nvme: Remove unused return code from nvme_delete_ctrl_sync
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
5f37396d 1// SPDX-License-Identifier: GPL-2.0
b60503ba
MW
2/*
3 * NVM Express device driver
6eb0d698 4 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
5 */
6
a0a3408e 7#include <linux/aer.h>
18119775 8#include <linux/async.h>
b60503ba 9#include <linux/blkdev.h>
a4aea562 10#include <linux/blk-mq.h>
dca51e78 11#include <linux/blk-mq-pci.h>
ff5350a8 12#include <linux/dmi.h>
b60503ba
MW
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
b60503ba
MW
16#include <linux/mm.h>
17#include <linux/module.h>
77bf25ea 18#include <linux/mutex.h>
d0877473 19#include <linux/once.h>
b60503ba 20#include <linux/pci.h>
d916b1be 21#include <linux/suspend.h>
e1e5e564 22#include <linux/t10-pi.h>
b60503ba 23#include <linux/types.h>
2f8e2c87 24#include <linux/io-64-nonatomic-lo-hi.h>
a98e58e5 25#include <linux/sed-opal.h>
0f238ff5 26#include <linux/pci-p2pdma.h>
797a796a 27
604c01d5 28#include "trace.h"
f11bb3e2
CH
29#include "nvme.h"
30
c1e0cc7e 31#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
8a1d09a6 32#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
c965809c 33
a7a7cbe3 34#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 35
943e942e
JA
36/*
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
39 */
40#define NVME_MAX_KB_SZ 4096
41#define NVME_MAX_SEGS 127
42
58ffacb5
MW
43static int use_threaded_interrupts;
44module_param(use_threaded_interrupts, int, 0);
45
8ffaadf7 46static bool use_cmb_sqes = true;
69f4eb9f 47module_param(use_cmb_sqes, bool, 0444);
8ffaadf7
JD
48MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
87ad72a5
CH
50static unsigned int max_host_mem_size_mb = 128;
51module_param(max_host_mem_size_mb, uint, 0444);
52MODULE_PARM_DESC(max_host_mem_size_mb,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 54
a7a7cbe3
CK
55static unsigned int sgl_threshold = SZ_32K;
56module_param(sgl_threshold, uint, 0644);
57MODULE_PARM_DESC(sgl_threshold,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
60
b27c1e68 61static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62static const struct kernel_param_ops io_queue_depth_ops = {
63 .set = io_queue_depth_set,
64 .get = param_get_int,
65};
66
67static int io_queue_depth = 1024;
68module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
3f68baf7
KB
71static unsigned int write_queues;
72module_param(write_queues, uint, 0644);
3b6592f7
JA
73MODULE_PARM_DESC(write_queues,
74 "Number of queues to use for writes. If not set, reads and writes "
75 "will share a queue set.");
76
3f68baf7
KB
77static unsigned int poll_queues;
78module_param(poll_queues, uint, 0644);
4b04cc6a
JA
79MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
1c63dc66
CH
81struct nvme_dev;
82struct nvme_queue;
b3fffdef 83
a5cdb68c 84static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
8fae268b 85static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
d4b4ff8e 86
1c63dc66
CH
87/*
88 * Represents an NVM Express device. Each nvme_dev is a PCI function.
89 */
90struct nvme_dev {
147b27e4 91 struct nvme_queue *queues;
1c63dc66
CH
92 struct blk_mq_tag_set tagset;
93 struct blk_mq_tag_set admin_tagset;
94 u32 __iomem *dbs;
95 struct device *dev;
96 struct dma_pool *prp_page_pool;
97 struct dma_pool *prp_small_pool;
1c63dc66
CH
98 unsigned online_queues;
99 unsigned max_qid;
e20ba6e1 100 unsigned io_queues[HCTX_MAX_TYPES];
22b55601 101 unsigned int num_vecs;
1c63dc66 102 int q_depth;
c1e0cc7e 103 int io_sqes;
1c63dc66 104 u32 db_stride;
1c63dc66 105 void __iomem *bar;
97f6ef64 106 unsigned long bar_mapped_size;
5c8809e6 107 struct work_struct remove_work;
77bf25ea 108 struct mutex shutdown_lock;
1c63dc66 109 bool subsystem;
1c63dc66 110 u64 cmb_size;
0f238ff5 111 bool cmb_use_sqes;
1c63dc66 112 u32 cmbsz;
202021c1 113 u32 cmbloc;
1c63dc66 114 struct nvme_ctrl ctrl;
d916b1be 115 u32 last_ps;
87ad72a5 116
943e942e
JA
117 mempool_t *iod_mempool;
118
87ad72a5 119 /* shadow doorbell buffer support: */
f9f38e33
HK
120 u32 *dbbuf_dbs;
121 dma_addr_t dbbuf_dbs_dma_addr;
122 u32 *dbbuf_eis;
123 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
124
125 /* host memory buffer support: */
126 u64 host_mem_size;
127 u32 nr_host_mem_descs;
4033f35d 128 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
129 struct nvme_host_mem_buf_desc *host_mem_descs;
130 void **host_mem_desc_bufs;
4d115420 131};
1fa6aead 132
b27c1e68 133static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
134{
135 int n = 0, ret;
136
137 ret = kstrtoint(val, 10, &n);
138 if (ret != 0 || n < 2)
139 return -EINVAL;
140
141 return param_set_int(val, kp);
142}
143
f9f38e33
HK
144static inline unsigned int sq_idx(unsigned int qid, u32 stride)
145{
146 return qid * 2 * stride;
147}
148
149static inline unsigned int cq_idx(unsigned int qid, u32 stride)
150{
151 return (qid * 2 + 1) * stride;
152}
153
1c63dc66
CH
154static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
155{
156 return container_of(ctrl, struct nvme_dev, ctrl);
157}
158
b60503ba
MW
159/*
160 * An NVM Express queue. Each device has at least two (one for admin
161 * commands and one for I/O commands).
162 */
163struct nvme_queue {
091b6092 164 struct nvme_dev *dev;
1ab0cd69 165 spinlock_t sq_lock;
c1e0cc7e 166 void *sq_cmds;
3a7afd8e
CH
167 /* only used for poll queues: */
168 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
b60503ba
MW
169 volatile struct nvme_completion *cqes;
170 dma_addr_t sq_dma_addr;
171 dma_addr_t cq_dma_addr;
b60503ba
MW
172 u32 __iomem *q_db;
173 u16 q_depth;
7c349dde 174 u16 cq_vector;
b60503ba 175 u16 sq_tail;
04f3eafd 176 u16 last_sq_tail;
b60503ba 177 u16 cq_head;
c30341dc 178 u16 qid;
e9539f47 179 u8 cq_phase;
c1e0cc7e 180 u8 sqes;
4e224106
CH
181 unsigned long flags;
182#define NVMEQ_ENABLED 0
63223078 183#define NVMEQ_SQ_CMB 1
d1ed6aa1 184#define NVMEQ_DELETE_ERROR 2
7c349dde 185#define NVMEQ_POLLED 3
f9f38e33
HK
186 u32 *dbbuf_sq_db;
187 u32 *dbbuf_cq_db;
188 u32 *dbbuf_sq_ei;
189 u32 *dbbuf_cq_ei;
d1ed6aa1 190 struct completion delete_done;
b60503ba
MW
191};
192
71bd150c 193/*
9b048119
CH
194 * The nvme_iod describes the data in an I/O.
195 *
196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
197 * to the actual struct scatterlist.
71bd150c
CH
198 */
199struct nvme_iod {
d49187e9 200 struct nvme_request req;
f4800d6d 201 struct nvme_queue *nvmeq;
a7a7cbe3 202 bool use_sgl;
f4800d6d 203 int aborted;
71bd150c 204 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c 205 int nents; /* Used in scatterlist */
71bd150c 206 dma_addr_t first_dma;
dff824b2 207 unsigned int dma_len; /* length of single DMA segment mapping */
783b94bd 208 dma_addr_t meta_dma;
f4800d6d 209 struct scatterlist *sg;
b60503ba
MW
210};
211
3b6592f7
JA
212static unsigned int max_io_queues(void)
213{
4b04cc6a 214 return num_possible_cpus() + write_queues + poll_queues;
3b6592f7
JA
215}
216
217static unsigned int max_queue_count(void)
218{
219 /* IO queues + admin queue */
220 return 1 + max_io_queues();
221}
222
f9f38e33
HK
223static inline unsigned int nvme_dbbuf_size(u32 stride)
224{
3b6592f7 225 return (max_queue_count() * 8 * stride);
f9f38e33
HK
226}
227
228static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
229{
230 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
231
232 if (dev->dbbuf_dbs)
233 return 0;
234
235 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
236 &dev->dbbuf_dbs_dma_addr,
237 GFP_KERNEL);
238 if (!dev->dbbuf_dbs)
239 return -ENOMEM;
240 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
241 &dev->dbbuf_eis_dma_addr,
242 GFP_KERNEL);
243 if (!dev->dbbuf_eis) {
244 dma_free_coherent(dev->dev, mem_size,
245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246 dev->dbbuf_dbs = NULL;
247 return -ENOMEM;
248 }
249
250 return 0;
251}
252
253static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
254{
255 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
256
257 if (dev->dbbuf_dbs) {
258 dma_free_coherent(dev->dev, mem_size,
259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260 dev->dbbuf_dbs = NULL;
261 }
262 if (dev->dbbuf_eis) {
263 dma_free_coherent(dev->dev, mem_size,
264 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
265 dev->dbbuf_eis = NULL;
266 }
267}
268
269static void nvme_dbbuf_init(struct nvme_dev *dev,
270 struct nvme_queue *nvmeq, int qid)
271{
272 if (!dev->dbbuf_dbs || !qid)
273 return;
274
275 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
277 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
278 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
279}
280
281static void nvme_dbbuf_set(struct nvme_dev *dev)
282{
283 struct nvme_command c;
284
285 if (!dev->dbbuf_dbs)
286 return;
287
288 memset(&c, 0, sizeof(c));
289 c.dbbuf.opcode = nvme_admin_dbbuf;
290 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
291 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
292
293 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 294 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
295 /* Free memory and continue on */
296 nvme_dbbuf_dma_free(dev);
297 }
298}
299
300static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
301{
302 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
303}
304
305/* Update dbbuf and return true if an MMIO is required */
306static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
307 volatile u32 *dbbuf_ei)
308{
309 if (dbbuf_db) {
310 u16 old_value;
311
312 /*
313 * Ensure that the queue is written before updating
314 * the doorbell in memory
315 */
316 wmb();
317
318 old_value = *dbbuf_db;
319 *dbbuf_db = value;
320
f1ed3df2
MW
321 /*
322 * Ensure that the doorbell is updated before reading the event
323 * index from memory. The controller needs to provide similar
324 * ordering to ensure the envent index is updated before reading
325 * the doorbell.
326 */
327 mb();
328
f9f38e33
HK
329 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
330 return false;
331 }
332
333 return true;
b60503ba
MW
334}
335
ac3dd5bd
JA
336/*
337 * Will slightly overestimate the number of pages needed. This is OK
338 * as it only leads to a small amount of wasted memory for the lifetime of
339 * the I/O.
340 */
341static int nvme_npages(unsigned size, struct nvme_dev *dev)
342{
5fd4ce1b
CH
343 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
344 dev->ctrl.page_size);
ac3dd5bd
JA
345 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
346}
347
a7a7cbe3
CK
348/*
349 * Calculates the number of pages needed for the SGL segments. For example a 4k
350 * page can accommodate 256 SGL descriptors.
351 */
352static int nvme_pci_npages_sgl(unsigned int num_seg)
ac3dd5bd 353{
a7a7cbe3 354 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
f4800d6d 355}
ac3dd5bd 356
a7a7cbe3
CK
357static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
358 unsigned int size, unsigned int nseg, bool use_sgl)
f4800d6d 359{
a7a7cbe3
CK
360 size_t alloc_size;
361
362 if (use_sgl)
363 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
364 else
365 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
366
367 return alloc_size + sizeof(struct scatterlist) * nseg;
f4800d6d 368}
ac3dd5bd 369
a4aea562
MB
370static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
371 unsigned int hctx_idx)
e85248e5 372{
a4aea562 373 struct nvme_dev *dev = data;
147b27e4 374 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 375
42483228
KB
376 WARN_ON(hctx_idx != 0);
377 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
42483228 378
a4aea562
MB
379 hctx->driver_data = nvmeq;
380 return 0;
e85248e5
MW
381}
382
a4aea562
MB
383static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384 unsigned int hctx_idx)
b60503ba 385{
a4aea562 386 struct nvme_dev *dev = data;
147b27e4 387 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 388
42483228 389 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
390 hctx->driver_data = nvmeq;
391 return 0;
b60503ba
MW
392}
393
d6296d39
CH
394static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
395 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 396{
d6296d39 397 struct nvme_dev *dev = set->driver_data;
f4800d6d 398 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a 399 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
147b27e4 400 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
a4aea562
MB
401
402 BUG_ON(!nvmeq);
f4800d6d 403 iod->nvmeq = nvmeq;
59e29ce6
SG
404
405 nvme_req(req)->ctrl = &dev->ctrl;
a4aea562
MB
406 return 0;
407}
408
3b6592f7
JA
409static int queue_irq_offset(struct nvme_dev *dev)
410{
411 /* if we have more than 1 vec, admin queue offsets us by 1 */
412 if (dev->num_vecs > 1)
413 return 1;
414
415 return 0;
416}
417
dca51e78
CH
418static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
419{
420 struct nvme_dev *dev = set->driver_data;
3b6592f7
JA
421 int i, qoff, offset;
422
423 offset = queue_irq_offset(dev);
424 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
425 struct blk_mq_queue_map *map = &set->map[i];
426
427 map->nr_queues = dev->io_queues[i];
428 if (!map->nr_queues) {
e20ba6e1 429 BUG_ON(i == HCTX_TYPE_DEFAULT);
7e849dd9 430 continue;
3b6592f7
JA
431 }
432
4b04cc6a
JA
433 /*
434 * The poll queue(s) doesn't have an IRQ (and hence IRQ
435 * affinity), so use the regular blk-mq cpu mapping
436 */
3b6592f7 437 map->queue_offset = qoff;
cb9e0e50 438 if (i != HCTX_TYPE_POLL && offset)
4b04cc6a
JA
439 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
440 else
441 blk_mq_map_queues(map);
3b6592f7
JA
442 qoff += map->nr_queues;
443 offset += map->nr_queues;
444 }
445
446 return 0;
dca51e78
CH
447}
448
04f3eafd
JA
449/*
450 * Write sq tail if we are asked to, or if the next command would wrap.
451 */
452static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
453{
454 if (!write_sq) {
455 u16 next_tail = nvmeq->sq_tail + 1;
456
457 if (next_tail == nvmeq->q_depth)
458 next_tail = 0;
459 if (next_tail != nvmeq->last_sq_tail)
460 return;
461 }
462
463 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
464 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
465 writel(nvmeq->sq_tail, nvmeq->q_db);
466 nvmeq->last_sq_tail = nvmeq->sq_tail;
467}
468
b60503ba 469/**
90ea5ca4 470 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
471 * @nvmeq: The queue to use
472 * @cmd: The command to send
04f3eafd 473 * @write_sq: whether to write to the SQ doorbell
b60503ba 474 */
04f3eafd
JA
475static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
476 bool write_sq)
b60503ba 477{
90ea5ca4 478 spin_lock(&nvmeq->sq_lock);
c1e0cc7e
BH
479 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
480 cmd, sizeof(*cmd));
90ea5ca4
CH
481 if (++nvmeq->sq_tail == nvmeq->q_depth)
482 nvmeq->sq_tail = 0;
04f3eafd
JA
483 nvme_write_sq_db(nvmeq, write_sq);
484 spin_unlock(&nvmeq->sq_lock);
485}
486
487static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
488{
489 struct nvme_queue *nvmeq = hctx->driver_data;
490
491 spin_lock(&nvmeq->sq_lock);
492 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
493 nvme_write_sq_db(nvmeq, true);
90ea5ca4 494 spin_unlock(&nvmeq->sq_lock);
b60503ba
MW
495}
496
a7a7cbe3 497static void **nvme_pci_iod_list(struct request *req)
b60503ba 498{
f4800d6d 499 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 500 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
501}
502
955b1b5a
MI
503static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
504{
505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
20469a37 506 int nseg = blk_rq_nr_phys_segments(req);
955b1b5a
MI
507 unsigned int avg_seg_size;
508
20469a37
KB
509 if (nseg == 0)
510 return false;
511
512 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a
MI
513
514 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
515 return false;
516 if (!iod->nvmeq->qid)
517 return false;
518 if (!sgl_threshold || avg_seg_size < sgl_threshold)
519 return false;
520 return true;
521}
522
7fe07d14 523static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 524{
f4800d6d 525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
526 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
527 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
eca18b23 528 int i;
eca18b23 529
dff824b2 530 if (iod->dma_len) {
f2fa006f
IR
531 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
532 rq_dma_dir(req));
dff824b2 533 return;
7fe07d14
CH
534 }
535
dff824b2
CH
536 WARN_ON_ONCE(!iod->nents);
537
7f73eac3
LG
538 if (is_pci_p2pdma_page(sg_page(iod->sg)))
539 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
540 rq_dma_dir(req));
541 else
dff824b2
CH
542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
543
544
eca18b23 545 if (iod->npages == 0)
a7a7cbe3
CK
546 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
547 dma_addr);
548
eca18b23 549 for (i = 0; i < iod->npages; i++) {
a7a7cbe3
CK
550 void *addr = nvme_pci_iod_list(req)[i];
551
552 if (iod->use_sgl) {
553 struct nvme_sgl_desc *sg_list = addr;
554
555 next_dma_addr =
556 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
557 } else {
558 __le64 *prp_list = addr;
559
560 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
561 }
562
563 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
564 dma_addr = next_dma_addr;
eca18b23 565 }
ac3dd5bd 566
d43f1ccf 567 mempool_free(iod->sg, dev->iod_mempool);
b4ff9c8d
KB
568}
569
d0877473
KB
570static void nvme_print_sgl(struct scatterlist *sgl, int nents)
571{
572 int i;
573 struct scatterlist *sg;
574
575 for_each_sg(sgl, sg, nents, i) {
576 dma_addr_t phys = sg_phys(sg);
577 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
578 "dma_address:%pad dma_length:%d\n",
579 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
580 sg_dma_len(sg));
581 }
582}
583
a7a7cbe3
CK
584static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
585 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 586{
f4800d6d 587 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 588 struct dma_pool *pool;
b131c61d 589 int length = blk_rq_payload_bytes(req);
eca18b23 590 struct scatterlist *sg = iod->sg;
ff22b54f
MW
591 int dma_len = sg_dma_len(sg);
592 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 593 u32 page_size = dev->ctrl.page_size;
f137e0f1 594 int offset = dma_addr & (page_size - 1);
e025344c 595 __le64 *prp_list;
a7a7cbe3 596 void **list = nvme_pci_iod_list(req);
e025344c 597 dma_addr_t prp_dma;
eca18b23 598 int nprps, i;
ff22b54f 599
1d090624 600 length -= (page_size - offset);
5228b328
JS
601 if (length <= 0) {
602 iod->first_dma = 0;
a7a7cbe3 603 goto done;
5228b328 604 }
ff22b54f 605
1d090624 606 dma_len -= (page_size - offset);
ff22b54f 607 if (dma_len) {
1d090624 608 dma_addr += (page_size - offset);
ff22b54f
MW
609 } else {
610 sg = sg_next(sg);
611 dma_addr = sg_dma_address(sg);
612 dma_len = sg_dma_len(sg);
613 }
614
1d090624 615 if (length <= page_size) {
edd10d33 616 iod->first_dma = dma_addr;
a7a7cbe3 617 goto done;
e025344c
SMM
618 }
619
1d090624 620 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
621 if (nprps <= (256 / 8)) {
622 pool = dev->prp_small_pool;
eca18b23 623 iod->npages = 0;
99802a7a
MW
624 } else {
625 pool = dev->prp_page_pool;
eca18b23 626 iod->npages = 1;
99802a7a
MW
627 }
628
69d2b571 629 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 630 if (!prp_list) {
edd10d33 631 iod->first_dma = dma_addr;
eca18b23 632 iod->npages = -1;
86eea289 633 return BLK_STS_RESOURCE;
b77954cb 634 }
eca18b23
MW
635 list[0] = prp_list;
636 iod->first_dma = prp_dma;
e025344c
SMM
637 i = 0;
638 for (;;) {
1d090624 639 if (i == page_size >> 3) {
e025344c 640 __le64 *old_prp_list = prp_list;
69d2b571 641 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 642 if (!prp_list)
86eea289 643 return BLK_STS_RESOURCE;
eca18b23 644 list[iod->npages++] = prp_list;
7523d834
MW
645 prp_list[0] = old_prp_list[i - 1];
646 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
647 i = 1;
e025344c
SMM
648 }
649 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
650 dma_len -= page_size;
651 dma_addr += page_size;
652 length -= page_size;
e025344c
SMM
653 if (length <= 0)
654 break;
655 if (dma_len > 0)
656 continue;
86eea289
KB
657 if (unlikely(dma_len < 0))
658 goto bad_sgl;
e025344c
SMM
659 sg = sg_next(sg);
660 dma_addr = sg_dma_address(sg);
661 dma_len = sg_dma_len(sg);
ff22b54f
MW
662 }
663
a7a7cbe3
CK
664done:
665 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
666 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
667
86eea289
KB
668 return BLK_STS_OK;
669
670 bad_sgl:
d0877473
KB
671 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
672 "Invalid SGL for payload:%d nents:%d\n",
673 blk_rq_payload_bytes(req), iod->nents);
86eea289 674 return BLK_STS_IOERR;
ff22b54f
MW
675}
676
a7a7cbe3
CK
677static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
678 struct scatterlist *sg)
679{
680 sge->addr = cpu_to_le64(sg_dma_address(sg));
681 sge->length = cpu_to_le32(sg_dma_len(sg));
682 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
683}
684
685static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
686 dma_addr_t dma_addr, int entries)
687{
688 sge->addr = cpu_to_le64(dma_addr);
689 if (entries < SGES_PER_PAGE) {
690 sge->length = cpu_to_le32(entries * sizeof(*sge));
691 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
692 } else {
693 sge->length = cpu_to_le32(PAGE_SIZE);
694 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
695 }
696}
697
698static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
b0f2853b 699 struct request *req, struct nvme_rw_command *cmd, int entries)
a7a7cbe3
CK
700{
701 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
702 struct dma_pool *pool;
703 struct nvme_sgl_desc *sg_list;
704 struct scatterlist *sg = iod->sg;
a7a7cbe3 705 dma_addr_t sgl_dma;
b0f2853b 706 int i = 0;
a7a7cbe3 707
a7a7cbe3
CK
708 /* setting the transfer type as SGL */
709 cmd->flags = NVME_CMD_SGL_METABUF;
710
b0f2853b 711 if (entries == 1) {
a7a7cbe3
CK
712 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
713 return BLK_STS_OK;
714 }
715
716 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
717 pool = dev->prp_small_pool;
718 iod->npages = 0;
719 } else {
720 pool = dev->prp_page_pool;
721 iod->npages = 1;
722 }
723
724 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
725 if (!sg_list) {
726 iod->npages = -1;
727 return BLK_STS_RESOURCE;
728 }
729
730 nvme_pci_iod_list(req)[0] = sg_list;
731 iod->first_dma = sgl_dma;
732
733 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
734
735 do {
736 if (i == SGES_PER_PAGE) {
737 struct nvme_sgl_desc *old_sg_desc = sg_list;
738 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
739
740 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
741 if (!sg_list)
742 return BLK_STS_RESOURCE;
743
744 i = 0;
745 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
746 sg_list[i++] = *link;
747 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
748 }
749
750 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 751 sg = sg_next(sg);
b0f2853b 752 } while (--entries > 0);
a7a7cbe3 753
a7a7cbe3
CK
754 return BLK_STS_OK;
755}
756
dff824b2
CH
757static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
758 struct request *req, struct nvme_rw_command *cmnd,
759 struct bio_vec *bv)
760{
761 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4f40484
KH
762 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
763 unsigned int first_prp_len = dev->ctrl.page_size - offset;
dff824b2
CH
764
765 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
766 if (dma_mapping_error(dev->dev, iod->first_dma))
767 return BLK_STS_RESOURCE;
768 iod->dma_len = bv->bv_len;
769
770 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
771 if (bv->bv_len > first_prp_len)
772 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
773 return 0;
774}
775
29791057
CH
776static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
777 struct request *req, struct nvme_rw_command *cmnd,
778 struct bio_vec *bv)
779{
780 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
781
782 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
783 if (dma_mapping_error(dev->dev, iod->first_dma))
784 return BLK_STS_RESOURCE;
785 iod->dma_len = bv->bv_len;
786
049bf372 787 cmnd->flags = NVME_CMD_SGL_METABUF;
29791057
CH
788 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
789 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
790 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
791 return 0;
792}
793
fc17b653 794static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 795 struct nvme_command *cmnd)
d29ec824 796{
f4800d6d 797 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
70479b71 798 blk_status_t ret = BLK_STS_RESOURCE;
b0f2853b 799 int nr_mapped;
d29ec824 800
dff824b2
CH
801 if (blk_rq_nr_phys_segments(req) == 1) {
802 struct bio_vec bv = req_bvec(req);
803
804 if (!is_pci_p2pdma_page(bv.bv_page)) {
805 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
806 return nvme_setup_prp_simple(dev, req,
807 &cmnd->rw, &bv);
29791057
CH
808
809 if (iod->nvmeq->qid &&
810 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
811 return nvme_setup_sgl_simple(dev, req,
812 &cmnd->rw, &bv);
dff824b2
CH
813 }
814 }
815
816 iod->dma_len = 0;
d43f1ccf
CH
817 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
818 if (!iod->sg)
819 return BLK_STS_RESOURCE;
f9d03f96 820 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
70479b71 821 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
ba1ca37e
CH
822 if (!iod->nents)
823 goto out;
d29ec824 824
e0596ab2 825 if (is_pci_p2pdma_page(sg_page(iod->sg)))
2b9f4bb2
LG
826 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
827 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
e0596ab2
LG
828 else
829 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
70479b71 830 rq_dma_dir(req), DMA_ATTR_NO_WARN);
b0f2853b 831 if (!nr_mapped)
ba1ca37e 832 goto out;
d29ec824 833
70479b71 834 iod->use_sgl = nvme_pci_use_sgls(dev, req);
955b1b5a 835 if (iod->use_sgl)
b0f2853b 836 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
a7a7cbe3
CK
837 else
838 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
4aedb705 839out:
86eea289 840 if (ret != BLK_STS_OK)
4aedb705
CH
841 nvme_unmap_data(dev, req);
842 return ret;
843}
3045c0d0 844
4aedb705
CH
845static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
846 struct nvme_command *cmnd)
847{
848 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
00df5cb4 849
4aedb705
CH
850 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
851 rq_dma_dir(req), 0);
852 if (dma_mapping_error(dev->dev, iod->meta_dma))
853 return BLK_STS_IOERR;
854 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
855 return 0;
00df5cb4
MW
856}
857
d29ec824
CH
858/*
859 * NOTE: ns is NULL when called on the admin queue.
860 */
fc17b653 861static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 862 const struct blk_mq_queue_data *bd)
edd10d33 863{
a4aea562
MB
864 struct nvme_ns *ns = hctx->queue->queuedata;
865 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 866 struct nvme_dev *dev = nvmeq->dev;
a4aea562 867 struct request *req = bd->rq;
9b048119 868 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e 869 struct nvme_command cmnd;
ebe6d874 870 blk_status_t ret;
e1e5e564 871
9b048119
CH
872 iod->aborted = 0;
873 iod->npages = -1;
874 iod->nents = 0;
875
d1f06f4a
JA
876 /*
877 * We should not need to do this, but we're still using this to
878 * ensure we can drain requests on a dying queue.
879 */
4e224106 880 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
d1f06f4a
JA
881 return BLK_STS_IOERR;
882
f9d03f96 883 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 884 if (ret)
f4800d6d 885 return ret;
a4aea562 886
fc17b653 887 if (blk_rq_nr_phys_segments(req)) {
b131c61d 888 ret = nvme_map_data(dev, req, &cmnd);
fc17b653 889 if (ret)
9b048119 890 goto out_free_cmd;
fc17b653 891 }
a4aea562 892
4aedb705
CH
893 if (blk_integrity_rq(req)) {
894 ret = nvme_map_metadata(dev, req, &cmnd);
895 if (ret)
896 goto out_unmap_data;
897 }
898
aae239e1 899 blk_mq_start_request(req);
04f3eafd 900 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
fc17b653 901 return BLK_STS_OK;
4aedb705
CH
902out_unmap_data:
903 nvme_unmap_data(dev, req);
f9d03f96
CH
904out_free_cmd:
905 nvme_cleanup_cmd(req);
ba1ca37e 906 return ret;
b60503ba 907}
e1e5e564 908
77f02a7a 909static void nvme_pci_complete_rq(struct request *req)
eee417b0 910{
f4800d6d 911 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
4aedb705 912 struct nvme_dev *dev = iod->nvmeq->dev;
a4aea562 913
4aedb705
CH
914 if (blk_integrity_rq(req))
915 dma_unmap_page(dev->dev, iod->meta_dma,
916 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
b15c592d 917 if (blk_rq_nr_phys_segments(req))
4aedb705 918 nvme_unmap_data(dev, req);
77f02a7a 919 nvme_complete_rq(req);
b60503ba
MW
920}
921
d783e0bd 922/* We read the CQE phase first to check if the rest of the entry is valid */
750dde44 923static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
d783e0bd 924{
750dde44
CH
925 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
926 nvmeq->cq_phase;
d783e0bd
MR
927}
928
eb281c82 929static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 930{
eb281c82 931 u16 head = nvmeq->cq_head;
adf68f21 932
397c699f
KB
933 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
934 nvmeq->dbbuf_cq_ei))
935 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
eb281c82 936}
aae239e1 937
cfa27356
CH
938static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
939{
940 if (!nvmeq->qid)
941 return nvmeq->dev->admin_tagset.tags[0];
942 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
943}
944
5cb525c8 945static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
83a12fb7 946{
5cb525c8 947 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
83a12fb7 948 struct request *req;
adf68f21 949
83a12fb7
SG
950 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
951 dev_warn(nvmeq->dev->ctrl.device,
952 "invalid id %d completed on queue %d\n",
953 cqe->command_id, le16_to_cpu(cqe->sq_id));
954 return;
b60503ba
MW
955 }
956
83a12fb7
SG
957 /*
958 * AEN requests are special as they don't time out and can
959 * survive any kind of queue freeze and often don't respond to
960 * aborts. We don't even bother to allocate a struct request
961 * for them but rather special case them here.
962 */
58a8df67 963 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
83a12fb7
SG
964 nvme_complete_async_event(&nvmeq->dev->ctrl,
965 cqe->status, &cqe->result);
a0fa9647 966 return;
83a12fb7 967 }
b60503ba 968
cfa27356 969 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
604c01d5 970 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
83a12fb7
SG
971 nvme_end_request(req, cqe->status, cqe->result);
972}
b60503ba 973
5cb525c8
JA
974static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
975{
e2a366a4 976 if (++nvmeq->cq_head == nvmeq->q_depth) {
5cb525c8 977 nvmeq->cq_head = 0;
e2a366a4 978 nvmeq->cq_phase ^= 1;
b60503ba 979 }
a0fa9647
JA
980}
981
324b494c 982static inline int nvme_process_cq(struct nvme_queue *nvmeq)
a0fa9647 983{
1052b8ac 984 int found = 0;
b60503ba 985
1052b8ac 986 while (nvme_cqe_pending(nvmeq)) {
bf392a5d 987 found++;
324b494c 988 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
5cb525c8 989 nvme_update_cq_head(nvmeq);
920d13a8 990 }
eb281c82 991
324b494c 992 if (found)
920d13a8 993 nvme_ring_cq_doorbell(nvmeq);
5cb525c8 994 return found;
b60503ba
MW
995}
996
997static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5 998{
58ffacb5 999 struct nvme_queue *nvmeq = data;
68fa9dbe 1000 irqreturn_t ret = IRQ_NONE;
5cb525c8 1001
3a7afd8e
CH
1002 /*
1003 * The rmb/wmb pair ensures we see all updates from a previous run of
1004 * the irq handler, even if that was on another CPU.
1005 */
1006 rmb();
324b494c
KB
1007 if (nvme_process_cq(nvmeq))
1008 ret = IRQ_HANDLED;
3a7afd8e 1009 wmb();
5cb525c8 1010
68fa9dbe 1011 return ret;
58ffacb5
MW
1012}
1013
1014static irqreturn_t nvme_irq_check(int irq, void *data)
1015{
1016 struct nvme_queue *nvmeq = data;
750dde44 1017 if (nvme_cqe_pending(nvmeq))
d783e0bd
MR
1018 return IRQ_WAKE_THREAD;
1019 return IRQ_NONE;
58ffacb5
MW
1020}
1021
0b2a8a9f 1022/*
fa059b85 1023 * Poll for completions for any interrupt driven queue
0b2a8a9f
CH
1024 * Can be called from any context.
1025 */
fa059b85 1026static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
a0fa9647 1027{
3a7afd8e 1028 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
a0fa9647 1029
fa059b85 1030 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
442e19b7 1031
fa059b85
KB
1032 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1033 nvme_process_cq(nvmeq);
1034 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
a0fa9647
JA
1035}
1036
9743139c 1037static int nvme_poll(struct blk_mq_hw_ctx *hctx)
dabcefab
JA
1038{
1039 struct nvme_queue *nvmeq = hctx->driver_data;
dabcefab
JA
1040 bool found;
1041
1042 if (!nvme_cqe_pending(nvmeq))
1043 return 0;
1044
3a7afd8e 1045 spin_lock(&nvmeq->cq_poll_lock);
324b494c 1046 found = nvme_process_cq(nvmeq);
3a7afd8e 1047 spin_unlock(&nvmeq->cq_poll_lock);
dabcefab 1048
dabcefab
JA
1049 return found;
1050}
1051
ad22c355 1052static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 1053{
f866fc42 1054 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 1055 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 1056 struct nvme_command c;
b60503ba 1057
a4aea562
MB
1058 memset(&c, 0, sizeof(c));
1059 c.common.opcode = nvme_admin_async_event;
ad22c355 1060 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
04f3eafd 1061 nvme_submit_cmd(nvmeq, &c, true);
f705f837
CH
1062}
1063
b60503ba 1064static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1065{
b60503ba
MW
1066 struct nvme_command c;
1067
1068 memset(&c, 0, sizeof(c));
1069 c.delete_queue.opcode = opcode;
1070 c.delete_queue.qid = cpu_to_le16(id);
1071
1c63dc66 1072 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1073}
1074
b60503ba 1075static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
a8e3e0bb 1076 struct nvme_queue *nvmeq, s16 vector)
b60503ba 1077{
b60503ba 1078 struct nvme_command c;
4b04cc6a
JA
1079 int flags = NVME_QUEUE_PHYS_CONTIG;
1080
7c349dde 1081 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
4b04cc6a 1082 flags |= NVME_CQ_IRQ_ENABLED;
b60503ba 1083
d29ec824 1084 /*
16772ae6 1085 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1086 * is attached to the request.
1087 */
b60503ba
MW
1088 memset(&c, 0, sizeof(c));
1089 c.create_cq.opcode = nvme_admin_create_cq;
1090 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1091 c.create_cq.cqid = cpu_to_le16(qid);
1092 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1093 c.create_cq.cq_flags = cpu_to_le16(flags);
7c349dde 1094 c.create_cq.irq_vector = cpu_to_le16(vector);
b60503ba 1095
1c63dc66 1096 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1097}
1098
1099static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1100 struct nvme_queue *nvmeq)
1101{
9abd68ef 1102 struct nvme_ctrl *ctrl = &dev->ctrl;
b60503ba 1103 struct nvme_command c;
81c1cd98 1104 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1105
9abd68ef
JA
1106 /*
1107 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1108 * set. Since URGENT priority is zeroes, it makes all queues
1109 * URGENT.
1110 */
1111 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1112 flags |= NVME_SQ_PRIO_MEDIUM;
1113
d29ec824 1114 /*
16772ae6 1115 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1116 * is attached to the request.
1117 */
b60503ba
MW
1118 memset(&c, 0, sizeof(c));
1119 c.create_sq.opcode = nvme_admin_create_sq;
1120 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1121 c.create_sq.sqid = cpu_to_le16(qid);
1122 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1123 c.create_sq.sq_flags = cpu_to_le16(flags);
1124 c.create_sq.cqid = cpu_to_le16(qid);
1125
1c63dc66 1126 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1127}
1128
1129static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1130{
1131 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1132}
1133
1134static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1135{
1136 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1137}
1138
2a842aca 1139static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1140{
f4800d6d
CH
1141 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1142 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 1143
27fa9bc5
CH
1144 dev_warn(nvmeq->dev->ctrl.device,
1145 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1146 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1147 blk_mq_free_request(req);
bc5fc7e4
MW
1148}
1149
b2a0eb1a
KB
1150static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1151{
1152
1153 /* If true, indicates loss of adapter communication, possibly by a
1154 * NVMe Subsystem reset.
1155 */
1156 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1157
ad70062c
JW
1158 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1159 switch (dev->ctrl.state) {
1160 case NVME_CTRL_RESETTING:
ad6a0a52 1161 case NVME_CTRL_CONNECTING:
b2a0eb1a 1162 return false;
ad70062c
JW
1163 default:
1164 break;
1165 }
b2a0eb1a
KB
1166
1167 /* We shouldn't reset unless the controller is on fatal error state
1168 * _or_ if we lost the communication with it.
1169 */
1170 if (!(csts & NVME_CSTS_CFS) && !nssro)
1171 return false;
1172
b2a0eb1a
KB
1173 return true;
1174}
1175
1176static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1177{
1178 /* Read a config register to help see what died. */
1179 u16 pci_status;
1180 int result;
1181
1182 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1183 &pci_status);
1184 if (result == PCIBIOS_SUCCESSFUL)
1185 dev_warn(dev->ctrl.device,
1186 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1187 csts, pci_status);
1188 else
1189 dev_warn(dev->ctrl.device,
1190 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1191 csts, result);
1192}
1193
31c7c7d2 1194static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1195{
f4800d6d
CH
1196 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1197 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 1198 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1199 struct request *abort_req;
a4aea562 1200 struct nvme_command cmd;
b2a0eb1a
KB
1201 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1202
651438bb
WX
1203 /* If PCI error recovery process is happening, we cannot reset or
1204 * the recovery mechanism will surely fail.
1205 */
1206 mb();
1207 if (pci_channel_offline(to_pci_dev(dev->dev)))
1208 return BLK_EH_RESET_TIMER;
1209
b2a0eb1a
KB
1210 /*
1211 * Reset immediately if the controller is failed
1212 */
1213 if (nvme_should_reset(dev, csts)) {
1214 nvme_warn_reset(dev, csts);
1215 nvme_dev_disable(dev, false);
d86c4d8e 1216 nvme_reset_ctrl(&dev->ctrl);
db8c48e4 1217 return BLK_EH_DONE;
b2a0eb1a 1218 }
c30341dc 1219
7776db1c
KB
1220 /*
1221 * Did we miss an interrupt?
1222 */
fa059b85
KB
1223 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1224 nvme_poll(req->mq_hctx);
1225 else
1226 nvme_poll_irqdisable(nvmeq);
1227
bf392a5d 1228 if (blk_mq_request_completed(req)) {
7776db1c
KB
1229 dev_warn(dev->ctrl.device,
1230 "I/O %d QID %d timeout, completion polled\n",
1231 req->tag, nvmeq->qid);
db8c48e4 1232 return BLK_EH_DONE;
7776db1c
KB
1233 }
1234
31c7c7d2 1235 /*
fd634f41
CH
1236 * Shutdown immediately if controller times out while starting. The
1237 * reset work will see the pci device disabled when it gets the forced
1238 * cancellation error. All outstanding requests are completed on
db8c48e4 1239 * shutdown, so we return BLK_EH_DONE.
fd634f41 1240 */
4244140d
KB
1241 switch (dev->ctrl.state) {
1242 case NVME_CTRL_CONNECTING:
2036f726
KB
1243 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1244 /* fall through */
1245 case NVME_CTRL_DELETING:
b9cac43c 1246 dev_warn_ratelimited(dev->ctrl.device,
fd634f41
CH
1247 "I/O %d QID %d timeout, disable controller\n",
1248 req->tag, nvmeq->qid);
2036f726 1249 nvme_dev_disable(dev, true);
27fa9bc5 1250 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
db8c48e4 1251 return BLK_EH_DONE;
39a9dd81
KB
1252 case NVME_CTRL_RESETTING:
1253 return BLK_EH_RESET_TIMER;
4244140d
KB
1254 default:
1255 break;
c30341dc
KB
1256 }
1257
fd634f41
CH
1258 /*
1259 * Shutdown the controller immediately and schedule a reset if the
1260 * command was already aborted once before and still hasn't been
1261 * returned to the driver, or if this is the admin queue.
31c7c7d2 1262 */
f4800d6d 1263 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1264 dev_warn(dev->ctrl.device,
e1569a16
KB
1265 "I/O %d QID %d timeout, reset controller\n",
1266 req->tag, nvmeq->qid);
a5cdb68c 1267 nvme_dev_disable(dev, false);
d86c4d8e 1268 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1269
27fa9bc5 1270 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
db8c48e4 1271 return BLK_EH_DONE;
c30341dc 1272 }
c30341dc 1273
e7a2a87d 1274 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1275 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1276 return BLK_EH_RESET_TIMER;
6bf25d16 1277 }
7bf7d778 1278 iod->aborted = 1;
a4aea562 1279
c30341dc
KB
1280 memset(&cmd, 0, sizeof(cmd));
1281 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1282 cmd.abort.cid = req->tag;
c30341dc 1283 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1284
1b3c47c1
SG
1285 dev_warn(nvmeq->dev->ctrl.device,
1286 "I/O %d QID %d timeout, aborting\n",
1287 req->tag, nvmeq->qid);
e7a2a87d
CH
1288
1289 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1290 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1291 if (IS_ERR(abort_req)) {
1292 atomic_inc(&dev->ctrl.abort_limit);
1293 return BLK_EH_RESET_TIMER;
1294 }
1295
1296 abort_req->timeout = ADMIN_TIMEOUT;
1297 abort_req->end_io_data = NULL;
1298 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1299
31c7c7d2
CH
1300 /*
1301 * The aborted req will be completed on receiving the abort req.
1302 * We enable the timer again. If hit twice, it'll cause a device reset,
1303 * as the device then is in a faulty state.
1304 */
1305 return BLK_EH_RESET_TIMER;
c30341dc
KB
1306}
1307
a4aea562
MB
1308static void nvme_free_queue(struct nvme_queue *nvmeq)
1309{
8a1d09a6 1310 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
9e866774 1311 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
63223078
CH
1312 if (!nvmeq->sq_cmds)
1313 return;
0f238ff5 1314
63223078 1315 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
88a041f4 1316 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
8a1d09a6 1317 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1318 } else {
8a1d09a6 1319 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
63223078 1320 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
0f238ff5 1321 }
9e866774
MW
1322}
1323
a1a5ef99 1324static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1325{
1326 int i;
1327
d858e5f0 1328 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1329 dev->ctrl.queue_count--;
147b27e4 1330 nvme_free_queue(&dev->queues[i]);
121c7ad4 1331 }
22404274
KB
1332}
1333
4d115420
KB
1334/**
1335 * nvme_suspend_queue - put queue into suspended state
40581d1a 1336 * @nvmeq: queue to suspend
4d115420
KB
1337 */
1338static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1339{
4e224106 1340 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
2b25d981 1341 return 1;
a09115b2 1342
4e224106 1343 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
d1f06f4a 1344 mb();
a09115b2 1345
4e224106 1346 nvmeq->dev->online_queues--;
1c63dc66 1347 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
c81545f9 1348 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
7c349dde
KB
1349 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1350 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
4d115420
KB
1351 return 0;
1352}
b60503ba 1353
8fae268b
KB
1354static void nvme_suspend_io_queues(struct nvme_dev *dev)
1355{
1356 int i;
1357
1358 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1359 nvme_suspend_queue(&dev->queues[i]);
1360}
1361
a5cdb68c 1362static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1363{
147b27e4 1364 struct nvme_queue *nvmeq = &dev->queues[0];
4d115420 1365
a5cdb68c
KB
1366 if (shutdown)
1367 nvme_shutdown_ctrl(&dev->ctrl);
1368 else
b5b05048 1369 nvme_disable_ctrl(&dev->ctrl);
07836e65 1370
bf392a5d 1371 nvme_poll_irqdisable(nvmeq);
b60503ba
MW
1372}
1373
fa46c6fb
KB
1374/*
1375 * Called only on a device that has been disabled and after all other threads
1376 * that can check this device's completion queues have synced. This is the
1377 * last chance for the driver to see a natural completion before
1378 * nvme_cancel_request() terminates all incomplete requests.
1379 */
1380static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1381{
fa46c6fb
KB
1382 int i;
1383
324b494c
KB
1384 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1385 nvme_process_cq(&dev->queues[i]);
fa46c6fb
KB
1386}
1387
8ffaadf7
JD
1388static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1389 int entry_size)
1390{
1391 int q_depth = dev->q_depth;
5fd4ce1b
CH
1392 unsigned q_size_aligned = roundup(q_depth * entry_size,
1393 dev->ctrl.page_size);
8ffaadf7
JD
1394
1395 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1396 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1397 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1398 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1399
1400 /*
1401 * Ensure the reduced q_depth is above some threshold where it
1402 * would be better to map queues in system memory with the
1403 * original depth
1404 */
1405 if (q_depth < 64)
1406 return -ENOMEM;
1407 }
1408
1409 return q_depth;
1410}
1411
1412static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
8a1d09a6 1413 int qid)
8ffaadf7 1414{
0f238ff5
LG
1415 struct pci_dev *pdev = to_pci_dev(dev->dev);
1416
1417 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
8a1d09a6 1418 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
bfac8e9f
AM
1419 if (nvmeq->sq_cmds) {
1420 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1421 nvmeq->sq_cmds);
1422 if (nvmeq->sq_dma_addr) {
1423 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1424 return 0;
1425 }
1426
8a1d09a6 1427 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1428 }
0f238ff5 1429 }
8ffaadf7 1430
8a1d09a6 1431 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
63223078 1432 &nvmeq->sq_dma_addr, GFP_KERNEL);
815c6704
KB
1433 if (!nvmeq->sq_cmds)
1434 return -ENOMEM;
8ffaadf7
JD
1435 return 0;
1436}
1437
a6ff7262 1438static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1439{
147b27e4 1440 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1441
62314e40
KB
1442 if (dev->ctrl.queue_count > qid)
1443 return 0;
b60503ba 1444
c1e0cc7e 1445 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
8a1d09a6
BH
1446 nvmeq->q_depth = depth;
1447 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
750afb08 1448 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1449 if (!nvmeq->cqes)
1450 goto free_nvmeq;
b60503ba 1451
8a1d09a6 1452 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
b60503ba
MW
1453 goto free_cqdma;
1454
091b6092 1455 nvmeq->dev = dev;
1ab0cd69 1456 spin_lock_init(&nvmeq->sq_lock);
3a7afd8e 1457 spin_lock_init(&nvmeq->cq_poll_lock);
b60503ba 1458 nvmeq->cq_head = 0;
82123460 1459 nvmeq->cq_phase = 1;
b80d5ccc 1460 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
c30341dc 1461 nvmeq->qid = qid;
d858e5f0 1462 dev->ctrl.queue_count++;
36a7e993 1463
147b27e4 1464 return 0;
b60503ba
MW
1465
1466 free_cqdma:
8a1d09a6
BH
1467 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1468 nvmeq->cq_dma_addr);
b60503ba 1469 free_nvmeq:
147b27e4 1470 return -ENOMEM;
b60503ba
MW
1471}
1472
dca51e78 1473static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1474{
0ff199cb
CH
1475 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1476 int nr = nvmeq->dev->ctrl.instance;
1477
1478 if (use_threaded_interrupts) {
1479 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1480 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1481 } else {
1482 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1483 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1484 }
3001082c
MW
1485}
1486
22404274 1487static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1488{
22404274 1489 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1490
22404274 1491 nvmeq->sq_tail = 0;
04f3eafd 1492 nvmeq->last_sq_tail = 0;
22404274
KB
1493 nvmeq->cq_head = 0;
1494 nvmeq->cq_phase = 1;
b80d5ccc 1495 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
8a1d09a6 1496 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
f9f38e33 1497 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1498 dev->online_queues++;
3a7afd8e 1499 wmb(); /* ensure the first interrupt sees the initialization */
22404274
KB
1500}
1501
4b04cc6a 1502static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
22404274
KB
1503{
1504 struct nvme_dev *dev = nvmeq->dev;
1505 int result;
7c349dde 1506 u16 vector = 0;
3f85d50b 1507
d1ed6aa1
CH
1508 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1509
22b55601
KB
1510 /*
1511 * A queue's vector matches the queue identifier unless the controller
1512 * has only one vector available.
1513 */
4b04cc6a
JA
1514 if (!polled)
1515 vector = dev->num_vecs == 1 ? 0 : qid;
1516 else
7c349dde 1517 set_bit(NVMEQ_POLLED, &nvmeq->flags);
4b04cc6a 1518
a8e3e0bb 1519 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
ded45505
KB
1520 if (result)
1521 return result;
b60503ba
MW
1522
1523 result = adapter_alloc_sq(dev, qid, nvmeq);
1524 if (result < 0)
ded45505 1525 return result;
c80b36cd 1526 if (result)
b60503ba
MW
1527 goto release_cq;
1528
a8e3e0bb 1529 nvmeq->cq_vector = vector;
161b8be2 1530 nvme_init_queue(nvmeq, qid);
4b04cc6a 1531
7c349dde 1532 if (!polled) {
4b04cc6a
JA
1533 result = queue_request_irq(nvmeq);
1534 if (result < 0)
1535 goto release_sq;
1536 }
b60503ba 1537
4e224106 1538 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
22404274 1539 return result;
b60503ba 1540
a8e3e0bb 1541release_sq:
f25a2dfc 1542 dev->online_queues--;
b60503ba 1543 adapter_delete_sq(dev, qid);
a8e3e0bb 1544release_cq:
b60503ba 1545 adapter_delete_cq(dev, qid);
22404274 1546 return result;
b60503ba
MW
1547}
1548
f363b089 1549static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1550 .queue_rq = nvme_queue_rq,
77f02a7a 1551 .complete = nvme_pci_complete_rq,
a4aea562 1552 .init_hctx = nvme_admin_init_hctx,
0350815a 1553 .init_request = nvme_init_request,
a4aea562
MB
1554 .timeout = nvme_timeout,
1555};
1556
f363b089 1557static const struct blk_mq_ops nvme_mq_ops = {
376f7ef8
CH
1558 .queue_rq = nvme_queue_rq,
1559 .complete = nvme_pci_complete_rq,
1560 .commit_rqs = nvme_commit_rqs,
1561 .init_hctx = nvme_init_hctx,
1562 .init_request = nvme_init_request,
1563 .map_queues = nvme_pci_map_queues,
1564 .timeout = nvme_timeout,
1565 .poll = nvme_poll,
dabcefab
JA
1566};
1567
ea191d2f
KB
1568static void nvme_dev_remove_admin(struct nvme_dev *dev)
1569{
1c63dc66 1570 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1571 /*
1572 * If the controller was reset during removal, it's possible
1573 * user requests may be waiting on a stopped queue. Start the
1574 * queue to flush these to completion.
1575 */
c81545f9 1576 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1c63dc66 1577 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1578 blk_mq_free_tag_set(&dev->admin_tagset);
1579 }
1580}
1581
a4aea562
MB
1582static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1583{
1c63dc66 1584 if (!dev->ctrl.admin_q) {
a4aea562
MB
1585 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1586 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c 1587
38dabe21 1588 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
a4aea562 1589 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1590 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
d43f1ccf 1591 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
d3484991 1592 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1593 dev->admin_tagset.driver_data = dev;
1594
1595 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1596 return -ENOMEM;
34b6c231 1597 dev->ctrl.admin_tagset = &dev->admin_tagset;
a4aea562 1598
1c63dc66
CH
1599 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1600 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1601 blk_mq_free_tag_set(&dev->admin_tagset);
1602 return -ENOMEM;
1603 }
1c63dc66 1604 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1605 nvme_dev_remove_admin(dev);
1c63dc66 1606 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1607 return -ENODEV;
1608 }
0fb59cbc 1609 } else
c81545f9 1610 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
a4aea562
MB
1611
1612 return 0;
1613}
1614
97f6ef64
XY
1615static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1616{
1617 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1618}
1619
1620static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1621{
1622 struct pci_dev *pdev = to_pci_dev(dev->dev);
1623
1624 if (size <= dev->bar_mapped_size)
1625 return 0;
1626 if (size > pci_resource_len(pdev, 0))
1627 return -ENOMEM;
1628 if (dev->bar)
1629 iounmap(dev->bar);
1630 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1631 if (!dev->bar) {
1632 dev->bar_mapped_size = 0;
1633 return -ENOMEM;
1634 }
1635 dev->bar_mapped_size = size;
1636 dev->dbs = dev->bar + NVME_REG_DBS;
1637
1638 return 0;
1639}
1640
01ad0990 1641static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1642{
ba47e386 1643 int result;
b60503ba
MW
1644 u32 aqa;
1645 struct nvme_queue *nvmeq;
1646
97f6ef64
XY
1647 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1648 if (result < 0)
1649 return result;
1650
8ef2074d 1651 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1652 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1653
7a67cbea
CH
1654 if (dev->subsystem &&
1655 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1656 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1657
b5b05048 1658 result = nvme_disable_ctrl(&dev->ctrl);
ba47e386
MW
1659 if (result < 0)
1660 return result;
b60503ba 1661
a6ff7262 1662 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1663 if (result)
1664 return result;
b60503ba 1665
147b27e4 1666 nvmeq = &dev->queues[0];
b60503ba
MW
1667 aqa = nvmeq->q_depth - 1;
1668 aqa |= aqa << 16;
1669
7a67cbea
CH
1670 writel(aqa, dev->bar + NVME_REG_AQA);
1671 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1672 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1673
c0f2f45b 1674 result = nvme_enable_ctrl(&dev->ctrl);
025c557a 1675 if (result)
d4875622 1676 return result;
a4aea562 1677
2b25d981 1678 nvmeq->cq_vector = 0;
161b8be2 1679 nvme_init_queue(nvmeq, 0);
dca51e78 1680 result = queue_request_irq(nvmeq);
758dd7fd 1681 if (result) {
7c349dde 1682 dev->online_queues--;
d4875622 1683 return result;
758dd7fd 1684 }
025c557a 1685
4e224106 1686 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
b60503ba
MW
1687 return result;
1688}
1689
749941f2 1690static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1691{
4b04cc6a 1692 unsigned i, max, rw_queues;
749941f2 1693 int ret = 0;
42f61420 1694
d858e5f0 1695 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1696 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1697 ret = -ENOMEM;
42f61420 1698 break;
749941f2
CH
1699 }
1700 }
42f61420 1701
d858e5f0 1702 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
e20ba6e1
CH
1703 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1704 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1705 dev->io_queues[HCTX_TYPE_READ];
4b04cc6a
JA
1706 } else {
1707 rw_queues = max;
1708 }
1709
949928c1 1710 for (i = dev->online_queues; i <= max; i++) {
4b04cc6a
JA
1711 bool polled = i > rw_queues;
1712
1713 ret = nvme_create_queue(&dev->queues[i], i, polled);
d4875622 1714 if (ret)
42f61420 1715 break;
27e8166c 1716 }
749941f2
CH
1717
1718 /*
1719 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1720 * than the desired amount of queues, and even a controller without
1721 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1722 * be useful to upgrade a buggy firmware for example.
1723 */
1724 return ret >= 0 ? 0 : ret;
b60503ba
MW
1725}
1726
202021c1
SB
1727static ssize_t nvme_cmb_show(struct device *dev,
1728 struct device_attribute *attr,
1729 char *buf)
1730{
1731 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1732
c965809c 1733 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1734 ndev->cmbloc, ndev->cmbsz);
1735}
1736static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1737
88de4598 1738static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1739{
88de4598
CH
1740 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1741
1742 return 1ULL << (12 + 4 * szu);
1743}
1744
1745static u32 nvme_cmb_size(struct nvme_dev *dev)
1746{
1747 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1748}
1749
f65efd6d 1750static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1751{
88de4598 1752 u64 size, offset;
8ffaadf7
JD
1753 resource_size_t bar_size;
1754 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1755 int bar;
8ffaadf7 1756
9fe5c59f
KB
1757 if (dev->cmb_size)
1758 return;
1759
7a67cbea 1760 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1761 if (!dev->cmbsz)
1762 return;
202021c1 1763 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1764
88de4598
CH
1765 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1766 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1767 bar = NVME_CMB_BIR(dev->cmbloc);
1768 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1769
1770 if (offset > bar_size)
f65efd6d 1771 return;
8ffaadf7
JD
1772
1773 /*
1774 * Controllers may support a CMB size larger than their BAR,
1775 * for example, due to being behind a bridge. Reduce the CMB to
1776 * the reported size of the BAR
1777 */
1778 if (size > bar_size - offset)
1779 size = bar_size - offset;
1780
0f238ff5
LG
1781 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1782 dev_warn(dev->ctrl.device,
1783 "failed to register the CMB\n");
f65efd6d 1784 return;
0f238ff5
LG
1785 }
1786
8ffaadf7 1787 dev->cmb_size = size;
0f238ff5
LG
1788 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1789
1790 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1791 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1792 pci_p2pmem_publish(pdev, true);
f65efd6d
CH
1793
1794 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1795 &dev_attr_cmb.attr, NULL))
1796 dev_warn(dev->ctrl.device,
1797 "failed to add sysfs attribute for CMB\n");
8ffaadf7
JD
1798}
1799
1800static inline void nvme_release_cmb(struct nvme_dev *dev)
1801{
0f238ff5 1802 if (dev->cmb_size) {
1c78f773
MG
1803 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1804 &dev_attr_cmb.attr, NULL);
0f238ff5 1805 dev->cmb_size = 0;
8ffaadf7
JD
1806 }
1807}
1808
87ad72a5
CH
1809static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1810{
4033f35d 1811 u64 dma_addr = dev->host_mem_descs_dma;
87ad72a5 1812 struct nvme_command c;
87ad72a5
CH
1813 int ret;
1814
87ad72a5
CH
1815 memset(&c, 0, sizeof(c));
1816 c.features.opcode = nvme_admin_set_features;
1817 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1818 c.features.dword11 = cpu_to_le32(bits);
1819 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1820 ilog2(dev->ctrl.page_size));
1821 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1822 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1823 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1824
1825 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1826 if (ret) {
1827 dev_warn(dev->ctrl.device,
1828 "failed to set host mem (err %d, flags %#x).\n",
1829 ret, bits);
1830 }
87ad72a5
CH
1831 return ret;
1832}
1833
1834static void nvme_free_host_mem(struct nvme_dev *dev)
1835{
1836 int i;
1837
1838 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1839 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1840 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1841
cc667f6d
LD
1842 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1843 le64_to_cpu(desc->addr),
1844 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1845 }
1846
1847 kfree(dev->host_mem_desc_bufs);
1848 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
1849 dma_free_coherent(dev->dev,
1850 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1851 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 1852 dev->host_mem_descs = NULL;
7e5dd57e 1853 dev->nr_host_mem_descs = 0;
87ad72a5
CH
1854}
1855
92dc6895
CH
1856static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1857 u32 chunk_size)
9d713c2b 1858{
87ad72a5 1859 struct nvme_host_mem_buf_desc *descs;
92dc6895 1860 u32 max_entries, len;
4033f35d 1861 dma_addr_t descs_dma;
2ee0e4ed 1862 int i = 0;
87ad72a5 1863 void **bufs;
6fbcde66 1864 u64 size, tmp;
87ad72a5 1865
87ad72a5
CH
1866 tmp = (preferred + chunk_size - 1);
1867 do_div(tmp, chunk_size);
1868 max_entries = tmp;
044a9df1
CH
1869
1870 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1871 max_entries = dev->ctrl.hmmaxd;
1872
750afb08
LC
1873 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1874 &descs_dma, GFP_KERNEL);
87ad72a5
CH
1875 if (!descs)
1876 goto out;
1877
1878 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1879 if (!bufs)
1880 goto out_free_descs;
1881
244a8fe4 1882 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
1883 dma_addr_t dma_addr;
1884
50cdb7c6 1885 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1886 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1887 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1888 if (!bufs[i])
1889 break;
1890
1891 descs[i].addr = cpu_to_le64(dma_addr);
1892 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1893 i++;
1894 }
1895
92dc6895 1896 if (!size)
87ad72a5 1897 goto out_free_bufs;
87ad72a5 1898
87ad72a5
CH
1899 dev->nr_host_mem_descs = i;
1900 dev->host_mem_size = size;
1901 dev->host_mem_descs = descs;
4033f35d 1902 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
1903 dev->host_mem_desc_bufs = bufs;
1904 return 0;
1905
1906out_free_bufs:
1907 while (--i >= 0) {
1908 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1909
cc667f6d
LD
1910 dma_free_attrs(dev->dev, size, bufs[i],
1911 le64_to_cpu(descs[i].addr),
1912 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1913 }
1914
1915 kfree(bufs);
1916out_free_descs:
4033f35d
CH
1917 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1918 descs_dma);
87ad72a5 1919out:
87ad72a5
CH
1920 dev->host_mem_descs = NULL;
1921 return -ENOMEM;
1922}
1923
92dc6895
CH
1924static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1925{
1926 u32 chunk_size;
1927
1928 /* start big and work our way down */
30f92d62 1929 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
044a9df1 1930 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
92dc6895
CH
1931 chunk_size /= 2) {
1932 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1933 if (!min || dev->host_mem_size >= min)
1934 return 0;
1935 nvme_free_host_mem(dev);
1936 }
1937 }
1938
1939 return -ENOMEM;
1940}
1941
9620cfba 1942static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
1943{
1944 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1945 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1946 u64 min = (u64)dev->ctrl.hmmin * 4096;
1947 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 1948 int ret;
87ad72a5
CH
1949
1950 preferred = min(preferred, max);
1951 if (min > max) {
1952 dev_warn(dev->ctrl.device,
1953 "min host memory (%lld MiB) above limit (%d MiB).\n",
1954 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1955 nvme_free_host_mem(dev);
9620cfba 1956 return 0;
87ad72a5
CH
1957 }
1958
1959 /*
1960 * If we already have a buffer allocated check if we can reuse it.
1961 */
1962 if (dev->host_mem_descs) {
1963 if (dev->host_mem_size >= min)
1964 enable_bits |= NVME_HOST_MEM_RETURN;
1965 else
1966 nvme_free_host_mem(dev);
1967 }
1968
1969 if (!dev->host_mem_descs) {
92dc6895
CH
1970 if (nvme_alloc_host_mem(dev, min, preferred)) {
1971 dev_warn(dev->ctrl.device,
1972 "failed to allocate host memory buffer.\n");
9620cfba 1973 return 0; /* controller must work without HMB */
92dc6895
CH
1974 }
1975
1976 dev_info(dev->ctrl.device,
1977 "allocated %lld MiB host memory buffer.\n",
1978 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
1979 }
1980
9620cfba
CH
1981 ret = nvme_set_host_mem(dev, enable_bits);
1982 if (ret)
87ad72a5 1983 nvme_free_host_mem(dev);
9620cfba 1984 return ret;
9d713c2b
KB
1985}
1986
612b7286
ML
1987/*
1988 * nirqs is the number of interrupts available for write and read
1989 * queues. The core already reserved an interrupt for the admin queue.
1990 */
1991static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
3b6592f7 1992{
612b7286
ML
1993 struct nvme_dev *dev = affd->priv;
1994 unsigned int nr_read_queues;
3b6592f7
JA
1995
1996 /*
612b7286
ML
1997 * If there is no interupt available for queues, ensure that
1998 * the default queue is set to 1. The affinity set size is
1999 * also set to one, but the irq core ignores it for this case.
2000 *
2001 * If only one interrupt is available or 'write_queue' == 0, combine
2002 * write and read queues.
2003 *
2004 * If 'write_queues' > 0, ensure it leaves room for at least one read
2005 * queue.
3b6592f7 2006 */
612b7286
ML
2007 if (!nrirqs) {
2008 nrirqs = 1;
2009 nr_read_queues = 0;
2010 } else if (nrirqs == 1 || !write_queues) {
2011 nr_read_queues = 0;
2012 } else if (write_queues >= nrirqs) {
2013 nr_read_queues = 1;
3b6592f7 2014 } else {
612b7286 2015 nr_read_queues = nrirqs - write_queues;
3b6592f7 2016 }
612b7286
ML
2017
2018 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2019 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2020 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2021 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2022 affd->nr_sets = nr_read_queues ? 2 : 1;
3b6592f7
JA
2023}
2024
6451fe73 2025static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
3b6592f7
JA
2026{
2027 struct pci_dev *pdev = to_pci_dev(dev->dev);
3b6592f7 2028 struct irq_affinity affd = {
9cfef55b 2029 .pre_vectors = 1,
612b7286
ML
2030 .calc_sets = nvme_calc_irq_sets,
2031 .priv = dev,
3b6592f7 2032 };
6451fe73
JA
2033 unsigned int irq_queues, this_p_queues;
2034
2035 /*
2036 * Poll queues don't need interrupts, but we need at least one IO
2037 * queue left over for non-polled IO.
2038 */
2039 this_p_queues = poll_queues;
2040 if (this_p_queues >= nr_io_queues) {
2041 this_p_queues = nr_io_queues - 1;
2042 irq_queues = 1;
2043 } else {
7e4c6b9a 2044 irq_queues = nr_io_queues - this_p_queues + 1;
6451fe73
JA
2045 }
2046 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
3b6592f7 2047
612b7286
ML
2048 /* Initialize for the single interrupt case */
2049 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2050 dev->io_queues[HCTX_TYPE_READ] = 0;
3b6592f7 2051
66341331
BH
2052 /*
2053 * Some Apple controllers require all queues to use the
2054 * first vector.
2055 */
2056 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2057 irq_queues = 1;
2058
612b7286
ML
2059 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2060 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
3b6592f7
JA
2061}
2062
8fae268b
KB
2063static void nvme_disable_io_queues(struct nvme_dev *dev)
2064{
2065 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2066 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2067}
2068
8d85fce7 2069static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2070{
147b27e4 2071 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 2072 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
2073 int result, nr_io_queues;
2074 unsigned long size;
b60503ba 2075
3b6592f7 2076 nr_io_queues = max_io_queues();
d38e9f04
BH
2077
2078 /*
2079 * If tags are shared with admin queue (Apple bug), then
2080 * make sure we only use one IO queue.
2081 */
2082 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2083 nr_io_queues = 1;
2084
9a0be7ab
CH
2085 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2086 if (result < 0)
1b23484b 2087 return result;
9a0be7ab 2088
f5fa90dc 2089 if (nr_io_queues == 0)
a5229050 2090 return 0;
4e224106
CH
2091
2092 clear_bit(NVMEQ_ENABLED, &adminq->flags);
b60503ba 2093
0f238ff5 2094 if (dev->cmb_use_sqes) {
8ffaadf7
JD
2095 result = nvme_cmb_qdepth(dev, nr_io_queues,
2096 sizeof(struct nvme_command));
2097 if (result > 0)
2098 dev->q_depth = result;
2099 else
0f238ff5 2100 dev->cmb_use_sqes = false;
8ffaadf7
JD
2101 }
2102
97f6ef64
XY
2103 do {
2104 size = db_bar_size(dev, nr_io_queues);
2105 result = nvme_remap_bar(dev, size);
2106 if (!result)
2107 break;
2108 if (!--nr_io_queues)
2109 return -ENOMEM;
2110 } while (1);
2111 adminq->q_db = dev->dbs;
f1938f6e 2112
8fae268b 2113 retry:
9d713c2b 2114 /* Deregister the admin queue's interrupt */
0ff199cb 2115 pci_free_irq(pdev, 0, adminq);
9d713c2b 2116
e32efbfc
JA
2117 /*
2118 * If we enable msix early due to not intx, disable it again before
2119 * setting up the full range we need.
2120 */
dca51e78 2121 pci_free_irq_vectors(pdev);
3b6592f7
JA
2122
2123 result = nvme_setup_irqs(dev, nr_io_queues);
22b55601 2124 if (result <= 0)
dca51e78 2125 return -EIO;
3b6592f7 2126
22b55601 2127 dev->num_vecs = result;
4b04cc6a 2128 result = max(result - 1, 1);
e20ba6e1 2129 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
fa08a396 2130
063a8096
MW
2131 /*
2132 * Should investigate if there's a performance win from allocating
2133 * more queues than interrupt vectors; it might allow the submission
2134 * path to scale better, even if the receive path is limited by the
2135 * number of interrupts.
2136 */
dca51e78 2137 result = queue_request_irq(adminq);
7c349dde 2138 if (result)
d4875622 2139 return result;
4e224106 2140 set_bit(NVMEQ_ENABLED, &adminq->flags);
8fae268b
KB
2141
2142 result = nvme_create_io_queues(dev);
2143 if (result || dev->online_queues < 2)
2144 return result;
2145
2146 if (dev->online_queues - 1 < dev->max_qid) {
2147 nr_io_queues = dev->online_queues - 1;
2148 nvme_disable_io_queues(dev);
2149 nvme_suspend_io_queues(dev);
2150 goto retry;
2151 }
2152 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2153 dev->io_queues[HCTX_TYPE_DEFAULT],
2154 dev->io_queues[HCTX_TYPE_READ],
2155 dev->io_queues[HCTX_TYPE_POLL]);
2156 return 0;
b60503ba
MW
2157}
2158
2a842aca 2159static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 2160{
db3cbfff 2161 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 2162
db3cbfff 2163 blk_mq_free_request(req);
d1ed6aa1 2164 complete(&nvmeq->delete_done);
a5768aa8
KB
2165}
2166
2a842aca 2167static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 2168{
db3cbfff 2169 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 2170
d1ed6aa1
CH
2171 if (error)
2172 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
db3cbfff
KB
2173
2174 nvme_del_queue_end(req, error);
a5768aa8
KB
2175}
2176
db3cbfff 2177static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 2178{
db3cbfff
KB
2179 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2180 struct request *req;
2181 struct nvme_command cmd;
bda4e0fb 2182
db3cbfff
KB
2183 memset(&cmd, 0, sizeof(cmd));
2184 cmd.delete_queue.opcode = opcode;
2185 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 2186
eb71f435 2187 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
2188 if (IS_ERR(req))
2189 return PTR_ERR(req);
bda4e0fb 2190
db3cbfff
KB
2191 req->timeout = ADMIN_TIMEOUT;
2192 req->end_io_data = nvmeq;
2193
d1ed6aa1 2194 init_completion(&nvmeq->delete_done);
db3cbfff
KB
2195 blk_execute_rq_nowait(q, NULL, req, false,
2196 opcode == nvme_admin_delete_cq ?
2197 nvme_del_cq_end : nvme_del_queue_end);
2198 return 0;
bda4e0fb
KB
2199}
2200
8fae268b 2201static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
a5768aa8 2202{
5271edd4 2203 int nr_queues = dev->online_queues - 1, sent = 0;
db3cbfff 2204 unsigned long timeout;
a5768aa8 2205
db3cbfff 2206 retry:
5271edd4
CH
2207 timeout = ADMIN_TIMEOUT;
2208 while (nr_queues > 0) {
2209 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2210 break;
2211 nr_queues--;
2212 sent++;
db3cbfff 2213 }
d1ed6aa1
CH
2214 while (sent) {
2215 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2216
2217 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
5271edd4
CH
2218 timeout);
2219 if (timeout == 0)
2220 return false;
d1ed6aa1 2221
d1ed6aa1 2222 sent--;
5271edd4
CH
2223 if (nr_queues)
2224 goto retry;
2225 }
2226 return true;
a5768aa8
KB
2227}
2228
5d02a5c1 2229static void nvme_dev_add(struct nvme_dev *dev)
b60503ba 2230{
2b1b7e78
JW
2231 int ret;
2232
5bae7f73 2233 if (!dev->ctrl.tagset) {
376f7ef8 2234 dev->tagset.ops = &nvme_mq_ops;
ffe7704d 2235 dev->tagset.nr_hw_queues = dev->online_queues - 1;
8fe34be1 2236 dev->tagset.nr_maps = 2; /* default + read */
ed92ad37
CH
2237 if (dev->io_queues[HCTX_TYPE_POLL])
2238 dev->tagset.nr_maps++;
ffe7704d
KB
2239 dev->tagset.timeout = NVME_IO_TIMEOUT;
2240 dev->tagset.numa_node = dev_to_node(dev->dev);
2241 dev->tagset.queue_depth =
a4aea562 2242 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
d43f1ccf 2243 dev->tagset.cmd_size = sizeof(struct nvme_iod);
ffe7704d
KB
2244 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2245 dev->tagset.driver_data = dev;
b60503ba 2246
d38e9f04
BH
2247 /*
2248 * Some Apple controllers requires tags to be unique
2249 * across admin and IO queue, so reserve the first 32
2250 * tags of the IO queue.
2251 */
2252 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2253 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2254
2b1b7e78
JW
2255 ret = blk_mq_alloc_tag_set(&dev->tagset);
2256 if (ret) {
2257 dev_warn(dev->ctrl.device,
2258 "IO queues tagset allocation failed %d\n", ret);
5d02a5c1 2259 return;
2b1b7e78 2260 }
5bae7f73 2261 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
2262 } else {
2263 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2264
2265 /* Free previously allocated queues that are no longer usable */
2266 nvme_free_queues(dev, dev->online_queues);
ffe7704d 2267 }
949928c1 2268
e8fd41bb 2269 nvme_dbbuf_set(dev);
b60503ba
MW
2270}
2271
b00a726a 2272static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2273{
b00a726a 2274 int result = -ENOMEM;
e75ec752 2275 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2276
2277 if (pci_enable_device_mem(pdev))
2278 return result;
2279
0877cb0d 2280 pci_set_master(pdev);
0877cb0d 2281
4fe06923 2282 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
052d0efa 2283 goto disable;
0877cb0d 2284
7a67cbea 2285 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2286 result = -ENODEV;
b00a726a 2287 goto disable;
0e53d180 2288 }
e32efbfc
JA
2289
2290 /*
a5229050
KB
2291 * Some devices and/or platforms don't advertise or work with INTx
2292 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2293 * adjust this later.
e32efbfc 2294 */
dca51e78
CH
2295 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2296 if (result < 0)
2297 return result;
e32efbfc 2298
20d0dfe6 2299 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2300
20d0dfe6 2301 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2302 io_queue_depth);
aa22c8e6 2303 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
20d0dfe6 2304 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2305 dev->dbs = dev->bar + 4096;
1f390c1f 2306
66341331
BH
2307 /*
2308 * Some Apple controllers require a non-standard SQE size.
2309 * Interestingly they also seem to ignore the CC:IOSQES register
2310 * so we don't bother updating it here.
2311 */
2312 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2313 dev->io_sqes = 7;
2314 else
2315 dev->io_sqes = NVME_NVM_IOSQES;
1f390c1f
SG
2316
2317 /*
2318 * Temporary fix for the Apple controller found in the MacBook8,1 and
2319 * some MacBook7,1 to avoid controller resets and data loss.
2320 */
2321 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2322 dev->q_depth = 2;
9bdcfb10
CH
2323 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2324 "set queue depth=%u to work around controller resets\n",
1f390c1f 2325 dev->q_depth);
d554b5e1
MP
2326 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2327 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2328 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2329 dev->q_depth = 64;
2330 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2331 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2332 }
2333
d38e9f04
BH
2334 /*
2335 * Controllers with the shared tags quirk need the IO queue to be
2336 * big enough so that we get 32 tags for the admin queue
2337 */
2338 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2339 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2340 dev->q_depth = NVME_AQ_DEPTH + 2;
2341 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2342 dev->q_depth);
2343 }
2344
2345
f65efd6d 2346 nvme_map_cmb(dev);
202021c1 2347
a0a3408e
KB
2348 pci_enable_pcie_error_reporting(pdev);
2349 pci_save_state(pdev);
0877cb0d
KB
2350 return 0;
2351
2352 disable:
0877cb0d
KB
2353 pci_disable_device(pdev);
2354 return result;
2355}
2356
2357static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2358{
2359 if (dev->bar)
2360 iounmap(dev->bar);
a1f447b3 2361 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2362}
2363
2364static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 2365{
e75ec752
CH
2366 struct pci_dev *pdev = to_pci_dev(dev->dev);
2367
dca51e78 2368 pci_free_irq_vectors(pdev);
0877cb0d 2369
a0a3408e
KB
2370 if (pci_is_enabled(pdev)) {
2371 pci_disable_pcie_error_reporting(pdev);
e75ec752 2372 pci_disable_device(pdev);
4d115420 2373 }
4d115420
KB
2374}
2375
a5cdb68c 2376static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2377{
e43269e6 2378 bool dead = true, freeze = false;
302ad8cc 2379 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2380
77bf25ea 2381 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
2382 if (pci_is_enabled(pdev)) {
2383 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2384
ebef7368 2385 if (dev->ctrl.state == NVME_CTRL_LIVE ||
e43269e6
KB
2386 dev->ctrl.state == NVME_CTRL_RESETTING) {
2387 freeze = true;
302ad8cc 2388 nvme_start_freeze(&dev->ctrl);
e43269e6 2389 }
302ad8cc
KB
2390 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2391 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2392 }
c21377f8 2393
302ad8cc
KB
2394 /*
2395 * Give the controller a chance to complete all entered requests if
2396 * doing a safe shutdown.
2397 */
e43269e6
KB
2398 if (!dead && shutdown && freeze)
2399 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
9a915a5b
JW
2400
2401 nvme_stop_queues(&dev->ctrl);
87ad72a5 2402
64ee0ac0 2403 if (!dead && dev->ctrl.queue_count > 0) {
8fae268b 2404 nvme_disable_io_queues(dev);
a5cdb68c 2405 nvme_disable_admin_queue(dev, shutdown);
4d115420 2406 }
8fae268b
KB
2407 nvme_suspend_io_queues(dev);
2408 nvme_suspend_queue(&dev->queues[0]);
b00a726a 2409 nvme_pci_disable(dev);
fa46c6fb 2410 nvme_reap_pending_cqes(dev);
07836e65 2411
e1958e65
ML
2412 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2413 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
622b8b68
ML
2414 blk_mq_tagset_wait_completed_request(&dev->tagset);
2415 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
302ad8cc
KB
2416
2417 /*
2418 * The driver will not be starting up queues again if shutting down so
2419 * must flush all entered requests to their failed completion to avoid
2420 * deadlocking blk-mq hot-cpu notifier.
2421 */
c8e9e9b7 2422 if (shutdown) {
302ad8cc 2423 nvme_start_queues(&dev->ctrl);
c8e9e9b7
KB
2424 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2425 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2426 }
77bf25ea 2427 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2428}
2429
c1ac9a4b
KB
2430static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2431{
2432 if (!nvme_wait_reset(&dev->ctrl))
2433 return -EBUSY;
2434 nvme_dev_disable(dev, shutdown);
2435 return 0;
2436}
2437
091b6092
MW
2438static int nvme_setup_prp_pools(struct nvme_dev *dev)
2439{
e75ec752 2440 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2441 PAGE_SIZE, PAGE_SIZE, 0);
2442 if (!dev->prp_page_pool)
2443 return -ENOMEM;
2444
99802a7a 2445 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2446 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2447 256, 256, 0);
2448 if (!dev->prp_small_pool) {
2449 dma_pool_destroy(dev->prp_page_pool);
2450 return -ENOMEM;
2451 }
091b6092
MW
2452 return 0;
2453}
2454
2455static void nvme_release_prp_pools(struct nvme_dev *dev)
2456{
2457 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2458 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2459}
2460
770597ec
KB
2461static void nvme_free_tagset(struct nvme_dev *dev)
2462{
2463 if (dev->tagset.tags)
2464 blk_mq_free_tag_set(&dev->tagset);
2465 dev->ctrl.tagset = NULL;
2466}
2467
1673f1f0 2468static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2469{
1673f1f0 2470 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2471
f9f38e33 2472 nvme_dbbuf_dma_free(dev);
e75ec752 2473 put_device(dev->dev);
770597ec 2474 nvme_free_tagset(dev);
1c63dc66
CH
2475 if (dev->ctrl.admin_q)
2476 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2477 kfree(dev->queues);
e286bcfc 2478 free_opal_dev(dev->ctrl.opal_dev);
943e942e 2479 mempool_destroy(dev->iod_mempool);
5e82e952
KB
2480 kfree(dev);
2481}
2482
7c1ce408 2483static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
f58944e2 2484{
c1ac9a4b
KB
2485 /*
2486 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2487 * may be holding this pci_dev's device lock.
2488 */
2489 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
d22524a4 2490 nvme_get_ctrl(&dev->ctrl);
69d9a99c 2491 nvme_dev_disable(dev, false);
9f9cafc1 2492 nvme_kill_queues(&dev->ctrl);
03e0f3a6 2493 if (!queue_work(nvme_wq, &dev->remove_work))
f58944e2
KB
2494 nvme_put_ctrl(&dev->ctrl);
2495}
2496
fd634f41 2497static void nvme_reset_work(struct work_struct *work)
5e82e952 2498{
d86c4d8e
CH
2499 struct nvme_dev *dev =
2500 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2501 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
e71afda4 2502 int result;
5e82e952 2503
e71afda4
CK
2504 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2505 result = -ENODEV;
fd634f41 2506 goto out;
e71afda4 2507 }
5e82e952 2508
fd634f41
CH
2509 /*
2510 * If we're called to reset a live controller first shut it down before
2511 * moving on.
2512 */
b00a726a 2513 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2514 nvme_dev_disable(dev, false);
d6135c3a 2515 nvme_sync_queues(&dev->ctrl);
5e82e952 2516
5c959d73 2517 mutex_lock(&dev->shutdown_lock);
b00a726a 2518 result = nvme_pci_enable(dev);
f0b50732 2519 if (result)
4726bcf3 2520 goto out_unlock;
f0b50732 2521
01ad0990 2522 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2523 if (result)
4726bcf3 2524 goto out_unlock;
f0b50732 2525
0fb59cbc
KB
2526 result = nvme_alloc_admin_tags(dev);
2527 if (result)
4726bcf3 2528 goto out_unlock;
b9afca3e 2529
943e942e
JA
2530 /*
2531 * Limit the max command size to prevent iod->sg allocations going
2532 * over a single page.
2533 */
7637de31
CH
2534 dev->ctrl.max_hw_sectors = min_t(u32,
2535 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
943e942e 2536 dev->ctrl.max_segments = NVME_MAX_SEGS;
a48bc520
CH
2537
2538 /*
2539 * Don't limit the IOMMU merged segment size.
2540 */
2541 dma_set_max_seg_size(dev->dev, 0xffffffff);
2542
5c959d73
KB
2543 mutex_unlock(&dev->shutdown_lock);
2544
2545 /*
2546 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2547 * initializing procedure here.
2548 */
2549 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2550 dev_warn(dev->ctrl.device,
2551 "failed to mark controller CONNECTING\n");
cee6c269 2552 result = -EBUSY;
5c959d73
KB
2553 goto out;
2554 }
943e942e 2555
ce4541f4
CH
2556 result = nvme_init_identify(&dev->ctrl);
2557 if (result)
f58944e2 2558 goto out;
ce4541f4 2559
e286bcfc
SB
2560 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2561 if (!dev->ctrl.opal_dev)
2562 dev->ctrl.opal_dev =
2563 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2564 else if (was_suspend)
2565 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2566 } else {
2567 free_opal_dev(dev->ctrl.opal_dev);
2568 dev->ctrl.opal_dev = NULL;
4f1244c8 2569 }
a98e58e5 2570
f9f38e33
HK
2571 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2572 result = nvme_dbbuf_dma_alloc(dev);
2573 if (result)
2574 dev_warn(dev->dev,
2575 "unable to allocate dma for dbbuf\n");
2576 }
2577
9620cfba
CH
2578 if (dev->ctrl.hmpre) {
2579 result = nvme_setup_host_mem(dev);
2580 if (result < 0)
2581 goto out;
2582 }
87ad72a5 2583
f0b50732 2584 result = nvme_setup_io_queues(dev);
badc34d4 2585 if (result)
f58944e2 2586 goto out;
f0b50732 2587
2659e57b
CH
2588 /*
2589 * Keep the controller around but remove all namespaces if we don't have
2590 * any working I/O queue.
2591 */
3cf519b5 2592 if (dev->online_queues < 2) {
1b3c47c1 2593 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2594 nvme_kill_queues(&dev->ctrl);
5bae7f73 2595 nvme_remove_namespaces(&dev->ctrl);
770597ec 2596 nvme_free_tagset(dev);
3cf519b5 2597 } else {
25646264 2598 nvme_start_queues(&dev->ctrl);
302ad8cc 2599 nvme_wait_freeze(&dev->ctrl);
5d02a5c1 2600 nvme_dev_add(dev);
302ad8cc 2601 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2602 }
2603
2b1b7e78
JW
2604 /*
2605 * If only admin queue live, keep it to do further investigation or
2606 * recovery.
2607 */
5d02a5c1 2608 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2b1b7e78 2609 dev_warn(dev->ctrl.device,
5d02a5c1 2610 "failed to mark controller live state\n");
e71afda4 2611 result = -ENODEV;
bb8d261e
CH
2612 goto out;
2613 }
92911a55 2614
d09f2b45 2615 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2616 return;
f0b50732 2617
4726bcf3
KB
2618 out_unlock:
2619 mutex_unlock(&dev->shutdown_lock);
3cf519b5 2620 out:
7c1ce408
CK
2621 if (result)
2622 dev_warn(dev->ctrl.device,
2623 "Removing after probe failure status: %d\n", result);
2624 nvme_remove_dead_ctrl(dev);
f0b50732
KB
2625}
2626
5c8809e6 2627static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2628{
5c8809e6 2629 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2630 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2631
2632 if (pci_get_drvdata(pdev))
921920ab 2633 device_release_driver(&pdev->dev);
1673f1f0 2634 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2635}
2636
1c63dc66 2637static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2638{
1c63dc66 2639 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2640 return 0;
9ca97374
TH
2641}
2642
5fd4ce1b 2643static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2644{
5fd4ce1b
CH
2645 writel(val, to_nvme_dev(ctrl)->bar + off);
2646 return 0;
2647}
4cc06521 2648
7fd8930f
CH
2649static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2650{
3a8ecc93 2651 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
7fd8930f 2652 return 0;
4cc06521
KB
2653}
2654
97c12223
KB
2655static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2656{
2657 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2658
2db24e4a 2659 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
97c12223
KB
2660}
2661
1c63dc66 2662static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2663 .name = "pcie",
e439bb12 2664 .module = THIS_MODULE,
e0596ab2
LG
2665 .flags = NVME_F_METADATA_SUPPORTED |
2666 NVME_F_PCI_P2PDMA,
1c63dc66 2667 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2668 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2669 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2670 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2671 .submit_async_event = nvme_pci_submit_async_event,
97c12223 2672 .get_address = nvme_pci_get_address,
1c63dc66 2673};
4cc06521 2674
b00a726a
KB
2675static int nvme_dev_map(struct nvme_dev *dev)
2676{
b00a726a
KB
2677 struct pci_dev *pdev = to_pci_dev(dev->dev);
2678
a1f447b3 2679 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2680 return -ENODEV;
2681
97f6ef64 2682 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2683 goto release;
2684
9fa196e7 2685 return 0;
b00a726a 2686 release:
9fa196e7
MG
2687 pci_release_mem_regions(pdev);
2688 return -ENODEV;
b00a726a
KB
2689}
2690
8427bbc2 2691static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
2692{
2693 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2694 /*
2695 * Several Samsung devices seem to drop off the PCIe bus
2696 * randomly when APST is on and uses the deepest sleep state.
2697 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2698 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2699 * 950 PRO 256GB", but it seems to be restricted to two Dell
2700 * laptops.
2701 */
2702 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2703 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2704 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2705 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
2706 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2707 /*
2708 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
2709 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2710 * within few minutes after bootup on a Coffee Lake board -
2711 * ASUS PRIME Z370-A
8427bbc2
KHF
2712 */
2713 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
2714 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2715 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 2716 return NVME_QUIRK_NO_APST;
1fae37ac
S
2717 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2718 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2719 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2720 /*
2721 * Forcing to use host managed nvme power settings for
2722 * lowest idle power with quick resume latency on
2723 * Samsung and Toshiba SSDs based on suspend behavior
2724 * on Coffee Lake board for LENOVO C640
2725 */
2726 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2727 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2728 return NVME_QUIRK_SIMPLE_SUSPEND;
ff5350a8
AL
2729 }
2730
2731 return 0;
2732}
2733
18119775
KB
2734static void nvme_async_probe(void *data, async_cookie_t cookie)
2735{
2736 struct nvme_dev *dev = data;
80f513b5 2737
bd46a906 2738 flush_work(&dev->ctrl.reset_work);
18119775 2739 flush_work(&dev->ctrl.scan_work);
80f513b5 2740 nvme_put_ctrl(&dev->ctrl);
18119775
KB
2741}
2742
8d85fce7 2743static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2744{
a4aea562 2745 int node, result = -ENOMEM;
b60503ba 2746 struct nvme_dev *dev;
ff5350a8 2747 unsigned long quirks = id->driver_data;
943e942e 2748 size_t alloc_size;
b60503ba 2749
a4aea562
MB
2750 node = dev_to_node(&pdev->dev);
2751 if (node == NUMA_NO_NODE)
2fa84351 2752 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2753
2754 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2755 if (!dev)
2756 return -ENOMEM;
147b27e4 2757
3b6592f7
JA
2758 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2759 GFP_KERNEL, node);
b60503ba
MW
2760 if (!dev->queues)
2761 goto free;
2762
e75ec752 2763 dev->dev = get_device(&pdev->dev);
9a6b9458 2764 pci_set_drvdata(pdev, dev);
1c63dc66 2765
b00a726a
KB
2766 result = nvme_dev_map(dev);
2767 if (result)
b00c9b7a 2768 goto put_pci;
b00a726a 2769
d86c4d8e 2770 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2771 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2772 mutex_init(&dev->shutdown_lock);
b60503ba 2773
091b6092
MW
2774 result = nvme_setup_prp_pools(dev);
2775 if (result)
b00c9b7a 2776 goto unmap;
4cc06521 2777
8427bbc2 2778 quirks |= check_vendor_combination_bug(pdev);
ff5350a8 2779
943e942e
JA
2780 /*
2781 * Double check that our mempool alloc size will cover the biggest
2782 * command we support.
2783 */
2784 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2785 NVME_MAX_SEGS, true);
2786 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2787
2788 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2789 mempool_kfree,
2790 (void *) alloc_size,
2791 GFP_KERNEL, node);
2792 if (!dev->iod_mempool) {
2793 result = -ENOMEM;
2794 goto release_pools;
2795 }
2796
b6e44b4c
KB
2797 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2798 quirks);
2799 if (result)
2800 goto release_mempool;
2801
1b3c47c1
SG
2802 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2803
bd46a906 2804 nvme_reset_ctrl(&dev->ctrl);
80f513b5 2805 nvme_get_ctrl(&dev->ctrl);
18119775 2806 async_schedule(nvme_async_probe, dev);
4caff8fc 2807
b60503ba
MW
2808 return 0;
2809
b6e44b4c
KB
2810 release_mempool:
2811 mempool_destroy(dev->iod_mempool);
0877cb0d 2812 release_pools:
091b6092 2813 nvme_release_prp_pools(dev);
b00c9b7a
CJ
2814 unmap:
2815 nvme_dev_unmap(dev);
a96d4f5c 2816 put_pci:
e75ec752 2817 put_device(dev->dev);
b60503ba
MW
2818 free:
2819 kfree(dev->queues);
b60503ba
MW
2820 kfree(dev);
2821 return result;
2822}
2823
775755ed 2824static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 2825{
a6739479 2826 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
2827
2828 /*
2829 * We don't need to check the return value from waiting for the reset
2830 * state as pci_dev device lock is held, making it impossible to race
2831 * with ->remove().
2832 */
2833 nvme_disable_prepare_reset(dev, false);
2834 nvme_sync_queues(&dev->ctrl);
775755ed 2835}
f0d54a54 2836
775755ed
CH
2837static void nvme_reset_done(struct pci_dev *pdev)
2838{
f263fbb8 2839 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
2840
2841 if (!nvme_try_sched_reset(&dev->ctrl))
2842 flush_work(&dev->ctrl.reset_work);
f0d54a54
KB
2843}
2844
09ece142
KB
2845static void nvme_shutdown(struct pci_dev *pdev)
2846{
2847 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b 2848 nvme_disable_prepare_reset(dev, true);
09ece142
KB
2849}
2850
f58944e2
KB
2851/*
2852 * The driver's remove may be called on a device in a partially initialized
2853 * state. This function must not have any dependencies on the device state in
2854 * order to proceed.
2855 */
8d85fce7 2856static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2857{
2858 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2859
bb8d261e 2860 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
9a6b9458 2861 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2862
6db28eda 2863 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2864 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1d39e692 2865 nvme_dev_disable(dev, true);
cb4bfda6 2866 nvme_dev_remove_admin(dev);
6db28eda 2867 }
0ff9d4e1 2868
d86c4d8e 2869 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
2870 nvme_stop_ctrl(&dev->ctrl);
2871 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 2872 nvme_dev_disable(dev, true);
9fe5c59f 2873 nvme_release_cmb(dev);
87ad72a5 2874 nvme_free_host_mem(dev);
a4aea562 2875 nvme_dev_remove_admin(dev);
a1a5ef99 2876 nvme_free_queues(dev, 0);
d09f2b45 2877 nvme_uninit_ctrl(&dev->ctrl);
9a6b9458 2878 nvme_release_prp_pools(dev);
b00a726a 2879 nvme_dev_unmap(dev);
1673f1f0 2880 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2881}
2882
671a6018 2883#ifdef CONFIG_PM_SLEEP
d916b1be
KB
2884static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2885{
2886 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2887}
2888
2889static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2890{
2891 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2892}
2893
2894static int nvme_resume(struct device *dev)
2895{
2896 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2897 struct nvme_ctrl *ctrl = &ndev->ctrl;
2898
4eaefe8c 2899 if (ndev->last_ps == U32_MAX ||
d916b1be 2900 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
c1ac9a4b 2901 return nvme_try_sched_reset(&ndev->ctrl);
d916b1be
KB
2902 return 0;
2903}
2904
cd638946
KB
2905static int nvme_suspend(struct device *dev)
2906{
2907 struct pci_dev *pdev = to_pci_dev(dev);
2908 struct nvme_dev *ndev = pci_get_drvdata(pdev);
d916b1be
KB
2909 struct nvme_ctrl *ctrl = &ndev->ctrl;
2910 int ret = -EBUSY;
2911
4eaefe8c
RW
2912 ndev->last_ps = U32_MAX;
2913
d916b1be
KB
2914 /*
2915 * The platform does not remove power for a kernel managed suspend so
2916 * use host managed nvme power settings for lowest idle power if
2917 * possible. This should have quicker resume latency than a full device
2918 * shutdown. But if the firmware is involved after the suspend or the
2919 * device does not support any non-default power states, shut down the
2920 * device fully.
4eaefe8c
RW
2921 *
2922 * If ASPM is not enabled for the device, shut down the device and allow
2923 * the PCI bus layer to put it into D3 in order to take the PCIe link
2924 * down, so as to allow the platform to achieve its minimum low-power
2925 * state (which may not be possible if the link is up).
d916b1be 2926 */
4eaefe8c 2927 if (pm_suspend_via_firmware() || !ctrl->npss ||
cb32de1b 2928 !pcie_aspm_enabled(pdev) ||
c1ac9a4b
KB
2929 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2930 return nvme_disable_prepare_reset(ndev, true);
d916b1be
KB
2931
2932 nvme_start_freeze(ctrl);
2933 nvme_wait_freeze(ctrl);
2934 nvme_sync_queues(ctrl);
2935
5d02a5c1 2936 if (ctrl->state != NVME_CTRL_LIVE)
d916b1be
KB
2937 goto unfreeze;
2938
d916b1be
KB
2939 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2940 if (ret < 0)
2941 goto unfreeze;
2942
7cbb5c6f
ML
2943 /*
2944 * A saved state prevents pci pm from generically controlling the
2945 * device's power. If we're using protocol specific settings, we don't
2946 * want pci interfering.
2947 */
2948 pci_save_state(pdev);
2949
d916b1be
KB
2950 ret = nvme_set_power_state(ctrl, ctrl->npss);
2951 if (ret < 0)
2952 goto unfreeze;
2953
2954 if (ret) {
7cbb5c6f
ML
2955 /* discard the saved state */
2956 pci_load_saved_state(pdev, NULL);
2957
d916b1be
KB
2958 /*
2959 * Clearing npss forces a controller reset on resume. The
05d3046f 2960 * correct value will be rediscovered then.
d916b1be 2961 */
c1ac9a4b 2962 ret = nvme_disable_prepare_reset(ndev, true);
d916b1be 2963 ctrl->npss = 0;
d916b1be 2964 }
d916b1be
KB
2965unfreeze:
2966 nvme_unfreeze(ctrl);
2967 return ret;
2968}
2969
2970static int nvme_simple_suspend(struct device *dev)
2971{
2972 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
c1ac9a4b 2973 return nvme_disable_prepare_reset(ndev, true);
cd638946
KB
2974}
2975
d916b1be 2976static int nvme_simple_resume(struct device *dev)
cd638946
KB
2977{
2978 struct pci_dev *pdev = to_pci_dev(dev);
2979 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2980
c1ac9a4b 2981 return nvme_try_sched_reset(&ndev->ctrl);
cd638946
KB
2982}
2983
21774222 2984static const struct dev_pm_ops nvme_dev_pm_ops = {
d916b1be
KB
2985 .suspend = nvme_suspend,
2986 .resume = nvme_resume,
2987 .freeze = nvme_simple_suspend,
2988 .thaw = nvme_simple_resume,
2989 .poweroff = nvme_simple_suspend,
2990 .restore = nvme_simple_resume,
2991};
2992#endif /* CONFIG_PM_SLEEP */
b60503ba 2993
a0a3408e
KB
2994static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2995 pci_channel_state_t state)
2996{
2997 struct nvme_dev *dev = pci_get_drvdata(pdev);
2998
2999 /*
3000 * A frozen channel requires a reset. When detected, this method will
3001 * shutdown the controller to quiesce. The controller will be restarted
3002 * after the slot reset through driver's slot_reset callback.
3003 */
a0a3408e
KB
3004 switch (state) {
3005 case pci_channel_io_normal:
3006 return PCI_ERS_RESULT_CAN_RECOVER;
3007 case pci_channel_io_frozen:
d011fb31
KB
3008 dev_warn(dev->ctrl.device,
3009 "frozen state error detected, reset controller\n");
a5cdb68c 3010 nvme_dev_disable(dev, false);
a0a3408e
KB
3011 return PCI_ERS_RESULT_NEED_RESET;
3012 case pci_channel_io_perm_failure:
d011fb31
KB
3013 dev_warn(dev->ctrl.device,
3014 "failure state error detected, request disconnect\n");
a0a3408e
KB
3015 return PCI_ERS_RESULT_DISCONNECT;
3016 }
3017 return PCI_ERS_RESULT_NEED_RESET;
3018}
3019
3020static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3021{
3022 struct nvme_dev *dev = pci_get_drvdata(pdev);
3023
1b3c47c1 3024 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 3025 pci_restore_state(pdev);
d86c4d8e 3026 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
3027 return PCI_ERS_RESULT_RECOVERED;
3028}
3029
3030static void nvme_error_resume(struct pci_dev *pdev)
3031{
72cd4cc2
KB
3032 struct nvme_dev *dev = pci_get_drvdata(pdev);
3033
3034 flush_work(&dev->ctrl.reset_work);
a0a3408e
KB
3035}
3036
1d352035 3037static const struct pci_error_handlers nvme_err_handler = {
b60503ba 3038 .error_detected = nvme_error_detected,
b60503ba
MW
3039 .slot_reset = nvme_slot_reset,
3040 .resume = nvme_error_resume,
775755ed
CH
3041 .reset_prepare = nvme_reset_prepare,
3042 .reset_done = nvme_reset_done,
b60503ba
MW
3043};
3044
6eb0d698 3045static const struct pci_device_id nvme_id_table[] = {
106198ed 3046 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 3047 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3048 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
3049 { PCI_VDEVICE(INTEL, 0x0a53),
3050 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3051 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
3052 { PCI_VDEVICE(INTEL, 0x0a54),
3053 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3054 NVME_QUIRK_DEALLOCATE_ZEROES, },
f99cb7af
DWF
3055 { PCI_VDEVICE(INTEL, 0x0a55),
3056 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3057 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0 3058 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
9abd68ef 3059 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
6c6aa2f2
AM
3060 NVME_QUIRK_MEDIUM_PRIO_SQ |
3061 NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
6299358d
JD
3062 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3063 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
540c801c 3064 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
7b210e4e
CH
3065 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3066 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
0302ae60
MP
3067 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3068 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
54adc010
GP
3069 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3070 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
3071 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3072 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
3073 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3074 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
3075 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3076 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3077 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3078 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
608cc4b1
CH
3079 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3080 .driver_data = NVME_QUIRK_LIGHTNVM, },
3081 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3082 .driver_data = NVME_QUIRK_LIGHTNVM, },
ea48e877
WX
3083 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3084 .driver_data = NVME_QUIRK_LIGHTNVM, },
08b903b5
MN
3085 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3086 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
f03e42c6
GC
3087 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3088 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3089 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
b60503ba 3090 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
98f7b86a
AS
3091 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3092 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
124298bd 3093 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
66341331
BH
3094 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3095 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
d38e9f04
BH
3096 NVME_QUIRK_128_BYTES_SQES |
3097 NVME_QUIRK_SHARED_TAGS },
b60503ba
MW
3098 { 0, }
3099};
3100MODULE_DEVICE_TABLE(pci, nvme_id_table);
3101
3102static struct pci_driver nvme_driver = {
3103 .name = "nvme",
3104 .id_table = nvme_id_table,
3105 .probe = nvme_probe,
8d85fce7 3106 .remove = nvme_remove,
09ece142 3107 .shutdown = nvme_shutdown,
d916b1be 3108#ifdef CONFIG_PM_SLEEP
cd638946
KB
3109 .driver = {
3110 .pm = &nvme_dev_pm_ops,
3111 },
d916b1be 3112#endif
74d986ab 3113 .sriov_configure = pci_sriov_configure_simple,
b60503ba
MW
3114 .err_handler = &nvme_err_handler,
3115};
3116
3117static int __init nvme_init(void)
3118{
81101540
CH
3119 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3120 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3121 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
612b7286 3122 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
17c33167
KB
3123
3124 write_queues = min(write_queues, num_possible_cpus());
3125 poll_queues = min(poll_queues, num_possible_cpus());
9a6327d2 3126 return pci_register_driver(&nvme_driver);
b60503ba
MW
3127}
3128
3129static void __exit nvme_exit(void)
3130{
3131 pci_unregister_driver(&nvme_driver);
03e0f3a6 3132 flush_workqueue(nvme_wq);
b60503ba
MW
3133}
3134
3135MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3136MODULE_LICENSE("GPL");
c78b4713 3137MODULE_VERSION("1.0");
b60503ba
MW
3138module_init(nvme_init);
3139module_exit(nvme_exit);