nvme-pci: factor out the cqe reading mechanics from __nvme_process_cq
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
ff5350a8 20#include <linux/dmi.h>
b60503ba
MW
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
b60503ba
MW
24#include <linux/mm.h>
25#include <linux/module.h>
77bf25ea 26#include <linux/mutex.h>
b60503ba 27#include <linux/pci.h>
be7b6275 28#include <linux/poison.h>
e1e5e564 29#include <linux/t10-pi.h>
2d55cd5f 30#include <linux/timer.h>
b60503ba 31#include <linux/types.h>
2f8e2c87 32#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 33#include <asm/unaligned.h>
a98e58e5 34#include <linux/sed-opal.h>
797a796a 35
f11bb3e2
CH
36#include "nvme.h"
37
9d43cf64 38#define NVME_Q_DEPTH 1024
d31af0a3 39#define NVME_AQ_DEPTH 256
b60503ba
MW
40#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
41#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 42
adf68f21
CH
43/*
44 * We handle AEN commands ourselves and don't even let the
45 * block layer know about them.
46 */
f866fc42 47#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
9d43cf64 48
58ffacb5
MW
49static int use_threaded_interrupts;
50module_param(use_threaded_interrupts, int, 0);
51
8ffaadf7
JD
52static bool use_cmb_sqes = true;
53module_param(use_cmb_sqes, bool, 0644);
54MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55
87ad72a5
CH
56static unsigned int max_host_mem_size_mb = 128;
57module_param(max_host_mem_size_mb, uint, 0444);
58MODULE_PARM_DESC(max_host_mem_size_mb,
59 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60
1c63dc66
CH
61struct nvme_dev;
62struct nvme_queue;
b3fffdef 63
a0fa9647 64static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 65static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 66
1c63dc66
CH
67/*
68 * Represents an NVM Express device. Each nvme_dev is a PCI function.
69 */
70struct nvme_dev {
1c63dc66
CH
71 struct nvme_queue **queues;
72 struct blk_mq_tag_set tagset;
73 struct blk_mq_tag_set admin_tagset;
74 u32 __iomem *dbs;
75 struct device *dev;
76 struct dma_pool *prp_page_pool;
77 struct dma_pool *prp_small_pool;
78 unsigned queue_count;
79 unsigned online_queues;
80 unsigned max_qid;
81 int q_depth;
82 u32 db_stride;
1c63dc66 83 void __iomem *bar;
97f6ef64 84 unsigned long bar_mapped_size;
5c8809e6 85 struct work_struct remove_work;
77bf25ea 86 struct mutex shutdown_lock;
1c63dc66 87 bool subsystem;
1c63dc66
CH
88 void __iomem *cmb;
89 dma_addr_t cmb_dma_addr;
90 u64 cmb_size;
91 u32 cmbsz;
202021c1 92 u32 cmbloc;
1c63dc66 93 struct nvme_ctrl ctrl;
db3cbfff 94 struct completion ioq_wait;
87ad72a5
CH
95
96 /* shadow doorbell buffer support: */
f9f38e33
HK
97 u32 *dbbuf_dbs;
98 dma_addr_t dbbuf_dbs_dma_addr;
99 u32 *dbbuf_eis;
100 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
101
102 /* host memory buffer support: */
103 u64 host_mem_size;
104 u32 nr_host_mem_descs;
105 struct nvme_host_mem_buf_desc *host_mem_descs;
106 void **host_mem_desc_bufs;
4d115420 107};
1fa6aead 108
f9f38e33
HK
109static inline unsigned int sq_idx(unsigned int qid, u32 stride)
110{
111 return qid * 2 * stride;
112}
113
114static inline unsigned int cq_idx(unsigned int qid, u32 stride)
115{
116 return (qid * 2 + 1) * stride;
117}
118
1c63dc66
CH
119static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
120{
121 return container_of(ctrl, struct nvme_dev, ctrl);
122}
123
b60503ba
MW
124/*
125 * An NVM Express queue. Each device has at least two (one for admin
126 * commands and one for I/O commands).
127 */
128struct nvme_queue {
129 struct device *q_dmadev;
091b6092 130 struct nvme_dev *dev;
b60503ba
MW
131 spinlock_t q_lock;
132 struct nvme_command *sq_cmds;
8ffaadf7 133 struct nvme_command __iomem *sq_cmds_io;
b60503ba 134 volatile struct nvme_completion *cqes;
42483228 135 struct blk_mq_tags **tags;
b60503ba
MW
136 dma_addr_t sq_dma_addr;
137 dma_addr_t cq_dma_addr;
b60503ba
MW
138 u32 __iomem *q_db;
139 u16 q_depth;
6222d172 140 s16 cq_vector;
b60503ba
MW
141 u16 sq_tail;
142 u16 cq_head;
c30341dc 143 u16 qid;
e9539f47
MW
144 u8 cq_phase;
145 u8 cqe_seen;
f9f38e33
HK
146 u32 *dbbuf_sq_db;
147 u32 *dbbuf_cq_db;
148 u32 *dbbuf_sq_ei;
149 u32 *dbbuf_cq_ei;
b60503ba
MW
150};
151
71bd150c
CH
152/*
153 * The nvme_iod describes the data in an I/O, including the list of PRP
154 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 155 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
156 * allocated to store the PRP list.
157 */
158struct nvme_iod {
d49187e9 159 struct nvme_request req;
f4800d6d
CH
160 struct nvme_queue *nvmeq;
161 int aborted;
71bd150c 162 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
163 int nents; /* Used in scatterlist */
164 int length; /* Of data, in bytes */
165 dma_addr_t first_dma;
bf684057 166 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
167 struct scatterlist *sg;
168 struct scatterlist inline_sg[0];
b60503ba
MW
169};
170
171/*
172 * Check we didin't inadvertently grow the command struct
173 */
174static inline void _nvme_check_size(void)
175{
176 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
177 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
178 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
179 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
180 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 181 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 182 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba 183 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
0add5e8e
JT
184 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
185 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
b60503ba 186 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 187 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
188 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
189}
190
191static inline unsigned int nvme_dbbuf_size(u32 stride)
192{
193 return ((num_possible_cpus() + 1) * 8 * stride);
194}
195
196static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
197{
198 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
199
200 if (dev->dbbuf_dbs)
201 return 0;
202
203 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
204 &dev->dbbuf_dbs_dma_addr,
205 GFP_KERNEL);
206 if (!dev->dbbuf_dbs)
207 return -ENOMEM;
208 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
209 &dev->dbbuf_eis_dma_addr,
210 GFP_KERNEL);
211 if (!dev->dbbuf_eis) {
212 dma_free_coherent(dev->dev, mem_size,
213 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
214 dev->dbbuf_dbs = NULL;
215 return -ENOMEM;
216 }
217
218 return 0;
219}
220
221static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
222{
223 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
224
225 if (dev->dbbuf_dbs) {
226 dma_free_coherent(dev->dev, mem_size,
227 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
228 dev->dbbuf_dbs = NULL;
229 }
230 if (dev->dbbuf_eis) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
233 dev->dbbuf_eis = NULL;
234 }
235}
236
237static void nvme_dbbuf_init(struct nvme_dev *dev,
238 struct nvme_queue *nvmeq, int qid)
239{
240 if (!dev->dbbuf_dbs || !qid)
241 return;
242
243 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
244 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
245 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
246 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
247}
248
249static void nvme_dbbuf_set(struct nvme_dev *dev)
250{
251 struct nvme_command c;
252
253 if (!dev->dbbuf_dbs)
254 return;
255
256 memset(&c, 0, sizeof(c));
257 c.dbbuf.opcode = nvme_admin_dbbuf;
258 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
259 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
260
261 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 262 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
263 /* Free memory and continue on */
264 nvme_dbbuf_dma_free(dev);
265 }
266}
267
268static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
269{
270 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
271}
272
273/* Update dbbuf and return true if an MMIO is required */
274static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
275 volatile u32 *dbbuf_ei)
276{
277 if (dbbuf_db) {
278 u16 old_value;
279
280 /*
281 * Ensure that the queue is written before updating
282 * the doorbell in memory
283 */
284 wmb();
285
286 old_value = *dbbuf_db;
287 *dbbuf_db = value;
288
289 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
290 return false;
291 }
292
293 return true;
b60503ba
MW
294}
295
ac3dd5bd
JA
296/*
297 * Max size of iod being embedded in the request payload
298 */
299#define NVME_INT_PAGES 2
5fd4ce1b 300#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
301
302/*
303 * Will slightly overestimate the number of pages needed. This is OK
304 * as it only leads to a small amount of wasted memory for the lifetime of
305 * the I/O.
306 */
307static int nvme_npages(unsigned size, struct nvme_dev *dev)
308{
5fd4ce1b
CH
309 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
310 dev->ctrl.page_size);
ac3dd5bd
JA
311 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
312}
313
f4800d6d
CH
314static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
315 unsigned int size, unsigned int nseg)
ac3dd5bd 316{
f4800d6d
CH
317 return sizeof(__le64 *) * nvme_npages(size, dev) +
318 sizeof(struct scatterlist) * nseg;
319}
ac3dd5bd 320
f4800d6d
CH
321static unsigned int nvme_cmd_size(struct nvme_dev *dev)
322{
323 return sizeof(struct nvme_iod) +
324 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
325}
326
a4aea562
MB
327static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
328 unsigned int hctx_idx)
e85248e5 329{
a4aea562
MB
330 struct nvme_dev *dev = data;
331 struct nvme_queue *nvmeq = dev->queues[0];
332
42483228
KB
333 WARN_ON(hctx_idx != 0);
334 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
335 WARN_ON(nvmeq->tags);
336
a4aea562 337 hctx->driver_data = nvmeq;
42483228 338 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 339 return 0;
e85248e5
MW
340}
341
4af0e21c
KB
342static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
343{
344 struct nvme_queue *nvmeq = hctx->driver_data;
345
346 nvmeq->tags = NULL;
347}
348
a4aea562
MB
349static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
350 unsigned int hctx_idx)
b60503ba 351{
a4aea562 352 struct nvme_dev *dev = data;
42483228 353 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 354
42483228
KB
355 if (!nvmeq->tags)
356 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 357
42483228 358 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
359 hctx->driver_data = nvmeq;
360 return 0;
b60503ba
MW
361}
362
d6296d39
CH
363static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
364 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 365{
d6296d39 366 struct nvme_dev *dev = set->driver_data;
f4800d6d 367 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a
CH
368 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
369 struct nvme_queue *nvmeq = dev->queues[queue_idx];
a4aea562
MB
370
371 BUG_ON(!nvmeq);
f4800d6d 372 iod->nvmeq = nvmeq;
a4aea562
MB
373 return 0;
374}
375
dca51e78
CH
376static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
377{
378 struct nvme_dev *dev = set->driver_data;
379
380 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
381}
382
b60503ba 383/**
adf68f21 384 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
385 * @nvmeq: The queue to use
386 * @cmd: The command to send
387 *
388 * Safe to use from interrupt context
389 */
e3f879bf
SB
390static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
391 struct nvme_command *cmd)
b60503ba 392{
a4aea562
MB
393 u16 tail = nvmeq->sq_tail;
394
8ffaadf7
JD
395 if (nvmeq->sq_cmds_io)
396 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
397 else
398 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
399
b60503ba
MW
400 if (++tail == nvmeq->q_depth)
401 tail = 0;
f9f38e33
HK
402 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
403 nvmeq->dbbuf_sq_ei))
404 writel(tail, nvmeq->q_db);
b60503ba 405 nvmeq->sq_tail = tail;
b60503ba
MW
406}
407
f4800d6d 408static __le64 **iod_list(struct request *req)
b60503ba 409{
f4800d6d 410 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
f9d03f96 411 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
412}
413
fc17b653 414static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 415{
f4800d6d 416 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 417 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 418 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 419
f4800d6d
CH
420 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
421 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
422 if (!iod->sg)
fc17b653 423 return BLK_STS_RESOURCE;
f4800d6d
CH
424 } else {
425 iod->sg = iod->inline_sg;
ac3dd5bd
JA
426 }
427
f4800d6d
CH
428 iod->aborted = 0;
429 iod->npages = -1;
430 iod->nents = 0;
431 iod->length = size;
f80ec966 432
fc17b653 433 return BLK_STS_OK;
ac3dd5bd
JA
434}
435
f4800d6d 436static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 437{
f4800d6d 438 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 439 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 440 int i;
f4800d6d 441 __le64 **list = iod_list(req);
eca18b23
MW
442 dma_addr_t prp_dma = iod->first_dma;
443
444 if (iod->npages == 0)
445 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
446 for (i = 0; i < iod->npages; i++) {
447 __le64 *prp_list = list[i];
448 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
449 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
450 prp_dma = next_prp_dma;
451 }
ac3dd5bd 452
f4800d6d
CH
453 if (iod->sg != iod->inline_sg)
454 kfree(iod->sg);
b4ff9c8d
KB
455}
456
52b68d7e 457#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
458static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
459{
460 if (be32_to_cpu(pi->ref_tag) == v)
461 pi->ref_tag = cpu_to_be32(p);
462}
463
464static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
465{
466 if (be32_to_cpu(pi->ref_tag) == p)
467 pi->ref_tag = cpu_to_be32(v);
468}
469
470/**
471 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
472 *
473 * The virtual start sector is the one that was originally submitted by the
474 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
475 * start sector may be different. Remap protection information to match the
476 * physical LBA on writes, and back to the original seed on reads.
477 *
478 * Type 0 and 3 do not have a ref tag, so no remapping required.
479 */
480static void nvme_dif_remap(struct request *req,
481 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
482{
483 struct nvme_ns *ns = req->rq_disk->private_data;
484 struct bio_integrity_payload *bip;
485 struct t10_pi_tuple *pi;
486 void *p, *pmap;
487 u32 i, nlb, ts, phys, virt;
488
489 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
490 return;
491
492 bip = bio_integrity(req->bio);
493 if (!bip)
494 return;
495
496 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
497
498 p = pmap;
499 virt = bip_get_seed(bip);
500 phys = nvme_block_nr(ns, blk_rq_pos(req));
501 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 502 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
503
504 for (i = 0; i < nlb; i++, virt++, phys++) {
505 pi = (struct t10_pi_tuple *)p;
506 dif_swap(phys, virt, pi);
507 p += ts;
508 }
509 kunmap_atomic(pmap);
510}
52b68d7e
KB
511#else /* CONFIG_BLK_DEV_INTEGRITY */
512static void nvme_dif_remap(struct request *req,
513 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
514{
515}
516static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
517{
518}
519static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
520{
521}
52b68d7e
KB
522#endif
523
b131c61d 524static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
ff22b54f 525{
f4800d6d 526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 527 struct dma_pool *pool;
b131c61d 528 int length = blk_rq_payload_bytes(req);
eca18b23 529 struct scatterlist *sg = iod->sg;
ff22b54f
MW
530 int dma_len = sg_dma_len(sg);
531 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 532 u32 page_size = dev->ctrl.page_size;
f137e0f1 533 int offset = dma_addr & (page_size - 1);
e025344c 534 __le64 *prp_list;
f4800d6d 535 __le64 **list = iod_list(req);
e025344c 536 dma_addr_t prp_dma;
eca18b23 537 int nprps, i;
ff22b54f 538
1d090624 539 length -= (page_size - offset);
ff22b54f 540 if (length <= 0)
69d2b571 541 return true;
ff22b54f 542
1d090624 543 dma_len -= (page_size - offset);
ff22b54f 544 if (dma_len) {
1d090624 545 dma_addr += (page_size - offset);
ff22b54f
MW
546 } else {
547 sg = sg_next(sg);
548 dma_addr = sg_dma_address(sg);
549 dma_len = sg_dma_len(sg);
550 }
551
1d090624 552 if (length <= page_size) {
edd10d33 553 iod->first_dma = dma_addr;
69d2b571 554 return true;
e025344c
SMM
555 }
556
1d090624 557 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
558 if (nprps <= (256 / 8)) {
559 pool = dev->prp_small_pool;
eca18b23 560 iod->npages = 0;
99802a7a
MW
561 } else {
562 pool = dev->prp_page_pool;
eca18b23 563 iod->npages = 1;
99802a7a
MW
564 }
565
69d2b571 566 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 567 if (!prp_list) {
edd10d33 568 iod->first_dma = dma_addr;
eca18b23 569 iod->npages = -1;
69d2b571 570 return false;
b77954cb 571 }
eca18b23
MW
572 list[0] = prp_list;
573 iod->first_dma = prp_dma;
e025344c
SMM
574 i = 0;
575 for (;;) {
1d090624 576 if (i == page_size >> 3) {
e025344c 577 __le64 *old_prp_list = prp_list;
69d2b571 578 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 579 if (!prp_list)
69d2b571 580 return false;
eca18b23 581 list[iod->npages++] = prp_list;
7523d834
MW
582 prp_list[0] = old_prp_list[i - 1];
583 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
584 i = 1;
e025344c
SMM
585 }
586 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
587 dma_len -= page_size;
588 dma_addr += page_size;
589 length -= page_size;
e025344c
SMM
590 if (length <= 0)
591 break;
592 if (dma_len > 0)
593 continue;
594 BUG_ON(dma_len < 0);
595 sg = sg_next(sg);
596 dma_addr = sg_dma_address(sg);
597 dma_len = sg_dma_len(sg);
ff22b54f
MW
598 }
599
69d2b571 600 return true;
ff22b54f
MW
601}
602
fc17b653 603static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 604 struct nvme_command *cmnd)
d29ec824 605{
f4800d6d 606 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
607 struct request_queue *q = req->q;
608 enum dma_data_direction dma_dir = rq_data_dir(req) ?
609 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 610 blk_status_t ret = BLK_STS_IOERR;
d29ec824 611
f9d03f96 612 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
613 iod->nents = blk_rq_map_sg(q, req, iod->sg);
614 if (!iod->nents)
615 goto out;
d29ec824 616
fc17b653 617 ret = BLK_STS_RESOURCE;
2b6b535d
MFO
618 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
619 DMA_ATTR_NO_WARN))
ba1ca37e 620 goto out;
d29ec824 621
b131c61d 622 if (!nvme_setup_prps(dev, req))
ba1ca37e 623 goto out_unmap;
0e5e4f0e 624
fc17b653 625 ret = BLK_STS_IOERR;
ba1ca37e
CH
626 if (blk_integrity_rq(req)) {
627 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
628 goto out_unmap;
0e5e4f0e 629
bf684057
CH
630 sg_init_table(&iod->meta_sg, 1);
631 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 632 goto out_unmap;
0e5e4f0e 633
ba1ca37e
CH
634 if (rq_data_dir(req))
635 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 636
bf684057 637 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 638 goto out_unmap;
d29ec824 639 }
00df5cb4 640
eb793e2c
CH
641 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
642 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
ba1ca37e 643 if (blk_integrity_rq(req))
bf684057 644 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
fc17b653 645 return BLK_STS_OK;
00df5cb4 646
ba1ca37e
CH
647out_unmap:
648 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
649out:
650 return ret;
00df5cb4
MW
651}
652
f4800d6d 653static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 654{
f4800d6d 655 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
656 enum dma_data_direction dma_dir = rq_data_dir(req) ?
657 DMA_TO_DEVICE : DMA_FROM_DEVICE;
658
659 if (iod->nents) {
660 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
661 if (blk_integrity_rq(req)) {
662 if (!rq_data_dir(req))
663 nvme_dif_remap(req, nvme_dif_complete);
bf684057 664 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 665 }
e19b127f 666 }
e1e5e564 667
f9d03f96 668 nvme_cleanup_cmd(req);
f4800d6d 669 nvme_free_iod(dev, req);
d4f6c3ab 670}
b60503ba 671
d29ec824
CH
672/*
673 * NOTE: ns is NULL when called on the admin queue.
674 */
fc17b653 675static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 676 const struct blk_mq_queue_data *bd)
edd10d33 677{
a4aea562
MB
678 struct nvme_ns *ns = hctx->queue->queuedata;
679 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 680 struct nvme_dev *dev = nvmeq->dev;
a4aea562 681 struct request *req = bd->rq;
ba1ca37e 682 struct nvme_command cmnd;
ebe6d874 683 blk_status_t ret;
e1e5e564 684
f9d03f96 685 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 686 if (ret)
f4800d6d 687 return ret;
a4aea562 688
b131c61d 689 ret = nvme_init_iod(req, dev);
fc17b653 690 if (ret)
f9d03f96 691 goto out_free_cmd;
a4aea562 692
fc17b653 693 if (blk_rq_nr_phys_segments(req)) {
b131c61d 694 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
695 if (ret)
696 goto out_cleanup_iod;
697 }
a4aea562 698
aae239e1 699 blk_mq_start_request(req);
a4aea562 700
ba1ca37e 701 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 702 if (unlikely(nvmeq->cq_vector < 0)) {
fc17b653 703 ret = BLK_STS_IOERR;
ae1fba20 704 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 705 goto out_cleanup_iod;
ae1fba20 706 }
ba1ca37e 707 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
708 nvme_process_cq(nvmeq);
709 spin_unlock_irq(&nvmeq->q_lock);
fc17b653 710 return BLK_STS_OK;
f9d03f96 711out_cleanup_iod:
f4800d6d 712 nvme_free_iod(dev, req);
f9d03f96
CH
713out_free_cmd:
714 nvme_cleanup_cmd(req);
ba1ca37e 715 return ret;
b60503ba 716}
e1e5e564 717
77f02a7a 718static void nvme_pci_complete_rq(struct request *req)
eee417b0 719{
f4800d6d 720 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 721
77f02a7a
CH
722 nvme_unmap_data(iod->nvmeq->dev, req);
723 nvme_complete_rq(req);
b60503ba
MW
724}
725
d783e0bd
MR
726/* We read the CQE phase first to check if the rest of the entry is valid */
727static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
728 u16 phase)
729{
730 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
731}
732
eb281c82
SG
733static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
734{
735 u16 head = nvmeq->cq_head;
736
737 if (likely(nvmeq->cq_vector >= 0)) {
738 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
739 nvmeq->dbbuf_cq_ei))
740 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
741 }
742}
743
83a12fb7
SG
744static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
745 struct nvme_completion *cqe)
746{
747 struct request *req;
748
749 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
750 dev_warn(nvmeq->dev->ctrl.device,
751 "invalid id %d completed on queue %d\n",
752 cqe->command_id, le16_to_cpu(cqe->sq_id));
753 return;
754 }
755
756 /*
757 * AEN requests are special as they don't time out and can
758 * survive any kind of queue freeze and often don't respond to
759 * aborts. We don't even bother to allocate a struct request
760 * for them but rather special case them here.
761 */
762 if (unlikely(nvmeq->qid == 0 &&
763 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
764 nvme_complete_async_event(&nvmeq->dev->ctrl,
765 cqe->status, &cqe->result);
766 return;
767 }
768
769 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
770 nvme_end_request(req, cqe->status, cqe->result);
771}
772
920d13a8
SG
773static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
774 struct nvme_completion *cqe)
b60503ba 775{
920d13a8
SG
776 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
777 *cqe = nvmeq->cqes[nvmeq->cq_head];
adf68f21 778
920d13a8
SG
779 if (++nvmeq->cq_head == nvmeq->q_depth) {
780 nvmeq->cq_head = 0;
781 nvmeq->cq_phase = !nvmeq->cq_phase;
b60503ba 782 }
920d13a8 783 return true;
b60503ba 784 }
920d13a8
SG
785 return false;
786}
b60503ba 787
920d13a8
SG
788static void __nvme_process_cq(struct nvme_queue *nvmeq, int *tag)
789{
790 struct nvme_completion cqe;
791 int consumed = 0;
b60503ba 792
920d13a8
SG
793 while (nvme_read_cqe(nvmeq, &cqe)) {
794 nvme_handle_cqe(nvmeq, &cqe);
795 consumed++;
b60503ba 796
920d13a8
SG
797 if (tag && *tag == cqe.command_id) {
798 *tag = -1;
799 break;
800 }
801 }
eb281c82 802
920d13a8
SG
803 if (consumed) {
804 nvme_ring_cq_doorbell(nvmeq);
805 nvmeq->cqe_seen = 1;
806 }
a0fa9647
JA
807}
808
809static void nvme_process_cq(struct nvme_queue *nvmeq)
810{
811 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
812}
813
814static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
815{
816 irqreturn_t result;
817 struct nvme_queue *nvmeq = data;
818 spin_lock(&nvmeq->q_lock);
e9539f47
MW
819 nvme_process_cq(nvmeq);
820 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
821 nvmeq->cqe_seen = 0;
58ffacb5
MW
822 spin_unlock(&nvmeq->q_lock);
823 return result;
824}
825
826static irqreturn_t nvme_irq_check(int irq, void *data)
827{
828 struct nvme_queue *nvmeq = data;
d783e0bd
MR
829 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
830 return IRQ_WAKE_THREAD;
831 return IRQ_NONE;
58ffacb5
MW
832}
833
7776db1c 834static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 835{
d783e0bd 836 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
837 spin_lock_irq(&nvmeq->q_lock);
838 __nvme_process_cq(nvmeq, &tag);
839 spin_unlock_irq(&nvmeq->q_lock);
840
841 if (tag == -1)
842 return 1;
843 }
844
845 return 0;
846}
847
7776db1c
KB
848static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
849{
850 struct nvme_queue *nvmeq = hctx->driver_data;
851
852 return __nvme_poll(nvmeq, tag);
853}
854
f866fc42 855static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
b60503ba 856{
f866fc42 857 struct nvme_dev *dev = to_nvme_dev(ctrl);
9396dec9 858 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 859 struct nvme_command c;
b60503ba 860
a4aea562
MB
861 memset(&c, 0, sizeof(c));
862 c.common.opcode = nvme_admin_async_event;
f866fc42 863 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
3c0cf138 864
9396dec9 865 spin_lock_irq(&nvmeq->q_lock);
f866fc42 866 __nvme_submit_cmd(nvmeq, &c);
9396dec9 867 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
868}
869
b60503ba 870static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 871{
b60503ba
MW
872 struct nvme_command c;
873
874 memset(&c, 0, sizeof(c));
875 c.delete_queue.opcode = opcode;
876 c.delete_queue.qid = cpu_to_le16(id);
877
1c63dc66 878 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
879}
880
b60503ba
MW
881static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
882 struct nvme_queue *nvmeq)
883{
b60503ba
MW
884 struct nvme_command c;
885 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
886
d29ec824
CH
887 /*
888 * Note: we (ab)use the fact the the prp fields survive if no data
889 * is attached to the request.
890 */
b60503ba
MW
891 memset(&c, 0, sizeof(c));
892 c.create_cq.opcode = nvme_admin_create_cq;
893 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
894 c.create_cq.cqid = cpu_to_le16(qid);
895 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
896 c.create_cq.cq_flags = cpu_to_le16(flags);
897 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
898
1c63dc66 899 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
900}
901
902static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
903 struct nvme_queue *nvmeq)
904{
b60503ba 905 struct nvme_command c;
81c1cd98 906 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 907
d29ec824
CH
908 /*
909 * Note: we (ab)use the fact the the prp fields survive if no data
910 * is attached to the request.
911 */
b60503ba
MW
912 memset(&c, 0, sizeof(c));
913 c.create_sq.opcode = nvme_admin_create_sq;
914 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
915 c.create_sq.sqid = cpu_to_le16(qid);
916 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
917 c.create_sq.sq_flags = cpu_to_le16(flags);
918 c.create_sq.cqid = cpu_to_le16(qid);
919
1c63dc66 920 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
921}
922
923static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
924{
925 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
926}
927
928static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
929{
930 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
931}
932
2a842aca 933static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 934{
f4800d6d
CH
935 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
936 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 937
27fa9bc5
CH
938 dev_warn(nvmeq->dev->ctrl.device,
939 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 940 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 941 blk_mq_free_request(req);
bc5fc7e4
MW
942}
943
b2a0eb1a
KB
944static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
945{
946
947 /* If true, indicates loss of adapter communication, possibly by a
948 * NVMe Subsystem reset.
949 */
950 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
951
952 /* If there is a reset ongoing, we shouldn't reset again. */
953 if (dev->ctrl.state == NVME_CTRL_RESETTING)
954 return false;
955
956 /* We shouldn't reset unless the controller is on fatal error state
957 * _or_ if we lost the communication with it.
958 */
959 if (!(csts & NVME_CSTS_CFS) && !nssro)
960 return false;
961
962 /* If PCI error recovery process is happening, we cannot reset or
963 * the recovery mechanism will surely fail.
964 */
965 if (pci_channel_offline(to_pci_dev(dev->dev)))
966 return false;
967
968 return true;
969}
970
971static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
972{
973 /* Read a config register to help see what died. */
974 u16 pci_status;
975 int result;
976
977 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
978 &pci_status);
979 if (result == PCIBIOS_SUCCESSFUL)
980 dev_warn(dev->ctrl.device,
981 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
982 csts, pci_status);
983 else
984 dev_warn(dev->ctrl.device,
985 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
986 csts, result);
987}
988
31c7c7d2 989static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 990{
f4800d6d
CH
991 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
992 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 993 struct nvme_dev *dev = nvmeq->dev;
a4aea562 994 struct request *abort_req;
a4aea562 995 struct nvme_command cmd;
b2a0eb1a
KB
996 u32 csts = readl(dev->bar + NVME_REG_CSTS);
997
998 /*
999 * Reset immediately if the controller is failed
1000 */
1001 if (nvme_should_reset(dev, csts)) {
1002 nvme_warn_reset(dev, csts);
1003 nvme_dev_disable(dev, false);
d86c4d8e 1004 nvme_reset_ctrl(&dev->ctrl);
b2a0eb1a
KB
1005 return BLK_EH_HANDLED;
1006 }
c30341dc 1007
7776db1c
KB
1008 /*
1009 * Did we miss an interrupt?
1010 */
1011 if (__nvme_poll(nvmeq, req->tag)) {
1012 dev_warn(dev->ctrl.device,
1013 "I/O %d QID %d timeout, completion polled\n",
1014 req->tag, nvmeq->qid);
1015 return BLK_EH_HANDLED;
1016 }
1017
31c7c7d2 1018 /*
fd634f41
CH
1019 * Shutdown immediately if controller times out while starting. The
1020 * reset work will see the pci device disabled when it gets the forced
1021 * cancellation error. All outstanding requests are completed on
1022 * shutdown, so we return BLK_EH_HANDLED.
1023 */
bb8d261e 1024 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1b3c47c1 1025 dev_warn(dev->ctrl.device,
fd634f41
CH
1026 "I/O %d QID %d timeout, disable controller\n",
1027 req->tag, nvmeq->qid);
a5cdb68c 1028 nvme_dev_disable(dev, false);
27fa9bc5 1029 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
fd634f41 1030 return BLK_EH_HANDLED;
c30341dc
KB
1031 }
1032
fd634f41
CH
1033 /*
1034 * Shutdown the controller immediately and schedule a reset if the
1035 * command was already aborted once before and still hasn't been
1036 * returned to the driver, or if this is the admin queue.
31c7c7d2 1037 */
f4800d6d 1038 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1039 dev_warn(dev->ctrl.device,
e1569a16
KB
1040 "I/O %d QID %d timeout, reset controller\n",
1041 req->tag, nvmeq->qid);
a5cdb68c 1042 nvme_dev_disable(dev, false);
d86c4d8e 1043 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1044
e1569a16
KB
1045 /*
1046 * Mark the request as handled, since the inline shutdown
1047 * forces all outstanding requests to complete.
1048 */
27fa9bc5 1049 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
e1569a16 1050 return BLK_EH_HANDLED;
c30341dc 1051 }
c30341dc 1052
e7a2a87d 1053 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1054 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1055 return BLK_EH_RESET_TIMER;
6bf25d16 1056 }
7bf7d778 1057 iod->aborted = 1;
a4aea562 1058
c30341dc
KB
1059 memset(&cmd, 0, sizeof(cmd));
1060 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1061 cmd.abort.cid = req->tag;
c30341dc 1062 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1063
1b3c47c1
SG
1064 dev_warn(nvmeq->dev->ctrl.device,
1065 "I/O %d QID %d timeout, aborting\n",
1066 req->tag, nvmeq->qid);
e7a2a87d
CH
1067
1068 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1069 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1070 if (IS_ERR(abort_req)) {
1071 atomic_inc(&dev->ctrl.abort_limit);
1072 return BLK_EH_RESET_TIMER;
1073 }
1074
1075 abort_req->timeout = ADMIN_TIMEOUT;
1076 abort_req->end_io_data = NULL;
1077 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1078
31c7c7d2
CH
1079 /*
1080 * The aborted req will be completed on receiving the abort req.
1081 * We enable the timer again. If hit twice, it'll cause a device reset,
1082 * as the device then is in a faulty state.
1083 */
1084 return BLK_EH_RESET_TIMER;
c30341dc
KB
1085}
1086
a4aea562
MB
1087static void nvme_free_queue(struct nvme_queue *nvmeq)
1088{
9e866774
MW
1089 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1090 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1091 if (nvmeq->sq_cmds)
1092 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1093 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1094 kfree(nvmeq);
1095}
1096
a1a5ef99 1097static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1098{
1099 int i;
1100
a1a5ef99 1101 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1102 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1103 dev->queue_count--;
a4aea562 1104 dev->queues[i] = NULL;
f435c282 1105 nvme_free_queue(nvmeq);
121c7ad4 1106 }
22404274
KB
1107}
1108
4d115420
KB
1109/**
1110 * nvme_suspend_queue - put queue into suspended state
1111 * @nvmeq - queue to suspend
4d115420
KB
1112 */
1113static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1114{
2b25d981 1115 int vector;
b60503ba 1116
a09115b2 1117 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1118 if (nvmeq->cq_vector == -1) {
1119 spin_unlock_irq(&nvmeq->q_lock);
1120 return 1;
1121 }
0ff199cb 1122 vector = nvmeq->cq_vector;
42f61420 1123 nvmeq->dev->online_queues--;
2b25d981 1124 nvmeq->cq_vector = -1;
a09115b2
MW
1125 spin_unlock_irq(&nvmeq->q_lock);
1126
1c63dc66 1127 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1128 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1129
0ff199cb 1130 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1131
4d115420
KB
1132 return 0;
1133}
b60503ba 1134
a5cdb68c 1135static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1136{
a5cdb68c 1137 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1138
1139 if (!nvmeq)
1140 return;
1141 if (nvme_suspend_queue(nvmeq))
1142 return;
1143
a5cdb68c
KB
1144 if (shutdown)
1145 nvme_shutdown_ctrl(&dev->ctrl);
1146 else
1147 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1148 dev->bar + NVME_REG_CAP));
07836e65
KB
1149
1150 spin_lock_irq(&nvmeq->q_lock);
1151 nvme_process_cq(nvmeq);
1152 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1153}
1154
8ffaadf7
JD
1155static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1156 int entry_size)
1157{
1158 int q_depth = dev->q_depth;
5fd4ce1b
CH
1159 unsigned q_size_aligned = roundup(q_depth * entry_size,
1160 dev->ctrl.page_size);
8ffaadf7
JD
1161
1162 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1163 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1164 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1165 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1166
1167 /*
1168 * Ensure the reduced q_depth is above some threshold where it
1169 * would be better to map queues in system memory with the
1170 * original depth
1171 */
1172 if (q_depth < 64)
1173 return -ENOMEM;
1174 }
1175
1176 return q_depth;
1177}
1178
1179static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1180 int qid, int depth)
1181{
1182 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1183 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1184 dev->ctrl.page_size);
8ffaadf7
JD
1185 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1186 nvmeq->sq_cmds_io = dev->cmb + offset;
1187 } else {
1188 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1189 &nvmeq->sq_dma_addr, GFP_KERNEL);
1190 if (!nvmeq->sq_cmds)
1191 return -ENOMEM;
1192 }
1193
1194 return 0;
1195}
1196
b60503ba 1197static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
d3af3ecd 1198 int depth, int node)
b60503ba 1199{
d3af3ecd
SL
1200 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1201 node);
b60503ba
MW
1202 if (!nvmeq)
1203 return NULL;
1204
e75ec752 1205 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1206 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1207 if (!nvmeq->cqes)
1208 goto free_nvmeq;
b60503ba 1209
8ffaadf7 1210 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1211 goto free_cqdma;
1212
e75ec752 1213 nvmeq->q_dmadev = dev->dev;
091b6092 1214 nvmeq->dev = dev;
b60503ba
MW
1215 spin_lock_init(&nvmeq->q_lock);
1216 nvmeq->cq_head = 0;
82123460 1217 nvmeq->cq_phase = 1;
b80d5ccc 1218 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1219 nvmeq->q_depth = depth;
c30341dc 1220 nvmeq->qid = qid;
758dd7fd 1221 nvmeq->cq_vector = -1;
a4aea562 1222 dev->queues[qid] = nvmeq;
36a7e993
JD
1223 dev->queue_count++;
1224
b60503ba
MW
1225 return nvmeq;
1226
1227 free_cqdma:
e75ec752 1228 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1229 nvmeq->cq_dma_addr);
1230 free_nvmeq:
1231 kfree(nvmeq);
1232 return NULL;
1233}
1234
dca51e78 1235static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1236{
0ff199cb
CH
1237 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1238 int nr = nvmeq->dev->ctrl.instance;
1239
1240 if (use_threaded_interrupts) {
1241 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1242 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1243 } else {
1244 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1245 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1246 }
3001082c
MW
1247}
1248
22404274 1249static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1250{
22404274 1251 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1252
7be50e93 1253 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1254 nvmeq->sq_tail = 0;
1255 nvmeq->cq_head = 0;
1256 nvmeq->cq_phase = 1;
b80d5ccc 1257 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1258 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1259 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1260 dev->online_queues++;
7be50e93 1261 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1262}
1263
1264static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1265{
1266 struct nvme_dev *dev = nvmeq->dev;
1267 int result;
3f85d50b 1268
2b25d981 1269 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1270 result = adapter_alloc_cq(dev, qid, nvmeq);
1271 if (result < 0)
22404274 1272 return result;
b60503ba
MW
1273
1274 result = adapter_alloc_sq(dev, qid, nvmeq);
1275 if (result < 0)
1276 goto release_cq;
1277
dca51e78 1278 result = queue_request_irq(nvmeq);
b60503ba
MW
1279 if (result < 0)
1280 goto release_sq;
1281
22404274 1282 nvme_init_queue(nvmeq, qid);
22404274 1283 return result;
b60503ba
MW
1284
1285 release_sq:
1286 adapter_delete_sq(dev, qid);
1287 release_cq:
1288 adapter_delete_cq(dev, qid);
22404274 1289 return result;
b60503ba
MW
1290}
1291
f363b089 1292static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1293 .queue_rq = nvme_queue_rq,
77f02a7a 1294 .complete = nvme_pci_complete_rq,
a4aea562 1295 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1296 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1297 .init_request = nvme_init_request,
a4aea562
MB
1298 .timeout = nvme_timeout,
1299};
1300
f363b089 1301static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1302 .queue_rq = nvme_queue_rq,
77f02a7a 1303 .complete = nvme_pci_complete_rq,
a4aea562
MB
1304 .init_hctx = nvme_init_hctx,
1305 .init_request = nvme_init_request,
dca51e78 1306 .map_queues = nvme_pci_map_queues,
a4aea562 1307 .timeout = nvme_timeout,
a0fa9647 1308 .poll = nvme_poll,
a4aea562
MB
1309};
1310
ea191d2f
KB
1311static void nvme_dev_remove_admin(struct nvme_dev *dev)
1312{
1c63dc66 1313 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1314 /*
1315 * If the controller was reset during removal, it's possible
1316 * user requests may be waiting on a stopped queue. Start the
1317 * queue to flush these to completion.
1318 */
1319 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1320 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1321 blk_mq_free_tag_set(&dev->admin_tagset);
1322 }
1323}
1324
a4aea562
MB
1325static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1326{
1c63dc66 1327 if (!dev->ctrl.admin_q) {
a4aea562
MB
1328 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1329 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1330
1331 /*
1332 * Subtract one to leave an empty queue entry for 'Full Queue'
1333 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1334 */
1335 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1336 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1337 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1338 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
d3484991 1339 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1340 dev->admin_tagset.driver_data = dev;
1341
1342 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1343 return -ENOMEM;
1344
1c63dc66
CH
1345 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1346 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1347 blk_mq_free_tag_set(&dev->admin_tagset);
1348 return -ENOMEM;
1349 }
1c63dc66 1350 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1351 nvme_dev_remove_admin(dev);
1c63dc66 1352 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1353 return -ENODEV;
1354 }
0fb59cbc 1355 } else
25646264 1356 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1357
1358 return 0;
1359}
1360
97f6ef64
XY
1361static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1362{
1363 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1364}
1365
1366static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1367{
1368 struct pci_dev *pdev = to_pci_dev(dev->dev);
1369
1370 if (size <= dev->bar_mapped_size)
1371 return 0;
1372 if (size > pci_resource_len(pdev, 0))
1373 return -ENOMEM;
1374 if (dev->bar)
1375 iounmap(dev->bar);
1376 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1377 if (!dev->bar) {
1378 dev->bar_mapped_size = 0;
1379 return -ENOMEM;
1380 }
1381 dev->bar_mapped_size = size;
1382 dev->dbs = dev->bar + NVME_REG_DBS;
1383
1384 return 0;
1385}
1386
8d85fce7 1387static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1388{
ba47e386 1389 int result;
b60503ba 1390 u32 aqa;
7a67cbea 1391 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1392 struct nvme_queue *nvmeq;
1393
97f6ef64
XY
1394 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1395 if (result < 0)
1396 return result;
1397
8ef2074d 1398 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
dfbac8c7
KB
1399 NVME_CAP_NSSRC(cap) : 0;
1400
7a67cbea
CH
1401 if (dev->subsystem &&
1402 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1403 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1404
5fd4ce1b 1405 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1406 if (result < 0)
1407 return result;
b60503ba 1408
a4aea562 1409 nvmeq = dev->queues[0];
cd638946 1410 if (!nvmeq) {
d3af3ecd
SL
1411 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1412 dev_to_node(dev->dev));
cd638946
KB
1413 if (!nvmeq)
1414 return -ENOMEM;
cd638946 1415 }
b60503ba
MW
1416
1417 aqa = nvmeq->q_depth - 1;
1418 aqa |= aqa << 16;
1419
7a67cbea
CH
1420 writel(aqa, dev->bar + NVME_REG_AQA);
1421 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1422 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1423
5fd4ce1b 1424 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1425 if (result)
d4875622 1426 return result;
a4aea562 1427
2b25d981 1428 nvmeq->cq_vector = 0;
dca51e78 1429 result = queue_request_irq(nvmeq);
758dd7fd
JD
1430 if (result) {
1431 nvmeq->cq_vector = -1;
d4875622 1432 return result;
758dd7fd 1433 }
025c557a 1434
b60503ba
MW
1435 return result;
1436}
1437
749941f2 1438static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1439{
949928c1 1440 unsigned i, max;
749941f2 1441 int ret = 0;
42f61420 1442
749941f2 1443 for (i = dev->queue_count; i <= dev->max_qid; i++) {
d3af3ecd
SL
1444 /* vector == qid - 1, match nvme_create_queue */
1445 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1446 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
749941f2 1447 ret = -ENOMEM;
42f61420 1448 break;
749941f2
CH
1449 }
1450 }
42f61420 1451
949928c1
KB
1452 max = min(dev->max_qid, dev->queue_count - 1);
1453 for (i = dev->online_queues; i <= max; i++) {
749941f2 1454 ret = nvme_create_queue(dev->queues[i], i);
d4875622 1455 if (ret)
42f61420 1456 break;
27e8166c 1457 }
749941f2
CH
1458
1459 /*
1460 * Ignore failing Create SQ/CQ commands, we can continue with less
1461 * than the desired aount of queues, and even a controller without
1462 * I/O queues an still be used to issue admin commands. This might
1463 * be useful to upgrade a buggy firmware for example.
1464 */
1465 return ret >= 0 ? 0 : ret;
b60503ba
MW
1466}
1467
202021c1
SB
1468static ssize_t nvme_cmb_show(struct device *dev,
1469 struct device_attribute *attr,
1470 char *buf)
1471{
1472 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1473
c965809c 1474 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1475 ndev->cmbloc, ndev->cmbsz);
1476}
1477static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1478
8ffaadf7
JD
1479static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1480{
1481 u64 szu, size, offset;
8ffaadf7
JD
1482 resource_size_t bar_size;
1483 struct pci_dev *pdev = to_pci_dev(dev->dev);
1484 void __iomem *cmb;
1485 dma_addr_t dma_addr;
1486
7a67cbea 1487 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1488 if (!(NVME_CMB_SZ(dev->cmbsz)))
1489 return NULL;
202021c1 1490 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1491
202021c1
SB
1492 if (!use_cmb_sqes)
1493 return NULL;
8ffaadf7
JD
1494
1495 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1496 size = szu * NVME_CMB_SZ(dev->cmbsz);
202021c1
SB
1497 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1498 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
8ffaadf7
JD
1499
1500 if (offset > bar_size)
1501 return NULL;
1502
1503 /*
1504 * Controllers may support a CMB size larger than their BAR,
1505 * for example, due to being behind a bridge. Reduce the CMB to
1506 * the reported size of the BAR
1507 */
1508 if (size > bar_size - offset)
1509 size = bar_size - offset;
1510
202021c1 1511 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
8ffaadf7
JD
1512 cmb = ioremap_wc(dma_addr, size);
1513 if (!cmb)
1514 return NULL;
1515
1516 dev->cmb_dma_addr = dma_addr;
1517 dev->cmb_size = size;
1518 return cmb;
1519}
1520
1521static inline void nvme_release_cmb(struct nvme_dev *dev)
1522{
1523 if (dev->cmb) {
1524 iounmap(dev->cmb);
1525 dev->cmb = NULL;
f63572df
JD
1526 if (dev->cmbsz) {
1527 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1528 &dev_attr_cmb.attr, NULL);
1529 dev->cmbsz = 0;
1530 }
8ffaadf7
JD
1531 }
1532}
1533
87ad72a5
CH
1534static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1535{
1536 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1537 struct nvme_command c;
1538 u64 dma_addr;
1539 int ret;
1540
1541 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1542 DMA_TO_DEVICE);
1543 if (dma_mapping_error(dev->dev, dma_addr))
1544 return -ENOMEM;
1545
1546 memset(&c, 0, sizeof(c));
1547 c.features.opcode = nvme_admin_set_features;
1548 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1549 c.features.dword11 = cpu_to_le32(bits);
1550 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1551 ilog2(dev->ctrl.page_size));
1552 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1553 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1554 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1555
1556 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1557 if (ret) {
1558 dev_warn(dev->ctrl.device,
1559 "failed to set host mem (err %d, flags %#x).\n",
1560 ret, bits);
1561 }
1562 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1563 return ret;
1564}
1565
1566static void nvme_free_host_mem(struct nvme_dev *dev)
1567{
1568 int i;
1569
1570 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1571 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1572 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1573
1574 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1575 le64_to_cpu(desc->addr));
1576 }
1577
1578 kfree(dev->host_mem_desc_bufs);
1579 dev->host_mem_desc_bufs = NULL;
1580 kfree(dev->host_mem_descs);
1581 dev->host_mem_descs = NULL;
1582}
1583
1584static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1585{
1586 struct nvme_host_mem_buf_desc *descs;
1587 u32 chunk_size, max_entries, i = 0;
1588 void **bufs;
1589 u64 size, tmp;
1590
1591 /* start big and work our way down */
1592 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1593retry:
1594 tmp = (preferred + chunk_size - 1);
1595 do_div(tmp, chunk_size);
1596 max_entries = tmp;
1597 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1598 if (!descs)
1599 goto out;
1600
1601 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1602 if (!bufs)
1603 goto out_free_descs;
1604
1605 for (size = 0; size < preferred; size += chunk_size) {
1606 u32 len = min_t(u64, chunk_size, preferred - size);
1607 dma_addr_t dma_addr;
1608
1609 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1610 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1611 if (!bufs[i])
1612 break;
1613
1614 descs[i].addr = cpu_to_le64(dma_addr);
1615 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1616 i++;
1617 }
1618
1619 if (!size || (min && size < min)) {
1620 dev_warn(dev->ctrl.device,
1621 "failed to allocate host memory buffer.\n");
1622 goto out_free_bufs;
1623 }
1624
1625 dev_info(dev->ctrl.device,
1626 "allocated %lld MiB host memory buffer.\n",
1627 size >> ilog2(SZ_1M));
1628 dev->nr_host_mem_descs = i;
1629 dev->host_mem_size = size;
1630 dev->host_mem_descs = descs;
1631 dev->host_mem_desc_bufs = bufs;
1632 return 0;
1633
1634out_free_bufs:
1635 while (--i >= 0) {
1636 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1637
1638 dma_free_coherent(dev->dev, size, bufs[i],
1639 le64_to_cpu(descs[i].addr));
1640 }
1641
1642 kfree(bufs);
1643out_free_descs:
1644 kfree(descs);
1645out:
1646 /* try a smaller chunk size if we failed early */
1647 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1648 chunk_size /= 2;
1649 goto retry;
1650 }
1651 dev->host_mem_descs = NULL;
1652 return -ENOMEM;
1653}
1654
1655static void nvme_setup_host_mem(struct nvme_dev *dev)
1656{
1657 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1658 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1659 u64 min = (u64)dev->ctrl.hmmin * 4096;
1660 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1661
1662 preferred = min(preferred, max);
1663 if (min > max) {
1664 dev_warn(dev->ctrl.device,
1665 "min host memory (%lld MiB) above limit (%d MiB).\n",
1666 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1667 nvme_free_host_mem(dev);
1668 return;
1669 }
1670
1671 /*
1672 * If we already have a buffer allocated check if we can reuse it.
1673 */
1674 if (dev->host_mem_descs) {
1675 if (dev->host_mem_size >= min)
1676 enable_bits |= NVME_HOST_MEM_RETURN;
1677 else
1678 nvme_free_host_mem(dev);
1679 }
1680
1681 if (!dev->host_mem_descs) {
1682 if (nvme_alloc_host_mem(dev, min, preferred))
1683 return;
1684 }
1685
1686 if (nvme_set_host_mem(dev, enable_bits))
1687 nvme_free_host_mem(dev);
1688}
1689
8d85fce7 1690static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1691{
a4aea562 1692 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1693 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
1694 int result, nr_io_queues;
1695 unsigned long size;
b60503ba 1696
2800b8e7 1697 nr_io_queues = num_online_cpus();
9a0be7ab
CH
1698 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1699 if (result < 0)
1b23484b 1700 return result;
9a0be7ab 1701
f5fa90dc 1702 if (nr_io_queues == 0)
a5229050 1703 return 0;
b60503ba 1704
8ffaadf7
JD
1705 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1706 result = nvme_cmb_qdepth(dev, nr_io_queues,
1707 sizeof(struct nvme_command));
1708 if (result > 0)
1709 dev->q_depth = result;
1710 else
1711 nvme_release_cmb(dev);
1712 }
1713
97f6ef64
XY
1714 do {
1715 size = db_bar_size(dev, nr_io_queues);
1716 result = nvme_remap_bar(dev, size);
1717 if (!result)
1718 break;
1719 if (!--nr_io_queues)
1720 return -ENOMEM;
1721 } while (1);
1722 adminq->q_db = dev->dbs;
f1938f6e 1723
9d713c2b 1724 /* Deregister the admin queue's interrupt */
0ff199cb 1725 pci_free_irq(pdev, 0, adminq);
9d713c2b 1726
e32efbfc
JA
1727 /*
1728 * If we enable msix early due to not intx, disable it again before
1729 * setting up the full range we need.
1730 */
dca51e78
CH
1731 pci_free_irq_vectors(pdev);
1732 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1733 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1734 if (nr_io_queues <= 0)
1735 return -EIO;
1736 dev->max_qid = nr_io_queues;
fa08a396 1737
063a8096
MW
1738 /*
1739 * Should investigate if there's a performance win from allocating
1740 * more queues than interrupt vectors; it might allow the submission
1741 * path to scale better, even if the receive path is limited by the
1742 * number of interrupts.
1743 */
063a8096 1744
dca51e78 1745 result = queue_request_irq(adminq);
758dd7fd
JD
1746 if (result) {
1747 adminq->cq_vector = -1;
d4875622 1748 return result;
758dd7fd 1749 }
749941f2 1750 return nvme_create_io_queues(dev);
b60503ba
MW
1751}
1752
2a842aca 1753static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1754{
db3cbfff 1755 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1756
db3cbfff
KB
1757 blk_mq_free_request(req);
1758 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1759}
1760
2a842aca 1761static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1762{
db3cbfff 1763 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1764
db3cbfff
KB
1765 if (!error) {
1766 unsigned long flags;
1767
2e39e0f6
ML
1768 /*
1769 * We might be called with the AQ q_lock held
1770 * and the I/O queue q_lock should always
1771 * nest inside the AQ one.
1772 */
1773 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1774 SINGLE_DEPTH_NESTING);
db3cbfff
KB
1775 nvme_process_cq(nvmeq);
1776 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1777 }
db3cbfff
KB
1778
1779 nvme_del_queue_end(req, error);
a5768aa8
KB
1780}
1781
db3cbfff 1782static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1783{
db3cbfff
KB
1784 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1785 struct request *req;
1786 struct nvme_command cmd;
bda4e0fb 1787
db3cbfff
KB
1788 memset(&cmd, 0, sizeof(cmd));
1789 cmd.delete_queue.opcode = opcode;
1790 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1791
eb71f435 1792 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1793 if (IS_ERR(req))
1794 return PTR_ERR(req);
bda4e0fb 1795
db3cbfff
KB
1796 req->timeout = ADMIN_TIMEOUT;
1797 req->end_io_data = nvmeq;
1798
1799 blk_execute_rq_nowait(q, NULL, req, false,
1800 opcode == nvme_admin_delete_cq ?
1801 nvme_del_cq_end : nvme_del_queue_end);
1802 return 0;
bda4e0fb
KB
1803}
1804
70659060 1805static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
a5768aa8 1806{
70659060 1807 int pass;
db3cbfff
KB
1808 unsigned long timeout;
1809 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1810
db3cbfff 1811 for (pass = 0; pass < 2; pass++) {
014a0d60 1812 int sent = 0, i = queues;
db3cbfff
KB
1813
1814 reinit_completion(&dev->ioq_wait);
1815 retry:
1816 timeout = ADMIN_TIMEOUT;
c21377f8
GKB
1817 for (; i > 0; i--, sent++)
1818 if (nvme_delete_queue(dev->queues[i], opcode))
db3cbfff 1819 break;
c21377f8 1820
db3cbfff
KB
1821 while (sent--) {
1822 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1823 if (timeout == 0)
1824 return;
1825 if (i)
1826 goto retry;
1827 }
1828 opcode = nvme_admin_delete_cq;
1829 }
a5768aa8
KB
1830}
1831
422ef0c7
MW
1832/*
1833 * Return: error value if an error occurred setting up the queues or calling
1834 * Identify Device. 0 if these succeeded, even if adding some of the
1835 * namespaces failed. At the moment, these failures are silent. TBD which
1836 * failures should be reported.
1837 */
8d85fce7 1838static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1839{
5bae7f73 1840 if (!dev->ctrl.tagset) {
ffe7704d
KB
1841 dev->tagset.ops = &nvme_mq_ops;
1842 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1843 dev->tagset.timeout = NVME_IO_TIMEOUT;
1844 dev->tagset.numa_node = dev_to_node(dev->dev);
1845 dev->tagset.queue_depth =
a4aea562 1846 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1847 dev->tagset.cmd_size = nvme_cmd_size(dev);
1848 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1849 dev->tagset.driver_data = dev;
b60503ba 1850
ffe7704d
KB
1851 if (blk_mq_alloc_tag_set(&dev->tagset))
1852 return 0;
5bae7f73 1853 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
1854
1855 nvme_dbbuf_set(dev);
949928c1
KB
1856 } else {
1857 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1858
1859 /* Free previously allocated queues that are no longer usable */
1860 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1861 }
949928c1 1862
e1e5e564 1863 return 0;
b60503ba
MW
1864}
1865
b00a726a 1866static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1867{
42f61420 1868 u64 cap;
b00a726a 1869 int result = -ENOMEM;
e75ec752 1870 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1871
1872 if (pci_enable_device_mem(pdev))
1873 return result;
1874
0877cb0d 1875 pci_set_master(pdev);
0877cb0d 1876
e75ec752
CH
1877 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1878 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1879 goto disable;
0877cb0d 1880
7a67cbea 1881 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1882 result = -ENODEV;
b00a726a 1883 goto disable;
0e53d180 1884 }
e32efbfc
JA
1885
1886 /*
a5229050
KB
1887 * Some devices and/or platforms don't advertise or work with INTx
1888 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1889 * adjust this later.
e32efbfc 1890 */
dca51e78
CH
1891 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1892 if (result < 0)
1893 return result;
e32efbfc 1894
7a67cbea
CH
1895 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1896
42f61420
KB
1897 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1898 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1899 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1900
1901 /*
1902 * Temporary fix for the Apple controller found in the MacBook8,1 and
1903 * some MacBook7,1 to avoid controller resets and data loss.
1904 */
1905 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1906 dev->q_depth = 2;
9bdcfb10
CH
1907 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1908 "set queue depth=%u to work around controller resets\n",
1f390c1f
SG
1909 dev->q_depth);
1910 }
1911
202021c1
SB
1912 /*
1913 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1914 * populate sysfs if a CMB is implemented. Note that we add the
1915 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1916 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1917 * NULL as final argument to sysfs_add_file_to_group.
1918 */
1919
8ef2074d 1920 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
8ffaadf7 1921 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1922
202021c1
SB
1923 if (dev->cmbsz) {
1924 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1925 &dev_attr_cmb.attr, NULL))
9bdcfb10 1926 dev_warn(dev->ctrl.device,
202021c1
SB
1927 "failed to add sysfs attribute for CMB\n");
1928 }
1929 }
1930
a0a3408e
KB
1931 pci_enable_pcie_error_reporting(pdev);
1932 pci_save_state(pdev);
0877cb0d
KB
1933 return 0;
1934
1935 disable:
0877cb0d
KB
1936 pci_disable_device(pdev);
1937 return result;
1938}
1939
1940static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1941{
1942 if (dev->bar)
1943 iounmap(dev->bar);
a1f447b3 1944 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
1945}
1946
1947static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1948{
e75ec752
CH
1949 struct pci_dev *pdev = to_pci_dev(dev->dev);
1950
f63572df 1951 nvme_release_cmb(dev);
dca51e78 1952 pci_free_irq_vectors(pdev);
0877cb0d 1953
a0a3408e
KB
1954 if (pci_is_enabled(pdev)) {
1955 pci_disable_pcie_error_reporting(pdev);
e75ec752 1956 pci_disable_device(pdev);
4d115420 1957 }
4d115420
KB
1958}
1959
a5cdb68c 1960static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1961{
70659060 1962 int i, queues;
302ad8cc
KB
1963 bool dead = true;
1964 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 1965
77bf25ea 1966 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
1967 if (pci_is_enabled(pdev)) {
1968 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1969
1970 if (dev->ctrl.state == NVME_CTRL_LIVE)
1971 nvme_start_freeze(&dev->ctrl);
1972 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1973 pdev->error_state != pci_channel_io_normal);
c9d3bf88 1974 }
c21377f8 1975
302ad8cc
KB
1976 /*
1977 * Give the controller a chance to complete all entered requests if
1978 * doing a safe shutdown.
1979 */
87ad72a5
CH
1980 if (!dead) {
1981 if (shutdown)
1982 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1983
1984 /*
1985 * If the controller is still alive tell it to stop using the
1986 * host memory buffer. In theory the shutdown / reset should
1987 * make sure that it doesn't access the host memoery anymore,
1988 * but I'd rather be safe than sorry..
1989 */
1990 if (dev->host_mem_descs)
1991 nvme_set_host_mem(dev, 0);
1992
1993 }
302ad8cc
KB
1994 nvme_stop_queues(&dev->ctrl);
1995
70659060 1996 queues = dev->online_queues - 1;
c21377f8
GKB
1997 for (i = dev->queue_count - 1; i > 0; i--)
1998 nvme_suspend_queue(dev->queues[i]);
1999
302ad8cc 2000 if (dead) {
82469c59
GKB
2001 /* A device might become IO incapable very soon during
2002 * probe, before the admin queue is configured. Thus,
2003 * queue_count can be 0 here.
2004 */
2005 if (dev->queue_count)
2006 nvme_suspend_queue(dev->queues[0]);
4d115420 2007 } else {
70659060 2008 nvme_disable_io_queues(dev, queues);
a5cdb68c 2009 nvme_disable_admin_queue(dev, shutdown);
4d115420 2010 }
b00a726a 2011 nvme_pci_disable(dev);
07836e65 2012
e1958e65
ML
2013 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2014 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2015
2016 /*
2017 * The driver will not be starting up queues again if shutting down so
2018 * must flush all entered requests to their failed completion to avoid
2019 * deadlocking blk-mq hot-cpu notifier.
2020 */
2021 if (shutdown)
2022 nvme_start_queues(&dev->ctrl);
77bf25ea 2023 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2024}
2025
091b6092
MW
2026static int nvme_setup_prp_pools(struct nvme_dev *dev)
2027{
e75ec752 2028 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2029 PAGE_SIZE, PAGE_SIZE, 0);
2030 if (!dev->prp_page_pool)
2031 return -ENOMEM;
2032
99802a7a 2033 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2034 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2035 256, 256, 0);
2036 if (!dev->prp_small_pool) {
2037 dma_pool_destroy(dev->prp_page_pool);
2038 return -ENOMEM;
2039 }
091b6092
MW
2040 return 0;
2041}
2042
2043static void nvme_release_prp_pools(struct nvme_dev *dev)
2044{
2045 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2046 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2047}
2048
1673f1f0 2049static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2050{
1673f1f0 2051 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2052
f9f38e33 2053 nvme_dbbuf_dma_free(dev);
e75ec752 2054 put_device(dev->dev);
4af0e21c
KB
2055 if (dev->tagset.tags)
2056 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2057 if (dev->ctrl.admin_q)
2058 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2059 kfree(dev->queues);
e286bcfc 2060 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
2061 kfree(dev);
2062}
2063
f58944e2
KB
2064static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2065{
237045fc 2066 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
2067
2068 kref_get(&dev->ctrl.kref);
69d9a99c 2069 nvme_dev_disable(dev, false);
f58944e2
KB
2070 if (!schedule_work(&dev->remove_work))
2071 nvme_put_ctrl(&dev->ctrl);
2072}
2073
fd634f41 2074static void nvme_reset_work(struct work_struct *work)
5e82e952 2075{
d86c4d8e
CH
2076 struct nvme_dev *dev =
2077 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2078 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2079 int result = -ENODEV;
5e82e952 2080
82b057ca 2081 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2082 goto out;
5e82e952 2083
fd634f41
CH
2084 /*
2085 * If we're called to reset a live controller first shut it down before
2086 * moving on.
2087 */
b00a726a 2088 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2089 nvme_dev_disable(dev, false);
5e82e952 2090
b00a726a 2091 result = nvme_pci_enable(dev);
f0b50732 2092 if (result)
3cf519b5 2093 goto out;
f0b50732
KB
2094
2095 result = nvme_configure_admin_queue(dev);
2096 if (result)
f58944e2 2097 goto out;
f0b50732 2098
a4aea562 2099 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2100 result = nvme_alloc_admin_tags(dev);
2101 if (result)
f58944e2 2102 goto out;
b9afca3e 2103
ce4541f4
CH
2104 result = nvme_init_identify(&dev->ctrl);
2105 if (result)
f58944e2 2106 goto out;
ce4541f4 2107
e286bcfc
SB
2108 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2109 if (!dev->ctrl.opal_dev)
2110 dev->ctrl.opal_dev =
2111 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2112 else if (was_suspend)
2113 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2114 } else {
2115 free_opal_dev(dev->ctrl.opal_dev);
2116 dev->ctrl.opal_dev = NULL;
4f1244c8 2117 }
a98e58e5 2118
f9f38e33
HK
2119 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2120 result = nvme_dbbuf_dma_alloc(dev);
2121 if (result)
2122 dev_warn(dev->dev,
2123 "unable to allocate dma for dbbuf\n");
2124 }
2125
87ad72a5
CH
2126 if (dev->ctrl.hmpre)
2127 nvme_setup_host_mem(dev);
2128
f0b50732 2129 result = nvme_setup_io_queues(dev);
badc34d4 2130 if (result)
f58944e2 2131 goto out;
f0b50732 2132
21f033f7
KB
2133 /*
2134 * A controller that can not execute IO typically requires user
2135 * intervention to correct. For such degraded controllers, the driver
2136 * should not submit commands the user did not request, so skip
2137 * registering for asynchronous event notification on this condition.
2138 */
f866fc42
CH
2139 if (dev->online_queues > 1)
2140 nvme_queue_async_events(&dev->ctrl);
3cf519b5 2141
2659e57b
CH
2142 /*
2143 * Keep the controller around but remove all namespaces if we don't have
2144 * any working I/O queue.
2145 */
3cf519b5 2146 if (dev->online_queues < 2) {
1b3c47c1 2147 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2148 nvme_kill_queues(&dev->ctrl);
5bae7f73 2149 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 2150 } else {
25646264 2151 nvme_start_queues(&dev->ctrl);
302ad8cc 2152 nvme_wait_freeze(&dev->ctrl);
3cf519b5 2153 nvme_dev_add(dev);
302ad8cc 2154 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2155 }
2156
bb8d261e
CH
2157 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2158 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2159 goto out;
2160 }
92911a55
CH
2161
2162 if (dev->online_queues > 1)
5955be21 2163 nvme_queue_scan(&dev->ctrl);
3cf519b5 2164 return;
f0b50732 2165
3cf519b5 2166 out:
f58944e2 2167 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2168}
2169
5c8809e6 2170static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2171{
5c8809e6 2172 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2173 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 2174
69d9a99c 2175 nvme_kill_queues(&dev->ctrl);
9a6b9458 2176 if (pci_get_drvdata(pdev))
921920ab 2177 device_release_driver(&pdev->dev);
1673f1f0 2178 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2179}
2180
1c63dc66 2181static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2182{
1c63dc66 2183 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2184 return 0;
9ca97374
TH
2185}
2186
5fd4ce1b 2187static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2188{
5fd4ce1b
CH
2189 writel(val, to_nvme_dev(ctrl)->bar + off);
2190 return 0;
2191}
4cc06521 2192
7fd8930f
CH
2193static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2194{
2195 *val = readq(to_nvme_dev(ctrl)->bar + off);
2196 return 0;
4cc06521
KB
2197}
2198
1c63dc66 2199static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2200 .name = "pcie",
e439bb12 2201 .module = THIS_MODULE,
c81bfba9 2202 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2203 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2204 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2205 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2206 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2207 .submit_async_event = nvme_pci_submit_async_event,
1c63dc66 2208};
4cc06521 2209
b00a726a
KB
2210static int nvme_dev_map(struct nvme_dev *dev)
2211{
b00a726a
KB
2212 struct pci_dev *pdev = to_pci_dev(dev->dev);
2213
a1f447b3 2214 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2215 return -ENODEV;
2216
97f6ef64 2217 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2218 goto release;
2219
9fa196e7 2220 return 0;
b00a726a 2221 release:
9fa196e7
MG
2222 pci_release_mem_regions(pdev);
2223 return -ENODEV;
b00a726a
KB
2224}
2225
ff5350a8
AL
2226static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2227{
2228 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2229 /*
2230 * Several Samsung devices seem to drop off the PCIe bus
2231 * randomly when APST is on and uses the deepest sleep state.
2232 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2233 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2234 * 950 PRO 256GB", but it seems to be restricted to two Dell
2235 * laptops.
2236 */
2237 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2238 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2239 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2240 return NVME_QUIRK_NO_DEEPEST_PS;
2241 }
2242
2243 return 0;
2244}
2245
8d85fce7 2246static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2247{
a4aea562 2248 int node, result = -ENOMEM;
b60503ba 2249 struct nvme_dev *dev;
ff5350a8 2250 unsigned long quirks = id->driver_data;
b60503ba 2251
a4aea562
MB
2252 node = dev_to_node(&pdev->dev);
2253 if (node == NUMA_NO_NODE)
2fa84351 2254 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2255
2256 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2257 if (!dev)
2258 return -ENOMEM;
a4aea562
MB
2259 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2260 GFP_KERNEL, node);
b60503ba
MW
2261 if (!dev->queues)
2262 goto free;
2263
e75ec752 2264 dev->dev = get_device(&pdev->dev);
9a6b9458 2265 pci_set_drvdata(pdev, dev);
1c63dc66 2266
b00a726a
KB
2267 result = nvme_dev_map(dev);
2268 if (result)
2269 goto free;
2270
d86c4d8e 2271 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2272 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2273 mutex_init(&dev->shutdown_lock);
db3cbfff 2274 init_completion(&dev->ioq_wait);
b60503ba 2275
091b6092
MW
2276 result = nvme_setup_prp_pools(dev);
2277 if (result)
a96d4f5c 2278 goto put_pci;
4cc06521 2279
ff5350a8
AL
2280 quirks |= check_dell_samsung_bug(pdev);
2281
f3ca80fc 2282 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
ff5350a8 2283 quirks);
4cc06521 2284 if (result)
2e1d8448 2285 goto release_pools;
740216fc 2286
82b057ca 2287 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
1b3c47c1
SG
2288 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2289
d86c4d8e 2290 queue_work(nvme_wq, &dev->ctrl.reset_work);
b60503ba
MW
2291 return 0;
2292
0877cb0d 2293 release_pools:
091b6092 2294 nvme_release_prp_pools(dev);
a96d4f5c 2295 put_pci:
e75ec752 2296 put_device(dev->dev);
b00a726a 2297 nvme_dev_unmap(dev);
b60503ba
MW
2298 free:
2299 kfree(dev->queues);
b60503ba
MW
2300 kfree(dev);
2301 return result;
2302}
2303
f0d54a54
KB
2304static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2305{
a6739479 2306 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2307
a6739479 2308 if (prepare)
a5cdb68c 2309 nvme_dev_disable(dev, false);
a6739479 2310 else
d86c4d8e 2311 nvme_reset_ctrl(&dev->ctrl);
f0d54a54
KB
2312}
2313
09ece142
KB
2314static void nvme_shutdown(struct pci_dev *pdev)
2315{
2316 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2317 nvme_dev_disable(dev, true);
09ece142
KB
2318}
2319
f58944e2
KB
2320/*
2321 * The driver's remove may be called on a device in a partially initialized
2322 * state. This function must not have any dependencies on the device state in
2323 * order to proceed.
2324 */
8d85fce7 2325static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2326{
2327 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2328
bb8d261e
CH
2329 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2330
d86c4d8e 2331 cancel_work_sync(&dev->ctrl.reset_work);
9a6b9458 2332 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2333
6db28eda 2334 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2335 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2336 nvme_dev_disable(dev, false);
2337 }
0ff9d4e1 2338
d86c4d8e 2339 flush_work(&dev->ctrl.reset_work);
53029b04 2340 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2341 nvme_dev_disable(dev, true);
87ad72a5 2342 nvme_free_host_mem(dev);
a4aea562 2343 nvme_dev_remove_admin(dev);
a1a5ef99 2344 nvme_free_queues(dev, 0);
9a6b9458 2345 nvme_release_prp_pools(dev);
b00a726a 2346 nvme_dev_unmap(dev);
1673f1f0 2347 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2348}
2349
13880f5b
KB
2350static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2351{
2352 int ret = 0;
2353
2354 if (numvfs == 0) {
2355 if (pci_vfs_assigned(pdev)) {
2356 dev_warn(&pdev->dev,
2357 "Cannot disable SR-IOV VFs while assigned\n");
2358 return -EPERM;
2359 }
2360 pci_disable_sriov(pdev);
2361 return 0;
2362 }
2363
2364 ret = pci_enable_sriov(pdev, numvfs);
2365 return ret ? ret : numvfs;
2366}
2367
671a6018 2368#ifdef CONFIG_PM_SLEEP
cd638946
KB
2369static int nvme_suspend(struct device *dev)
2370{
2371 struct pci_dev *pdev = to_pci_dev(dev);
2372 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2373
a5cdb68c 2374 nvme_dev_disable(ndev, true);
cd638946
KB
2375 return 0;
2376}
2377
2378static int nvme_resume(struct device *dev)
2379{
2380 struct pci_dev *pdev = to_pci_dev(dev);
2381 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2382
d86c4d8e 2383 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2384 return 0;
cd638946 2385}
671a6018 2386#endif
cd638946
KB
2387
2388static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2389
a0a3408e
KB
2390static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2391 pci_channel_state_t state)
2392{
2393 struct nvme_dev *dev = pci_get_drvdata(pdev);
2394
2395 /*
2396 * A frozen channel requires a reset. When detected, this method will
2397 * shutdown the controller to quiesce. The controller will be restarted
2398 * after the slot reset through driver's slot_reset callback.
2399 */
a0a3408e
KB
2400 switch (state) {
2401 case pci_channel_io_normal:
2402 return PCI_ERS_RESULT_CAN_RECOVER;
2403 case pci_channel_io_frozen:
d011fb31
KB
2404 dev_warn(dev->ctrl.device,
2405 "frozen state error detected, reset controller\n");
a5cdb68c 2406 nvme_dev_disable(dev, false);
a0a3408e
KB
2407 return PCI_ERS_RESULT_NEED_RESET;
2408 case pci_channel_io_perm_failure:
d011fb31
KB
2409 dev_warn(dev->ctrl.device,
2410 "failure state error detected, request disconnect\n");
a0a3408e
KB
2411 return PCI_ERS_RESULT_DISCONNECT;
2412 }
2413 return PCI_ERS_RESULT_NEED_RESET;
2414}
2415
2416static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2417{
2418 struct nvme_dev *dev = pci_get_drvdata(pdev);
2419
1b3c47c1 2420 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2421 pci_restore_state(pdev);
d86c4d8e 2422 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2423 return PCI_ERS_RESULT_RECOVERED;
2424}
2425
2426static void nvme_error_resume(struct pci_dev *pdev)
2427{
2428 pci_cleanup_aer_uncorrect_error_status(pdev);
2429}
2430
1d352035 2431static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2432 .error_detected = nvme_error_detected,
b60503ba
MW
2433 .slot_reset = nvme_slot_reset,
2434 .resume = nvme_error_resume,
f0d54a54 2435 .reset_notify = nvme_reset_notify,
b60503ba
MW
2436};
2437
6eb0d698 2438static const struct pci_device_id nvme_id_table[] = {
106198ed 2439 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2440 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2441 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2442 { PCI_VDEVICE(INTEL, 0x0a53),
2443 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2444 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2445 { PCI_VDEVICE(INTEL, 0x0a54),
2446 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2447 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0
AL
2448 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2449 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
540c801c
KB
2450 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2451 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
54adc010
GP
2452 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2453 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2454 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2455 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
b60503ba 2456 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2457 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2458 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2459 { 0, }
2460};
2461MODULE_DEVICE_TABLE(pci, nvme_id_table);
2462
2463static struct pci_driver nvme_driver = {
2464 .name = "nvme",
2465 .id_table = nvme_id_table,
2466 .probe = nvme_probe,
8d85fce7 2467 .remove = nvme_remove,
09ece142 2468 .shutdown = nvme_shutdown,
cd638946
KB
2469 .driver = {
2470 .pm = &nvme_dev_pm_ops,
2471 },
13880f5b 2472 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2473 .err_handler = &nvme_err_handler,
2474};
2475
2476static int __init nvme_init(void)
2477{
9a6327d2 2478 return pci_register_driver(&nvme_driver);
b60503ba
MW
2479}
2480
2481static void __exit nvme_exit(void)
2482{
2483 pci_unregister_driver(&nvme_driver);
21bd78bc 2484 _nvme_check_size();
b60503ba
MW
2485}
2486
2487MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2488MODULE_LICENSE("GPL");
c78b4713 2489MODULE_VERSION("1.0");
b60503ba
MW
2490module_init(nvme_init);
2491module_exit(nvme_exit);