IB/core: Ensure we map P2P memory correctly in rdma_rw_ctx_[init|destroy]()
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
18119775 16#include <linux/async.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
ff5350a8 20#include <linux/dmi.h>
b60503ba
MW
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
b60503ba
MW
24#include <linux/mm.h>
25#include <linux/module.h>
77bf25ea 26#include <linux/mutex.h>
d0877473 27#include <linux/once.h>
b60503ba 28#include <linux/pci.h>
e1e5e564 29#include <linux/t10-pi.h>
b60503ba 30#include <linux/types.h>
2f8e2c87 31#include <linux/io-64-nonatomic-lo-hi.h>
a98e58e5 32#include <linux/sed-opal.h>
797a796a 33
f11bb3e2
CH
34#include "nvme.h"
35
b60503ba
MW
36#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
37#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 38
a7a7cbe3 39#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 40
943e942e
JA
41/*
42 * These can be higher, but we need to ensure that any command doesn't
43 * require an sg allocation that needs more than a page of data.
44 */
45#define NVME_MAX_KB_SZ 4096
46#define NVME_MAX_SEGS 127
47
58ffacb5
MW
48static int use_threaded_interrupts;
49module_param(use_threaded_interrupts, int, 0);
50
8ffaadf7 51static bool use_cmb_sqes = true;
69f4eb9f 52module_param(use_cmb_sqes, bool, 0444);
8ffaadf7
JD
53MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
87ad72a5
CH
55static unsigned int max_host_mem_size_mb = 128;
56module_param(max_host_mem_size_mb, uint, 0444);
57MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 59
a7a7cbe3
CK
60static unsigned int sgl_threshold = SZ_32K;
61module_param(sgl_threshold, uint, 0644);
62MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
b27c1e68 66static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
67static const struct kernel_param_ops io_queue_depth_ops = {
68 .set = io_queue_depth_set,
69 .get = param_get_int,
70};
71
72static int io_queue_depth = 1024;
73module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
74MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
75
1c63dc66
CH
76struct nvme_dev;
77struct nvme_queue;
b3fffdef 78
a5cdb68c 79static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 80
1c63dc66
CH
81/*
82 * Represents an NVM Express device. Each nvme_dev is a PCI function.
83 */
84struct nvme_dev {
147b27e4 85 struct nvme_queue *queues;
1c63dc66
CH
86 struct blk_mq_tag_set tagset;
87 struct blk_mq_tag_set admin_tagset;
88 u32 __iomem *dbs;
89 struct device *dev;
90 struct dma_pool *prp_page_pool;
91 struct dma_pool *prp_small_pool;
1c63dc66
CH
92 unsigned online_queues;
93 unsigned max_qid;
22b55601 94 unsigned int num_vecs;
1c63dc66
CH
95 int q_depth;
96 u32 db_stride;
1c63dc66 97 void __iomem *bar;
97f6ef64 98 unsigned long bar_mapped_size;
5c8809e6 99 struct work_struct remove_work;
77bf25ea 100 struct mutex shutdown_lock;
1c63dc66 101 bool subsystem;
1c63dc66 102 void __iomem *cmb;
8969f1f8 103 pci_bus_addr_t cmb_bus_addr;
1c63dc66
CH
104 u64 cmb_size;
105 u32 cmbsz;
202021c1 106 u32 cmbloc;
1c63dc66 107 struct nvme_ctrl ctrl;
db3cbfff 108 struct completion ioq_wait;
87ad72a5 109
943e942e
JA
110 mempool_t *iod_mempool;
111
87ad72a5 112 /* shadow doorbell buffer support: */
f9f38e33
HK
113 u32 *dbbuf_dbs;
114 dma_addr_t dbbuf_dbs_dma_addr;
115 u32 *dbbuf_eis;
116 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
117
118 /* host memory buffer support: */
119 u64 host_mem_size;
120 u32 nr_host_mem_descs;
4033f35d 121 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
122 struct nvme_host_mem_buf_desc *host_mem_descs;
123 void **host_mem_desc_bufs;
4d115420 124};
1fa6aead 125
b27c1e68 126static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
127{
128 int n = 0, ret;
129
130 ret = kstrtoint(val, 10, &n);
131 if (ret != 0 || n < 2)
132 return -EINVAL;
133
134 return param_set_int(val, kp);
135}
136
f9f38e33
HK
137static inline unsigned int sq_idx(unsigned int qid, u32 stride)
138{
139 return qid * 2 * stride;
140}
141
142static inline unsigned int cq_idx(unsigned int qid, u32 stride)
143{
144 return (qid * 2 + 1) * stride;
145}
146
1c63dc66
CH
147static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
148{
149 return container_of(ctrl, struct nvme_dev, ctrl);
150}
151
b60503ba
MW
152/*
153 * An NVM Express queue. Each device has at least two (one for admin
154 * commands and one for I/O commands).
155 */
156struct nvme_queue {
157 struct device *q_dmadev;
091b6092 158 struct nvme_dev *dev;
1ab0cd69 159 spinlock_t sq_lock;
b60503ba 160 struct nvme_command *sq_cmds;
8ffaadf7 161 struct nvme_command __iomem *sq_cmds_io;
1ab0cd69 162 spinlock_t cq_lock ____cacheline_aligned_in_smp;
b60503ba 163 volatile struct nvme_completion *cqes;
42483228 164 struct blk_mq_tags **tags;
b60503ba
MW
165 dma_addr_t sq_dma_addr;
166 dma_addr_t cq_dma_addr;
b60503ba
MW
167 u32 __iomem *q_db;
168 u16 q_depth;
6222d172 169 s16 cq_vector;
b60503ba
MW
170 u16 sq_tail;
171 u16 cq_head;
68fa9dbe 172 u16 last_cq_head;
c30341dc 173 u16 qid;
e9539f47 174 u8 cq_phase;
f9f38e33
HK
175 u32 *dbbuf_sq_db;
176 u32 *dbbuf_cq_db;
177 u32 *dbbuf_sq_ei;
178 u32 *dbbuf_cq_ei;
b60503ba
MW
179};
180
71bd150c
CH
181/*
182 * The nvme_iod describes the data in an I/O, including the list of PRP
183 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 184 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
185 * allocated to store the PRP list.
186 */
187struct nvme_iod {
d49187e9 188 struct nvme_request req;
f4800d6d 189 struct nvme_queue *nvmeq;
a7a7cbe3 190 bool use_sgl;
f4800d6d 191 int aborted;
71bd150c 192 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
193 int nents; /* Used in scatterlist */
194 int length; /* Of data, in bytes */
195 dma_addr_t first_dma;
bf684057 196 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
197 struct scatterlist *sg;
198 struct scatterlist inline_sg[0];
b60503ba
MW
199};
200
201/*
202 * Check we didin't inadvertently grow the command struct
203 */
204static inline void _nvme_check_size(void)
205{
206 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
208 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
209 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
210 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 211 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 212 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba 213 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
0add5e8e
JT
214 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
215 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
b60503ba 216 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 217 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
218 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
219}
220
221static inline unsigned int nvme_dbbuf_size(u32 stride)
222{
223 return ((num_possible_cpus() + 1) * 8 * stride);
224}
225
226static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
227{
228 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229
230 if (dev->dbbuf_dbs)
231 return 0;
232
233 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
234 &dev->dbbuf_dbs_dma_addr,
235 GFP_KERNEL);
236 if (!dev->dbbuf_dbs)
237 return -ENOMEM;
238 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
239 &dev->dbbuf_eis_dma_addr,
240 GFP_KERNEL);
241 if (!dev->dbbuf_eis) {
242 dma_free_coherent(dev->dev, mem_size,
243 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244 dev->dbbuf_dbs = NULL;
245 return -ENOMEM;
246 }
247
248 return 0;
249}
250
251static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
252{
253 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
254
255 if (dev->dbbuf_dbs) {
256 dma_free_coherent(dev->dev, mem_size,
257 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
258 dev->dbbuf_dbs = NULL;
259 }
260 if (dev->dbbuf_eis) {
261 dma_free_coherent(dev->dev, mem_size,
262 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
263 dev->dbbuf_eis = NULL;
264 }
265}
266
267static void nvme_dbbuf_init(struct nvme_dev *dev,
268 struct nvme_queue *nvmeq, int qid)
269{
270 if (!dev->dbbuf_dbs || !qid)
271 return;
272
273 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
274 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
275 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
277}
278
279static void nvme_dbbuf_set(struct nvme_dev *dev)
280{
281 struct nvme_command c;
282
283 if (!dev->dbbuf_dbs)
284 return;
285
286 memset(&c, 0, sizeof(c));
287 c.dbbuf.opcode = nvme_admin_dbbuf;
288 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
289 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
290
291 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 292 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
293 /* Free memory and continue on */
294 nvme_dbbuf_dma_free(dev);
295 }
296}
297
298static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
299{
300 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
301}
302
303/* Update dbbuf and return true if an MMIO is required */
304static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
305 volatile u32 *dbbuf_ei)
306{
307 if (dbbuf_db) {
308 u16 old_value;
309
310 /*
311 * Ensure that the queue is written before updating
312 * the doorbell in memory
313 */
314 wmb();
315
316 old_value = *dbbuf_db;
317 *dbbuf_db = value;
318
f1ed3df2
MW
319 /*
320 * Ensure that the doorbell is updated before reading the event
321 * index from memory. The controller needs to provide similar
322 * ordering to ensure the envent index is updated before reading
323 * the doorbell.
324 */
325 mb();
326
f9f38e33
HK
327 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
328 return false;
329 }
330
331 return true;
b60503ba
MW
332}
333
ac3dd5bd
JA
334/*
335 * Max size of iod being embedded in the request payload
336 */
337#define NVME_INT_PAGES 2
5fd4ce1b 338#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
339
340/*
341 * Will slightly overestimate the number of pages needed. This is OK
342 * as it only leads to a small amount of wasted memory for the lifetime of
343 * the I/O.
344 */
345static int nvme_npages(unsigned size, struct nvme_dev *dev)
346{
5fd4ce1b
CH
347 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
348 dev->ctrl.page_size);
ac3dd5bd
JA
349 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
350}
351
a7a7cbe3
CK
352/*
353 * Calculates the number of pages needed for the SGL segments. For example a 4k
354 * page can accommodate 256 SGL descriptors.
355 */
356static int nvme_pci_npages_sgl(unsigned int num_seg)
ac3dd5bd 357{
a7a7cbe3 358 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
f4800d6d 359}
ac3dd5bd 360
a7a7cbe3
CK
361static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
362 unsigned int size, unsigned int nseg, bool use_sgl)
f4800d6d 363{
a7a7cbe3
CK
364 size_t alloc_size;
365
366 if (use_sgl)
367 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
368 else
369 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
370
371 return alloc_size + sizeof(struct scatterlist) * nseg;
f4800d6d 372}
ac3dd5bd 373
a7a7cbe3 374static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
f4800d6d 375{
a7a7cbe3
CK
376 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
377 NVME_INT_BYTES(dev), NVME_INT_PAGES,
378 use_sgl);
379
380 return sizeof(struct nvme_iod) + alloc_size;
ac3dd5bd
JA
381}
382
a4aea562
MB
383static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384 unsigned int hctx_idx)
e85248e5 385{
a4aea562 386 struct nvme_dev *dev = data;
147b27e4 387 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 388
42483228
KB
389 WARN_ON(hctx_idx != 0);
390 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
391 WARN_ON(nvmeq->tags);
392
a4aea562 393 hctx->driver_data = nvmeq;
42483228 394 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 395 return 0;
e85248e5
MW
396}
397
4af0e21c
KB
398static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
399{
400 struct nvme_queue *nvmeq = hctx->driver_data;
401
402 nvmeq->tags = NULL;
403}
404
a4aea562
MB
405static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
406 unsigned int hctx_idx)
b60503ba 407{
a4aea562 408 struct nvme_dev *dev = data;
147b27e4 409 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 410
42483228
KB
411 if (!nvmeq->tags)
412 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 413
42483228 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
415 hctx->driver_data = nvmeq;
416 return 0;
b60503ba
MW
417}
418
d6296d39
CH
419static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
420 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 421{
d6296d39 422 struct nvme_dev *dev = set->driver_data;
f4800d6d 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a 424 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
147b27e4 425 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
a4aea562
MB
426
427 BUG_ON(!nvmeq);
f4800d6d 428 iod->nvmeq = nvmeq;
59e29ce6
SG
429
430 nvme_req(req)->ctrl = &dev->ctrl;
a4aea562
MB
431 return 0;
432}
433
dca51e78
CH
434static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
435{
436 struct nvme_dev *dev = set->driver_data;
437
22b55601
KB
438 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
439 dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
dca51e78
CH
440}
441
b60503ba 442/**
90ea5ca4 443 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
444 * @nvmeq: The queue to use
445 * @cmd: The command to send
b60503ba 446 */
90ea5ca4 447static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
b60503ba 448{
90ea5ca4 449 spin_lock(&nvmeq->sq_lock);
8ffaadf7 450 if (nvmeq->sq_cmds_io)
90ea5ca4
CH
451 memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd,
452 sizeof(*cmd));
8ffaadf7 453 else
90ea5ca4 454 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
8ffaadf7 455
90ea5ca4
CH
456 if (++nvmeq->sq_tail == nvmeq->q_depth)
457 nvmeq->sq_tail = 0;
458 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
459 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
460 writel(nvmeq->sq_tail, nvmeq->q_db);
461 spin_unlock(&nvmeq->sq_lock);
b60503ba
MW
462}
463
a7a7cbe3 464static void **nvme_pci_iod_list(struct request *req)
b60503ba 465{
f4800d6d 466 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 467 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
468}
469
955b1b5a
MI
470static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
471{
472 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
20469a37 473 int nseg = blk_rq_nr_phys_segments(req);
955b1b5a
MI
474 unsigned int avg_seg_size;
475
20469a37
KB
476 if (nseg == 0)
477 return false;
478
479 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a
MI
480
481 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
482 return false;
483 if (!iod->nvmeq->qid)
484 return false;
485 if (!sgl_threshold || avg_seg_size < sgl_threshold)
486 return false;
487 return true;
488}
489
fc17b653 490static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 491{
f4800d6d 492 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 493 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 494 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 495
955b1b5a
MI
496 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
497
f4800d6d 498 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
943e942e 499 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
f4800d6d 500 if (!iod->sg)
fc17b653 501 return BLK_STS_RESOURCE;
f4800d6d
CH
502 } else {
503 iod->sg = iod->inline_sg;
ac3dd5bd
JA
504 }
505
f4800d6d
CH
506 iod->aborted = 0;
507 iod->npages = -1;
508 iod->nents = 0;
509 iod->length = size;
f80ec966 510
fc17b653 511 return BLK_STS_OK;
ac3dd5bd
JA
512}
513
f4800d6d 514static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 515{
f4800d6d 516 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
517 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
518 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
519
eca18b23 520 int i;
eca18b23
MW
521
522 if (iod->npages == 0)
a7a7cbe3
CK
523 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
524 dma_addr);
525
eca18b23 526 for (i = 0; i < iod->npages; i++) {
a7a7cbe3
CK
527 void *addr = nvme_pci_iod_list(req)[i];
528
529 if (iod->use_sgl) {
530 struct nvme_sgl_desc *sg_list = addr;
531
532 next_dma_addr =
533 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
534 } else {
535 __le64 *prp_list = addr;
536
537 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
538 }
539
540 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
541 dma_addr = next_dma_addr;
eca18b23 542 }
ac3dd5bd 543
f4800d6d 544 if (iod->sg != iod->inline_sg)
943e942e 545 mempool_free(iod->sg, dev->iod_mempool);
b4ff9c8d
KB
546}
547
d0877473
KB
548static void nvme_print_sgl(struct scatterlist *sgl, int nents)
549{
550 int i;
551 struct scatterlist *sg;
552
553 for_each_sg(sgl, sg, nents, i) {
554 dma_addr_t phys = sg_phys(sg);
555 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
556 "dma_address:%pad dma_length:%d\n",
557 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
558 sg_dma_len(sg));
559 }
560}
561
a7a7cbe3
CK
562static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
563 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 564{
f4800d6d 565 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 566 struct dma_pool *pool;
b131c61d 567 int length = blk_rq_payload_bytes(req);
eca18b23 568 struct scatterlist *sg = iod->sg;
ff22b54f
MW
569 int dma_len = sg_dma_len(sg);
570 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 571 u32 page_size = dev->ctrl.page_size;
f137e0f1 572 int offset = dma_addr & (page_size - 1);
e025344c 573 __le64 *prp_list;
a7a7cbe3 574 void **list = nvme_pci_iod_list(req);
e025344c 575 dma_addr_t prp_dma;
eca18b23 576 int nprps, i;
ff22b54f 577
1d090624 578 length -= (page_size - offset);
5228b328
JS
579 if (length <= 0) {
580 iod->first_dma = 0;
a7a7cbe3 581 goto done;
5228b328 582 }
ff22b54f 583
1d090624 584 dma_len -= (page_size - offset);
ff22b54f 585 if (dma_len) {
1d090624 586 dma_addr += (page_size - offset);
ff22b54f
MW
587 } else {
588 sg = sg_next(sg);
589 dma_addr = sg_dma_address(sg);
590 dma_len = sg_dma_len(sg);
591 }
592
1d090624 593 if (length <= page_size) {
edd10d33 594 iod->first_dma = dma_addr;
a7a7cbe3 595 goto done;
e025344c
SMM
596 }
597
1d090624 598 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
599 if (nprps <= (256 / 8)) {
600 pool = dev->prp_small_pool;
eca18b23 601 iod->npages = 0;
99802a7a
MW
602 } else {
603 pool = dev->prp_page_pool;
eca18b23 604 iod->npages = 1;
99802a7a
MW
605 }
606
69d2b571 607 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 608 if (!prp_list) {
edd10d33 609 iod->first_dma = dma_addr;
eca18b23 610 iod->npages = -1;
86eea289 611 return BLK_STS_RESOURCE;
b77954cb 612 }
eca18b23
MW
613 list[0] = prp_list;
614 iod->first_dma = prp_dma;
e025344c
SMM
615 i = 0;
616 for (;;) {
1d090624 617 if (i == page_size >> 3) {
e025344c 618 __le64 *old_prp_list = prp_list;
69d2b571 619 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 620 if (!prp_list)
86eea289 621 return BLK_STS_RESOURCE;
eca18b23 622 list[iod->npages++] = prp_list;
7523d834
MW
623 prp_list[0] = old_prp_list[i - 1];
624 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
625 i = 1;
e025344c
SMM
626 }
627 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
628 dma_len -= page_size;
629 dma_addr += page_size;
630 length -= page_size;
e025344c
SMM
631 if (length <= 0)
632 break;
633 if (dma_len > 0)
634 continue;
86eea289
KB
635 if (unlikely(dma_len < 0))
636 goto bad_sgl;
e025344c
SMM
637 sg = sg_next(sg);
638 dma_addr = sg_dma_address(sg);
639 dma_len = sg_dma_len(sg);
ff22b54f
MW
640 }
641
a7a7cbe3
CK
642done:
643 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
644 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
645
86eea289
KB
646 return BLK_STS_OK;
647
648 bad_sgl:
d0877473
KB
649 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
650 "Invalid SGL for payload:%d nents:%d\n",
651 blk_rq_payload_bytes(req), iod->nents);
86eea289 652 return BLK_STS_IOERR;
ff22b54f
MW
653}
654
a7a7cbe3
CK
655static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
656 struct scatterlist *sg)
657{
658 sge->addr = cpu_to_le64(sg_dma_address(sg));
659 sge->length = cpu_to_le32(sg_dma_len(sg));
660 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
661}
662
663static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
664 dma_addr_t dma_addr, int entries)
665{
666 sge->addr = cpu_to_le64(dma_addr);
667 if (entries < SGES_PER_PAGE) {
668 sge->length = cpu_to_le32(entries * sizeof(*sge));
669 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
670 } else {
671 sge->length = cpu_to_le32(PAGE_SIZE);
672 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
673 }
674}
675
676static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
b0f2853b 677 struct request *req, struct nvme_rw_command *cmd, int entries)
a7a7cbe3
CK
678{
679 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
680 struct dma_pool *pool;
681 struct nvme_sgl_desc *sg_list;
682 struct scatterlist *sg = iod->sg;
a7a7cbe3 683 dma_addr_t sgl_dma;
b0f2853b 684 int i = 0;
a7a7cbe3 685
a7a7cbe3
CK
686 /* setting the transfer type as SGL */
687 cmd->flags = NVME_CMD_SGL_METABUF;
688
b0f2853b 689 if (entries == 1) {
a7a7cbe3
CK
690 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
691 return BLK_STS_OK;
692 }
693
694 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
695 pool = dev->prp_small_pool;
696 iod->npages = 0;
697 } else {
698 pool = dev->prp_page_pool;
699 iod->npages = 1;
700 }
701
702 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
703 if (!sg_list) {
704 iod->npages = -1;
705 return BLK_STS_RESOURCE;
706 }
707
708 nvme_pci_iod_list(req)[0] = sg_list;
709 iod->first_dma = sgl_dma;
710
711 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
712
713 do {
714 if (i == SGES_PER_PAGE) {
715 struct nvme_sgl_desc *old_sg_desc = sg_list;
716 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
717
718 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
719 if (!sg_list)
720 return BLK_STS_RESOURCE;
721
722 i = 0;
723 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
724 sg_list[i++] = *link;
725 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
726 }
727
728 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 729 sg = sg_next(sg);
b0f2853b 730 } while (--entries > 0);
a7a7cbe3 731
a7a7cbe3
CK
732 return BLK_STS_OK;
733}
734
fc17b653 735static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 736 struct nvme_command *cmnd)
d29ec824 737{
f4800d6d 738 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
739 struct request_queue *q = req->q;
740 enum dma_data_direction dma_dir = rq_data_dir(req) ?
741 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 742 blk_status_t ret = BLK_STS_IOERR;
b0f2853b 743 int nr_mapped;
d29ec824 744
f9d03f96 745 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
746 iod->nents = blk_rq_map_sg(q, req, iod->sg);
747 if (!iod->nents)
748 goto out;
d29ec824 749
fc17b653 750 ret = BLK_STS_RESOURCE;
b0f2853b
CH
751 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
752 DMA_ATTR_NO_WARN);
753 if (!nr_mapped)
ba1ca37e 754 goto out;
d29ec824 755
955b1b5a 756 if (iod->use_sgl)
b0f2853b 757 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
a7a7cbe3
CK
758 else
759 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
760
86eea289 761 if (ret != BLK_STS_OK)
ba1ca37e 762 goto out_unmap;
0e5e4f0e 763
fc17b653 764 ret = BLK_STS_IOERR;
ba1ca37e
CH
765 if (blk_integrity_rq(req)) {
766 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
767 goto out_unmap;
0e5e4f0e 768
bf684057
CH
769 sg_init_table(&iod->meta_sg, 1);
770 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 771 goto out_unmap;
0e5e4f0e 772
bf684057 773 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 774 goto out_unmap;
d29ec824 775 }
00df5cb4 776
ba1ca37e 777 if (blk_integrity_rq(req))
bf684057 778 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
fc17b653 779 return BLK_STS_OK;
00df5cb4 780
ba1ca37e
CH
781out_unmap:
782 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
783out:
784 return ret;
00df5cb4
MW
785}
786
f4800d6d 787static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 788{
f4800d6d 789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
790 enum dma_data_direction dma_dir = rq_data_dir(req) ?
791 DMA_TO_DEVICE : DMA_FROM_DEVICE;
792
793 if (iod->nents) {
794 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
f7f1fc36 795 if (blk_integrity_rq(req))
bf684057 796 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e19b127f 797 }
e1e5e564 798
f9d03f96 799 nvme_cleanup_cmd(req);
f4800d6d 800 nvme_free_iod(dev, req);
d4f6c3ab 801}
b60503ba 802
d29ec824
CH
803/*
804 * NOTE: ns is NULL when called on the admin queue.
805 */
fc17b653 806static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 807 const struct blk_mq_queue_data *bd)
edd10d33 808{
a4aea562
MB
809 struct nvme_ns *ns = hctx->queue->queuedata;
810 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 811 struct nvme_dev *dev = nvmeq->dev;
a4aea562 812 struct request *req = bd->rq;
ba1ca37e 813 struct nvme_command cmnd;
ebe6d874 814 blk_status_t ret;
e1e5e564 815
d1f06f4a
JA
816 /*
817 * We should not need to do this, but we're still using this to
818 * ensure we can drain requests on a dying queue.
819 */
820 if (unlikely(nvmeq->cq_vector < 0))
821 return BLK_STS_IOERR;
822
f9d03f96 823 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 824 if (ret)
f4800d6d 825 return ret;
a4aea562 826
b131c61d 827 ret = nvme_init_iod(req, dev);
fc17b653 828 if (ret)
f9d03f96 829 goto out_free_cmd;
a4aea562 830
fc17b653 831 if (blk_rq_nr_phys_segments(req)) {
b131c61d 832 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
833 if (ret)
834 goto out_cleanup_iod;
835 }
a4aea562 836
aae239e1 837 blk_mq_start_request(req);
90ea5ca4 838 nvme_submit_cmd(nvmeq, &cmnd);
fc17b653 839 return BLK_STS_OK;
f9d03f96 840out_cleanup_iod:
f4800d6d 841 nvme_free_iod(dev, req);
f9d03f96
CH
842out_free_cmd:
843 nvme_cleanup_cmd(req);
ba1ca37e 844 return ret;
b60503ba 845}
e1e5e564 846
77f02a7a 847static void nvme_pci_complete_rq(struct request *req)
eee417b0 848{
f4800d6d 849 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 850
77f02a7a
CH
851 nvme_unmap_data(iod->nvmeq->dev, req);
852 nvme_complete_rq(req);
b60503ba
MW
853}
854
d783e0bd 855/* We read the CQE phase first to check if the rest of the entry is valid */
750dde44 856static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
d783e0bd 857{
750dde44
CH
858 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
859 nvmeq->cq_phase;
d783e0bd
MR
860}
861
eb281c82 862static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 863{
eb281c82 864 u16 head = nvmeq->cq_head;
adf68f21 865
397c699f
KB
866 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
867 nvmeq->dbbuf_cq_ei))
868 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
eb281c82 869}
aae239e1 870
5cb525c8 871static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
83a12fb7 872{
5cb525c8 873 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
83a12fb7 874 struct request *req;
adf68f21 875
83a12fb7
SG
876 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
877 dev_warn(nvmeq->dev->ctrl.device,
878 "invalid id %d completed on queue %d\n",
879 cqe->command_id, le16_to_cpu(cqe->sq_id));
880 return;
b60503ba
MW
881 }
882
83a12fb7
SG
883 /*
884 * AEN requests are special as they don't time out and can
885 * survive any kind of queue freeze and often don't respond to
886 * aborts. We don't even bother to allocate a struct request
887 * for them but rather special case them here.
888 */
889 if (unlikely(nvmeq->qid == 0 &&
38dabe21 890 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
83a12fb7
SG
891 nvme_complete_async_event(&nvmeq->dev->ctrl,
892 cqe->status, &cqe->result);
a0fa9647 893 return;
83a12fb7 894 }
b60503ba 895
83a12fb7
SG
896 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
897 nvme_end_request(req, cqe->status, cqe->result);
898}
b60503ba 899
5cb525c8 900static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
b60503ba 901{
5cb525c8
JA
902 while (start != end) {
903 nvme_handle_cqe(nvmeq, start);
904 if (++start == nvmeq->q_depth)
905 start = 0;
906 }
907}
adf68f21 908
5cb525c8
JA
909static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
910{
911 if (++nvmeq->cq_head == nvmeq->q_depth) {
912 nvmeq->cq_head = 0;
913 nvmeq->cq_phase = !nvmeq->cq_phase;
b60503ba 914 }
a0fa9647
JA
915}
916
5cb525c8
JA
917static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
918 u16 *end, int tag)
a0fa9647 919{
5cb525c8 920 bool found = false;
b60503ba 921
5cb525c8
JA
922 *start = nvmeq->cq_head;
923 while (!found && nvme_cqe_pending(nvmeq)) {
924 if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
925 found = true;
926 nvme_update_cq_head(nvmeq);
920d13a8 927 }
5cb525c8 928 *end = nvmeq->cq_head;
eb281c82 929
5cb525c8 930 if (*start != *end)
920d13a8 931 nvme_ring_cq_doorbell(nvmeq);
5cb525c8 932 return found;
b60503ba
MW
933}
934
935static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5 936{
58ffacb5 937 struct nvme_queue *nvmeq = data;
68fa9dbe 938 irqreturn_t ret = IRQ_NONE;
5cb525c8
JA
939 u16 start, end;
940
1ab0cd69 941 spin_lock(&nvmeq->cq_lock);
68fa9dbe
JA
942 if (nvmeq->cq_head != nvmeq->last_cq_head)
943 ret = IRQ_HANDLED;
5cb525c8 944 nvme_process_cq(nvmeq, &start, &end, -1);
68fa9dbe 945 nvmeq->last_cq_head = nvmeq->cq_head;
1ab0cd69 946 spin_unlock(&nvmeq->cq_lock);
5cb525c8 947
68fa9dbe
JA
948 if (start != end) {
949 nvme_complete_cqes(nvmeq, start, end);
950 return IRQ_HANDLED;
951 }
952
953 return ret;
58ffacb5
MW
954}
955
956static irqreturn_t nvme_irq_check(int irq, void *data)
957{
958 struct nvme_queue *nvmeq = data;
750dde44 959 if (nvme_cqe_pending(nvmeq))
d783e0bd
MR
960 return IRQ_WAKE_THREAD;
961 return IRQ_NONE;
58ffacb5
MW
962}
963
7776db1c 964static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 965{
5cb525c8
JA
966 u16 start, end;
967 bool found;
a0fa9647 968
750dde44 969 if (!nvme_cqe_pending(nvmeq))
442e19b7 970 return 0;
a0fa9647 971
1ab0cd69 972 spin_lock_irq(&nvmeq->cq_lock);
5cb525c8 973 found = nvme_process_cq(nvmeq, &start, &end, tag);
1ab0cd69 974 spin_unlock_irq(&nvmeq->cq_lock);
442e19b7 975
5cb525c8 976 nvme_complete_cqes(nvmeq, start, end);
442e19b7 977 return found;
a0fa9647
JA
978}
979
7776db1c
KB
980static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
981{
982 struct nvme_queue *nvmeq = hctx->driver_data;
983
984 return __nvme_poll(nvmeq, tag);
985}
986
ad22c355 987static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 988{
f866fc42 989 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 990 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 991 struct nvme_command c;
b60503ba 992
a4aea562
MB
993 memset(&c, 0, sizeof(c));
994 c.common.opcode = nvme_admin_async_event;
ad22c355 995 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
90ea5ca4 996 nvme_submit_cmd(nvmeq, &c);
f705f837
CH
997}
998
b60503ba 999static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1000{
b60503ba
MW
1001 struct nvme_command c;
1002
1003 memset(&c, 0, sizeof(c));
1004 c.delete_queue.opcode = opcode;
1005 c.delete_queue.qid = cpu_to_le16(id);
1006
1c63dc66 1007 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1008}
1009
b60503ba 1010static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
a8e3e0bb 1011 struct nvme_queue *nvmeq, s16 vector)
b60503ba 1012{
b60503ba
MW
1013 struct nvme_command c;
1014 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1015
d29ec824 1016 /*
16772ae6 1017 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1018 * is attached to the request.
1019 */
b60503ba
MW
1020 memset(&c, 0, sizeof(c));
1021 c.create_cq.opcode = nvme_admin_create_cq;
1022 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1023 c.create_cq.cqid = cpu_to_le16(qid);
1024 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1025 c.create_cq.cq_flags = cpu_to_le16(flags);
a8e3e0bb 1026 c.create_cq.irq_vector = cpu_to_le16(vector);
b60503ba 1027
1c63dc66 1028 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1029}
1030
1031static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1032 struct nvme_queue *nvmeq)
1033{
9abd68ef 1034 struct nvme_ctrl *ctrl = &dev->ctrl;
b60503ba 1035 struct nvme_command c;
81c1cd98 1036 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1037
9abd68ef
JA
1038 /*
1039 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1040 * set. Since URGENT priority is zeroes, it makes all queues
1041 * URGENT.
1042 */
1043 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1044 flags |= NVME_SQ_PRIO_MEDIUM;
1045
d29ec824 1046 /*
16772ae6 1047 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1048 * is attached to the request.
1049 */
b60503ba
MW
1050 memset(&c, 0, sizeof(c));
1051 c.create_sq.opcode = nvme_admin_create_sq;
1052 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1053 c.create_sq.sqid = cpu_to_le16(qid);
1054 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1055 c.create_sq.sq_flags = cpu_to_le16(flags);
1056 c.create_sq.cqid = cpu_to_le16(qid);
1057
1c63dc66 1058 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1059}
1060
1061static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1062{
1063 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1064}
1065
1066static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1067{
1068 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1069}
1070
2a842aca 1071static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1072{
f4800d6d
CH
1073 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1074 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 1075
27fa9bc5
CH
1076 dev_warn(nvmeq->dev->ctrl.device,
1077 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1078 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1079 blk_mq_free_request(req);
bc5fc7e4
MW
1080}
1081
b2a0eb1a
KB
1082static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1083{
1084
1085 /* If true, indicates loss of adapter communication, possibly by a
1086 * NVMe Subsystem reset.
1087 */
1088 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1089
ad70062c
JW
1090 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1091 switch (dev->ctrl.state) {
1092 case NVME_CTRL_RESETTING:
ad6a0a52 1093 case NVME_CTRL_CONNECTING:
b2a0eb1a 1094 return false;
ad70062c
JW
1095 default:
1096 break;
1097 }
b2a0eb1a
KB
1098
1099 /* We shouldn't reset unless the controller is on fatal error state
1100 * _or_ if we lost the communication with it.
1101 */
1102 if (!(csts & NVME_CSTS_CFS) && !nssro)
1103 return false;
1104
b2a0eb1a
KB
1105 return true;
1106}
1107
1108static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1109{
1110 /* Read a config register to help see what died. */
1111 u16 pci_status;
1112 int result;
1113
1114 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1115 &pci_status);
1116 if (result == PCIBIOS_SUCCESSFUL)
1117 dev_warn(dev->ctrl.device,
1118 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1119 csts, pci_status);
1120 else
1121 dev_warn(dev->ctrl.device,
1122 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1123 csts, result);
1124}
1125
31c7c7d2 1126static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1127{
f4800d6d
CH
1128 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1129 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 1130 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1131 struct request *abort_req;
a4aea562 1132 struct nvme_command cmd;
b2a0eb1a
KB
1133 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1134
651438bb
WX
1135 /* If PCI error recovery process is happening, we cannot reset or
1136 * the recovery mechanism will surely fail.
1137 */
1138 mb();
1139 if (pci_channel_offline(to_pci_dev(dev->dev)))
1140 return BLK_EH_RESET_TIMER;
1141
b2a0eb1a
KB
1142 /*
1143 * Reset immediately if the controller is failed
1144 */
1145 if (nvme_should_reset(dev, csts)) {
1146 nvme_warn_reset(dev, csts);
1147 nvme_dev_disable(dev, false);
d86c4d8e 1148 nvme_reset_ctrl(&dev->ctrl);
db8c48e4 1149 return BLK_EH_DONE;
b2a0eb1a 1150 }
c30341dc 1151
7776db1c
KB
1152 /*
1153 * Did we miss an interrupt?
1154 */
1155 if (__nvme_poll(nvmeq, req->tag)) {
1156 dev_warn(dev->ctrl.device,
1157 "I/O %d QID %d timeout, completion polled\n",
1158 req->tag, nvmeq->qid);
db8c48e4 1159 return BLK_EH_DONE;
7776db1c
KB
1160 }
1161
31c7c7d2 1162 /*
fd634f41
CH
1163 * Shutdown immediately if controller times out while starting. The
1164 * reset work will see the pci device disabled when it gets the forced
1165 * cancellation error. All outstanding requests are completed on
db8c48e4 1166 * shutdown, so we return BLK_EH_DONE.
fd634f41 1167 */
4244140d
KB
1168 switch (dev->ctrl.state) {
1169 case NVME_CTRL_CONNECTING:
1170 case NVME_CTRL_RESETTING:
b9cac43c 1171 dev_warn_ratelimited(dev->ctrl.device,
fd634f41
CH
1172 "I/O %d QID %d timeout, disable controller\n",
1173 req->tag, nvmeq->qid);
a5cdb68c 1174 nvme_dev_disable(dev, false);
27fa9bc5 1175 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
db8c48e4 1176 return BLK_EH_DONE;
4244140d
KB
1177 default:
1178 break;
c30341dc
KB
1179 }
1180
fd634f41
CH
1181 /*
1182 * Shutdown the controller immediately and schedule a reset if the
1183 * command was already aborted once before and still hasn't been
1184 * returned to the driver, or if this is the admin queue.
31c7c7d2 1185 */
f4800d6d 1186 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1187 dev_warn(dev->ctrl.device,
e1569a16
KB
1188 "I/O %d QID %d timeout, reset controller\n",
1189 req->tag, nvmeq->qid);
a5cdb68c 1190 nvme_dev_disable(dev, false);
d86c4d8e 1191 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1192
27fa9bc5 1193 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
db8c48e4 1194 return BLK_EH_DONE;
c30341dc 1195 }
c30341dc 1196
e7a2a87d 1197 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1198 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1199 return BLK_EH_RESET_TIMER;
6bf25d16 1200 }
7bf7d778 1201 iod->aborted = 1;
a4aea562 1202
c30341dc
KB
1203 memset(&cmd, 0, sizeof(cmd));
1204 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1205 cmd.abort.cid = req->tag;
c30341dc 1206 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1207
1b3c47c1
SG
1208 dev_warn(nvmeq->dev->ctrl.device,
1209 "I/O %d QID %d timeout, aborting\n",
1210 req->tag, nvmeq->qid);
e7a2a87d
CH
1211
1212 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1213 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1214 if (IS_ERR(abort_req)) {
1215 atomic_inc(&dev->ctrl.abort_limit);
1216 return BLK_EH_RESET_TIMER;
1217 }
1218
1219 abort_req->timeout = ADMIN_TIMEOUT;
1220 abort_req->end_io_data = NULL;
1221 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1222
31c7c7d2
CH
1223 /*
1224 * The aborted req will be completed on receiving the abort req.
1225 * We enable the timer again. If hit twice, it'll cause a device reset,
1226 * as the device then is in a faulty state.
1227 */
1228 return BLK_EH_RESET_TIMER;
c30341dc
KB
1229}
1230
a4aea562
MB
1231static void nvme_free_queue(struct nvme_queue *nvmeq)
1232{
9e866774
MW
1233 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1234 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1235 if (nvmeq->sq_cmds)
1236 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774 1237 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
9e866774
MW
1238}
1239
a1a5ef99 1240static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1241{
1242 int i;
1243
d858e5f0 1244 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1245 dev->ctrl.queue_count--;
147b27e4 1246 nvme_free_queue(&dev->queues[i]);
121c7ad4 1247 }
22404274
KB
1248}
1249
4d115420
KB
1250/**
1251 * nvme_suspend_queue - put queue into suspended state
1252 * @nvmeq - queue to suspend
4d115420
KB
1253 */
1254static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1255{
2b25d981 1256 int vector;
b60503ba 1257
1ab0cd69 1258 spin_lock_irq(&nvmeq->cq_lock);
2b25d981 1259 if (nvmeq->cq_vector == -1) {
1ab0cd69 1260 spin_unlock_irq(&nvmeq->cq_lock);
2b25d981
KB
1261 return 1;
1262 }
0ff199cb 1263 vector = nvmeq->cq_vector;
42f61420 1264 nvmeq->dev->online_queues--;
2b25d981 1265 nvmeq->cq_vector = -1;
1ab0cd69 1266 spin_unlock_irq(&nvmeq->cq_lock);
a09115b2 1267
d1f06f4a
JA
1268 /*
1269 * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1270 * having to grab the lock.
1271 */
1272 mb();
a09115b2 1273
1c63dc66 1274 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
c81545f9 1275 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1276
0ff199cb 1277 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1278
4d115420
KB
1279 return 0;
1280}
b60503ba 1281
a5cdb68c 1282static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1283{
147b27e4 1284 struct nvme_queue *nvmeq = &dev->queues[0];
5cb525c8 1285 u16 start, end;
4d115420 1286
a5cdb68c
KB
1287 if (shutdown)
1288 nvme_shutdown_ctrl(&dev->ctrl);
1289 else
20d0dfe6 1290 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
07836e65 1291
1ab0cd69 1292 spin_lock_irq(&nvmeq->cq_lock);
5cb525c8 1293 nvme_process_cq(nvmeq, &start, &end, -1);
1ab0cd69 1294 spin_unlock_irq(&nvmeq->cq_lock);
5cb525c8
JA
1295
1296 nvme_complete_cqes(nvmeq, start, end);
b60503ba
MW
1297}
1298
8ffaadf7
JD
1299static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1300 int entry_size)
1301{
1302 int q_depth = dev->q_depth;
5fd4ce1b
CH
1303 unsigned q_size_aligned = roundup(q_depth * entry_size,
1304 dev->ctrl.page_size);
8ffaadf7
JD
1305
1306 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1307 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1308 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1309 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1310
1311 /*
1312 * Ensure the reduced q_depth is above some threshold where it
1313 * would be better to map queues in system memory with the
1314 * original depth
1315 */
1316 if (q_depth < 64)
1317 return -ENOMEM;
1318 }
1319
1320 return q_depth;
1321}
1322
1323static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1324 int qid, int depth)
1325{
815c6704
KB
1326 /* CMB SQEs will be mapped before creation */
1327 if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1328 return 0;
8ffaadf7 1329
815c6704
KB
1330 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1331 &nvmeq->sq_dma_addr, GFP_KERNEL);
1332 if (!nvmeq->sq_cmds)
1333 return -ENOMEM;
8ffaadf7
JD
1334 return 0;
1335}
1336
a6ff7262 1337static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1338{
147b27e4 1339 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1340
62314e40
KB
1341 if (dev->ctrl.queue_count > qid)
1342 return 0;
b60503ba 1343
e75ec752 1344 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1345 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1346 if (!nvmeq->cqes)
1347 goto free_nvmeq;
b60503ba 1348
8ffaadf7 1349 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1350 goto free_cqdma;
1351
e75ec752 1352 nvmeq->q_dmadev = dev->dev;
091b6092 1353 nvmeq->dev = dev;
1ab0cd69
JA
1354 spin_lock_init(&nvmeq->sq_lock);
1355 spin_lock_init(&nvmeq->cq_lock);
b60503ba 1356 nvmeq->cq_head = 0;
82123460 1357 nvmeq->cq_phase = 1;
b80d5ccc 1358 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1359 nvmeq->q_depth = depth;
c30341dc 1360 nvmeq->qid = qid;
758dd7fd 1361 nvmeq->cq_vector = -1;
d858e5f0 1362 dev->ctrl.queue_count++;
36a7e993 1363
147b27e4 1364 return 0;
b60503ba
MW
1365
1366 free_cqdma:
e75ec752 1367 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1368 nvmeq->cq_dma_addr);
1369 free_nvmeq:
147b27e4 1370 return -ENOMEM;
b60503ba
MW
1371}
1372
dca51e78 1373static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1374{
0ff199cb
CH
1375 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1376 int nr = nvmeq->dev->ctrl.instance;
1377
1378 if (use_threaded_interrupts) {
1379 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1380 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1381 } else {
1382 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1383 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1384 }
3001082c
MW
1385}
1386
22404274 1387static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1388{
22404274 1389 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1390
1ab0cd69 1391 spin_lock_irq(&nvmeq->cq_lock);
22404274
KB
1392 nvmeq->sq_tail = 0;
1393 nvmeq->cq_head = 0;
1394 nvmeq->cq_phase = 1;
b80d5ccc 1395 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1396 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1397 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1398 dev->online_queues++;
1ab0cd69 1399 spin_unlock_irq(&nvmeq->cq_lock);
22404274
KB
1400}
1401
1402static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1403{
1404 struct nvme_dev *dev = nvmeq->dev;
1405 int result;
a8e3e0bb 1406 s16 vector;
3f85d50b 1407
815c6704
KB
1408 if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1409 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1410 dev->ctrl.page_size);
1411 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1412 nvmeq->sq_cmds_io = dev->cmb + offset;
1413 }
1414
22b55601
KB
1415 /*
1416 * A queue's vector matches the queue identifier unless the controller
1417 * has only one vector available.
1418 */
a8e3e0bb
JW
1419 vector = dev->num_vecs == 1 ? 0 : qid;
1420 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
ded45505
KB
1421 if (result)
1422 return result;
b60503ba
MW
1423
1424 result = adapter_alloc_sq(dev, qid, nvmeq);
1425 if (result < 0)
ded45505
KB
1426 return result;
1427 else if (result)
b60503ba
MW
1428 goto release_cq;
1429
a8e3e0bb
JW
1430 /*
1431 * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1432 * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1433 * xxx' warning if the create CQ/SQ command times out.
1434 */
1435 nvmeq->cq_vector = vector;
161b8be2 1436 nvme_init_queue(nvmeq, qid);
dca51e78 1437 result = queue_request_irq(nvmeq);
b60503ba
MW
1438 if (result < 0)
1439 goto release_sq;
1440
22404274 1441 return result;
b60503ba 1442
a8e3e0bb
JW
1443release_sq:
1444 nvmeq->cq_vector = -1;
f25a2dfc 1445 dev->online_queues--;
b60503ba 1446 adapter_delete_sq(dev, qid);
a8e3e0bb 1447release_cq:
b60503ba 1448 adapter_delete_cq(dev, qid);
22404274 1449 return result;
b60503ba
MW
1450}
1451
f363b089 1452static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1453 .queue_rq = nvme_queue_rq,
77f02a7a 1454 .complete = nvme_pci_complete_rq,
a4aea562 1455 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1456 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1457 .init_request = nvme_init_request,
a4aea562
MB
1458 .timeout = nvme_timeout,
1459};
1460
f363b089 1461static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1462 .queue_rq = nvme_queue_rq,
77f02a7a 1463 .complete = nvme_pci_complete_rq,
a4aea562
MB
1464 .init_hctx = nvme_init_hctx,
1465 .init_request = nvme_init_request,
dca51e78 1466 .map_queues = nvme_pci_map_queues,
a4aea562 1467 .timeout = nvme_timeout,
a0fa9647 1468 .poll = nvme_poll,
a4aea562
MB
1469};
1470
ea191d2f
KB
1471static void nvme_dev_remove_admin(struct nvme_dev *dev)
1472{
1c63dc66 1473 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1474 /*
1475 * If the controller was reset during removal, it's possible
1476 * user requests may be waiting on a stopped queue. Start the
1477 * queue to flush these to completion.
1478 */
c81545f9 1479 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1c63dc66 1480 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1481 blk_mq_free_tag_set(&dev->admin_tagset);
1482 }
1483}
1484
a4aea562
MB
1485static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1486{
1c63dc66 1487 if (!dev->ctrl.admin_q) {
a4aea562
MB
1488 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1489 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c 1490
38dabe21 1491 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
a4aea562 1492 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1493 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
a7a7cbe3 1494 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
d3484991 1495 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1496 dev->admin_tagset.driver_data = dev;
1497
1498 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1499 return -ENOMEM;
34b6c231 1500 dev->ctrl.admin_tagset = &dev->admin_tagset;
a4aea562 1501
1c63dc66
CH
1502 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1503 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1504 blk_mq_free_tag_set(&dev->admin_tagset);
1505 return -ENOMEM;
1506 }
1c63dc66 1507 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1508 nvme_dev_remove_admin(dev);
1c63dc66 1509 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1510 return -ENODEV;
1511 }
0fb59cbc 1512 } else
c81545f9 1513 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
a4aea562
MB
1514
1515 return 0;
1516}
1517
97f6ef64
XY
1518static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1519{
1520 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1521}
1522
1523static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1524{
1525 struct pci_dev *pdev = to_pci_dev(dev->dev);
1526
1527 if (size <= dev->bar_mapped_size)
1528 return 0;
1529 if (size > pci_resource_len(pdev, 0))
1530 return -ENOMEM;
1531 if (dev->bar)
1532 iounmap(dev->bar);
1533 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1534 if (!dev->bar) {
1535 dev->bar_mapped_size = 0;
1536 return -ENOMEM;
1537 }
1538 dev->bar_mapped_size = size;
1539 dev->dbs = dev->bar + NVME_REG_DBS;
1540
1541 return 0;
1542}
1543
01ad0990 1544static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1545{
ba47e386 1546 int result;
b60503ba
MW
1547 u32 aqa;
1548 struct nvme_queue *nvmeq;
1549
97f6ef64
XY
1550 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1551 if (result < 0)
1552 return result;
1553
8ef2074d 1554 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1555 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1556
7a67cbea
CH
1557 if (dev->subsystem &&
1558 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1559 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1560
20d0dfe6 1561 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
ba47e386
MW
1562 if (result < 0)
1563 return result;
b60503ba 1564
a6ff7262 1565 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1566 if (result)
1567 return result;
b60503ba 1568
147b27e4 1569 nvmeq = &dev->queues[0];
b60503ba
MW
1570 aqa = nvmeq->q_depth - 1;
1571 aqa |= aqa << 16;
1572
7a67cbea
CH
1573 writel(aqa, dev->bar + NVME_REG_AQA);
1574 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1575 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1576
20d0dfe6 1577 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
025c557a 1578 if (result)
d4875622 1579 return result;
a4aea562 1580
2b25d981 1581 nvmeq->cq_vector = 0;
161b8be2 1582 nvme_init_queue(nvmeq, 0);
dca51e78 1583 result = queue_request_irq(nvmeq);
758dd7fd
JD
1584 if (result) {
1585 nvmeq->cq_vector = -1;
d4875622 1586 return result;
758dd7fd 1587 }
025c557a 1588
b60503ba
MW
1589 return result;
1590}
1591
749941f2 1592static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1593{
949928c1 1594 unsigned i, max;
749941f2 1595 int ret = 0;
42f61420 1596
d858e5f0 1597 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1598 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1599 ret = -ENOMEM;
42f61420 1600 break;
749941f2
CH
1601 }
1602 }
42f61420 1603
d858e5f0 1604 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
949928c1 1605 for (i = dev->online_queues; i <= max; i++) {
147b27e4 1606 ret = nvme_create_queue(&dev->queues[i], i);
d4875622 1607 if (ret)
42f61420 1608 break;
27e8166c 1609 }
749941f2
CH
1610
1611 /*
1612 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1613 * than the desired amount of queues, and even a controller without
1614 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1615 * be useful to upgrade a buggy firmware for example.
1616 */
1617 return ret >= 0 ? 0 : ret;
b60503ba
MW
1618}
1619
202021c1
SB
1620static ssize_t nvme_cmb_show(struct device *dev,
1621 struct device_attribute *attr,
1622 char *buf)
1623{
1624 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1625
c965809c 1626 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1627 ndev->cmbloc, ndev->cmbsz);
1628}
1629static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1630
88de4598 1631static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1632{
88de4598
CH
1633 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1634
1635 return 1ULL << (12 + 4 * szu);
1636}
1637
1638static u32 nvme_cmb_size(struct nvme_dev *dev)
1639{
1640 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1641}
1642
f65efd6d 1643static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1644{
88de4598 1645 u64 size, offset;
8ffaadf7
JD
1646 resource_size_t bar_size;
1647 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1648 int bar;
8ffaadf7 1649
7a67cbea 1650 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1651 if (!dev->cmbsz)
1652 return;
202021c1 1653 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1654
202021c1 1655 if (!use_cmb_sqes)
f65efd6d 1656 return;
8ffaadf7 1657
88de4598
CH
1658 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1659 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1660 bar = NVME_CMB_BIR(dev->cmbloc);
1661 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1662
1663 if (offset > bar_size)
f65efd6d 1664 return;
8ffaadf7
JD
1665
1666 /*
1667 * Controllers may support a CMB size larger than their BAR,
1668 * for example, due to being behind a bridge. Reduce the CMB to
1669 * the reported size of the BAR
1670 */
1671 if (size > bar_size - offset)
1672 size = bar_size - offset;
1673
f65efd6d
CH
1674 dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1675 if (!dev->cmb)
1676 return;
8969f1f8 1677 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
8ffaadf7 1678 dev->cmb_size = size;
f65efd6d
CH
1679
1680 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1681 &dev_attr_cmb.attr, NULL))
1682 dev_warn(dev->ctrl.device,
1683 "failed to add sysfs attribute for CMB\n");
8ffaadf7
JD
1684}
1685
1686static inline void nvme_release_cmb(struct nvme_dev *dev)
1687{
1688 if (dev->cmb) {
1689 iounmap(dev->cmb);
1690 dev->cmb = NULL;
1c78f773
MG
1691 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1692 &dev_attr_cmb.attr, NULL);
1693 dev->cmbsz = 0;
8ffaadf7
JD
1694 }
1695}
1696
87ad72a5
CH
1697static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1698{
4033f35d 1699 u64 dma_addr = dev->host_mem_descs_dma;
87ad72a5 1700 struct nvme_command c;
87ad72a5
CH
1701 int ret;
1702
87ad72a5
CH
1703 memset(&c, 0, sizeof(c));
1704 c.features.opcode = nvme_admin_set_features;
1705 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1706 c.features.dword11 = cpu_to_le32(bits);
1707 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1708 ilog2(dev->ctrl.page_size));
1709 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1710 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1711 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1712
1713 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1714 if (ret) {
1715 dev_warn(dev->ctrl.device,
1716 "failed to set host mem (err %d, flags %#x).\n",
1717 ret, bits);
1718 }
87ad72a5
CH
1719 return ret;
1720}
1721
1722static void nvme_free_host_mem(struct nvme_dev *dev)
1723{
1724 int i;
1725
1726 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1727 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1728 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1729
1730 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1731 le64_to_cpu(desc->addr));
1732 }
1733
1734 kfree(dev->host_mem_desc_bufs);
1735 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
1736 dma_free_coherent(dev->dev,
1737 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1738 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 1739 dev->host_mem_descs = NULL;
7e5dd57e 1740 dev->nr_host_mem_descs = 0;
87ad72a5
CH
1741}
1742
92dc6895
CH
1743static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1744 u32 chunk_size)
9d713c2b 1745{
87ad72a5 1746 struct nvme_host_mem_buf_desc *descs;
92dc6895 1747 u32 max_entries, len;
4033f35d 1748 dma_addr_t descs_dma;
2ee0e4ed 1749 int i = 0;
87ad72a5 1750 void **bufs;
6fbcde66 1751 u64 size, tmp;
87ad72a5 1752
87ad72a5
CH
1753 tmp = (preferred + chunk_size - 1);
1754 do_div(tmp, chunk_size);
1755 max_entries = tmp;
044a9df1
CH
1756
1757 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1758 max_entries = dev->ctrl.hmmaxd;
1759
4033f35d
CH
1760 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1761 &descs_dma, GFP_KERNEL);
87ad72a5
CH
1762 if (!descs)
1763 goto out;
1764
1765 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1766 if (!bufs)
1767 goto out_free_descs;
1768
244a8fe4 1769 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
1770 dma_addr_t dma_addr;
1771
50cdb7c6 1772 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1773 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1774 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1775 if (!bufs[i])
1776 break;
1777
1778 descs[i].addr = cpu_to_le64(dma_addr);
1779 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1780 i++;
1781 }
1782
92dc6895 1783 if (!size)
87ad72a5 1784 goto out_free_bufs;
87ad72a5 1785
87ad72a5
CH
1786 dev->nr_host_mem_descs = i;
1787 dev->host_mem_size = size;
1788 dev->host_mem_descs = descs;
4033f35d 1789 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
1790 dev->host_mem_desc_bufs = bufs;
1791 return 0;
1792
1793out_free_bufs:
1794 while (--i >= 0) {
1795 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1796
1797 dma_free_coherent(dev->dev, size, bufs[i],
1798 le64_to_cpu(descs[i].addr));
1799 }
1800
1801 kfree(bufs);
1802out_free_descs:
4033f35d
CH
1803 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1804 descs_dma);
87ad72a5 1805out:
87ad72a5
CH
1806 dev->host_mem_descs = NULL;
1807 return -ENOMEM;
1808}
1809
92dc6895
CH
1810static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1811{
1812 u32 chunk_size;
1813
1814 /* start big and work our way down */
30f92d62 1815 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
044a9df1 1816 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
92dc6895
CH
1817 chunk_size /= 2) {
1818 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1819 if (!min || dev->host_mem_size >= min)
1820 return 0;
1821 nvme_free_host_mem(dev);
1822 }
1823 }
1824
1825 return -ENOMEM;
1826}
1827
9620cfba 1828static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
1829{
1830 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1831 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1832 u64 min = (u64)dev->ctrl.hmmin * 4096;
1833 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 1834 int ret;
87ad72a5
CH
1835
1836 preferred = min(preferred, max);
1837 if (min > max) {
1838 dev_warn(dev->ctrl.device,
1839 "min host memory (%lld MiB) above limit (%d MiB).\n",
1840 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1841 nvme_free_host_mem(dev);
9620cfba 1842 return 0;
87ad72a5
CH
1843 }
1844
1845 /*
1846 * If we already have a buffer allocated check if we can reuse it.
1847 */
1848 if (dev->host_mem_descs) {
1849 if (dev->host_mem_size >= min)
1850 enable_bits |= NVME_HOST_MEM_RETURN;
1851 else
1852 nvme_free_host_mem(dev);
1853 }
1854
1855 if (!dev->host_mem_descs) {
92dc6895
CH
1856 if (nvme_alloc_host_mem(dev, min, preferred)) {
1857 dev_warn(dev->ctrl.device,
1858 "failed to allocate host memory buffer.\n");
9620cfba 1859 return 0; /* controller must work without HMB */
92dc6895
CH
1860 }
1861
1862 dev_info(dev->ctrl.device,
1863 "allocated %lld MiB host memory buffer.\n",
1864 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
1865 }
1866
9620cfba
CH
1867 ret = nvme_set_host_mem(dev, enable_bits);
1868 if (ret)
87ad72a5 1869 nvme_free_host_mem(dev);
9620cfba 1870 return ret;
9d713c2b
KB
1871}
1872
8d85fce7 1873static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1874{
147b27e4 1875 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 1876 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
1877 int result, nr_io_queues;
1878 unsigned long size;
b60503ba 1879
22b55601
KB
1880 struct irq_affinity affd = {
1881 .pre_vectors = 1
1882 };
1883
16ccfff2 1884 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1885 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1886 if (result < 0)
1b23484b 1887 return result;
9a0be7ab 1888
f5fa90dc 1889 if (nr_io_queues == 0)
a5229050 1890 return 0;
b60503ba 1891
88de4598 1892 if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
8ffaadf7
JD
1893 result = nvme_cmb_qdepth(dev, nr_io_queues,
1894 sizeof(struct nvme_command));
1895 if (result > 0)
1896 dev->q_depth = result;
1897 else
1898 nvme_release_cmb(dev);
1899 }
1900
97f6ef64
XY
1901 do {
1902 size = db_bar_size(dev, nr_io_queues);
1903 result = nvme_remap_bar(dev, size);
1904 if (!result)
1905 break;
1906 if (!--nr_io_queues)
1907 return -ENOMEM;
1908 } while (1);
1909 adminq->q_db = dev->dbs;
f1938f6e 1910
9d713c2b 1911 /* Deregister the admin queue's interrupt */
0ff199cb 1912 pci_free_irq(pdev, 0, adminq);
9d713c2b 1913
e32efbfc
JA
1914 /*
1915 * If we enable msix early due to not intx, disable it again before
1916 * setting up the full range we need.
1917 */
dca51e78 1918 pci_free_irq_vectors(pdev);
22b55601
KB
1919 result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1920 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1921 if (result <= 0)
dca51e78 1922 return -EIO;
22b55601
KB
1923 dev->num_vecs = result;
1924 dev->max_qid = max(result - 1, 1);
fa08a396 1925
063a8096
MW
1926 /*
1927 * Should investigate if there's a performance win from allocating
1928 * more queues than interrupt vectors; it might allow the submission
1929 * path to scale better, even if the receive path is limited by the
1930 * number of interrupts.
1931 */
063a8096 1932
dca51e78 1933 result = queue_request_irq(adminq);
758dd7fd
JD
1934 if (result) {
1935 adminq->cq_vector = -1;
d4875622 1936 return result;
758dd7fd 1937 }
749941f2 1938 return nvme_create_io_queues(dev);
b60503ba
MW
1939}
1940
2a842aca 1941static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1942{
db3cbfff 1943 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1944
db3cbfff
KB
1945 blk_mq_free_request(req);
1946 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1947}
1948
2a842aca 1949static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1950{
db3cbfff 1951 struct nvme_queue *nvmeq = req->end_io_data;
5cb525c8 1952 u16 start, end;
a5768aa8 1953
db3cbfff
KB
1954 if (!error) {
1955 unsigned long flags;
1956
0bc88192 1957 spin_lock_irqsave(&nvmeq->cq_lock, flags);
5cb525c8 1958 nvme_process_cq(nvmeq, &start, &end, -1);
1ab0cd69 1959 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
5cb525c8
JA
1960
1961 nvme_complete_cqes(nvmeq, start, end);
a5768aa8 1962 }
db3cbfff
KB
1963
1964 nvme_del_queue_end(req, error);
a5768aa8
KB
1965}
1966
db3cbfff 1967static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1968{
db3cbfff
KB
1969 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1970 struct request *req;
1971 struct nvme_command cmd;
bda4e0fb 1972
db3cbfff
KB
1973 memset(&cmd, 0, sizeof(cmd));
1974 cmd.delete_queue.opcode = opcode;
1975 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1976
eb71f435 1977 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
1978 if (IS_ERR(req))
1979 return PTR_ERR(req);
bda4e0fb 1980
db3cbfff
KB
1981 req->timeout = ADMIN_TIMEOUT;
1982 req->end_io_data = nvmeq;
1983
1984 blk_execute_rq_nowait(q, NULL, req, false,
1985 opcode == nvme_admin_delete_cq ?
1986 nvme_del_cq_end : nvme_del_queue_end);
1987 return 0;
bda4e0fb
KB
1988}
1989
ee9aebb2 1990static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 1991{
ee9aebb2 1992 int pass, queues = dev->online_queues - 1;
db3cbfff
KB
1993 unsigned long timeout;
1994 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1995
db3cbfff 1996 for (pass = 0; pass < 2; pass++) {
014a0d60 1997 int sent = 0, i = queues;
db3cbfff
KB
1998
1999 reinit_completion(&dev->ioq_wait);
2000 retry:
2001 timeout = ADMIN_TIMEOUT;
c21377f8 2002 for (; i > 0; i--, sent++)
147b27e4 2003 if (nvme_delete_queue(&dev->queues[i], opcode))
db3cbfff 2004 break;
c21377f8 2005
db3cbfff
KB
2006 while (sent--) {
2007 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2008 if (timeout == 0)
2009 return;
2010 if (i)
2011 goto retry;
2012 }
2013 opcode = nvme_admin_delete_cq;
2014 }
a5768aa8
KB
2015}
2016
422ef0c7 2017/*
2b1b7e78 2018 * return error value only when tagset allocation failed
422ef0c7 2019 */
8d85fce7 2020static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2021{
2b1b7e78
JW
2022 int ret;
2023
5bae7f73 2024 if (!dev->ctrl.tagset) {
ffe7704d
KB
2025 dev->tagset.ops = &nvme_mq_ops;
2026 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2027 dev->tagset.timeout = NVME_IO_TIMEOUT;
2028 dev->tagset.numa_node = dev_to_node(dev->dev);
2029 dev->tagset.queue_depth =
a4aea562 2030 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
a7a7cbe3
CK
2031 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2032 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2033 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2034 nvme_pci_cmd_size(dev, true));
2035 }
ffe7704d
KB
2036 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2037 dev->tagset.driver_data = dev;
b60503ba 2038
2b1b7e78
JW
2039 ret = blk_mq_alloc_tag_set(&dev->tagset);
2040 if (ret) {
2041 dev_warn(dev->ctrl.device,
2042 "IO queues tagset allocation failed %d\n", ret);
2043 return ret;
2044 }
5bae7f73 2045 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
2046
2047 nvme_dbbuf_set(dev);
949928c1
KB
2048 } else {
2049 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2050
2051 /* Free previously allocated queues that are no longer usable */
2052 nvme_free_queues(dev, dev->online_queues);
ffe7704d 2053 }
949928c1 2054
e1e5e564 2055 return 0;
b60503ba
MW
2056}
2057
b00a726a 2058static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2059{
b00a726a 2060 int result = -ENOMEM;
e75ec752 2061 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2062
2063 if (pci_enable_device_mem(pdev))
2064 return result;
2065
0877cb0d 2066 pci_set_master(pdev);
0877cb0d 2067
e75ec752
CH
2068 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2069 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2070 goto disable;
0877cb0d 2071
7a67cbea 2072 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2073 result = -ENODEV;
b00a726a 2074 goto disable;
0e53d180 2075 }
e32efbfc
JA
2076
2077 /*
a5229050
KB
2078 * Some devices and/or platforms don't advertise or work with INTx
2079 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2080 * adjust this later.
e32efbfc 2081 */
dca51e78
CH
2082 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2083 if (result < 0)
2084 return result;
e32efbfc 2085
20d0dfe6 2086 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2087
20d0dfe6 2088 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2089 io_queue_depth);
20d0dfe6 2090 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2091 dev->dbs = dev->bar + 4096;
1f390c1f
SG
2092
2093 /*
2094 * Temporary fix for the Apple controller found in the MacBook8,1 and
2095 * some MacBook7,1 to avoid controller resets and data loss.
2096 */
2097 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2098 dev->q_depth = 2;
9bdcfb10
CH
2099 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2100 "set queue depth=%u to work around controller resets\n",
1f390c1f 2101 dev->q_depth);
d554b5e1
MP
2102 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2103 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2104 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2105 dev->q_depth = 64;
2106 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2107 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2108 }
2109
f65efd6d 2110 nvme_map_cmb(dev);
202021c1 2111
a0a3408e
KB
2112 pci_enable_pcie_error_reporting(pdev);
2113 pci_save_state(pdev);
0877cb0d
KB
2114 return 0;
2115
2116 disable:
0877cb0d
KB
2117 pci_disable_device(pdev);
2118 return result;
2119}
2120
2121static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2122{
2123 if (dev->bar)
2124 iounmap(dev->bar);
a1f447b3 2125 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2126}
2127
2128static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 2129{
e75ec752
CH
2130 struct pci_dev *pdev = to_pci_dev(dev->dev);
2131
f63572df 2132 nvme_release_cmb(dev);
dca51e78 2133 pci_free_irq_vectors(pdev);
0877cb0d 2134
a0a3408e
KB
2135 if (pci_is_enabled(pdev)) {
2136 pci_disable_pcie_error_reporting(pdev);
e75ec752 2137 pci_disable_device(pdev);
4d115420 2138 }
4d115420
KB
2139}
2140
a5cdb68c 2141static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2142{
ee9aebb2 2143 int i;
302ad8cc
KB
2144 bool dead = true;
2145 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2146
77bf25ea 2147 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
2148 if (pci_is_enabled(pdev)) {
2149 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2150
ebef7368
KB
2151 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2152 dev->ctrl.state == NVME_CTRL_RESETTING)
302ad8cc
KB
2153 nvme_start_freeze(&dev->ctrl);
2154 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2155 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2156 }
c21377f8 2157
302ad8cc
KB
2158 /*
2159 * Give the controller a chance to complete all entered requests if
2160 * doing a safe shutdown.
2161 */
87ad72a5
CH
2162 if (!dead) {
2163 if (shutdown)
2164 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
9a915a5b
JW
2165 }
2166
2167 nvme_stop_queues(&dev->ctrl);
87ad72a5 2168
64ee0ac0 2169 if (!dead && dev->ctrl.queue_count > 0) {
ee9aebb2 2170 nvme_disable_io_queues(dev);
a5cdb68c 2171 nvme_disable_admin_queue(dev, shutdown);
4d115420 2172 }
ee9aebb2
KB
2173 for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2174 nvme_suspend_queue(&dev->queues[i]);
2175
b00a726a 2176 nvme_pci_disable(dev);
07836e65 2177
e1958e65
ML
2178 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2179 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2180
2181 /*
2182 * The driver will not be starting up queues again if shutting down so
2183 * must flush all entered requests to their failed completion to avoid
2184 * deadlocking blk-mq hot-cpu notifier.
2185 */
2186 if (shutdown)
2187 nvme_start_queues(&dev->ctrl);
77bf25ea 2188 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2189}
2190
091b6092
MW
2191static int nvme_setup_prp_pools(struct nvme_dev *dev)
2192{
e75ec752 2193 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2194 PAGE_SIZE, PAGE_SIZE, 0);
2195 if (!dev->prp_page_pool)
2196 return -ENOMEM;
2197
99802a7a 2198 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2199 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2200 256, 256, 0);
2201 if (!dev->prp_small_pool) {
2202 dma_pool_destroy(dev->prp_page_pool);
2203 return -ENOMEM;
2204 }
091b6092
MW
2205 return 0;
2206}
2207
2208static void nvme_release_prp_pools(struct nvme_dev *dev)
2209{
2210 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2211 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2212}
2213
1673f1f0 2214static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2215{
1673f1f0 2216 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2217
f9f38e33 2218 nvme_dbbuf_dma_free(dev);
e75ec752 2219 put_device(dev->dev);
4af0e21c
KB
2220 if (dev->tagset.tags)
2221 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2222 if (dev->ctrl.admin_q)
2223 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2224 kfree(dev->queues);
e286bcfc 2225 free_opal_dev(dev->ctrl.opal_dev);
943e942e 2226 mempool_destroy(dev->iod_mempool);
5e82e952
KB
2227 kfree(dev);
2228}
2229
f58944e2
KB
2230static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2231{
237045fc 2232 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2 2233
d22524a4 2234 nvme_get_ctrl(&dev->ctrl);
69d9a99c 2235 nvme_dev_disable(dev, false);
9f9cafc1 2236 nvme_kill_queues(&dev->ctrl);
03e0f3a6 2237 if (!queue_work(nvme_wq, &dev->remove_work))
f58944e2
KB
2238 nvme_put_ctrl(&dev->ctrl);
2239}
2240
fd634f41 2241static void nvme_reset_work(struct work_struct *work)
5e82e952 2242{
d86c4d8e
CH
2243 struct nvme_dev *dev =
2244 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2245 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2246 int result = -ENODEV;
2b1b7e78 2247 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
5e82e952 2248
82b057ca 2249 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2250 goto out;
5e82e952 2251
fd634f41
CH
2252 /*
2253 * If we're called to reset a live controller first shut it down before
2254 * moving on.
2255 */
b00a726a 2256 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2257 nvme_dev_disable(dev, false);
5e82e952 2258
ad70062c 2259 /*
ad6a0a52 2260 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
ad70062c
JW
2261 * initializing procedure here.
2262 */
ad6a0a52 2263 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
ad70062c 2264 dev_warn(dev->ctrl.device,
ad6a0a52 2265 "failed to mark controller CONNECTING\n");
ad70062c
JW
2266 goto out;
2267 }
2268
b00a726a 2269 result = nvme_pci_enable(dev);
f0b50732 2270 if (result)
3cf519b5 2271 goto out;
f0b50732 2272
01ad0990 2273 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2274 if (result)
f58944e2 2275 goto out;
f0b50732 2276
0fb59cbc
KB
2277 result = nvme_alloc_admin_tags(dev);
2278 if (result)
f58944e2 2279 goto out;
b9afca3e 2280
943e942e
JA
2281 /*
2282 * Limit the max command size to prevent iod->sg allocations going
2283 * over a single page.
2284 */
2285 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2286 dev->ctrl.max_segments = NVME_MAX_SEGS;
2287
ce4541f4
CH
2288 result = nvme_init_identify(&dev->ctrl);
2289 if (result)
f58944e2 2290 goto out;
ce4541f4 2291
e286bcfc
SB
2292 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2293 if (!dev->ctrl.opal_dev)
2294 dev->ctrl.opal_dev =
2295 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2296 else if (was_suspend)
2297 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2298 } else {
2299 free_opal_dev(dev->ctrl.opal_dev);
2300 dev->ctrl.opal_dev = NULL;
4f1244c8 2301 }
a98e58e5 2302
f9f38e33
HK
2303 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2304 result = nvme_dbbuf_dma_alloc(dev);
2305 if (result)
2306 dev_warn(dev->dev,
2307 "unable to allocate dma for dbbuf\n");
2308 }
2309
9620cfba
CH
2310 if (dev->ctrl.hmpre) {
2311 result = nvme_setup_host_mem(dev);
2312 if (result < 0)
2313 goto out;
2314 }
87ad72a5 2315
f0b50732 2316 result = nvme_setup_io_queues(dev);
badc34d4 2317 if (result)
f58944e2 2318 goto out;
f0b50732 2319
2659e57b
CH
2320 /*
2321 * Keep the controller around but remove all namespaces if we don't have
2322 * any working I/O queue.
2323 */
3cf519b5 2324 if (dev->online_queues < 2) {
1b3c47c1 2325 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2326 nvme_kill_queues(&dev->ctrl);
5bae7f73 2327 nvme_remove_namespaces(&dev->ctrl);
2b1b7e78 2328 new_state = NVME_CTRL_ADMIN_ONLY;
3cf519b5 2329 } else {
25646264 2330 nvme_start_queues(&dev->ctrl);
302ad8cc 2331 nvme_wait_freeze(&dev->ctrl);
2b1b7e78
JW
2332 /* hit this only when allocate tagset fails */
2333 if (nvme_dev_add(dev))
2334 new_state = NVME_CTRL_ADMIN_ONLY;
302ad8cc 2335 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2336 }
2337
2b1b7e78
JW
2338 /*
2339 * If only admin queue live, keep it to do further investigation or
2340 * recovery.
2341 */
2342 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2343 dev_warn(dev->ctrl.device,
2344 "failed to mark controller state %d\n", new_state);
bb8d261e
CH
2345 goto out;
2346 }
92911a55 2347
d09f2b45 2348 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2349 return;
f0b50732 2350
3cf519b5 2351 out:
f58944e2 2352 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2353}
2354
5c8809e6 2355static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2356{
5c8809e6 2357 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2358 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2359
2360 if (pci_get_drvdata(pdev))
921920ab 2361 device_release_driver(&pdev->dev);
1673f1f0 2362 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2363}
2364
1c63dc66 2365static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2366{
1c63dc66 2367 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2368 return 0;
9ca97374
TH
2369}
2370
5fd4ce1b 2371static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2372{
5fd4ce1b
CH
2373 writel(val, to_nvme_dev(ctrl)->bar + off);
2374 return 0;
2375}
4cc06521 2376
7fd8930f
CH
2377static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2378{
2379 *val = readq(to_nvme_dev(ctrl)->bar + off);
2380 return 0;
4cc06521
KB
2381}
2382
97c12223
KB
2383static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2384{
2385 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2386
2387 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2388}
2389
1c63dc66 2390static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2391 .name = "pcie",
e439bb12 2392 .module = THIS_MODULE,
c81bfba9 2393 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2394 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2395 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2396 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2397 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2398 .submit_async_event = nvme_pci_submit_async_event,
97c12223 2399 .get_address = nvme_pci_get_address,
1c63dc66 2400};
4cc06521 2401
b00a726a
KB
2402static int nvme_dev_map(struct nvme_dev *dev)
2403{
b00a726a
KB
2404 struct pci_dev *pdev = to_pci_dev(dev->dev);
2405
a1f447b3 2406 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2407 return -ENODEV;
2408
97f6ef64 2409 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2410 goto release;
2411
9fa196e7 2412 return 0;
b00a726a 2413 release:
9fa196e7
MG
2414 pci_release_mem_regions(pdev);
2415 return -ENODEV;
b00a726a
KB
2416}
2417
8427bbc2 2418static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
2419{
2420 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2421 /*
2422 * Several Samsung devices seem to drop off the PCIe bus
2423 * randomly when APST is on and uses the deepest sleep state.
2424 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2425 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2426 * 950 PRO 256GB", but it seems to be restricted to two Dell
2427 * laptops.
2428 */
2429 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2430 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2431 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2432 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
2433 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2434 /*
2435 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
2436 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2437 * within few minutes after bootup on a Coffee Lake board -
2438 * ASUS PRIME Z370-A
8427bbc2
KHF
2439 */
2440 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
2441 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2442 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 2443 return NVME_QUIRK_NO_APST;
ff5350a8
AL
2444 }
2445
2446 return 0;
2447}
2448
18119775
KB
2449static void nvme_async_probe(void *data, async_cookie_t cookie)
2450{
2451 struct nvme_dev *dev = data;
80f513b5 2452
18119775
KB
2453 nvme_reset_ctrl_sync(&dev->ctrl);
2454 flush_work(&dev->ctrl.scan_work);
80f513b5 2455 nvme_put_ctrl(&dev->ctrl);
18119775
KB
2456}
2457
8d85fce7 2458static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2459{
a4aea562 2460 int node, result = -ENOMEM;
b60503ba 2461 struct nvme_dev *dev;
ff5350a8 2462 unsigned long quirks = id->driver_data;
943e942e 2463 size_t alloc_size;
b60503ba 2464
a4aea562
MB
2465 node = dev_to_node(&pdev->dev);
2466 if (node == NUMA_NO_NODE)
2fa84351 2467 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2468
2469 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2470 if (!dev)
2471 return -ENOMEM;
147b27e4
SG
2472
2473 dev->queues = kcalloc_node(num_possible_cpus() + 1,
2474 sizeof(struct nvme_queue), GFP_KERNEL, node);
b60503ba
MW
2475 if (!dev->queues)
2476 goto free;
2477
e75ec752 2478 dev->dev = get_device(&pdev->dev);
9a6b9458 2479 pci_set_drvdata(pdev, dev);
1c63dc66 2480
b00a726a
KB
2481 result = nvme_dev_map(dev);
2482 if (result)
b00c9b7a 2483 goto put_pci;
b00a726a 2484
d86c4d8e 2485 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2486 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2487 mutex_init(&dev->shutdown_lock);
db3cbfff 2488 init_completion(&dev->ioq_wait);
b60503ba 2489
091b6092
MW
2490 result = nvme_setup_prp_pools(dev);
2491 if (result)
b00c9b7a 2492 goto unmap;
4cc06521 2493
8427bbc2 2494 quirks |= check_vendor_combination_bug(pdev);
ff5350a8 2495
943e942e
JA
2496 /*
2497 * Double check that our mempool alloc size will cover the biggest
2498 * command we support.
2499 */
2500 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2501 NVME_MAX_SEGS, true);
2502 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2503
2504 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2505 mempool_kfree,
2506 (void *) alloc_size,
2507 GFP_KERNEL, node);
2508 if (!dev->iod_mempool) {
2509 result = -ENOMEM;
2510 goto release_pools;
2511 }
2512
b6e44b4c
KB
2513 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2514 quirks);
2515 if (result)
2516 goto release_mempool;
2517
1b3c47c1
SG
2518 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2519
80f513b5 2520 nvme_get_ctrl(&dev->ctrl);
18119775 2521 async_schedule(nvme_async_probe, dev);
4caff8fc 2522
b60503ba
MW
2523 return 0;
2524
b6e44b4c
KB
2525 release_mempool:
2526 mempool_destroy(dev->iod_mempool);
0877cb0d 2527 release_pools:
091b6092 2528 nvme_release_prp_pools(dev);
b00c9b7a
CJ
2529 unmap:
2530 nvme_dev_unmap(dev);
a96d4f5c 2531 put_pci:
e75ec752 2532 put_device(dev->dev);
b60503ba
MW
2533 free:
2534 kfree(dev->queues);
b60503ba
MW
2535 kfree(dev);
2536 return result;
2537}
2538
775755ed 2539static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 2540{
a6739479 2541 struct nvme_dev *dev = pci_get_drvdata(pdev);
f263fbb8 2542 nvme_dev_disable(dev, false);
775755ed 2543}
f0d54a54 2544
775755ed
CH
2545static void nvme_reset_done(struct pci_dev *pdev)
2546{
f263fbb8 2547 struct nvme_dev *dev = pci_get_drvdata(pdev);
79c48ccf 2548 nvme_reset_ctrl_sync(&dev->ctrl);
f0d54a54
KB
2549}
2550
09ece142
KB
2551static void nvme_shutdown(struct pci_dev *pdev)
2552{
2553 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2554 nvme_dev_disable(dev, true);
09ece142
KB
2555}
2556
f58944e2
KB
2557/*
2558 * The driver's remove may be called on a device in a partially initialized
2559 * state. This function must not have any dependencies on the device state in
2560 * order to proceed.
2561 */
8d85fce7 2562static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2563{
2564 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2565
bb8d261e
CH
2566 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2567
d86c4d8e 2568 cancel_work_sync(&dev->ctrl.reset_work);
9a6b9458 2569 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2570
6db28eda 2571 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2572 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1d39e692 2573 nvme_dev_disable(dev, true);
6db28eda 2574 }
0ff9d4e1 2575
d86c4d8e 2576 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
2577 nvme_stop_ctrl(&dev->ctrl);
2578 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 2579 nvme_dev_disable(dev, true);
87ad72a5 2580 nvme_free_host_mem(dev);
a4aea562 2581 nvme_dev_remove_admin(dev);
a1a5ef99 2582 nvme_free_queues(dev, 0);
d09f2b45 2583 nvme_uninit_ctrl(&dev->ctrl);
9a6b9458 2584 nvme_release_prp_pools(dev);
b00a726a 2585 nvme_dev_unmap(dev);
1673f1f0 2586 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2587}
2588
671a6018 2589#ifdef CONFIG_PM_SLEEP
cd638946
KB
2590static int nvme_suspend(struct device *dev)
2591{
2592 struct pci_dev *pdev = to_pci_dev(dev);
2593 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2594
a5cdb68c 2595 nvme_dev_disable(ndev, true);
cd638946
KB
2596 return 0;
2597}
2598
2599static int nvme_resume(struct device *dev)
2600{
2601 struct pci_dev *pdev = to_pci_dev(dev);
2602 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2603
d86c4d8e 2604 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2605 return 0;
cd638946 2606}
671a6018 2607#endif
cd638946
KB
2608
2609static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2610
a0a3408e
KB
2611static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2612 pci_channel_state_t state)
2613{
2614 struct nvme_dev *dev = pci_get_drvdata(pdev);
2615
2616 /*
2617 * A frozen channel requires a reset. When detected, this method will
2618 * shutdown the controller to quiesce. The controller will be restarted
2619 * after the slot reset through driver's slot_reset callback.
2620 */
a0a3408e
KB
2621 switch (state) {
2622 case pci_channel_io_normal:
2623 return PCI_ERS_RESULT_CAN_RECOVER;
2624 case pci_channel_io_frozen:
d011fb31
KB
2625 dev_warn(dev->ctrl.device,
2626 "frozen state error detected, reset controller\n");
a5cdb68c 2627 nvme_dev_disable(dev, false);
a0a3408e
KB
2628 return PCI_ERS_RESULT_NEED_RESET;
2629 case pci_channel_io_perm_failure:
d011fb31
KB
2630 dev_warn(dev->ctrl.device,
2631 "failure state error detected, request disconnect\n");
a0a3408e
KB
2632 return PCI_ERS_RESULT_DISCONNECT;
2633 }
2634 return PCI_ERS_RESULT_NEED_RESET;
2635}
2636
2637static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2638{
2639 struct nvme_dev *dev = pci_get_drvdata(pdev);
2640
1b3c47c1 2641 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2642 pci_restore_state(pdev);
d86c4d8e 2643 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2644 return PCI_ERS_RESULT_RECOVERED;
2645}
2646
2647static void nvme_error_resume(struct pci_dev *pdev)
2648{
72cd4cc2
KB
2649 struct nvme_dev *dev = pci_get_drvdata(pdev);
2650
2651 flush_work(&dev->ctrl.reset_work);
a0a3408e
KB
2652 pci_cleanup_aer_uncorrect_error_status(pdev);
2653}
2654
1d352035 2655static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2656 .error_detected = nvme_error_detected,
b60503ba
MW
2657 .slot_reset = nvme_slot_reset,
2658 .resume = nvme_error_resume,
775755ed
CH
2659 .reset_prepare = nvme_reset_prepare,
2660 .reset_done = nvme_reset_done,
b60503ba
MW
2661};
2662
6eb0d698 2663static const struct pci_device_id nvme_id_table[] = {
106198ed 2664 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2665 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2666 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2667 { PCI_VDEVICE(INTEL, 0x0a53),
2668 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2669 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2670 { PCI_VDEVICE(INTEL, 0x0a54),
2671 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2672 NVME_QUIRK_DEALLOCATE_ZEROES, },
f99cb7af
DWF
2673 { PCI_VDEVICE(INTEL, 0x0a55),
2674 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2675 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0 2676 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
9abd68ef
JA
2677 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2678 NVME_QUIRK_MEDIUM_PRIO_SQ },
540c801c
KB
2679 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2680 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
0302ae60
MP
2681 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2682 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
54adc010
GP
2683 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2684 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
2685 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2686 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2687 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2688 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
2689 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2690 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2691 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2692 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
608cc4b1
CH
2693 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2694 .driver_data = NVME_QUIRK_LIGHTNVM, },
2695 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2696 .driver_data = NVME_QUIRK_LIGHTNVM, },
ea48e877
WX
2697 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2698 .driver_data = NVME_QUIRK_LIGHTNVM, },
b60503ba 2699 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2700 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2701 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2702 { 0, }
2703};
2704MODULE_DEVICE_TABLE(pci, nvme_id_table);
2705
2706static struct pci_driver nvme_driver = {
2707 .name = "nvme",
2708 .id_table = nvme_id_table,
2709 .probe = nvme_probe,
8d85fce7 2710 .remove = nvme_remove,
09ece142 2711 .shutdown = nvme_shutdown,
cd638946
KB
2712 .driver = {
2713 .pm = &nvme_dev_pm_ops,
2714 },
74d986ab 2715 .sriov_configure = pci_sriov_configure_simple,
b60503ba
MW
2716 .err_handler = &nvme_err_handler,
2717};
2718
2719static int __init nvme_init(void)
2720{
9a6327d2 2721 return pci_register_driver(&nvme_driver);
b60503ba
MW
2722}
2723
2724static void __exit nvme_exit(void)
2725{
2726 pci_unregister_driver(&nvme_driver);
03e0f3a6 2727 flush_workqueue(nvme_wq);
21bd78bc 2728 _nvme_check_size();
b60503ba
MW
2729}
2730
2731MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2732MODULE_LICENSE("GPL");
c78b4713 2733MODULE_VERSION("1.0");
b60503ba
MW
2734module_init(nvme_init);
2735module_exit(nvme_exit);