011static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2012 u32 chunk_size)
9d713c2b 2013{
87ad72a5 2014 struct nvme_host_mem_buf_desc *descs;
92dc6895 2015 u32 max_entries, len;
4033f35d 2016 dma_addr_t descs_dma;
2ee0e4ed 2017 int i = 0;
87ad72a5 2018 void **bufs;
6fbcde66 2019 u64 size, tmp;
87ad72a5 2020
87ad72a5
CH
2021 tmp = (preferred + chunk_size - 1);
2022 do_div(tmp, chunk_size);
2023 max_entries = tmp;
044a9df1
CH
2024
2025 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2026 max_entries = dev->ctrl.hmmaxd;
2027
750afb08
LC
2028 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2029 &descs_dma, GFP_KERNEL);
87ad72a5
CH
2030 if (!descs)
2031 goto out;
2032
2033 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2034 if (!bufs)
2035 goto out_free_descs;
2036
244a8fe4 2037 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
2038 dma_addr_t dma_addr;
2039
50cdb7c6 2040 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
2041 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2042 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2043 if (!bufs[i])
2044 break;
2045
2046 descs[i].addr = cpu_to_le64(dma_addr);
6c3c05b0 2047 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
87ad72a5
CH
2048 i++;
2049 }
2050
92dc6895 2051 if (!size)
87ad72a5 2052 goto out_free_bufs;
87ad72a5 2053
87ad72a5
CH
2054 dev->nr_host_mem_descs = i;
2055 dev->host_mem_size = size;
2056 dev->host_mem_descs = descs;
4033f35d 2057 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
2058 dev->host_mem_desc_bufs = bufs;
2059 return 0;
2060
2061out_free_bufs:
2062 while (--i >= 0) {
6c3c05b0 2063 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 2064
cc667f6d
LD
2065 dma_free_attrs(dev->dev, size, bufs[i],
2066 le64_to_cpu(descs[i].addr),
2067 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
2068 }
2069
2070 kfree(bufs);
2071out_free_descs:
4033f35d
CH
2072 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2073 descs_dma);
87ad72a5 2074out:
87ad72a5
CH
2075 dev->host_mem_descs = NULL;
2076 return -ENOMEM;
2077}
2078
92dc6895
CH
2079static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2080{
9dc54a0d
CK
2081 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2082 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2083 u64 chunk_size;
92dc6895
CH
2084
2085 /* start big and work our way down */
9dc54a0d 2086 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
92dc6895
CH
2087 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2088 if (!min || dev->host_mem_size >= min)
2089 return 0;
2090 nvme_free_host_mem(dev);
2091 }
2092 }
2093
2094 return -ENOMEM;
2095}
2096
9620cfba 2097static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
2098{
2099 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2100 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2101 u64 min = (u64)dev->ctrl.hmmin * 4096;
2102 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 2103 int ret;
87ad72a5 2104
acb71e53
CH
2105 if (!dev->ctrl.hmpre)
2106 return 0;
2107
87ad72a5
CH
2108 preferred = min(preferred, max);
2109 if (min > max) {
2110 dev_warn(dev->ctrl.device,
2111 "min host memory (%lld MiB) above limit (%d MiB).\n",
2112 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2113 nvme_free_host_mem(dev);
9620cfba 2114 return 0;
87ad72a5
CH
2115 }
2116
2117 /*
2118 * If we already have a buffer allocated check if we can reuse it.
2119 */
2120 if (dev->host_mem_descs) {
2121 if (dev->host_mem_size >= min)
2122 enable_bits |= NVME_HOST_MEM_RETURN;
2123 else
2124 nvme_free_host_mem(dev);
2125 }
2126
2127 if (!dev->host_mem_descs) {
92dc6895
CH
2128 if (nvme_alloc_host_mem(dev, min, preferred)) {
2129 dev_warn(dev->ctrl.device,
2130 "failed to allocate host memory buffer.\n");
9620cfba 2131 return 0; /* controller must work without HMB */
92dc6895
CH
2132 }
2133
2134 dev_info(dev->ctrl.device,
2135 "allocated %lld MiB host memory buffer.\n",
2136 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
2137 }
2138
9620cfba
CH
2139 ret = nvme_set_host_mem(dev, enable_bits);
2140 if (ret)
87ad72a5 2141 nvme_free_host_mem(dev);
9620cfba 2142 return ret;
9d713c2b
KB
2143}
2144
0521905e
KB
2145static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2146 char *buf)
2147{
2148 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2149
2150 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2151 ndev->cmbloc, ndev->cmbsz);
2152}
2153static DEVICE_ATTR_RO(cmb);
2154
1751e97a
KB
2155static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2156 char *buf)
2157{
2158 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2159
2160 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2161}
2162static DEVICE_ATTR_RO(cmbloc);
2163
2164static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2165 char *buf)
2166{
2167 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2168
2169 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2170}
2171static DEVICE_ATTR_RO(cmbsz);
2172
a5df5e79
KB
2173static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2174 char *buf)
2175{
2176 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2177
2178 return sysfs_emit(buf, "%d\n", ndev->hmb);
2179}
2180
2181static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2182 const char *buf, size_t count)
2183{
2184 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2185 bool new;
2186 int ret;
2187
2188 if (strtobool(buf, &new) < 0)
2189 return -EINVAL;
2190
2191 if (new == ndev->hmb)
2192 return count;
2193
2194 if (new) {
2195 ret = nvme_setup_host_mem(ndev);
2196 } else {
2197 ret = nvme_set_host_mem(ndev, 0);
2198 if (!ret)
2199 nvme_free_host_mem(ndev);
2200 }
2201
2202 if (ret < 0)
2203 return ret;
2204
2205 return count;
2206}
2207static DEVICE_ATTR_RW(hmb);
2208
0521905e
KB
2209static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2210 struct attribute *a, int n)
2211{
2212 struct nvme_ctrl *ctrl =
2213 dev_get_drvdata(container_of(kobj, struct device, kobj));
2214 struct nvme_dev *dev = to_nvme_dev(ctrl);
2215
1751e97a
KB
2216 if (a == &dev_attr_cmb.attr ||
2217 a == &dev_attr_cmbloc.attr ||
2218 a == &dev_attr_cmbsz.attr) {
2219 if (!dev->cmbsz)
2220 return 0;
2221 }
a5df5e79
KB
2222 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2223 return 0;
2224
0521905e
KB
2225 return a->mode;
2226}
2227
2228static struct attribute *nvme_pci_attrs[] = {
2229 &dev_attr_cmb.attr,
1751e97a
KB
2230 &dev_attr_cmbloc.attr,
2231 &dev_attr_cmbsz.attr,
a5df5e79 2232 &dev_attr_hmb.attr,
0521905e
KB
2233 NULL,
2234};
2235
86adbf0c 2236static const struct attribute_group nvme_pci_dev_attrs_group = {
0521905e
KB
2237 .attrs = nvme_pci_attrs,
2238 .is_visible = nvme_pci_attrs_are_visible,
2239};
2240
86adbf0c
CH
2241static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2242 &nvme_dev_attrs_group,
2243 &nvme_pci_dev_attrs_group,
2244 NULL,
2245};
2246
612b7286
ML
2247/*
2248 * nirqs is the number of interrupts available for write and read
2249 * queues. The core already reserved an interrupt for the admin queue.
2250 */
2251static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
3b6592f7 2252{
612b7286 2253 struct nvme_dev *dev = affd->priv;
2a5bcfdd 2254 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
3b6592f7
JA
2255
2256 /*
ee0d96d3 2257 * If there is no interrupt available for queues, ensure that
612b7286
ML
2258 * the default queue is set to 1. The affinity set size is
2259 * also set to one, but the irq core ignores it for this case.
2260 *
2261 * If only one interrupt is available or 'write_queue' == 0, combine
2262 * write and read queues.
2263 *
2264 * If 'write_queues' > 0, ensure it leaves room for at least one read
2265 * queue.
3b6592f7 2266 */
612b7286
ML
2267 if (!nrirqs) {
2268 nrirqs = 1;
2269 nr_read_queues = 0;
2a5bcfdd 2270 } else if (nrirqs == 1 || !nr_write_queues) {
612b7286 2271 nr_read_queues = 0;
2a5bcfdd 2272 } else if (nr_write_queues >= nrirqs) {
612b7286 2273 nr_read_queues = 1;
3b6592f7 2274 } else {
2a5bcfdd 2275 nr_read_queues = nrirqs - nr_write_queues;
3b6592f7 2276 }
612b7286
ML
2277
2278 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2279 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2280 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2281 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2282 affd->nr_sets = nr_read_queues ? 2 : 1;
3b6592f7
JA
2283}
2284
6451fe73 2285static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
3b6592f7
JA
2286{
2287 struct pci_dev *pdev = to_pci_dev(dev->dev);
3b6592f7 2288 struct irq_affinity affd = {
9cfef55b 2289 .pre_vectors = 1,
612b7286
ML
2290 .calc_sets = nvme_calc_irq_sets,
2291 .priv = dev,
3b6592f7 2292 };
21cc2f3f 2293 unsigned int irq_queues, poll_queues;
6451fe73
JA
2294
2295 /*
21cc2f3f
JX
2296 * Poll queues don't need interrupts, but we need at least one I/O queue
2297 * left over for non-polled I/O.
6451fe73 2298 */
21cc2f3f
JX
2299 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2300 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
3b6592f7 2301
21cc2f3f
JX
2302 /*
2303 * Initialize for the single interrupt case, will be updated in
2304 * nvme_calc_irq_sets().
2305 */
612b7286
ML
2306 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2307 dev->io_queues[HCTX_TYPE_READ] = 0;
3b6592f7 2308
66341331 2309 /*
21cc2f3f
JX
2310 * We need interrupts for the admin queue and each non-polled I/O queue,
2311 * but some Apple controllers require all queues to use the first
2312 * vector.
66341331 2313 */
21cc2f3f
JX
2314 irq_queues = 1;
2315 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2316 irq_queues += (nr_io_queues - poll_queues);
612b7286
ML
2317 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2318 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
3b6592f7
JA
2319}
2320
8fae268b
KB
2321static void nvme_disable_io_queues(struct nvme_dev *dev)
2322{
2323 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2324 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2325}
2326
2a5bcfdd
WZ
2327static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2328{
e3aef095
NS
2329 /*
2330 * If tags are shared with admin queue (Apple bug), then
2331 * make sure we only use one IO queue.
2332 */
2333 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2334 return 1;
2a5bcfdd
WZ
2335 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2336}
2337
8d85fce7 2338static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2339{
147b27e4 2340 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 2341 struct pci_dev *pdev = to_pci_dev(dev->dev);
2a5bcfdd 2342 unsigned int nr_io_queues;
97f6ef64 2343 unsigned long size;
2a5bcfdd 2344 int result;
b60503ba 2345
2a5bcfdd
WZ
2346 /*
2347 * Sample the module parameters once at reset time so that we have
2348 * stable values to work with.
2349 */
2350 dev->nr_write_queues = write_queues;
2351 dev->nr_poll_queues = poll_queues;
d38e9f04 2352
e3aef095 2353 nr_io_queues = dev->nr_allocated_queues - 1;
9a0be7ab
CH
2354 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2355 if (result < 0)
1b23484b 2356 return result;
9a0be7ab 2357
f5fa90dc 2358 if (nr_io_queues == 0)
a5229050 2359 return 0;
53dc180e 2360
e4b9852a
CC
2361 /*
2362 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2363 * from set to unset. If there is a window to it is truely freed,
2364 * pci_free_irq_vectors() jumping into this window will crash.
2365 * And take lock to avoid racing with pci_free_irq_vectors() in
2366 * nvme_dev_disable() path.
2367 */
2368 result = nvme_setup_io_queues_trylock(dev);
2369 if (result)
2370 return result;
2371 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2372 pci_free_irq(pdev, 0, adminq);
b60503ba 2373
0f238ff5 2374 if (dev->cmb_use_sqes) {
8ffaadf7
JD
2375 result = nvme_cmb_qdepth(dev, nr_io_queues,
2376 sizeof(struct nvme_command));
2377 if (result > 0)
2378 dev->q_depth = result;
2379 else
0f238ff5 2380 dev->cmb_use_sqes = false;
8ffaadf7
JD
2381 }
2382
97f6ef64
XY
2383 do {
2384 size = db_bar_size(dev, nr_io_queues);
2385 result = nvme_remap_bar(dev, size);
2386 if (!result)
2387 break;
e4b9852a
CC
2388 if (!--nr_io_queues) {
2389 result = -ENOMEM;
2390 goto out_unlock;
2391 }
97f6ef64
XY
2392 } while (1);
2393 adminq->q_db = dev->dbs;
f1938f6e 2394
8fae268b 2395 retry:
9d713c2b 2396 /* Deregister the admin queue's interrupt */
e4b9852a
CC
2397 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2398 pci_free_irq(pdev, 0, adminq);
9d713c2b 2399
e32efbfc
JA
2400 /*
2401 * If we enable msix early due to not intx, disable it again before
2402 * setting up the full range we need.
2403 */
dca51e78 2404 pci_free_irq_vectors(pdev);
3b6592f7
JA
2405
2406 result = nvme_setup_irqs(dev, nr_io_queues);
e4b9852a
CC
2407 if (result <= 0) {
2408 result = -EIO;
2409 goto out_unlock;
2410 }
3b6592f7 2411
22b55601 2412 dev->num_vecs = result;
4b04cc6a 2413 result = max(result - 1, 1);
e20ba6e1 2414 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
fa08a396 2415
063a8096
MW
2416 /*
2417 * Should investigate if there's a performance win from allocating
2418 * more queues than interrupt vectors; it might allow the submission
2419 * path to scale better, even if the receive path is limited by the
2420 * number of interrupts.
2421 */
dca51e78 2422 result = queue_request_irq(adminq);
7c349dde 2423 if (result)
e4b9852a 2424 goto out_unlock;
4e224106 2425 set_bit(NVMEQ_ENABLED, &adminq->flags);
e4b9852a 2426 mutex_unlock(&dev->shutdown_lock);
8fae268b
KB
2427
2428 result = nvme_create_io_queues(dev);
2429 if (result || dev->online_queues < 2)
2430 return result;
2431
2432 if (dev->online_queues - 1 < dev->max_qid) {
2433 nr_io_queues = dev->online_queues - 1;
2434 nvme_disable_io_queues(dev);
e4b9852a
CC
2435 result = nvme_setup_io_queues_trylock(dev);
2436 if (result)
2437 return result;
8fae268b
KB
2438 nvme_suspend_io_queues(dev);
2439 goto retry;
2440 }
2441 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2442 dev->io_queues[HCTX_TYPE_DEFAULT],
2443 dev->io_queues[HCTX_TYPE_READ],
2444 dev->io_queues[HCTX_TYPE_POLL]);
2445 return 0;
e4b9852a
CC
2446out_unlock:
2447 mutex_unlock(&dev->shutdown_lock);
2448 return result;
b60503ba
MW
2449}
2450
de671d61
JA
2451static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2452 blk_status_t error)
a5768aa8 2453{
db3cbfff 2454 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 2455
db3cbfff 2456 blk_mq_free_request(req);
d1ed6aa1 2457 complete(&nvmeq->delete_done);
de671d61 2458 return RQ_END_IO_NONE;
a5768aa8
KB
2459}
2460
de671d61
JA
2461static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2462 blk_status_t error)
a5768aa8 2463{
db3cbfff 2464 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 2465
d1ed6aa1
CH
2466 if (error)
2467 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
db3cbfff 2468
de671d61 2469 return nvme_del_queue_end(req, error);
a5768aa8
KB
2470}
2471
db3cbfff 2472static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 2473{
db3cbfff
KB
2474 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2475 struct request *req;
f66e2804 2476 struct nvme_command cmd = { };
bda4e0fb 2477
db3cbfff
KB
2478 cmd.delete_queue.opcode = opcode;
2479 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 2480
e559398f 2481 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
db3cbfff
KB
2482 if (IS_ERR(req))
2483 return PTR_ERR(req);
e559398f 2484 nvme_init_request(req, &cmd);
bda4e0fb 2485
e2e53086
CH
2486 if (opcode == nvme_admin_delete_cq)
2487 req->end_io = nvme_del_cq_end;
2488 else
2489 req->end_io = nvme_del_queue_end;
db3cbfff
KB
2490 req->end_io_data = nvmeq;
2491
d1ed6aa1 2492 init_completion(&nvmeq->delete_done);
128126a7 2493 req->rq_flags |= RQF_QUIET;
e2e53086 2494 blk_execute_rq_nowait(req, false);
db3cbfff 2495 return 0;
bda4e0fb
KB
2496}
2497
8fae268b 2498static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
a5768aa8 2499{
5271edd4 2500 int nr_queues = dev->online_queues - 1, sent = 0;
db3cbfff 2501 unsigned long timeout;
a5768aa8 2502
db3cbfff 2503 retry:
dc96f938 2504 timeout = NVME_ADMIN_TIMEOUT;
5271edd4
CH
2505 while (nr_queues > 0) {
2506 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2507 break;
2508 nr_queues--;
2509 sent++;
db3cbfff 2510 }
d1ed6aa1
CH
2511 while (sent) {
2512 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2513
2514 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
5271edd4
CH
2515 timeout);
2516 if (timeout == 0)
2517 return false;
d1ed6aa1 2518
d1ed6aa1 2519 sent--;
5271edd4
CH
2520 if (nr_queues)
2521 goto retry;
2522 }
2523 return true;
a5768aa8
KB
2524}
2525
2455a4b7 2526static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
b60503ba 2527{
2455a4b7 2528 struct blk_mq_tag_set * set = &dev->tagset;
2b1b7e78
JW
2529 int ret;
2530
2455a4b7
CH
2531 set->ops = &nvme_mq_ops;
2532 set->nr_hw_queues = dev->online_queues - 1;
6ee742fa
KB
2533 set->nr_maps = 1;
2534 if (dev->io_queues[HCTX_TYPE_READ])
2535 set->nr_maps = 2;
2455a4b7 2536 if (dev->io_queues[HCTX_TYPE_POLL])
6ee742fa 2537 set->nr_maps = 3;
2455a4b7
CH
2538 set->timeout = NVME_IO_TIMEOUT;
2539 set->numa_node = dev->ctrl.numa_node;
2540 set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2541 set->cmd_size = sizeof(struct nvme_iod);
2542 set->flags = BLK_MQ_F_SHOULD_MERGE;
2543 set->driver_data = dev;
d38e9f04 2544
2455a4b7
CH
2545 /*
2546 * Some Apple controllers requires tags to be unique
2547 * across admin and IO queue, so reserve the first 32
2548 * tags of the IO queue.
2549 */
2550 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2551 set->reserved_tags = NVME_AQ_DEPTH;
949928c1 2552
2455a4b7
CH
2553 ret = blk_mq_alloc_tag_set(set);
2554 if (ret) {
2555 dev_warn(dev->ctrl.device,
2556 "IO queues tagset allocation failed %d\n", ret);
2557 return;
ffe7704d 2558 }
2455a4b7
CH
2559 dev->ctrl.tagset = set;
2560}
949928c1 2561
2455a4b7
CH
2562static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2563{
2564 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2565 /* free previously allocated queues that are no longer usable */
2566 nvme_free_queues(dev, dev->online_queues);
b60503ba
MW
2567}
2568
b00a726a 2569static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2570{
b00a726a 2571 int result = -ENOMEM;
e75ec752 2572 struct pci_dev *pdev = to_pci_dev(dev->dev);
4bdf2603 2573 int dma_address_bits = 64;
0877cb0d
KB
2574
2575 if (pci_enable_device_mem(pdev))
2576 return result;
2577
0877cb0d 2578 pci_set_master(pdev);
0877cb0d 2579
4bdf2603
FS
2580 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2581 dma_address_bits = 48;
2582 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
052d0efa 2583 goto disable;
0877cb0d 2584
7a67cbea 2585 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2586 result = -ENODEV;
b00a726a 2587 goto disable;
0e53d180 2588 }
e32efbfc
JA
2589
2590 /*
a5229050
KB
2591 * Some devices and/or platforms don't advertise or work with INTx
2592 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2593 * adjust this later.
e32efbfc 2594 */
dca51e78
CH
2595 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2596 if (result < 0)
2597 return result;
e32efbfc 2598
20d0dfe6 2599 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2600
7442ddce 2601 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2602 io_queue_depth);
aa22c8e6 2603 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
20d0dfe6 2604 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2605 dev->dbs = dev->bar + 4096;
1f390c1f 2606
66341331
BH
2607 /*
2608 * Some Apple controllers require a non-standard SQE size.
2609 * Interestingly they also seem to ignore the CC:IOSQES register
2610 * so we don't bother updating it here.
2611 */
2612 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2613 dev->io_sqes = 7;
2614 else
2615 dev->io_sqes = NVME_NVM_IOSQES;
1f390c1f
SG
2616
2617 /*
2618 * Temporary fix for the Apple controller found in the MacBook8,1 and
2619 * some MacBook7,1 to avoid controller resets and data loss.
2620 */
2621 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2622 dev->q_depth = 2;
9bdcfb10
CH
2623 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2624 "set queue depth=%u to work around controller resets\n",
1f390c1f 2625 dev->q_depth);
d554b5e1
MP
2626 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2627 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2628 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2629 dev->q_depth = 64;
2630 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2631 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2632 }
2633
d38e9f04
BH
2634 /*
2635 * Controllers with the shared tags quirk need the IO queue to be
2636 * big enough so that we get 32 tags for the admin queue
2637 */
2638 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2639 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2640 dev->q_depth = NVME_AQ_DEPTH + 2;
2641 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2642 dev->q_depth);
2643 }
2644
2645
f65efd6d 2646 nvme_map_cmb(dev);
202021c1 2647
a0a3408e
KB
2648 pci_enable_pcie_error_reporting(pdev);
2649 pci_save_state(pdev);
a6ee7f19
CH
2650
2651 return nvme_pci_configure_admin_queue(dev);
0877cb0d
KB
2652
2653 disable:
0877cb0d
KB
2654 pci_disable_device(pdev);
2655 return result;
2656}
2657
2658static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2659{
2660 if (dev->bar)
2661 iounmap(dev->bar);
a1f447b3 2662 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2663}
2664
2665static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 2666{
e75ec752
CH
2667 struct pci_dev *pdev = to_pci_dev(dev->dev);
2668
dca51e78 2669 pci_free_irq_vectors(pdev);
0877cb0d 2670
a0a3408e
KB
2671 if (pci_is_enabled(pdev)) {
2672 pci_disable_pcie_error_reporting(pdev);
e75ec752 2673 pci_disable_device(pdev);
4d115420 2674 }
4d115420
KB
2675}
2676
a5cdb68c 2677static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2678{
e43269e6 2679 bool dead = true, freeze = false;
302ad8cc 2680 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2681
77bf25ea 2682 mutex_lock(&dev->shutdown_lock);
081f5e75
KB
2683 if (pci_is_enabled(pdev)) {
2684 u32 csts;
2685
2686 if (pci_device_is_present(pdev))
2687 csts = readl(dev->bar + NVME_REG_CSTS);
2688 else
2689 csts = ~0;
302ad8cc 2690
ebef7368 2691 if (dev->ctrl.state == NVME_CTRL_LIVE ||
e43269e6
KB
2692 dev->ctrl.state == NVME_CTRL_RESETTING) {
2693 freeze = true;
302ad8cc 2694 nvme_start_freeze(&dev->ctrl);
e43269e6 2695 }
302ad8cc
KB
2696 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2697 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2698 }
c21377f8 2699
302ad8cc
KB
2700 /*
2701 * Give the controller a chance to complete all entered requests if
2702 * doing a safe shutdown.
2703 */
e43269e6
KB
2704 if (!dead && shutdown && freeze)
2705 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
9a915a5b
JW
2706
2707 nvme_stop_queues(&dev->ctrl);
87ad72a5 2708
64ee0ac0 2709 if (!dead && dev->ctrl.queue_count > 0) {
8fae268b 2710 nvme_disable_io_queues(dev);
a5cdb68c 2711 nvme_disable_admin_queue(dev, shutdown);
4d115420 2712 }
8fae268b
KB
2713 nvme_suspend_io_queues(dev);
2714 nvme_suspend_queue(&dev->queues[0]);
b00a726a 2715 nvme_pci_disable(dev);
fa46c6fb 2716 nvme_reap_pending_cqes(dev);
07836e65 2717
1fcfca78
GL
2718 nvme_cancel_tagset(&dev->ctrl);
2719 nvme_cancel_admin_tagset(&dev->ctrl);
302ad8cc
KB
2720
2721 /*
2722 * The driver will not be starting up queues again if shutting down so
2723 * must flush all entered requests to their failed completion to avoid
2724 * deadlocking blk-mq hot-cpu notifier.
2725 */
c8e9e9b7 2726 if (shutdown) {
302ad8cc 2727 nvme_start_queues(&dev->ctrl);
c8e9e9b7 2728 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
6ca1d902 2729 nvme_start_admin_queue(&dev->ctrl);
c8e9e9b7 2730 }
77bf25ea 2731 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2732}
2733
c1ac9a4b
KB
2734static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2735{
2736 if (!nvme_wait_reset(&dev->ctrl))
2737 return -EBUSY;
2738 nvme_dev_disable(dev, shutdown);
2739 return 0;
2740}
2741
091b6092
MW
2742static int nvme_setup_prp_pools(struct nvme_dev *dev)
2743{
e75ec752 2744 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
c61b82c7
CH
2745 NVME_CTRL_PAGE_SIZE,
2746 NVME_CTRL_PAGE_SIZE, 0);
091b6092
MW
2747 if (!dev->prp_page_pool)
2748 return -ENOMEM;
2749
99802a7a 2750 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2751 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2752 256, 256, 0);
2753 if (!dev->prp_small_pool) {
2754 dma_pool_destroy(dev->prp_page_pool);
2755 return -ENOMEM;
2756 }
091b6092
MW
2757 return 0;
2758}
2759
2760static void nvme_release_prp_pools(struct nvme_dev *dev)
2761{
2762 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2763 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2764}
2765
081a7d95
CH
2766static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2767{
2768 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2769 size_t alloc_size = sizeof(__le64 *) * npages +
2770 sizeof(struct scatterlist) * NVME_MAX_SEGS;
2771
2772 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2773 dev->iod_mempool = mempool_create_node(1,
2774 mempool_kmalloc, mempool_kfree,
2775 (void *)alloc_size, GFP_KERNEL,
2776 dev_to_node(dev->dev));
2777 if (!dev->iod_mempool)
2778 return -ENOMEM;
2779 return 0;
2780}
2781
770597ec
KB
2782static void nvme_free_tagset(struct nvme_dev *dev)
2783{
2784 if (dev->tagset.tags)
2785 blk_mq_free_tag_set(&dev->tagset);
2786 dev->ctrl.tagset = NULL;
2787}
2788
2e87570b 2789/* pairs with nvme_pci_alloc_dev */
1673f1f0 2790static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2791{
1673f1f0 2792 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2793
770597ec 2794 nvme_free_tagset(dev);
253fd4ac
IR
2795 put_device(dev->dev);
2796 kfree(dev->queues);
5e82e952
KB
2797 kfree(dev);
2798}
2799
7c1ce408 2800static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
f58944e2 2801{
c1ac9a4b
KB
2802 /*
2803 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2804 * may be holding this pci_dev's device lock.
2805 */
2806 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
d22524a4 2807 nvme_get_ctrl(&dev->ctrl);
69d9a99c 2808 nvme_dev_disable(dev, false);
cd50f9b2 2809 nvme_mark_namespaces_dead(&dev->ctrl);
03e0f3a6 2810 if (!queue_work(nvme_wq, &dev->remove_work))
f58944e2
KB
2811 nvme_put_ctrl(&dev->ctrl);
2812}
2813
fd634f41 2814static void nvme_reset_work(struct work_struct *work)
5e82e952 2815{
d86c4d8e
CH
2816 struct nvme_dev *dev =
2817 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2818 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
e71afda4 2819 int result;
5e82e952 2820
7764656b
ZC
2821 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2822 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2823 dev->ctrl.state);
e71afda4 2824 result = -ENODEV;
fd634f41 2825 goto out;
e71afda4 2826 }
5e82e952 2827
fd634f41
CH
2828 /*
2829 * If we're called to reset a live controller first shut it down before
2830 * moving on.
2831 */
b00a726a 2832 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2833 nvme_dev_disable(dev, false);
d6135c3a 2834 nvme_sync_queues(&dev->ctrl);
5e82e952 2835
5c959d73 2836 mutex_lock(&dev->shutdown_lock);
b00a726a 2837 result = nvme_pci_enable(dev);
f0b50732 2838 if (result)
4726bcf3 2839 goto out_unlock;
eac3ef26 2840 nvme_start_admin_queue(&dev->ctrl);
5c959d73
KB
2841 mutex_unlock(&dev->shutdown_lock);
2842
2843 /*
2844 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2845 * initializing procedure here.
2846 */
2847 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2848 dev_warn(dev->ctrl.device,
2849 "failed to mark controller CONNECTING\n");
cee6c269 2850 result = -EBUSY;
5c959d73
KB
2851 goto out;
2852 }
943e942e 2853
94cc781f 2854 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
ce4541f4 2855 if (result)
f58944e2 2856 goto out;
ce4541f4 2857
65a54646 2858 nvme_dbbuf_dma_alloc(dev);
f9f38e33 2859
acb71e53
CH
2860 result = nvme_setup_host_mem(dev);
2861 if (result < 0)
2862 goto out;
87ad72a5 2863
f0b50732 2864 result = nvme_setup_io_queues(dev);
badc34d4 2865 if (result)
f58944e2 2866 goto out;
f0b50732 2867
eac3ef26
CH
2868 /*
2869 * Freeze and update the number of I/O queues as thos might have
2870 * changed. If there are no I/O queues left after this reset, keep the
2871 * controller around but remove all namespaces.
2872 */
2873 if (dev->online_queues > 1) {
2874 nvme_start_queues(&dev->ctrl);
2875 nvme_wait_freeze(&dev->ctrl);
2876 nvme_pci_update_nr_queues(dev);
2877 nvme_dbbuf_set(dev);
2878 nvme_unfreeze(&dev->ctrl);
3cf519b5 2879 } else {
eac3ef26
CH
2880 dev_warn(dev->ctrl.device, "IO queues lost\n");
2881 nvme_mark_namespaces_dead(&dev->ctrl);
2882 nvme_start_queues(&dev->ctrl);
2883 nvme_remove_namespaces(&dev->ctrl);
2884 nvme_free_tagset(dev);
3cf519b5
CH
2885 }
2886
2b1b7e78
JW
2887 /*
2888 * If only admin queue live, keep it to do further investigation or
2889 * recovery.
2890 */
5d02a5c1 2891 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2b1b7e78 2892 dev_warn(dev->ctrl.device,
5d02a5c1 2893 "failed to mark controller live state\n");
e71afda4 2894 result = -ENODEV;
bb8d261e
CH
2895 goto out;
2896 }
92911a55 2897
d09f2b45 2898 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2899 return;
f0b50732 2900
4726bcf3
KB
2901 out_unlock:
2902 mutex_unlock(&dev->shutdown_lock);
3cf519b5 2903 out:
7c1ce408
CK
2904 if (result)
2905 dev_warn(dev->ctrl.device,
2906 "Removing after probe failure status: %d\n", result);
2907 nvme_remove_dead_ctrl(dev);
f0b50732
KB
2908}
2909
5c8809e6 2910static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2911{
5c8809e6 2912 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2913 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2914
2915 if (pci_get_drvdata(pdev))
921920ab 2916 device_release_driver(&pdev->dev);
1673f1f0 2917 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2918}
2919
1c63dc66 2920static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2921{
1c63dc66 2922 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2923 return 0;
9ca97374
TH
2924}
2925
5fd4ce1b 2926static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2927{
5fd4ce1b
CH
2928 writel(val, to_nvme_dev(ctrl)->bar + off);
2929 return 0;
2930}
4cc06521 2931
7fd8930f
CH
2932static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2933{
3a8ecc93 2934 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
7fd8930f 2935 return 0;
4cc06521
KB
2936}
2937
97c12223
KB
2938static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2939{
2940 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2941
2db24e4a 2942 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
97c12223
KB
2943}
2944
2f0dad17
KB
2945static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2946{
2947 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2948 struct nvme_subsystem *subsys = ctrl->subsys;
2949
2950 dev_err(ctrl->device,
2951 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2952 pdev->vendor, pdev->device,
2953 nvme_strlen(subsys->model, sizeof(subsys->model)),
2954 subsys->model, nvme_strlen(subsys->firmware_rev,
2955 sizeof(subsys->firmware_rev)),
2956 subsys->firmware_rev);
2957}
2958
2f859441
LG
2959static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2960{
2961 struct nvme_dev *dev = to_nvme_dev(ctrl);
2962
2963 return dma_pci_p2pdma_supported(dev->dev);
2964}
2965
1c63dc66 2966static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2967 .name = "pcie",
e439bb12 2968 .module = THIS_MODULE,
2f859441 2969 .flags = NVME_F_METADATA_SUPPORTED,
86adbf0c 2970 .dev_attr_groups = nvme_pci_dev_attr_groups,
1c63dc66 2971 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2972 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2973 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2974 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2975 .submit_async_event = nvme_pci_submit_async_event,
97c12223 2976 .get_address = nvme_pci_get_address,
2f0dad17 2977 .print_device_info = nvme_pci_print_device_info,
2f859441 2978 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
1c63dc66 2979};
4cc06521 2980
b00a726a
KB
2981static int nvme_dev_map(struct nvme_dev *dev)
2982{
b00a726a
KB
2983 struct pci_dev *pdev = to_pci_dev(dev->dev);
2984
a1f447b3 2985 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2986 return -ENODEV;
2987
97f6ef64 2988 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2989 goto release;
2990
9fa196e7 2991 return 0;
b00a726a 2992 release:
9fa196e7
MG
2993 pci_release_mem_regions(pdev);
2994 return -ENODEV;
b00a726a
KB
2995}
2996
8427bbc2 2997static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
2998{
2999 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3000 /*
3001 * Several Samsung devices seem to drop off the PCIe bus
3002 * randomly when APST is on and uses the deepest sleep state.
3003 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3004 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3005 * 950 PRO 256GB", but it seems to be restricted to two Dell
3006 * laptops.
3007 */
3008 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3009 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3010 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3011 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
3012 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3013 /*
3014 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
3015 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3016 * within few minutes after bootup on a Coffee Lake board -
3017 * ASUS PRIME Z370-A
8427bbc2
KHF
3018 */
3019 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
3020 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3021 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 3022 return NVME_QUIRK_NO_APST;
1fae37ac
S
3023 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3024 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3025 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3026 /*
3027 * Forcing to use host managed nvme power settings for
3028 * lowest idle power with quick resume latency on
3029 * Samsung and Toshiba SSDs based on suspend behavior
3030 * on Coffee Lake board for LENOVO C640
3031 */
3032 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3033 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3034 return NVME_QUIRK_SIMPLE_SUSPEND;
ff5350a8
AL
3035 }
3036
3037 return 0;
3038}
3039
2e87570b
CH
3040static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3041 const struct pci_device_id *id)
b60503ba 3042{
ff5350a8 3043 unsigned long quirks = id->driver_data;
2e87570b
CH
3044 int node = dev_to_node(&pdev->dev);
3045 struct nvme_dev *dev;
3046 int ret = -ENOMEM;
b60503ba 3047
a4aea562 3048 if (node == NUMA_NO_NODE)
2fa84351 3049 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
3050
3051 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba 3052 if (!dev)
2e87570b
CH
3053 return NULL;
3054 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3055 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3056 mutex_init(&dev->shutdown_lock);
147b27e4 3057
2a5bcfdd
WZ
3058 dev->nr_write_queues = write_queues;
3059 dev->nr_poll_queues = poll_queues;
3060 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3061 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3062 sizeof(struct nvme_queue), GFP_KERNEL, node);
b60503ba 3063 if (!dev->queues)
2e87570b 3064 goto out_free_dev;
b60503ba 3065
e75ec752 3066 dev->dev = get_device(&pdev->dev);
4cc06521 3067
8427bbc2 3068 quirks |= check_vendor_combination_bug(pdev);
2744d7a0 3069 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
df4f9bc4
DB
3070 /*
3071 * Some systems use a bios work around to ask for D3 on
3072 * platforms that support kernel managed suspend.
3073 */
3074 dev_info(&pdev->dev,
3075 "platform quirk: setting simple suspend\n");
3076 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3077 }
2e87570b
CH
3078 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3079 quirks);
3080 if (ret)
3081 goto out_put_device;
3f30a79c
CH
3082
3083 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3084 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3085
3086 /*
3087 * Limit the max command size to prevent iod->sg allocations going
3088 * over a single page.
3089 */
3090 dev->ctrl.max_hw_sectors = min_t(u32,
3091 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9);
3092 dev->ctrl.max_segments = NVME_MAX_SEGS;
3093
3094 /*
3095 * There is no support for SGLs for metadata (yet), so we are limited to
3096 * a single integrity segment for the separate metadata pointer.
3097 */
3098 dev->ctrl.max_integrity_segments = 1;
2e87570b 3099 return dev;
df4f9bc4 3100
2e87570b
CH
3101out_put_device:
3102 put_device(dev->dev);
3103 kfree(dev->queues);
3104out_free_dev:
3105 kfree(dev);
3106 return ERR_PTR(ret);
3107}
3108
3109static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3110{
3111 struct nvme_dev *dev;
3112 int result = -ENOMEM;
3113
3114 dev = nvme_pci_alloc_dev(pdev, id);
3115 if (!dev)
3116 return -ENOMEM;
3117
3118 result = nvme_dev_map(dev);
3119 if (result)
3120 goto out_uninit_ctrl;
3121
3122 result = nvme_setup_prp_pools(dev);
081a7d95 3123 if (result)
2e87570b 3124 goto out_dev_unmap;
943e942e 3125
2e87570b 3126 result = nvme_pci_alloc_iod_mempool(dev);
b6e44b4c 3127 if (result)
2e87570b 3128 goto out_release_prp_pools;
b6e44b4c 3129
1b3c47c1 3130 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
eac3ef26
CH
3131
3132 result = nvme_pci_enable(dev);
3133 if (result)
3134 goto out_release_iod_mempool;
3135
3136 result = nvme_pci_alloc_admin_tag_set(dev);
3137 if (result)
3138 goto out_disable;
3139
3140 /*
3141 * Mark the controller as connecting before sending admin commands to
3142 * allow the timeout handler to do the right thing.
3143 */
3144 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3145 dev_warn(dev->ctrl.device,
3146 "failed to mark controller CONNECTING\n");
3147 result = -EBUSY;
3148 goto out_disable;
3149 }
3150
3151 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3152 if (result)
3153 goto out_disable;
3154
3155 nvme_dbbuf_dma_alloc(dev);
3156
3157 result = nvme_setup_host_mem(dev);
3158 if (result < 0)
3159 goto out_disable;
3160
3161 result = nvme_setup_io_queues(dev);
3162 if (result)
3163 goto out_disable;
3164
3165 if (dev->online_queues > 1) {
3166 nvme_pci_alloc_tag_set(dev);
3167 nvme_dbbuf_set(dev);
3168 } else {
3169 dev_warn(dev->ctrl.device, "IO queues not created\n");
3170 }
3171
3172 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3173 dev_warn(dev->ctrl.device,
3174 "failed to mark controller live state\n");
3175 result = -ENODEV;
3176 goto out_disable;
3177 }
3178
2e87570b 3179 pci_set_drvdata(pdev, dev);
1b3c47c1 3180
eac3ef26
CH
3181 nvme_start_ctrl(&dev->ctrl);
3182 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
3183 return 0;
3184
eac3ef26
CH
3185out_disable:
3186 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3187 nvme_dev_disable(dev, true);
3188 nvme_free_host_mem(dev);
3189 nvme_dev_remove_admin(dev);
3190 nvme_dbbuf_dma_free(dev);
3191 nvme_free_queues(dev, 0);
3192out_release_iod_mempool:
3193 mempool_destroy(dev->iod_mempool);
2e87570b 3194out_release_prp_pools:
091b6092 3195 nvme_release_prp_pools(dev);
2e87570b 3196out_dev_unmap:
b00c9b7a 3197 nvme_dev_unmap(dev);
2e87570b
CH
3198out_uninit_ctrl:
3199 nvme_uninit_ctrl(&dev->ctrl);
b60503ba
MW
3200 return result;
3201}
3202
775755ed 3203static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 3204{
a6739479 3205 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
3206
3207 /*
3208 * We don't need to check the return value from waiting for the reset
3209 * state as pci_dev device lock is held, making it impossible to race
3210 * with ->remove().
3211 */
3212 nvme_disable_prepare_reset(dev, false);
3213 nvme_sync_queues(&dev->ctrl);
775755ed 3214}
f0d54a54 3215
775755ed
CH
3216static void nvme_reset_done(struct pci_dev *pdev)
3217{
f263fbb8 3218 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
3219
3220 if (!nvme_try_sched_reset(&dev->ctrl))
3221 flush_work(&dev->ctrl.reset_work);
f0d54a54
KB
3222}
3223
09ece142
KB
3224static void nvme_shutdown(struct pci_dev *pdev)
3225{
3226 struct nvme_dev *dev = pci_get_drvdata(pdev);
4e523547 3227
c1ac9a4b 3228 nvme_disable_prepare_reset(dev, true);
09ece142
KB
3229}
3230
f58944e2
KB
3231/*
3232 * The driver's remove may be called on a device in a partially initialized
3233 * state. This function must not have any dependencies on the device state in
3234 * order to proceed.
3235 */
8d85fce7 3236static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3237{
3238 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 3239
bb8d261e 3240 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
9a6b9458 3241 pci_set_drvdata(pdev, NULL);
0ff9d4e1 3242
6db28eda 3243 if (!pci_device_is_present(pdev)) {
0ff9d4e1 3244 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1d39e692 3245 nvme_dev_disable(dev, true);
6db28eda 3246 }
0ff9d4e1 3247
d86c4d8e 3248 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
3249 nvme_stop_ctrl(&dev->ctrl);
3250 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 3251 nvme_dev_disable(dev, true);
87ad72a5 3252 nvme_free_host_mem(dev);
a4aea562 3253 nvme_dev_remove_admin(dev);
c11b7716 3254 nvme_dbbuf_dma_free(dev);
a1a5ef99 3255 nvme_free_queues(dev, 0);
c11b7716 3256 mempool_destroy(dev->iod_mempool);
9a6b9458 3257 nvme_release_prp_pools(dev);
b00a726a 3258 nvme_dev_unmap(dev);
726612b6 3259 nvme_uninit_ctrl(&dev->ctrl);
b60503ba
MW
3260}
3261
671a6018 3262#ifdef CONFIG_PM_SLEEP
d916b1be
KB
3263static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3264{
3265 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3266}
3267
3268static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3269{
3270 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3271}
3272
3273static int nvme_resume(struct device *dev)
3274{
3275 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3276 struct nvme_ctrl *ctrl = &ndev->ctrl;
3277
4eaefe8c 3278 if (ndev->last_ps == U32_MAX ||
d916b1be 3279 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
e5ad96f3
KB
3280 goto reset;
3281 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3282 goto reset;
3283
d916b1be 3284 return 0;
e5ad96f3
KB
3285reset:
3286 return nvme_try_sched_reset(ctrl);
d916b1be
KB
3287}
3288
cd638946
KB
3289static int nvme_suspend(struct device *dev)
3290{
3291 struct pci_dev *pdev = to_pci_dev(dev);
3292 struct nvme_dev *ndev = pci_get_drvdata(pdev);
d916b1be
KB
3293 struct nvme_ctrl *ctrl = &ndev->ctrl;
3294 int ret = -EBUSY;
3295
4eaefe8c
RW
3296 ndev->last_ps = U32_MAX;
3297
d916b1be
KB
3298 /*
3299 * The platform does not remove power for a kernel managed suspend so
3300 * use host managed nvme power settings for lowest idle power if
3301 * possible. This should have quicker resume latency than a full device
3302 * shutdown. But if the firmware is involved after the suspend or the
3303 * device does not support any non-default power states, shut down the
3304 * device fully.
4eaefe8c
RW
3305 *
3306 * If ASPM is not enabled for the device, shut down the device and allow
3307 * the PCI bus layer to put it into D3 in order to take the PCIe link
3308 * down, so as to allow the platform to achieve its minimum low-power
3309 * state (which may not be possible if the link is up).
d916b1be 3310 */
4eaefe8c 3311 if (pm_suspend_via_firmware() || !ctrl->npss ||
cb32de1b 3312 !pcie_aspm_enabled(pdev) ||
c1ac9a4b
KB
3313 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3314 return nvme_disable_prepare_reset(ndev, true);
d916b1be
KB
3315
3316 nvme_start_freeze(ctrl);
3317 nvme_wait_freeze(ctrl);
3318 nvme_sync_queues(ctrl);
3319
5d02a5c1 3320 if (ctrl->state != NVME_CTRL_LIVE)
d916b1be
KB
3321 goto unfreeze;
3322
e5ad96f3
KB
3323 /*
3324 * Host memory access may not be successful in a system suspend state,
3325 * but the specification allows the controller to access memory in a
3326 * non-operational power state.
3327 */
3328 if (ndev->hmb) {
3329 ret = nvme_set_host_mem(ndev, 0);
3330 if (ret < 0)
3331 goto unfreeze;
3332 }
3333
d916b1be
KB
3334 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3335 if (ret < 0)
3336 goto unfreeze;
3337
7cbb5c6f
ML
3338 /*
3339 * A saved state prevents pci pm from generically controlling the
3340 * device's power. If we're using protocol specific settings, we don't
3341 * want pci interfering.
3342 */
3343 pci_save_state(pdev);
3344
d916b1be
KB
3345 ret = nvme_set_power_state(ctrl, ctrl->npss);
3346 if (ret < 0)
3347 goto unfreeze;
3348
3349 if (ret) {
7cbb5c6f
ML
3350 /* discard the saved state */
3351 pci_load_saved_state(pdev, NULL);
3352
d916b1be
KB
3353 /*
3354 * Clearing npss forces a controller reset on resume. The
05d3046f 3355 * correct value will be rediscovered then.
d916b1be 3356 */
c1ac9a4b 3357 ret = nvme_disable_prepare_reset(ndev, true);
d916b1be 3358 ctrl->npss = 0;
d916b1be 3359 }
d916b1be
KB
3360unfreeze:
3361 nvme_unfreeze(ctrl);
3362 return ret;
3363}
3364
3365static int nvme_simple_suspend(struct device *dev)
3366{
3367 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
4e523547 3368
c1ac9a4b 3369 return nvme_disable_prepare_reset(ndev, true);
cd638946
KB
3370}
3371
d916b1be 3372static int nvme_simple_resume(struct device *dev)
cd638946
KB
3373{
3374 struct pci_dev *pdev = to_pci_dev(dev);
3375 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3376
c1ac9a4b 3377 return nvme_try_sched_reset(&ndev->ctrl);
cd638946
KB
3378}
3379
21774222 3380static const struct dev_pm_ops nvme_dev_pm_ops = {
d916b1be
KB
3381 .suspend = nvme_suspend,
3382 .resume = nvme_resume,
3383 .freeze = nvme_simple_suspend,
3384 .thaw = nvme_simple_resume,
3385 .poweroff = nvme_simple_suspend,
3386 .restore = nvme_simple_resume,
3387};
3388#endif /* CONFIG_PM_SLEEP */
b60503ba 3389
a0a3408e
KB
3390static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3391 pci_channel_state_t state)
3392{
3393 struct nvme_dev *dev = pci_get_drvdata(pdev);
3394
3395 /*
3396 * A frozen channel requires a reset. When detected, this method will
3397 * shutdown the controller to quiesce. The controller will be restarted
3398 * after the slot reset through driver's slot_reset callback.
3399 */
a0a3408e
KB
3400 switch (state) {
3401 case pci_channel_io_normal:
3402 return PCI_ERS_RESULT_CAN_RECOVER;
3403 case pci_channel_io_frozen:
d011fb31
KB
3404 dev_warn(dev->ctrl.device,
3405 "frozen state error detected, reset controller\n");
a5cdb68c 3406 nvme_dev_disable(dev, false);
a0a3408e
KB
3407 return PCI_ERS_RESULT_NEED_RESET;
3408 case pci_channel_io_perm_failure:
d011fb31
KB
3409 dev_warn(dev->ctrl.device,
3410 "failure state error detected, request disconnect\n");
a0a3408e
KB
3411 return PCI_ERS_RESULT_DISCONNECT;
3412 }
3413 return PCI_ERS_RESULT_NEED_RESET;
3414}
3415
3416static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3417{
3418 struct nvme_dev *dev = pci_get_drvdata(pdev);
3419
1b3c47c1 3420 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 3421 pci_restore_state(pdev);
d86c4d8e 3422 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
3423 return PCI_ERS_RESULT_RECOVERED;
3424}
3425
3426static void nvme_error_resume(struct pci_dev *pdev)
3427{
72cd4cc2
KB
3428 struct nvme_dev *dev = pci_get_drvdata(pdev);
3429
3430 flush_work(&dev->ctrl.reset_work);
a0a3408e
KB
3431}
3432
1d352035 3433static const struct pci_error_handlers nvme_err_handler = {
b60503ba 3434 .error_detected = nvme_error_detected,
b60503ba
MW
3435 .slot_reset = nvme_slot_reset,
3436 .resume = nvme_error_resume,
775755ed
CH
3437 .reset_prepare = nvme_reset_prepare,
3438 .reset_done = nvme_reset_done,
b60503ba
MW
3439};
3440
6eb0d698 3441static const struct pci_device_id nvme_id_table[] = {
972b13e2 3442 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
08095e70 3443 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3444 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3445 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
99466e70 3446 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3447 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3448 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
99466e70 3449 .driver_data = NVME_QUIRK_STRIPE_SIZE |
25e58af4
WZ
3450 NVME_QUIRK_DEALLOCATE_ZEROES |
3451 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
972b13e2 3452 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
f99cb7af
DWF
3453 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3454 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0 3455 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
9abd68ef 3456 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
6c6aa2f2 3457 NVME_QUIRK_MEDIUM_PRIO_SQ |
ce4cc313
DM
3458 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3459 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
6299358d
JD
3460 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3461 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
540c801c 3462 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
7b210e4e 3463 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
66dd346b
CH
3464 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3465 NVME_QUIRK_BOGUS_NID, },
3466 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3467 .driver_data = NVME_QUIRK_BOGUS_NID, },
5bedd3af 3468 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
c98a8793
KB
3469 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3470 NVME_QUIRK_BOGUS_NID, },
0302ae60 3471 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
5e112d3f
JE
3472 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3473 NVME_QUIRK_NO_NS_DESC_LIST, },
54adc010
GP
3474 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3475 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
3476 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3477 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
3478 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3479 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
3480 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3481 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3482 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
7ee5c78c 3483 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
abbb5f59 3484 NVME_QUIRK_DISABLE_WRITE_ZEROES|
7ee5c78c 3485 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2cf7a77e
KB
3486 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3487 .driver_data = NVME_QUIRK_BOGUS_NID, },
c9e95c39 3488 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
73029c9b
KB
3489 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3490 NVME_QUIRK_BOGUS_NID, },
d14c2731
TH
3491 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3492 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3493 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3494 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
6e6a6828
PT
3495 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3496 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3497 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
e1c70d79
LVS
3498 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3499 .driver_data = NVME_QUIRK_BOGUS_NID, },
08b903b5 3500 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
1629de0e
PG
3501 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3502 NVME_QUIRK_BOGUS_NID, },
f03e42c6
GC
3503 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3504 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3505 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
41f38043
LS
3506 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3507 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
5611ec2b
KHF
3508 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3509 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
c4f01a77
KB
3510 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3511 .driver_data = NVME_QUIRK_BOGUS_NID, },
02ca079c
KHF
3512 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3513 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
89919929
CK
3514 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3515 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
43047e08 3516 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3517 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3518 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3519 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3520 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3521 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3522 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3523 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
dc22c1c0
ZB
3524 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3525 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
538e4a8c
TL
3526 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3527 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
ac9b57d4
XL
3528 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3529 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3530 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3531 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3532 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3533 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3534 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3535 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3536 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3537 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
70ce3455
CH
3538 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3539 .driver_data = NVME_QUIRK_BOGUS_NID, },
a98a945b
CH
3540 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3541 .driver_data = NVME_QUIRK_BOGUS_NID, },
3542 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3543 .driver_data = NVME_QUIRK_BOGUS_NID, },
3765fad5
SR
3544 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3545 .driver_data = NVME_QUIRK_BOGUS_NID, },
f37527a0
DK
3546 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3547 .driver_data = NVME_QUIRK_BOGUS_NID, },
d5d3c100
XR
3548 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3549 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
6b961bce
NW
3550 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3551 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
d6c52fa3
TG
3552 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3553 .driver_data = NVME_QUIRK_BOGUS_NID, },
200dccd0
SA
3554 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3555 .driver_data = NVME_QUIRK_BOGUS_NID, },
80b26240
A
3556 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3557 .driver_data = NVME_QUIRK_BOGUS_NID, },
4bdf2603
FS
3558 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3559 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3560 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3561 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3562 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3563 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3564 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3565 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3566 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3567 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3568 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3569 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
98f7b86a
AS
3570 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3571 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
124298bd 3572 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
66341331
BH
3573 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3574 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
d38e9f04 3575 NVME_QUIRK_128_BYTES_SQES |
a2941f6a
KB
3576 NVME_QUIRK_SHARED_TAGS |
3577 NVME_QUIRK_SKIP_CID_GEN },
0b85f59d 3578 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
b60503ba
MW
3579 { 0, }
3580};
3581MODULE_DEVICE_TABLE(pci, nvme_id_table);
3582
3583static struct pci_driver nvme_driver = {
3584 .name = "nvme",
3585 .id_table = nvme_id_table,
3586 .probe = nvme_probe,
8d85fce7 3587 .remove = nvme_remove,
09ece142 3588 .shutdown = nvme_shutdown,
cd638946 3589 .driver = {
eac3ef26
CH
3590 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3591#ifdef CONFIG_PM_SLEEP
3592 .pm = &nvme_dev_pm_ops,
d916b1be 3593#endif
eac3ef26 3594 },
74d986ab 3595 .sriov_configure = pci_sriov_configure_simple,
b60503ba
MW
3596 .err_handler = &nvme_err_handler,
3597};
3598
3599static int __init nvme_init(void)
3600{
81101540
CH
3601 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3602 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3603 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
612b7286 3604 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
c372cdd1
KB
3605 BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3606 S8_MAX);
17c33167 3607
9a6327d2 3608 return pci_register_driver(&nvme_driver);
b60503ba
MW
3609}
3610
3611static void __exit nvme_exit(void)
3612{
3613 pci_unregister_driver(&nvme_driver);
03e0f3a6 3614 flush_workqueue(nvme_wq);
b60503ba
MW
3615}
3616
3617MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3618MODULE_LICENSE("GPL");
c78b4713 3619MODULE_VERSION("1.0");
b60503ba
MW
3620module_init(nvme_init);
3621module_exit(nvme_exit);