blk-mq: provide a default queue mapping for PCI device
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
2d55cd5f 41#include <linux/timer.h>
b60503ba 42#include <linux/types.h>
2f8e2c87 43#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 44#include <asm/unaligned.h>
797a796a 45
f11bb3e2
CH
46#include "nvme.h"
47
9d43cf64 48#define NVME_Q_DEPTH 1024
d31af0a3 49#define NVME_AQ_DEPTH 256
b60503ba
MW
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
adf68f21
CH
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
f866fc42 57#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 58
58ffacb5
MW
59static int use_threaded_interrupts;
60module_param(use_threaded_interrupts, int, 0);
61
8ffaadf7
JD
62static bool use_cmb_sqes = true;
63module_param(use_cmb_sqes, bool, 0644);
64MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
65
9a6b9458 66static struct workqueue_struct *nvme_workq;
1fa6aead 67
1c63dc66
CH
68struct nvme_dev;
69struct nvme_queue;
b3fffdef 70
4cc06521 71static int nvme_reset(struct nvme_dev *dev);
a0fa9647 72static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 73static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 74
1c63dc66
CH
75/*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78struct nvme_dev {
1c63dc66
CH
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned queue_count;
87 unsigned online_queues;
88 unsigned max_qid;
89 int q_depth;
90 u32 db_stride;
1c63dc66
CH
91 struct msix_entry *entry;
92 void __iomem *bar;
1c63dc66 93 struct work_struct reset_work;
5c8809e6 94 struct work_struct remove_work;
2d55cd5f 95 struct timer_list watchdog_timer;
77bf25ea 96 struct mutex shutdown_lock;
1c63dc66 97 bool subsystem;
1c63dc66
CH
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
1c63dc66 102 struct nvme_ctrl ctrl;
db3cbfff 103 struct completion ioq_wait;
4d115420 104};
1fa6aead 105
1c63dc66
CH
106static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107{
108 return container_of(ctrl, struct nvme_dev, ctrl);
109}
110
b60503ba
MW
111/*
112 * An NVM Express queue. Each device has at least two (one for admin
113 * commands and one for I/O commands).
114 */
115struct nvme_queue {
116 struct device *q_dmadev;
091b6092 117 struct nvme_dev *dev;
3193f07b 118 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
119 spinlock_t q_lock;
120 struct nvme_command *sq_cmds;
8ffaadf7 121 struct nvme_command __iomem *sq_cmds_io;
b60503ba 122 volatile struct nvme_completion *cqes;
42483228 123 struct blk_mq_tags **tags;
b60503ba
MW
124 dma_addr_t sq_dma_addr;
125 dma_addr_t cq_dma_addr;
b60503ba
MW
126 u32 __iomem *q_db;
127 u16 q_depth;
6222d172 128 s16 cq_vector;
b60503ba
MW
129 u16 sq_tail;
130 u16 cq_head;
c30341dc 131 u16 qid;
e9539f47
MW
132 u8 cq_phase;
133 u8 cqe_seen;
b60503ba
MW
134};
135
71bd150c
CH
136/*
137 * The nvme_iod describes the data in an I/O, including the list of PRP
138 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 139 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
140 * allocated to store the PRP list.
141 */
142struct nvme_iod {
f4800d6d
CH
143 struct nvme_queue *nvmeq;
144 int aborted;
71bd150c 145 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
146 int nents; /* Used in scatterlist */
147 int length; /* Of data, in bytes */
148 dma_addr_t first_dma;
bf684057 149 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
150 struct scatterlist *sg;
151 struct scatterlist inline_sg[0];
b60503ba
MW
152};
153
154/*
155 * Check we didin't inadvertently grow the command struct
156 */
157static inline void _nvme_check_size(void)
158{
159 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
166 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 170 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
171}
172
ac3dd5bd
JA
173/*
174 * Max size of iod being embedded in the request payload
175 */
176#define NVME_INT_PAGES 2
5fd4ce1b 177#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
178
179/*
180 * Will slightly overestimate the number of pages needed. This is OK
181 * as it only leads to a small amount of wasted memory for the lifetime of
182 * the I/O.
183 */
184static int nvme_npages(unsigned size, struct nvme_dev *dev)
185{
5fd4ce1b
CH
186 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 dev->ctrl.page_size);
ac3dd5bd
JA
188 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189}
190
f4800d6d
CH
191static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 unsigned int size, unsigned int nseg)
ac3dd5bd 193{
f4800d6d
CH
194 return sizeof(__le64 *) * nvme_npages(size, dev) +
195 sizeof(struct scatterlist) * nseg;
196}
ac3dd5bd 197
f4800d6d
CH
198static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199{
200 return sizeof(struct nvme_iod) +
201 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
202}
203
a4aea562
MB
204static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205 unsigned int hctx_idx)
e85248e5 206{
a4aea562
MB
207 struct nvme_dev *dev = data;
208 struct nvme_queue *nvmeq = dev->queues[0];
209
42483228
KB
210 WARN_ON(hctx_idx != 0);
211 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212 WARN_ON(nvmeq->tags);
213
a4aea562 214 hctx->driver_data = nvmeq;
42483228 215 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 216 return 0;
e85248e5
MW
217}
218
4af0e21c
KB
219static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
220{
221 struct nvme_queue *nvmeq = hctx->driver_data;
222
223 nvmeq->tags = NULL;
224}
225
a4aea562
MB
226static int nvme_admin_init_request(void *data, struct request *req,
227 unsigned int hctx_idx, unsigned int rq_idx,
228 unsigned int numa_node)
22404274 229{
a4aea562 230 struct nvme_dev *dev = data;
f4800d6d 231 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
232 struct nvme_queue *nvmeq = dev->queues[0];
233
234 BUG_ON(!nvmeq);
f4800d6d 235 iod->nvmeq = nvmeq;
a4aea562 236 return 0;
22404274
KB
237}
238
a4aea562
MB
239static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240 unsigned int hctx_idx)
b60503ba 241{
a4aea562 242 struct nvme_dev *dev = data;
42483228 243 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 244
42483228
KB
245 if (!nvmeq->tags)
246 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 247
42483228 248 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
249 hctx->driver_data = nvmeq;
250 return 0;
b60503ba
MW
251}
252
a4aea562
MB
253static int nvme_init_request(void *data, struct request *req,
254 unsigned int hctx_idx, unsigned int rq_idx,
255 unsigned int numa_node)
b60503ba 256{
a4aea562 257 struct nvme_dev *dev = data;
f4800d6d 258 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
259 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
260
261 BUG_ON(!nvmeq);
f4800d6d 262 iod->nvmeq = nvmeq;
a4aea562
MB
263 return 0;
264}
265
b60503ba 266/**
adf68f21 267 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
268 * @nvmeq: The queue to use
269 * @cmd: The command to send
270 *
271 * Safe to use from interrupt context
272 */
e3f879bf
SB
273static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274 struct nvme_command *cmd)
b60503ba 275{
a4aea562
MB
276 u16 tail = nvmeq->sq_tail;
277
8ffaadf7
JD
278 if (nvmeq->sq_cmds_io)
279 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
280 else
281 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
282
b60503ba
MW
283 if (++tail == nvmeq->q_depth)
284 tail = 0;
7547881d 285 writel(tail, nvmeq->q_db);
b60503ba 286 nvmeq->sq_tail = tail;
b60503ba
MW
287}
288
f4800d6d 289static __le64 **iod_list(struct request *req)
b60503ba 290{
f4800d6d
CH
291 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292 return (__le64 **)(iod->sg + req->nr_phys_segments);
b60503ba
MW
293}
294
58b45602
ML
295static int nvme_init_iod(struct request *rq, unsigned size,
296 struct nvme_dev *dev)
ac3dd5bd 297{
f4800d6d
CH
298 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299 int nseg = rq->nr_phys_segments;
ac3dd5bd 300
f4800d6d
CH
301 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
303 if (!iod->sg)
304 return BLK_MQ_RQ_QUEUE_BUSY;
305 } else {
306 iod->sg = iod->inline_sg;
ac3dd5bd
JA
307 }
308
f4800d6d
CH
309 iod->aborted = 0;
310 iod->npages = -1;
311 iod->nents = 0;
312 iod->length = size;
f80ec966
KB
313
314 if (!(rq->cmd_flags & REQ_DONTPREP)) {
315 rq->retries = 0;
316 rq->cmd_flags |= REQ_DONTPREP;
317 }
f4800d6d 318 return 0;
ac3dd5bd
JA
319}
320
f4800d6d 321static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 322{
f4800d6d 323 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 324 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 325 int i;
f4800d6d 326 __le64 **list = iod_list(req);
eca18b23
MW
327 dma_addr_t prp_dma = iod->first_dma;
328
6904242d 329 nvme_cleanup_cmd(req);
03b5929e 330
eca18b23
MW
331 if (iod->npages == 0)
332 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
333 for (i = 0; i < iod->npages; i++) {
334 __le64 *prp_list = list[i];
335 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
336 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
337 prp_dma = next_prp_dma;
338 }
ac3dd5bd 339
f4800d6d
CH
340 if (iod->sg != iod->inline_sg)
341 kfree(iod->sg);
b4ff9c8d
KB
342}
343
52b68d7e 344#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
345static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
346{
347 if (be32_to_cpu(pi->ref_tag) == v)
348 pi->ref_tag = cpu_to_be32(p);
349}
350
351static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
352{
353 if (be32_to_cpu(pi->ref_tag) == p)
354 pi->ref_tag = cpu_to_be32(v);
355}
356
357/**
358 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
359 *
360 * The virtual start sector is the one that was originally submitted by the
361 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
362 * start sector may be different. Remap protection information to match the
363 * physical LBA on writes, and back to the original seed on reads.
364 *
365 * Type 0 and 3 do not have a ref tag, so no remapping required.
366 */
367static void nvme_dif_remap(struct request *req,
368 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
369{
370 struct nvme_ns *ns = req->rq_disk->private_data;
371 struct bio_integrity_payload *bip;
372 struct t10_pi_tuple *pi;
373 void *p, *pmap;
374 u32 i, nlb, ts, phys, virt;
375
376 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
377 return;
378
379 bip = bio_integrity(req->bio);
380 if (!bip)
381 return;
382
383 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
384
385 p = pmap;
386 virt = bip_get_seed(bip);
387 phys = nvme_block_nr(ns, blk_rq_pos(req));
388 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 389 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
390
391 for (i = 0; i < nlb; i++, virt++, phys++) {
392 pi = (struct t10_pi_tuple *)p;
393 dif_swap(phys, virt, pi);
394 p += ts;
395 }
396 kunmap_atomic(pmap);
397}
52b68d7e
KB
398#else /* CONFIG_BLK_DEV_INTEGRITY */
399static void nvme_dif_remap(struct request *req,
400 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
401{
402}
403static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
404{
405}
406static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
407{
408}
52b68d7e
KB
409#endif
410
f4800d6d 411static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 412 int total_len)
ff22b54f 413{
f4800d6d 414 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 415 struct dma_pool *pool;
eca18b23
MW
416 int length = total_len;
417 struct scatterlist *sg = iod->sg;
ff22b54f
MW
418 int dma_len = sg_dma_len(sg);
419 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 420 u32 page_size = dev->ctrl.page_size;
f137e0f1 421 int offset = dma_addr & (page_size - 1);
e025344c 422 __le64 *prp_list;
f4800d6d 423 __le64 **list = iod_list(req);
e025344c 424 dma_addr_t prp_dma;
eca18b23 425 int nprps, i;
ff22b54f 426
1d090624 427 length -= (page_size - offset);
ff22b54f 428 if (length <= 0)
69d2b571 429 return true;
ff22b54f 430
1d090624 431 dma_len -= (page_size - offset);
ff22b54f 432 if (dma_len) {
1d090624 433 dma_addr += (page_size - offset);
ff22b54f
MW
434 } else {
435 sg = sg_next(sg);
436 dma_addr = sg_dma_address(sg);
437 dma_len = sg_dma_len(sg);
438 }
439
1d090624 440 if (length <= page_size) {
edd10d33 441 iod->first_dma = dma_addr;
69d2b571 442 return true;
e025344c
SMM
443 }
444
1d090624 445 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
446 if (nprps <= (256 / 8)) {
447 pool = dev->prp_small_pool;
eca18b23 448 iod->npages = 0;
99802a7a
MW
449 } else {
450 pool = dev->prp_page_pool;
eca18b23 451 iod->npages = 1;
99802a7a
MW
452 }
453
69d2b571 454 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 455 if (!prp_list) {
edd10d33 456 iod->first_dma = dma_addr;
eca18b23 457 iod->npages = -1;
69d2b571 458 return false;
b77954cb 459 }
eca18b23
MW
460 list[0] = prp_list;
461 iod->first_dma = prp_dma;
e025344c
SMM
462 i = 0;
463 for (;;) {
1d090624 464 if (i == page_size >> 3) {
e025344c 465 __le64 *old_prp_list = prp_list;
69d2b571 466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 467 if (!prp_list)
69d2b571 468 return false;
eca18b23 469 list[iod->npages++] = prp_list;
7523d834
MW
470 prp_list[0] = old_prp_list[i - 1];
471 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
472 i = 1;
e025344c
SMM
473 }
474 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
475 dma_len -= page_size;
476 dma_addr += page_size;
477 length -= page_size;
e025344c
SMM
478 if (length <= 0)
479 break;
480 if (dma_len > 0)
481 continue;
482 BUG_ON(dma_len < 0);
483 sg = sg_next(sg);
484 dma_addr = sg_dma_address(sg);
485 dma_len = sg_dma_len(sg);
ff22b54f
MW
486 }
487
69d2b571 488 return true;
ff22b54f
MW
489}
490
f4800d6d 491static int nvme_map_data(struct nvme_dev *dev, struct request *req,
03b5929e 492 unsigned size, struct nvme_command *cmnd)
d29ec824 493{
f4800d6d 494 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
495 struct request_queue *q = req->q;
496 enum dma_data_direction dma_dir = rq_data_dir(req) ?
497 DMA_TO_DEVICE : DMA_FROM_DEVICE;
498 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 499
ba1ca37e
CH
500 sg_init_table(iod->sg, req->nr_phys_segments);
501 iod->nents = blk_rq_map_sg(q, req, iod->sg);
502 if (!iod->nents)
503 goto out;
d29ec824 504
ba1ca37e
CH
505 ret = BLK_MQ_RQ_QUEUE_BUSY;
506 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
507 goto out;
d29ec824 508
03b5929e 509 if (!nvme_setup_prps(dev, req, size))
ba1ca37e 510 goto out_unmap;
0e5e4f0e 511
ba1ca37e
CH
512 ret = BLK_MQ_RQ_QUEUE_ERROR;
513 if (blk_integrity_rq(req)) {
514 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
515 goto out_unmap;
0e5e4f0e 516
bf684057
CH
517 sg_init_table(&iod->meta_sg, 1);
518 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 519 goto out_unmap;
0e5e4f0e 520
ba1ca37e
CH
521 if (rq_data_dir(req))
522 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 523
bf684057 524 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 525 goto out_unmap;
d29ec824 526 }
00df5cb4 527
eb793e2c
CH
528 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
529 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 530 if (blk_integrity_rq(req))
bf684057 531 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 532 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 533
ba1ca37e
CH
534out_unmap:
535 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
536out:
537 return ret;
00df5cb4
MW
538}
539
f4800d6d 540static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 541{
f4800d6d 542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
543 enum dma_data_direction dma_dir = rq_data_dir(req) ?
544 DMA_TO_DEVICE : DMA_FROM_DEVICE;
545
546 if (iod->nents) {
547 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548 if (blk_integrity_rq(req)) {
549 if (!rq_data_dir(req))
550 nvme_dif_remap(req, nvme_dif_complete);
bf684057 551 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 552 }
e19b127f 553 }
e1e5e564 554
f4800d6d 555 nvme_free_iod(dev, req);
d4f6c3ab 556}
b60503ba 557
d29ec824
CH
558/*
559 * NOTE: ns is NULL when called on the admin queue.
560 */
a4aea562
MB
561static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
562 const struct blk_mq_queue_data *bd)
edd10d33 563{
a4aea562
MB
564 struct nvme_ns *ns = hctx->queue->queuedata;
565 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 566 struct nvme_dev *dev = nvmeq->dev;
a4aea562 567 struct request *req = bd->rq;
ba1ca37e 568 struct nvme_command cmnd;
58b45602 569 unsigned map_len;
ba1ca37e 570 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 571
e1e5e564
KB
572 /*
573 * If formated with metadata, require the block layer provide a buffer
574 * unless this namespace is formated such that the metadata can be
575 * stripped/generated by the controller with PRACT=1.
576 */
d29ec824 577 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
578 if (!(ns->pi_type && ns->ms == 8) &&
579 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 580 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
581 return BLK_MQ_RQ_QUEUE_OK;
582 }
583 }
584
58b45602
ML
585 map_len = nvme_map_len(req);
586 ret = nvme_init_iod(req, map_len, dev);
f4800d6d
CH
587 if (ret)
588 return ret;
a4aea562 589
8093f7ca 590 ret = nvme_setup_cmd(ns, req, &cmnd);
03b5929e
ML
591 if (ret)
592 goto out;
a4aea562 593
03b5929e
ML
594 if (req->nr_phys_segments)
595 ret = nvme_map_data(dev, req, map_len, &cmnd);
a4aea562 596
ba1ca37e
CH
597 if (ret)
598 goto out;
a4aea562 599
ba1ca37e 600 cmnd.common.command_id = req->tag;
aae239e1 601 blk_mq_start_request(req);
a4aea562 602
ba1ca37e 603 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 604 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
605 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
606 ret = BLK_MQ_RQ_QUEUE_BUSY;
607 else
608 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20
KB
609 spin_unlock_irq(&nvmeq->q_lock);
610 goto out;
611 }
ba1ca37e 612 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
613 nvme_process_cq(nvmeq);
614 spin_unlock_irq(&nvmeq->q_lock);
615 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 616out:
f4800d6d 617 nvme_free_iod(dev, req);
ba1ca37e 618 return ret;
b60503ba 619}
e1e5e564 620
eee417b0
CH
621static void nvme_complete_rq(struct request *req)
622{
f4800d6d
CH
623 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
624 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 625 int error = 0;
e1e5e564 626
f4800d6d 627 nvme_unmap_data(dev, req);
e1e5e564 628
eee417b0
CH
629 if (unlikely(req->errors)) {
630 if (nvme_req_needs_retry(req, req->errors)) {
f80ec966 631 req->retries++;
eee417b0
CH
632 nvme_requeue_req(req);
633 return;
e1e5e564 634 }
1974b1ae 635
eee417b0
CH
636 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
637 error = req->errors;
638 else
639 error = nvme_error_status(req->errors);
640 }
a4aea562 641
f4800d6d 642 if (unlikely(iod->aborted)) {
1b3c47c1 643 dev_warn(dev->ctrl.device,
eee417b0
CH
644 "completing aborted command with status: %04x\n",
645 req->errors);
646 }
a4aea562 647
eee417b0 648 blk_mq_end_request(req, error);
b60503ba
MW
649}
650
d783e0bd
MR
651/* We read the CQE phase first to check if the rest of the entry is valid */
652static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
653 u16 phase)
654{
655 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
656}
657
a0fa9647 658static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 659{
82123460 660 u16 head, phase;
b60503ba 661
b60503ba 662 head = nvmeq->cq_head;
82123460 663 phase = nvmeq->cq_phase;
b60503ba 664
d783e0bd 665 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 666 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 667 struct request *req;
adf68f21 668
b60503ba
MW
669 if (++head == nvmeq->q_depth) {
670 head = 0;
82123460 671 phase = !phase;
b60503ba 672 }
adf68f21 673
a0fa9647
JA
674 if (tag && *tag == cqe.command_id)
675 *tag = -1;
adf68f21 676
aae239e1 677 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 678 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
679 "invalid id %d completed on queue %d\n",
680 cqe.command_id, le16_to_cpu(cqe.sq_id));
681 continue;
682 }
683
adf68f21
CH
684 /*
685 * AEN requests are special as they don't time out and can
686 * survive any kind of queue freeze and often don't respond to
687 * aborts. We don't even bother to allocate a struct request
688 * for them but rather special case them here.
689 */
690 if (unlikely(nvmeq->qid == 0 &&
691 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
f866fc42 692 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
adf68f21
CH
693 continue;
694 }
695
eee417b0 696 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
1cb3cce5
CH
697 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
698 memcpy(req->special, &cqe, sizeof(cqe));
d783e0bd 699 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
eee417b0 700
b60503ba
MW
701 }
702
703 /* If the controller ignores the cq head doorbell and continuously
704 * writes to the queue, it is theoretically possible to wrap around
705 * the queue twice and mistakenly return IRQ_NONE. Linux only
706 * requires that 0.1% of your interrupts are handled, so this isn't
707 * a big problem.
708 */
82123460 709 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 710 return;
b60503ba 711
604e8c8d
KB
712 if (likely(nvmeq->cq_vector >= 0))
713 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 714 nvmeq->cq_head = head;
82123460 715 nvmeq->cq_phase = phase;
b60503ba 716
e9539f47 717 nvmeq->cqe_seen = 1;
a0fa9647
JA
718}
719
720static void nvme_process_cq(struct nvme_queue *nvmeq)
721{
722 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
723}
724
725static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
726{
727 irqreturn_t result;
728 struct nvme_queue *nvmeq = data;
729 spin_lock(&nvmeq->q_lock);
e9539f47
MW
730 nvme_process_cq(nvmeq);
731 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
732 nvmeq->cqe_seen = 0;
58ffacb5
MW
733 spin_unlock(&nvmeq->q_lock);
734 return result;
735}
736
737static irqreturn_t nvme_irq_check(int irq, void *data)
738{
739 struct nvme_queue *nvmeq = data;
d783e0bd
MR
740 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
741 return IRQ_WAKE_THREAD;
742 return IRQ_NONE;
58ffacb5
MW
743}
744
a0fa9647
JA
745static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
746{
747 struct nvme_queue *nvmeq = hctx->driver_data;
748
d783e0bd 749 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
750 spin_lock_irq(&nvmeq->q_lock);
751 __nvme_process_cq(nvmeq, &tag);
752 spin_unlock_irq(&nvmeq->q_lock);
753
754 if (tag == -1)
755 return 1;
756 }
757
758 return 0;
759}
760
f866fc42 761static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 762{
f866fc42 763 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 764 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 765 struct nvme_command c;
b60503ba 766
a4aea562
MB
767 memset(&c, 0, sizeof(c));
768 c.common.opcode = nvme_admin_async_event;
f866fc42 769 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 770
9396dec9 771 spin_lock_irq(&nvmeq->q_lock);
f866fc42 772 __nvme_submit_cmd(nvmeq, &c);
9396dec9 773 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
774}
775
b60503ba 776static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 777{
b60503ba
MW
778 struct nvme_command c;
779
780 memset(&c, 0, sizeof(c));
781 c.delete_queue.opcode = opcode;
782 c.delete_queue.qid = cpu_to_le16(id);
783
1c63dc66 784 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
785}
786
b60503ba
MW
787static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
788 struct nvme_queue *nvmeq)
789{
b60503ba
MW
790 struct nvme_command c;
791 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
792
d29ec824
CH
793 /*
794 * Note: we (ab)use the fact the the prp fields survive if no data
795 * is attached to the request.
796 */
b60503ba
MW
797 memset(&c, 0, sizeof(c));
798 c.create_cq.opcode = nvme_admin_create_cq;
799 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
800 c.create_cq.cqid = cpu_to_le16(qid);
801 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
802 c.create_cq.cq_flags = cpu_to_le16(flags);
803 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
804
1c63dc66 805 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
806}
807
808static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
809 struct nvme_queue *nvmeq)
810{
b60503ba
MW
811 struct nvme_command c;
812 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
813
d29ec824
CH
814 /*
815 * Note: we (ab)use the fact the the prp fields survive if no data
816 * is attached to the request.
817 */
b60503ba
MW
818 memset(&c, 0, sizeof(c));
819 c.create_sq.opcode = nvme_admin_create_sq;
820 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
821 c.create_sq.sqid = cpu_to_le16(qid);
822 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
823 c.create_sq.sq_flags = cpu_to_le16(flags);
824 c.create_sq.cqid = cpu_to_le16(qid);
825
1c63dc66 826 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
827}
828
829static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
830{
831 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
832}
833
834static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
835{
836 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
837}
838
e7a2a87d 839static void abort_endio(struct request *req, int error)
bc5fc7e4 840{
f4800d6d
CH
841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 843 u16 status = req->errors;
e44ac588 844
1cb3cce5 845 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 846 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 847 blk_mq_free_request(req);
bc5fc7e4
MW
848}
849
31c7c7d2 850static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 851{
f4800d6d
CH
852 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
853 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 854 struct nvme_dev *dev = nvmeq->dev;
a4aea562 855 struct request *abort_req;
a4aea562 856 struct nvme_command cmd;
c30341dc 857
31c7c7d2 858 /*
fd634f41
CH
859 * Shutdown immediately if controller times out while starting. The
860 * reset work will see the pci device disabled when it gets the forced
861 * cancellation error. All outstanding requests are completed on
862 * shutdown, so we return BLK_EH_HANDLED.
863 */
bb8d261e 864 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 865 dev_warn(dev->ctrl.device,
fd634f41
CH
866 "I/O %d QID %d timeout, disable controller\n",
867 req->tag, nvmeq->qid);
a5cdb68c 868 nvme_dev_disable(dev, false);
fd634f41
CH
869 req->errors = NVME_SC_CANCELLED;
870 return BLK_EH_HANDLED;
c30341dc
KB
871 }
872
fd634f41
CH
873 /*
874 * Shutdown the controller immediately and schedule a reset if the
875 * command was already aborted once before and still hasn't been
876 * returned to the driver, or if this is the admin queue.
31c7c7d2 877 */
f4800d6d 878 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 879 dev_warn(dev->ctrl.device,
e1569a16
KB
880 "I/O %d QID %d timeout, reset controller\n",
881 req->tag, nvmeq->qid);
a5cdb68c 882 nvme_dev_disable(dev, false);
e1569a16 883 queue_work(nvme_workq, &dev->reset_work);
c30341dc 884
e1569a16
KB
885 /*
886 * Mark the request as handled, since the inline shutdown
887 * forces all outstanding requests to complete.
888 */
889 req->errors = NVME_SC_CANCELLED;
890 return BLK_EH_HANDLED;
c30341dc 891 }
c30341dc 892
f4800d6d 893 iod->aborted = 1;
c30341dc 894
e7a2a87d 895 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 896 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 897 return BLK_EH_RESET_TIMER;
6bf25d16 898 }
a4aea562 899
c30341dc
KB
900 memset(&cmd, 0, sizeof(cmd));
901 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 902 cmd.abort.cid = req->tag;
c30341dc 903 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 904
1b3c47c1
SG
905 dev_warn(nvmeq->dev->ctrl.device,
906 "I/O %d QID %d timeout, aborting\n",
907 req->tag, nvmeq->qid);
e7a2a87d
CH
908
909 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 910 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
911 if (IS_ERR(abort_req)) {
912 atomic_inc(&dev->ctrl.abort_limit);
913 return BLK_EH_RESET_TIMER;
914 }
915
916 abort_req->timeout = ADMIN_TIMEOUT;
917 abort_req->end_io_data = NULL;
918 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 919
31c7c7d2
CH
920 /*
921 * The aborted req will be completed on receiving the abort req.
922 * We enable the timer again. If hit twice, it'll cause a device reset,
923 * as the device then is in a faulty state.
924 */
925 return BLK_EH_RESET_TIMER;
c30341dc
KB
926}
927
a4aea562
MB
928static void nvme_free_queue(struct nvme_queue *nvmeq)
929{
9e866774
MW
930 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
931 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
932 if (nvmeq->sq_cmds)
933 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
934 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
935 kfree(nvmeq);
936}
937
a1a5ef99 938static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
939{
940 int i;
941
a1a5ef99 942 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 943 struct nvme_queue *nvmeq = dev->queues[i];
22404274 944 dev->queue_count--;
a4aea562 945 dev->queues[i] = NULL;
f435c282 946 nvme_free_queue(nvmeq);
121c7ad4 947 }
22404274
KB
948}
949
4d115420
KB
950/**
951 * nvme_suspend_queue - put queue into suspended state
952 * @nvmeq - queue to suspend
4d115420
KB
953 */
954static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 955{
2b25d981 956 int vector;
b60503ba 957
a09115b2 958 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
959 if (nvmeq->cq_vector == -1) {
960 spin_unlock_irq(&nvmeq->q_lock);
961 return 1;
962 }
963 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 964 nvmeq->dev->online_queues--;
2b25d981 965 nvmeq->cq_vector = -1;
a09115b2
MW
966 spin_unlock_irq(&nvmeq->q_lock);
967
1c63dc66 968 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 969 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 970
aba2080f
MW
971 irq_set_affinity_hint(vector, NULL);
972 free_irq(vector, nvmeq);
b60503ba 973
4d115420
KB
974 return 0;
975}
b60503ba 976
a5cdb68c 977static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 978{
a5cdb68c 979 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
980
981 if (!nvmeq)
982 return;
983 if (nvme_suspend_queue(nvmeq))
984 return;
985
a5cdb68c
KB
986 if (shutdown)
987 nvme_shutdown_ctrl(&dev->ctrl);
988 else
989 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
990 dev->bar + NVME_REG_CAP));
07836e65
KB
991
992 spin_lock_irq(&nvmeq->q_lock);
993 nvme_process_cq(nvmeq);
994 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
995}
996
8ffaadf7
JD
997static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
998 int entry_size)
999{
1000 int q_depth = dev->q_depth;
5fd4ce1b
CH
1001 unsigned q_size_aligned = roundup(q_depth * entry_size,
1002 dev->ctrl.page_size);
8ffaadf7
JD
1003
1004 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1005 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1006 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1007 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1008
1009 /*
1010 * Ensure the reduced q_depth is above some threshold where it
1011 * would be better to map queues in system memory with the
1012 * original depth
1013 */
1014 if (q_depth < 64)
1015 return -ENOMEM;
1016 }
1017
1018 return q_depth;
1019}
1020
1021static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1022 int qid, int depth)
1023{
1024 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1025 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1026 dev->ctrl.page_size);
8ffaadf7
JD
1027 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1028 nvmeq->sq_cmds_io = dev->cmb + offset;
1029 } else {
1030 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1031 &nvmeq->sq_dma_addr, GFP_KERNEL);
1032 if (!nvmeq->sq_cmds)
1033 return -ENOMEM;
1034 }
1035
1036 return 0;
1037}
1038
b60503ba 1039static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1040 int depth)
b60503ba 1041{
a4aea562 1042 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1043 if (!nvmeq)
1044 return NULL;
1045
e75ec752 1046 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1047 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1048 if (!nvmeq->cqes)
1049 goto free_nvmeq;
b60503ba 1050
8ffaadf7 1051 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1052 goto free_cqdma;
1053
e75ec752 1054 nvmeq->q_dmadev = dev->dev;
091b6092 1055 nvmeq->dev = dev;
3193f07b 1056 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1057 dev->ctrl.instance, qid);
b60503ba
MW
1058 spin_lock_init(&nvmeq->q_lock);
1059 nvmeq->cq_head = 0;
82123460 1060 nvmeq->cq_phase = 1;
b80d5ccc 1061 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1062 nvmeq->q_depth = depth;
c30341dc 1063 nvmeq->qid = qid;
758dd7fd 1064 nvmeq->cq_vector = -1;
a4aea562 1065 dev->queues[qid] = nvmeq;
36a7e993
JD
1066 dev->queue_count++;
1067
b60503ba
MW
1068 return nvmeq;
1069
1070 free_cqdma:
e75ec752 1071 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1072 nvmeq->cq_dma_addr);
1073 free_nvmeq:
1074 kfree(nvmeq);
1075 return NULL;
1076}
1077
3001082c
MW
1078static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1079 const char *name)
1080{
58ffacb5
MW
1081 if (use_threaded_interrupts)
1082 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1083 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1084 name, nvmeq);
3001082c 1085 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1086 IRQF_SHARED, name, nvmeq);
3001082c
MW
1087}
1088
22404274 1089static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1090{
22404274 1091 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1092
7be50e93 1093 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1094 nvmeq->sq_tail = 0;
1095 nvmeq->cq_head = 0;
1096 nvmeq->cq_phase = 1;
b80d5ccc 1097 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1098 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1099 dev->online_queues++;
7be50e93 1100 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1101}
1102
1103static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1104{
1105 struct nvme_dev *dev = nvmeq->dev;
1106 int result;
3f85d50b 1107
2b25d981 1108 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1109 result = adapter_alloc_cq(dev, qid, nvmeq);
1110 if (result < 0)
22404274 1111 return result;
b60503ba
MW
1112
1113 result = adapter_alloc_sq(dev, qid, nvmeq);
1114 if (result < 0)
1115 goto release_cq;
1116
3193f07b 1117 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1118 if (result < 0)
1119 goto release_sq;
1120
22404274 1121 nvme_init_queue(nvmeq, qid);
22404274 1122 return result;
b60503ba
MW
1123
1124 release_sq:
1125 adapter_delete_sq(dev, qid);
1126 release_cq:
1127 adapter_delete_cq(dev, qid);
22404274 1128 return result;
b60503ba
MW
1129}
1130
a4aea562 1131static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1132 .queue_rq = nvme_queue_rq,
eee417b0 1133 .complete = nvme_complete_rq,
a4aea562 1134 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1135 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1136 .init_request = nvme_admin_init_request,
1137 .timeout = nvme_timeout,
1138};
1139
1140static struct blk_mq_ops nvme_mq_ops = {
1141 .queue_rq = nvme_queue_rq,
eee417b0 1142 .complete = nvme_complete_rq,
a4aea562
MB
1143 .init_hctx = nvme_init_hctx,
1144 .init_request = nvme_init_request,
1145 .timeout = nvme_timeout,
a0fa9647 1146 .poll = nvme_poll,
a4aea562
MB
1147};
1148
ea191d2f
KB
1149static void nvme_dev_remove_admin(struct nvme_dev *dev)
1150{
1c63dc66 1151 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1152 /*
1153 * If the controller was reset during removal, it's possible
1154 * user requests may be waiting on a stopped queue. Start the
1155 * queue to flush these to completion.
1156 */
1157 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1158 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1159 blk_mq_free_tag_set(&dev->admin_tagset);
1160 }
1161}
1162
a4aea562
MB
1163static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1164{
1c63dc66 1165 if (!dev->ctrl.admin_q) {
a4aea562
MB
1166 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1167 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1168
1169 /*
1170 * Subtract one to leave an empty queue entry for 'Full Queue'
1171 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1172 */
1173 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1174 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1175 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1176 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1177 dev->admin_tagset.driver_data = dev;
1178
1179 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1180 return -ENOMEM;
1181
1c63dc66
CH
1182 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1183 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1184 blk_mq_free_tag_set(&dev->admin_tagset);
1185 return -ENOMEM;
1186 }
1c63dc66 1187 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1188 nvme_dev_remove_admin(dev);
1c63dc66 1189 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1190 return -ENODEV;
1191 }
0fb59cbc 1192 } else
25646264 1193 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1194
1195 return 0;
1196}
1197
8d85fce7 1198static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1199{
ba47e386 1200 int result;
b60503ba 1201 u32 aqa;
7a67cbea 1202 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1203 struct nvme_queue *nvmeq;
1204
7a67cbea 1205 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1206 NVME_CAP_NSSRC(cap) : 0;
1207
7a67cbea
CH
1208 if (dev->subsystem &&
1209 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1210 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1211
5fd4ce1b 1212 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1213 if (result < 0)
1214 return result;
b60503ba 1215
a4aea562 1216 nvmeq = dev->queues[0];
cd638946 1217 if (!nvmeq) {
2b25d981 1218 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1219 if (!nvmeq)
1220 return -ENOMEM;
cd638946 1221 }
b60503ba
MW
1222
1223 aqa = nvmeq->q_depth - 1;
1224 aqa |= aqa << 16;
1225
7a67cbea
CH
1226 writel(aqa, dev->bar + NVME_REG_AQA);
1227 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1228 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1229
5fd4ce1b 1230 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1231 if (result)
a4aea562
MB
1232 goto free_nvmeq;
1233
2b25d981 1234 nvmeq->cq_vector = 0;
3193f07b 1235 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1236 if (result) {
1237 nvmeq->cq_vector = -1;
0fb59cbc 1238 goto free_nvmeq;
758dd7fd 1239 }
025c557a 1240
b60503ba 1241 return result;
a4aea562 1242
a4aea562
MB
1243 free_nvmeq:
1244 nvme_free_queues(dev, 0);
1245 return result;
b60503ba
MW
1246}
1247
c875a709
GP
1248static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1249{
1250
1251 /* If true, indicates loss of adapter communication, possibly by a
1252 * NVMe Subsystem reset.
1253 */
1254 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1255
1256 /* If there is a reset ongoing, we shouldn't reset again. */
1257 if (work_busy(&dev->reset_work))
1258 return false;
1259
1260 /* We shouldn't reset unless the controller is on fatal error state
1261 * _or_ if we lost the communication with it.
1262 */
1263 if (!(csts & NVME_CSTS_CFS) && !nssro)
1264 return false;
1265
1266 /* If PCI error recovery process is happening, we cannot reset or
1267 * the recovery mechanism will surely fail.
1268 */
1269 if (pci_channel_offline(to_pci_dev(dev->dev)))
1270 return false;
1271
1272 return true;
1273}
1274
2d55cd5f 1275static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1276{
2d55cd5f
CH
1277 struct nvme_dev *dev = (struct nvme_dev *)data;
1278 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1279
c875a709
GP
1280 /* Skip controllers under certain specific conditions. */
1281 if (nvme_should_reset(dev, csts)) {
1282 if (queue_work(nvme_workq, &dev->reset_work))
2d55cd5f
CH
1283 dev_warn(dev->dev,
1284 "Failed status: 0x%x, reset controller.\n",
1285 csts);
2d55cd5f 1286 return;
1fa6aead 1287 }
2d55cd5f
CH
1288
1289 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1290}
1291
749941f2 1292static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1293{
949928c1 1294 unsigned i, max;
749941f2 1295 int ret = 0;
42f61420 1296
749941f2
CH
1297 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1298 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1299 ret = -ENOMEM;
42f61420 1300 break;
749941f2
CH
1301 }
1302 }
42f61420 1303
949928c1
KB
1304 max = min(dev->max_qid, dev->queue_count - 1);
1305 for (i = dev->online_queues; i <= max; i++) {
749941f2
CH
1306 ret = nvme_create_queue(dev->queues[i], i);
1307 if (ret) {
2659e57b 1308 nvme_free_queues(dev, i);
42f61420 1309 break;
2659e57b 1310 }
27e8166c 1311 }
749941f2
CH
1312
1313 /*
1314 * Ignore failing Create SQ/CQ commands, we can continue with less
1315 * than the desired aount of queues, and even a controller without
1316 * I/O queues an still be used to issue admin commands. This might
1317 * be useful to upgrade a buggy firmware for example.
1318 */
1319 return ret >= 0 ? 0 : ret;
b60503ba
MW
1320}
1321
8ffaadf7
JD
1322static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1323{
1324 u64 szu, size, offset;
1325 u32 cmbloc;
1326 resource_size_t bar_size;
1327 struct pci_dev *pdev = to_pci_dev(dev->dev);
1328 void __iomem *cmb;
1329 dma_addr_t dma_addr;
1330
1331 if (!use_cmb_sqes)
1332 return NULL;
1333
7a67cbea 1334 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1335 if (!(NVME_CMB_SZ(dev->cmbsz)))
1336 return NULL;
1337
7a67cbea 1338 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1339
1340 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1341 size = szu * NVME_CMB_SZ(dev->cmbsz);
1342 offset = szu * NVME_CMB_OFST(cmbloc);
1343 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1344
1345 if (offset > bar_size)
1346 return NULL;
1347
1348 /*
1349 * Controllers may support a CMB size larger than their BAR,
1350 * for example, due to being behind a bridge. Reduce the CMB to
1351 * the reported size of the BAR
1352 */
1353 if (size > bar_size - offset)
1354 size = bar_size - offset;
1355
1356 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1357 cmb = ioremap_wc(dma_addr, size);
1358 if (!cmb)
1359 return NULL;
1360
1361 dev->cmb_dma_addr = dma_addr;
1362 dev->cmb_size = size;
1363 return cmb;
1364}
1365
1366static inline void nvme_release_cmb(struct nvme_dev *dev)
1367{
1368 if (dev->cmb) {
1369 iounmap(dev->cmb);
1370 dev->cmb = NULL;
1371 }
1372}
1373
9d713c2b
KB
1374static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1375{
b80d5ccc 1376 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1377}
1378
8d85fce7 1379static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1380{
a4aea562 1381 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1382 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1383 int result, i, vecs, nr_io_queues, size;
b60503ba 1384
2800b8e7 1385 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1386 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1387 if (result < 0)
1b23484b 1388 return result;
9a0be7ab 1389
f5fa90dc 1390 if (nr_io_queues == 0)
a5229050 1391 return 0;
b60503ba 1392
8ffaadf7
JD
1393 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1394 result = nvme_cmb_qdepth(dev, nr_io_queues,
1395 sizeof(struct nvme_command));
1396 if (result > 0)
1397 dev->q_depth = result;
1398 else
1399 nvme_release_cmb(dev);
1400 }
1401
9d713c2b
KB
1402 size = db_bar_size(dev, nr_io_queues);
1403 if (size > 8192) {
f1938f6e 1404 iounmap(dev->bar);
9d713c2b
KB
1405 do {
1406 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1407 if (dev->bar)
1408 break;
1409 if (!--nr_io_queues)
1410 return -ENOMEM;
1411 size = db_bar_size(dev, nr_io_queues);
1412 } while (1);
7a67cbea 1413 dev->dbs = dev->bar + 4096;
5a92e700 1414 adminq->q_db = dev->dbs;
f1938f6e
MW
1415 }
1416
9d713c2b 1417 /* Deregister the admin queue's interrupt */
3193f07b 1418 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1419
e32efbfc
JA
1420 /*
1421 * If we enable msix early due to not intx, disable it again before
1422 * setting up the full range we need.
1423 */
a5229050
KB
1424 if (pdev->msi_enabled)
1425 pci_disable_msi(pdev);
1426 else if (pdev->msix_enabled)
e32efbfc
JA
1427 pci_disable_msix(pdev);
1428
be577fab 1429 for (i = 0; i < nr_io_queues; i++)
1b23484b 1430 dev->entry[i].entry = i;
be577fab
AG
1431 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1432 if (vecs < 0) {
1433 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1434 if (vecs < 0) {
1435 vecs = 1;
1436 } else {
1437 for (i = 0; i < vecs; i++)
1438 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1439 }
1440 }
1441
063a8096
MW
1442 /*
1443 * Should investigate if there's a performance win from allocating
1444 * more queues than interrupt vectors; it might allow the submission
1445 * path to scale better, even if the receive path is limited by the
1446 * number of interrupts.
1447 */
1448 nr_io_queues = vecs;
42f61420 1449 dev->max_qid = nr_io_queues;
063a8096 1450
3193f07b 1451 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1452 if (result) {
1453 adminq->cq_vector = -1;
22404274 1454 goto free_queues;
758dd7fd 1455 }
749941f2 1456 return nvme_create_io_queues(dev);
b60503ba 1457
22404274 1458 free_queues:
a1a5ef99 1459 nvme_free_queues(dev, 1);
22404274 1460 return result;
b60503ba
MW
1461}
1462
5955be21 1463static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
a5768aa8 1464{
5955be21 1465 struct nvme_dev *dev = to_nvme_dev(ctrl);
bda4e0fb
KB
1466 struct nvme_queue *nvmeq;
1467 int i;
a5768aa8 1468
bda4e0fb
KB
1469 for (i = 0; i < dev->online_queues; i++) {
1470 nvmeq = dev->queues[i];
a5768aa8 1471
bda4e0fb
KB
1472 if (!nvmeq->tags || !(*nvmeq->tags))
1473 continue;
a5768aa8 1474
bda4e0fb
KB
1475 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1476 blk_mq_tags_cpumask(*nvmeq->tags));
a5768aa8 1477 }
a5768aa8
KB
1478}
1479
db3cbfff 1480static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1481{
db3cbfff 1482 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1483
db3cbfff
KB
1484 blk_mq_free_request(req);
1485 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1486}
1487
db3cbfff 1488static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1489{
db3cbfff 1490 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1491
db3cbfff
KB
1492 if (!error) {
1493 unsigned long flags;
1494
2e39e0f6
ML
1495 /*
1496 * We might be called with the AQ q_lock held
1497 * and the I/O queue q_lock should always
1498 * nest inside the AQ one.
1499 */
1500 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1501 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1502 nvme_process_cq(nvmeq);
1503 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1504 }
db3cbfff
KB
1505
1506 nvme_del_queue_end(req, error);
a5768aa8
KB
1507}
1508
db3cbfff 1509static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1510{
db3cbfff
KB
1511 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1512 struct request *req;
1513 struct nvme_command cmd;
bda4e0fb 1514
db3cbfff
KB
1515 memset(&cmd, 0, sizeof(cmd));
1516 cmd.delete_queue.opcode = opcode;
1517 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1518
eb71f435 1519 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1520 if (IS_ERR(req))
1521 return PTR_ERR(req);
bda4e0fb 1522
db3cbfff
KB
1523 req->timeout = ADMIN_TIMEOUT;
1524 req->end_io_data = nvmeq;
1525
1526 blk_execute_rq_nowait(q, NULL, req, false,
1527 opcode == nvme_admin_delete_cq ?
1528 nvme_del_cq_end : nvme_del_queue_end);
1529 return 0;
bda4e0fb
KB
1530}
1531
db3cbfff 1532static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 1533{
014a0d60 1534 int pass, queues = dev->online_queues - 1;
db3cbfff
KB
1535 unsigned long timeout;
1536 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1537
db3cbfff 1538 for (pass = 0; pass < 2; pass++) {
014a0d60 1539 int sent = 0, i = queues;
db3cbfff
KB
1540
1541 reinit_completion(&dev->ioq_wait);
1542 retry:
1543 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1544 for (; i > 0; i--, sent++)
1545 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1546 break;
c21377f8 1547
db3cbfff
KB
1548 while (sent--) {
1549 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1550 if (timeout == 0)
1551 return;
1552 if (i)
1553 goto retry;
1554 }
1555 opcode = nvme_admin_delete_cq;
1556 }
a5768aa8
KB
1557}
1558
422ef0c7
MW
1559/*
1560 * Return: error value if an error occurred setting up the queues or calling
1561 * Identify Device. 0 if these succeeded, even if adding some of the
1562 * namespaces failed. At the moment, these failures are silent. TBD which
1563 * failures should be reported.
1564 */
8d85fce7 1565static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1566{
5bae7f73 1567 if (!dev->ctrl.tagset) {
ffe7704d
KB
1568 dev->tagset.ops = &nvme_mq_ops;
1569 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1570 dev->tagset.timeout = NVME_IO_TIMEOUT;
1571 dev->tagset.numa_node = dev_to_node(dev->dev);
1572 dev->tagset.queue_depth =
a4aea562 1573 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1574 dev->tagset.cmd_size = nvme_cmd_size(dev);
1575 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1576 dev->tagset.driver_data = dev;
b60503ba 1577
ffe7704d
KB
1578 if (blk_mq_alloc_tag_set(&dev->tagset))
1579 return 0;
5bae7f73 1580 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1581 } else {
1582 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1583
1584 /* Free previously allocated queues that are no longer usable */
1585 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1586 }
949928c1 1587
e1e5e564 1588 return 0;
b60503ba
MW
1589}
1590
b00a726a 1591static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1592{
42f61420 1593 u64 cap;
b00a726a 1594 int result = -ENOMEM;
e75ec752 1595 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1596
1597 if (pci_enable_device_mem(pdev))
1598 return result;
1599
0877cb0d 1600 pci_set_master(pdev);
0877cb0d 1601
e75ec752
CH
1602 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1603 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1604 goto disable;
0877cb0d 1605
7a67cbea 1606 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1607 result = -ENODEV;
b00a726a 1608 goto disable;
0e53d180 1609 }
e32efbfc
JA
1610
1611 /*
a5229050
KB
1612 * Some devices and/or platforms don't advertise or work with INTx
1613 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1614 * adjust this later.
e32efbfc 1615 */
a5229050
KB
1616 if (pci_enable_msix(pdev, dev->entry, 1)) {
1617 pci_enable_msi(pdev);
1618 dev->entry[0].vector = pdev->irq;
1619 }
1620
1621 if (!dev->entry[0].vector) {
1622 result = -ENODEV;
1623 goto disable;
e32efbfc
JA
1624 }
1625
7a67cbea
CH
1626 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1627
42f61420
KB
1628 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1629 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1630 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1631
1632 /*
1633 * Temporary fix for the Apple controller found in the MacBook8,1 and
1634 * some MacBook7,1 to avoid controller resets and data loss.
1635 */
1636 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1637 dev->q_depth = 2;
1638 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1639 "queue depth=%u to work around controller resets\n",
1640 dev->q_depth);
1641 }
1642
7a67cbea 1643 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1644 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1645
a0a3408e
KB
1646 pci_enable_pcie_error_reporting(pdev);
1647 pci_save_state(pdev);
0877cb0d
KB
1648 return 0;
1649
1650 disable:
0877cb0d
KB
1651 pci_disable_device(pdev);
1652 return result;
1653}
1654
1655static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1656{
1657 if (dev->bar)
1658 iounmap(dev->bar);
a1f447b3 1659 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1660}
1661
1662static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1663{
e75ec752
CH
1664 struct pci_dev *pdev = to_pci_dev(dev->dev);
1665
1666 if (pdev->msi_enabled)
1667 pci_disable_msi(pdev);
1668 else if (pdev->msix_enabled)
1669 pci_disable_msix(pdev);
0877cb0d 1670
a0a3408e
KB
1671 if (pci_is_enabled(pdev)) {
1672 pci_disable_pcie_error_reporting(pdev);
e75ec752 1673 pci_disable_device(pdev);
4d115420 1674 }
4d115420
KB
1675}
1676
a5cdb68c 1677static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1678{
22404274 1679 int i;
7c1b2450 1680 u32 csts = -1;
22404274 1681
2d55cd5f 1682 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1683
77bf25ea 1684 mutex_lock(&dev->shutdown_lock);
b00a726a 1685 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1686 nvme_stop_queues(&dev->ctrl);
7a67cbea 1687 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1688 }
c21377f8
GKB
1689
1690 for (i = dev->queue_count - 1; i > 0; i--)
1691 nvme_suspend_queue(dev->queues[i]);
1692
7c1b2450 1693 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
c21377f8 1694 nvme_suspend_queue(dev->queues[0]);
4d115420
KB
1695 } else {
1696 nvme_disable_io_queues(dev);
a5cdb68c 1697 nvme_disable_admin_queue(dev, shutdown);
4d115420 1698 }
b00a726a 1699 nvme_pci_disable(dev);
07836e65 1700
e1958e65
ML
1701 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1702 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
77bf25ea 1703 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1704}
1705
091b6092
MW
1706static int nvme_setup_prp_pools(struct nvme_dev *dev)
1707{
e75ec752 1708 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1709 PAGE_SIZE, PAGE_SIZE, 0);
1710 if (!dev->prp_page_pool)
1711 return -ENOMEM;
1712
99802a7a 1713 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1714 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1715 256, 256, 0);
1716 if (!dev->prp_small_pool) {
1717 dma_pool_destroy(dev->prp_page_pool);
1718 return -ENOMEM;
1719 }
091b6092
MW
1720 return 0;
1721}
1722
1723static void nvme_release_prp_pools(struct nvme_dev *dev)
1724{
1725 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1726 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1727}
1728
1673f1f0 1729static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1730{
1673f1f0 1731 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1732
e75ec752 1733 put_device(dev->dev);
4af0e21c
KB
1734 if (dev->tagset.tags)
1735 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1736 if (dev->ctrl.admin_q)
1737 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
1738 kfree(dev->queues);
1739 kfree(dev->entry);
1740 kfree(dev);
1741}
1742
f58944e2
KB
1743static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1744{
237045fc 1745 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1746
1747 kref_get(&dev->ctrl.kref);
69d9a99c 1748 nvme_dev_disable(dev, false);
f58944e2
KB
1749 if (!schedule_work(&dev->remove_work))
1750 nvme_put_ctrl(&dev->ctrl);
1751}
1752
fd634f41 1753static void nvme_reset_work(struct work_struct *work)
5e82e952 1754{
fd634f41 1755 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
f58944e2 1756 int result = -ENODEV;
5e82e952 1757
bb8d261e 1758 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
fd634f41 1759 goto out;
5e82e952 1760
fd634f41
CH
1761 /*
1762 * If we're called to reset a live controller first shut it down before
1763 * moving on.
1764 */
b00a726a 1765 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1766 nvme_dev_disable(dev, false);
5e82e952 1767
bb8d261e 1768 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
9bf2b972
KB
1769 goto out;
1770
b00a726a 1771 result = nvme_pci_enable(dev);
f0b50732 1772 if (result)
3cf519b5 1773 goto out;
f0b50732
KB
1774
1775 result = nvme_configure_admin_queue(dev);
1776 if (result)
f58944e2 1777 goto out;
f0b50732 1778
a4aea562 1779 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1780 result = nvme_alloc_admin_tags(dev);
1781 if (result)
f58944e2 1782 goto out;
b9afca3e 1783
ce4541f4
CH
1784 result = nvme_init_identify(&dev->ctrl);
1785 if (result)
f58944e2 1786 goto out;
ce4541f4 1787
f0b50732 1788 result = nvme_setup_io_queues(dev);
badc34d4 1789 if (result)
f58944e2 1790 goto out;
f0b50732 1791
21f033f7
KB
1792 /*
1793 * A controller that can not execute IO typically requires user
1794 * intervention to correct. For such degraded controllers, the driver
1795 * should not submit commands the user did not request, so skip
1796 * registering for asynchronous event notification on this condition.
1797 */
f866fc42
CH
1798 if (dev->online_queues > 1)
1799 nvme_queue_async_events(&dev->ctrl);
3cf519b5 1800
2d55cd5f 1801 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1802
2659e57b
CH
1803 /*
1804 * Keep the controller around but remove all namespaces if we don't have
1805 * any working I/O queue.
1806 */
3cf519b5 1807 if (dev->online_queues < 2) {
1b3c47c1 1808 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 1809 nvme_kill_queues(&dev->ctrl);
5bae7f73 1810 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1811 } else {
25646264 1812 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1813 nvme_dev_add(dev);
1814 }
1815
bb8d261e
CH
1816 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1817 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1818 goto out;
1819 }
92911a55
CH
1820
1821 if (dev->online_queues > 1)
5955be21 1822 nvme_queue_scan(&dev->ctrl);
3cf519b5 1823 return;
f0b50732 1824
3cf519b5 1825 out:
f58944e2 1826 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1827}
1828
5c8809e6 1829static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1830{
5c8809e6 1831 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1832 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1833
69d9a99c 1834 nvme_kill_queues(&dev->ctrl);
9a6b9458 1835 if (pci_get_drvdata(pdev))
921920ab 1836 device_release_driver(&pdev->dev);
1673f1f0 1837 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1838}
1839
4cc06521 1840static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1841{
1c63dc66 1842 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1843 return -ENODEV;
ffe7704d 1844
846cc05f
CH
1845 if (!queue_work(nvme_workq, &dev->reset_work))
1846 return -EBUSY;
ffe7704d 1847
846cc05f 1848 flush_work(&dev->reset_work);
846cc05f 1849 return 0;
9a6b9458
KB
1850}
1851
1c63dc66 1852static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1853{
1c63dc66 1854 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1855 return 0;
9ca97374
TH
1856}
1857
5fd4ce1b 1858static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1859{
5fd4ce1b
CH
1860 writel(val, to_nvme_dev(ctrl)->bar + off);
1861 return 0;
1862}
4cc06521 1863
7fd8930f
CH
1864static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1865{
1866 *val = readq(to_nvme_dev(ctrl)->bar + off);
1867 return 0;
4cc06521
KB
1868}
1869
f3ca80fc
CH
1870static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1871{
1872 return nvme_reset(to_nvme_dev(ctrl));
4cc06521 1873}
f3ca80fc 1874
1c63dc66 1875static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 1876 .name = "pcie",
e439bb12 1877 .module = THIS_MODULE,
1c63dc66 1878 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1879 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1880 .reg_read64 = nvme_pci_reg_read64,
f3ca80fc 1881 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1882 .free_ctrl = nvme_pci_free_ctrl,
5955be21 1883 .post_scan = nvme_pci_post_scan,
f866fc42 1884 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 1885};
4cc06521 1886
b00a726a
KB
1887static int nvme_dev_map(struct nvme_dev *dev)
1888{
b00a726a
KB
1889 struct pci_dev *pdev = to_pci_dev(dev->dev);
1890
a1f447b3 1891 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
1892 return -ENODEV;
1893
1894 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1895 if (!dev->bar)
1896 goto release;
1897
1898 return 0;
1899 release:
a1f447b3 1900 pci_release_mem_regions(pdev);
b00a726a
KB
1901 return -ENODEV;
1902}
1903
8d85fce7 1904static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1905{
a4aea562 1906 int node, result = -ENOMEM;
b60503ba
MW
1907 struct nvme_dev *dev;
1908
a4aea562
MB
1909 node = dev_to_node(&pdev->dev);
1910 if (node == NUMA_NO_NODE)
2fa84351 1911 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
1912
1913 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
1914 if (!dev)
1915 return -ENOMEM;
a4aea562
MB
1916 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1917 GFP_KERNEL, node);
b60503ba
MW
1918 if (!dev->entry)
1919 goto free;
a4aea562
MB
1920 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1921 GFP_KERNEL, node);
b60503ba
MW
1922 if (!dev->queues)
1923 goto free;
1924
e75ec752 1925 dev->dev = get_device(&pdev->dev);
9a6b9458 1926 pci_set_drvdata(pdev, dev);
1c63dc66 1927
b00a726a
KB
1928 result = nvme_dev_map(dev);
1929 if (result)
1930 goto free;
1931
f3ca80fc 1932 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 1933 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2d55cd5f
CH
1934 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1935 (unsigned long)dev);
77bf25ea 1936 mutex_init(&dev->shutdown_lock);
db3cbfff 1937 init_completion(&dev->ioq_wait);
b60503ba 1938
091b6092
MW
1939 result = nvme_setup_prp_pools(dev);
1940 if (result)
a96d4f5c 1941 goto put_pci;
4cc06521 1942
f3ca80fc
CH
1943 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1944 id->driver_data);
4cc06521 1945 if (result)
2e1d8448 1946 goto release_pools;
740216fc 1947
1b3c47c1
SG
1948 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1949
92f7a162 1950 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
1951 return 0;
1952
0877cb0d 1953 release_pools:
091b6092 1954 nvme_release_prp_pools(dev);
a96d4f5c 1955 put_pci:
e75ec752 1956 put_device(dev->dev);
b00a726a 1957 nvme_dev_unmap(dev);
b60503ba
MW
1958 free:
1959 kfree(dev->queues);
1960 kfree(dev->entry);
1961 kfree(dev);
1962 return result;
1963}
1964
f0d54a54
KB
1965static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1966{
a6739479 1967 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 1968
a6739479 1969 if (prepare)
a5cdb68c 1970 nvme_dev_disable(dev, false);
a6739479 1971 else
92f7a162 1972 queue_work(nvme_workq, &dev->reset_work);
f0d54a54
KB
1973}
1974
09ece142
KB
1975static void nvme_shutdown(struct pci_dev *pdev)
1976{
1977 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 1978 nvme_dev_disable(dev, true);
09ece142
KB
1979}
1980
f58944e2
KB
1981/*
1982 * The driver's remove may be called on a device in a partially initialized
1983 * state. This function must not have any dependencies on the device state in
1984 * order to proceed.
1985 */
8d85fce7 1986static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
1987{
1988 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 1989
bb8d261e
CH
1990 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1991
9a6b9458 1992 pci_set_drvdata(pdev, NULL);
0ff9d4e1
KB
1993
1994 if (!pci_device_is_present(pdev))
1995 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1996
9bf2b972 1997 flush_work(&dev->reset_work);
53029b04 1998 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 1999 nvme_dev_disable(dev, true);
a4aea562 2000 nvme_dev_remove_admin(dev);
a1a5ef99 2001 nvme_free_queues(dev, 0);
8ffaadf7 2002 nvme_release_cmb(dev);
9a6b9458 2003 nvme_release_prp_pools(dev);
b00a726a 2004 nvme_dev_unmap(dev);
1673f1f0 2005 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2006}
2007
13880f5b
KB
2008static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2009{
2010 int ret = 0;
2011
2012 if (numvfs == 0) {
2013 if (pci_vfs_assigned(pdev)) {
2014 dev_warn(&pdev->dev,
2015 "Cannot disable SR-IOV VFs while assigned\n");
2016 return -EPERM;
2017 }
2018 pci_disable_sriov(pdev);
2019 return 0;
2020 }
2021
2022 ret = pci_enable_sriov(pdev, numvfs);
2023 return ret ? ret : numvfs;
2024}
2025
671a6018 2026#ifdef CONFIG_PM_SLEEP
cd638946
KB
2027static int nvme_suspend(struct device *dev)
2028{
2029 struct pci_dev *pdev = to_pci_dev(dev);
2030 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2031
a5cdb68c 2032 nvme_dev_disable(ndev, true);
cd638946
KB
2033 return 0;
2034}
2035
2036static int nvme_resume(struct device *dev)
2037{
2038 struct pci_dev *pdev = to_pci_dev(dev);
2039 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2040
92f7a162 2041 queue_work(nvme_workq, &ndev->reset_work);
9a6b9458 2042 return 0;
cd638946 2043}
671a6018 2044#endif
cd638946
KB
2045
2046static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2047
a0a3408e
KB
2048static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2049 pci_channel_state_t state)
2050{
2051 struct nvme_dev *dev = pci_get_drvdata(pdev);
2052
2053 /*
2054 * A frozen channel requires a reset. When detected, this method will
2055 * shutdown the controller to quiesce. The controller will be restarted
2056 * after the slot reset through driver's slot_reset callback.
2057 */
a0a3408e
KB
2058 switch (state) {
2059 case pci_channel_io_normal:
2060 return PCI_ERS_RESULT_CAN_RECOVER;
2061 case pci_channel_io_frozen:
d011fb31
KB
2062 dev_warn(dev->ctrl.device,
2063 "frozen state error detected, reset controller\n");
a5cdb68c 2064 nvme_dev_disable(dev, false);
a0a3408e
KB
2065 return PCI_ERS_RESULT_NEED_RESET;
2066 case pci_channel_io_perm_failure:
d011fb31
KB
2067 dev_warn(dev->ctrl.device,
2068 "failure state error detected, request disconnect\n");
a0a3408e
KB
2069 return PCI_ERS_RESULT_DISCONNECT;
2070 }
2071 return PCI_ERS_RESULT_NEED_RESET;
2072}
2073
2074static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2075{
2076 struct nvme_dev *dev = pci_get_drvdata(pdev);
2077
1b3c47c1 2078 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e
KB
2079 pci_restore_state(pdev);
2080 queue_work(nvme_workq, &dev->reset_work);
2081 return PCI_ERS_RESULT_RECOVERED;
2082}
2083
2084static void nvme_error_resume(struct pci_dev *pdev)
2085{
2086 pci_cleanup_aer_uncorrect_error_status(pdev);
2087}
2088
1d352035 2089static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2090 .error_detected = nvme_error_detected,
b60503ba
MW
2091 .slot_reset = nvme_slot_reset,
2092 .resume = nvme_error_resume,
f0d54a54 2093 .reset_notify = nvme_reset_notify,
b60503ba
MW
2094};
2095
2096/* Move to pci_ids.h later */
2097#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2098
6eb0d698 2099static const struct pci_device_id nvme_id_table[] = {
106198ed 2100 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2101 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2102 NVME_QUIRK_DISCARD_ZEROES, },
99466e70
KB
2103 { PCI_VDEVICE(INTEL, 0x0a53),
2104 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2105 NVME_QUIRK_DISCARD_ZEROES, },
2106 { PCI_VDEVICE(INTEL, 0x0a54),
2107 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2108 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2109 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2110 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2111 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2112 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2113 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2114 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2115 { 0, }
2116};
2117MODULE_DEVICE_TABLE(pci, nvme_id_table);
2118
2119static struct pci_driver nvme_driver = {
2120 .name = "nvme",
2121 .id_table = nvme_id_table,
2122 .probe = nvme_probe,
8d85fce7 2123 .remove = nvme_remove,
09ece142 2124 .shutdown = nvme_shutdown,
cd638946
KB
2125 .driver = {
2126 .pm = &nvme_dev_pm_ops,
2127 },
13880f5b 2128 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2129 .err_handler = &nvme_err_handler,
2130};
2131
2132static int __init nvme_init(void)
2133{
0ac13140 2134 int result;
1fa6aead 2135
92f7a162 2136 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2137 if (!nvme_workq)
b9afca3e 2138 return -ENOMEM;
9a6b9458 2139
f3db22fe
KB
2140 result = pci_register_driver(&nvme_driver);
2141 if (result)
576d55d6 2142 destroy_workqueue(nvme_workq);
b60503ba
MW
2143 return result;
2144}
2145
2146static void __exit nvme_exit(void)
2147{
2148 pci_unregister_driver(&nvme_driver);
9a6b9458 2149 destroy_workqueue(nvme_workq);
21bd78bc 2150 _nvme_check_size();
b60503ba
MW
2151}
2152
2153MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2154MODULE_LICENSE("GPL");
c78b4713 2155MODULE_VERSION("1.0");
b60503ba
MW
2156module_init(nvme_init);
2157module_exit(nvme_exit);