nvme: Fix IOC_PR_CLEAR and IOC_PR_RELEASE ioctls for nvme devices
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
5f37396d 1// SPDX-License-Identifier: GPL-2.0
b60503ba
MW
2/*
3 * NVM Express device driver
6eb0d698 4 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
5 */
6
df4f9bc4 7#include <linux/acpi.h>
a0a3408e 8#include <linux/aer.h>
18119775 9#include <linux/async.h>
b60503ba 10#include <linux/blkdev.h>
a4aea562 11#include <linux/blk-mq.h>
dca51e78 12#include <linux/blk-mq-pci.h>
fe45e630 13#include <linux/blk-integrity.h>
ff5350a8 14#include <linux/dmi.h>
b60503ba
MW
15#include <linux/init.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
dc90f084 18#include <linux/memremap.h>
b60503ba
MW
19#include <linux/mm.h>
20#include <linux/module.h>
77bf25ea 21#include <linux/mutex.h>
d0877473 22#include <linux/once.h>
b60503ba 23#include <linux/pci.h>
d916b1be 24#include <linux/suspend.h>
e1e5e564 25#include <linux/t10-pi.h>
b60503ba 26#include <linux/types.h>
2f8e2c87 27#include <linux/io-64-nonatomic-lo-hi.h>
20d3bb92 28#include <linux/io-64-nonatomic-hi-lo.h>
a98e58e5 29#include <linux/sed-opal.h>
0f238ff5 30#include <linux/pci-p2pdma.h>
797a796a 31
604c01d5 32#include "trace.h"
f11bb3e2
CH
33#include "nvme.h"
34
c1e0cc7e 35#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
8a1d09a6 36#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
c965809c 37
a7a7cbe3 38#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 39
943e942e
JA
40/*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44#define NVME_MAX_KB_SZ 4096
45#define NVME_MAX_SEGS 127
46
58ffacb5 47static int use_threaded_interrupts;
2e21e445 48module_param(use_threaded_interrupts, int, 0444);
58ffacb5 49
8ffaadf7 50static bool use_cmb_sqes = true;
69f4eb9f 51module_param(use_cmb_sqes, bool, 0444);
8ffaadf7
JD
52MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
87ad72a5
CH
54static unsigned int max_host_mem_size_mb = 128;
55module_param(max_host_mem_size_mb, uint, 0444);
56MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 58
a7a7cbe3
CK
59static unsigned int sgl_threshold = SZ_32K;
60module_param(sgl_threshold, uint, 0644);
61MODULE_PARM_DESC(sgl_threshold,
62 "Use SGLs when average request segment size is larger or equal to "
63 "this size. Use 0 to disable SGLs.");
64
27453b45
SG
65#define NVME_PCI_MIN_QUEUE_SIZE 2
66#define NVME_PCI_MAX_QUEUE_SIZE 4095
b27c1e68 67static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68static const struct kernel_param_ops io_queue_depth_ops = {
69 .set = io_queue_depth_set,
61f3b896 70 .get = param_get_uint,
b27c1e68 71};
72
61f3b896 73static unsigned int io_queue_depth = 1024;
b27c1e68 74module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
27453b45 75MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
b27c1e68 76
9c9e76d5
WZ
77static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78{
79 unsigned int n;
80 int ret;
81
82 ret = kstrtouint(val, 10, &n);
83 if (ret != 0 || n > num_possible_cpus())
84 return -EINVAL;
85 return param_set_uint(val, kp);
86}
87
88static const struct kernel_param_ops io_queue_count_ops = {
89 .set = io_queue_count_set,
90 .get = param_get_uint,
91};
92
3f68baf7 93static unsigned int write_queues;
9c9e76d5 94module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
3b6592f7
JA
95MODULE_PARM_DESC(write_queues,
96 "Number of queues to use for writes. If not set, reads and writes "
97 "will share a queue set.");
98
3f68baf7 99static unsigned int poll_queues;
9c9e76d5 100module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
4b04cc6a
JA
101MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102
df4f9bc4
DB
103static bool noacpi;
104module_param(noacpi, bool, 0444);
105MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106
1c63dc66
CH
107struct nvme_dev;
108struct nvme_queue;
b3fffdef 109
a5cdb68c 110static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
8fae268b 111static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
d4b4ff8e 112
1c63dc66
CH
113/*
114 * Represents an NVM Express device. Each nvme_dev is a PCI function.
115 */
116struct nvme_dev {
147b27e4 117 struct nvme_queue *queues;
1c63dc66
CH
118 struct blk_mq_tag_set tagset;
119 struct blk_mq_tag_set admin_tagset;
120 u32 __iomem *dbs;
121 struct device *dev;
122 struct dma_pool *prp_page_pool;
123 struct dma_pool *prp_small_pool;
1c63dc66
CH
124 unsigned online_queues;
125 unsigned max_qid;
e20ba6e1 126 unsigned io_queues[HCTX_MAX_TYPES];
22b55601 127 unsigned int num_vecs;
7442ddce 128 u32 q_depth;
c1e0cc7e 129 int io_sqes;
1c63dc66 130 u32 db_stride;
1c63dc66 131 void __iomem *bar;
97f6ef64 132 unsigned long bar_mapped_size;
5c8809e6 133 struct work_struct remove_work;
77bf25ea 134 struct mutex shutdown_lock;
1c63dc66 135 bool subsystem;
1c63dc66 136 u64 cmb_size;
0f238ff5 137 bool cmb_use_sqes;
1c63dc66 138 u32 cmbsz;
202021c1 139 u32 cmbloc;
1c63dc66 140 struct nvme_ctrl ctrl;
d916b1be 141 u32 last_ps;
a5df5e79 142 bool hmb;
87ad72a5 143
943e942e
JA
144 mempool_t *iod_mempool;
145
87ad72a5 146 /* shadow doorbell buffer support: */
f9f38e33
HK
147 u32 *dbbuf_dbs;
148 dma_addr_t dbbuf_dbs_dma_addr;
149 u32 *dbbuf_eis;
150 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
151
152 /* host memory buffer support: */
153 u64 host_mem_size;
154 u32 nr_host_mem_descs;
4033f35d 155 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
156 struct nvme_host_mem_buf_desc *host_mem_descs;
157 void **host_mem_desc_bufs;
2a5bcfdd
WZ
158 unsigned int nr_allocated_queues;
159 unsigned int nr_write_queues;
160 unsigned int nr_poll_queues;
0521905e
KB
161
162 bool attrs_added;
4d115420 163};
1fa6aead 164
b27c1e68 165static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166{
27453b45
SG
167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 NVME_PCI_MAX_QUEUE_SIZE);
b27c1e68 169}
170
f9f38e33
HK
171static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172{
173 return qid * 2 * stride;
174}
175
176static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177{
178 return (qid * 2 + 1) * stride;
179}
180
1c63dc66
CH
181static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182{
183 return container_of(ctrl, struct nvme_dev, ctrl);
184}
185
b60503ba
MW
186/*
187 * An NVM Express queue. Each device has at least two (one for admin
188 * commands and one for I/O commands).
189 */
190struct nvme_queue {
091b6092 191 struct nvme_dev *dev;
1ab0cd69 192 spinlock_t sq_lock;
c1e0cc7e 193 void *sq_cmds;
3a7afd8e
CH
194 /* only used for poll queues: */
195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
74943d45 196 struct nvme_completion *cqes;
b60503ba
MW
197 dma_addr_t sq_dma_addr;
198 dma_addr_t cq_dma_addr;
b60503ba 199 u32 __iomem *q_db;
7442ddce 200 u32 q_depth;
7c349dde 201 u16 cq_vector;
b60503ba 202 u16 sq_tail;
38210800 203 u16 last_sq_tail;
b60503ba 204 u16 cq_head;
c30341dc 205 u16 qid;
e9539f47 206 u8 cq_phase;
c1e0cc7e 207 u8 sqes;
4e224106
CH
208 unsigned long flags;
209#define NVMEQ_ENABLED 0
63223078 210#define NVMEQ_SQ_CMB 1
d1ed6aa1 211#define NVMEQ_DELETE_ERROR 2
7c349dde 212#define NVMEQ_POLLED 3
f9f38e33
HK
213 u32 *dbbuf_sq_db;
214 u32 *dbbuf_cq_db;
215 u32 *dbbuf_sq_ei;
216 u32 *dbbuf_cq_ei;
d1ed6aa1 217 struct completion delete_done;
b60503ba
MW
218};
219
71bd150c 220/*
9b048119
CH
221 * The nvme_iod describes the data in an I/O.
222 *
223 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224 * to the actual struct scatterlist.
71bd150c
CH
225 */
226struct nvme_iod {
d49187e9 227 struct nvme_request req;
af7fae85 228 struct nvme_command cmd;
f4800d6d 229 struct nvme_queue *nvmeq;
a7a7cbe3 230 bool use_sgl;
f4800d6d 231 int aborted;
71bd150c 232 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c 233 int nents; /* Used in scatterlist */
71bd150c 234 dma_addr_t first_dma;
dff824b2 235 unsigned int dma_len; /* length of single DMA segment mapping */
783b94bd 236 dma_addr_t meta_dma;
f4800d6d 237 struct scatterlist *sg;
b60503ba
MW
238};
239
2a5bcfdd 240static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
3b6592f7 241{
2a5bcfdd 242 return dev->nr_allocated_queues * 8 * dev->db_stride;
f9f38e33
HK
243}
244
245static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
246{
2a5bcfdd 247 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33 248
58847f12
KB
249 if (dev->dbbuf_dbs) {
250 /*
251 * Clear the dbbuf memory so the driver doesn't observe stale
252 * values from the previous instantiation.
253 */
254 memset(dev->dbbuf_dbs, 0, mem_size);
255 memset(dev->dbbuf_eis, 0, mem_size);
f9f38e33 256 return 0;
58847f12 257 }
f9f38e33
HK
258
259 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260 &dev->dbbuf_dbs_dma_addr,
261 GFP_KERNEL);
262 if (!dev->dbbuf_dbs)
263 return -ENOMEM;
264 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265 &dev->dbbuf_eis_dma_addr,
266 GFP_KERNEL);
267 if (!dev->dbbuf_eis) {
268 dma_free_coherent(dev->dev, mem_size,
269 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
270 dev->dbbuf_dbs = NULL;
271 return -ENOMEM;
272 }
273
274 return 0;
275}
276
277static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
278{
2a5bcfdd 279 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33
HK
280
281 if (dev->dbbuf_dbs) {
282 dma_free_coherent(dev->dev, mem_size,
283 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
284 dev->dbbuf_dbs = NULL;
285 }
286 if (dev->dbbuf_eis) {
287 dma_free_coherent(dev->dev, mem_size,
288 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
289 dev->dbbuf_eis = NULL;
290 }
291}
292
293static void nvme_dbbuf_init(struct nvme_dev *dev,
294 struct nvme_queue *nvmeq, int qid)
295{
296 if (!dev->dbbuf_dbs || !qid)
297 return;
298
299 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
300 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
301 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
302 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
303}
304
0f0d2c87
MI
305static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
306{
307 if (!nvmeq->qid)
308 return;
309
310 nvmeq->dbbuf_sq_db = NULL;
311 nvmeq->dbbuf_cq_db = NULL;
312 nvmeq->dbbuf_sq_ei = NULL;
313 nvmeq->dbbuf_cq_ei = NULL;
314}
315
f9f38e33
HK
316static void nvme_dbbuf_set(struct nvme_dev *dev)
317{
f66e2804 318 struct nvme_command c = { };
0f0d2c87 319 unsigned int i;
f9f38e33
HK
320
321 if (!dev->dbbuf_dbs)
322 return;
323
f9f38e33
HK
324 c.dbbuf.opcode = nvme_admin_dbbuf;
325 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
326 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
327
328 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 329 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
330 /* Free memory and continue on */
331 nvme_dbbuf_dma_free(dev);
0f0d2c87
MI
332
333 for (i = 1; i <= dev->online_queues; i++)
334 nvme_dbbuf_free(&dev->queues[i]);
f9f38e33
HK
335 }
336}
337
338static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
339{
340 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
341}
342
343/* Update dbbuf and return true if an MMIO is required */
344static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
345 volatile u32 *dbbuf_ei)
346{
347 if (dbbuf_db) {
348 u16 old_value;
349
350 /*
351 * Ensure that the queue is written before updating
352 * the doorbell in memory
353 */
354 wmb();
355
356 old_value = *dbbuf_db;
357 *dbbuf_db = value;
358
f1ed3df2
MW
359 /*
360 * Ensure that the doorbell is updated before reading the event
361 * index from memory. The controller needs to provide similar
362 * ordering to ensure the envent index is updated before reading
363 * the doorbell.
364 */
365 mb();
366
f9f38e33
HK
367 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
368 return false;
369 }
370
371 return true;
b60503ba
MW
372}
373
ac3dd5bd
JA
374/*
375 * Will slightly overestimate the number of pages needed. This is OK
376 * as it only leads to a small amount of wasted memory for the lifetime of
377 * the I/O.
378 */
b13c6393 379static int nvme_pci_npages_prp(void)
ac3dd5bd 380{
b13c6393 381 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
6c3c05b0 382 NVME_CTRL_PAGE_SIZE);
ac3dd5bd
JA
383 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
384}
385
a7a7cbe3
CK
386/*
387 * Calculates the number of pages needed for the SGL segments. For example a 4k
388 * page can accommodate 256 SGL descriptors.
389 */
b13c6393 390static int nvme_pci_npages_sgl(void)
ac3dd5bd 391{
b13c6393
CK
392 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
393 PAGE_SIZE);
f4800d6d 394}
ac3dd5bd 395
b13c6393 396static size_t nvme_pci_iod_alloc_size(void)
f4800d6d 397{
b13c6393 398 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
a7a7cbe3 399
b13c6393
CK
400 return sizeof(__le64 *) * npages +
401 sizeof(struct scatterlist) * NVME_MAX_SEGS;
f4800d6d 402}
ac3dd5bd 403
a4aea562
MB
404static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
405 unsigned int hctx_idx)
e85248e5 406{
a4aea562 407 struct nvme_dev *dev = data;
147b27e4 408 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 409
42483228
KB
410 WARN_ON(hctx_idx != 0);
411 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
42483228 412
a4aea562
MB
413 hctx->driver_data = nvmeq;
414 return 0;
e85248e5
MW
415}
416
a4aea562
MB
417static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
418 unsigned int hctx_idx)
b60503ba 419{
a4aea562 420 struct nvme_dev *dev = data;
147b27e4 421 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 422
42483228 423 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
424 hctx->driver_data = nvmeq;
425 return 0;
b60503ba
MW
426}
427
e559398f
CH
428static int nvme_pci_init_request(struct blk_mq_tag_set *set,
429 struct request *req, unsigned int hctx_idx,
430 unsigned int numa_node)
b60503ba 431{
d6296d39 432 struct nvme_dev *dev = set->driver_data;
f4800d6d 433 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a 434 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
147b27e4 435 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
a4aea562
MB
436
437 BUG_ON(!nvmeq);
f4800d6d 438 iod->nvmeq = nvmeq;
59e29ce6
SG
439
440 nvme_req(req)->ctrl = &dev->ctrl;
f4b9e6c9 441 nvme_req(req)->cmd = &iod->cmd;
a4aea562
MB
442 return 0;
443}
444
3b6592f7
JA
445static int queue_irq_offset(struct nvme_dev *dev)
446{
447 /* if we have more than 1 vec, admin queue offsets us by 1 */
448 if (dev->num_vecs > 1)
449 return 1;
450
451 return 0;
452}
453
dca51e78
CH
454static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
455{
456 struct nvme_dev *dev = set->driver_data;
3b6592f7
JA
457 int i, qoff, offset;
458
459 offset = queue_irq_offset(dev);
460 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
461 struct blk_mq_queue_map *map = &set->map[i];
462
463 map->nr_queues = dev->io_queues[i];
464 if (!map->nr_queues) {
e20ba6e1 465 BUG_ON(i == HCTX_TYPE_DEFAULT);
7e849dd9 466 continue;
3b6592f7
JA
467 }
468
4b04cc6a
JA
469 /*
470 * The poll queue(s) doesn't have an IRQ (and hence IRQ
471 * affinity), so use the regular blk-mq cpu mapping
472 */
3b6592f7 473 map->queue_offset = qoff;
cb9e0e50 474 if (i != HCTX_TYPE_POLL && offset)
4b04cc6a
JA
475 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
476 else
477 blk_mq_map_queues(map);
3b6592f7
JA
478 qoff += map->nr_queues;
479 offset += map->nr_queues;
480 }
481
482 return 0;
dca51e78
CH
483}
484
38210800
KB
485/*
486 * Write sq tail if we are asked to, or if the next command would wrap.
487 */
488static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
04f3eafd 489{
38210800
KB
490 if (!write_sq) {
491 u16 next_tail = nvmeq->sq_tail + 1;
492
493 if (next_tail == nvmeq->q_depth)
494 next_tail = 0;
495 if (next_tail != nvmeq->last_sq_tail)
496 return;
497 }
498
04f3eafd
JA
499 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
500 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
501 writel(nvmeq->sq_tail, nvmeq->q_db);
38210800 502 nvmeq->last_sq_tail = nvmeq->sq_tail;
04f3eafd
JA
503}
504
3233b94c
JA
505static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
506 struct nvme_command *cmd)
b60503ba 507{
c1e0cc7e 508 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
3233b94c 509 absolute_pointer(cmd), sizeof(*cmd));
90ea5ca4
CH
510 if (++nvmeq->sq_tail == nvmeq->q_depth)
511 nvmeq->sq_tail = 0;
04f3eafd
JA
512}
513
514static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
515{
516 struct nvme_queue *nvmeq = hctx->driver_data;
517
518 spin_lock(&nvmeq->sq_lock);
38210800
KB
519 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
520 nvme_write_sq_db(nvmeq, true);
90ea5ca4 521 spin_unlock(&nvmeq->sq_lock);
b60503ba
MW
522}
523
a7a7cbe3 524static void **nvme_pci_iod_list(struct request *req)
b60503ba 525{
f4800d6d 526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 527 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
528}
529
955b1b5a
MI
530static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
531{
532 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
20469a37 533 int nseg = blk_rq_nr_phys_segments(req);
955b1b5a
MI
534 unsigned int avg_seg_size;
535
20469a37 536 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a 537
253a0b76 538 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
955b1b5a
MI
539 return false;
540 if (!iod->nvmeq->qid)
541 return false;
542 if (!sgl_threshold || avg_seg_size < sgl_threshold)
543 return false;
544 return true;
545}
546
9275c206 547static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
b60503ba 548{
6c3c05b0 549 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
9275c206
CH
550 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
551 dma_addr_t dma_addr = iod->first_dma;
eca18b23 552 int i;
eca18b23 553
9275c206
CH
554 for (i = 0; i < iod->npages; i++) {
555 __le64 *prp_list = nvme_pci_iod_list(req)[i];
556 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
557
558 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
559 dma_addr = next_dma_addr;
7fe07d14 560 }
9275c206 561}
dff824b2 562
9275c206
CH
563static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
564{
565 const int last_sg = SGES_PER_PAGE - 1;
566 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
567 dma_addr_t dma_addr = iod->first_dma;
568 int i;
dff824b2 569
9275c206
CH
570 for (i = 0; i < iod->npages; i++) {
571 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
572 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
dff824b2 573
9275c206
CH
574 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
575 dma_addr = next_dma_addr;
576 }
9275c206 577}
a7a7cbe3 578
9275c206
CH
579static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
580{
581 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 582
9275c206
CH
583 if (is_pci_p2pdma_page(sg_page(iod->sg)))
584 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
585 rq_dma_dir(req));
586 else
587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
588}
a7a7cbe3 589
9275c206
CH
590static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
591{
592 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 593
9275c206
CH
594 if (iod->dma_len) {
595 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
596 rq_dma_dir(req));
597 return;
eca18b23 598 }
ac3dd5bd 599
9275c206
CH
600 WARN_ON_ONCE(!iod->nents);
601
602 nvme_unmap_sg(dev, req);
603 if (iod->npages == 0)
604 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
605 iod->first_dma);
606 else if (iod->use_sgl)
607 nvme_free_sgls(dev, req);
608 else
609 nvme_free_prps(dev, req);
d43f1ccf 610 mempool_free(iod->sg, dev->iod_mempool);
b4ff9c8d
KB
611}
612
d0877473
KB
613static void nvme_print_sgl(struct scatterlist *sgl, int nents)
614{
615 int i;
616 struct scatterlist *sg;
617
618 for_each_sg(sgl, sg, nents, i) {
619 dma_addr_t phys = sg_phys(sg);
620 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
621 "dma_address:%pad dma_length:%d\n",
622 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
623 sg_dma_len(sg));
624 }
625}
626
a7a7cbe3
CK
627static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
628 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 629{
f4800d6d 630 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 631 struct dma_pool *pool;
b131c61d 632 int length = blk_rq_payload_bytes(req);
eca18b23 633 struct scatterlist *sg = iod->sg;
ff22b54f
MW
634 int dma_len = sg_dma_len(sg);
635 u64 dma_addr = sg_dma_address(sg);
6c3c05b0 636 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
e025344c 637 __le64 *prp_list;
a7a7cbe3 638 void **list = nvme_pci_iod_list(req);
e025344c 639 dma_addr_t prp_dma;
eca18b23 640 int nprps, i;
ff22b54f 641
6c3c05b0 642 length -= (NVME_CTRL_PAGE_SIZE - offset);
5228b328
JS
643 if (length <= 0) {
644 iod->first_dma = 0;
a7a7cbe3 645 goto done;
5228b328 646 }
ff22b54f 647
6c3c05b0 648 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f 649 if (dma_len) {
6c3c05b0 650 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f
MW
651 } else {
652 sg = sg_next(sg);
653 dma_addr = sg_dma_address(sg);
654 dma_len = sg_dma_len(sg);
655 }
656
6c3c05b0 657 if (length <= NVME_CTRL_PAGE_SIZE) {
edd10d33 658 iod->first_dma = dma_addr;
a7a7cbe3 659 goto done;
e025344c
SMM
660 }
661
6c3c05b0 662 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
99802a7a
MW
663 if (nprps <= (256 / 8)) {
664 pool = dev->prp_small_pool;
eca18b23 665 iod->npages = 0;
99802a7a
MW
666 } else {
667 pool = dev->prp_page_pool;
eca18b23 668 iod->npages = 1;
99802a7a
MW
669 }
670
69d2b571 671 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 672 if (!prp_list) {
eca18b23 673 iod->npages = -1;
86eea289 674 return BLK_STS_RESOURCE;
b77954cb 675 }
eca18b23
MW
676 list[0] = prp_list;
677 iod->first_dma = prp_dma;
e025344c
SMM
678 i = 0;
679 for (;;) {
6c3c05b0 680 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
e025344c 681 __le64 *old_prp_list = prp_list;
69d2b571 682 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 683 if (!prp_list)
fa073216 684 goto free_prps;
eca18b23 685 list[iod->npages++] = prp_list;
7523d834
MW
686 prp_list[0] = old_prp_list[i - 1];
687 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
688 i = 1;
e025344c
SMM
689 }
690 prp_list[i++] = cpu_to_le64(dma_addr);
6c3c05b0
CK
691 dma_len -= NVME_CTRL_PAGE_SIZE;
692 dma_addr += NVME_CTRL_PAGE_SIZE;
693 length -= NVME_CTRL_PAGE_SIZE;
e025344c
SMM
694 if (length <= 0)
695 break;
696 if (dma_len > 0)
697 continue;
86eea289
KB
698 if (unlikely(dma_len < 0))
699 goto bad_sgl;
e025344c
SMM
700 sg = sg_next(sg);
701 dma_addr = sg_dma_address(sg);
702 dma_len = sg_dma_len(sg);
ff22b54f 703 }
a7a7cbe3
CK
704done:
705 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
706 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
86eea289 707 return BLK_STS_OK;
fa073216
CH
708free_prps:
709 nvme_free_prps(dev, req);
710 return BLK_STS_RESOURCE;
711bad_sgl:
d0877473
KB
712 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
713 "Invalid SGL for payload:%d nents:%d\n",
714 blk_rq_payload_bytes(req), iod->nents);
86eea289 715 return BLK_STS_IOERR;
ff22b54f
MW
716}
717
a7a7cbe3
CK
718static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
719 struct scatterlist *sg)
720{
721 sge->addr = cpu_to_le64(sg_dma_address(sg));
722 sge->length = cpu_to_le32(sg_dma_len(sg));
723 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
724}
725
726static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
727 dma_addr_t dma_addr, int entries)
728{
729 sge->addr = cpu_to_le64(dma_addr);
730 if (entries < SGES_PER_PAGE) {
731 sge->length = cpu_to_le32(entries * sizeof(*sge));
732 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
733 } else {
734 sge->length = cpu_to_le32(PAGE_SIZE);
735 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
736 }
737}
738
739static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
b0f2853b 740 struct request *req, struct nvme_rw_command *cmd, int entries)
a7a7cbe3
CK
741{
742 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
743 struct dma_pool *pool;
744 struct nvme_sgl_desc *sg_list;
745 struct scatterlist *sg = iod->sg;
a7a7cbe3 746 dma_addr_t sgl_dma;
b0f2853b 747 int i = 0;
a7a7cbe3 748
a7a7cbe3
CK
749 /* setting the transfer type as SGL */
750 cmd->flags = NVME_CMD_SGL_METABUF;
751
b0f2853b 752 if (entries == 1) {
a7a7cbe3
CK
753 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
754 return BLK_STS_OK;
755 }
756
757 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
758 pool = dev->prp_small_pool;
759 iod->npages = 0;
760 } else {
761 pool = dev->prp_page_pool;
762 iod->npages = 1;
763 }
764
765 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
766 if (!sg_list) {
767 iod->npages = -1;
768 return BLK_STS_RESOURCE;
769 }
770
771 nvme_pci_iod_list(req)[0] = sg_list;
772 iod->first_dma = sgl_dma;
773
774 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
775
776 do {
777 if (i == SGES_PER_PAGE) {
778 struct nvme_sgl_desc *old_sg_desc = sg_list;
779 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
780
781 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
782 if (!sg_list)
fa073216 783 goto free_sgls;
a7a7cbe3
CK
784
785 i = 0;
786 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
787 sg_list[i++] = *link;
788 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
789 }
790
791 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 792 sg = sg_next(sg);
b0f2853b 793 } while (--entries > 0);
a7a7cbe3 794
a7a7cbe3 795 return BLK_STS_OK;
fa073216
CH
796free_sgls:
797 nvme_free_sgls(dev, req);
798 return BLK_STS_RESOURCE;
a7a7cbe3
CK
799}
800
dff824b2
CH
801static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
802 struct request *req, struct nvme_rw_command *cmnd,
803 struct bio_vec *bv)
804{
805 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
6c3c05b0
CK
806 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
807 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
dff824b2
CH
808
809 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
810 if (dma_mapping_error(dev->dev, iod->first_dma))
811 return BLK_STS_RESOURCE;
812 iod->dma_len = bv->bv_len;
813
814 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
815 if (bv->bv_len > first_prp_len)
816 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
359c1f88 817 return BLK_STS_OK;
dff824b2
CH
818}
819
29791057
CH
820static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
821 struct request *req, struct nvme_rw_command *cmnd,
822 struct bio_vec *bv)
823{
824 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
825
826 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
827 if (dma_mapping_error(dev->dev, iod->first_dma))
828 return BLK_STS_RESOURCE;
829 iod->dma_len = bv->bv_len;
830
049bf372 831 cmnd->flags = NVME_CMD_SGL_METABUF;
29791057
CH
832 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
833 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
834 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
359c1f88 835 return BLK_STS_OK;
29791057
CH
836}
837
fc17b653 838static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 839 struct nvme_command *cmnd)
d29ec824 840{
f4800d6d 841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
70479b71 842 blk_status_t ret = BLK_STS_RESOURCE;
b0f2853b 843 int nr_mapped;
d29ec824 844
dff824b2
CH
845 if (blk_rq_nr_phys_segments(req) == 1) {
846 struct bio_vec bv = req_bvec(req);
847
848 if (!is_pci_p2pdma_page(bv.bv_page)) {
6c3c05b0 849 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
dff824b2
CH
850 return nvme_setup_prp_simple(dev, req,
851 &cmnd->rw, &bv);
29791057 852
e51183be 853 if (iod->nvmeq->qid && sgl_threshold &&
253a0b76 854 nvme_ctrl_sgl_supported(&dev->ctrl))
29791057
CH
855 return nvme_setup_sgl_simple(dev, req,
856 &cmnd->rw, &bv);
dff824b2
CH
857 }
858 }
859
860 iod->dma_len = 0;
d43f1ccf
CH
861 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
862 if (!iod->sg)
863 return BLK_STS_RESOURCE;
f9d03f96 864 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
70479b71 865 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
ba1ca37e 866 if (!iod->nents)
fa073216 867 goto out_free_sg;
d29ec824 868
e0596ab2 869 if (is_pci_p2pdma_page(sg_page(iod->sg)))
2b9f4bb2
LG
870 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
871 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
e0596ab2
LG
872 else
873 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
70479b71 874 rq_dma_dir(req), DMA_ATTR_NO_WARN);
b0f2853b 875 if (!nr_mapped)
fa073216 876 goto out_free_sg;
d29ec824 877
70479b71 878 iod->use_sgl = nvme_pci_use_sgls(dev, req);
955b1b5a 879 if (iod->use_sgl)
b0f2853b 880 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
a7a7cbe3
CK
881 else
882 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
86eea289 883 if (ret != BLK_STS_OK)
fa073216
CH
884 goto out_unmap_sg;
885 return BLK_STS_OK;
886
887out_unmap_sg:
888 nvme_unmap_sg(dev, req);
889out_free_sg:
890 mempool_free(iod->sg, dev->iod_mempool);
4aedb705
CH
891 return ret;
892}
3045c0d0 893
4aedb705
CH
894static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
895 struct nvme_command *cmnd)
896{
897 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
00df5cb4 898
4aedb705
CH
899 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
900 rq_dma_dir(req), 0);
901 if (dma_mapping_error(dev->dev, iod->meta_dma))
902 return BLK_STS_IOERR;
903 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
359c1f88 904 return BLK_STS_OK;
00df5cb4
MW
905}
906
62451a2b 907static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
edd10d33 908{
9b048119 909 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ebe6d874 910 blk_status_t ret;
e1e5e564 911
9b048119
CH
912 iod->aborted = 0;
913 iod->npages = -1;
914 iod->nents = 0;
915
62451a2b 916 ret = nvme_setup_cmd(req->q->queuedata, req);
fc17b653 917 if (ret)
f4800d6d 918 return ret;
a4aea562 919
fc17b653 920 if (blk_rq_nr_phys_segments(req)) {
62451a2b 921 ret = nvme_map_data(dev, req, &iod->cmd);
fc17b653 922 if (ret)
9b048119 923 goto out_free_cmd;
fc17b653 924 }
a4aea562 925
4aedb705 926 if (blk_integrity_rq(req)) {
62451a2b 927 ret = nvme_map_metadata(dev, req, &iod->cmd);
4aedb705
CH
928 if (ret)
929 goto out_unmap_data;
930 }
931
aae239e1 932 blk_mq_start_request(req);
fc17b653 933 return BLK_STS_OK;
4aedb705
CH
934out_unmap_data:
935 nvme_unmap_data(dev, req);
f9d03f96
CH
936out_free_cmd:
937 nvme_cleanup_cmd(req);
ba1ca37e 938 return ret;
b60503ba 939}
e1e5e564 940
62451a2b
JA
941/*
942 * NOTE: ns is NULL when called on the admin queue.
943 */
944static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
945 const struct blk_mq_queue_data *bd)
946{
947 struct nvme_queue *nvmeq = hctx->driver_data;
948 struct nvme_dev *dev = nvmeq->dev;
949 struct request *req = bd->rq;
950 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
951 blk_status_t ret;
952
953 /*
954 * We should not need to do this, but we're still using this to
955 * ensure we can drain requests on a dying queue.
956 */
957 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
958 return BLK_STS_IOERR;
959
960 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
961 return nvme_fail_nonready_command(&dev->ctrl, req);
962
963 ret = nvme_prep_rq(dev, req);
964 if (unlikely(ret))
965 return ret;
966 spin_lock(&nvmeq->sq_lock);
967 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
968 nvme_write_sq_db(nvmeq, bd->last);
969 spin_unlock(&nvmeq->sq_lock);
970 return BLK_STS_OK;
971}
972
d62cbcf6
JA
973static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
974{
975 spin_lock(&nvmeq->sq_lock);
976 while (!rq_list_empty(*rqlist)) {
977 struct request *req = rq_list_pop(rqlist);
978 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
979
980 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
981 }
982 nvme_write_sq_db(nvmeq, true);
983 spin_unlock(&nvmeq->sq_lock);
984}
985
986static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
987{
988 /*
989 * We should not need to do this, but we're still using this to
990 * ensure we can drain requests on a dying queue.
991 */
992 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
993 return false;
994 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
995 return false;
996
997 req->mq_hctx->tags->rqs[req->tag] = req;
998 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
999}
1000
1001static void nvme_queue_rqs(struct request **rqlist)
1002{
6bfec799 1003 struct request *req, *next, *prev = NULL;
d62cbcf6
JA
1004 struct request *requeue_list = NULL;
1005
6bfec799 1006 rq_list_for_each_safe(rqlist, req, next) {
d62cbcf6
JA
1007 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1008
1009 if (!nvme_prep_rq_batch(nvmeq, req)) {
1010 /* detach 'req' and add to remainder list */
6bfec799
KB
1011 rq_list_move(rqlist, &requeue_list, req, prev);
1012
1013 req = prev;
1014 if (!req)
1015 continue;
d62cbcf6
JA
1016 }
1017
6bfec799 1018 if (!next || req->mq_hctx != next->mq_hctx) {
d62cbcf6 1019 /* detach rest of list, and submit */
6bfec799 1020 req->rq_next = NULL;
d62cbcf6 1021 nvme_submit_cmds(nvmeq, rqlist);
6bfec799
KB
1022 *rqlist = next;
1023 prev = NULL;
1024 } else
1025 prev = req;
1026 }
d62cbcf6
JA
1027
1028 *rqlist = requeue_list;
1029}
1030
c234a653 1031static __always_inline void nvme_pci_unmap_rq(struct request *req)
eee417b0 1032{
f4800d6d 1033 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
4aedb705 1034 struct nvme_dev *dev = iod->nvmeq->dev;
a4aea562 1035
4aedb705
CH
1036 if (blk_integrity_rq(req))
1037 dma_unmap_page(dev->dev, iod->meta_dma,
1038 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
b15c592d 1039 if (blk_rq_nr_phys_segments(req))
4aedb705 1040 nvme_unmap_data(dev, req);
c234a653
JA
1041}
1042
1043static void nvme_pci_complete_rq(struct request *req)
1044{
1045 nvme_pci_unmap_rq(req);
77f02a7a 1046 nvme_complete_rq(req);
b60503ba
MW
1047}
1048
c234a653
JA
1049static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1050{
1051 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1052}
1053
d783e0bd 1054/* We read the CQE phase first to check if the rest of the entry is valid */
750dde44 1055static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
d783e0bd 1056{
74943d45
KB
1057 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1058
1059 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
d783e0bd
MR
1060}
1061
eb281c82 1062static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 1063{
eb281c82 1064 u16 head = nvmeq->cq_head;
adf68f21 1065
397c699f
KB
1066 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1067 nvmeq->dbbuf_cq_ei))
1068 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
eb281c82 1069}
aae239e1 1070
cfa27356
CH
1071static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1072{
1073 if (!nvmeq->qid)
1074 return nvmeq->dev->admin_tagset.tags[0];
1075 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1076}
1077
c234a653
JA
1078static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1079 struct io_comp_batch *iob, u16 idx)
83a12fb7 1080{
74943d45 1081 struct nvme_completion *cqe = &nvmeq->cqes[idx];
62df8016 1082 __u16 command_id = READ_ONCE(cqe->command_id);
83a12fb7 1083 struct request *req;
adf68f21 1084
83a12fb7
SG
1085 /*
1086 * AEN requests are special as they don't time out and can
1087 * survive any kind of queue freeze and often don't respond to
1088 * aborts. We don't even bother to allocate a struct request
1089 * for them but rather special case them here.
1090 */
62df8016 1091 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
83a12fb7
SG
1092 nvme_complete_async_event(&nvmeq->dev->ctrl,
1093 cqe->status, &cqe->result);
a0fa9647 1094 return;
83a12fb7 1095 }
b60503ba 1096
e7006de6 1097 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
50b7c243
XT
1098 if (unlikely(!req)) {
1099 dev_warn(nvmeq->dev->ctrl.device,
1100 "invalid id %d completed on queue %d\n",
62df8016 1101 command_id, le16_to_cpu(cqe->sq_id));
50b7c243
XT
1102 return;
1103 }
1104
604c01d5 1105 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
c234a653
JA
1106 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1107 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1108 nvme_pci_complete_batch))
ff029451 1109 nvme_pci_complete_rq(req);
83a12fb7 1110}
b60503ba 1111
5cb525c8
JA
1112static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1113{
a0aac973 1114 u32 tmp = nvmeq->cq_head + 1;
a8de6639
AD
1115
1116 if (tmp == nvmeq->q_depth) {
5cb525c8 1117 nvmeq->cq_head = 0;
e2a366a4 1118 nvmeq->cq_phase ^= 1;
a8de6639
AD
1119 } else {
1120 nvmeq->cq_head = tmp;
b60503ba 1121 }
a0fa9647
JA
1122}
1123
c234a653
JA
1124static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1125 struct io_comp_batch *iob)
a0fa9647 1126{
1052b8ac 1127 int found = 0;
b60503ba 1128
1052b8ac 1129 while (nvme_cqe_pending(nvmeq)) {
bf392a5d 1130 found++;
b69e2ef2
KB
1131 /*
1132 * load-load control dependency between phase and the rest of
1133 * the cqe requires a full read memory barrier
1134 */
1135 dma_rmb();
c234a653 1136 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
5cb525c8 1137 nvme_update_cq_head(nvmeq);
920d13a8 1138 }
eb281c82 1139
324b494c 1140 if (found)
920d13a8 1141 nvme_ring_cq_doorbell(nvmeq);
5cb525c8 1142 return found;
b60503ba
MW
1143}
1144
1145static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5 1146{
58ffacb5 1147 struct nvme_queue *nvmeq = data;
4f502245 1148 DEFINE_IO_COMP_BATCH(iob);
5cb525c8 1149
4f502245
JA
1150 if (nvme_poll_cq(nvmeq, &iob)) {
1151 if (!rq_list_empty(iob.req_list))
1152 nvme_pci_complete_batch(&iob);
05fae499 1153 return IRQ_HANDLED;
4f502245 1154 }
05fae499 1155 return IRQ_NONE;
58ffacb5
MW
1156}
1157
1158static irqreturn_t nvme_irq_check(int irq, void *data)
1159{
1160 struct nvme_queue *nvmeq = data;
4e523547 1161
750dde44 1162 if (nvme_cqe_pending(nvmeq))
d783e0bd
MR
1163 return IRQ_WAKE_THREAD;
1164 return IRQ_NONE;
58ffacb5
MW
1165}
1166
0b2a8a9f 1167/*
fa059b85 1168 * Poll for completions for any interrupt driven queue
0b2a8a9f
CH
1169 * Can be called from any context.
1170 */
fa059b85 1171static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
a0fa9647 1172{
3a7afd8e 1173 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
a0fa9647 1174
fa059b85 1175 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
442e19b7 1176
fa059b85 1177 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
c234a653 1178 nvme_poll_cq(nvmeq, NULL);
fa059b85 1179 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
a0fa9647
JA
1180}
1181
5a72e899 1182static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
dabcefab
JA
1183{
1184 struct nvme_queue *nvmeq = hctx->driver_data;
dabcefab
JA
1185 bool found;
1186
1187 if (!nvme_cqe_pending(nvmeq))
1188 return 0;
1189
3a7afd8e 1190 spin_lock(&nvmeq->cq_poll_lock);
c234a653 1191 found = nvme_poll_cq(nvmeq, iob);
3a7afd8e 1192 spin_unlock(&nvmeq->cq_poll_lock);
dabcefab 1193
dabcefab
JA
1194 return found;
1195}
1196
ad22c355 1197static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 1198{
f866fc42 1199 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 1200 struct nvme_queue *nvmeq = &dev->queues[0];
f66e2804 1201 struct nvme_command c = { };
b60503ba 1202
a4aea562 1203 c.common.opcode = nvme_admin_async_event;
ad22c355 1204 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
3233b94c
JA
1205
1206 spin_lock(&nvmeq->sq_lock);
1207 nvme_sq_copy_cmd(nvmeq, &c);
1208 nvme_write_sq_db(nvmeq, true);
1209 spin_unlock(&nvmeq->sq_lock);
f705f837
CH
1210}
1211
b60503ba 1212static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1213{
f66e2804 1214 struct nvme_command c = { };
b60503ba 1215
b60503ba
MW
1216 c.delete_queue.opcode = opcode;
1217 c.delete_queue.qid = cpu_to_le16(id);
1218
1c63dc66 1219 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1220}
1221
b60503ba 1222static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
a8e3e0bb 1223 struct nvme_queue *nvmeq, s16 vector)
b60503ba 1224{
f66e2804 1225 struct nvme_command c = { };
4b04cc6a
JA
1226 int flags = NVME_QUEUE_PHYS_CONTIG;
1227
7c349dde 1228 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
4b04cc6a 1229 flags |= NVME_CQ_IRQ_ENABLED;
b60503ba 1230
d29ec824 1231 /*
16772ae6 1232 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1233 * is attached to the request.
1234 */
b60503ba
MW
1235 c.create_cq.opcode = nvme_admin_create_cq;
1236 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1237 c.create_cq.cqid = cpu_to_le16(qid);
1238 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1239 c.create_cq.cq_flags = cpu_to_le16(flags);
7c349dde 1240 c.create_cq.irq_vector = cpu_to_le16(vector);
b60503ba 1241
1c63dc66 1242 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1243}
1244
1245static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1246 struct nvme_queue *nvmeq)
1247{
9abd68ef 1248 struct nvme_ctrl *ctrl = &dev->ctrl;
f66e2804 1249 struct nvme_command c = { };
81c1cd98 1250 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1251
9abd68ef
JA
1252 /*
1253 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1254 * set. Since URGENT priority is zeroes, it makes all queues
1255 * URGENT.
1256 */
1257 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1258 flags |= NVME_SQ_PRIO_MEDIUM;
1259
d29ec824 1260 /*
16772ae6 1261 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1262 * is attached to the request.
1263 */
b60503ba
MW
1264 c.create_sq.opcode = nvme_admin_create_sq;
1265 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1266 c.create_sq.sqid = cpu_to_le16(qid);
1267 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1268 c.create_sq.sq_flags = cpu_to_le16(flags);
1269 c.create_sq.cqid = cpu_to_le16(qid);
1270
1c63dc66 1271 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1272}
1273
1274static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1275{
1276 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1277}
1278
1279static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1280{
1281 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1282}
1283
2a842aca 1284static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1285{
f4800d6d
CH
1286 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1287 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 1288
27fa9bc5
CH
1289 dev_warn(nvmeq->dev->ctrl.device,
1290 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1291 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1292 blk_mq_free_request(req);
bc5fc7e4
MW
1293}
1294
b2a0eb1a
KB
1295static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1296{
b2a0eb1a
KB
1297 /* If true, indicates loss of adapter communication, possibly by a
1298 * NVMe Subsystem reset.
1299 */
1300 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1301
ad70062c
JW
1302 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1303 switch (dev->ctrl.state) {
1304 case NVME_CTRL_RESETTING:
ad6a0a52 1305 case NVME_CTRL_CONNECTING:
b2a0eb1a 1306 return false;
ad70062c
JW
1307 default:
1308 break;
1309 }
b2a0eb1a
KB
1310
1311 /* We shouldn't reset unless the controller is on fatal error state
1312 * _or_ if we lost the communication with it.
1313 */
1314 if (!(csts & NVME_CSTS_CFS) && !nssro)
1315 return false;
1316
b2a0eb1a
KB
1317 return true;
1318}
1319
1320static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1321{
1322 /* Read a config register to help see what died. */
1323 u16 pci_status;
1324 int result;
1325
1326 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1327 &pci_status);
1328 if (result == PCIBIOS_SUCCESSFUL)
1329 dev_warn(dev->ctrl.device,
1330 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1331 csts, pci_status);
1332 else
1333 dev_warn(dev->ctrl.device,
1334 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1335 csts, result);
4641a8e6
KB
1336
1337 if (csts != ~0)
1338 return;
1339
1340 dev_warn(dev->ctrl.device,
1341 "Does your device have a faulty power saving mode enabled?\n");
1342 dev_warn(dev->ctrl.device,
1343 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
b2a0eb1a
KB
1344}
1345
9bdb4833 1346static enum blk_eh_timer_return nvme_timeout(struct request *req)
c30341dc 1347{
f4800d6d
CH
1348 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1349 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 1350 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1351 struct request *abort_req;
f66e2804 1352 struct nvme_command cmd = { };
b2a0eb1a
KB
1353 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1354
651438bb
WX
1355 /* If PCI error recovery process is happening, we cannot reset or
1356 * the recovery mechanism will surely fail.
1357 */
1358 mb();
1359 if (pci_channel_offline(to_pci_dev(dev->dev)))
1360 return BLK_EH_RESET_TIMER;
1361
b2a0eb1a
KB
1362 /*
1363 * Reset immediately if the controller is failed
1364 */
1365 if (nvme_should_reset(dev, csts)) {
1366 nvme_warn_reset(dev, csts);
1367 nvme_dev_disable(dev, false);
d86c4d8e 1368 nvme_reset_ctrl(&dev->ctrl);
db8c48e4 1369 return BLK_EH_DONE;
b2a0eb1a 1370 }
c30341dc 1371
7776db1c
KB
1372 /*
1373 * Did we miss an interrupt?
1374 */
fa059b85 1375 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
5a72e899 1376 nvme_poll(req->mq_hctx, NULL);
fa059b85
KB
1377 else
1378 nvme_poll_irqdisable(nvmeq);
1379
bf392a5d 1380 if (blk_mq_request_completed(req)) {
7776db1c
KB
1381 dev_warn(dev->ctrl.device,
1382 "I/O %d QID %d timeout, completion polled\n",
1383 req->tag, nvmeq->qid);
db8c48e4 1384 return BLK_EH_DONE;
7776db1c
KB
1385 }
1386
31c7c7d2 1387 /*
fd634f41
CH
1388 * Shutdown immediately if controller times out while starting. The
1389 * reset work will see the pci device disabled when it gets the forced
1390 * cancellation error. All outstanding requests are completed on
db8c48e4 1391 * shutdown, so we return BLK_EH_DONE.
fd634f41 1392 */
4244140d
KB
1393 switch (dev->ctrl.state) {
1394 case NVME_CTRL_CONNECTING:
2036f726 1395 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
df561f66 1396 fallthrough;
2036f726 1397 case NVME_CTRL_DELETING:
b9cac43c 1398 dev_warn_ratelimited(dev->ctrl.device,
fd634f41
CH
1399 "I/O %d QID %d timeout, disable controller\n",
1400 req->tag, nvmeq->qid);
27fa9bc5 1401 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
7ad92f65 1402 nvme_dev_disable(dev, true);
db8c48e4 1403 return BLK_EH_DONE;
39a9dd81
KB
1404 case NVME_CTRL_RESETTING:
1405 return BLK_EH_RESET_TIMER;
4244140d
KB
1406 default:
1407 break;
c30341dc
KB
1408 }
1409
fd634f41 1410 /*
ee0d96d3
BW
1411 * Shutdown the controller immediately and schedule a reset if the
1412 * command was already aborted once before and still hasn't been
1413 * returned to the driver, or if this is the admin queue.
31c7c7d2 1414 */
f4800d6d 1415 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1416 dev_warn(dev->ctrl.device,
e1569a16
KB
1417 "I/O %d QID %d timeout, reset controller\n",
1418 req->tag, nvmeq->qid);
7ad92f65 1419 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
a5cdb68c 1420 nvme_dev_disable(dev, false);
d86c4d8e 1421 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1422
db8c48e4 1423 return BLK_EH_DONE;
c30341dc 1424 }
c30341dc 1425
e7a2a87d 1426 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1427 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1428 return BLK_EH_RESET_TIMER;
6bf25d16 1429 }
7bf7d778 1430 iod->aborted = 1;
a4aea562 1431
c30341dc 1432 cmd.abort.opcode = nvme_admin_abort_cmd;
85f74acf 1433 cmd.abort.cid = nvme_cid(req);
c30341dc 1434 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1435
1b3c47c1 1436 dev_warn(nvmeq->dev->ctrl.device,
86141440
CH
1437 "I/O %d (%s) QID %d timeout, aborting\n",
1438 req->tag,
1439 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1440 nvmeq->qid);
e7a2a87d 1441
e559398f
CH
1442 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1443 BLK_MQ_REQ_NOWAIT);
e7a2a87d
CH
1444 if (IS_ERR(abort_req)) {
1445 atomic_inc(&dev->ctrl.abort_limit);
1446 return BLK_EH_RESET_TIMER;
1447 }
e559398f 1448 nvme_init_request(abort_req, &cmd);
e7a2a87d 1449
e2e53086 1450 abort_req->end_io = abort_endio;
e7a2a87d 1451 abort_req->end_io_data = NULL;
128126a7 1452 abort_req->rq_flags |= RQF_QUIET;
e2e53086 1453 blk_execute_rq_nowait(abort_req, false);
c30341dc 1454
31c7c7d2
CH
1455 /*
1456 * The aborted req will be completed on receiving the abort req.
1457 * We enable the timer again. If hit twice, it'll cause a device reset,
1458 * as the device then is in a faulty state.
1459 */
1460 return BLK_EH_RESET_TIMER;
c30341dc
KB
1461}
1462
a4aea562
MB
1463static void nvme_free_queue(struct nvme_queue *nvmeq)
1464{
8a1d09a6 1465 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
9e866774 1466 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
63223078
CH
1467 if (!nvmeq->sq_cmds)
1468 return;
0f238ff5 1469
63223078 1470 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
88a041f4 1471 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
8a1d09a6 1472 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1473 } else {
8a1d09a6 1474 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
63223078 1475 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
0f238ff5 1476 }
9e866774
MW
1477}
1478
a1a5ef99 1479static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1480{
1481 int i;
1482
d858e5f0 1483 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1484 dev->ctrl.queue_count--;
147b27e4 1485 nvme_free_queue(&dev->queues[i]);
121c7ad4 1486 }
22404274
KB
1487}
1488
4d115420
KB
1489/**
1490 * nvme_suspend_queue - put queue into suspended state
40581d1a 1491 * @nvmeq: queue to suspend
4d115420
KB
1492 */
1493static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1494{
4e224106 1495 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
2b25d981 1496 return 1;
a09115b2 1497
4e224106 1498 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
d1f06f4a 1499 mb();
a09115b2 1500
4e224106 1501 nvmeq->dev->online_queues--;
1c63dc66 1502 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
6ca1d902 1503 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
7c349dde
KB
1504 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1505 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
4d115420
KB
1506 return 0;
1507}
b60503ba 1508
8fae268b
KB
1509static void nvme_suspend_io_queues(struct nvme_dev *dev)
1510{
1511 int i;
1512
1513 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1514 nvme_suspend_queue(&dev->queues[i]);
1515}
1516
a5cdb68c 1517static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1518{
147b27e4 1519 struct nvme_queue *nvmeq = &dev->queues[0];
4d115420 1520
a5cdb68c
KB
1521 if (shutdown)
1522 nvme_shutdown_ctrl(&dev->ctrl);
1523 else
b5b05048 1524 nvme_disable_ctrl(&dev->ctrl);
07836e65 1525
bf392a5d 1526 nvme_poll_irqdisable(nvmeq);
b60503ba
MW
1527}
1528
fa46c6fb
KB
1529/*
1530 * Called only on a device that has been disabled and after all other threads
9210c075
DZ
1531 * that can check this device's completion queues have synced, except
1532 * nvme_poll(). This is the last chance for the driver to see a natural
1533 * completion before nvme_cancel_request() terminates all incomplete requests.
fa46c6fb
KB
1534 */
1535static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1536{
fa46c6fb
KB
1537 int i;
1538
9210c075
DZ
1539 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1540 spin_lock(&dev->queues[i].cq_poll_lock);
c234a653 1541 nvme_poll_cq(&dev->queues[i], NULL);
9210c075
DZ
1542 spin_unlock(&dev->queues[i].cq_poll_lock);
1543 }
fa46c6fb
KB
1544}
1545
8ffaadf7
JD
1546static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1547 int entry_size)
1548{
1549 int q_depth = dev->q_depth;
5fd4ce1b 1550 unsigned q_size_aligned = roundup(q_depth * entry_size,
6c3c05b0 1551 NVME_CTRL_PAGE_SIZE);
8ffaadf7
JD
1552
1553 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1554 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
4e523547 1555
6c3c05b0 1556 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
c45f5c99 1557 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1558
1559 /*
1560 * Ensure the reduced q_depth is above some threshold where it
1561 * would be better to map queues in system memory with the
1562 * original depth
1563 */
1564 if (q_depth < 64)
1565 return -ENOMEM;
1566 }
1567
1568 return q_depth;
1569}
1570
1571static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
8a1d09a6 1572 int qid)
8ffaadf7 1573{
0f238ff5
LG
1574 struct pci_dev *pdev = to_pci_dev(dev->dev);
1575
1576 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
8a1d09a6 1577 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
bfac8e9f
AM
1578 if (nvmeq->sq_cmds) {
1579 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1580 nvmeq->sq_cmds);
1581 if (nvmeq->sq_dma_addr) {
1582 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1583 return 0;
1584 }
1585
8a1d09a6 1586 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1587 }
0f238ff5 1588 }
8ffaadf7 1589
8a1d09a6 1590 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
63223078 1591 &nvmeq->sq_dma_addr, GFP_KERNEL);
815c6704
KB
1592 if (!nvmeq->sq_cmds)
1593 return -ENOMEM;
8ffaadf7
JD
1594 return 0;
1595}
1596
a6ff7262 1597static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1598{
147b27e4 1599 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1600
62314e40
KB
1601 if (dev->ctrl.queue_count > qid)
1602 return 0;
b60503ba 1603
c1e0cc7e 1604 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
8a1d09a6
BH
1605 nvmeq->q_depth = depth;
1606 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
750afb08 1607 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1608 if (!nvmeq->cqes)
1609 goto free_nvmeq;
b60503ba 1610
8a1d09a6 1611 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
b60503ba
MW
1612 goto free_cqdma;
1613
091b6092 1614 nvmeq->dev = dev;
1ab0cd69 1615 spin_lock_init(&nvmeq->sq_lock);
3a7afd8e 1616 spin_lock_init(&nvmeq->cq_poll_lock);
b60503ba 1617 nvmeq->cq_head = 0;
82123460 1618 nvmeq->cq_phase = 1;
b80d5ccc 1619 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
c30341dc 1620 nvmeq->qid = qid;
d858e5f0 1621 dev->ctrl.queue_count++;
36a7e993 1622
147b27e4 1623 return 0;
b60503ba
MW
1624
1625 free_cqdma:
8a1d09a6
BH
1626 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1627 nvmeq->cq_dma_addr);
b60503ba 1628 free_nvmeq:
147b27e4 1629 return -ENOMEM;
b60503ba
MW
1630}
1631
dca51e78 1632static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1633{
0ff199cb
CH
1634 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1635 int nr = nvmeq->dev->ctrl.instance;
1636
1637 if (use_threaded_interrupts) {
1638 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1639 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1640 } else {
1641 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1642 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1643 }
3001082c
MW
1644}
1645
22404274 1646static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1647{
22404274 1648 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1649
22404274 1650 nvmeq->sq_tail = 0;
38210800 1651 nvmeq->last_sq_tail = 0;
22404274
KB
1652 nvmeq->cq_head = 0;
1653 nvmeq->cq_phase = 1;
b80d5ccc 1654 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
8a1d09a6 1655 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
f9f38e33 1656 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1657 dev->online_queues++;
3a7afd8e 1658 wmb(); /* ensure the first interrupt sees the initialization */
22404274
KB
1659}
1660
e4b9852a
CC
1661/*
1662 * Try getting shutdown_lock while setting up IO queues.
1663 */
1664static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1665{
1666 /*
1667 * Give up if the lock is being held by nvme_dev_disable.
1668 */
1669 if (!mutex_trylock(&dev->shutdown_lock))
1670 return -ENODEV;
1671
1672 /*
1673 * Controller is in wrong state, fail early.
1674 */
1675 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1676 mutex_unlock(&dev->shutdown_lock);
1677 return -ENODEV;
1678 }
1679
1680 return 0;
1681}
1682
4b04cc6a 1683static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
22404274
KB
1684{
1685 struct nvme_dev *dev = nvmeq->dev;
1686 int result;
7c349dde 1687 u16 vector = 0;
3f85d50b 1688
d1ed6aa1
CH
1689 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1690
22b55601
KB
1691 /*
1692 * A queue's vector matches the queue identifier unless the controller
1693 * has only one vector available.
1694 */
4b04cc6a
JA
1695 if (!polled)
1696 vector = dev->num_vecs == 1 ? 0 : qid;
1697 else
7c349dde 1698 set_bit(NVMEQ_POLLED, &nvmeq->flags);
4b04cc6a 1699
a8e3e0bb 1700 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
ded45505
KB
1701 if (result)
1702 return result;
b60503ba
MW
1703
1704 result = adapter_alloc_sq(dev, qid, nvmeq);
1705 if (result < 0)
ded45505 1706 return result;
c80b36cd 1707 if (result)
b60503ba
MW
1708 goto release_cq;
1709
a8e3e0bb 1710 nvmeq->cq_vector = vector;
4b04cc6a 1711
e4b9852a
CC
1712 result = nvme_setup_io_queues_trylock(dev);
1713 if (result)
1714 return result;
1715 nvme_init_queue(nvmeq, qid);
7c349dde 1716 if (!polled) {
4b04cc6a
JA
1717 result = queue_request_irq(nvmeq);
1718 if (result < 0)
1719 goto release_sq;
1720 }
b60503ba 1721
4e224106 1722 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
e4b9852a 1723 mutex_unlock(&dev->shutdown_lock);
22404274 1724 return result;
b60503ba 1725
a8e3e0bb 1726release_sq:
f25a2dfc 1727 dev->online_queues--;
e4b9852a 1728 mutex_unlock(&dev->shutdown_lock);
b60503ba 1729 adapter_delete_sq(dev, qid);
a8e3e0bb 1730release_cq:
b60503ba 1731 adapter_delete_cq(dev, qid);
22404274 1732 return result;
b60503ba
MW
1733}
1734
f363b089 1735static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1736 .queue_rq = nvme_queue_rq,
77f02a7a 1737 .complete = nvme_pci_complete_rq,
a4aea562 1738 .init_hctx = nvme_admin_init_hctx,
e559398f 1739 .init_request = nvme_pci_init_request,
a4aea562
MB
1740 .timeout = nvme_timeout,
1741};
1742
f363b089 1743static const struct blk_mq_ops nvme_mq_ops = {
376f7ef8 1744 .queue_rq = nvme_queue_rq,
d62cbcf6 1745 .queue_rqs = nvme_queue_rqs,
376f7ef8
CH
1746 .complete = nvme_pci_complete_rq,
1747 .commit_rqs = nvme_commit_rqs,
1748 .init_hctx = nvme_init_hctx,
e559398f 1749 .init_request = nvme_pci_init_request,
376f7ef8
CH
1750 .map_queues = nvme_pci_map_queues,
1751 .timeout = nvme_timeout,
1752 .poll = nvme_poll,
dabcefab
JA
1753};
1754
ea191d2f
KB
1755static void nvme_dev_remove_admin(struct nvme_dev *dev)
1756{
1c63dc66 1757 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1758 /*
1759 * If the controller was reset during removal, it's possible
1760 * user requests may be waiting on a stopped queue. Start the
1761 * queue to flush these to completion.
1762 */
6ca1d902 1763 nvme_start_admin_queue(&dev->ctrl);
6f8191fd 1764 blk_mq_destroy_queue(dev->ctrl.admin_q);
ea191d2f
KB
1765 blk_mq_free_tag_set(&dev->admin_tagset);
1766 }
1767}
1768
f91b727c 1769static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
a4aea562 1770{
f91b727c 1771 struct blk_mq_tag_set *set = &dev->admin_tagset;
e3e9d50c 1772
f91b727c
CH
1773 set->ops = &nvme_mq_admin_ops;
1774 set->nr_hw_queues = 1;
a4aea562 1775
f91b727c
CH
1776 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1777 set->timeout = NVME_ADMIN_TIMEOUT;
1778 set->numa_node = dev->ctrl.numa_node;
1779 set->cmd_size = sizeof(struct nvme_iod);
1780 set->flags = BLK_MQ_F_NO_SCHED;
1781 set->driver_data = dev;
a4aea562 1782
f91b727c
CH
1783 if (blk_mq_alloc_tag_set(set))
1784 return -ENOMEM;
1785 dev->ctrl.admin_tagset = set;
a4aea562 1786
f91b727c
CH
1787 dev->ctrl.admin_q = blk_mq_init_queue(set);
1788 if (IS_ERR(dev->ctrl.admin_q)) {
1789 blk_mq_free_tag_set(set);
1790 dev->ctrl.admin_q = NULL;
1791 return -ENOMEM;
1792 }
1793 if (!blk_get_queue(dev->ctrl.admin_q)) {
1794 nvme_dev_remove_admin(dev);
1795 dev->ctrl.admin_q = NULL;
1796 return -ENODEV;
1797 }
a4aea562
MB
1798 return 0;
1799}
1800
97f6ef64
XY
1801static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1802{
1803 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1804}
1805
1806static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1807{
1808 struct pci_dev *pdev = to_pci_dev(dev->dev);
1809
1810 if (size <= dev->bar_mapped_size)
1811 return 0;
1812 if (size > pci_resource_len(pdev, 0))
1813 return -ENOMEM;
1814 if (dev->bar)
1815 iounmap(dev->bar);
1816 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1817 if (!dev->bar) {
1818 dev->bar_mapped_size = 0;
1819 return -ENOMEM;
1820 }
1821 dev->bar_mapped_size = size;
1822 dev->dbs = dev->bar + NVME_REG_DBS;
1823
1824 return 0;
1825}
1826
01ad0990 1827static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1828{
ba47e386 1829 int result;
b60503ba
MW
1830 u32 aqa;
1831 struct nvme_queue *nvmeq;
1832
97f6ef64
XY
1833 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1834 if (result < 0)
1835 return result;
1836
8ef2074d 1837 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1838 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1839
7a67cbea
CH
1840 if (dev->subsystem &&
1841 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1842 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1843
b5b05048 1844 result = nvme_disable_ctrl(&dev->ctrl);
ba47e386
MW
1845 if (result < 0)
1846 return result;
b60503ba 1847
a6ff7262 1848 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1849 if (result)
1850 return result;
b60503ba 1851
635333e4
MG
1852 dev->ctrl.numa_node = dev_to_node(dev->dev);
1853
147b27e4 1854 nvmeq = &dev->queues[0];
b60503ba
MW
1855 aqa = nvmeq->q_depth - 1;
1856 aqa |= aqa << 16;
1857
7a67cbea
CH
1858 writel(aqa, dev->bar + NVME_REG_AQA);
1859 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1860 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1861
c0f2f45b 1862 result = nvme_enable_ctrl(&dev->ctrl);
025c557a 1863 if (result)
d4875622 1864 return result;
a4aea562 1865
2b25d981 1866 nvmeq->cq_vector = 0;
161b8be2 1867 nvme_init_queue(nvmeq, 0);
dca51e78 1868 result = queue_request_irq(nvmeq);
758dd7fd 1869 if (result) {
7c349dde 1870 dev->online_queues--;
d4875622 1871 return result;
758dd7fd 1872 }
025c557a 1873
4e224106 1874 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
b60503ba
MW
1875 return result;
1876}
1877
749941f2 1878static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1879{
4b04cc6a 1880 unsigned i, max, rw_queues;
749941f2 1881 int ret = 0;
42f61420 1882
d858e5f0 1883 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1884 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1885 ret = -ENOMEM;
42f61420 1886 break;
749941f2
CH
1887 }
1888 }
42f61420 1889
d858e5f0 1890 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
e20ba6e1
CH
1891 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1892 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1893 dev->io_queues[HCTX_TYPE_READ];
4b04cc6a
JA
1894 } else {
1895 rw_queues = max;
1896 }
1897
949928c1 1898 for (i = dev->online_queues; i <= max; i++) {
4b04cc6a
JA
1899 bool polled = i > rw_queues;
1900
1901 ret = nvme_create_queue(&dev->queues[i], i, polled);
d4875622 1902 if (ret)
42f61420 1903 break;
27e8166c 1904 }
749941f2
CH
1905
1906 /*
1907 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1908 * than the desired amount of queues, and even a controller without
1909 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1910 * be useful to upgrade a buggy firmware for example.
1911 */
1912 return ret >= 0 ? 0 : ret;
b60503ba
MW
1913}
1914
88de4598 1915static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1916{
88de4598
CH
1917 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1918
1919 return 1ULL << (12 + 4 * szu);
1920}
1921
1922static u32 nvme_cmb_size(struct nvme_dev *dev)
1923{
1924 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1925}
1926
f65efd6d 1927static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1928{
88de4598 1929 u64 size, offset;
8ffaadf7
JD
1930 resource_size_t bar_size;
1931 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1932 int bar;
8ffaadf7 1933
9fe5c59f
KB
1934 if (dev->cmb_size)
1935 return;
1936
20d3bb92
KJ
1937 if (NVME_CAP_CMBS(dev->ctrl.cap))
1938 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1939
7a67cbea 1940 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1941 if (!dev->cmbsz)
1942 return;
202021c1 1943 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1944
88de4598
CH
1945 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1946 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1947 bar = NVME_CMB_BIR(dev->cmbloc);
1948 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1949
1950 if (offset > bar_size)
f65efd6d 1951 return;
8ffaadf7 1952
20d3bb92
KJ
1953 /*
1954 * Tell the controller about the host side address mapping the CMB,
1955 * and enable CMB decoding for the NVMe 1.4+ scheme:
1956 */
1957 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1958 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1959 (pci_bus_address(pdev, bar) + offset),
1960 dev->bar + NVME_REG_CMBMSC);
1961 }
1962
8ffaadf7
JD
1963 /*
1964 * Controllers may support a CMB size larger than their BAR,
1965 * for example, due to being behind a bridge. Reduce the CMB to
1966 * the reported size of the BAR
1967 */
1968 if (size > bar_size - offset)
1969 size = bar_size - offset;
1970
0f238ff5
LG
1971 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1972 dev_warn(dev->ctrl.device,
1973 "failed to register the CMB\n");
f65efd6d 1974 return;
0f238ff5
LG
1975 }
1976
8ffaadf7 1977 dev->cmb_size = size;
0f238ff5
LG
1978 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1979
1980 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1981 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1982 pci_p2pmem_publish(pdev, true);
8ffaadf7
JD
1983}
1984
87ad72a5
CH
1985static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1986{
6c3c05b0 1987 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
4033f35d 1988 u64 dma_addr = dev->host_mem_descs_dma;
f66e2804 1989 struct nvme_command c = { };
87ad72a5
CH
1990 int ret;
1991
87ad72a5
CH
1992 c.features.opcode = nvme_admin_set_features;
1993 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1994 c.features.dword11 = cpu_to_le32(bits);
6c3c05b0 1995 c.features.dword12 = cpu_to_le32(host_mem_size);
87ad72a5
CH
1996 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1997 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1998 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1999
2000 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2001 if (ret) {
2002 dev_warn(dev->ctrl.device,
2003 "failed to set host mem (err %d, flags %#x).\n",
2004 ret, bits);
a5df5e79
KB
2005 } else
2006 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2007
87ad72a5
CH
2008 return ret;
2009}
2010
2011static void nvme_free_host_mem(struct nvme_dev *dev)
2012{
2013 int i;
2014
2015 for (i = 0; i < dev->nr_host_mem_descs; i++) {
2016 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
6c3c05b0 2017 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 2018
cc667f6d
LD
2019 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2020 le64_to_cpu(desc->addr),
2021 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
2022 }
2023
2024 kfree(dev->host_mem_desc_bufs);
2025 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
2026 dma_free_coherent(dev->dev,
2027 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2028 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 2029 dev->host_mem_descs = NULL;
7e5dd57e 2030 dev->nr_host_mem_descs = 0;
87ad72a5
CH
2031}
2032
92dc6895
CH
2033static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2034 u32 chunk_size)
9d713c2b 2035{
87ad72a5 2036 struct nvme_host_mem_buf_desc *descs;
92dc6895 2037 u32 max_entries, len;
4033f35d 2038 dma_addr_t descs_dma;
2ee0e4ed 2039 int i = 0;
87ad72a5 2040 void **bufs;
6fbcde66 2041 u64 size, tmp;
87ad72a5 2042
87ad72a5
CH
2043 tmp = (preferred + chunk_size - 1);
2044 do_div(tmp, chunk_size);
2045 max_entries = tmp;
044a9df1
CH
2046
2047 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2048 max_entries = dev->ctrl.hmmaxd;
2049
750afb08
LC
2050 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2051 &descs_dma, GFP_KERNEL);
87ad72a5
CH
2052 if (!descs)
2053 goto out;
2054
2055 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2056 if (!bufs)
2057 goto out_free_descs;
2058
244a8fe4 2059 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
2060 dma_addr_t dma_addr;
2061
50cdb7c6 2062 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
2063 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2064 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2065 if (!bufs[i])
2066 break;
2067
2068 descs[i].addr = cpu_to_le64(dma_addr);
6c3c05b0 2069 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
87ad72a5
CH
2070 i++;
2071 }
2072
92dc6895 2073 if (!size)
87ad72a5 2074 goto out_free_bufs;
87ad72a5 2075
87ad72a5
CH
2076 dev->nr_host_mem_descs = i;
2077 dev->host_mem_size = size;
2078 dev->host_mem_descs = descs;
4033f35d 2079 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
2080 dev->host_mem_desc_bufs = bufs;
2081 return 0;
2082
2083out_free_bufs:
2084 while (--i >= 0) {
6c3c05b0 2085 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 2086
cc667f6d
LD
2087 dma_free_attrs(dev->dev, size, bufs[i],
2088 le64_to_cpu(descs[i].addr),
2089 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
2090 }
2091
2092 kfree(bufs);
2093out_free_descs:
4033f35d
CH
2094 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2095 descs_dma);
87ad72a5 2096out:
87ad72a5
CH
2097 dev->host_mem_descs = NULL;
2098 return -ENOMEM;
2099}
2100
92dc6895
CH
2101static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2102{
9dc54a0d
CK
2103 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2104 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2105 u64 chunk_size;
92dc6895
CH
2106
2107 /* start big and work our way down */
9dc54a0d 2108 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
92dc6895
CH
2109 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2110 if (!min || dev->host_mem_size >= min)
2111 return 0;
2112 nvme_free_host_mem(dev);
2113 }
2114 }
2115
2116 return -ENOMEM;
2117}
2118
9620cfba 2119static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
2120{
2121 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2122 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2123 u64 min = (u64)dev->ctrl.hmmin * 4096;
2124 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 2125 int ret;
87ad72a5
CH
2126
2127 preferred = min(preferred, max);
2128 if (min > max) {
2129 dev_warn(dev->ctrl.device,
2130 "min host memory (%lld MiB) above limit (%d MiB).\n",
2131 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2132 nvme_free_host_mem(dev);
9620cfba 2133 return 0;
87ad72a5
CH
2134 }
2135
2136 /*
2137 * If we already have a buffer allocated check if we can reuse it.
2138 */
2139 if (dev->host_mem_descs) {
2140 if (dev->host_mem_size >= min)
2141 enable_bits |= NVME_HOST_MEM_RETURN;
2142 else
2143 nvme_free_host_mem(dev);
2144 }
2145
2146 if (!dev->host_mem_descs) {
92dc6895
CH
2147 if (nvme_alloc_host_mem(dev, min, preferred)) {
2148 dev_warn(dev->ctrl.device,
2149 "failed to allocate host memory buffer.\n");
9620cfba 2150 return 0; /* controller must work without HMB */
92dc6895
CH
2151 }
2152
2153 dev_info(dev->ctrl.device,
2154 "allocated %lld MiB host memory buffer.\n",
2155 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
2156 }
2157
9620cfba
CH
2158 ret = nvme_set_host_mem(dev, enable_bits);
2159 if (ret)
87ad72a5 2160 nvme_free_host_mem(dev);
9620cfba 2161 return ret;
9d713c2b
KB
2162}
2163
0521905e
KB
2164static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2165 char *buf)
2166{
2167 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2168
2169 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2170 ndev->cmbloc, ndev->cmbsz);
2171}
2172static DEVICE_ATTR_RO(cmb);
2173
1751e97a
KB
2174static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2175 char *buf)
2176{
2177 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2178
2179 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2180}
2181static DEVICE_ATTR_RO(cmbloc);
2182
2183static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2184 char *buf)
2185{
2186 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2187
2188 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2189}
2190static DEVICE_ATTR_RO(cmbsz);
2191
a5df5e79
KB
2192static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2193 char *buf)
2194{
2195 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2196
2197 return sysfs_emit(buf, "%d\n", ndev->hmb);
2198}
2199
2200static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2201 const char *buf, size_t count)
2202{
2203 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2204 bool new;
2205 int ret;
2206
2207 if (strtobool(buf, &new) < 0)
2208 return -EINVAL;
2209
2210 if (new == ndev->hmb)
2211 return count;
2212
2213 if (new) {
2214 ret = nvme_setup_host_mem(ndev);
2215 } else {
2216 ret = nvme_set_host_mem(ndev, 0);
2217 if (!ret)
2218 nvme_free_host_mem(ndev);
2219 }
2220
2221 if (ret < 0)
2222 return ret;
2223
2224 return count;
2225}
2226static DEVICE_ATTR_RW(hmb);
2227
0521905e
KB
2228static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2229 struct attribute *a, int n)
2230{
2231 struct nvme_ctrl *ctrl =
2232 dev_get_drvdata(container_of(kobj, struct device, kobj));
2233 struct nvme_dev *dev = to_nvme_dev(ctrl);
2234
1751e97a
KB
2235 if (a == &dev_attr_cmb.attr ||
2236 a == &dev_attr_cmbloc.attr ||
2237 a == &dev_attr_cmbsz.attr) {
2238 if (!dev->cmbsz)
2239 return 0;
2240 }
a5df5e79
KB
2241 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2242 return 0;
2243
0521905e
KB
2244 return a->mode;
2245}
2246
2247static struct attribute *nvme_pci_attrs[] = {
2248 &dev_attr_cmb.attr,
1751e97a
KB
2249 &dev_attr_cmbloc.attr,
2250 &dev_attr_cmbsz.attr,
a5df5e79 2251 &dev_attr_hmb.attr,
0521905e
KB
2252 NULL,
2253};
2254
2255static const struct attribute_group nvme_pci_attr_group = {
2256 .attrs = nvme_pci_attrs,
2257 .is_visible = nvme_pci_attrs_are_visible,
2258};
2259
612b7286
ML
2260/*
2261 * nirqs is the number of interrupts available for write and read
2262 * queues. The core already reserved an interrupt for the admin queue.
2263 */
2264static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
3b6592f7 2265{
612b7286 2266 struct nvme_dev *dev = affd->priv;
2a5bcfdd 2267 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
3b6592f7
JA
2268
2269 /*
ee0d96d3 2270 * If there is no interrupt available for queues, ensure that
612b7286
ML
2271 * the default queue is set to 1. The affinity set size is
2272 * also set to one, but the irq core ignores it for this case.
2273 *
2274 * If only one interrupt is available or 'write_queue' == 0, combine
2275 * write and read queues.
2276 *
2277 * If 'write_queues' > 0, ensure it leaves room for at least one read
2278 * queue.
3b6592f7 2279 */
612b7286
ML
2280 if (!nrirqs) {
2281 nrirqs = 1;
2282 nr_read_queues = 0;
2a5bcfdd 2283 } else if (nrirqs == 1 || !nr_write_queues) {
612b7286 2284 nr_read_queues = 0;
2a5bcfdd 2285 } else if (nr_write_queues >= nrirqs) {
612b7286 2286 nr_read_queues = 1;
3b6592f7 2287 } else {
2a5bcfdd 2288 nr_read_queues = nrirqs - nr_write_queues;
3b6592f7 2289 }
612b7286
ML
2290
2291 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2292 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2293 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2294 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2295 affd->nr_sets = nr_read_queues ? 2 : 1;
3b6592f7
JA
2296}
2297
6451fe73 2298static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
3b6592f7
JA
2299{
2300 struct pci_dev *pdev = to_pci_dev(dev->dev);
3b6592f7 2301 struct irq_affinity affd = {
9cfef55b 2302 .pre_vectors = 1,
612b7286
ML
2303 .calc_sets = nvme_calc_irq_sets,
2304 .priv = dev,
3b6592f7 2305 };
21cc2f3f 2306 unsigned int irq_queues, poll_queues;
6451fe73
JA
2307
2308 /*
21cc2f3f
JX
2309 * Poll queues don't need interrupts, but we need at least one I/O queue
2310 * left over for non-polled I/O.
6451fe73 2311 */
21cc2f3f
JX
2312 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2313 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
3b6592f7 2314
21cc2f3f
JX
2315 /*
2316 * Initialize for the single interrupt case, will be updated in
2317 * nvme_calc_irq_sets().
2318 */
612b7286
ML
2319 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2320 dev->io_queues[HCTX_TYPE_READ] = 0;
3b6592f7 2321
66341331 2322 /*
21cc2f3f
JX
2323 * We need interrupts for the admin queue and each non-polled I/O queue,
2324 * but some Apple controllers require all queues to use the first
2325 * vector.
66341331 2326 */
21cc2f3f
JX
2327 irq_queues = 1;
2328 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2329 irq_queues += (nr_io_queues - poll_queues);
612b7286
ML
2330 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2331 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
3b6592f7
JA
2332}
2333
8fae268b
KB
2334static void nvme_disable_io_queues(struct nvme_dev *dev)
2335{
2336 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2337 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2338}
2339
2a5bcfdd
WZ
2340static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2341{
e3aef095
NS
2342 /*
2343 * If tags are shared with admin queue (Apple bug), then
2344 * make sure we only use one IO queue.
2345 */
2346 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2347 return 1;
2a5bcfdd
WZ
2348 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2349}
2350
8d85fce7 2351static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2352{
147b27e4 2353 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 2354 struct pci_dev *pdev = to_pci_dev(dev->dev);
2a5bcfdd 2355 unsigned int nr_io_queues;
97f6ef64 2356 unsigned long size;
2a5bcfdd 2357 int result;
b60503ba 2358
2a5bcfdd
WZ
2359 /*
2360 * Sample the module parameters once at reset time so that we have
2361 * stable values to work with.
2362 */
2363 dev->nr_write_queues = write_queues;
2364 dev->nr_poll_queues = poll_queues;
d38e9f04 2365
e3aef095 2366 nr_io_queues = dev->nr_allocated_queues - 1;
9a0be7ab
CH
2367 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2368 if (result < 0)
1b23484b 2369 return result;
9a0be7ab 2370
f5fa90dc 2371 if (nr_io_queues == 0)
a5229050 2372 return 0;
53dc180e 2373
e4b9852a
CC
2374 /*
2375 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2376 * from set to unset. If there is a window to it is truely freed,
2377 * pci_free_irq_vectors() jumping into this window will crash.
2378 * And take lock to avoid racing with pci_free_irq_vectors() in
2379 * nvme_dev_disable() path.
2380 */
2381 result = nvme_setup_io_queues_trylock(dev);
2382 if (result)
2383 return result;
2384 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2385 pci_free_irq(pdev, 0, adminq);
b60503ba 2386
0f238ff5 2387 if (dev->cmb_use_sqes) {
8ffaadf7
JD
2388 result = nvme_cmb_qdepth(dev, nr_io_queues,
2389 sizeof(struct nvme_command));
2390 if (result > 0)
2391 dev->q_depth = result;
2392 else
0f238ff5 2393 dev->cmb_use_sqes = false;
8ffaadf7
JD
2394 }
2395
97f6ef64
XY
2396 do {
2397 size = db_bar_size(dev, nr_io_queues);
2398 result = nvme_remap_bar(dev, size);
2399 if (!result)
2400 break;
e4b9852a
CC
2401 if (!--nr_io_queues) {
2402 result = -ENOMEM;
2403 goto out_unlock;
2404 }
97f6ef64
XY
2405 } while (1);
2406 adminq->q_db = dev->dbs;
f1938f6e 2407
8fae268b 2408 retry:
9d713c2b 2409 /* Deregister the admin queue's interrupt */
e4b9852a
CC
2410 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2411 pci_free_irq(pdev, 0, adminq);
9d713c2b 2412
e32efbfc
JA
2413 /*
2414 * If we enable msix early due to not intx, disable it again before
2415 * setting up the full range we need.
2416 */
dca51e78 2417 pci_free_irq_vectors(pdev);
3b6592f7
JA
2418
2419 result = nvme_setup_irqs(dev, nr_io_queues);
e4b9852a
CC
2420 if (result <= 0) {
2421 result = -EIO;
2422 goto out_unlock;
2423 }
3b6592f7 2424
22b55601 2425 dev->num_vecs = result;
4b04cc6a 2426 result = max(result - 1, 1);
e20ba6e1 2427 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
fa08a396 2428
063a8096
MW
2429 /*
2430 * Should investigate if there's a performance win from allocating
2431 * more queues than interrupt vectors; it might allow the submission
2432 * path to scale better, even if the receive path is limited by the
2433 * number of interrupts.
2434 */
dca51e78 2435 result = queue_request_irq(adminq);
7c349dde 2436 if (result)
e4b9852a 2437 goto out_unlock;
4e224106 2438 set_bit(NVMEQ_ENABLED, &adminq->flags);
e4b9852a 2439 mutex_unlock(&dev->shutdown_lock);
8fae268b
KB
2440
2441 result = nvme_create_io_queues(dev);
2442 if (result || dev->online_queues < 2)
2443 return result;
2444
2445 if (dev->online_queues - 1 < dev->max_qid) {
2446 nr_io_queues = dev->online_queues - 1;
2447 nvme_disable_io_queues(dev);
e4b9852a
CC
2448 result = nvme_setup_io_queues_trylock(dev);
2449 if (result)
2450 return result;
8fae268b
KB
2451 nvme_suspend_io_queues(dev);
2452 goto retry;
2453 }
2454 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2455 dev->io_queues[HCTX_TYPE_DEFAULT],
2456 dev->io_queues[HCTX_TYPE_READ],
2457 dev->io_queues[HCTX_TYPE_POLL]);
2458 return 0;
e4b9852a
CC
2459out_unlock:
2460 mutex_unlock(&dev->shutdown_lock);
2461 return result;
b60503ba
MW
2462}
2463
2a842aca 2464static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 2465{
db3cbfff 2466 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 2467
db3cbfff 2468 blk_mq_free_request(req);
d1ed6aa1 2469 complete(&nvmeq->delete_done);
a5768aa8
KB
2470}
2471
2a842aca 2472static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 2473{
db3cbfff 2474 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 2475
d1ed6aa1
CH
2476 if (error)
2477 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
db3cbfff
KB
2478
2479 nvme_del_queue_end(req, error);
a5768aa8
KB
2480}
2481
db3cbfff 2482static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 2483{
db3cbfff
KB
2484 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2485 struct request *req;
f66e2804 2486 struct nvme_command cmd = { };
bda4e0fb 2487
db3cbfff
KB
2488 cmd.delete_queue.opcode = opcode;
2489 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 2490
e559398f 2491 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
db3cbfff
KB
2492 if (IS_ERR(req))
2493 return PTR_ERR(req);
e559398f 2494 nvme_init_request(req, &cmd);
bda4e0fb 2495
e2e53086
CH
2496 if (opcode == nvme_admin_delete_cq)
2497 req->end_io = nvme_del_cq_end;
2498 else
2499 req->end_io = nvme_del_queue_end;
db3cbfff
KB
2500 req->end_io_data = nvmeq;
2501
d1ed6aa1 2502 init_completion(&nvmeq->delete_done);
128126a7 2503 req->rq_flags |= RQF_QUIET;
e2e53086 2504 blk_execute_rq_nowait(req, false);
db3cbfff 2505 return 0;
bda4e0fb
KB
2506}
2507
8fae268b 2508static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
a5768aa8 2509{
5271edd4 2510 int nr_queues = dev->online_queues - 1, sent = 0;
db3cbfff 2511 unsigned long timeout;
a5768aa8 2512
db3cbfff 2513 retry:
dc96f938 2514 timeout = NVME_ADMIN_TIMEOUT;
5271edd4
CH
2515 while (nr_queues > 0) {
2516 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2517 break;
2518 nr_queues--;
2519 sent++;
db3cbfff 2520 }
d1ed6aa1
CH
2521 while (sent) {
2522 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2523
2524 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
5271edd4
CH
2525 timeout);
2526 if (timeout == 0)
2527 return false;
d1ed6aa1 2528
d1ed6aa1 2529 sent--;
5271edd4
CH
2530 if (nr_queues)
2531 goto retry;
2532 }
2533 return true;
a5768aa8
KB
2534}
2535
2455a4b7 2536static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
b60503ba 2537{
2455a4b7 2538 struct blk_mq_tag_set * set = &dev->tagset;
2b1b7e78
JW
2539 int ret;
2540
2455a4b7
CH
2541 set->ops = &nvme_mq_ops;
2542 set->nr_hw_queues = dev->online_queues - 1;
2543 set->nr_maps = 2; /* default + read */
2544 if (dev->io_queues[HCTX_TYPE_POLL])
2545 set->nr_maps++;
2546 set->timeout = NVME_IO_TIMEOUT;
2547 set->numa_node = dev->ctrl.numa_node;
2548 set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2549 set->cmd_size = sizeof(struct nvme_iod);
2550 set->flags = BLK_MQ_F_SHOULD_MERGE;
2551 set->driver_data = dev;
d38e9f04 2552
2455a4b7
CH
2553 /*
2554 * Some Apple controllers requires tags to be unique
2555 * across admin and IO queue, so reserve the first 32
2556 * tags of the IO queue.
2557 */
2558 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2559 set->reserved_tags = NVME_AQ_DEPTH;
949928c1 2560
2455a4b7
CH
2561 ret = blk_mq_alloc_tag_set(set);
2562 if (ret) {
2563 dev_warn(dev->ctrl.device,
2564 "IO queues tagset allocation failed %d\n", ret);
2565 return;
ffe7704d 2566 }
2455a4b7
CH
2567 dev->ctrl.tagset = set;
2568}
949928c1 2569
2455a4b7
CH
2570static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2571{
2572 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2573 /* free previously allocated queues that are no longer usable */
2574 nvme_free_queues(dev, dev->online_queues);
b60503ba
MW
2575}
2576
b00a726a 2577static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2578{
b00a726a 2579 int result = -ENOMEM;
e75ec752 2580 struct pci_dev *pdev = to_pci_dev(dev->dev);
4bdf2603 2581 int dma_address_bits = 64;
0877cb0d
KB
2582
2583 if (pci_enable_device_mem(pdev))
2584 return result;
2585
0877cb0d 2586 pci_set_master(pdev);
0877cb0d 2587
4bdf2603
FS
2588 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2589 dma_address_bits = 48;
2590 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
052d0efa 2591 goto disable;
0877cb0d 2592
7a67cbea 2593 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2594 result = -ENODEV;
b00a726a 2595 goto disable;
0e53d180 2596 }
e32efbfc
JA
2597
2598 /*
a5229050
KB
2599 * Some devices and/or platforms don't advertise or work with INTx
2600 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2601 * adjust this later.
e32efbfc 2602 */
dca51e78
CH
2603 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2604 if (result < 0)
2605 return result;
e32efbfc 2606
20d0dfe6 2607 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2608
7442ddce 2609 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2610 io_queue_depth);
aa22c8e6 2611 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
20d0dfe6 2612 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2613 dev->dbs = dev->bar + 4096;
1f390c1f 2614
66341331
BH
2615 /*
2616 * Some Apple controllers require a non-standard SQE size.
2617 * Interestingly they also seem to ignore the CC:IOSQES register
2618 * so we don't bother updating it here.
2619 */
2620 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2621 dev->io_sqes = 7;
2622 else
2623 dev->io_sqes = NVME_NVM_IOSQES;
1f390c1f
SG
2624
2625 /*
2626 * Temporary fix for the Apple controller found in the MacBook8,1 and
2627 * some MacBook7,1 to avoid controller resets and data loss.
2628 */
2629 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2630 dev->q_depth = 2;
9bdcfb10
CH
2631 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2632 "set queue depth=%u to work around controller resets\n",
1f390c1f 2633 dev->q_depth);
d554b5e1
MP
2634 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2635 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2636 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2637 dev->q_depth = 64;
2638 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2639 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2640 }
2641
d38e9f04
BH
2642 /*
2643 * Controllers with the shared tags quirk need the IO queue to be
2644 * big enough so that we get 32 tags for the admin queue
2645 */
2646 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2647 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2648 dev->q_depth = NVME_AQ_DEPTH + 2;
2649 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2650 dev->q_depth);
2651 }
2652
2653
f65efd6d 2654 nvme_map_cmb(dev);
202021c1 2655
a0a3408e
KB
2656 pci_enable_pcie_error_reporting(pdev);
2657 pci_save_state(pdev);
0877cb0d
KB
2658 return 0;
2659
2660 disable:
0877cb0d
KB
2661 pci_disable_device(pdev);
2662 return result;
2663}
2664
2665static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2666{
2667 if (dev->bar)
2668 iounmap(dev->bar);
a1f447b3 2669 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2670}
2671
2672static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 2673{
e75ec752
CH
2674 struct pci_dev *pdev = to_pci_dev(dev->dev);
2675
dca51e78 2676 pci_free_irq_vectors(pdev);
0877cb0d 2677
a0a3408e
KB
2678 if (pci_is_enabled(pdev)) {
2679 pci_disable_pcie_error_reporting(pdev);
e75ec752 2680 pci_disable_device(pdev);
4d115420 2681 }
4d115420
KB
2682}
2683
a5cdb68c 2684static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2685{
e43269e6 2686 bool dead = true, freeze = false;
302ad8cc 2687 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2688
77bf25ea 2689 mutex_lock(&dev->shutdown_lock);
081f5e75
KB
2690 if (pci_is_enabled(pdev)) {
2691 u32 csts;
2692
2693 if (pci_device_is_present(pdev))
2694 csts = readl(dev->bar + NVME_REG_CSTS);
2695 else
2696 csts = ~0;
302ad8cc 2697
ebef7368 2698 if (dev->ctrl.state == NVME_CTRL_LIVE ||
e43269e6
KB
2699 dev->ctrl.state == NVME_CTRL_RESETTING) {
2700 freeze = true;
302ad8cc 2701 nvme_start_freeze(&dev->ctrl);
e43269e6 2702 }
302ad8cc
KB
2703 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2704 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2705 }
c21377f8 2706
302ad8cc
KB
2707 /*
2708 * Give the controller a chance to complete all entered requests if
2709 * doing a safe shutdown.
2710 */
e43269e6
KB
2711 if (!dead && shutdown && freeze)
2712 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
9a915a5b
JW
2713
2714 nvme_stop_queues(&dev->ctrl);
87ad72a5 2715
64ee0ac0 2716 if (!dead && dev->ctrl.queue_count > 0) {
8fae268b 2717 nvme_disable_io_queues(dev);
a5cdb68c 2718 nvme_disable_admin_queue(dev, shutdown);
4d115420 2719 }
8fae268b
KB
2720 nvme_suspend_io_queues(dev);
2721 nvme_suspend_queue(&dev->queues[0]);
b00a726a 2722 nvme_pci_disable(dev);
fa46c6fb 2723 nvme_reap_pending_cqes(dev);
07836e65 2724
1fcfca78
GL
2725 nvme_cancel_tagset(&dev->ctrl);
2726 nvme_cancel_admin_tagset(&dev->ctrl);
302ad8cc
KB
2727
2728 /*
2729 * The driver will not be starting up queues again if shutting down so
2730 * must flush all entered requests to their failed completion to avoid
2731 * deadlocking blk-mq hot-cpu notifier.
2732 */
c8e9e9b7 2733 if (shutdown) {
302ad8cc 2734 nvme_start_queues(&dev->ctrl);
c8e9e9b7 2735 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
6ca1d902 2736 nvme_start_admin_queue(&dev->ctrl);
c8e9e9b7 2737 }
77bf25ea 2738 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2739}
2740
c1ac9a4b
KB
2741static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2742{
2743 if (!nvme_wait_reset(&dev->ctrl))
2744 return -EBUSY;
2745 nvme_dev_disable(dev, shutdown);
2746 return 0;
2747}
2748
091b6092
MW
2749static int nvme_setup_prp_pools(struct nvme_dev *dev)
2750{
e75ec752 2751 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
c61b82c7
CH
2752 NVME_CTRL_PAGE_SIZE,
2753 NVME_CTRL_PAGE_SIZE, 0);
091b6092
MW
2754 if (!dev->prp_page_pool)
2755 return -ENOMEM;
2756
99802a7a 2757 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2758 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2759 256, 256, 0);
2760 if (!dev->prp_small_pool) {
2761 dma_pool_destroy(dev->prp_page_pool);
2762 return -ENOMEM;
2763 }
091b6092
MW
2764 return 0;
2765}
2766
2767static void nvme_release_prp_pools(struct nvme_dev *dev)
2768{
2769 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2770 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2771}
2772
770597ec
KB
2773static void nvme_free_tagset(struct nvme_dev *dev)
2774{
2775 if (dev->tagset.tags)
2776 blk_mq_free_tag_set(&dev->tagset);
2777 dev->ctrl.tagset = NULL;
2778}
2779
1673f1f0 2780static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2781{
1673f1f0 2782 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2783
f9f38e33 2784 nvme_dbbuf_dma_free(dev);
770597ec 2785 nvme_free_tagset(dev);
1c63dc66
CH
2786 if (dev->ctrl.admin_q)
2787 blk_put_queue(dev->ctrl.admin_q);
e286bcfc 2788 free_opal_dev(dev->ctrl.opal_dev);
943e942e 2789 mempool_destroy(dev->iod_mempool);
253fd4ac
IR
2790 put_device(dev->dev);
2791 kfree(dev->queues);
5e82e952
KB
2792 kfree(dev);
2793}
2794
7c1ce408 2795static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
f58944e2 2796{
c1ac9a4b
KB
2797 /*
2798 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2799 * may be holding this pci_dev's device lock.
2800 */
2801 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
d22524a4 2802 nvme_get_ctrl(&dev->ctrl);
69d9a99c 2803 nvme_dev_disable(dev, false);
9f9cafc1 2804 nvme_kill_queues(&dev->ctrl);
03e0f3a6 2805 if (!queue_work(nvme_wq, &dev->remove_work))
f58944e2
KB
2806 nvme_put_ctrl(&dev->ctrl);
2807}
2808
fd634f41 2809static void nvme_reset_work(struct work_struct *work)
5e82e952 2810{
d86c4d8e
CH
2811 struct nvme_dev *dev =
2812 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2813 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
e71afda4 2814 int result;
5e82e952 2815
7764656b
ZC
2816 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2817 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2818 dev->ctrl.state);
e71afda4 2819 result = -ENODEV;
fd634f41 2820 goto out;
e71afda4 2821 }
5e82e952 2822
fd634f41
CH
2823 /*
2824 * If we're called to reset a live controller first shut it down before
2825 * moving on.
2826 */
b00a726a 2827 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2828 nvme_dev_disable(dev, false);
d6135c3a 2829 nvme_sync_queues(&dev->ctrl);
5e82e952 2830
5c959d73 2831 mutex_lock(&dev->shutdown_lock);
b00a726a 2832 result = nvme_pci_enable(dev);
f0b50732 2833 if (result)
4726bcf3 2834 goto out_unlock;
f0b50732 2835
01ad0990 2836 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2837 if (result)
4726bcf3 2838 goto out_unlock;
f0b50732 2839
f91b727c
CH
2840 if (!dev->ctrl.admin_q) {
2841 result = nvme_pci_alloc_admin_tag_set(dev);
2842 if (result)
2843 goto out_unlock;
2844 } else {
2845 nvme_start_admin_queue(&dev->ctrl);
2846 }
b9afca3e 2847
943e942e
JA
2848 /*
2849 * Limit the max command size to prevent iod->sg allocations going
2850 * over a single page.
2851 */
7637de31
CH
2852 dev->ctrl.max_hw_sectors = min_t(u32,
2853 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
943e942e 2854 dev->ctrl.max_segments = NVME_MAX_SEGS;
a48bc520
CH
2855
2856 /*
2857 * Don't limit the IOMMU merged segment size.
2858 */
2859 dma_set_max_seg_size(dev->dev, 0xffffffff);
3d2d861e 2860 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
a48bc520 2861
5c959d73
KB
2862 mutex_unlock(&dev->shutdown_lock);
2863
2864 /*
2865 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2866 * initializing procedure here.
2867 */
2868 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2869 dev_warn(dev->ctrl.device,
2870 "failed to mark controller CONNECTING\n");
cee6c269 2871 result = -EBUSY;
5c959d73
KB
2872 goto out;
2873 }
943e942e 2874
95093350
MG
2875 /*
2876 * We do not support an SGL for metadata (yet), so we are limited to a
2877 * single integrity segment for the separate metadata pointer.
2878 */
2879 dev->ctrl.max_integrity_segments = 1;
2880
f21c4769 2881 result = nvme_init_ctrl_finish(&dev->ctrl);
ce4541f4 2882 if (result)
f58944e2 2883 goto out;
ce4541f4 2884
e286bcfc
SB
2885 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2886 if (!dev->ctrl.opal_dev)
2887 dev->ctrl.opal_dev =
2888 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2889 else if (was_suspend)
2890 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2891 } else {
2892 free_opal_dev(dev->ctrl.opal_dev);
2893 dev->ctrl.opal_dev = NULL;
4f1244c8 2894 }
a98e58e5 2895
f9f38e33
HK
2896 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2897 result = nvme_dbbuf_dma_alloc(dev);
2898 if (result)
2899 dev_warn(dev->dev,
2900 "unable to allocate dma for dbbuf\n");
2901 }
2902
9620cfba
CH
2903 if (dev->ctrl.hmpre) {
2904 result = nvme_setup_host_mem(dev);
2905 if (result < 0)
2906 goto out;
2907 }
87ad72a5 2908
f0b50732 2909 result = nvme_setup_io_queues(dev);
badc34d4 2910 if (result)
f58944e2 2911 goto out;
f0b50732 2912
2659e57b
CH
2913 /*
2914 * Keep the controller around but remove all namespaces if we don't have
2915 * any working I/O queue.
2916 */
3cf519b5 2917 if (dev->online_queues < 2) {
1b3c47c1 2918 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2919 nvme_kill_queues(&dev->ctrl);
5bae7f73 2920 nvme_remove_namespaces(&dev->ctrl);
770597ec 2921 nvme_free_tagset(dev);
3cf519b5 2922 } else {
25646264 2923 nvme_start_queues(&dev->ctrl);
302ad8cc 2924 nvme_wait_freeze(&dev->ctrl);
2455a4b7
CH
2925 if (!dev->ctrl.tagset)
2926 nvme_pci_alloc_tag_set(dev);
2927 else
2928 nvme_pci_update_nr_queues(dev);
2929 nvme_dbbuf_set(dev);
302ad8cc 2930 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2931 }
2932
2b1b7e78
JW
2933 /*
2934 * If only admin queue live, keep it to do further investigation or
2935 * recovery.
2936 */
5d02a5c1 2937 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2b1b7e78 2938 dev_warn(dev->ctrl.device,
5d02a5c1 2939 "failed to mark controller live state\n");
e71afda4 2940 result = -ENODEV;
bb8d261e
CH
2941 goto out;
2942 }
92911a55 2943
0521905e
KB
2944 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2945 &nvme_pci_attr_group))
2946 dev->attrs_added = true;
2947
d09f2b45 2948 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2949 return;
f0b50732 2950
4726bcf3
KB
2951 out_unlock:
2952 mutex_unlock(&dev->shutdown_lock);
3cf519b5 2953 out:
7c1ce408
CK
2954 if (result)
2955 dev_warn(dev->ctrl.device,
2956 "Removing after probe failure status: %d\n", result);
2957 nvme_remove_dead_ctrl(dev);
f0b50732
KB
2958}
2959
5c8809e6 2960static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2961{
5c8809e6 2962 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2963 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2964
2965 if (pci_get_drvdata(pdev))
921920ab 2966 device_release_driver(&pdev->dev);
1673f1f0 2967 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2968}
2969
1c63dc66 2970static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2971{
1c63dc66 2972 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2973 return 0;
9ca97374
TH
2974}
2975
5fd4ce1b 2976static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2977{
5fd4ce1b
CH
2978 writel(val, to_nvme_dev(ctrl)->bar + off);
2979 return 0;
2980}
4cc06521 2981
7fd8930f
CH
2982static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2983{
3a8ecc93 2984 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
7fd8930f 2985 return 0;
4cc06521
KB
2986}
2987
97c12223
KB
2988static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2989{
2990 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2991
2db24e4a 2992 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
97c12223
KB
2993}
2994
2f0dad17
KB
2995
2996static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2997{
2998 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2999 struct nvme_subsystem *subsys = ctrl->subsys;
3000
3001 dev_err(ctrl->device,
3002 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3003 pdev->vendor, pdev->device,
3004 nvme_strlen(subsys->model, sizeof(subsys->model)),
3005 subsys->model, nvme_strlen(subsys->firmware_rev,
3006 sizeof(subsys->firmware_rev)),
3007 subsys->firmware_rev);
3008}
3009
1c63dc66 3010static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 3011 .name = "pcie",
e439bb12 3012 .module = THIS_MODULE,
e0596ab2
LG
3013 .flags = NVME_F_METADATA_SUPPORTED |
3014 NVME_F_PCI_P2PDMA,
1c63dc66 3015 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 3016 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 3017 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 3018 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 3019 .submit_async_event = nvme_pci_submit_async_event,
97c12223 3020 .get_address = nvme_pci_get_address,
2f0dad17 3021 .print_device_info = nvme_pci_print_device_info,
1c63dc66 3022};
4cc06521 3023
b00a726a
KB
3024static int nvme_dev_map(struct nvme_dev *dev)
3025{
b00a726a
KB
3026 struct pci_dev *pdev = to_pci_dev(dev->dev);
3027
a1f447b3 3028 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
3029 return -ENODEV;
3030
97f6ef64 3031 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
3032 goto release;
3033
9fa196e7 3034 return 0;
b00a726a 3035 release:
9fa196e7
MG
3036 pci_release_mem_regions(pdev);
3037 return -ENODEV;
b00a726a
KB
3038}
3039
8427bbc2 3040static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
3041{
3042 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3043 /*
3044 * Several Samsung devices seem to drop off the PCIe bus
3045 * randomly when APST is on and uses the deepest sleep state.
3046 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3047 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3048 * 950 PRO 256GB", but it seems to be restricted to two Dell
3049 * laptops.
3050 */
3051 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3052 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3053 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3054 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
3055 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3056 /*
3057 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
3058 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3059 * within few minutes after bootup on a Coffee Lake board -
3060 * ASUS PRIME Z370-A
8427bbc2
KHF
3061 */
3062 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
3063 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3064 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 3065 return NVME_QUIRK_NO_APST;
1fae37ac
S
3066 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3067 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3068 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3069 /*
3070 * Forcing to use host managed nvme power settings for
3071 * lowest idle power with quick resume latency on
3072 * Samsung and Toshiba SSDs based on suspend behavior
3073 * on Coffee Lake board for LENOVO C640
3074 */
3075 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3076 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3077 return NVME_QUIRK_SIMPLE_SUSPEND;
ff5350a8
AL
3078 }
3079
3080 return 0;
3081}
3082
18119775
KB
3083static void nvme_async_probe(void *data, async_cookie_t cookie)
3084{
3085 struct nvme_dev *dev = data;
80f513b5 3086
bd46a906 3087 flush_work(&dev->ctrl.reset_work);
18119775 3088 flush_work(&dev->ctrl.scan_work);
80f513b5 3089 nvme_put_ctrl(&dev->ctrl);
18119775
KB
3090}
3091
8d85fce7 3092static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 3093{
a4aea562 3094 int node, result = -ENOMEM;
b60503ba 3095 struct nvme_dev *dev;
ff5350a8 3096 unsigned long quirks = id->driver_data;
943e942e 3097 size_t alloc_size;
b60503ba 3098
a4aea562
MB
3099 node = dev_to_node(&pdev->dev);
3100 if (node == NUMA_NO_NODE)
2fa84351 3101 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
3102
3103 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
3104 if (!dev)
3105 return -ENOMEM;
147b27e4 3106
2a5bcfdd
WZ
3107 dev->nr_write_queues = write_queues;
3108 dev->nr_poll_queues = poll_queues;
3109 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3110 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3111 sizeof(struct nvme_queue), GFP_KERNEL, node);
b60503ba
MW
3112 if (!dev->queues)
3113 goto free;
3114
e75ec752 3115 dev->dev = get_device(&pdev->dev);
9a6b9458 3116 pci_set_drvdata(pdev, dev);
1c63dc66 3117
b00a726a
KB
3118 result = nvme_dev_map(dev);
3119 if (result)
b00c9b7a 3120 goto put_pci;
b00a726a 3121
d86c4d8e 3122 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 3123 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 3124 mutex_init(&dev->shutdown_lock);
b60503ba 3125
091b6092
MW
3126 result = nvme_setup_prp_pools(dev);
3127 if (result)
b00c9b7a 3128 goto unmap;
4cc06521 3129
8427bbc2 3130 quirks |= check_vendor_combination_bug(pdev);
ff5350a8 3131
2744d7a0 3132 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
df4f9bc4
DB
3133 /*
3134 * Some systems use a bios work around to ask for D3 on
3135 * platforms that support kernel managed suspend.
3136 */
3137 dev_info(&pdev->dev,
3138 "platform quirk: setting simple suspend\n");
3139 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3140 }
3141
943e942e
JA
3142 /*
3143 * Double check that our mempool alloc size will cover the biggest
3144 * command we support.
3145 */
b13c6393 3146 alloc_size = nvme_pci_iod_alloc_size();
943e942e
JA
3147 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3148
3149 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3150 mempool_kfree,
3151 (void *) alloc_size,
3152 GFP_KERNEL, node);
3153 if (!dev->iod_mempool) {
3154 result = -ENOMEM;
3155 goto release_pools;
3156 }
3157
b6e44b4c
KB
3158 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3159 quirks);
3160 if (result)
3161 goto release_mempool;
3162
1b3c47c1
SG
3163 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3164
bd46a906 3165 nvme_reset_ctrl(&dev->ctrl);
18119775 3166 async_schedule(nvme_async_probe, dev);
4caff8fc 3167
b60503ba
MW
3168 return 0;
3169
b6e44b4c
KB
3170 release_mempool:
3171 mempool_destroy(dev->iod_mempool);
0877cb0d 3172 release_pools:
091b6092 3173 nvme_release_prp_pools(dev);
b00c9b7a
CJ
3174 unmap:
3175 nvme_dev_unmap(dev);
a96d4f5c 3176 put_pci:
e75ec752 3177 put_device(dev->dev);
b60503ba
MW
3178 free:
3179 kfree(dev->queues);
b60503ba
MW
3180 kfree(dev);
3181 return result;
3182}
3183
775755ed 3184static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 3185{
a6739479 3186 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
3187
3188 /*
3189 * We don't need to check the return value from waiting for the reset
3190 * state as pci_dev device lock is held, making it impossible to race
3191 * with ->remove().
3192 */
3193 nvme_disable_prepare_reset(dev, false);
3194 nvme_sync_queues(&dev->ctrl);
775755ed 3195}
f0d54a54 3196
775755ed
CH
3197static void nvme_reset_done(struct pci_dev *pdev)
3198{
f263fbb8 3199 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
3200
3201 if (!nvme_try_sched_reset(&dev->ctrl))
3202 flush_work(&dev->ctrl.reset_work);
f0d54a54
KB
3203}
3204
09ece142
KB
3205static void nvme_shutdown(struct pci_dev *pdev)
3206{
3207 struct nvme_dev *dev = pci_get_drvdata(pdev);
4e523547 3208
c1ac9a4b 3209 nvme_disable_prepare_reset(dev, true);
09ece142
KB
3210}
3211
0521905e
KB
3212static void nvme_remove_attrs(struct nvme_dev *dev)
3213{
3214 if (dev->attrs_added)
3215 sysfs_remove_group(&dev->ctrl.device->kobj,
3216 &nvme_pci_attr_group);
3217}
3218
f58944e2
KB
3219/*
3220 * The driver's remove may be called on a device in a partially initialized
3221 * state. This function must not have any dependencies on the device state in
3222 * order to proceed.
3223 */
8d85fce7 3224static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3225{
3226 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 3227
bb8d261e 3228 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
9a6b9458 3229 pci_set_drvdata(pdev, NULL);
0ff9d4e1 3230
6db28eda 3231 if (!pci_device_is_present(pdev)) {
0ff9d4e1 3232 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1d39e692 3233 nvme_dev_disable(dev, true);
6db28eda 3234 }
0ff9d4e1 3235
d86c4d8e 3236 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
3237 nvme_stop_ctrl(&dev->ctrl);
3238 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 3239 nvme_dev_disable(dev, true);
0521905e 3240 nvme_remove_attrs(dev);
87ad72a5 3241 nvme_free_host_mem(dev);
a4aea562 3242 nvme_dev_remove_admin(dev);
a1a5ef99 3243 nvme_free_queues(dev, 0);
9a6b9458 3244 nvme_release_prp_pools(dev);
b00a726a 3245 nvme_dev_unmap(dev);
726612b6 3246 nvme_uninit_ctrl(&dev->ctrl);
b60503ba
MW
3247}
3248
671a6018 3249#ifdef CONFIG_PM_SLEEP
d916b1be
KB
3250static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3251{
3252 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3253}
3254
3255static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3256{
3257 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3258}
3259
3260static int nvme_resume(struct device *dev)
3261{
3262 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3263 struct nvme_ctrl *ctrl = &ndev->ctrl;
3264
4eaefe8c 3265 if (ndev->last_ps == U32_MAX ||
d916b1be 3266 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
e5ad96f3
KB
3267 goto reset;
3268 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3269 goto reset;
3270
d916b1be 3271 return 0;
e5ad96f3
KB
3272reset:
3273 return nvme_try_sched_reset(ctrl);
d916b1be
KB
3274}
3275
cd638946
KB
3276static int nvme_suspend(struct device *dev)
3277{
3278 struct pci_dev *pdev = to_pci_dev(dev);
3279 struct nvme_dev *ndev = pci_get_drvdata(pdev);
d916b1be
KB
3280 struct nvme_ctrl *ctrl = &ndev->ctrl;
3281 int ret = -EBUSY;
3282
4eaefe8c
RW
3283 ndev->last_ps = U32_MAX;
3284
d916b1be
KB
3285 /*
3286 * The platform does not remove power for a kernel managed suspend so
3287 * use host managed nvme power settings for lowest idle power if
3288 * possible. This should have quicker resume latency than a full device
3289 * shutdown. But if the firmware is involved after the suspend or the
3290 * device does not support any non-default power states, shut down the
3291 * device fully.
4eaefe8c
RW
3292 *
3293 * If ASPM is not enabled for the device, shut down the device and allow
3294 * the PCI bus layer to put it into D3 in order to take the PCIe link
3295 * down, so as to allow the platform to achieve its minimum low-power
3296 * state (which may not be possible if the link is up).
d916b1be 3297 */
4eaefe8c 3298 if (pm_suspend_via_firmware() || !ctrl->npss ||
cb32de1b 3299 !pcie_aspm_enabled(pdev) ||
c1ac9a4b
KB
3300 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3301 return nvme_disable_prepare_reset(ndev, true);
d916b1be
KB
3302
3303 nvme_start_freeze(ctrl);
3304 nvme_wait_freeze(ctrl);
3305 nvme_sync_queues(ctrl);
3306
5d02a5c1 3307 if (ctrl->state != NVME_CTRL_LIVE)
d916b1be
KB
3308 goto unfreeze;
3309
e5ad96f3
KB
3310 /*
3311 * Host memory access may not be successful in a system suspend state,
3312 * but the specification allows the controller to access memory in a
3313 * non-operational power state.
3314 */
3315 if (ndev->hmb) {
3316 ret = nvme_set_host_mem(ndev, 0);
3317 if (ret < 0)
3318 goto unfreeze;
3319 }
3320
d916b1be
KB
3321 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3322 if (ret < 0)
3323 goto unfreeze;
3324
7cbb5c6f
ML
3325 /*
3326 * A saved state prevents pci pm from generically controlling the
3327 * device's power. If we're using protocol specific settings, we don't
3328 * want pci interfering.
3329 */
3330 pci_save_state(pdev);
3331
d916b1be
KB
3332 ret = nvme_set_power_state(ctrl, ctrl->npss);
3333 if (ret < 0)
3334 goto unfreeze;
3335
3336 if (ret) {
7cbb5c6f
ML
3337 /* discard the saved state */
3338 pci_load_saved_state(pdev, NULL);
3339
d916b1be
KB
3340 /*
3341 * Clearing npss forces a controller reset on resume. The
05d3046f 3342 * correct value will be rediscovered then.
d916b1be 3343 */
c1ac9a4b 3344 ret = nvme_disable_prepare_reset(ndev, true);
d916b1be 3345 ctrl->npss = 0;
d916b1be 3346 }
d916b1be
KB
3347unfreeze:
3348 nvme_unfreeze(ctrl);
3349 return ret;
3350}
3351
3352static int nvme_simple_suspend(struct device *dev)
3353{
3354 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
4e523547 3355
c1ac9a4b 3356 return nvme_disable_prepare_reset(ndev, true);
cd638946
KB
3357}
3358
d916b1be 3359static int nvme_simple_resume(struct device *dev)
cd638946
KB
3360{
3361 struct pci_dev *pdev = to_pci_dev(dev);
3362 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3363
c1ac9a4b 3364 return nvme_try_sched_reset(&ndev->ctrl);
cd638946
KB
3365}
3366
21774222 3367static const struct dev_pm_ops nvme_dev_pm_ops = {
d916b1be
KB
3368 .suspend = nvme_suspend,
3369 .resume = nvme_resume,
3370 .freeze = nvme_simple_suspend,
3371 .thaw = nvme_simple_resume,
3372 .poweroff = nvme_simple_suspend,
3373 .restore = nvme_simple_resume,
3374};
3375#endif /* CONFIG_PM_SLEEP */
b60503ba 3376
a0a3408e
KB
3377static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3378 pci_channel_state_t state)
3379{
3380 struct nvme_dev *dev = pci_get_drvdata(pdev);
3381
3382 /*
3383 * A frozen channel requires a reset. When detected, this method will
3384 * shutdown the controller to quiesce. The controller will be restarted
3385 * after the slot reset through driver's slot_reset callback.
3386 */
a0a3408e
KB
3387 switch (state) {
3388 case pci_channel_io_normal:
3389 return PCI_ERS_RESULT_CAN_RECOVER;
3390 case pci_channel_io_frozen:
d011fb31
KB
3391 dev_warn(dev->ctrl.device,
3392 "frozen state error detected, reset controller\n");
a5cdb68c 3393 nvme_dev_disable(dev, false);
a0a3408e
KB
3394 return PCI_ERS_RESULT_NEED_RESET;
3395 case pci_channel_io_perm_failure:
d011fb31
KB
3396 dev_warn(dev->ctrl.device,
3397 "failure state error detected, request disconnect\n");
a0a3408e
KB
3398 return PCI_ERS_RESULT_DISCONNECT;
3399 }
3400 return PCI_ERS_RESULT_NEED_RESET;
3401}
3402
3403static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3404{
3405 struct nvme_dev *dev = pci_get_drvdata(pdev);
3406
1b3c47c1 3407 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 3408 pci_restore_state(pdev);
d86c4d8e 3409 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
3410 return PCI_ERS_RESULT_RECOVERED;
3411}
3412
3413static void nvme_error_resume(struct pci_dev *pdev)
3414{
72cd4cc2
KB
3415 struct nvme_dev *dev = pci_get_drvdata(pdev);
3416
3417 flush_work(&dev->ctrl.reset_work);
a0a3408e
KB
3418}
3419
1d352035 3420static const struct pci_error_handlers nvme_err_handler = {
b60503ba 3421 .error_detected = nvme_error_detected,
b60503ba
MW
3422 .slot_reset = nvme_slot_reset,
3423 .resume = nvme_error_resume,
775755ed
CH
3424 .reset_prepare = nvme_reset_prepare,
3425 .reset_done = nvme_reset_done,
b60503ba
MW
3426};
3427
6eb0d698 3428static const struct pci_device_id nvme_id_table[] = {
972b13e2 3429 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
08095e70 3430 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3431 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3432 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
99466e70 3433 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3434 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3435 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
99466e70 3436 .driver_data = NVME_QUIRK_STRIPE_SIZE |
25e58af4
WZ
3437 NVME_QUIRK_DEALLOCATE_ZEROES |
3438 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
972b13e2 3439 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
f99cb7af
DWF
3440 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3441 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0 3442 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
9abd68ef 3443 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
6c6aa2f2 3444 NVME_QUIRK_MEDIUM_PRIO_SQ |
ce4cc313
DM
3445 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3446 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
6299358d
JD
3447 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3448 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
540c801c 3449 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
7b210e4e 3450 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
66dd346b
CH
3451 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3452 NVME_QUIRK_BOGUS_NID, },
3453 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3454 .driver_data = NVME_QUIRK_BOGUS_NID, },
5bedd3af 3455 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
c98a8793
KB
3456 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3457 NVME_QUIRK_BOGUS_NID, },
0302ae60 3458 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
5e112d3f
JE
3459 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3460 NVME_QUIRK_NO_NS_DESC_LIST, },
54adc010
GP
3461 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3462 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
3463 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3464 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
3465 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3466 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
3467 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3468 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3469 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
7ee5c78c 3470 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
abbb5f59 3471 NVME_QUIRK_DISABLE_WRITE_ZEROES|
7ee5c78c 3472 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2cf7a77e
KB
3473 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3474 .driver_data = NVME_QUIRK_BOGUS_NID, },
c9e95c39 3475 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
73029c9b
KB
3476 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3477 NVME_QUIRK_BOGUS_NID, },
6e6a6828
PT
3478 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3479 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3480 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
e1c70d79
LVS
3481 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3482 .driver_data = NVME_QUIRK_BOGUS_NID, },
08b903b5 3483 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
1629de0e
PG
3484 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3485 NVME_QUIRK_BOGUS_NID, },
f03e42c6
GC
3486 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3487 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3488 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
41f38043
LS
3489 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3490 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
5611ec2b
KHF
3491 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3492 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
c4f01a77
KB
3493 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3494 .driver_data = NVME_QUIRK_BOGUS_NID, },
02ca079c
KHF
3495 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3496 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
89919929
CK
3497 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3498 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
43047e08 3499 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3500 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3501 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3502 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3503 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3504 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3505 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3506 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
dc22c1c0
ZB
3507 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3508 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
538e4a8c
TL
3509 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3510 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
70ce3455
CH
3511 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3512 .driver_data = NVME_QUIRK_BOGUS_NID, },
a98a945b
CH
3513 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3514 .driver_data = NVME_QUIRK_BOGUS_NID, },
3515 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3516 .driver_data = NVME_QUIRK_BOGUS_NID, },
3765fad5
SR
3517 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3518 .driver_data = NVME_QUIRK_BOGUS_NID, },
f37527a0
DK
3519 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3520 .driver_data = NVME_QUIRK_BOGUS_NID, },
6b961bce
NW
3521 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3522 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
d6c52fa3
TG
3523 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3524 .driver_data = NVME_QUIRK_BOGUS_NID, },
200dccd0
SA
3525 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3526 .driver_data = NVME_QUIRK_BOGUS_NID, },
4bdf2603
FS
3527 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3528 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3529 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3530 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3531 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3532 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3533 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3534 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3535 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3536 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3537 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3538 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
98f7b86a
AS
3539 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3540 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
124298bd 3541 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
66341331
BH
3542 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3543 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
d38e9f04 3544 NVME_QUIRK_128_BYTES_SQES |
a2941f6a
KB
3545 NVME_QUIRK_SHARED_TAGS |
3546 NVME_QUIRK_SKIP_CID_GEN },
0b85f59d 3547 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
b60503ba
MW
3548 { 0, }
3549};
3550MODULE_DEVICE_TABLE(pci, nvme_id_table);
3551
3552static struct pci_driver nvme_driver = {
3553 .name = "nvme",
3554 .id_table = nvme_id_table,
3555 .probe = nvme_probe,
8d85fce7 3556 .remove = nvme_remove,
09ece142 3557 .shutdown = nvme_shutdown,
d916b1be 3558#ifdef CONFIG_PM_SLEEP
cd638946
KB
3559 .driver = {
3560 .pm = &nvme_dev_pm_ops,
3561 },
d916b1be 3562#endif
74d986ab 3563 .sriov_configure = pci_sriov_configure_simple,
b60503ba
MW
3564 .err_handler = &nvme_err_handler,
3565};
3566
3567static int __init nvme_init(void)
3568{
81101540
CH
3569 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3570 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3571 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
612b7286 3572 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
17c33167 3573
9a6327d2 3574 return pci_register_driver(&nvme_driver);
b60503ba
MW
3575}
3576
3577static void __exit nvme_exit(void)
3578{
3579 pci_unregister_driver(&nvme_driver);
03e0f3a6 3580 flush_workqueue(nvme_wq);
b60503ba
MW
3581}
3582
3583MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3584MODULE_LICENSE("GPL");
c78b4713 3585MODULE_VERSION("1.0");
b60503ba
MW
3586module_init(nvme_init);
3587module_exit(nvme_exit);