nvme-pci: fixing memory leak in probe teardown path
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
5f37396d 1// SPDX-License-Identifier: GPL-2.0
b60503ba
MW
2/*
3 * NVM Express device driver
6eb0d698 4 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
5 */
6
df4f9bc4 7#include <linux/acpi.h>
a0a3408e 8#include <linux/aer.h>
18119775 9#include <linux/async.h>
b60503ba 10#include <linux/blkdev.h>
a4aea562 11#include <linux/blk-mq.h>
dca51e78 12#include <linux/blk-mq-pci.h>
fe45e630 13#include <linux/blk-integrity.h>
ff5350a8 14#include <linux/dmi.h>
b60503ba
MW
15#include <linux/init.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
99722c8a 18#include <linux/kstrtox.h>
dc90f084 19#include <linux/memremap.h>
b60503ba
MW
20#include <linux/mm.h>
21#include <linux/module.h>
77bf25ea 22#include <linux/mutex.h>
d0877473 23#include <linux/once.h>
b60503ba 24#include <linux/pci.h>
d916b1be 25#include <linux/suspend.h>
e1e5e564 26#include <linux/t10-pi.h>
b60503ba 27#include <linux/types.h>
2f8e2c87 28#include <linux/io-64-nonatomic-lo-hi.h>
20d3bb92 29#include <linux/io-64-nonatomic-hi-lo.h>
a98e58e5 30#include <linux/sed-opal.h>
0f238ff5 31#include <linux/pci-p2pdma.h>
797a796a 32
604c01d5 33#include "trace.h"
f11bb3e2
CH
34#include "nvme.h"
35
c1e0cc7e 36#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
8a1d09a6 37#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
c965809c 38
84173423 39#define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 40
943e942e
JA
41/*
42 * These can be higher, but we need to ensure that any command doesn't
43 * require an sg allocation that needs more than a page of data.
44 */
7846c1b5
KB
45#define NVME_MAX_KB_SZ 8192
46#define NVME_MAX_SEGS 128
47#define NVME_MAX_NR_ALLOCATIONS 5
943e942e 48
58ffacb5 49static int use_threaded_interrupts;
2e21e445 50module_param(use_threaded_interrupts, int, 0444);
58ffacb5 51
8ffaadf7 52static bool use_cmb_sqes = true;
69f4eb9f 53module_param(use_cmb_sqes, bool, 0444);
8ffaadf7
JD
54MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55
87ad72a5
CH
56static unsigned int max_host_mem_size_mb = 128;
57module_param(max_host_mem_size_mb, uint, 0444);
58MODULE_PARM_DESC(max_host_mem_size_mb,
59 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 60
a7a7cbe3
CK
61static unsigned int sgl_threshold = SZ_32K;
62module_param(sgl_threshold, uint, 0644);
63MODULE_PARM_DESC(sgl_threshold,
64 "Use SGLs when average request segment size is larger or equal to "
65 "this size. Use 0 to disable SGLs.");
66
27453b45
SG
67#define NVME_PCI_MIN_QUEUE_SIZE 2
68#define NVME_PCI_MAX_QUEUE_SIZE 4095
b27c1e68 69static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
70static const struct kernel_param_ops io_queue_depth_ops = {
71 .set = io_queue_depth_set,
61f3b896 72 .get = param_get_uint,
b27c1e68 73};
74
61f3b896 75static unsigned int io_queue_depth = 1024;
b27c1e68 76module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
27453b45 77MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
b27c1e68 78
9c9e76d5
WZ
79static int io_queue_count_set(const char *val, const struct kernel_param *kp)
80{
81 unsigned int n;
82 int ret;
83
84 ret = kstrtouint(val, 10, &n);
85 if (ret != 0 || n > num_possible_cpus())
86 return -EINVAL;
87 return param_set_uint(val, kp);
88}
89
90static const struct kernel_param_ops io_queue_count_ops = {
91 .set = io_queue_count_set,
92 .get = param_get_uint,
93};
94
3f68baf7 95static unsigned int write_queues;
9c9e76d5 96module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
3b6592f7
JA
97MODULE_PARM_DESC(write_queues,
98 "Number of queues to use for writes. If not set, reads and writes "
99 "will share a queue set.");
100
3f68baf7 101static unsigned int poll_queues;
9c9e76d5 102module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
4b04cc6a
JA
103MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
104
df4f9bc4
DB
105static bool noacpi;
106module_param(noacpi, bool, 0444);
107MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
108
1c63dc66
CH
109struct nvme_dev;
110struct nvme_queue;
b3fffdef 111
a5cdb68c 112static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
7d879c90 113static void nvme_delete_io_queues(struct nvme_dev *dev);
e917a849 114static void nvme_update_attrs(struct nvme_dev *dev);
d4b4ff8e 115
1c63dc66
CH
116/*
117 * Represents an NVM Express device. Each nvme_dev is a PCI function.
118 */
119struct nvme_dev {
147b27e4 120 struct nvme_queue *queues;
1c63dc66
CH
121 struct blk_mq_tag_set tagset;
122 struct blk_mq_tag_set admin_tagset;
123 u32 __iomem *dbs;
124 struct device *dev;
125 struct dma_pool *prp_page_pool;
126 struct dma_pool *prp_small_pool;
1c63dc66
CH
127 unsigned online_queues;
128 unsigned max_qid;
e20ba6e1 129 unsigned io_queues[HCTX_MAX_TYPES];
22b55601 130 unsigned int num_vecs;
7442ddce 131 u32 q_depth;
c1e0cc7e 132 int io_sqes;
1c63dc66 133 u32 db_stride;
1c63dc66 134 void __iomem *bar;
97f6ef64 135 unsigned long bar_mapped_size;
77bf25ea 136 struct mutex shutdown_lock;
1c63dc66 137 bool subsystem;
1c63dc66 138 u64 cmb_size;
0f238ff5 139 bool cmb_use_sqes;
1c63dc66 140 u32 cmbsz;
202021c1 141 u32 cmbloc;
1c63dc66 142 struct nvme_ctrl ctrl;
d916b1be 143 u32 last_ps;
a5df5e79 144 bool hmb;
87ad72a5 145
943e942e
JA
146 mempool_t *iod_mempool;
147
87ad72a5 148 /* shadow doorbell buffer support: */
b5f96cb7 149 __le32 *dbbuf_dbs;
f9f38e33 150 dma_addr_t dbbuf_dbs_dma_addr;
b5f96cb7 151 __le32 *dbbuf_eis;
f9f38e33 152 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
153
154 /* host memory buffer support: */
155 u64 host_mem_size;
156 u32 nr_host_mem_descs;
4033f35d 157 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
158 struct nvme_host_mem_buf_desc *host_mem_descs;
159 void **host_mem_desc_bufs;
2a5bcfdd
WZ
160 unsigned int nr_allocated_queues;
161 unsigned int nr_write_queues;
162 unsigned int nr_poll_queues;
4d115420 163};
1fa6aead 164
b27c1e68 165static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166{
27453b45
SG
167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 NVME_PCI_MAX_QUEUE_SIZE);
b27c1e68 169}
170
f9f38e33
HK
171static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172{
173 return qid * 2 * stride;
174}
175
176static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177{
178 return (qid * 2 + 1) * stride;
179}
180
1c63dc66
CH
181static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182{
183 return container_of(ctrl, struct nvme_dev, ctrl);
184}
185
b60503ba
MW
186/*
187 * An NVM Express queue. Each device has at least two (one for admin
188 * commands and one for I/O commands).
189 */
190struct nvme_queue {
091b6092 191 struct nvme_dev *dev;
1ab0cd69 192 spinlock_t sq_lock;
c1e0cc7e 193 void *sq_cmds;
3a7afd8e
CH
194 /* only used for poll queues: */
195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
74943d45 196 struct nvme_completion *cqes;
b60503ba
MW
197 dma_addr_t sq_dma_addr;
198 dma_addr_t cq_dma_addr;
b60503ba 199 u32 __iomem *q_db;
7442ddce 200 u32 q_depth;
7c349dde 201 u16 cq_vector;
b60503ba 202 u16 sq_tail;
38210800 203 u16 last_sq_tail;
b60503ba 204 u16 cq_head;
c30341dc 205 u16 qid;
e9539f47 206 u8 cq_phase;
c1e0cc7e 207 u8 sqes;
4e224106
CH
208 unsigned long flags;
209#define NVMEQ_ENABLED 0
63223078 210#define NVMEQ_SQ_CMB 1
d1ed6aa1 211#define NVMEQ_DELETE_ERROR 2
7c349dde 212#define NVMEQ_POLLED 3
b5f96cb7
KJ
213 __le32 *dbbuf_sq_db;
214 __le32 *dbbuf_cq_db;
215 __le32 *dbbuf_sq_ei;
216 __le32 *dbbuf_cq_ei;
d1ed6aa1 217 struct completion delete_done;
b60503ba
MW
218};
219
7846c1b5
KB
220union nvme_descriptor {
221 struct nvme_sgl_desc *sg_list;
222 __le64 *prp_list;
223};
224
71bd150c 225/*
9b048119
CH
226 * The nvme_iod describes the data in an I/O.
227 *
228 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
229 * to the actual struct scatterlist.
71bd150c
CH
230 */
231struct nvme_iod {
d49187e9 232 struct nvme_request req;
af7fae85 233 struct nvme_command cmd;
52da4f3f 234 bool aborted;
c372cdd1
KB
235 s8 nr_allocations; /* PRP list pool allocations. 0 means small
236 pool in use */
dff824b2 237 unsigned int dma_len; /* length of single DMA segment mapping */
c4c22c52 238 dma_addr_t first_dma;
783b94bd 239 dma_addr_t meta_dma;
91fb2b60 240 struct sg_table sgt;
7846c1b5 241 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
b60503ba
MW
242};
243
2a5bcfdd 244static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
3b6592f7 245{
2a5bcfdd 246 return dev->nr_allocated_queues * 8 * dev->db_stride;
f9f38e33
HK
247}
248
65a54646 249static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
f9f38e33 250{
2a5bcfdd 251 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33 252
65a54646
CH
253 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
254 return;
255
58847f12
KB
256 if (dev->dbbuf_dbs) {
257 /*
258 * Clear the dbbuf memory so the driver doesn't observe stale
259 * values from the previous instantiation.
260 */
261 memset(dev->dbbuf_dbs, 0, mem_size);
262 memset(dev->dbbuf_eis, 0, mem_size);
65a54646 263 return;
58847f12 264 }
f9f38e33
HK
265
266 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
267 &dev->dbbuf_dbs_dma_addr,
268 GFP_KERNEL);
269 if (!dev->dbbuf_dbs)
65a54646 270 goto fail;
f9f38e33
HK
271 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
272 &dev->dbbuf_eis_dma_addr,
273 GFP_KERNEL);
65a54646
CH
274 if (!dev->dbbuf_eis)
275 goto fail_free_dbbuf_dbs;
276 return;
f9f38e33 277
65a54646
CH
278fail_free_dbbuf_dbs:
279 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
280 dev->dbbuf_dbs_dma_addr);
281 dev->dbbuf_dbs = NULL;
282fail:
283 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
f9f38e33
HK
284}
285
286static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
287{
2a5bcfdd 288 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33
HK
289
290 if (dev->dbbuf_dbs) {
291 dma_free_coherent(dev->dev, mem_size,
292 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
293 dev->dbbuf_dbs = NULL;
294 }
295 if (dev->dbbuf_eis) {
296 dma_free_coherent(dev->dev, mem_size,
297 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
298 dev->dbbuf_eis = NULL;
299 }
300}
301
302static void nvme_dbbuf_init(struct nvme_dev *dev,
303 struct nvme_queue *nvmeq, int qid)
304{
305 if (!dev->dbbuf_dbs || !qid)
306 return;
307
308 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
309 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
310 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
311 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
312}
313
0f0d2c87
MI
314static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
315{
316 if (!nvmeq->qid)
317 return;
318
319 nvmeq->dbbuf_sq_db = NULL;
320 nvmeq->dbbuf_cq_db = NULL;
321 nvmeq->dbbuf_sq_ei = NULL;
322 nvmeq->dbbuf_cq_ei = NULL;
323}
324
f9f38e33
HK
325static void nvme_dbbuf_set(struct nvme_dev *dev)
326{
f66e2804 327 struct nvme_command c = { };
0f0d2c87 328 unsigned int i;
f9f38e33
HK
329
330 if (!dev->dbbuf_dbs)
331 return;
332
f9f38e33
HK
333 c.dbbuf.opcode = nvme_admin_dbbuf;
334 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
335 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
336
337 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 338 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
339 /* Free memory and continue on */
340 nvme_dbbuf_dma_free(dev);
0f0d2c87
MI
341
342 for (i = 1; i <= dev->online_queues; i++)
343 nvme_dbbuf_free(&dev->queues[i]);
f9f38e33
HK
344 }
345}
346
347static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
348{
349 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
350}
351
352/* Update dbbuf and return true if an MMIO is required */
b5f96cb7
KJ
353static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
354 volatile __le32 *dbbuf_ei)
f9f38e33
HK
355{
356 if (dbbuf_db) {
b5f96cb7 357 u16 old_value, event_idx;
f9f38e33
HK
358
359 /*
360 * Ensure that the queue is written before updating
361 * the doorbell in memory
362 */
363 wmb();
364
b5f96cb7
KJ
365 old_value = le32_to_cpu(*dbbuf_db);
366 *dbbuf_db = cpu_to_le32(value);
f9f38e33 367
f1ed3df2
MW
368 /*
369 * Ensure that the doorbell is updated before reading the event
370 * index from memory. The controller needs to provide similar
371 * ordering to ensure the envent index is updated before reading
372 * the doorbell.
373 */
374 mb();
375
b5f96cb7
KJ
376 event_idx = le32_to_cpu(*dbbuf_ei);
377 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
f9f38e33
HK
378 return false;
379 }
380
381 return true;
b60503ba
MW
382}
383
ac3dd5bd
JA
384/*
385 * Will slightly overestimate the number of pages needed. This is OK
386 * as it only leads to a small amount of wasted memory for the lifetime of
387 * the I/O.
388 */
b13c6393 389static int nvme_pci_npages_prp(void)
ac3dd5bd 390{
c89a529e
KB
391 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
392 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
84173423 393 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
ac3dd5bd
JA
394}
395
a4aea562
MB
396static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 unsigned int hctx_idx)
e85248e5 398{
0da7feaa 399 struct nvme_dev *dev = to_nvme_dev(data);
147b27e4 400 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 401
42483228
KB
402 WARN_ON(hctx_idx != 0);
403 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
42483228 404
a4aea562
MB
405 hctx->driver_data = nvmeq;
406 return 0;
e85248e5
MW
407}
408
a4aea562
MB
409static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410 unsigned int hctx_idx)
b60503ba 411{
0da7feaa 412 struct nvme_dev *dev = to_nvme_dev(data);
147b27e4 413 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 414
42483228 415 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
416 hctx->driver_data = nvmeq;
417 return 0;
b60503ba
MW
418}
419
e559398f
CH
420static int nvme_pci_init_request(struct blk_mq_tag_set *set,
421 struct request *req, unsigned int hctx_idx,
422 unsigned int numa_node)
b60503ba 423{
0da7feaa 424 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
f4800d6d 425 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
59e29ce6
SG
426
427 nvme_req(req)->ctrl = &dev->ctrl;
f4b9e6c9 428 nvme_req(req)->cmd = &iod->cmd;
a4aea562
MB
429 return 0;
430}
431
3b6592f7
JA
432static int queue_irq_offset(struct nvme_dev *dev)
433{
434 /* if we have more than 1 vec, admin queue offsets us by 1 */
435 if (dev->num_vecs > 1)
436 return 1;
437
438 return 0;
439}
440
a4e1d0b7 441static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
dca51e78 442{
0da7feaa 443 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
3b6592f7
JA
444 int i, qoff, offset;
445
446 offset = queue_irq_offset(dev);
447 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
448 struct blk_mq_queue_map *map = &set->map[i];
449
450 map->nr_queues = dev->io_queues[i];
451 if (!map->nr_queues) {
e20ba6e1 452 BUG_ON(i == HCTX_TYPE_DEFAULT);
7e849dd9 453 continue;
3b6592f7
JA
454 }
455
4b04cc6a
JA
456 /*
457 * The poll queue(s) doesn't have an IRQ (and hence IRQ
458 * affinity), so use the regular blk-mq cpu mapping
459 */
3b6592f7 460 map->queue_offset = qoff;
cb9e0e50 461 if (i != HCTX_TYPE_POLL && offset)
4b04cc6a
JA
462 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
463 else
464 blk_mq_map_queues(map);
3b6592f7
JA
465 qoff += map->nr_queues;
466 offset += map->nr_queues;
467 }
dca51e78
CH
468}
469
38210800
KB
470/*
471 * Write sq tail if we are asked to, or if the next command would wrap.
472 */
473static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
04f3eafd 474{
38210800
KB
475 if (!write_sq) {
476 u16 next_tail = nvmeq->sq_tail + 1;
477
478 if (next_tail == nvmeq->q_depth)
479 next_tail = 0;
480 if (next_tail != nvmeq->last_sq_tail)
481 return;
482 }
483
04f3eafd
JA
484 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
485 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
486 writel(nvmeq->sq_tail, nvmeq->q_db);
38210800 487 nvmeq->last_sq_tail = nvmeq->sq_tail;
04f3eafd
JA
488}
489
3233b94c
JA
490static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
491 struct nvme_command *cmd)
b60503ba 492{
c1e0cc7e 493 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
3233b94c 494 absolute_pointer(cmd), sizeof(*cmd));
90ea5ca4
CH
495 if (++nvmeq->sq_tail == nvmeq->q_depth)
496 nvmeq->sq_tail = 0;
04f3eafd
JA
497}
498
499static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
500{
501 struct nvme_queue *nvmeq = hctx->driver_data;
502
503 spin_lock(&nvmeq->sq_lock);
38210800
KB
504 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
505 nvme_write_sq_db(nvmeq, true);
90ea5ca4 506 spin_unlock(&nvmeq->sq_lock);
b60503ba
MW
507}
508
ae582935
KB
509static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
510 int nseg)
955b1b5a 511{
a53232cb 512 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
955b1b5a
MI
513 unsigned int avg_seg_size;
514
20469a37 515 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a 516
253a0b76 517 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
955b1b5a 518 return false;
a53232cb 519 if (!nvmeq->qid)
955b1b5a
MI
520 return false;
521 if (!sgl_threshold || avg_seg_size < sgl_threshold)
522 return false;
523 return true;
524}
525
9275c206 526static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
b60503ba 527{
6c3c05b0 528 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
9275c206
CH
529 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
530 dma_addr_t dma_addr = iod->first_dma;
eca18b23 531 int i;
eca18b23 532
c372cdd1 533 for (i = 0; i < iod->nr_allocations; i++) {
7846c1b5 534 __le64 *prp_list = iod->list[i].prp_list;
9275c206
CH
535 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
536
537 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
538 dma_addr = next_dma_addr;
7fe07d14 539 }
9275c206 540}
dff824b2 541
9275c206
CH
542static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
543{
544 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 545
9275c206
CH
546 if (iod->dma_len) {
547 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
548 rq_dma_dir(req));
549 return;
eca18b23 550 }
ac3dd5bd 551
91fb2b60
LG
552 WARN_ON_ONCE(!iod->sgt.nents);
553
554 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
9275c206 555
c372cdd1 556 if (iod->nr_allocations == 0)
7846c1b5 557 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
9275c206 558 iod->first_dma);
8f0edf45 559 else if (iod->nr_allocations == 1)
7846c1b5 560 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
9275c206 561 iod->first_dma);
9275c206
CH
562 else
563 nvme_free_prps(dev, req);
91fb2b60 564 mempool_free(iod->sgt.sgl, dev->iod_mempool);
b4ff9c8d
KB
565}
566
d0877473
KB
567static void nvme_print_sgl(struct scatterlist *sgl, int nents)
568{
569 int i;
570 struct scatterlist *sg;
571
572 for_each_sg(sgl, sg, nents, i) {
573 dma_addr_t phys = sg_phys(sg);
574 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
575 "dma_address:%pad dma_length:%d\n",
576 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
577 sg_dma_len(sg));
578 }
579}
580
a7a7cbe3
CK
581static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
582 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 583{
f4800d6d 584 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 585 struct dma_pool *pool;
b131c61d 586 int length = blk_rq_payload_bytes(req);
91fb2b60 587 struct scatterlist *sg = iod->sgt.sgl;
ff22b54f
MW
588 int dma_len = sg_dma_len(sg);
589 u64 dma_addr = sg_dma_address(sg);
6c3c05b0 590 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
e025344c
SMM
591 __le64 *prp_list;
592 dma_addr_t prp_dma;
eca18b23 593 int nprps, i;
ff22b54f 594
6c3c05b0 595 length -= (NVME_CTRL_PAGE_SIZE - offset);
5228b328
JS
596 if (length <= 0) {
597 iod->first_dma = 0;
a7a7cbe3 598 goto done;
5228b328 599 }
ff22b54f 600
6c3c05b0 601 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f 602 if (dma_len) {
6c3c05b0 603 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f
MW
604 } else {
605 sg = sg_next(sg);
606 dma_addr = sg_dma_address(sg);
607 dma_len = sg_dma_len(sg);
608 }
609
6c3c05b0 610 if (length <= NVME_CTRL_PAGE_SIZE) {
edd10d33 611 iod->first_dma = dma_addr;
a7a7cbe3 612 goto done;
e025344c
SMM
613 }
614
6c3c05b0 615 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
99802a7a
MW
616 if (nprps <= (256 / 8)) {
617 pool = dev->prp_small_pool;
c372cdd1 618 iod->nr_allocations = 0;
99802a7a
MW
619 } else {
620 pool = dev->prp_page_pool;
c372cdd1 621 iod->nr_allocations = 1;
99802a7a
MW
622 }
623
69d2b571 624 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 625 if (!prp_list) {
c372cdd1 626 iod->nr_allocations = -1;
86eea289 627 return BLK_STS_RESOURCE;
b77954cb 628 }
7846c1b5 629 iod->list[0].prp_list = prp_list;
eca18b23 630 iod->first_dma = prp_dma;
e025344c
SMM
631 i = 0;
632 for (;;) {
6c3c05b0 633 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
e025344c 634 __le64 *old_prp_list = prp_list;
69d2b571 635 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 636 if (!prp_list)
fa073216 637 goto free_prps;
7846c1b5 638 iod->list[iod->nr_allocations++].prp_list = prp_list;
7523d834
MW
639 prp_list[0] = old_prp_list[i - 1];
640 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
641 i = 1;
e025344c
SMM
642 }
643 prp_list[i++] = cpu_to_le64(dma_addr);
6c3c05b0
CK
644 dma_len -= NVME_CTRL_PAGE_SIZE;
645 dma_addr += NVME_CTRL_PAGE_SIZE;
646 length -= NVME_CTRL_PAGE_SIZE;
e025344c
SMM
647 if (length <= 0)
648 break;
649 if (dma_len > 0)
650 continue;
86eea289
KB
651 if (unlikely(dma_len < 0))
652 goto bad_sgl;
e025344c
SMM
653 sg = sg_next(sg);
654 dma_addr = sg_dma_address(sg);
655 dma_len = sg_dma_len(sg);
ff22b54f 656 }
a7a7cbe3 657done:
91fb2b60 658 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
a7a7cbe3 659 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
86eea289 660 return BLK_STS_OK;
fa073216
CH
661free_prps:
662 nvme_free_prps(dev, req);
663 return BLK_STS_RESOURCE;
664bad_sgl:
91fb2b60 665 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
d0877473 666 "Invalid SGL for payload:%d nents:%d\n",
91fb2b60 667 blk_rq_payload_bytes(req), iod->sgt.nents);
86eea289 668 return BLK_STS_IOERR;
ff22b54f
MW
669}
670
a7a7cbe3
CK
671static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
672 struct scatterlist *sg)
673{
674 sge->addr = cpu_to_le64(sg_dma_address(sg));
675 sge->length = cpu_to_le32(sg_dma_len(sg));
676 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
677}
678
679static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
680 dma_addr_t dma_addr, int entries)
681{
682 sge->addr = cpu_to_le64(dma_addr);
01df742d
KB
683 sge->length = cpu_to_le32(entries * sizeof(*sge));
684 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
a7a7cbe3
CK
685}
686
687static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
91fb2b60 688 struct request *req, struct nvme_rw_command *cmd)
a7a7cbe3
CK
689{
690 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
691 struct dma_pool *pool;
692 struct nvme_sgl_desc *sg_list;
91fb2b60
LG
693 struct scatterlist *sg = iod->sgt.sgl;
694 unsigned int entries = iod->sgt.nents;
a7a7cbe3 695 dma_addr_t sgl_dma;
b0f2853b 696 int i = 0;
a7a7cbe3 697
a7a7cbe3
CK
698 /* setting the transfer type as SGL */
699 cmd->flags = NVME_CMD_SGL_METABUF;
700
b0f2853b 701 if (entries == 1) {
a7a7cbe3
CK
702 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
703 return BLK_STS_OK;
704 }
705
706 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
707 pool = dev->prp_small_pool;
c372cdd1 708 iod->nr_allocations = 0;
a7a7cbe3
CK
709 } else {
710 pool = dev->prp_page_pool;
c372cdd1 711 iod->nr_allocations = 1;
a7a7cbe3
CK
712 }
713
714 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
715 if (!sg_list) {
c372cdd1 716 iod->nr_allocations = -1;
a7a7cbe3
CK
717 return BLK_STS_RESOURCE;
718 }
719
7846c1b5 720 iod->list[0].sg_list = sg_list;
a7a7cbe3
CK
721 iod->first_dma = sgl_dma;
722
723 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
a7a7cbe3 724 do {
a7a7cbe3 725 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 726 sg = sg_next(sg);
b0f2853b 727 } while (--entries > 0);
a7a7cbe3 728
a7a7cbe3
CK
729 return BLK_STS_OK;
730}
731
dff824b2
CH
732static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
733 struct request *req, struct nvme_rw_command *cmnd,
734 struct bio_vec *bv)
735{
736 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
6c3c05b0
CK
737 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
738 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
dff824b2
CH
739
740 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
741 if (dma_mapping_error(dev->dev, iod->first_dma))
742 return BLK_STS_RESOURCE;
743 iod->dma_len = bv->bv_len;
744
745 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
746 if (bv->bv_len > first_prp_len)
747 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
a56ea614
LR
748 else
749 cmnd->dptr.prp2 = 0;
359c1f88 750 return BLK_STS_OK;
dff824b2
CH
751}
752
29791057
CH
753static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
754 struct request *req, struct nvme_rw_command *cmnd,
755 struct bio_vec *bv)
756{
757 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
758
759 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
760 if (dma_mapping_error(dev->dev, iod->first_dma))
761 return BLK_STS_RESOURCE;
762 iod->dma_len = bv->bv_len;
763
049bf372 764 cmnd->flags = NVME_CMD_SGL_METABUF;
29791057
CH
765 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
766 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
767 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
359c1f88 768 return BLK_STS_OK;
29791057
CH
769}
770
fc17b653 771static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 772 struct nvme_command *cmnd)
d29ec824 773{
f4800d6d 774 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
70479b71 775 blk_status_t ret = BLK_STS_RESOURCE;
91fb2b60 776 int rc;
d29ec824 777
dff824b2 778 if (blk_rq_nr_phys_segments(req) == 1) {
a53232cb 779 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
dff824b2
CH
780 struct bio_vec bv = req_bvec(req);
781
782 if (!is_pci_p2pdma_page(bv.bv_page)) {
6c3c05b0 783 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
dff824b2
CH
784 return nvme_setup_prp_simple(dev, req,
785 &cmnd->rw, &bv);
29791057 786
a53232cb 787 if (nvmeq->qid && sgl_threshold &&
253a0b76 788 nvme_ctrl_sgl_supported(&dev->ctrl))
29791057
CH
789 return nvme_setup_sgl_simple(dev, req,
790 &cmnd->rw, &bv);
dff824b2
CH
791 }
792 }
793
794 iod->dma_len = 0;
91fb2b60
LG
795 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
796 if (!iod->sgt.sgl)
d43f1ccf 797 return BLK_STS_RESOURCE;
91fb2b60
LG
798 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
799 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
800 if (!iod->sgt.orig_nents)
fa073216 801 goto out_free_sg;
d29ec824 802
91fb2b60
LG
803 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
804 DMA_ATTR_NO_WARN);
805 if (rc) {
806 if (rc == -EREMOTEIO)
807 ret = BLK_STS_TARGET;
fa073216 808 goto out_free_sg;
91fb2b60 809 }
d29ec824 810
b6c0c237 811 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
91fb2b60 812 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
a7a7cbe3
CK
813 else
814 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
86eea289 815 if (ret != BLK_STS_OK)
fa073216
CH
816 goto out_unmap_sg;
817 return BLK_STS_OK;
818
819out_unmap_sg:
91fb2b60 820 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
fa073216 821out_free_sg:
91fb2b60 822 mempool_free(iod->sgt.sgl, dev->iod_mempool);
4aedb705
CH
823 return ret;
824}
3045c0d0 825
4aedb705
CH
826static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
827 struct nvme_command *cmnd)
828{
829 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
00df5cb4 830
4aedb705
CH
831 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
832 rq_dma_dir(req), 0);
833 if (dma_mapping_error(dev->dev, iod->meta_dma))
834 return BLK_STS_IOERR;
835 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
359c1f88 836 return BLK_STS_OK;
00df5cb4
MW
837}
838
62451a2b 839static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
edd10d33 840{
9b048119 841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ebe6d874 842 blk_status_t ret;
e1e5e564 843
52da4f3f 844 iod->aborted = false;
c372cdd1 845 iod->nr_allocations = -1;
91fb2b60 846 iod->sgt.nents = 0;
9b048119 847
62451a2b 848 ret = nvme_setup_cmd(req->q->queuedata, req);
fc17b653 849 if (ret)
f4800d6d 850 return ret;
a4aea562 851
fc17b653 852 if (blk_rq_nr_phys_segments(req)) {
62451a2b 853 ret = nvme_map_data(dev, req, &iod->cmd);
fc17b653 854 if (ret)
9b048119 855 goto out_free_cmd;
fc17b653 856 }
a4aea562 857
4aedb705 858 if (blk_integrity_rq(req)) {
62451a2b 859 ret = nvme_map_metadata(dev, req, &iod->cmd);
4aedb705
CH
860 if (ret)
861 goto out_unmap_data;
862 }
863
6887fc64 864 nvme_start_request(req);
fc17b653 865 return BLK_STS_OK;
4aedb705
CH
866out_unmap_data:
867 nvme_unmap_data(dev, req);
f9d03f96
CH
868out_free_cmd:
869 nvme_cleanup_cmd(req);
ba1ca37e 870 return ret;
b60503ba 871}
e1e5e564 872
62451a2b
JA
873/*
874 * NOTE: ns is NULL when called on the admin queue.
875 */
876static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
877 const struct blk_mq_queue_data *bd)
878{
879 struct nvme_queue *nvmeq = hctx->driver_data;
880 struct nvme_dev *dev = nvmeq->dev;
881 struct request *req = bd->rq;
882 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
883 blk_status_t ret;
884
885 /*
886 * We should not need to do this, but we're still using this to
887 * ensure we can drain requests on a dying queue.
888 */
889 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
890 return BLK_STS_IOERR;
891
892 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
893 return nvme_fail_nonready_command(&dev->ctrl, req);
894
895 ret = nvme_prep_rq(dev, req);
896 if (unlikely(ret))
897 return ret;
898 spin_lock(&nvmeq->sq_lock);
899 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
900 nvme_write_sq_db(nvmeq, bd->last);
901 spin_unlock(&nvmeq->sq_lock);
902 return BLK_STS_OK;
903}
904
d62cbcf6
JA
905static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
906{
907 spin_lock(&nvmeq->sq_lock);
908 while (!rq_list_empty(*rqlist)) {
909 struct request *req = rq_list_pop(rqlist);
910 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911
912 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
913 }
914 nvme_write_sq_db(nvmeq, true);
915 spin_unlock(&nvmeq->sq_lock);
916}
917
918static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
919{
920 /*
921 * We should not need to do this, but we're still using this to
922 * ensure we can drain requests on a dying queue.
923 */
924 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
925 return false;
926 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
927 return false;
928
929 req->mq_hctx->tags->rqs[req->tag] = req;
930 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
931}
932
933static void nvme_queue_rqs(struct request **rqlist)
934{
6bfec799 935 struct request *req, *next, *prev = NULL;
d62cbcf6
JA
936 struct request *requeue_list = NULL;
937
6bfec799 938 rq_list_for_each_safe(rqlist, req, next) {
d62cbcf6
JA
939 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
940
941 if (!nvme_prep_rq_batch(nvmeq, req)) {
942 /* detach 'req' and add to remainder list */
6bfec799
KB
943 rq_list_move(rqlist, &requeue_list, req, prev);
944
945 req = prev;
946 if (!req)
947 continue;
d62cbcf6
JA
948 }
949
6bfec799 950 if (!next || req->mq_hctx != next->mq_hctx) {
d62cbcf6 951 /* detach rest of list, and submit */
6bfec799 952 req->rq_next = NULL;
d62cbcf6 953 nvme_submit_cmds(nvmeq, rqlist);
6bfec799
KB
954 *rqlist = next;
955 prev = NULL;
956 } else
957 prev = req;
958 }
d62cbcf6
JA
959
960 *rqlist = requeue_list;
961}
962
c234a653 963static __always_inline void nvme_pci_unmap_rq(struct request *req)
eee417b0 964{
a53232cb
KB
965 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
966 struct nvme_dev *dev = nvmeq->dev;
967
968 if (blk_integrity_rq(req)) {
969 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 970
4aedb705
CH
971 dma_unmap_page(dev->dev, iod->meta_dma,
972 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
a53232cb
KB
973 }
974
b15c592d 975 if (blk_rq_nr_phys_segments(req))
4aedb705 976 nvme_unmap_data(dev, req);
c234a653
JA
977}
978
979static void nvme_pci_complete_rq(struct request *req)
980{
981 nvme_pci_unmap_rq(req);
77f02a7a 982 nvme_complete_rq(req);
b60503ba
MW
983}
984
c234a653
JA
985static void nvme_pci_complete_batch(struct io_comp_batch *iob)
986{
987 nvme_complete_batch(iob, nvme_pci_unmap_rq);
988}
989
d783e0bd 990/* We read the CQE phase first to check if the rest of the entry is valid */
750dde44 991static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
d783e0bd 992{
74943d45
KB
993 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
994
995 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
d783e0bd
MR
996}
997
eb281c82 998static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 999{
eb281c82 1000 u16 head = nvmeq->cq_head;
adf68f21 1001
397c699f
KB
1002 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1003 nvmeq->dbbuf_cq_ei))
1004 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
eb281c82 1005}
aae239e1 1006
cfa27356
CH
1007static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1008{
1009 if (!nvmeq->qid)
1010 return nvmeq->dev->admin_tagset.tags[0];
1011 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1012}
1013
c234a653
JA
1014static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1015 struct io_comp_batch *iob, u16 idx)
83a12fb7 1016{
74943d45 1017 struct nvme_completion *cqe = &nvmeq->cqes[idx];
62df8016 1018 __u16 command_id = READ_ONCE(cqe->command_id);
83a12fb7 1019 struct request *req;
adf68f21 1020
83a12fb7
SG
1021 /*
1022 * AEN requests are special as they don't time out and can
1023 * survive any kind of queue freeze and often don't respond to
1024 * aborts. We don't even bother to allocate a struct request
1025 * for them but rather special case them here.
1026 */
62df8016 1027 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
83a12fb7
SG
1028 nvme_complete_async_event(&nvmeq->dev->ctrl,
1029 cqe->status, &cqe->result);
a0fa9647 1030 return;
83a12fb7 1031 }
b60503ba 1032
e7006de6 1033 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
50b7c243
XT
1034 if (unlikely(!req)) {
1035 dev_warn(nvmeq->dev->ctrl.device,
1036 "invalid id %d completed on queue %d\n",
62df8016 1037 command_id, le16_to_cpu(cqe->sq_id));
50b7c243
XT
1038 return;
1039 }
1040
604c01d5 1041 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
c234a653
JA
1042 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1043 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1044 nvme_pci_complete_batch))
ff029451 1045 nvme_pci_complete_rq(req);
83a12fb7 1046}
b60503ba 1047
5cb525c8
JA
1048static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1049{
a0aac973 1050 u32 tmp = nvmeq->cq_head + 1;
a8de6639
AD
1051
1052 if (tmp == nvmeq->q_depth) {
5cb525c8 1053 nvmeq->cq_head = 0;
e2a366a4 1054 nvmeq->cq_phase ^= 1;
a8de6639
AD
1055 } else {
1056 nvmeq->cq_head = tmp;
b60503ba 1057 }
a0fa9647
JA
1058}
1059
c234a653
JA
1060static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1061 struct io_comp_batch *iob)
a0fa9647 1062{
1052b8ac 1063 int found = 0;
b60503ba 1064
1052b8ac 1065 while (nvme_cqe_pending(nvmeq)) {
bf392a5d 1066 found++;
b69e2ef2
KB
1067 /*
1068 * load-load control dependency between phase and the rest of
1069 * the cqe requires a full read memory barrier
1070 */
1071 dma_rmb();
c234a653 1072 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
5cb525c8 1073 nvme_update_cq_head(nvmeq);
920d13a8 1074 }
eb281c82 1075
324b494c 1076 if (found)
920d13a8 1077 nvme_ring_cq_doorbell(nvmeq);
5cb525c8 1078 return found;
b60503ba
MW
1079}
1080
1081static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5 1082{
58ffacb5 1083 struct nvme_queue *nvmeq = data;
4f502245 1084 DEFINE_IO_COMP_BATCH(iob);
5cb525c8 1085
4f502245
JA
1086 if (nvme_poll_cq(nvmeq, &iob)) {
1087 if (!rq_list_empty(iob.req_list))
1088 nvme_pci_complete_batch(&iob);
05fae499 1089 return IRQ_HANDLED;
4f502245 1090 }
05fae499 1091 return IRQ_NONE;
58ffacb5
MW
1092}
1093
1094static irqreturn_t nvme_irq_check(int irq, void *data)
1095{
1096 struct nvme_queue *nvmeq = data;
4e523547 1097
750dde44 1098 if (nvme_cqe_pending(nvmeq))
d783e0bd
MR
1099 return IRQ_WAKE_THREAD;
1100 return IRQ_NONE;
58ffacb5
MW
1101}
1102
0b2a8a9f 1103/*
fa059b85 1104 * Poll for completions for any interrupt driven queue
0b2a8a9f
CH
1105 * Can be called from any context.
1106 */
fa059b85 1107static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
a0fa9647 1108{
3a7afd8e 1109 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
a0fa9647 1110
fa059b85 1111 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
442e19b7 1112
fa059b85 1113 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
c234a653 1114 nvme_poll_cq(nvmeq, NULL);
fa059b85 1115 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
a0fa9647
JA
1116}
1117
5a72e899 1118static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
dabcefab
JA
1119{
1120 struct nvme_queue *nvmeq = hctx->driver_data;
dabcefab
JA
1121 bool found;
1122
1123 if (!nvme_cqe_pending(nvmeq))
1124 return 0;
1125
3a7afd8e 1126 spin_lock(&nvmeq->cq_poll_lock);
c234a653 1127 found = nvme_poll_cq(nvmeq, iob);
3a7afd8e 1128 spin_unlock(&nvmeq->cq_poll_lock);
dabcefab 1129
dabcefab
JA
1130 return found;
1131}
1132
ad22c355 1133static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 1134{
f866fc42 1135 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 1136 struct nvme_queue *nvmeq = &dev->queues[0];
f66e2804 1137 struct nvme_command c = { };
b60503ba 1138
a4aea562 1139 c.common.opcode = nvme_admin_async_event;
ad22c355 1140 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
3233b94c
JA
1141
1142 spin_lock(&nvmeq->sq_lock);
1143 nvme_sq_copy_cmd(nvmeq, &c);
1144 nvme_write_sq_db(nvmeq, true);
1145 spin_unlock(&nvmeq->sq_lock);
f705f837
CH
1146}
1147
b60503ba 1148static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1149{
f66e2804 1150 struct nvme_command c = { };
b60503ba 1151
b60503ba
MW
1152 c.delete_queue.opcode = opcode;
1153 c.delete_queue.qid = cpu_to_le16(id);
1154
1c63dc66 1155 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1156}
1157
b60503ba 1158static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
a8e3e0bb 1159 struct nvme_queue *nvmeq, s16 vector)
b60503ba 1160{
f66e2804 1161 struct nvme_command c = { };
4b04cc6a
JA
1162 int flags = NVME_QUEUE_PHYS_CONTIG;
1163
7c349dde 1164 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
4b04cc6a 1165 flags |= NVME_CQ_IRQ_ENABLED;
b60503ba 1166
d29ec824 1167 /*
16772ae6 1168 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1169 * is attached to the request.
1170 */
b60503ba
MW
1171 c.create_cq.opcode = nvme_admin_create_cq;
1172 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1173 c.create_cq.cqid = cpu_to_le16(qid);
1174 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1175 c.create_cq.cq_flags = cpu_to_le16(flags);
7c349dde 1176 c.create_cq.irq_vector = cpu_to_le16(vector);
b60503ba 1177
1c63dc66 1178 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1179}
1180
1181static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1182 struct nvme_queue *nvmeq)
1183{
9abd68ef 1184 struct nvme_ctrl *ctrl = &dev->ctrl;
f66e2804 1185 struct nvme_command c = { };
81c1cd98 1186 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1187
9abd68ef
JA
1188 /*
1189 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1190 * set. Since URGENT priority is zeroes, it makes all queues
1191 * URGENT.
1192 */
1193 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1194 flags |= NVME_SQ_PRIO_MEDIUM;
1195
d29ec824 1196 /*
16772ae6 1197 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1198 * is attached to the request.
1199 */
b60503ba
MW
1200 c.create_sq.opcode = nvme_admin_create_sq;
1201 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1202 c.create_sq.sqid = cpu_to_le16(qid);
1203 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1204 c.create_sq.sq_flags = cpu_to_le16(flags);
1205 c.create_sq.cqid = cpu_to_le16(qid);
1206
1c63dc66 1207 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1208}
1209
1210static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1211{
1212 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1213}
1214
1215static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1216{
1217 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1218}
1219
de671d61 1220static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1221{
a53232cb 1222 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
e44ac588 1223
27fa9bc5
CH
1224 dev_warn(nvmeq->dev->ctrl.device,
1225 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1226 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1227 blk_mq_free_request(req);
de671d61 1228 return RQ_END_IO_NONE;
bc5fc7e4
MW
1229}
1230
b2a0eb1a
KB
1231static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1232{
b2a0eb1a
KB
1233 /* If true, indicates loss of adapter communication, possibly by a
1234 * NVMe Subsystem reset.
1235 */
1236 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1237
ad70062c
JW
1238 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1239 switch (dev->ctrl.state) {
1240 case NVME_CTRL_RESETTING:
ad6a0a52 1241 case NVME_CTRL_CONNECTING:
b2a0eb1a 1242 return false;
ad70062c
JW
1243 default:
1244 break;
1245 }
b2a0eb1a
KB
1246
1247 /* We shouldn't reset unless the controller is on fatal error state
1248 * _or_ if we lost the communication with it.
1249 */
1250 if (!(csts & NVME_CSTS_CFS) && !nssro)
1251 return false;
1252
b2a0eb1a
KB
1253 return true;
1254}
1255
1256static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1257{
1258 /* Read a config register to help see what died. */
1259 u16 pci_status;
1260 int result;
1261
1262 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1263 &pci_status);
1264 if (result == PCIBIOS_SUCCESSFUL)
1265 dev_warn(dev->ctrl.device,
1266 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1267 csts, pci_status);
1268 else
1269 dev_warn(dev->ctrl.device,
1270 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1271 csts, result);
4641a8e6
KB
1272
1273 if (csts != ~0)
1274 return;
1275
1276 dev_warn(dev->ctrl.device,
1277 "Does your device have a faulty power saving mode enabled?\n");
1278 dev_warn(dev->ctrl.device,
1279 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
b2a0eb1a
KB
1280}
1281
9bdb4833 1282static enum blk_eh_timer_return nvme_timeout(struct request *req)
c30341dc 1283{
f4800d6d 1284 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a53232cb 1285 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
c30341dc 1286 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1287 struct request *abort_req;
f66e2804 1288 struct nvme_command cmd = { };
b2a0eb1a
KB
1289 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1290
651438bb
WX
1291 /* If PCI error recovery process is happening, we cannot reset or
1292 * the recovery mechanism will surely fail.
1293 */
1294 mb();
1295 if (pci_channel_offline(to_pci_dev(dev->dev)))
1296 return BLK_EH_RESET_TIMER;
1297
b2a0eb1a
KB
1298 /*
1299 * Reset immediately if the controller is failed
1300 */
1301 if (nvme_should_reset(dev, csts)) {
1302 nvme_warn_reset(dev, csts);
1303 nvme_dev_disable(dev, false);
d86c4d8e 1304 nvme_reset_ctrl(&dev->ctrl);
db8c48e4 1305 return BLK_EH_DONE;
b2a0eb1a 1306 }
c30341dc 1307
7776db1c
KB
1308 /*
1309 * Did we miss an interrupt?
1310 */
fa059b85 1311 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
5a72e899 1312 nvme_poll(req->mq_hctx, NULL);
fa059b85
KB
1313 else
1314 nvme_poll_irqdisable(nvmeq);
1315
1c584208 1316 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
7776db1c
KB
1317 dev_warn(dev->ctrl.device,
1318 "I/O %d QID %d timeout, completion polled\n",
1319 req->tag, nvmeq->qid);
db8c48e4 1320 return BLK_EH_DONE;
7776db1c
KB
1321 }
1322
31c7c7d2 1323 /*
fd634f41
CH
1324 * Shutdown immediately if controller times out while starting. The
1325 * reset work will see the pci device disabled when it gets the forced
1326 * cancellation error. All outstanding requests are completed on
db8c48e4 1327 * shutdown, so we return BLK_EH_DONE.
fd634f41 1328 */
4244140d
KB
1329 switch (dev->ctrl.state) {
1330 case NVME_CTRL_CONNECTING:
2036f726 1331 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
df561f66 1332 fallthrough;
2036f726 1333 case NVME_CTRL_DELETING:
b9cac43c 1334 dev_warn_ratelimited(dev->ctrl.device,
fd634f41
CH
1335 "I/O %d QID %d timeout, disable controller\n",
1336 req->tag, nvmeq->qid);
27fa9bc5 1337 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
7ad92f65 1338 nvme_dev_disable(dev, true);
db8c48e4 1339 return BLK_EH_DONE;
39a9dd81
KB
1340 case NVME_CTRL_RESETTING:
1341 return BLK_EH_RESET_TIMER;
4244140d
KB
1342 default:
1343 break;
c30341dc
KB
1344 }
1345
fd634f41 1346 /*
ee0d96d3
BW
1347 * Shutdown the controller immediately and schedule a reset if the
1348 * command was already aborted once before and still hasn't been
1349 * returned to the driver, or if this is the admin queue.
31c7c7d2 1350 */
f4800d6d 1351 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1352 dev_warn(dev->ctrl.device,
e1569a16
KB
1353 "I/O %d QID %d timeout, reset controller\n",
1354 req->tag, nvmeq->qid);
7ad92f65 1355 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
a5cdb68c 1356 nvme_dev_disable(dev, false);
d86c4d8e 1357 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1358
db8c48e4 1359 return BLK_EH_DONE;
c30341dc 1360 }
c30341dc 1361
e7a2a87d 1362 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1363 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1364 return BLK_EH_RESET_TIMER;
6bf25d16 1365 }
52da4f3f 1366 iod->aborted = true;
a4aea562 1367
c30341dc 1368 cmd.abort.opcode = nvme_admin_abort_cmd;
85f74acf 1369 cmd.abort.cid = nvme_cid(req);
c30341dc 1370 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1371
1b3c47c1 1372 dev_warn(nvmeq->dev->ctrl.device,
86141440
CH
1373 "I/O %d (%s) QID %d timeout, aborting\n",
1374 req->tag,
1375 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1376 nvmeq->qid);
e7a2a87d 1377
e559398f
CH
1378 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1379 BLK_MQ_REQ_NOWAIT);
e7a2a87d
CH
1380 if (IS_ERR(abort_req)) {
1381 atomic_inc(&dev->ctrl.abort_limit);
1382 return BLK_EH_RESET_TIMER;
1383 }
e559398f 1384 nvme_init_request(abort_req, &cmd);
e7a2a87d 1385
e2e53086 1386 abort_req->end_io = abort_endio;
e7a2a87d 1387 abort_req->end_io_data = NULL;
e2e53086 1388 blk_execute_rq_nowait(abort_req, false);
c30341dc 1389
31c7c7d2
CH
1390 /*
1391 * The aborted req will be completed on receiving the abort req.
1392 * We enable the timer again. If hit twice, it'll cause a device reset,
1393 * as the device then is in a faulty state.
1394 */
1395 return BLK_EH_RESET_TIMER;
c30341dc
KB
1396}
1397
a4aea562
MB
1398static void nvme_free_queue(struct nvme_queue *nvmeq)
1399{
8a1d09a6 1400 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
9e866774 1401 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
63223078
CH
1402 if (!nvmeq->sq_cmds)
1403 return;
0f238ff5 1404
63223078 1405 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
88a041f4 1406 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
8a1d09a6 1407 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1408 } else {
8a1d09a6 1409 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
63223078 1410 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
0f238ff5 1411 }
9e866774
MW
1412}
1413
a1a5ef99 1414static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1415{
1416 int i;
1417
d858e5f0 1418 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1419 dev->ctrl.queue_count--;
147b27e4 1420 nvme_free_queue(&dev->queues[i]);
121c7ad4 1421 }
22404274
KB
1422}
1423
10981f23 1424static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
b60503ba 1425{
10981f23
CH
1426 struct nvme_queue *nvmeq = &dev->queues[qid];
1427
4e224106 1428 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
10981f23 1429 return;
a09115b2 1430
4e224106 1431 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
d1f06f4a 1432 mb();
a09115b2 1433
4e224106 1434 nvmeq->dev->online_queues--;
1c63dc66 1435 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
9f27bd70 1436 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
7c349dde 1437 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
10981f23 1438 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
4d115420 1439}
b60503ba 1440
8fae268b
KB
1441static void nvme_suspend_io_queues(struct nvme_dev *dev)
1442{
1443 int i;
1444
1445 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
10981f23 1446 nvme_suspend_queue(dev, i);
b60503ba
MW
1447}
1448
fa46c6fb
KB
1449/*
1450 * Called only on a device that has been disabled and after all other threads
9210c075
DZ
1451 * that can check this device's completion queues have synced, except
1452 * nvme_poll(). This is the last chance for the driver to see a natural
1453 * completion before nvme_cancel_request() terminates all incomplete requests.
fa46c6fb
KB
1454 */
1455static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1456{
fa46c6fb
KB
1457 int i;
1458
9210c075
DZ
1459 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1460 spin_lock(&dev->queues[i].cq_poll_lock);
c234a653 1461 nvme_poll_cq(&dev->queues[i], NULL);
9210c075
DZ
1462 spin_unlock(&dev->queues[i].cq_poll_lock);
1463 }
fa46c6fb
KB
1464}
1465
8ffaadf7
JD
1466static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1467 int entry_size)
1468{
1469 int q_depth = dev->q_depth;
5fd4ce1b 1470 unsigned q_size_aligned = roundup(q_depth * entry_size,
6c3c05b0 1471 NVME_CTRL_PAGE_SIZE);
8ffaadf7
JD
1472
1473 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1474 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
4e523547 1475
6c3c05b0 1476 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
c45f5c99 1477 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1478
1479 /*
1480 * Ensure the reduced q_depth is above some threshold where it
1481 * would be better to map queues in system memory with the
1482 * original depth
1483 */
1484 if (q_depth < 64)
1485 return -ENOMEM;
1486 }
1487
1488 return q_depth;
1489}
1490
1491static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
8a1d09a6 1492 int qid)
8ffaadf7 1493{
0f238ff5
LG
1494 struct pci_dev *pdev = to_pci_dev(dev->dev);
1495
1496 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
8a1d09a6 1497 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
bfac8e9f
AM
1498 if (nvmeq->sq_cmds) {
1499 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1500 nvmeq->sq_cmds);
1501 if (nvmeq->sq_dma_addr) {
1502 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1503 return 0;
1504 }
1505
8a1d09a6 1506 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1507 }
0f238ff5 1508 }
8ffaadf7 1509
8a1d09a6 1510 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
63223078 1511 &nvmeq->sq_dma_addr, GFP_KERNEL);
815c6704
KB
1512 if (!nvmeq->sq_cmds)
1513 return -ENOMEM;
8ffaadf7
JD
1514 return 0;
1515}
1516
a6ff7262 1517static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1518{
147b27e4 1519 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1520
62314e40
KB
1521 if (dev->ctrl.queue_count > qid)
1522 return 0;
b60503ba 1523
c1e0cc7e 1524 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
8a1d09a6
BH
1525 nvmeq->q_depth = depth;
1526 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
750afb08 1527 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1528 if (!nvmeq->cqes)
1529 goto free_nvmeq;
b60503ba 1530
8a1d09a6 1531 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
b60503ba
MW
1532 goto free_cqdma;
1533
091b6092 1534 nvmeq->dev = dev;
1ab0cd69 1535 spin_lock_init(&nvmeq->sq_lock);
3a7afd8e 1536 spin_lock_init(&nvmeq->cq_poll_lock);
b60503ba 1537 nvmeq->cq_head = 0;
82123460 1538 nvmeq->cq_phase = 1;
b80d5ccc 1539 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
c30341dc 1540 nvmeq->qid = qid;
d858e5f0 1541 dev->ctrl.queue_count++;
36a7e993 1542
147b27e4 1543 return 0;
b60503ba
MW
1544
1545 free_cqdma:
8a1d09a6
BH
1546 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1547 nvmeq->cq_dma_addr);
b60503ba 1548 free_nvmeq:
147b27e4 1549 return -ENOMEM;
b60503ba
MW
1550}
1551
dca51e78 1552static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1553{
0ff199cb
CH
1554 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1555 int nr = nvmeq->dev->ctrl.instance;
1556
1557 if (use_threaded_interrupts) {
1558 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1559 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1560 } else {
1561 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1562 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1563 }
3001082c
MW
1564}
1565
22404274 1566static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1567{
22404274 1568 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1569
22404274 1570 nvmeq->sq_tail = 0;
38210800 1571 nvmeq->last_sq_tail = 0;
22404274
KB
1572 nvmeq->cq_head = 0;
1573 nvmeq->cq_phase = 1;
b80d5ccc 1574 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
8a1d09a6 1575 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
f9f38e33 1576 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1577 dev->online_queues++;
3a7afd8e 1578 wmb(); /* ensure the first interrupt sees the initialization */
22404274
KB
1579}
1580
e4b9852a
CC
1581/*
1582 * Try getting shutdown_lock while setting up IO queues.
1583 */
1584static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1585{
1586 /*
1587 * Give up if the lock is being held by nvme_dev_disable.
1588 */
1589 if (!mutex_trylock(&dev->shutdown_lock))
1590 return -ENODEV;
1591
1592 /*
1593 * Controller is in wrong state, fail early.
1594 */
1595 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1596 mutex_unlock(&dev->shutdown_lock);
1597 return -ENODEV;
1598 }
1599
1600 return 0;
1601}
1602
4b04cc6a 1603static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
22404274
KB
1604{
1605 struct nvme_dev *dev = nvmeq->dev;
1606 int result;
7c349dde 1607 u16 vector = 0;
3f85d50b 1608
d1ed6aa1
CH
1609 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1610
22b55601
KB
1611 /*
1612 * A queue's vector matches the queue identifier unless the controller
1613 * has only one vector available.
1614 */
4b04cc6a
JA
1615 if (!polled)
1616 vector = dev->num_vecs == 1 ? 0 : qid;
1617 else
7c349dde 1618 set_bit(NVMEQ_POLLED, &nvmeq->flags);
4b04cc6a 1619
a8e3e0bb 1620 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
ded45505
KB
1621 if (result)
1622 return result;
b60503ba
MW
1623
1624 result = adapter_alloc_sq(dev, qid, nvmeq);
1625 if (result < 0)
ded45505 1626 return result;
c80b36cd 1627 if (result)
b60503ba
MW
1628 goto release_cq;
1629
a8e3e0bb 1630 nvmeq->cq_vector = vector;
4b04cc6a 1631
e4b9852a
CC
1632 result = nvme_setup_io_queues_trylock(dev);
1633 if (result)
1634 return result;
1635 nvme_init_queue(nvmeq, qid);
7c349dde 1636 if (!polled) {
4b04cc6a
JA
1637 result = queue_request_irq(nvmeq);
1638 if (result < 0)
1639 goto release_sq;
1640 }
b60503ba 1641
4e224106 1642 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
e4b9852a 1643 mutex_unlock(&dev->shutdown_lock);
22404274 1644 return result;
b60503ba 1645
a8e3e0bb 1646release_sq:
f25a2dfc 1647 dev->online_queues--;
e4b9852a 1648 mutex_unlock(&dev->shutdown_lock);
b60503ba 1649 adapter_delete_sq(dev, qid);
a8e3e0bb 1650release_cq:
b60503ba 1651 adapter_delete_cq(dev, qid);
22404274 1652 return result;
b60503ba
MW
1653}
1654
f363b089 1655static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1656 .queue_rq = nvme_queue_rq,
77f02a7a 1657 .complete = nvme_pci_complete_rq,
a4aea562 1658 .init_hctx = nvme_admin_init_hctx,
e559398f 1659 .init_request = nvme_pci_init_request,
a4aea562
MB
1660 .timeout = nvme_timeout,
1661};
1662
f363b089 1663static const struct blk_mq_ops nvme_mq_ops = {
376f7ef8 1664 .queue_rq = nvme_queue_rq,
d62cbcf6 1665 .queue_rqs = nvme_queue_rqs,
376f7ef8
CH
1666 .complete = nvme_pci_complete_rq,
1667 .commit_rqs = nvme_commit_rqs,
1668 .init_hctx = nvme_init_hctx,
e559398f 1669 .init_request = nvme_pci_init_request,
376f7ef8
CH
1670 .map_queues = nvme_pci_map_queues,
1671 .timeout = nvme_timeout,
1672 .poll = nvme_poll,
dabcefab
JA
1673};
1674
ea191d2f
KB
1675static void nvme_dev_remove_admin(struct nvme_dev *dev)
1676{
1c63dc66 1677 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1678 /*
1679 * If the controller was reset during removal, it's possible
1680 * user requests may be waiting on a stopped queue. Start the
1681 * queue to flush these to completion.
1682 */
9f27bd70 1683 nvme_unquiesce_admin_queue(&dev->ctrl);
0da7feaa 1684 nvme_remove_admin_tag_set(&dev->ctrl);
ea191d2f
KB
1685 }
1686}
1687
97f6ef64
XY
1688static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1689{
1690 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1691}
1692
1693static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1694{
1695 struct pci_dev *pdev = to_pci_dev(dev->dev);
1696
1697 if (size <= dev->bar_mapped_size)
1698 return 0;
1699 if (size > pci_resource_len(pdev, 0))
1700 return -ENOMEM;
1701 if (dev->bar)
1702 iounmap(dev->bar);
1703 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1704 if (!dev->bar) {
1705 dev->bar_mapped_size = 0;
1706 return -ENOMEM;
1707 }
1708 dev->bar_mapped_size = size;
1709 dev->dbs = dev->bar + NVME_REG_DBS;
1710
1711 return 0;
1712}
1713
01ad0990 1714static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1715{
ba47e386 1716 int result;
b60503ba
MW
1717 u32 aqa;
1718 struct nvme_queue *nvmeq;
1719
97f6ef64
XY
1720 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1721 if (result < 0)
1722 return result;
1723
8ef2074d 1724 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1725 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1726
7a67cbea
CH
1727 if (dev->subsystem &&
1728 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1729 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1730
285b6e9b
CH
1731 /*
1732 * If the device has been passed off to us in an enabled state, just
1733 * clear the enabled bit. The spec says we should set the 'shutdown
1734 * notification bits', but doing so may cause the device to complete
1735 * commands to the admin queue ... and we don't know what memory that
1736 * might be pointing at!
1737 */
1738 result = nvme_disable_ctrl(&dev->ctrl, false);
ba47e386
MW
1739 if (result < 0)
1740 return result;
b60503ba 1741
a6ff7262 1742 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1743 if (result)
1744 return result;
b60503ba 1745
635333e4
MG
1746 dev->ctrl.numa_node = dev_to_node(dev->dev);
1747
147b27e4 1748 nvmeq = &dev->queues[0];
b60503ba
MW
1749 aqa = nvmeq->q_depth - 1;
1750 aqa |= aqa << 16;
1751
7a67cbea
CH
1752 writel(aqa, dev->bar + NVME_REG_AQA);
1753 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1754 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1755
c0f2f45b 1756 result = nvme_enable_ctrl(&dev->ctrl);
025c557a 1757 if (result)
d4875622 1758 return result;
a4aea562 1759
2b25d981 1760 nvmeq->cq_vector = 0;
161b8be2 1761 nvme_init_queue(nvmeq, 0);
dca51e78 1762 result = queue_request_irq(nvmeq);
758dd7fd 1763 if (result) {
7c349dde 1764 dev->online_queues--;
d4875622 1765 return result;
758dd7fd 1766 }
025c557a 1767
4e224106 1768 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
b60503ba
MW
1769 return result;
1770}
1771
749941f2 1772static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1773{
4b04cc6a 1774 unsigned i, max, rw_queues;
749941f2 1775 int ret = 0;
42f61420 1776
d858e5f0 1777 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1778 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1779 ret = -ENOMEM;
42f61420 1780 break;
749941f2
CH
1781 }
1782 }
42f61420 1783
d858e5f0 1784 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
e20ba6e1
CH
1785 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1786 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1787 dev->io_queues[HCTX_TYPE_READ];
4b04cc6a
JA
1788 } else {
1789 rw_queues = max;
1790 }
1791
949928c1 1792 for (i = dev->online_queues; i <= max; i++) {
4b04cc6a
JA
1793 bool polled = i > rw_queues;
1794
1795 ret = nvme_create_queue(&dev->queues[i], i, polled);
d4875622 1796 if (ret)
42f61420 1797 break;
27e8166c 1798 }
749941f2
CH
1799
1800 /*
1801 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1802 * than the desired amount of queues, and even a controller without
1803 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1804 * be useful to upgrade a buggy firmware for example.
1805 */
1806 return ret >= 0 ? 0 : ret;
b60503ba
MW
1807}
1808
88de4598 1809static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1810{
88de4598
CH
1811 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1812
1813 return 1ULL << (12 + 4 * szu);
1814}
1815
1816static u32 nvme_cmb_size(struct nvme_dev *dev)
1817{
1818 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1819}
1820
f65efd6d 1821static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1822{
88de4598 1823 u64 size, offset;
8ffaadf7
JD
1824 resource_size_t bar_size;
1825 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1826 int bar;
8ffaadf7 1827
9fe5c59f
KB
1828 if (dev->cmb_size)
1829 return;
1830
20d3bb92
KJ
1831 if (NVME_CAP_CMBS(dev->ctrl.cap))
1832 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1833
7a67cbea 1834 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1835 if (!dev->cmbsz)
1836 return;
202021c1 1837 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1838
88de4598
CH
1839 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1840 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1841 bar = NVME_CMB_BIR(dev->cmbloc);
1842 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1843
1844 if (offset > bar_size)
f65efd6d 1845 return;
8ffaadf7 1846
20d3bb92
KJ
1847 /*
1848 * Tell the controller about the host side address mapping the CMB,
1849 * and enable CMB decoding for the NVMe 1.4+ scheme:
1850 */
1851 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1852 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1853 (pci_bus_address(pdev, bar) + offset),
1854 dev->bar + NVME_REG_CMBMSC);
1855 }
1856
8ffaadf7
JD
1857 /*
1858 * Controllers may support a CMB size larger than their BAR,
1859 * for example, due to being behind a bridge. Reduce the CMB to
1860 * the reported size of the BAR
1861 */
1862 if (size > bar_size - offset)
1863 size = bar_size - offset;
1864
0f238ff5
LG
1865 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1866 dev_warn(dev->ctrl.device,
1867 "failed to register the CMB\n");
f65efd6d 1868 return;
0f238ff5
LG
1869 }
1870
8ffaadf7 1871 dev->cmb_size = size;
0f238ff5
LG
1872 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1873
1874 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1875 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1876 pci_p2pmem_publish(pdev, true);
e917a849
KB
1877
1878 nvme_update_attrs(dev);
8ffaadf7
JD
1879}
1880
87ad72a5
CH
1881static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1882{
6c3c05b0 1883 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
4033f35d 1884 u64 dma_addr = dev->host_mem_descs_dma;
f66e2804 1885 struct nvme_command c = { };
87ad72a5
CH
1886 int ret;
1887
87ad72a5
CH
1888 c.features.opcode = nvme_admin_set_features;
1889 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1890 c.features.dword11 = cpu_to_le32(bits);
6c3c05b0 1891 c.features.dword12 = cpu_to_le32(host_mem_size);
87ad72a5
CH
1892 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1893 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1894 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1895
1896 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1897 if (ret) {
1898 dev_warn(dev->ctrl.device,
1899 "failed to set host mem (err %d, flags %#x).\n",
1900 ret, bits);
a5df5e79
KB
1901 } else
1902 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1903
87ad72a5
CH
1904 return ret;
1905}
1906
1907static void nvme_free_host_mem(struct nvme_dev *dev)
1908{
1909 int i;
1910
1911 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1912 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
6c3c05b0 1913 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 1914
cc667f6d
LD
1915 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1916 le64_to_cpu(desc->addr),
1917 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1918 }
1919
1920 kfree(dev->host_mem_desc_bufs);
1921 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
1922 dma_free_coherent(dev->dev,
1923 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1924 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 1925 dev->host_mem_descs = NULL;
7e5dd57e 1926 dev->nr_host_mem_descs = 0;
87ad72a5
CH
1927}
1928
92dc6895
CH
1929static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1930 u32 chunk_size)
9d713c2b 1931{
87ad72a5 1932 struct nvme_host_mem_buf_desc *descs;
92dc6895 1933 u32 max_entries, len;
4033f35d 1934 dma_addr_t descs_dma;
2ee0e4ed 1935 int i = 0;
87ad72a5 1936 void **bufs;
6fbcde66 1937 u64 size, tmp;
87ad72a5 1938
87ad72a5
CH
1939 tmp = (preferred + chunk_size - 1);
1940 do_div(tmp, chunk_size);
1941 max_entries = tmp;
044a9df1
CH
1942
1943 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1944 max_entries = dev->ctrl.hmmaxd;
1945
750afb08
LC
1946 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1947 &descs_dma, GFP_KERNEL);
87ad72a5
CH
1948 if (!descs)
1949 goto out;
1950
1951 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1952 if (!bufs)
1953 goto out_free_descs;
1954
244a8fe4 1955 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
1956 dma_addr_t dma_addr;
1957
50cdb7c6 1958 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1959 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1960 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1961 if (!bufs[i])
1962 break;
1963
1964 descs[i].addr = cpu_to_le64(dma_addr);
6c3c05b0 1965 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
87ad72a5
CH
1966 i++;
1967 }
1968
92dc6895 1969 if (!size)
87ad72a5 1970 goto out_free_bufs;
87ad72a5 1971
87ad72a5
CH
1972 dev->nr_host_mem_descs = i;
1973 dev->host_mem_size = size;
1974 dev->host_mem_descs = descs;
4033f35d 1975 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
1976 dev->host_mem_desc_bufs = bufs;
1977 return 0;
1978
1979out_free_bufs:
1980 while (--i >= 0) {
6c3c05b0 1981 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 1982
cc667f6d
LD
1983 dma_free_attrs(dev->dev, size, bufs[i],
1984 le64_to_cpu(descs[i].addr),
1985 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1986 }
1987
1988 kfree(bufs);
1989out_free_descs:
4033f35d
CH
1990 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1991 descs_dma);
87ad72a5 1992out:
87ad72a5
CH
1993 dev->host_mem_descs = NULL;
1994 return -ENOMEM;
1995}
1996
92dc6895
CH
1997static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1998{
9dc54a0d
CK
1999 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2000 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2001 u64 chunk_size;
92dc6895
CH
2002
2003 /* start big and work our way down */
9dc54a0d 2004 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
92dc6895
CH
2005 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2006 if (!min || dev->host_mem_size >= min)
2007 return 0;
2008 nvme_free_host_mem(dev);
2009 }
2010 }
2011
2012 return -ENOMEM;
2013}
2014
9620cfba 2015static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
2016{
2017 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2018 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2019 u64 min = (u64)dev->ctrl.hmmin * 4096;
2020 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 2021 int ret;
87ad72a5 2022
acb71e53
CH
2023 if (!dev->ctrl.hmpre)
2024 return 0;
2025
87ad72a5
CH
2026 preferred = min(preferred, max);
2027 if (min > max) {
2028 dev_warn(dev->ctrl.device,
2029 "min host memory (%lld MiB) above limit (%d MiB).\n",
2030 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2031 nvme_free_host_mem(dev);
9620cfba 2032 return 0;
87ad72a5
CH
2033 }
2034
2035 /*
2036 * If we already have a buffer allocated check if we can reuse it.
2037 */
2038 if (dev->host_mem_descs) {
2039 if (dev->host_mem_size >= min)
2040 enable_bits |= NVME_HOST_MEM_RETURN;
2041 else
2042 nvme_free_host_mem(dev);
2043 }
2044
2045 if (!dev->host_mem_descs) {
92dc6895
CH
2046 if (nvme_alloc_host_mem(dev, min, preferred)) {
2047 dev_warn(dev->ctrl.device,
2048 "failed to allocate host memory buffer.\n");
9620cfba 2049 return 0; /* controller must work without HMB */
92dc6895
CH
2050 }
2051
2052 dev_info(dev->ctrl.device,
2053 "allocated %lld MiB host memory buffer.\n",
2054 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
2055 }
2056
9620cfba
CH
2057 ret = nvme_set_host_mem(dev, enable_bits);
2058 if (ret)
87ad72a5 2059 nvme_free_host_mem(dev);
9620cfba 2060 return ret;
9d713c2b
KB
2061}
2062
0521905e
KB
2063static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2064 char *buf)
2065{
2066 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2067
2068 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2069 ndev->cmbloc, ndev->cmbsz);
2070}
2071static DEVICE_ATTR_RO(cmb);
2072
1751e97a
KB
2073static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2074 char *buf)
2075{
2076 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2077
2078 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2079}
2080static DEVICE_ATTR_RO(cmbloc);
2081
2082static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2083 char *buf)
2084{
2085 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2086
2087 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2088}
2089static DEVICE_ATTR_RO(cmbsz);
2090
a5df5e79
KB
2091static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2092 char *buf)
2093{
2094 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2095
2096 return sysfs_emit(buf, "%d\n", ndev->hmb);
2097}
2098
2099static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2100 const char *buf, size_t count)
2101{
2102 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2103 bool new;
2104 int ret;
2105
99722c8a 2106 if (kstrtobool(buf, &new) < 0)
a5df5e79
KB
2107 return -EINVAL;
2108
2109 if (new == ndev->hmb)
2110 return count;
2111
2112 if (new) {
2113 ret = nvme_setup_host_mem(ndev);
2114 } else {
2115 ret = nvme_set_host_mem(ndev, 0);
2116 if (!ret)
2117 nvme_free_host_mem(ndev);
2118 }
2119
2120 if (ret < 0)
2121 return ret;
2122
2123 return count;
2124}
2125static DEVICE_ATTR_RW(hmb);
2126
0521905e
KB
2127static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2128 struct attribute *a, int n)
2129{
2130 struct nvme_ctrl *ctrl =
2131 dev_get_drvdata(container_of(kobj, struct device, kobj));
2132 struct nvme_dev *dev = to_nvme_dev(ctrl);
2133
1751e97a
KB
2134 if (a == &dev_attr_cmb.attr ||
2135 a == &dev_attr_cmbloc.attr ||
2136 a == &dev_attr_cmbsz.attr) {
2137 if (!dev->cmbsz)
2138 return 0;
2139 }
a5df5e79
KB
2140 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2141 return 0;
2142
0521905e
KB
2143 return a->mode;
2144}
2145
2146static struct attribute *nvme_pci_attrs[] = {
2147 &dev_attr_cmb.attr,
1751e97a
KB
2148 &dev_attr_cmbloc.attr,
2149 &dev_attr_cmbsz.attr,
a5df5e79 2150 &dev_attr_hmb.attr,
0521905e
KB
2151 NULL,
2152};
2153
86adbf0c 2154static const struct attribute_group nvme_pci_dev_attrs_group = {
0521905e
KB
2155 .attrs = nvme_pci_attrs,
2156 .is_visible = nvme_pci_attrs_are_visible,
2157};
2158
86adbf0c
CH
2159static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2160 &nvme_dev_attrs_group,
2161 &nvme_pci_dev_attrs_group,
2162 NULL,
2163};
2164
e917a849
KB
2165static void nvme_update_attrs(struct nvme_dev *dev)
2166{
2167 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2168}
2169
612b7286
ML
2170/*
2171 * nirqs is the number of interrupts available for write and read
2172 * queues. The core already reserved an interrupt for the admin queue.
2173 */
2174static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
3b6592f7 2175{
612b7286 2176 struct nvme_dev *dev = affd->priv;
2a5bcfdd 2177 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
3b6592f7
JA
2178
2179 /*
ee0d96d3 2180 * If there is no interrupt available for queues, ensure that
612b7286
ML
2181 * the default queue is set to 1. The affinity set size is
2182 * also set to one, but the irq core ignores it for this case.
2183 *
2184 * If only one interrupt is available or 'write_queue' == 0, combine
2185 * write and read queues.
2186 *
2187 * If 'write_queues' > 0, ensure it leaves room for at least one read
2188 * queue.
3b6592f7 2189 */
612b7286
ML
2190 if (!nrirqs) {
2191 nrirqs = 1;
2192 nr_read_queues = 0;
2a5bcfdd 2193 } else if (nrirqs == 1 || !nr_write_queues) {
612b7286 2194 nr_read_queues = 0;
2a5bcfdd 2195 } else if (nr_write_queues >= nrirqs) {
612b7286 2196 nr_read_queues = 1;
3b6592f7 2197 } else {
2a5bcfdd 2198 nr_read_queues = nrirqs - nr_write_queues;
3b6592f7 2199 }
612b7286
ML
2200
2201 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2202 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2203 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2204 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2205 affd->nr_sets = nr_read_queues ? 2 : 1;
3b6592f7
JA
2206}
2207
6451fe73 2208static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
3b6592f7
JA
2209{
2210 struct pci_dev *pdev = to_pci_dev(dev->dev);
3b6592f7 2211 struct irq_affinity affd = {
9cfef55b 2212 .pre_vectors = 1,
612b7286
ML
2213 .calc_sets = nvme_calc_irq_sets,
2214 .priv = dev,
3b6592f7 2215 };
21cc2f3f 2216 unsigned int irq_queues, poll_queues;
6451fe73
JA
2217
2218 /*
21cc2f3f
JX
2219 * Poll queues don't need interrupts, but we need at least one I/O queue
2220 * left over for non-polled I/O.
6451fe73 2221 */
21cc2f3f
JX
2222 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2223 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
3b6592f7 2224
21cc2f3f
JX
2225 /*
2226 * Initialize for the single interrupt case, will be updated in
2227 * nvme_calc_irq_sets().
2228 */
612b7286
ML
2229 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2230 dev->io_queues[HCTX_TYPE_READ] = 0;
3b6592f7 2231
66341331 2232 /*
21cc2f3f
JX
2233 * We need interrupts for the admin queue and each non-polled I/O queue,
2234 * but some Apple controllers require all queues to use the first
2235 * vector.
66341331 2236 */
21cc2f3f
JX
2237 irq_queues = 1;
2238 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2239 irq_queues += (nr_io_queues - poll_queues);
612b7286
ML
2240 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2241 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
3b6592f7
JA
2242}
2243
2a5bcfdd
WZ
2244static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2245{
e3aef095
NS
2246 /*
2247 * If tags are shared with admin queue (Apple bug), then
2248 * make sure we only use one IO queue.
2249 */
2250 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2251 return 1;
2a5bcfdd
WZ
2252 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2253}
2254
8d85fce7 2255static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2256{
147b27e4 2257 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 2258 struct pci_dev *pdev = to_pci_dev(dev->dev);
2a5bcfdd 2259 unsigned int nr_io_queues;
97f6ef64 2260 unsigned long size;
2a5bcfdd 2261 int result;
b60503ba 2262
2a5bcfdd
WZ
2263 /*
2264 * Sample the module parameters once at reset time so that we have
2265 * stable values to work with.
2266 */
2267 dev->nr_write_queues = write_queues;
2268 dev->nr_poll_queues = poll_queues;
d38e9f04 2269
e3aef095 2270 nr_io_queues = dev->nr_allocated_queues - 1;
9a0be7ab
CH
2271 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2272 if (result < 0)
1b23484b 2273 return result;
9a0be7ab 2274
f5fa90dc 2275 if (nr_io_queues == 0)
a5229050 2276 return 0;
53dc180e 2277
e4b9852a
CC
2278 /*
2279 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2280 * from set to unset. If there is a window to it is truely freed,
2281 * pci_free_irq_vectors() jumping into this window will crash.
2282 * And take lock to avoid racing with pci_free_irq_vectors() in
2283 * nvme_dev_disable() path.
2284 */
2285 result = nvme_setup_io_queues_trylock(dev);
2286 if (result)
2287 return result;
2288 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2289 pci_free_irq(pdev, 0, adminq);
b60503ba 2290
0f238ff5 2291 if (dev->cmb_use_sqes) {
8ffaadf7
JD
2292 result = nvme_cmb_qdepth(dev, nr_io_queues,
2293 sizeof(struct nvme_command));
88d356ca 2294 if (result > 0) {
8ffaadf7 2295 dev->q_depth = result;
88d356ca
CH
2296 dev->ctrl.sqsize = result - 1;
2297 } else {
0f238ff5 2298 dev->cmb_use_sqes = false;
88d356ca 2299 }
8ffaadf7
JD
2300 }
2301
97f6ef64
XY
2302 do {
2303 size = db_bar_size(dev, nr_io_queues);
2304 result = nvme_remap_bar(dev, size);
2305 if (!result)
2306 break;
e4b9852a
CC
2307 if (!--nr_io_queues) {
2308 result = -ENOMEM;
2309 goto out_unlock;
2310 }
97f6ef64
XY
2311 } while (1);
2312 adminq->q_db = dev->dbs;
f1938f6e 2313
8fae268b 2314 retry:
9d713c2b 2315 /* Deregister the admin queue's interrupt */
e4b9852a
CC
2316 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2317 pci_free_irq(pdev, 0, adminq);
9d713c2b 2318
e32efbfc
JA
2319 /*
2320 * If we enable msix early due to not intx, disable it again before
2321 * setting up the full range we need.
2322 */
dca51e78 2323 pci_free_irq_vectors(pdev);
3b6592f7
JA
2324
2325 result = nvme_setup_irqs(dev, nr_io_queues);
e4b9852a
CC
2326 if (result <= 0) {
2327 result = -EIO;
2328 goto out_unlock;
2329 }
3b6592f7 2330
22b55601 2331 dev->num_vecs = result;
4b04cc6a 2332 result = max(result - 1, 1);
e20ba6e1 2333 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
fa08a396 2334
063a8096
MW
2335 /*
2336 * Should investigate if there's a performance win from allocating
2337 * more queues than interrupt vectors; it might allow the submission
2338 * path to scale better, even if the receive path is limited by the
2339 * number of interrupts.
2340 */
dca51e78 2341 result = queue_request_irq(adminq);
7c349dde 2342 if (result)
e4b9852a 2343 goto out_unlock;
4e224106 2344 set_bit(NVMEQ_ENABLED, &adminq->flags);
e4b9852a 2345 mutex_unlock(&dev->shutdown_lock);
8fae268b
KB
2346
2347 result = nvme_create_io_queues(dev);
2348 if (result || dev->online_queues < 2)
2349 return result;
2350
2351 if (dev->online_queues - 1 < dev->max_qid) {
2352 nr_io_queues = dev->online_queues - 1;
7d879c90 2353 nvme_delete_io_queues(dev);
e4b9852a
CC
2354 result = nvme_setup_io_queues_trylock(dev);
2355 if (result)
2356 return result;
8fae268b
KB
2357 nvme_suspend_io_queues(dev);
2358 goto retry;
2359 }
2360 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2361 dev->io_queues[HCTX_TYPE_DEFAULT],
2362 dev->io_queues[HCTX_TYPE_READ],
2363 dev->io_queues[HCTX_TYPE_POLL]);
2364 return 0;
e4b9852a
CC
2365out_unlock:
2366 mutex_unlock(&dev->shutdown_lock);
2367 return result;
b60503ba
MW
2368}
2369
de671d61
JA
2370static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2371 blk_status_t error)
a5768aa8 2372{
db3cbfff 2373 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 2374
db3cbfff 2375 blk_mq_free_request(req);
d1ed6aa1 2376 complete(&nvmeq->delete_done);
de671d61 2377 return RQ_END_IO_NONE;
a5768aa8
KB
2378}
2379
de671d61
JA
2380static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2381 blk_status_t error)
a5768aa8 2382{
db3cbfff 2383 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 2384
d1ed6aa1
CH
2385 if (error)
2386 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
db3cbfff 2387
de671d61 2388 return nvme_del_queue_end(req, error);
a5768aa8
KB
2389}
2390
db3cbfff 2391static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 2392{
db3cbfff
KB
2393 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2394 struct request *req;
f66e2804 2395 struct nvme_command cmd = { };
bda4e0fb 2396
db3cbfff
KB
2397 cmd.delete_queue.opcode = opcode;
2398 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 2399
e559398f 2400 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
db3cbfff
KB
2401 if (IS_ERR(req))
2402 return PTR_ERR(req);
e559398f 2403 nvme_init_request(req, &cmd);
bda4e0fb 2404
e2e53086
CH
2405 if (opcode == nvme_admin_delete_cq)
2406 req->end_io = nvme_del_cq_end;
2407 else
2408 req->end_io = nvme_del_queue_end;
db3cbfff
KB
2409 req->end_io_data = nvmeq;
2410
d1ed6aa1 2411 init_completion(&nvmeq->delete_done);
e2e53086 2412 blk_execute_rq_nowait(req, false);
db3cbfff 2413 return 0;
bda4e0fb
KB
2414}
2415
7d879c90 2416static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
a5768aa8 2417{
5271edd4 2418 int nr_queues = dev->online_queues - 1, sent = 0;
db3cbfff 2419 unsigned long timeout;
a5768aa8 2420
db3cbfff 2421 retry:
dc96f938 2422 timeout = NVME_ADMIN_TIMEOUT;
5271edd4
CH
2423 while (nr_queues > 0) {
2424 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2425 break;
2426 nr_queues--;
2427 sent++;
db3cbfff 2428 }
d1ed6aa1
CH
2429 while (sent) {
2430 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2431
2432 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
5271edd4
CH
2433 timeout);
2434 if (timeout == 0)
2435 return false;
d1ed6aa1 2436
d1ed6aa1 2437 sent--;
5271edd4
CH
2438 if (nr_queues)
2439 goto retry;
2440 }
2441 return true;
a5768aa8
KB
2442}
2443
7d879c90 2444static void nvme_delete_io_queues(struct nvme_dev *dev)
b60503ba 2445{
7d879c90
CH
2446 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2447 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2448}
2b1b7e78 2449
0da7feaa 2450static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
b60503ba 2451{
2455a4b7 2452 if (dev->io_queues[HCTX_TYPE_POLL])
0da7feaa
CH
2453 return 3;
2454 if (dev->io_queues[HCTX_TYPE_READ])
2455 return 2;
2456 return 1;
2455a4b7 2457}
949928c1 2458
2455a4b7
CH
2459static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2460{
2461 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2462 /* free previously allocated queues that are no longer usable */
2463 nvme_free_queues(dev, dev->online_queues);
b60503ba
MW
2464}
2465
b00a726a 2466static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2467{
b00a726a 2468 int result = -ENOMEM;
e75ec752 2469 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2470
2471 if (pci_enable_device_mem(pdev))
2472 return result;
2473
0877cb0d 2474 pci_set_master(pdev);
0877cb0d 2475
7a67cbea 2476 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2477 result = -ENODEV;
b00a726a 2478 goto disable;
0e53d180 2479 }
e32efbfc
JA
2480
2481 /*
a5229050
KB
2482 * Some devices and/or platforms don't advertise or work with INTx
2483 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2484 * adjust this later.
e32efbfc 2485 */
dca51e78
CH
2486 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2487 if (result < 0)
09113abf 2488 goto disable;
e32efbfc 2489
20d0dfe6 2490 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2491
7442ddce 2492 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2493 io_queue_depth);
20d0dfe6 2494 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2495 dev->dbs = dev->bar + 4096;
1f390c1f 2496
66341331
BH
2497 /*
2498 * Some Apple controllers require a non-standard SQE size.
2499 * Interestingly they also seem to ignore the CC:IOSQES register
2500 * so we don't bother updating it here.
2501 */
2502 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2503 dev->io_sqes = 7;
2504 else
2505 dev->io_sqes = NVME_NVM_IOSQES;
1f390c1f
SG
2506
2507 /*
2508 * Temporary fix for the Apple controller found in the MacBook8,1 and
2509 * some MacBook7,1 to avoid controller resets and data loss.
2510 */
2511 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2512 dev->q_depth = 2;
9bdcfb10
CH
2513 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2514 "set queue depth=%u to work around controller resets\n",
1f390c1f 2515 dev->q_depth);
d554b5e1
MP
2516 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2517 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2518 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2519 dev->q_depth = 64;
2520 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2521 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2522 }
2523
d38e9f04
BH
2524 /*
2525 * Controllers with the shared tags quirk need the IO queue to be
2526 * big enough so that we get 32 tags for the admin queue
2527 */
2528 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2529 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2530 dev->q_depth = NVME_AQ_DEPTH + 2;
2531 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2532 dev->q_depth);
2533 }
88d356ca 2534 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
d38e9f04 2535
f65efd6d 2536 nvme_map_cmb(dev);
202021c1 2537
a0a3408e
KB
2538 pci_enable_pcie_error_reporting(pdev);
2539 pci_save_state(pdev);
a6ee7f19 2540
09113abf
TZ
2541 result = nvme_pci_configure_admin_queue(dev);
2542 if (result)
2543 goto free_irq;
2544 return result;
0877cb0d 2545
09113abf
TZ
2546 free_irq:
2547 pci_free_irq_vectors(pdev);
0877cb0d 2548 disable:
0877cb0d
KB
2549 pci_disable_device(pdev);
2550 return result;
2551}
2552
2553static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2554{
2555 if (dev->bar)
2556 iounmap(dev->bar);
a1f447b3 2557 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2558}
2559
68e81eba 2560static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
0877cb0d 2561{
e75ec752 2562 struct pci_dev *pdev = to_pci_dev(dev->dev);
68e81eba 2563 u32 csts;
e75ec752 2564
68e81eba
CH
2565 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2566 return true;
2567 if (pdev->error_state != pci_channel_io_normal)
2568 return true;
0877cb0d 2569
68e81eba
CH
2570 csts = readl(dev->bar + NVME_REG_CSTS);
2571 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
4d115420
KB
2572}
2573
a5cdb68c 2574static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2575{
302ad8cc 2576 struct pci_dev *pdev = to_pci_dev(dev->dev);
68e81eba 2577 bool dead;
22404274 2578
77bf25ea 2579 mutex_lock(&dev->shutdown_lock);
68e81eba
CH
2580 dead = nvme_pci_ctrl_is_dead(dev);
2581 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2582 dev->ctrl.state == NVME_CTRL_RESETTING) {
2583 if (pci_is_enabled(pdev))
302ad8cc 2584 nvme_start_freeze(&dev->ctrl);
68e81eba
CH
2585 /*
2586 * Give the controller a chance to complete all entered requests
2587 * if doing a safe shutdown.
2588 */
2589 if (!dead && shutdown)
2590 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
c9d3bf88 2591 }
c21377f8 2592
9f27bd70 2593 nvme_quiesce_io_queues(&dev->ctrl);
87ad72a5 2594
64ee0ac0 2595 if (!dead && dev->ctrl.queue_count > 0) {
7d879c90 2596 nvme_delete_io_queues(dev);
47d42d22
CH
2597 nvme_disable_ctrl(&dev->ctrl, shutdown);
2598 nvme_poll_irqdisable(&dev->queues[0]);
4d115420 2599 }
8fae268b 2600 nvme_suspend_io_queues(dev);
10981f23 2601 nvme_suspend_queue(dev, 0);
c80767f7
CH
2602 pci_free_irq_vectors(pdev);
2603 if (pci_is_enabled(pdev)) {
2604 pci_disable_pcie_error_reporting(pdev);
2605 pci_disable_device(pdev);
2606 }
fa46c6fb 2607 nvme_reap_pending_cqes(dev);
07836e65 2608
1fcfca78
GL
2609 nvme_cancel_tagset(&dev->ctrl);
2610 nvme_cancel_admin_tagset(&dev->ctrl);
302ad8cc
KB
2611
2612 /*
2613 * The driver will not be starting up queues again if shutting down so
2614 * must flush all entered requests to their failed completion to avoid
2615 * deadlocking blk-mq hot-cpu notifier.
2616 */
c8e9e9b7 2617 if (shutdown) {
9f27bd70 2618 nvme_unquiesce_io_queues(&dev->ctrl);
c8e9e9b7 2619 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
9f27bd70 2620 nvme_unquiesce_admin_queue(&dev->ctrl);
c8e9e9b7 2621 }
77bf25ea 2622 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2623}
2624
c1ac9a4b
KB
2625static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2626{
2627 if (!nvme_wait_reset(&dev->ctrl))
2628 return -EBUSY;
2629 nvme_dev_disable(dev, shutdown);
2630 return 0;
2631}
2632
091b6092
MW
2633static int nvme_setup_prp_pools(struct nvme_dev *dev)
2634{
e75ec752 2635 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
c61b82c7
CH
2636 NVME_CTRL_PAGE_SIZE,
2637 NVME_CTRL_PAGE_SIZE, 0);
091b6092
MW
2638 if (!dev->prp_page_pool)
2639 return -ENOMEM;
2640
99802a7a 2641 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2642 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2643 256, 256, 0);
2644 if (!dev->prp_small_pool) {
2645 dma_pool_destroy(dev->prp_page_pool);
2646 return -ENOMEM;
2647 }
091b6092
MW
2648 return 0;
2649}
2650
2651static void nvme_release_prp_pools(struct nvme_dev *dev)
2652{
2653 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2654 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2655}
2656
081a7d95
CH
2657static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2658{
7846c1b5 2659 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
081a7d95 2660
081a7d95
CH
2661 dev->iod_mempool = mempool_create_node(1,
2662 mempool_kmalloc, mempool_kfree,
2663 (void *)alloc_size, GFP_KERNEL,
2664 dev_to_node(dev->dev));
2665 if (!dev->iod_mempool)
2666 return -ENOMEM;
2667 return 0;
2668}
2669
770597ec
KB
2670static void nvme_free_tagset(struct nvme_dev *dev)
2671{
2672 if (dev->tagset.tags)
0da7feaa 2673 nvme_remove_io_tag_set(&dev->ctrl);
770597ec
KB
2674 dev->ctrl.tagset = NULL;
2675}
2676
2e87570b 2677/* pairs with nvme_pci_alloc_dev */
1673f1f0 2678static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2679{
1673f1f0 2680 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2681
770597ec 2682 nvme_free_tagset(dev);
253fd4ac
IR
2683 put_device(dev->dev);
2684 kfree(dev->queues);
5e82e952
KB
2685 kfree(dev);
2686}
2687
fd634f41 2688static void nvme_reset_work(struct work_struct *work)
5e82e952 2689{
d86c4d8e
CH
2690 struct nvme_dev *dev =
2691 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2692 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
e71afda4 2693 int result;
5e82e952 2694
7764656b
ZC
2695 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2696 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2697 dev->ctrl.state);
8cb9f10b 2698 return;
e71afda4 2699 }
5e82e952 2700
fd634f41
CH
2701 /*
2702 * If we're called to reset a live controller first shut it down before
2703 * moving on.
2704 */
b00a726a 2705 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2706 nvme_dev_disable(dev, false);
d6135c3a 2707 nvme_sync_queues(&dev->ctrl);
5e82e952 2708
5c959d73 2709 mutex_lock(&dev->shutdown_lock);
b00a726a 2710 result = nvme_pci_enable(dev);
f0b50732 2711 if (result)
4726bcf3 2712 goto out_unlock;
9f27bd70 2713 nvme_unquiesce_admin_queue(&dev->ctrl);
5c959d73
KB
2714 mutex_unlock(&dev->shutdown_lock);
2715
2716 /*
2717 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2718 * initializing procedure here.
2719 */
2720 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2721 dev_warn(dev->ctrl.device,
2722 "failed to mark controller CONNECTING\n");
cee6c269 2723 result = -EBUSY;
5c959d73
KB
2724 goto out;
2725 }
943e942e 2726
94cc781f 2727 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
ce4541f4 2728 if (result)
f58944e2 2729 goto out;
ce4541f4 2730
65a54646 2731 nvme_dbbuf_dma_alloc(dev);
f9f38e33 2732
acb71e53
CH
2733 result = nvme_setup_host_mem(dev);
2734 if (result < 0)
2735 goto out;
87ad72a5 2736
f0b50732 2737 result = nvme_setup_io_queues(dev);
badc34d4 2738 if (result)
f58944e2 2739 goto out;
f0b50732 2740
2659e57b 2741 /*
eac3ef26
CH
2742 * Freeze and update the number of I/O queues as thos might have
2743 * changed. If there are no I/O queues left after this reset, keep the
2744 * controller around but remove all namespaces.
2659e57b 2745 */
eac3ef26 2746 if (dev->online_queues > 1) {
9f27bd70 2747 nvme_unquiesce_io_queues(&dev->ctrl);
302ad8cc 2748 nvme_wait_freeze(&dev->ctrl);
eac3ef26 2749 nvme_pci_update_nr_queues(dev);
2455a4b7 2750 nvme_dbbuf_set(dev);
302ad8cc 2751 nvme_unfreeze(&dev->ctrl);
3cf519b5 2752 } else {
eac3ef26
CH
2753 dev_warn(dev->ctrl.device, "IO queues lost\n");
2754 nvme_mark_namespaces_dead(&dev->ctrl);
9f27bd70 2755 nvme_unquiesce_io_queues(&dev->ctrl);
eac3ef26
CH
2756 nvme_remove_namespaces(&dev->ctrl);
2757 nvme_free_tagset(dev);
3cf519b5
CH
2758 }
2759
2b1b7e78
JW
2760 /*
2761 * If only admin queue live, keep it to do further investigation or
2762 * recovery.
2763 */
5d02a5c1 2764 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2b1b7e78 2765 dev_warn(dev->ctrl.device,
5d02a5c1 2766 "failed to mark controller live state\n");
e71afda4 2767 result = -ENODEV;
bb8d261e
CH
2768 goto out;
2769 }
92911a55 2770
d09f2b45 2771 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2772 return;
f0b50732 2773
4726bcf3
KB
2774 out_unlock:
2775 mutex_unlock(&dev->shutdown_lock);
3cf519b5 2776 out:
c7c16c5b
CH
2777 /*
2778 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2779 * may be holding this pci_dev's device lock.
2780 */
2781 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2782 result);
2783 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2784 nvme_dev_disable(dev, true);
2785 nvme_mark_namespaces_dead(&dev->ctrl);
2786 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
9a6b9458
KB
2787}
2788
1c63dc66 2789static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2790{
1c63dc66 2791 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2792 return 0;
9ca97374
TH
2793}
2794
5fd4ce1b 2795static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2796{
5fd4ce1b
CH
2797 writel(val, to_nvme_dev(ctrl)->bar + off);
2798 return 0;
2799}
4cc06521 2800
7fd8930f
CH
2801static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2802{
3a8ecc93 2803 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
7fd8930f 2804 return 0;
4cc06521
KB
2805}
2806
97c12223
KB
2807static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2808{
2809 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2810
2db24e4a 2811 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
97c12223
KB
2812}
2813
2f0dad17
KB
2814static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2815{
2816 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2817 struct nvme_subsystem *subsys = ctrl->subsys;
2818
2819 dev_err(ctrl->device,
2820 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2821 pdev->vendor, pdev->device,
2822 nvme_strlen(subsys->model, sizeof(subsys->model)),
2823 subsys->model, nvme_strlen(subsys->firmware_rev,
2824 sizeof(subsys->firmware_rev)),
2825 subsys->firmware_rev);
2826}
2827
2f859441
LG
2828static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2829{
2830 struct nvme_dev *dev = to_nvme_dev(ctrl);
2831
2832 return dma_pci_p2pdma_supported(dev->dev);
2833}
2834
1c63dc66 2835static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2836 .name = "pcie",
e439bb12 2837 .module = THIS_MODULE,
2f859441 2838 .flags = NVME_F_METADATA_SUPPORTED,
86adbf0c 2839 .dev_attr_groups = nvme_pci_dev_attr_groups,
1c63dc66 2840 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2841 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2842 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2843 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2844 .submit_async_event = nvme_pci_submit_async_event,
97c12223 2845 .get_address = nvme_pci_get_address,
2f0dad17 2846 .print_device_info = nvme_pci_print_device_info,
2f859441 2847 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
1c63dc66 2848};
4cc06521 2849
b00a726a
KB
2850static int nvme_dev_map(struct nvme_dev *dev)
2851{
b00a726a
KB
2852 struct pci_dev *pdev = to_pci_dev(dev->dev);
2853
a1f447b3 2854 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2855 return -ENODEV;
2856
97f6ef64 2857 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2858 goto release;
2859
9fa196e7 2860 return 0;
b00a726a 2861 release:
9fa196e7
MG
2862 pci_release_mem_regions(pdev);
2863 return -ENODEV;
b00a726a
KB
2864}
2865
8427bbc2 2866static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
2867{
2868 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2869 /*
2870 * Several Samsung devices seem to drop off the PCIe bus
2871 * randomly when APST is on and uses the deepest sleep state.
2872 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2873 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2874 * 950 PRO 256GB", but it seems to be restricted to two Dell
2875 * laptops.
2876 */
2877 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2878 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2879 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2880 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
2881 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2882 /*
2883 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
2884 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2885 * within few minutes after bootup on a Coffee Lake board -
2886 * ASUS PRIME Z370-A
8427bbc2
KHF
2887 */
2888 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
2889 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2890 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 2891 return NVME_QUIRK_NO_APST;
1fae37ac
S
2892 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2893 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2894 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2895 /*
2896 * Forcing to use host managed nvme power settings for
2897 * lowest idle power with quick resume latency on
2898 * Samsung and Toshiba SSDs based on suspend behavior
2899 * on Coffee Lake board for LENOVO C640
2900 */
2901 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2902 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2903 return NVME_QUIRK_SIMPLE_SUSPEND;
ff5350a8
AL
2904 }
2905
2906 return 0;
2907}
2908
2e87570b
CH
2909static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2910 const struct pci_device_id *id)
18119775 2911{
ff5350a8 2912 unsigned long quirks = id->driver_data;
2e87570b
CH
2913 int node = dev_to_node(&pdev->dev);
2914 struct nvme_dev *dev;
2915 int ret = -ENOMEM;
b60503ba 2916
a4aea562 2917 if (node == NUMA_NO_NODE)
2fa84351 2918 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2919
2920 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba 2921 if (!dev)
dc785d69 2922 return ERR_PTR(-ENOMEM);
2e87570b 2923 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2e87570b 2924 mutex_init(&dev->shutdown_lock);
147b27e4 2925
2a5bcfdd
WZ
2926 dev->nr_write_queues = write_queues;
2927 dev->nr_poll_queues = poll_queues;
2928 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2929 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2930 sizeof(struct nvme_queue), GFP_KERNEL, node);
b60503ba 2931 if (!dev->queues)
2e87570b 2932 goto out_free_dev;
b60503ba 2933
e75ec752 2934 dev->dev = get_device(&pdev->dev);
4cc06521 2935
8427bbc2 2936 quirks |= check_vendor_combination_bug(pdev);
2744d7a0 2937 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
df4f9bc4
DB
2938 /*
2939 * Some systems use a bios work around to ask for D3 on
2940 * platforms that support kernel managed suspend.
2941 */
2942 dev_info(&pdev->dev,
2943 "platform quirk: setting simple suspend\n");
2944 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2945 }
2e87570b
CH
2946 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2947 quirks);
2948 if (ret)
2949 goto out_put_device;
924bd96e
CH
2950
2951 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2952 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2953 else
2954 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3f30a79c
CH
2955 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2956 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
df4f9bc4 2957
943e942e 2958 /*
3f30a79c
CH
2959 * Limit the max command size to prevent iod->sg allocations going
2960 * over a single page.
943e942e 2961 */
3f30a79c
CH
2962 dev->ctrl.max_hw_sectors = min_t(u32,
2963 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9);
2964 dev->ctrl.max_segments = NVME_MAX_SEGS;
943e942e 2965
3f30a79c
CH
2966 /*
2967 * There is no support for SGLs for metadata (yet), so we are limited to
2968 * a single integrity segment for the separate metadata pointer.
2969 */
2970 dev->ctrl.max_integrity_segments = 1;
2e87570b 2971 return dev;
df4f9bc4 2972
2e87570b
CH
2973out_put_device:
2974 put_device(dev->dev);
2975 kfree(dev->queues);
2976out_free_dev:
2977 kfree(dev);
2978 return ERR_PTR(ret);
2979}
943e942e 2980
2e87570b
CH
2981static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2982{
2983 struct nvme_dev *dev;
2984 int result = -ENOMEM;
2985
2986 dev = nvme_pci_alloc_dev(pdev, id);
dc785d69
IC
2987 if (IS_ERR(dev))
2988 return PTR_ERR(dev);
2e87570b
CH
2989
2990 result = nvme_dev_map(dev);
b6e44b4c 2991 if (result)
2e87570b
CH
2992 goto out_uninit_ctrl;
2993
2994 result = nvme_setup_prp_pools(dev);
081a7d95 2995 if (result)
2e87570b 2996 goto out_dev_unmap;
943e942e 2997
2e87570b 2998 result = nvme_pci_alloc_iod_mempool(dev);
b6e44b4c 2999 if (result)
2e87570b 3000 goto out_release_prp_pools;
b6e44b4c 3001
1b3c47c1
SG
3002 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3003
eac3ef26
CH
3004 result = nvme_pci_enable(dev);
3005 if (result)
3006 goto out_release_iod_mempool;
3007
0da7feaa
CH
3008 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3009 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
eac3ef26
CH
3010 if (result)
3011 goto out_disable;
3012
3013 /*
3014 * Mark the controller as connecting before sending admin commands to
3015 * allow the timeout handler to do the right thing.
3016 */
3017 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3018 dev_warn(dev->ctrl.device,
3019 "failed to mark controller CONNECTING\n");
3020 result = -EBUSY;
3021 goto out_disable;
3022 }
3023
3024 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3025 if (result)
3026 goto out_disable;
3027
3028 nvme_dbbuf_dma_alloc(dev);
3029
3030 result = nvme_setup_host_mem(dev);
3031 if (result < 0)
3032 goto out_disable;
3033
3034 result = nvme_setup_io_queues(dev);
3035 if (result)
3036 goto out_disable;
4caff8fc 3037
eac3ef26 3038 if (dev->online_queues > 1) {
0da7feaa
CH
3039 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3040 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
eac3ef26 3041 nvme_dbbuf_set(dev);
eac3ef26
CH
3042 }
3043
0da7feaa
CH
3044 if (!dev->ctrl.tagset)
3045 dev_warn(dev->ctrl.device, "IO queues not created\n");
3046
eac3ef26
CH
3047 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3048 dev_warn(dev->ctrl.device,
3049 "failed to mark controller live state\n");
3050 result = -ENODEV;
3051 goto out_disable;
3052 }
3053
2e87570b 3054 pci_set_drvdata(pdev, dev);
1b3c47c1 3055
eac3ef26
CH
3056 nvme_start_ctrl(&dev->ctrl);
3057 nvme_put_ctrl(&dev->ctrl);
5a5754a4 3058 flush_work(&dev->ctrl.scan_work);
b60503ba
MW
3059 return 0;
3060
eac3ef26
CH
3061out_disable:
3062 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3063 nvme_dev_disable(dev, true);
3064 nvme_free_host_mem(dev);
3065 nvme_dev_remove_admin(dev);
3066 nvme_dbbuf_dma_free(dev);
3067 nvme_free_queues(dev, 0);
3068out_release_iod_mempool:
b6e44b4c 3069 mempool_destroy(dev->iod_mempool);
2e87570b 3070out_release_prp_pools:
091b6092 3071 nvme_release_prp_pools(dev);
2e87570b 3072out_dev_unmap:
b00c9b7a 3073 nvme_dev_unmap(dev);
2e87570b
CH
3074out_uninit_ctrl:
3075 nvme_uninit_ctrl(&dev->ctrl);
a61d2655 3076 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
3077 return result;
3078}
3079
775755ed 3080static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 3081{
a6739479 3082 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
3083
3084 /*
3085 * We don't need to check the return value from waiting for the reset
3086 * state as pci_dev device lock is held, making it impossible to race
3087 * with ->remove().
3088 */
3089 nvme_disable_prepare_reset(dev, false);
3090 nvme_sync_queues(&dev->ctrl);
775755ed 3091}
f0d54a54 3092
775755ed
CH
3093static void nvme_reset_done(struct pci_dev *pdev)
3094{
f263fbb8 3095 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
3096
3097 if (!nvme_try_sched_reset(&dev->ctrl))
3098 flush_work(&dev->ctrl.reset_work);
f0d54a54
KB
3099}
3100
09ece142
KB
3101static void nvme_shutdown(struct pci_dev *pdev)
3102{
3103 struct nvme_dev *dev = pci_get_drvdata(pdev);
4e523547 3104
c1ac9a4b 3105 nvme_disable_prepare_reset(dev, true);
09ece142
KB
3106}
3107
f58944e2
KB
3108/*
3109 * The driver's remove may be called on a device in a partially initialized
3110 * state. This function must not have any dependencies on the device state in
3111 * order to proceed.
3112 */
8d85fce7 3113static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3114{
3115 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 3116
bb8d261e 3117 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
9a6b9458 3118 pci_set_drvdata(pdev, NULL);
0ff9d4e1 3119
6db28eda 3120 if (!pci_device_is_present(pdev)) {
0ff9d4e1 3121 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1d39e692 3122 nvme_dev_disable(dev, true);
6db28eda 3123 }
0ff9d4e1 3124
d86c4d8e 3125 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
3126 nvme_stop_ctrl(&dev->ctrl);
3127 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 3128 nvme_dev_disable(dev, true);
87ad72a5 3129 nvme_free_host_mem(dev);
a4aea562 3130 nvme_dev_remove_admin(dev);
c11b7716 3131 nvme_dbbuf_dma_free(dev);
a1a5ef99 3132 nvme_free_queues(dev, 0);
c11b7716 3133 mempool_destroy(dev->iod_mempool);
9a6b9458 3134 nvme_release_prp_pools(dev);
b00a726a 3135 nvme_dev_unmap(dev);
726612b6 3136 nvme_uninit_ctrl(&dev->ctrl);
b60503ba
MW
3137}
3138
671a6018 3139#ifdef CONFIG_PM_SLEEP
d916b1be
KB
3140static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3141{
3142 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3143}
3144
3145static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3146{
3147 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3148}
3149
3150static int nvme_resume(struct device *dev)
3151{
3152 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3153 struct nvme_ctrl *ctrl = &ndev->ctrl;
3154
4eaefe8c 3155 if (ndev->last_ps == U32_MAX ||
d916b1be 3156 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
e5ad96f3
KB
3157 goto reset;
3158 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3159 goto reset;
3160
d916b1be 3161 return 0;
e5ad96f3
KB
3162reset:
3163 return nvme_try_sched_reset(ctrl);
d916b1be
KB
3164}
3165
cd638946
KB
3166static int nvme_suspend(struct device *dev)
3167{
3168 struct pci_dev *pdev = to_pci_dev(dev);
3169 struct nvme_dev *ndev = pci_get_drvdata(pdev);
d916b1be
KB
3170 struct nvme_ctrl *ctrl = &ndev->ctrl;
3171 int ret = -EBUSY;
3172
4eaefe8c
RW
3173 ndev->last_ps = U32_MAX;
3174
d916b1be
KB
3175 /*
3176 * The platform does not remove power for a kernel managed suspend so
3177 * use host managed nvme power settings for lowest idle power if
3178 * possible. This should have quicker resume latency than a full device
3179 * shutdown. But if the firmware is involved after the suspend or the
3180 * device does not support any non-default power states, shut down the
3181 * device fully.
4eaefe8c
RW
3182 *
3183 * If ASPM is not enabled for the device, shut down the device and allow
3184 * the PCI bus layer to put it into D3 in order to take the PCIe link
3185 * down, so as to allow the platform to achieve its minimum low-power
3186 * state (which may not be possible if the link is up).
d916b1be 3187 */
4eaefe8c 3188 if (pm_suspend_via_firmware() || !ctrl->npss ||
cb32de1b 3189 !pcie_aspm_enabled(pdev) ||
c1ac9a4b
KB
3190 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3191 return nvme_disable_prepare_reset(ndev, true);
d916b1be
KB
3192
3193 nvme_start_freeze(ctrl);
3194 nvme_wait_freeze(ctrl);
3195 nvme_sync_queues(ctrl);
3196
5d02a5c1 3197 if (ctrl->state != NVME_CTRL_LIVE)
d916b1be
KB
3198 goto unfreeze;
3199
e5ad96f3
KB
3200 /*
3201 * Host memory access may not be successful in a system suspend state,
3202 * but the specification allows the controller to access memory in a
3203 * non-operational power state.
3204 */
3205 if (ndev->hmb) {
3206 ret = nvme_set_host_mem(ndev, 0);
3207 if (ret < 0)
3208 goto unfreeze;
3209 }
3210
d916b1be
KB
3211 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3212 if (ret < 0)
3213 goto unfreeze;
3214
7cbb5c6f
ML
3215 /*
3216 * A saved state prevents pci pm from generically controlling the
3217 * device's power. If we're using protocol specific settings, we don't
3218 * want pci interfering.
3219 */
3220 pci_save_state(pdev);
3221
d916b1be
KB
3222 ret = nvme_set_power_state(ctrl, ctrl->npss);
3223 if (ret < 0)
3224 goto unfreeze;
3225
3226 if (ret) {
7cbb5c6f
ML
3227 /* discard the saved state */
3228 pci_load_saved_state(pdev, NULL);
3229
d916b1be
KB
3230 /*
3231 * Clearing npss forces a controller reset on resume. The
05d3046f 3232 * correct value will be rediscovered then.
d916b1be 3233 */
c1ac9a4b 3234 ret = nvme_disable_prepare_reset(ndev, true);
d916b1be 3235 ctrl->npss = 0;
d916b1be 3236 }
d916b1be
KB
3237unfreeze:
3238 nvme_unfreeze(ctrl);
3239 return ret;
3240}
3241
3242static int nvme_simple_suspend(struct device *dev)
3243{
3244 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
4e523547 3245
c1ac9a4b 3246 return nvme_disable_prepare_reset(ndev, true);
cd638946
KB
3247}
3248
d916b1be 3249static int nvme_simple_resume(struct device *dev)
cd638946
KB
3250{
3251 struct pci_dev *pdev = to_pci_dev(dev);
3252 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3253
c1ac9a4b 3254 return nvme_try_sched_reset(&ndev->ctrl);
cd638946
KB
3255}
3256
21774222 3257static const struct dev_pm_ops nvme_dev_pm_ops = {
d916b1be
KB
3258 .suspend = nvme_suspend,
3259 .resume = nvme_resume,
3260 .freeze = nvme_simple_suspend,
3261 .thaw = nvme_simple_resume,
3262 .poweroff = nvme_simple_suspend,
3263 .restore = nvme_simple_resume,
3264};
3265#endif /* CONFIG_PM_SLEEP */
b60503ba 3266
a0a3408e
KB
3267static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3268 pci_channel_state_t state)
3269{
3270 struct nvme_dev *dev = pci_get_drvdata(pdev);
3271
3272 /*
3273 * A frozen channel requires a reset. When detected, this method will
3274 * shutdown the controller to quiesce. The controller will be restarted
3275 * after the slot reset through driver's slot_reset callback.
3276 */
a0a3408e
KB
3277 switch (state) {
3278 case pci_channel_io_normal:
3279 return PCI_ERS_RESULT_CAN_RECOVER;
3280 case pci_channel_io_frozen:
d011fb31
KB
3281 dev_warn(dev->ctrl.device,
3282 "frozen state error detected, reset controller\n");
a5cdb68c 3283 nvme_dev_disable(dev, false);
a0a3408e
KB
3284 return PCI_ERS_RESULT_NEED_RESET;
3285 case pci_channel_io_perm_failure:
d011fb31
KB
3286 dev_warn(dev->ctrl.device,
3287 "failure state error detected, request disconnect\n");
a0a3408e
KB
3288 return PCI_ERS_RESULT_DISCONNECT;
3289 }
3290 return PCI_ERS_RESULT_NEED_RESET;
3291}
3292
3293static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3294{
3295 struct nvme_dev *dev = pci_get_drvdata(pdev);
3296
1b3c47c1 3297 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 3298 pci_restore_state(pdev);
d86c4d8e 3299 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
3300 return PCI_ERS_RESULT_RECOVERED;
3301}
3302
3303static void nvme_error_resume(struct pci_dev *pdev)
3304{
72cd4cc2
KB
3305 struct nvme_dev *dev = pci_get_drvdata(pdev);
3306
3307 flush_work(&dev->ctrl.reset_work);
a0a3408e
KB
3308}
3309
1d352035 3310static const struct pci_error_handlers nvme_err_handler = {
b60503ba 3311 .error_detected = nvme_error_detected,
b60503ba
MW
3312 .slot_reset = nvme_slot_reset,
3313 .resume = nvme_error_resume,
775755ed
CH
3314 .reset_prepare = nvme_reset_prepare,
3315 .reset_done = nvme_reset_done,
b60503ba
MW
3316};
3317
6eb0d698 3318static const struct pci_device_id nvme_id_table[] = {
972b13e2 3319 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
08095e70 3320 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3321 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3322 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
99466e70 3323 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3324 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3325 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
99466e70 3326 .driver_data = NVME_QUIRK_STRIPE_SIZE |
25e58af4
WZ
3327 NVME_QUIRK_DEALLOCATE_ZEROES |
3328 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
972b13e2 3329 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
f99cb7af
DWF
3330 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3331 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0 3332 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
9abd68ef 3333 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
6c6aa2f2 3334 NVME_QUIRK_MEDIUM_PRIO_SQ |
ce4cc313
DM
3335 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3336 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
6299358d
JD
3337 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3338 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
540c801c 3339 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
7b210e4e 3340 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
66dd346b
CH
3341 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3342 NVME_QUIRK_BOGUS_NID, },
3343 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3344 .driver_data = NVME_QUIRK_BOGUS_NID, },
5bedd3af 3345 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
c98a8793
KB
3346 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3347 NVME_QUIRK_BOGUS_NID, },
0302ae60 3348 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
5e112d3f
JE
3349 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3350 NVME_QUIRK_NO_NS_DESC_LIST, },
54adc010
GP
3351 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3352 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
3353 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3354 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
3355 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3356 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
3357 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3358 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3359 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
7ee5c78c 3360 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
abbb5f59 3361 NVME_QUIRK_DISABLE_WRITE_ZEROES|
7ee5c78c 3362 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2cf7a77e
KB
3363 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3364 .driver_data = NVME_QUIRK_BOGUS_NID, },
c9e95c39 3365 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
73029c9b
KB
3366 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3367 NVME_QUIRK_BOGUS_NID, },
d14c2731
TH
3368 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3369 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3370 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3371 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
6e6a6828
PT
3372 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3373 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3374 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
e1c70d79
LVS
3375 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3376 .driver_data = NVME_QUIRK_BOGUS_NID, },
08b903b5 3377 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
1629de0e
PG
3378 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3379 NVME_QUIRK_BOGUS_NID, },
5f69f009
DW
3380 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3381 .driver_data = NVME_QUIRK_BOGUS_NID, },
f03e42c6
GC
3382 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3383 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3384 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
41f38043
LS
3385 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3386 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
d5ceb4d1
BH
3387 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3388 .driver_data = NVME_QUIRK_BOGUS_NID, },
5611ec2b
KHF
3389 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3390 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
c4f01a77
KB
3391 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3392 .driver_data = NVME_QUIRK_BOGUS_NID, },
02ca079c
KHF
3393 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3394 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
89919929
CK
3395 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3396 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
43047e08 3397 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3398 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3399 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3400 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3401 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3402 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3403 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3404 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
dc22c1c0
ZB
3405 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3406 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
538e4a8c
TL
3407 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3408 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
ac9b57d4
XL
3409 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3410 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3411 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3412 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3413 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3414 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3415 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3416 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3417 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3418 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
8d6e38f6
TDF
3419 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3420 .driver_data = NVME_QUIRK_BOGUS_NID, },
70ce3455
CH
3421 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3422 .driver_data = NVME_QUIRK_BOGUS_NID, },
a98a945b
CH
3423 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3424 .driver_data = NVME_QUIRK_BOGUS_NID, },
3425 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3426 .driver_data = NVME_QUIRK_BOGUS_NID, },
3765fad5
SR
3427 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3428 .driver_data = NVME_QUIRK_BOGUS_NID, },
f37527a0
DK
3429 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3430 .driver_data = NVME_QUIRK_BOGUS_NID, },
d5d3c100
XR
3431 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3432 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
6b961bce
NW
3433 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3434 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
d6c52fa3
TG
3435 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3436 .driver_data = NVME_QUIRK_BOGUS_NID, },
200dccd0
SA
3437 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3438 .driver_data = NVME_QUIRK_BOGUS_NID, },
80b26240
A
3439 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3440 .driver_data = NVME_QUIRK_BOGUS_NID, },
4bdf2603
FS
3441 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3442 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3443 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3444 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3445 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3446 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3447 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3448 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3449 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3450 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3451 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3452 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
98f7b86a
AS
3453 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3454 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
124298bd 3455 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
66341331
BH
3456 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3457 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
d38e9f04 3458 NVME_QUIRK_128_BYTES_SQES |
a2941f6a 3459 NVME_QUIRK_SHARED_TAGS |
453116a4
HM
3460 NVME_QUIRK_SKIP_CID_GEN |
3461 NVME_QUIRK_IDENTIFY_CNS },
0b85f59d 3462 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
b60503ba
MW
3463 { 0, }
3464};
3465MODULE_DEVICE_TABLE(pci, nvme_id_table);
3466
3467static struct pci_driver nvme_driver = {
3468 .name = "nvme",
3469 .id_table = nvme_id_table,
3470 .probe = nvme_probe,
8d85fce7 3471 .remove = nvme_remove,
09ece142 3472 .shutdown = nvme_shutdown,
cd638946 3473 .driver = {
eac3ef26
CH
3474 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3475#ifdef CONFIG_PM_SLEEP
3476 .pm = &nvme_dev_pm_ops,
d916b1be 3477#endif
eac3ef26 3478 },
74d986ab 3479 .sriov_configure = pci_sriov_configure_simple,
b60503ba
MW
3480 .err_handler = &nvme_err_handler,
3481};
3482
3483static int __init nvme_init(void)
3484{
81101540
CH
3485 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3486 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3487 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
612b7286 3488 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
01df742d 3489 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
7846c1b5
KB
3490 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3491 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
17c33167 3492
9a6327d2 3493 return pci_register_driver(&nvme_driver);
b60503ba
MW
3494}
3495
3496static void __exit nvme_exit(void)
3497{
3498 pci_unregister_driver(&nvme_driver);
03e0f3a6 3499 flush_workqueue(nvme_wq);
b60503ba
MW
3500}
3501
3502MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3503MODULE_LICENSE("GPL");
c78b4713 3504MODULE_VERSION("1.0");
b60503ba
MW
3505module_init(nvme_init);
3506module_exit(nvme_exit);