nvme-pci: use atomic bitops to mark a queue enabled
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
18119775 16#include <linux/async.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
ff5350a8 20#include <linux/dmi.h>
b60503ba
MW
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
b60503ba
MW
24#include <linux/mm.h>
25#include <linux/module.h>
77bf25ea 26#include <linux/mutex.h>
d0877473 27#include <linux/once.h>
b60503ba 28#include <linux/pci.h>
e1e5e564 29#include <linux/t10-pi.h>
b60503ba 30#include <linux/types.h>
2f8e2c87 31#include <linux/io-64-nonatomic-lo-hi.h>
a98e58e5 32#include <linux/sed-opal.h>
0f238ff5 33#include <linux/pci-p2pdma.h>
797a796a 34
f11bb3e2
CH
35#include "nvme.h"
36
b60503ba
MW
37#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
38#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 39
a7a7cbe3 40#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 41
943e942e
JA
42/*
43 * These can be higher, but we need to ensure that any command doesn't
44 * require an sg allocation that needs more than a page of data.
45 */
46#define NVME_MAX_KB_SZ 4096
47#define NVME_MAX_SEGS 127
48
58ffacb5
MW
49static int use_threaded_interrupts;
50module_param(use_threaded_interrupts, int, 0);
51
8ffaadf7 52static bool use_cmb_sqes = true;
69f4eb9f 53module_param(use_cmb_sqes, bool, 0444);
8ffaadf7
JD
54MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55
87ad72a5
CH
56static unsigned int max_host_mem_size_mb = 128;
57module_param(max_host_mem_size_mb, uint, 0444);
58MODULE_PARM_DESC(max_host_mem_size_mb,
59 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 60
a7a7cbe3
CK
61static unsigned int sgl_threshold = SZ_32K;
62module_param(sgl_threshold, uint, 0644);
63MODULE_PARM_DESC(sgl_threshold,
64 "Use SGLs when average request segment size is larger or equal to "
65 "this size. Use 0 to disable SGLs.");
66
b27c1e68 67static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68static const struct kernel_param_ops io_queue_depth_ops = {
69 .set = io_queue_depth_set,
70 .get = param_get_int,
71};
72
73static int io_queue_depth = 1024;
74module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
76
3b6592f7
JA
77static int queue_count_set(const char *val, const struct kernel_param *kp);
78static const struct kernel_param_ops queue_count_ops = {
79 .set = queue_count_set,
80 .get = param_get_int,
81};
82
83static int write_queues;
84module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
85MODULE_PARM_DESC(write_queues,
86 "Number of queues to use for writes. If not set, reads and writes "
87 "will share a queue set.");
88
a4668d9b 89static int poll_queues = 0;
4b04cc6a
JA
90module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
91MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
92
1c63dc66
CH
93struct nvme_dev;
94struct nvme_queue;
b3fffdef 95
a5cdb68c 96static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 97
1c63dc66
CH
98/*
99 * Represents an NVM Express device. Each nvme_dev is a PCI function.
100 */
101struct nvme_dev {
147b27e4 102 struct nvme_queue *queues;
1c63dc66
CH
103 struct blk_mq_tag_set tagset;
104 struct blk_mq_tag_set admin_tagset;
105 u32 __iomem *dbs;
106 struct device *dev;
107 struct dma_pool *prp_page_pool;
108 struct dma_pool *prp_small_pool;
1c63dc66
CH
109 unsigned online_queues;
110 unsigned max_qid;
e20ba6e1 111 unsigned io_queues[HCTX_MAX_TYPES];
22b55601 112 unsigned int num_vecs;
1c63dc66
CH
113 int q_depth;
114 u32 db_stride;
1c63dc66 115 void __iomem *bar;
97f6ef64 116 unsigned long bar_mapped_size;
5c8809e6 117 struct work_struct remove_work;
77bf25ea 118 struct mutex shutdown_lock;
1c63dc66 119 bool subsystem;
1c63dc66 120 u64 cmb_size;
0f238ff5 121 bool cmb_use_sqes;
1c63dc66 122 u32 cmbsz;
202021c1 123 u32 cmbloc;
1c63dc66 124 struct nvme_ctrl ctrl;
db3cbfff 125 struct completion ioq_wait;
87ad72a5 126
943e942e
JA
127 mempool_t *iod_mempool;
128
87ad72a5 129 /* shadow doorbell buffer support: */
f9f38e33
HK
130 u32 *dbbuf_dbs;
131 dma_addr_t dbbuf_dbs_dma_addr;
132 u32 *dbbuf_eis;
133 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
134
135 /* host memory buffer support: */
136 u64 host_mem_size;
137 u32 nr_host_mem_descs;
4033f35d 138 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
139 struct nvme_host_mem_buf_desc *host_mem_descs;
140 void **host_mem_desc_bufs;
4d115420 141};
1fa6aead 142
b27c1e68 143static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
144{
145 int n = 0, ret;
146
147 ret = kstrtoint(val, 10, &n);
148 if (ret != 0 || n < 2)
149 return -EINVAL;
150
151 return param_set_int(val, kp);
152}
153
3b6592f7
JA
154static int queue_count_set(const char *val, const struct kernel_param *kp)
155{
156 int n = 0, ret;
157
158 ret = kstrtoint(val, 10, &n);
159 if (n > num_possible_cpus())
160 n = num_possible_cpus();
161
162 return param_set_int(val, kp);
163}
164
f9f38e33
HK
165static inline unsigned int sq_idx(unsigned int qid, u32 stride)
166{
167 return qid * 2 * stride;
168}
169
170static inline unsigned int cq_idx(unsigned int qid, u32 stride)
171{
172 return (qid * 2 + 1) * stride;
173}
174
1c63dc66
CH
175static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
176{
177 return container_of(ctrl, struct nvme_dev, ctrl);
178}
179
b60503ba
MW
180/*
181 * An NVM Express queue. Each device has at least two (one for admin
182 * commands and one for I/O commands).
183 */
184struct nvme_queue {
185 struct device *q_dmadev;
091b6092 186 struct nvme_dev *dev;
1ab0cd69 187 spinlock_t sq_lock;
b60503ba 188 struct nvme_command *sq_cmds;
0f238ff5 189 bool sq_cmds_is_io;
1ab0cd69 190 spinlock_t cq_lock ____cacheline_aligned_in_smp;
b60503ba 191 volatile struct nvme_completion *cqes;
42483228 192 struct blk_mq_tags **tags;
b60503ba
MW
193 dma_addr_t sq_dma_addr;
194 dma_addr_t cq_dma_addr;
b60503ba
MW
195 u32 __iomem *q_db;
196 u16 q_depth;
6222d172 197 s16 cq_vector;
b60503ba 198 u16 sq_tail;
04f3eafd 199 u16 last_sq_tail;
b60503ba 200 u16 cq_head;
68fa9dbe 201 u16 last_cq_head;
c30341dc 202 u16 qid;
e9539f47 203 u8 cq_phase;
4e224106
CH
204 unsigned long flags;
205#define NVMEQ_ENABLED 0
f9f38e33
HK
206 u32 *dbbuf_sq_db;
207 u32 *dbbuf_cq_db;
208 u32 *dbbuf_sq_ei;
209 u32 *dbbuf_cq_ei;
b60503ba
MW
210};
211
71bd150c
CH
212/*
213 * The nvme_iod describes the data in an I/O, including the list of PRP
214 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 215 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
216 * allocated to store the PRP list.
217 */
218struct nvme_iod {
d49187e9 219 struct nvme_request req;
f4800d6d 220 struct nvme_queue *nvmeq;
a7a7cbe3 221 bool use_sgl;
f4800d6d 222 int aborted;
71bd150c 223 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
224 int nents; /* Used in scatterlist */
225 int length; /* Of data, in bytes */
226 dma_addr_t first_dma;
bf684057 227 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
228 struct scatterlist *sg;
229 struct scatterlist inline_sg[0];
b60503ba
MW
230};
231
232/*
233 * Check we didin't inadvertently grow the command struct
234 */
235static inline void _nvme_check_size(void)
236{
237 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
238 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
239 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
240 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
241 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 242 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 243 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba 244 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
0add5e8e
JT
245 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
246 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
b60503ba 247 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 248 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
249 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
250}
251
3b6592f7
JA
252static unsigned int max_io_queues(void)
253{
4b04cc6a 254 return num_possible_cpus() + write_queues + poll_queues;
3b6592f7
JA
255}
256
257static unsigned int max_queue_count(void)
258{
259 /* IO queues + admin queue */
260 return 1 + max_io_queues();
261}
262
f9f38e33
HK
263static inline unsigned int nvme_dbbuf_size(u32 stride)
264{
3b6592f7 265 return (max_queue_count() * 8 * stride);
f9f38e33
HK
266}
267
268static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
269{
270 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
271
272 if (dev->dbbuf_dbs)
273 return 0;
274
275 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
276 &dev->dbbuf_dbs_dma_addr,
277 GFP_KERNEL);
278 if (!dev->dbbuf_dbs)
279 return -ENOMEM;
280 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
281 &dev->dbbuf_eis_dma_addr,
282 GFP_KERNEL);
283 if (!dev->dbbuf_eis) {
284 dma_free_coherent(dev->dev, mem_size,
285 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
286 dev->dbbuf_dbs = NULL;
287 return -ENOMEM;
288 }
289
290 return 0;
291}
292
293static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
294{
295 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
296
297 if (dev->dbbuf_dbs) {
298 dma_free_coherent(dev->dev, mem_size,
299 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
300 dev->dbbuf_dbs = NULL;
301 }
302 if (dev->dbbuf_eis) {
303 dma_free_coherent(dev->dev, mem_size,
304 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
305 dev->dbbuf_eis = NULL;
306 }
307}
308
309static void nvme_dbbuf_init(struct nvme_dev *dev,
310 struct nvme_queue *nvmeq, int qid)
311{
312 if (!dev->dbbuf_dbs || !qid)
313 return;
314
315 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
316 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
317 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
318 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
319}
320
321static void nvme_dbbuf_set(struct nvme_dev *dev)
322{
323 struct nvme_command c;
324
325 if (!dev->dbbuf_dbs)
326 return;
327
328 memset(&c, 0, sizeof(c));
329 c.dbbuf.opcode = nvme_admin_dbbuf;
330 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
331 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
332
333 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 334 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
335 /* Free memory and continue on */
336 nvme_dbbuf_dma_free(dev);
337 }
338}
339
340static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
341{
342 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
343}
344
345/* Update dbbuf and return true if an MMIO is required */
346static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
347 volatile u32 *dbbuf_ei)
348{
349 if (dbbuf_db) {
350 u16 old_value;
351
352 /*
353 * Ensure that the queue is written before updating
354 * the doorbell in memory
355 */
356 wmb();
357
358 old_value = *dbbuf_db;
359 *dbbuf_db = value;
360
f1ed3df2
MW
361 /*
362 * Ensure that the doorbell is updated before reading the event
363 * index from memory. The controller needs to provide similar
364 * ordering to ensure the envent index is updated before reading
365 * the doorbell.
366 */
367 mb();
368
f9f38e33
HK
369 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
370 return false;
371 }
372
373 return true;
b60503ba
MW
374}
375
ac3dd5bd
JA
376/*
377 * Max size of iod being embedded in the request payload
378 */
379#define NVME_INT_PAGES 2
5fd4ce1b 380#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
381
382/*
383 * Will slightly overestimate the number of pages needed. This is OK
384 * as it only leads to a small amount of wasted memory for the lifetime of
385 * the I/O.
386 */
387static int nvme_npages(unsigned size, struct nvme_dev *dev)
388{
5fd4ce1b
CH
389 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
390 dev->ctrl.page_size);
ac3dd5bd
JA
391 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
392}
393
a7a7cbe3
CK
394/*
395 * Calculates the number of pages needed for the SGL segments. For example a 4k
396 * page can accommodate 256 SGL descriptors.
397 */
398static int nvme_pci_npages_sgl(unsigned int num_seg)
ac3dd5bd 399{
a7a7cbe3 400 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
f4800d6d 401}
ac3dd5bd 402
a7a7cbe3
CK
403static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
404 unsigned int size, unsigned int nseg, bool use_sgl)
f4800d6d 405{
a7a7cbe3
CK
406 size_t alloc_size;
407
408 if (use_sgl)
409 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
410 else
411 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
412
413 return alloc_size + sizeof(struct scatterlist) * nseg;
f4800d6d 414}
ac3dd5bd 415
a7a7cbe3 416static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
f4800d6d 417{
a7a7cbe3
CK
418 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
419 NVME_INT_BYTES(dev), NVME_INT_PAGES,
420 use_sgl);
421
422 return sizeof(struct nvme_iod) + alloc_size;
ac3dd5bd
JA
423}
424
a4aea562
MB
425static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
426 unsigned int hctx_idx)
e85248e5 427{
a4aea562 428 struct nvme_dev *dev = data;
147b27e4 429 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 430
42483228
KB
431 WARN_ON(hctx_idx != 0);
432 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
433 WARN_ON(nvmeq->tags);
434
a4aea562 435 hctx->driver_data = nvmeq;
42483228 436 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 437 return 0;
e85248e5
MW
438}
439
4af0e21c
KB
440static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
441{
442 struct nvme_queue *nvmeq = hctx->driver_data;
443
444 nvmeq->tags = NULL;
445}
446
a4aea562
MB
447static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
448 unsigned int hctx_idx)
b60503ba 449{
a4aea562 450 struct nvme_dev *dev = data;
147b27e4 451 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 452
42483228
KB
453 if (!nvmeq->tags)
454 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 455
42483228 456 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
457 hctx->driver_data = nvmeq;
458 return 0;
b60503ba
MW
459}
460
d6296d39
CH
461static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
462 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 463{
d6296d39 464 struct nvme_dev *dev = set->driver_data;
f4800d6d 465 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a 466 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
147b27e4 467 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
a4aea562
MB
468
469 BUG_ON(!nvmeq);
f4800d6d 470 iod->nvmeq = nvmeq;
59e29ce6
SG
471
472 nvme_req(req)->ctrl = &dev->ctrl;
a4aea562
MB
473 return 0;
474}
475
3b6592f7
JA
476static int queue_irq_offset(struct nvme_dev *dev)
477{
478 /* if we have more than 1 vec, admin queue offsets us by 1 */
479 if (dev->num_vecs > 1)
480 return 1;
481
482 return 0;
483}
484
dca51e78
CH
485static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
486{
487 struct nvme_dev *dev = set->driver_data;
3b6592f7
JA
488 int i, qoff, offset;
489
490 offset = queue_irq_offset(dev);
491 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
492 struct blk_mq_queue_map *map = &set->map[i];
493
494 map->nr_queues = dev->io_queues[i];
495 if (!map->nr_queues) {
e20ba6e1 496 BUG_ON(i == HCTX_TYPE_DEFAULT);
dca51e78 497
3b6592f7 498 /* shared set, resuse read set parameters */
e20ba6e1 499 map->nr_queues = dev->io_queues[HCTX_TYPE_DEFAULT];
3b6592f7
JA
500 qoff = 0;
501 offset = queue_irq_offset(dev);
502 }
503
4b04cc6a
JA
504 /*
505 * The poll queue(s) doesn't have an IRQ (and hence IRQ
506 * affinity), so use the regular blk-mq cpu mapping
507 */
3b6592f7 508 map->queue_offset = qoff;
e20ba6e1 509 if (i != HCTX_TYPE_POLL)
4b04cc6a
JA
510 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
511 else
512 blk_mq_map_queues(map);
3b6592f7
JA
513 qoff += map->nr_queues;
514 offset += map->nr_queues;
515 }
516
517 return 0;
dca51e78
CH
518}
519
04f3eafd
JA
520/*
521 * Write sq tail if we are asked to, or if the next command would wrap.
522 */
523static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
524{
525 if (!write_sq) {
526 u16 next_tail = nvmeq->sq_tail + 1;
527
528 if (next_tail == nvmeq->q_depth)
529 next_tail = 0;
530 if (next_tail != nvmeq->last_sq_tail)
531 return;
532 }
533
534 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
535 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
536 writel(nvmeq->sq_tail, nvmeq->q_db);
537 nvmeq->last_sq_tail = nvmeq->sq_tail;
538}
539
b60503ba 540/**
90ea5ca4 541 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
542 * @nvmeq: The queue to use
543 * @cmd: The command to send
04f3eafd 544 * @write_sq: whether to write to the SQ doorbell
b60503ba 545 */
04f3eafd
JA
546static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
547 bool write_sq)
b60503ba 548{
90ea5ca4 549 spin_lock(&nvmeq->sq_lock);
0f238ff5 550 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
90ea5ca4
CH
551 if (++nvmeq->sq_tail == nvmeq->q_depth)
552 nvmeq->sq_tail = 0;
04f3eafd
JA
553 nvme_write_sq_db(nvmeq, write_sq);
554 spin_unlock(&nvmeq->sq_lock);
555}
556
557static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
558{
559 struct nvme_queue *nvmeq = hctx->driver_data;
560
561 spin_lock(&nvmeq->sq_lock);
562 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
563 nvme_write_sq_db(nvmeq, true);
90ea5ca4 564 spin_unlock(&nvmeq->sq_lock);
b60503ba
MW
565}
566
a7a7cbe3 567static void **nvme_pci_iod_list(struct request *req)
b60503ba 568{
f4800d6d 569 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 570 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
571}
572
955b1b5a
MI
573static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
574{
575 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
20469a37 576 int nseg = blk_rq_nr_phys_segments(req);
955b1b5a
MI
577 unsigned int avg_seg_size;
578
20469a37
KB
579 if (nseg == 0)
580 return false;
581
582 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a
MI
583
584 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
585 return false;
586 if (!iod->nvmeq->qid)
587 return false;
588 if (!sgl_threshold || avg_seg_size < sgl_threshold)
589 return false;
590 return true;
591}
592
fc17b653 593static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 594{
f4800d6d 595 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 596 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 597 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 598
955b1b5a
MI
599 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
600
f4800d6d 601 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
943e942e 602 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
f4800d6d 603 if (!iod->sg)
fc17b653 604 return BLK_STS_RESOURCE;
f4800d6d
CH
605 } else {
606 iod->sg = iod->inline_sg;
ac3dd5bd
JA
607 }
608
f4800d6d
CH
609 iod->aborted = 0;
610 iod->npages = -1;
611 iod->nents = 0;
612 iod->length = size;
f80ec966 613
fc17b653 614 return BLK_STS_OK;
ac3dd5bd
JA
615}
616
f4800d6d 617static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 618{
f4800d6d 619 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
620 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
621 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
622
eca18b23 623 int i;
eca18b23
MW
624
625 if (iod->npages == 0)
a7a7cbe3
CK
626 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
627 dma_addr);
628
eca18b23 629 for (i = 0; i < iod->npages; i++) {
a7a7cbe3
CK
630 void *addr = nvme_pci_iod_list(req)[i];
631
632 if (iod->use_sgl) {
633 struct nvme_sgl_desc *sg_list = addr;
634
635 next_dma_addr =
636 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
637 } else {
638 __le64 *prp_list = addr;
639
640 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
641 }
642
643 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
644 dma_addr = next_dma_addr;
eca18b23 645 }
ac3dd5bd 646
f4800d6d 647 if (iod->sg != iod->inline_sg)
943e942e 648 mempool_free(iod->sg, dev->iod_mempool);
b4ff9c8d
KB
649}
650
d0877473
KB
651static void nvme_print_sgl(struct scatterlist *sgl, int nents)
652{
653 int i;
654 struct scatterlist *sg;
655
656 for_each_sg(sgl, sg, nents, i) {
657 dma_addr_t phys = sg_phys(sg);
658 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
659 "dma_address:%pad dma_length:%d\n",
660 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
661 sg_dma_len(sg));
662 }
663}
664
a7a7cbe3
CK
665static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
666 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 667{
f4800d6d 668 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 669 struct dma_pool *pool;
b131c61d 670 int length = blk_rq_payload_bytes(req);
eca18b23 671 struct scatterlist *sg = iod->sg;
ff22b54f
MW
672 int dma_len = sg_dma_len(sg);
673 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 674 u32 page_size = dev->ctrl.page_size;
f137e0f1 675 int offset = dma_addr & (page_size - 1);
e025344c 676 __le64 *prp_list;
a7a7cbe3 677 void **list = nvme_pci_iod_list(req);
e025344c 678 dma_addr_t prp_dma;
eca18b23 679 int nprps, i;
ff22b54f 680
1d090624 681 length -= (page_size - offset);
5228b328
JS
682 if (length <= 0) {
683 iod->first_dma = 0;
a7a7cbe3 684 goto done;
5228b328 685 }
ff22b54f 686
1d090624 687 dma_len -= (page_size - offset);
ff22b54f 688 if (dma_len) {
1d090624 689 dma_addr += (page_size - offset);
ff22b54f
MW
690 } else {
691 sg = sg_next(sg);
692 dma_addr = sg_dma_address(sg);
693 dma_len = sg_dma_len(sg);
694 }
695
1d090624 696 if (length <= page_size) {
edd10d33 697 iod->first_dma = dma_addr;
a7a7cbe3 698 goto done;
e025344c
SMM
699 }
700
1d090624 701 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
702 if (nprps <= (256 / 8)) {
703 pool = dev->prp_small_pool;
eca18b23 704 iod->npages = 0;
99802a7a
MW
705 } else {
706 pool = dev->prp_page_pool;
eca18b23 707 iod->npages = 1;
99802a7a
MW
708 }
709
69d2b571 710 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 711 if (!prp_list) {
edd10d33 712 iod->first_dma = dma_addr;
eca18b23 713 iod->npages = -1;
86eea289 714 return BLK_STS_RESOURCE;
b77954cb 715 }
eca18b23
MW
716 list[0] = prp_list;
717 iod->first_dma = prp_dma;
e025344c
SMM
718 i = 0;
719 for (;;) {
1d090624 720 if (i == page_size >> 3) {
e025344c 721 __le64 *old_prp_list = prp_list;
69d2b571 722 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 723 if (!prp_list)
86eea289 724 return BLK_STS_RESOURCE;
eca18b23 725 list[iod->npages++] = prp_list;
7523d834
MW
726 prp_list[0] = old_prp_list[i - 1];
727 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
728 i = 1;
e025344c
SMM
729 }
730 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
731 dma_len -= page_size;
732 dma_addr += page_size;
733 length -= page_size;
e025344c
SMM
734 if (length <= 0)
735 break;
736 if (dma_len > 0)
737 continue;
86eea289
KB
738 if (unlikely(dma_len < 0))
739 goto bad_sgl;
e025344c
SMM
740 sg = sg_next(sg);
741 dma_addr = sg_dma_address(sg);
742 dma_len = sg_dma_len(sg);
ff22b54f
MW
743 }
744
a7a7cbe3
CK
745done:
746 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
747 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
748
86eea289
KB
749 return BLK_STS_OK;
750
751 bad_sgl:
d0877473
KB
752 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
753 "Invalid SGL for payload:%d nents:%d\n",
754 blk_rq_payload_bytes(req), iod->nents);
86eea289 755 return BLK_STS_IOERR;
ff22b54f
MW
756}
757
a7a7cbe3
CK
758static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
759 struct scatterlist *sg)
760{
761 sge->addr = cpu_to_le64(sg_dma_address(sg));
762 sge->length = cpu_to_le32(sg_dma_len(sg));
763 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
764}
765
766static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
767 dma_addr_t dma_addr, int entries)
768{
769 sge->addr = cpu_to_le64(dma_addr);
770 if (entries < SGES_PER_PAGE) {
771 sge->length = cpu_to_le32(entries * sizeof(*sge));
772 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
773 } else {
774 sge->length = cpu_to_le32(PAGE_SIZE);
775 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
776 }
777}
778
779static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
b0f2853b 780 struct request *req, struct nvme_rw_command *cmd, int entries)
a7a7cbe3
CK
781{
782 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
783 struct dma_pool *pool;
784 struct nvme_sgl_desc *sg_list;
785 struct scatterlist *sg = iod->sg;
a7a7cbe3 786 dma_addr_t sgl_dma;
b0f2853b 787 int i = 0;
a7a7cbe3 788
a7a7cbe3
CK
789 /* setting the transfer type as SGL */
790 cmd->flags = NVME_CMD_SGL_METABUF;
791
b0f2853b 792 if (entries == 1) {
a7a7cbe3
CK
793 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
794 return BLK_STS_OK;
795 }
796
797 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
798 pool = dev->prp_small_pool;
799 iod->npages = 0;
800 } else {
801 pool = dev->prp_page_pool;
802 iod->npages = 1;
803 }
804
805 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
806 if (!sg_list) {
807 iod->npages = -1;
808 return BLK_STS_RESOURCE;
809 }
810
811 nvme_pci_iod_list(req)[0] = sg_list;
812 iod->first_dma = sgl_dma;
813
814 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
815
816 do {
817 if (i == SGES_PER_PAGE) {
818 struct nvme_sgl_desc *old_sg_desc = sg_list;
819 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
820
821 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
822 if (!sg_list)
823 return BLK_STS_RESOURCE;
824
825 i = 0;
826 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
827 sg_list[i++] = *link;
828 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
829 }
830
831 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 832 sg = sg_next(sg);
b0f2853b 833 } while (--entries > 0);
a7a7cbe3 834
a7a7cbe3
CK
835 return BLK_STS_OK;
836}
837
fc17b653 838static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 839 struct nvme_command *cmnd)
d29ec824 840{
f4800d6d 841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
842 struct request_queue *q = req->q;
843 enum dma_data_direction dma_dir = rq_data_dir(req) ?
844 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 845 blk_status_t ret = BLK_STS_IOERR;
b0f2853b 846 int nr_mapped;
d29ec824 847
f9d03f96 848 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
849 iod->nents = blk_rq_map_sg(q, req, iod->sg);
850 if (!iod->nents)
851 goto out;
d29ec824 852
fc17b653 853 ret = BLK_STS_RESOURCE;
e0596ab2
LG
854
855 if (is_pci_p2pdma_page(sg_page(iod->sg)))
856 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
857 dma_dir);
858 else
859 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
860 dma_dir, DMA_ATTR_NO_WARN);
b0f2853b 861 if (!nr_mapped)
ba1ca37e 862 goto out;
d29ec824 863
955b1b5a 864 if (iod->use_sgl)
b0f2853b 865 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
a7a7cbe3
CK
866 else
867 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
868
86eea289 869 if (ret != BLK_STS_OK)
ba1ca37e 870 goto out_unmap;
0e5e4f0e 871
fc17b653 872 ret = BLK_STS_IOERR;
ba1ca37e
CH
873 if (blk_integrity_rq(req)) {
874 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
875 goto out_unmap;
0e5e4f0e 876
bf684057
CH
877 sg_init_table(&iod->meta_sg, 1);
878 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 879 goto out_unmap;
0e5e4f0e 880
bf684057 881 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 882 goto out_unmap;
00df5cb4 883
bf684057 884 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
3045c0d0
CK
885 }
886
fc17b653 887 return BLK_STS_OK;
00df5cb4 888
ba1ca37e
CH
889out_unmap:
890 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
891out:
892 return ret;
00df5cb4
MW
893}
894
f4800d6d 895static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 896{
f4800d6d 897 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
898 enum dma_data_direction dma_dir = rq_data_dir(req) ?
899 DMA_TO_DEVICE : DMA_FROM_DEVICE;
900
901 if (iod->nents) {
e0596ab2
LG
902 /* P2PDMA requests do not need to be unmapped */
903 if (!is_pci_p2pdma_page(sg_page(iod->sg)))
904 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
905
f7f1fc36 906 if (blk_integrity_rq(req))
bf684057 907 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e19b127f 908 }
e1e5e564 909
f9d03f96 910 nvme_cleanup_cmd(req);
f4800d6d 911 nvme_free_iod(dev, req);
d4f6c3ab 912}
b60503ba 913
d29ec824
CH
914/*
915 * NOTE: ns is NULL when called on the admin queue.
916 */
fc17b653 917static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 918 const struct blk_mq_queue_data *bd)
edd10d33 919{
a4aea562
MB
920 struct nvme_ns *ns = hctx->queue->queuedata;
921 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 922 struct nvme_dev *dev = nvmeq->dev;
a4aea562 923 struct request *req = bd->rq;
ba1ca37e 924 struct nvme_command cmnd;
ebe6d874 925 blk_status_t ret;
e1e5e564 926
d1f06f4a
JA
927 /*
928 * We should not need to do this, but we're still using this to
929 * ensure we can drain requests on a dying queue.
930 */
4e224106 931 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
d1f06f4a
JA
932 return BLK_STS_IOERR;
933
f9d03f96 934 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 935 if (ret)
f4800d6d 936 return ret;
a4aea562 937
b131c61d 938 ret = nvme_init_iod(req, dev);
fc17b653 939 if (ret)
f9d03f96 940 goto out_free_cmd;
a4aea562 941
fc17b653 942 if (blk_rq_nr_phys_segments(req)) {
b131c61d 943 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
944 if (ret)
945 goto out_cleanup_iod;
946 }
a4aea562 947
aae239e1 948 blk_mq_start_request(req);
04f3eafd 949 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
fc17b653 950 return BLK_STS_OK;
f9d03f96 951out_cleanup_iod:
f4800d6d 952 nvme_free_iod(dev, req);
f9d03f96
CH
953out_free_cmd:
954 nvme_cleanup_cmd(req);
ba1ca37e 955 return ret;
b60503ba 956}
e1e5e564 957
77f02a7a 958static void nvme_pci_complete_rq(struct request *req)
eee417b0 959{
f4800d6d 960 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 961
77f02a7a
CH
962 nvme_unmap_data(iod->nvmeq->dev, req);
963 nvme_complete_rq(req);
b60503ba
MW
964}
965
d783e0bd 966/* We read the CQE phase first to check if the rest of the entry is valid */
750dde44 967static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
d783e0bd 968{
750dde44
CH
969 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
970 nvmeq->cq_phase;
d783e0bd
MR
971}
972
eb281c82 973static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 974{
eb281c82 975 u16 head = nvmeq->cq_head;
adf68f21 976
397c699f
KB
977 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
978 nvmeq->dbbuf_cq_ei))
979 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
eb281c82 980}
aae239e1 981
5cb525c8 982static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
83a12fb7 983{
5cb525c8 984 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
83a12fb7 985 struct request *req;
adf68f21 986
83a12fb7
SG
987 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
988 dev_warn(nvmeq->dev->ctrl.device,
989 "invalid id %d completed on queue %d\n",
990 cqe->command_id, le16_to_cpu(cqe->sq_id));
991 return;
b60503ba
MW
992 }
993
83a12fb7
SG
994 /*
995 * AEN requests are special as they don't time out and can
996 * survive any kind of queue freeze and often don't respond to
997 * aborts. We don't even bother to allocate a struct request
998 * for them but rather special case them here.
999 */
1000 if (unlikely(nvmeq->qid == 0 &&
38dabe21 1001 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
83a12fb7
SG
1002 nvme_complete_async_event(&nvmeq->dev->ctrl,
1003 cqe->status, &cqe->result);
a0fa9647 1004 return;
83a12fb7 1005 }
b60503ba 1006
83a12fb7
SG
1007 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1008 nvme_end_request(req, cqe->status, cqe->result);
1009}
b60503ba 1010
5cb525c8 1011static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
b60503ba 1012{
5cb525c8
JA
1013 while (start != end) {
1014 nvme_handle_cqe(nvmeq, start);
1015 if (++start == nvmeq->q_depth)
1016 start = 0;
1017 }
1018}
adf68f21 1019
5cb525c8
JA
1020static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1021{
1022 if (++nvmeq->cq_head == nvmeq->q_depth) {
1023 nvmeq->cq_head = 0;
1024 nvmeq->cq_phase = !nvmeq->cq_phase;
b60503ba 1025 }
a0fa9647
JA
1026}
1027
1052b8ac
JA
1028static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1029 u16 *end, unsigned int tag)
a0fa9647 1030{
1052b8ac 1031 int found = 0;
b60503ba 1032
5cb525c8 1033 *start = nvmeq->cq_head;
1052b8ac
JA
1034 while (nvme_cqe_pending(nvmeq)) {
1035 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1036 found++;
5cb525c8 1037 nvme_update_cq_head(nvmeq);
920d13a8 1038 }
5cb525c8 1039 *end = nvmeq->cq_head;
eb281c82 1040
5cb525c8 1041 if (*start != *end)
920d13a8 1042 nvme_ring_cq_doorbell(nvmeq);
5cb525c8 1043 return found;
b60503ba
MW
1044}
1045
1046static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5 1047{
58ffacb5 1048 struct nvme_queue *nvmeq = data;
68fa9dbe 1049 irqreturn_t ret = IRQ_NONE;
5cb525c8
JA
1050 u16 start, end;
1051
1ab0cd69 1052 spin_lock(&nvmeq->cq_lock);
68fa9dbe
JA
1053 if (nvmeq->cq_head != nvmeq->last_cq_head)
1054 ret = IRQ_HANDLED;
5cb525c8 1055 nvme_process_cq(nvmeq, &start, &end, -1);
68fa9dbe 1056 nvmeq->last_cq_head = nvmeq->cq_head;
1ab0cd69 1057 spin_unlock(&nvmeq->cq_lock);
5cb525c8 1058
68fa9dbe
JA
1059 if (start != end) {
1060 nvme_complete_cqes(nvmeq, start, end);
1061 return IRQ_HANDLED;
1062 }
1063
1064 return ret;
58ffacb5
MW
1065}
1066
1067static irqreturn_t nvme_irq_check(int irq, void *data)
1068{
1069 struct nvme_queue *nvmeq = data;
750dde44 1070 if (nvme_cqe_pending(nvmeq))
d783e0bd
MR
1071 return IRQ_WAKE_THREAD;
1072 return IRQ_NONE;
58ffacb5
MW
1073}
1074
7776db1c 1075static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 1076{
5cb525c8 1077 u16 start, end;
1052b8ac 1078 int found;
a0fa9647 1079
750dde44 1080 if (!nvme_cqe_pending(nvmeq))
442e19b7 1081 return 0;
a0fa9647 1082
1ab0cd69 1083 spin_lock_irq(&nvmeq->cq_lock);
5cb525c8 1084 found = nvme_process_cq(nvmeq, &start, &end, tag);
1ab0cd69 1085 spin_unlock_irq(&nvmeq->cq_lock);
442e19b7 1086
5cb525c8 1087 nvme_complete_cqes(nvmeq, start, end);
442e19b7 1088 return found;
a0fa9647
JA
1089}
1090
9743139c 1091static int nvme_poll(struct blk_mq_hw_ctx *hctx)
7776db1c
KB
1092{
1093 struct nvme_queue *nvmeq = hctx->driver_data;
1094
9743139c 1095 return __nvme_poll(nvmeq, -1);
7776db1c
KB
1096}
1097
9743139c 1098static int nvme_poll_noirq(struct blk_mq_hw_ctx *hctx)
dabcefab
JA
1099{
1100 struct nvme_queue *nvmeq = hctx->driver_data;
1101 u16 start, end;
1102 bool found;
1103
1104 if (!nvme_cqe_pending(nvmeq))
1105 return 0;
1106
1107 spin_lock(&nvmeq->cq_lock);
9743139c 1108 found = nvme_process_cq(nvmeq, &start, &end, -1);
dabcefab
JA
1109 spin_unlock(&nvmeq->cq_lock);
1110
1111 nvme_complete_cqes(nvmeq, start, end);
1112 return found;
1113}
1114
ad22c355 1115static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 1116{
f866fc42 1117 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 1118 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 1119 struct nvme_command c;
b60503ba 1120
a4aea562
MB
1121 memset(&c, 0, sizeof(c));
1122 c.common.opcode = nvme_admin_async_event;
ad22c355 1123 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
04f3eafd 1124 nvme_submit_cmd(nvmeq, &c, true);
f705f837
CH
1125}
1126
b60503ba 1127static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1128{
b60503ba
MW
1129 struct nvme_command c;
1130
1131 memset(&c, 0, sizeof(c));
1132 c.delete_queue.opcode = opcode;
1133 c.delete_queue.qid = cpu_to_le16(id);
1134
1c63dc66 1135 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1136}
1137
b60503ba 1138static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
a8e3e0bb 1139 struct nvme_queue *nvmeq, s16 vector)
b60503ba 1140{
b60503ba 1141 struct nvme_command c;
4b04cc6a
JA
1142 int flags = NVME_QUEUE_PHYS_CONTIG;
1143
1144 if (vector != -1)
1145 flags |= NVME_CQ_IRQ_ENABLED;
b60503ba 1146
d29ec824 1147 /*
16772ae6 1148 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1149 * is attached to the request.
1150 */
b60503ba
MW
1151 memset(&c, 0, sizeof(c));
1152 c.create_cq.opcode = nvme_admin_create_cq;
1153 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1154 c.create_cq.cqid = cpu_to_le16(qid);
1155 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1156 c.create_cq.cq_flags = cpu_to_le16(flags);
4b04cc6a
JA
1157 if (vector != -1)
1158 c.create_cq.irq_vector = cpu_to_le16(vector);
1159 else
1160 c.create_cq.irq_vector = 0;
b60503ba 1161
1c63dc66 1162 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1163}
1164
1165static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1166 struct nvme_queue *nvmeq)
1167{
9abd68ef 1168 struct nvme_ctrl *ctrl = &dev->ctrl;
b60503ba 1169 struct nvme_command c;
81c1cd98 1170 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1171
9abd68ef
JA
1172 /*
1173 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1174 * set. Since URGENT priority is zeroes, it makes all queues
1175 * URGENT.
1176 */
1177 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1178 flags |= NVME_SQ_PRIO_MEDIUM;
1179
d29ec824 1180 /*
16772ae6 1181 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1182 * is attached to the request.
1183 */
b60503ba
MW
1184 memset(&c, 0, sizeof(c));
1185 c.create_sq.opcode = nvme_admin_create_sq;
1186 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1187 c.create_sq.sqid = cpu_to_le16(qid);
1188 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1189 c.create_sq.sq_flags = cpu_to_le16(flags);
1190 c.create_sq.cqid = cpu_to_le16(qid);
1191
1c63dc66 1192 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1193}
1194
1195static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1196{
1197 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1198}
1199
1200static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1201{
1202 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1203}
1204
2a842aca 1205static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1206{
f4800d6d
CH
1207 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1208 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 1209
27fa9bc5
CH
1210 dev_warn(nvmeq->dev->ctrl.device,
1211 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1212 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1213 blk_mq_free_request(req);
bc5fc7e4
MW
1214}
1215
b2a0eb1a
KB
1216static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1217{
1218
1219 /* If true, indicates loss of adapter communication, possibly by a
1220 * NVMe Subsystem reset.
1221 */
1222 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1223
ad70062c
JW
1224 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1225 switch (dev->ctrl.state) {
1226 case NVME_CTRL_RESETTING:
ad6a0a52 1227 case NVME_CTRL_CONNECTING:
b2a0eb1a 1228 return false;
ad70062c
JW
1229 default:
1230 break;
1231 }
b2a0eb1a
KB
1232
1233 /* We shouldn't reset unless the controller is on fatal error state
1234 * _or_ if we lost the communication with it.
1235 */
1236 if (!(csts & NVME_CSTS_CFS) && !nssro)
1237 return false;
1238
b2a0eb1a
KB
1239 return true;
1240}
1241
1242static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1243{
1244 /* Read a config register to help see what died. */
1245 u16 pci_status;
1246 int result;
1247
1248 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1249 &pci_status);
1250 if (result == PCIBIOS_SUCCESSFUL)
1251 dev_warn(dev->ctrl.device,
1252 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1253 csts, pci_status);
1254 else
1255 dev_warn(dev->ctrl.device,
1256 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1257 csts, result);
1258}
1259
31c7c7d2 1260static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1261{
f4800d6d
CH
1262 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1263 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 1264 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1265 struct request *abort_req;
a4aea562 1266 struct nvme_command cmd;
b2a0eb1a
KB
1267 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1268
651438bb
WX
1269 /* If PCI error recovery process is happening, we cannot reset or
1270 * the recovery mechanism will surely fail.
1271 */
1272 mb();
1273 if (pci_channel_offline(to_pci_dev(dev->dev)))
1274 return BLK_EH_RESET_TIMER;
1275
b2a0eb1a
KB
1276 /*
1277 * Reset immediately if the controller is failed
1278 */
1279 if (nvme_should_reset(dev, csts)) {
1280 nvme_warn_reset(dev, csts);
1281 nvme_dev_disable(dev, false);
d86c4d8e 1282 nvme_reset_ctrl(&dev->ctrl);
db8c48e4 1283 return BLK_EH_DONE;
b2a0eb1a 1284 }
c30341dc 1285
7776db1c
KB
1286 /*
1287 * Did we miss an interrupt?
1288 */
1289 if (__nvme_poll(nvmeq, req->tag)) {
1290 dev_warn(dev->ctrl.device,
1291 "I/O %d QID %d timeout, completion polled\n",
1292 req->tag, nvmeq->qid);
db8c48e4 1293 return BLK_EH_DONE;
7776db1c
KB
1294 }
1295
31c7c7d2 1296 /*
fd634f41
CH
1297 * Shutdown immediately if controller times out while starting. The
1298 * reset work will see the pci device disabled when it gets the forced
1299 * cancellation error. All outstanding requests are completed on
db8c48e4 1300 * shutdown, so we return BLK_EH_DONE.
fd634f41 1301 */
4244140d
KB
1302 switch (dev->ctrl.state) {
1303 case NVME_CTRL_CONNECTING:
1304 case NVME_CTRL_RESETTING:
b9cac43c 1305 dev_warn_ratelimited(dev->ctrl.device,
fd634f41
CH
1306 "I/O %d QID %d timeout, disable controller\n",
1307 req->tag, nvmeq->qid);
a5cdb68c 1308 nvme_dev_disable(dev, false);
27fa9bc5 1309 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
db8c48e4 1310 return BLK_EH_DONE;
4244140d
KB
1311 default:
1312 break;
c30341dc
KB
1313 }
1314
fd634f41
CH
1315 /*
1316 * Shutdown the controller immediately and schedule a reset if the
1317 * command was already aborted once before and still hasn't been
1318 * returned to the driver, or if this is the admin queue.
31c7c7d2 1319 */
f4800d6d 1320 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1321 dev_warn(dev->ctrl.device,
e1569a16
KB
1322 "I/O %d QID %d timeout, reset controller\n",
1323 req->tag, nvmeq->qid);
a5cdb68c 1324 nvme_dev_disable(dev, false);
d86c4d8e 1325 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1326
27fa9bc5 1327 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
db8c48e4 1328 return BLK_EH_DONE;
c30341dc 1329 }
c30341dc 1330
e7a2a87d 1331 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1332 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1333 return BLK_EH_RESET_TIMER;
6bf25d16 1334 }
7bf7d778 1335 iod->aborted = 1;
a4aea562 1336
c30341dc
KB
1337 memset(&cmd, 0, sizeof(cmd));
1338 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1339 cmd.abort.cid = req->tag;
c30341dc 1340 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1341
1b3c47c1
SG
1342 dev_warn(nvmeq->dev->ctrl.device,
1343 "I/O %d QID %d timeout, aborting\n",
1344 req->tag, nvmeq->qid);
e7a2a87d
CH
1345
1346 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1347 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1348 if (IS_ERR(abort_req)) {
1349 atomic_inc(&dev->ctrl.abort_limit);
1350 return BLK_EH_RESET_TIMER;
1351 }
1352
1353 abort_req->timeout = ADMIN_TIMEOUT;
1354 abort_req->end_io_data = NULL;
1355 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1356
31c7c7d2
CH
1357 /*
1358 * The aborted req will be completed on receiving the abort req.
1359 * We enable the timer again. If hit twice, it'll cause a device reset,
1360 * as the device then is in a faulty state.
1361 */
1362 return BLK_EH_RESET_TIMER;
c30341dc
KB
1363}
1364
a4aea562
MB
1365static void nvme_free_queue(struct nvme_queue *nvmeq)
1366{
9e866774
MW
1367 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1368 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
0f238ff5
LG
1369
1370 if (nvmeq->sq_cmds) {
1371 if (nvmeq->sq_cmds_is_io)
1372 pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1373 nvmeq->sq_cmds,
1374 SQ_SIZE(nvmeq->q_depth));
1375 else
1376 dma_free_coherent(nvmeq->q_dmadev,
1377 SQ_SIZE(nvmeq->q_depth),
1378 nvmeq->sq_cmds,
1379 nvmeq->sq_dma_addr);
1380 }
9e866774
MW
1381}
1382
a1a5ef99 1383static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1384{
1385 int i;
1386
d858e5f0 1387 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1388 dev->ctrl.queue_count--;
147b27e4 1389 nvme_free_queue(&dev->queues[i]);
121c7ad4 1390 }
22404274
KB
1391}
1392
4d115420
KB
1393/**
1394 * nvme_suspend_queue - put queue into suspended state
40581d1a 1395 * @nvmeq: queue to suspend
4d115420
KB
1396 */
1397static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1398{
4e224106 1399 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
2b25d981 1400 return 1;
a09115b2 1401
4e224106 1402 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
d1f06f4a 1403 mb();
a09115b2 1404
4e224106 1405 nvmeq->dev->online_queues--;
1c63dc66 1406 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
c81545f9 1407 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
4e224106
CH
1408 if (nvmeq->cq_vector == -1)
1409 return 0;
1410 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1411 nvmeq->cq_vector = -1;
4d115420
KB
1412 return 0;
1413}
b60503ba 1414
a5cdb68c 1415static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1416{
147b27e4 1417 struct nvme_queue *nvmeq = &dev->queues[0];
5cb525c8 1418 u16 start, end;
4d115420 1419
a5cdb68c
KB
1420 if (shutdown)
1421 nvme_shutdown_ctrl(&dev->ctrl);
1422 else
20d0dfe6 1423 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
07836e65 1424
1ab0cd69 1425 spin_lock_irq(&nvmeq->cq_lock);
5cb525c8 1426 nvme_process_cq(nvmeq, &start, &end, -1);
1ab0cd69 1427 spin_unlock_irq(&nvmeq->cq_lock);
5cb525c8
JA
1428
1429 nvme_complete_cqes(nvmeq, start, end);
b60503ba
MW
1430}
1431
8ffaadf7
JD
1432static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1433 int entry_size)
1434{
1435 int q_depth = dev->q_depth;
5fd4ce1b
CH
1436 unsigned q_size_aligned = roundup(q_depth * entry_size,
1437 dev->ctrl.page_size);
8ffaadf7
JD
1438
1439 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1440 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1441 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1442 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1443
1444 /*
1445 * Ensure the reduced q_depth is above some threshold where it
1446 * would be better to map queues in system memory with the
1447 * original depth
1448 */
1449 if (q_depth < 64)
1450 return -ENOMEM;
1451 }
1452
1453 return q_depth;
1454}
1455
1456static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1457 int qid, int depth)
1458{
0f238ff5
LG
1459 struct pci_dev *pdev = to_pci_dev(dev->dev);
1460
1461 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1462 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1463 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1464 nvmeq->sq_cmds);
1465 nvmeq->sq_cmds_is_io = true;
1466 }
1467
1468 if (!nvmeq->sq_cmds) {
1469 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1470 &nvmeq->sq_dma_addr, GFP_KERNEL);
1471 nvmeq->sq_cmds_is_io = false;
1472 }
8ffaadf7 1473
815c6704
KB
1474 if (!nvmeq->sq_cmds)
1475 return -ENOMEM;
8ffaadf7
JD
1476 return 0;
1477}
1478
a6ff7262 1479static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1480{
147b27e4 1481 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1482
62314e40
KB
1483 if (dev->ctrl.queue_count > qid)
1484 return 0;
b60503ba 1485
e75ec752 1486 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1487 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1488 if (!nvmeq->cqes)
1489 goto free_nvmeq;
b60503ba 1490
8ffaadf7 1491 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1492 goto free_cqdma;
1493
e75ec752 1494 nvmeq->q_dmadev = dev->dev;
091b6092 1495 nvmeq->dev = dev;
1ab0cd69
JA
1496 spin_lock_init(&nvmeq->sq_lock);
1497 spin_lock_init(&nvmeq->cq_lock);
b60503ba 1498 nvmeq->cq_head = 0;
82123460 1499 nvmeq->cq_phase = 1;
b80d5ccc 1500 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1501 nvmeq->q_depth = depth;
c30341dc 1502 nvmeq->qid = qid;
758dd7fd 1503 nvmeq->cq_vector = -1;
d858e5f0 1504 dev->ctrl.queue_count++;
36a7e993 1505
147b27e4 1506 return 0;
b60503ba
MW
1507
1508 free_cqdma:
e75ec752 1509 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1510 nvmeq->cq_dma_addr);
1511 free_nvmeq:
147b27e4 1512 return -ENOMEM;
b60503ba
MW
1513}
1514
dca51e78 1515static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1516{
0ff199cb
CH
1517 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1518 int nr = nvmeq->dev->ctrl.instance;
1519
1520 if (use_threaded_interrupts) {
1521 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1522 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1523 } else {
1524 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1525 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1526 }
3001082c
MW
1527}
1528
22404274 1529static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1530{
22404274 1531 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1532
1ab0cd69 1533 spin_lock_irq(&nvmeq->cq_lock);
22404274 1534 nvmeq->sq_tail = 0;
04f3eafd 1535 nvmeq->last_sq_tail = 0;
22404274
KB
1536 nvmeq->cq_head = 0;
1537 nvmeq->cq_phase = 1;
b80d5ccc 1538 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1539 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1540 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1541 dev->online_queues++;
1ab0cd69 1542 spin_unlock_irq(&nvmeq->cq_lock);
22404274
KB
1543}
1544
4b04cc6a 1545static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
22404274
KB
1546{
1547 struct nvme_dev *dev = nvmeq->dev;
1548 int result;
a8e3e0bb 1549 s16 vector;
3f85d50b 1550
22b55601
KB
1551 /*
1552 * A queue's vector matches the queue identifier unless the controller
1553 * has only one vector available.
1554 */
4b04cc6a
JA
1555 if (!polled)
1556 vector = dev->num_vecs == 1 ? 0 : qid;
1557 else
1558 vector = -1;
1559
a8e3e0bb 1560 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
ded45505
KB
1561 if (result)
1562 return result;
b60503ba
MW
1563
1564 result = adapter_alloc_sq(dev, qid, nvmeq);
1565 if (result < 0)
ded45505
KB
1566 return result;
1567 else if (result)
b60503ba
MW
1568 goto release_cq;
1569
a8e3e0bb 1570 nvmeq->cq_vector = vector;
161b8be2 1571 nvme_init_queue(nvmeq, qid);
4b04cc6a
JA
1572
1573 if (vector != -1) {
1574 result = queue_request_irq(nvmeq);
1575 if (result < 0)
1576 goto release_sq;
1577 }
b60503ba 1578
4e224106 1579 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
22404274 1580 return result;
b60503ba 1581
a8e3e0bb
JW
1582release_sq:
1583 nvmeq->cq_vector = -1;
f25a2dfc 1584 dev->online_queues--;
b60503ba 1585 adapter_delete_sq(dev, qid);
a8e3e0bb 1586release_cq:
b60503ba 1587 adapter_delete_cq(dev, qid);
22404274 1588 return result;
b60503ba
MW
1589}
1590
f363b089 1591static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1592 .queue_rq = nvme_queue_rq,
77f02a7a 1593 .complete = nvme_pci_complete_rq,
a4aea562 1594 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1595 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1596 .init_request = nvme_init_request,
a4aea562
MB
1597 .timeout = nvme_timeout,
1598};
1599
dabcefab
JA
1600#define NVME_SHARED_MQ_OPS \
1601 .queue_rq = nvme_queue_rq, \
04f3eafd 1602 .commit_rqs = nvme_commit_rqs, \
dabcefab
JA
1603 .complete = nvme_pci_complete_rq, \
1604 .init_hctx = nvme_init_hctx, \
1605 .init_request = nvme_init_request, \
1606 .map_queues = nvme_pci_map_queues, \
1607 .timeout = nvme_timeout \
1608
f363b089 1609static const struct blk_mq_ops nvme_mq_ops = {
dabcefab 1610 NVME_SHARED_MQ_OPS,
3b6592f7 1611 .poll = nvme_poll,
a4aea562
MB
1612};
1613
dabcefab
JA
1614static const struct blk_mq_ops nvme_mq_poll_noirq_ops = {
1615 NVME_SHARED_MQ_OPS,
1616 .poll = nvme_poll_noirq,
1617};
1618
ea191d2f
KB
1619static void nvme_dev_remove_admin(struct nvme_dev *dev)
1620{
1c63dc66 1621 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1622 /*
1623 * If the controller was reset during removal, it's possible
1624 * user requests may be waiting on a stopped queue. Start the
1625 * queue to flush these to completion.
1626 */
c81545f9 1627 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1c63dc66 1628 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1629 blk_mq_free_tag_set(&dev->admin_tagset);
1630 }
1631}
1632
a4aea562
MB
1633static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1634{
1c63dc66 1635 if (!dev->ctrl.admin_q) {
a4aea562
MB
1636 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1637 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c 1638
38dabe21 1639 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
a4aea562 1640 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1641 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
a7a7cbe3 1642 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
d3484991 1643 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1644 dev->admin_tagset.driver_data = dev;
1645
1646 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1647 return -ENOMEM;
34b6c231 1648 dev->ctrl.admin_tagset = &dev->admin_tagset;
a4aea562 1649
1c63dc66
CH
1650 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1651 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1652 blk_mq_free_tag_set(&dev->admin_tagset);
1653 return -ENOMEM;
1654 }
1c63dc66 1655 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1656 nvme_dev_remove_admin(dev);
1c63dc66 1657 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1658 return -ENODEV;
1659 }
0fb59cbc 1660 } else
c81545f9 1661 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
a4aea562
MB
1662
1663 return 0;
1664}
1665
97f6ef64
XY
1666static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1667{
1668 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1669}
1670
1671static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1672{
1673 struct pci_dev *pdev = to_pci_dev(dev->dev);
1674
1675 if (size <= dev->bar_mapped_size)
1676 return 0;
1677 if (size > pci_resource_len(pdev, 0))
1678 return -ENOMEM;
1679 if (dev->bar)
1680 iounmap(dev->bar);
1681 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1682 if (!dev->bar) {
1683 dev->bar_mapped_size = 0;
1684 return -ENOMEM;
1685 }
1686 dev->bar_mapped_size = size;
1687 dev->dbs = dev->bar + NVME_REG_DBS;
1688
1689 return 0;
1690}
1691
01ad0990 1692static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1693{
ba47e386 1694 int result;
b60503ba
MW
1695 u32 aqa;
1696 struct nvme_queue *nvmeq;
1697
97f6ef64
XY
1698 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1699 if (result < 0)
1700 return result;
1701
8ef2074d 1702 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1703 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1704
7a67cbea
CH
1705 if (dev->subsystem &&
1706 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1707 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1708
20d0dfe6 1709 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
ba47e386
MW
1710 if (result < 0)
1711 return result;
b60503ba 1712
a6ff7262 1713 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1714 if (result)
1715 return result;
b60503ba 1716
147b27e4 1717 nvmeq = &dev->queues[0];
b60503ba
MW
1718 aqa = nvmeq->q_depth - 1;
1719 aqa |= aqa << 16;
1720
7a67cbea
CH
1721 writel(aqa, dev->bar + NVME_REG_AQA);
1722 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1723 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1724
20d0dfe6 1725 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
025c557a 1726 if (result)
d4875622 1727 return result;
a4aea562 1728
2b25d981 1729 nvmeq->cq_vector = 0;
161b8be2 1730 nvme_init_queue(nvmeq, 0);
dca51e78 1731 result = queue_request_irq(nvmeq);
758dd7fd
JD
1732 if (result) {
1733 nvmeq->cq_vector = -1;
d4875622 1734 return result;
758dd7fd 1735 }
025c557a 1736
4e224106 1737 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
b60503ba
MW
1738 return result;
1739}
1740
749941f2 1741static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1742{
4b04cc6a 1743 unsigned i, max, rw_queues;
749941f2 1744 int ret = 0;
42f61420 1745
d858e5f0 1746 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1747 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1748 ret = -ENOMEM;
42f61420 1749 break;
749941f2
CH
1750 }
1751 }
42f61420 1752
d858e5f0 1753 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
e20ba6e1
CH
1754 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1755 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1756 dev->io_queues[HCTX_TYPE_READ];
4b04cc6a
JA
1757 } else {
1758 rw_queues = max;
1759 }
1760
949928c1 1761 for (i = dev->online_queues; i <= max; i++) {
4b04cc6a
JA
1762 bool polled = i > rw_queues;
1763
1764 ret = nvme_create_queue(&dev->queues[i], i, polled);
d4875622 1765 if (ret)
42f61420 1766 break;
27e8166c 1767 }
749941f2
CH
1768
1769 /*
1770 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1771 * than the desired amount of queues, and even a controller without
1772 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1773 * be useful to upgrade a buggy firmware for example.
1774 */
1775 return ret >= 0 ? 0 : ret;
b60503ba
MW
1776}
1777
202021c1
SB
1778static ssize_t nvme_cmb_show(struct device *dev,
1779 struct device_attribute *attr,
1780 char *buf)
1781{
1782 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1783
c965809c 1784 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1785 ndev->cmbloc, ndev->cmbsz);
1786}
1787static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1788
88de4598 1789static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1790{
88de4598
CH
1791 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1792
1793 return 1ULL << (12 + 4 * szu);
1794}
1795
1796static u32 nvme_cmb_size(struct nvme_dev *dev)
1797{
1798 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1799}
1800
f65efd6d 1801static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1802{
88de4598 1803 u64 size, offset;
8ffaadf7
JD
1804 resource_size_t bar_size;
1805 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1806 int bar;
8ffaadf7 1807
9fe5c59f
KB
1808 if (dev->cmb_size)
1809 return;
1810
7a67cbea 1811 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1812 if (!dev->cmbsz)
1813 return;
202021c1 1814 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1815
88de4598
CH
1816 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1817 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1818 bar = NVME_CMB_BIR(dev->cmbloc);
1819 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1820
1821 if (offset > bar_size)
f65efd6d 1822 return;
8ffaadf7
JD
1823
1824 /*
1825 * Controllers may support a CMB size larger than their BAR,
1826 * for example, due to being behind a bridge. Reduce the CMB to
1827 * the reported size of the BAR
1828 */
1829 if (size > bar_size - offset)
1830 size = bar_size - offset;
1831
0f238ff5
LG
1832 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1833 dev_warn(dev->ctrl.device,
1834 "failed to register the CMB\n");
f65efd6d 1835 return;
0f238ff5
LG
1836 }
1837
8ffaadf7 1838 dev->cmb_size = size;
0f238ff5
LG
1839 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1840
1841 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1842 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1843 pci_p2pmem_publish(pdev, true);
f65efd6d
CH
1844
1845 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1846 &dev_attr_cmb.attr, NULL))
1847 dev_warn(dev->ctrl.device,
1848 "failed to add sysfs attribute for CMB\n");
8ffaadf7
JD
1849}
1850
1851static inline void nvme_release_cmb(struct nvme_dev *dev)
1852{
0f238ff5 1853 if (dev->cmb_size) {
1c78f773
MG
1854 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1855 &dev_attr_cmb.attr, NULL);
0f238ff5 1856 dev->cmb_size = 0;
8ffaadf7
JD
1857 }
1858}
1859
87ad72a5
CH
1860static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1861{
4033f35d 1862 u64 dma_addr = dev->host_mem_descs_dma;
87ad72a5 1863 struct nvme_command c;
87ad72a5
CH
1864 int ret;
1865
87ad72a5
CH
1866 memset(&c, 0, sizeof(c));
1867 c.features.opcode = nvme_admin_set_features;
1868 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1869 c.features.dword11 = cpu_to_le32(bits);
1870 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1871 ilog2(dev->ctrl.page_size));
1872 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1873 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1874 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1875
1876 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1877 if (ret) {
1878 dev_warn(dev->ctrl.device,
1879 "failed to set host mem (err %d, flags %#x).\n",
1880 ret, bits);
1881 }
87ad72a5
CH
1882 return ret;
1883}
1884
1885static void nvme_free_host_mem(struct nvme_dev *dev)
1886{
1887 int i;
1888
1889 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1890 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1891 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1892
1893 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1894 le64_to_cpu(desc->addr));
1895 }
1896
1897 kfree(dev->host_mem_desc_bufs);
1898 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
1899 dma_free_coherent(dev->dev,
1900 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1901 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 1902 dev->host_mem_descs = NULL;
7e5dd57e 1903 dev->nr_host_mem_descs = 0;
87ad72a5
CH
1904}
1905
92dc6895
CH
1906static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1907 u32 chunk_size)
9d713c2b 1908{
87ad72a5 1909 struct nvme_host_mem_buf_desc *descs;
92dc6895 1910 u32 max_entries, len;
4033f35d 1911 dma_addr_t descs_dma;
2ee0e4ed 1912 int i = 0;
87ad72a5 1913 void **bufs;
6fbcde66 1914 u64 size, tmp;
87ad72a5 1915
87ad72a5
CH
1916 tmp = (preferred + chunk_size - 1);
1917 do_div(tmp, chunk_size);
1918 max_entries = tmp;
044a9df1
CH
1919
1920 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1921 max_entries = dev->ctrl.hmmaxd;
1922
4033f35d
CH
1923 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1924 &descs_dma, GFP_KERNEL);
87ad72a5
CH
1925 if (!descs)
1926 goto out;
1927
1928 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1929 if (!bufs)
1930 goto out_free_descs;
1931
244a8fe4 1932 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
1933 dma_addr_t dma_addr;
1934
50cdb7c6 1935 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1936 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1937 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1938 if (!bufs[i])
1939 break;
1940
1941 descs[i].addr = cpu_to_le64(dma_addr);
1942 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1943 i++;
1944 }
1945
92dc6895 1946 if (!size)
87ad72a5 1947 goto out_free_bufs;
87ad72a5 1948
87ad72a5
CH
1949 dev->nr_host_mem_descs = i;
1950 dev->host_mem_size = size;
1951 dev->host_mem_descs = descs;
4033f35d 1952 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
1953 dev->host_mem_desc_bufs = bufs;
1954 return 0;
1955
1956out_free_bufs:
1957 while (--i >= 0) {
1958 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1959
1960 dma_free_coherent(dev->dev, size, bufs[i],
1961 le64_to_cpu(descs[i].addr));
1962 }
1963
1964 kfree(bufs);
1965out_free_descs:
4033f35d
CH
1966 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1967 descs_dma);
87ad72a5 1968out:
87ad72a5
CH
1969 dev->host_mem_descs = NULL;
1970 return -ENOMEM;
1971}
1972
92dc6895
CH
1973static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1974{
1975 u32 chunk_size;
1976
1977 /* start big and work our way down */
30f92d62 1978 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
044a9df1 1979 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
92dc6895
CH
1980 chunk_size /= 2) {
1981 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1982 if (!min || dev->host_mem_size >= min)
1983 return 0;
1984 nvme_free_host_mem(dev);
1985 }
1986 }
1987
1988 return -ENOMEM;
1989}
1990
9620cfba 1991static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
1992{
1993 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1994 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1995 u64 min = (u64)dev->ctrl.hmmin * 4096;
1996 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 1997 int ret;
87ad72a5
CH
1998
1999 preferred = min(preferred, max);
2000 if (min > max) {
2001 dev_warn(dev->ctrl.device,
2002 "min host memory (%lld MiB) above limit (%d MiB).\n",
2003 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2004 nvme_free_host_mem(dev);
9620cfba 2005 return 0;
87ad72a5
CH
2006 }
2007
2008 /*
2009 * If we already have a buffer allocated check if we can reuse it.
2010 */
2011 if (dev->host_mem_descs) {
2012 if (dev->host_mem_size >= min)
2013 enable_bits |= NVME_HOST_MEM_RETURN;
2014 else
2015 nvme_free_host_mem(dev);
2016 }
2017
2018 if (!dev->host_mem_descs) {
92dc6895
CH
2019 if (nvme_alloc_host_mem(dev, min, preferred)) {
2020 dev_warn(dev->ctrl.device,
2021 "failed to allocate host memory buffer.\n");
9620cfba 2022 return 0; /* controller must work without HMB */
92dc6895
CH
2023 }
2024
2025 dev_info(dev->ctrl.device,
2026 "allocated %lld MiB host memory buffer.\n",
2027 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
2028 }
2029
9620cfba
CH
2030 ret = nvme_set_host_mem(dev, enable_bits);
2031 if (ret)
87ad72a5 2032 nvme_free_host_mem(dev);
9620cfba 2033 return ret;
9d713c2b
KB
2034}
2035
3b6592f7
JA
2036static void nvme_calc_io_queues(struct nvme_dev *dev, unsigned int nr_io_queues)
2037{
2038 unsigned int this_w_queues = write_queues;
4b04cc6a 2039 unsigned int this_p_queues = poll_queues;
3b6592f7
JA
2040
2041 /*
2042 * Setup read/write queue split
2043 */
2044 if (nr_io_queues == 1) {
e20ba6e1
CH
2045 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2046 dev->io_queues[HCTX_TYPE_READ] = 0;
2047 dev->io_queues[HCTX_TYPE_POLL] = 0;
3b6592f7
JA
2048 return;
2049 }
2050
4b04cc6a
JA
2051 /*
2052 * Configure number of poll queues, if set
2053 */
2054 if (this_p_queues) {
2055 /*
2056 * We need at least one queue left. With just one queue, we'll
2057 * have a single shared read/write set.
2058 */
2059 if (this_p_queues >= nr_io_queues) {
2060 this_w_queues = 0;
2061 this_p_queues = nr_io_queues - 1;
2062 }
2063
e20ba6e1 2064 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
4b04cc6a
JA
2065 nr_io_queues -= this_p_queues;
2066 } else
e20ba6e1 2067 dev->io_queues[HCTX_TYPE_POLL] = 0;
4b04cc6a 2068
3b6592f7
JA
2069 /*
2070 * If 'write_queues' is set, ensure it leaves room for at least
2071 * one read queue
2072 */
2073 if (this_w_queues >= nr_io_queues)
2074 this_w_queues = nr_io_queues - 1;
2075
2076 /*
2077 * If 'write_queues' is set to zero, reads and writes will share
2078 * a queue set.
2079 */
2080 if (!this_w_queues) {
e20ba6e1
CH
2081 dev->io_queues[HCTX_TYPE_DEFAULT] = nr_io_queues;
2082 dev->io_queues[HCTX_TYPE_READ] = 0;
3b6592f7 2083 } else {
e20ba6e1
CH
2084 dev->io_queues[HCTX_TYPE_DEFAULT] = this_w_queues;
2085 dev->io_queues[HCTX_TYPE_READ] = nr_io_queues - this_w_queues;
3b6592f7
JA
2086 }
2087}
2088
2089static int nvme_setup_irqs(struct nvme_dev *dev, int nr_io_queues)
2090{
2091 struct pci_dev *pdev = to_pci_dev(dev->dev);
2092 int irq_sets[2];
2093 struct irq_affinity affd = {
2094 .pre_vectors = 1,
2095 .nr_sets = ARRAY_SIZE(irq_sets),
2096 .sets = irq_sets,
2097 };
30e06628 2098 int result = 0;
3b6592f7
JA
2099
2100 /*
2101 * For irq sets, we have to ask for minvec == maxvec. This passes
2102 * any reduction back to us, so we can adjust our queue counts and
2103 * IRQ vector needs.
2104 */
2105 do {
2106 nvme_calc_io_queues(dev, nr_io_queues);
e20ba6e1
CH
2107 irq_sets[0] = dev->io_queues[HCTX_TYPE_DEFAULT];
2108 irq_sets[1] = dev->io_queues[HCTX_TYPE_READ];
3b6592f7
JA
2109 if (!irq_sets[1])
2110 affd.nr_sets = 1;
2111
2112 /*
db29eb05
JA
2113 * If we got a failure and we're down to asking for just
2114 * 1 + 1 queues, just ask for a single vector. We'll share
2115 * that between the single IO queue and the admin queue.
3b6592f7 2116 */
db29eb05 2117 if (!(result < 0 && nr_io_queues == 1))
30e06628 2118 nr_io_queues = irq_sets[0] + irq_sets[1] + 1;
3b6592f7
JA
2119
2120 result = pci_alloc_irq_vectors_affinity(pdev, nr_io_queues,
2121 nr_io_queues,
2122 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2123
2124 /*
db29eb05
JA
2125 * Need to reduce our vec counts. If we get ENOSPC, the
2126 * platform should support mulitple vecs, we just need
2127 * to decrease our ask. If we get EINVAL, the platform
2128 * likely does not. Back down to ask for just one vector.
3b6592f7
JA
2129 */
2130 if (result == -ENOSPC) {
2131 nr_io_queues--;
2132 if (!nr_io_queues)
2133 return result;
2134 continue;
db29eb05
JA
2135 } else if (result == -EINVAL) {
2136 nr_io_queues = 1;
2137 continue;
3b6592f7
JA
2138 } else if (result <= 0)
2139 return -EIO;
2140 break;
2141 } while (1);
2142
2143 return result;
2144}
2145
8d85fce7 2146static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2147{
147b27e4 2148 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 2149 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
2150 int result, nr_io_queues;
2151 unsigned long size;
b60503ba 2152
3b6592f7 2153 nr_io_queues = max_io_queues();
9a0be7ab
CH
2154 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2155 if (result < 0)
1b23484b 2156 return result;
9a0be7ab 2157
f5fa90dc 2158 if (nr_io_queues == 0)
a5229050 2159 return 0;
4e224106
CH
2160
2161 clear_bit(NVMEQ_ENABLED, &adminq->flags);
b60503ba 2162
0f238ff5 2163 if (dev->cmb_use_sqes) {
8ffaadf7
JD
2164 result = nvme_cmb_qdepth(dev, nr_io_queues,
2165 sizeof(struct nvme_command));
2166 if (result > 0)
2167 dev->q_depth = result;
2168 else
0f238ff5 2169 dev->cmb_use_sqes = false;
8ffaadf7
JD
2170 }
2171
97f6ef64
XY
2172 do {
2173 size = db_bar_size(dev, nr_io_queues);
2174 result = nvme_remap_bar(dev, size);
2175 if (!result)
2176 break;
2177 if (!--nr_io_queues)
2178 return -ENOMEM;
2179 } while (1);
2180 adminq->q_db = dev->dbs;
f1938f6e 2181
9d713c2b 2182 /* Deregister the admin queue's interrupt */
0ff199cb 2183 pci_free_irq(pdev, 0, adminq);
9d713c2b 2184
e32efbfc
JA
2185 /*
2186 * If we enable msix early due to not intx, disable it again before
2187 * setting up the full range we need.
2188 */
dca51e78 2189 pci_free_irq_vectors(pdev);
3b6592f7
JA
2190
2191 result = nvme_setup_irqs(dev, nr_io_queues);
22b55601 2192 if (result <= 0)
dca51e78 2193 return -EIO;
3b6592f7 2194
22b55601 2195 dev->num_vecs = result;
4b04cc6a 2196 result = max(result - 1, 1);
e20ba6e1 2197 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
fa08a396 2198
e20ba6e1
CH
2199 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2200 dev->io_queues[HCTX_TYPE_DEFAULT],
2201 dev->io_queues[HCTX_TYPE_READ],
2202 dev->io_queues[HCTX_TYPE_POLL]);
3b6592f7 2203
063a8096
MW
2204 /*
2205 * Should investigate if there's a performance win from allocating
2206 * more queues than interrupt vectors; it might allow the submission
2207 * path to scale better, even if the receive path is limited by the
2208 * number of interrupts.
2209 */
063a8096 2210
dca51e78 2211 result = queue_request_irq(adminq);
758dd7fd
JD
2212 if (result) {
2213 adminq->cq_vector = -1;
d4875622 2214 return result;
758dd7fd 2215 }
4e224106 2216 set_bit(NVMEQ_ENABLED, &adminq->flags);
749941f2 2217 return nvme_create_io_queues(dev);
b60503ba
MW
2218}
2219
2a842aca 2220static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 2221{
db3cbfff 2222 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 2223
db3cbfff
KB
2224 blk_mq_free_request(req);
2225 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
2226}
2227
2a842aca 2228static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 2229{
db3cbfff 2230 struct nvme_queue *nvmeq = req->end_io_data;
5cb525c8 2231 u16 start, end;
a5768aa8 2232
db3cbfff
KB
2233 if (!error) {
2234 unsigned long flags;
2235
0bc88192 2236 spin_lock_irqsave(&nvmeq->cq_lock, flags);
5cb525c8 2237 nvme_process_cq(nvmeq, &start, &end, -1);
1ab0cd69 2238 spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
5cb525c8
JA
2239
2240 nvme_complete_cqes(nvmeq, start, end);
a5768aa8 2241 }
db3cbfff
KB
2242
2243 nvme_del_queue_end(req, error);
a5768aa8
KB
2244}
2245
db3cbfff 2246static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 2247{
db3cbfff
KB
2248 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2249 struct request *req;
2250 struct nvme_command cmd;
bda4e0fb 2251
db3cbfff
KB
2252 memset(&cmd, 0, sizeof(cmd));
2253 cmd.delete_queue.opcode = opcode;
2254 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 2255
eb71f435 2256 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
2257 if (IS_ERR(req))
2258 return PTR_ERR(req);
bda4e0fb 2259
db3cbfff
KB
2260 req->timeout = ADMIN_TIMEOUT;
2261 req->end_io_data = nvmeq;
2262
2263 blk_execute_rq_nowait(q, NULL, req, false,
2264 opcode == nvme_admin_delete_cq ?
2265 nvme_del_cq_end : nvme_del_queue_end);
2266 return 0;
bda4e0fb
KB
2267}
2268
ee9aebb2 2269static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 2270{
ee9aebb2 2271 int pass, queues = dev->online_queues - 1;
db3cbfff
KB
2272 unsigned long timeout;
2273 u8 opcode = nvme_admin_delete_sq;
a5768aa8 2274
db3cbfff 2275 for (pass = 0; pass < 2; pass++) {
014a0d60 2276 int sent = 0, i = queues;
db3cbfff
KB
2277
2278 reinit_completion(&dev->ioq_wait);
2279 retry:
2280 timeout = ADMIN_TIMEOUT;
c21377f8 2281 for (; i > 0; i--, sent++)
147b27e4 2282 if (nvme_delete_queue(&dev->queues[i], opcode))
db3cbfff 2283 break;
c21377f8 2284
db3cbfff
KB
2285 while (sent--) {
2286 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2287 if (timeout == 0)
2288 return;
2289 if (i)
2290 goto retry;
2291 }
2292 opcode = nvme_admin_delete_cq;
2293 }
a5768aa8
KB
2294}
2295
422ef0c7 2296/*
2b1b7e78 2297 * return error value only when tagset allocation failed
422ef0c7 2298 */
8d85fce7 2299static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2300{
2b1b7e78
JW
2301 int ret;
2302
5bae7f73 2303 if (!dev->ctrl.tagset) {
e20ba6e1 2304 if (!dev->io_queues[HCTX_TYPE_POLL])
dabcefab
JA
2305 dev->tagset.ops = &nvme_mq_ops;
2306 else
2307 dev->tagset.ops = &nvme_mq_poll_noirq_ops;
2308
ffe7704d 2309 dev->tagset.nr_hw_queues = dev->online_queues - 1;
e20ba6e1 2310 dev->tagset.nr_maps = HCTX_MAX_TYPES;
ffe7704d
KB
2311 dev->tagset.timeout = NVME_IO_TIMEOUT;
2312 dev->tagset.numa_node = dev_to_node(dev->dev);
2313 dev->tagset.queue_depth =
a4aea562 2314 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
a7a7cbe3
CK
2315 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2316 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2317 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2318 nvme_pci_cmd_size(dev, true));
2319 }
ffe7704d
KB
2320 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2321 dev->tagset.driver_data = dev;
b60503ba 2322
2b1b7e78
JW
2323 ret = blk_mq_alloc_tag_set(&dev->tagset);
2324 if (ret) {
2325 dev_warn(dev->ctrl.device,
2326 "IO queues tagset allocation failed %d\n", ret);
2327 return ret;
2328 }
5bae7f73 2329 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
2330
2331 nvme_dbbuf_set(dev);
949928c1
KB
2332 } else {
2333 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2334
2335 /* Free previously allocated queues that are no longer usable */
2336 nvme_free_queues(dev, dev->online_queues);
ffe7704d 2337 }
949928c1 2338
e1e5e564 2339 return 0;
b60503ba
MW
2340}
2341
b00a726a 2342static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2343{
b00a726a 2344 int result = -ENOMEM;
e75ec752 2345 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2346
2347 if (pci_enable_device_mem(pdev))
2348 return result;
2349
0877cb0d 2350 pci_set_master(pdev);
0877cb0d 2351
e75ec752
CH
2352 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2353 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2354 goto disable;
0877cb0d 2355
7a67cbea 2356 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2357 result = -ENODEV;
b00a726a 2358 goto disable;
0e53d180 2359 }
e32efbfc
JA
2360
2361 /*
a5229050
KB
2362 * Some devices and/or platforms don't advertise or work with INTx
2363 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2364 * adjust this later.
e32efbfc 2365 */
dca51e78
CH
2366 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2367 if (result < 0)
2368 return result;
e32efbfc 2369
20d0dfe6 2370 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2371
20d0dfe6 2372 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2373 io_queue_depth);
20d0dfe6 2374 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2375 dev->dbs = dev->bar + 4096;
1f390c1f
SG
2376
2377 /*
2378 * Temporary fix for the Apple controller found in the MacBook8,1 and
2379 * some MacBook7,1 to avoid controller resets and data loss.
2380 */
2381 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2382 dev->q_depth = 2;
9bdcfb10
CH
2383 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2384 "set queue depth=%u to work around controller resets\n",
1f390c1f 2385 dev->q_depth);
d554b5e1
MP
2386 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2387 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2388 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2389 dev->q_depth = 64;
2390 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2391 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2392 }
2393
f65efd6d 2394 nvme_map_cmb(dev);
202021c1 2395
a0a3408e
KB
2396 pci_enable_pcie_error_reporting(pdev);
2397 pci_save_state(pdev);
0877cb0d
KB
2398 return 0;
2399
2400 disable:
0877cb0d
KB
2401 pci_disable_device(pdev);
2402 return result;
2403}
2404
2405static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2406{
2407 if (dev->bar)
2408 iounmap(dev->bar);
a1f447b3 2409 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2410}
2411
2412static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 2413{
e75ec752
CH
2414 struct pci_dev *pdev = to_pci_dev(dev->dev);
2415
dca51e78 2416 pci_free_irq_vectors(pdev);
0877cb0d 2417
a0a3408e
KB
2418 if (pci_is_enabled(pdev)) {
2419 pci_disable_pcie_error_reporting(pdev);
e75ec752 2420 pci_disable_device(pdev);
4d115420 2421 }
4d115420
KB
2422}
2423
a5cdb68c 2424static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2425{
ee9aebb2 2426 int i;
302ad8cc
KB
2427 bool dead = true;
2428 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2429
77bf25ea 2430 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
2431 if (pci_is_enabled(pdev)) {
2432 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2433
ebef7368
KB
2434 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2435 dev->ctrl.state == NVME_CTRL_RESETTING)
302ad8cc
KB
2436 nvme_start_freeze(&dev->ctrl);
2437 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2438 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2439 }
c21377f8 2440
302ad8cc
KB
2441 /*
2442 * Give the controller a chance to complete all entered requests if
2443 * doing a safe shutdown.
2444 */
87ad72a5
CH
2445 if (!dead) {
2446 if (shutdown)
2447 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
9a915a5b
JW
2448 }
2449
2450 nvme_stop_queues(&dev->ctrl);
87ad72a5 2451
64ee0ac0 2452 if (!dead && dev->ctrl.queue_count > 0) {
ee9aebb2 2453 nvme_disable_io_queues(dev);
a5cdb68c 2454 nvme_disable_admin_queue(dev, shutdown);
4d115420 2455 }
ee9aebb2
KB
2456 for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2457 nvme_suspend_queue(&dev->queues[i]);
2458
b00a726a 2459 nvme_pci_disable(dev);
07836e65 2460
e1958e65
ML
2461 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2462 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2463
2464 /*
2465 * The driver will not be starting up queues again if shutting down so
2466 * must flush all entered requests to their failed completion to avoid
2467 * deadlocking blk-mq hot-cpu notifier.
2468 */
2469 if (shutdown)
2470 nvme_start_queues(&dev->ctrl);
77bf25ea 2471 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2472}
2473
091b6092
MW
2474static int nvme_setup_prp_pools(struct nvme_dev *dev)
2475{
e75ec752 2476 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2477 PAGE_SIZE, PAGE_SIZE, 0);
2478 if (!dev->prp_page_pool)
2479 return -ENOMEM;
2480
99802a7a 2481 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2482 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2483 256, 256, 0);
2484 if (!dev->prp_small_pool) {
2485 dma_pool_destroy(dev->prp_page_pool);
2486 return -ENOMEM;
2487 }
091b6092
MW
2488 return 0;
2489}
2490
2491static void nvme_release_prp_pools(struct nvme_dev *dev)
2492{
2493 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2494 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2495}
2496
1673f1f0 2497static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2498{
1673f1f0 2499 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2500
f9f38e33 2501 nvme_dbbuf_dma_free(dev);
e75ec752 2502 put_device(dev->dev);
4af0e21c
KB
2503 if (dev->tagset.tags)
2504 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2505 if (dev->ctrl.admin_q)
2506 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2507 kfree(dev->queues);
e286bcfc 2508 free_opal_dev(dev->ctrl.opal_dev);
943e942e 2509 mempool_destroy(dev->iod_mempool);
5e82e952
KB
2510 kfree(dev);
2511}
2512
f58944e2
KB
2513static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2514{
237045fc 2515 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2 2516
d22524a4 2517 nvme_get_ctrl(&dev->ctrl);
69d9a99c 2518 nvme_dev_disable(dev, false);
9f9cafc1 2519 nvme_kill_queues(&dev->ctrl);
03e0f3a6 2520 if (!queue_work(nvme_wq, &dev->remove_work))
f58944e2
KB
2521 nvme_put_ctrl(&dev->ctrl);
2522}
2523
fd634f41 2524static void nvme_reset_work(struct work_struct *work)
5e82e952 2525{
d86c4d8e
CH
2526 struct nvme_dev *dev =
2527 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2528 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2529 int result = -ENODEV;
2b1b7e78 2530 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
5e82e952 2531
82b057ca 2532 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2533 goto out;
5e82e952 2534
fd634f41
CH
2535 /*
2536 * If we're called to reset a live controller first shut it down before
2537 * moving on.
2538 */
b00a726a 2539 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2540 nvme_dev_disable(dev, false);
5e82e952 2541
ad70062c 2542 /*
ad6a0a52 2543 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
ad70062c
JW
2544 * initializing procedure here.
2545 */
ad6a0a52 2546 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
ad70062c 2547 dev_warn(dev->ctrl.device,
ad6a0a52 2548 "failed to mark controller CONNECTING\n");
ad70062c
JW
2549 goto out;
2550 }
2551
b00a726a 2552 result = nvme_pci_enable(dev);
f0b50732 2553 if (result)
3cf519b5 2554 goto out;
f0b50732 2555
01ad0990 2556 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2557 if (result)
f58944e2 2558 goto out;
f0b50732 2559
0fb59cbc
KB
2560 result = nvme_alloc_admin_tags(dev);
2561 if (result)
f58944e2 2562 goto out;
b9afca3e 2563
943e942e
JA
2564 /*
2565 * Limit the max command size to prevent iod->sg allocations going
2566 * over a single page.
2567 */
2568 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2569 dev->ctrl.max_segments = NVME_MAX_SEGS;
2570
ce4541f4
CH
2571 result = nvme_init_identify(&dev->ctrl);
2572 if (result)
f58944e2 2573 goto out;
ce4541f4 2574
e286bcfc
SB
2575 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2576 if (!dev->ctrl.opal_dev)
2577 dev->ctrl.opal_dev =
2578 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2579 else if (was_suspend)
2580 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2581 } else {
2582 free_opal_dev(dev->ctrl.opal_dev);
2583 dev->ctrl.opal_dev = NULL;
4f1244c8 2584 }
a98e58e5 2585
f9f38e33
HK
2586 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2587 result = nvme_dbbuf_dma_alloc(dev);
2588 if (result)
2589 dev_warn(dev->dev,
2590 "unable to allocate dma for dbbuf\n");
2591 }
2592
9620cfba
CH
2593 if (dev->ctrl.hmpre) {
2594 result = nvme_setup_host_mem(dev);
2595 if (result < 0)
2596 goto out;
2597 }
87ad72a5 2598
f0b50732 2599 result = nvme_setup_io_queues(dev);
badc34d4 2600 if (result)
f58944e2 2601 goto out;
f0b50732 2602
2659e57b
CH
2603 /*
2604 * Keep the controller around but remove all namespaces if we don't have
2605 * any working I/O queue.
2606 */
3cf519b5 2607 if (dev->online_queues < 2) {
1b3c47c1 2608 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2609 nvme_kill_queues(&dev->ctrl);
5bae7f73 2610 nvme_remove_namespaces(&dev->ctrl);
2b1b7e78 2611 new_state = NVME_CTRL_ADMIN_ONLY;
3cf519b5 2612 } else {
25646264 2613 nvme_start_queues(&dev->ctrl);
302ad8cc 2614 nvme_wait_freeze(&dev->ctrl);
2b1b7e78
JW
2615 /* hit this only when allocate tagset fails */
2616 if (nvme_dev_add(dev))
2617 new_state = NVME_CTRL_ADMIN_ONLY;
302ad8cc 2618 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2619 }
2620
2b1b7e78
JW
2621 /*
2622 * If only admin queue live, keep it to do further investigation or
2623 * recovery.
2624 */
2625 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2626 dev_warn(dev->ctrl.device,
2627 "failed to mark controller state %d\n", new_state);
bb8d261e
CH
2628 goto out;
2629 }
92911a55 2630
d09f2b45 2631 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2632 return;
f0b50732 2633
3cf519b5 2634 out:
f58944e2 2635 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2636}
2637
5c8809e6 2638static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2639{
5c8809e6 2640 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2641 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2642
2643 if (pci_get_drvdata(pdev))
921920ab 2644 device_release_driver(&pdev->dev);
1673f1f0 2645 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2646}
2647
1c63dc66 2648static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2649{
1c63dc66 2650 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2651 return 0;
9ca97374
TH
2652}
2653
5fd4ce1b 2654static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2655{
5fd4ce1b
CH
2656 writel(val, to_nvme_dev(ctrl)->bar + off);
2657 return 0;
2658}
4cc06521 2659
7fd8930f
CH
2660static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2661{
2662 *val = readq(to_nvme_dev(ctrl)->bar + off);
2663 return 0;
4cc06521
KB
2664}
2665
97c12223
KB
2666static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2667{
2668 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2669
2670 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2671}
2672
1c63dc66 2673static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2674 .name = "pcie",
e439bb12 2675 .module = THIS_MODULE,
e0596ab2
LG
2676 .flags = NVME_F_METADATA_SUPPORTED |
2677 NVME_F_PCI_P2PDMA,
1c63dc66 2678 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2679 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2680 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2681 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2682 .submit_async_event = nvme_pci_submit_async_event,
97c12223 2683 .get_address = nvme_pci_get_address,
1c63dc66 2684};
4cc06521 2685
b00a726a
KB
2686static int nvme_dev_map(struct nvme_dev *dev)
2687{
b00a726a
KB
2688 struct pci_dev *pdev = to_pci_dev(dev->dev);
2689
a1f447b3 2690 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2691 return -ENODEV;
2692
97f6ef64 2693 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2694 goto release;
2695
9fa196e7 2696 return 0;
b00a726a 2697 release:
9fa196e7
MG
2698 pci_release_mem_regions(pdev);
2699 return -ENODEV;
b00a726a
KB
2700}
2701
8427bbc2 2702static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
2703{
2704 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2705 /*
2706 * Several Samsung devices seem to drop off the PCIe bus
2707 * randomly when APST is on and uses the deepest sleep state.
2708 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2709 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2710 * 950 PRO 256GB", but it seems to be restricted to two Dell
2711 * laptops.
2712 */
2713 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2714 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2715 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2716 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
2717 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2718 /*
2719 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
2720 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2721 * within few minutes after bootup on a Coffee Lake board -
2722 * ASUS PRIME Z370-A
8427bbc2
KHF
2723 */
2724 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
2725 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2726 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 2727 return NVME_QUIRK_NO_APST;
ff5350a8
AL
2728 }
2729
2730 return 0;
2731}
2732
18119775
KB
2733static void nvme_async_probe(void *data, async_cookie_t cookie)
2734{
2735 struct nvme_dev *dev = data;
80f513b5 2736
18119775
KB
2737 nvme_reset_ctrl_sync(&dev->ctrl);
2738 flush_work(&dev->ctrl.scan_work);
80f513b5 2739 nvme_put_ctrl(&dev->ctrl);
18119775
KB
2740}
2741
8d85fce7 2742static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2743{
a4aea562 2744 int node, result = -ENOMEM;
b60503ba 2745 struct nvme_dev *dev;
ff5350a8 2746 unsigned long quirks = id->driver_data;
943e942e 2747 size_t alloc_size;
b60503ba 2748
a4aea562
MB
2749 node = dev_to_node(&pdev->dev);
2750 if (node == NUMA_NO_NODE)
2fa84351 2751 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2752
2753 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2754 if (!dev)
2755 return -ENOMEM;
147b27e4 2756
3b6592f7
JA
2757 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2758 GFP_KERNEL, node);
b60503ba
MW
2759 if (!dev->queues)
2760 goto free;
2761
e75ec752 2762 dev->dev = get_device(&pdev->dev);
9a6b9458 2763 pci_set_drvdata(pdev, dev);
1c63dc66 2764
b00a726a
KB
2765 result = nvme_dev_map(dev);
2766 if (result)
b00c9b7a 2767 goto put_pci;
b00a726a 2768
d86c4d8e 2769 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2770 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2771 mutex_init(&dev->shutdown_lock);
db3cbfff 2772 init_completion(&dev->ioq_wait);
b60503ba 2773
091b6092
MW
2774 result = nvme_setup_prp_pools(dev);
2775 if (result)
b00c9b7a 2776 goto unmap;
4cc06521 2777
8427bbc2 2778 quirks |= check_vendor_combination_bug(pdev);
ff5350a8 2779
943e942e
JA
2780 /*
2781 * Double check that our mempool alloc size will cover the biggest
2782 * command we support.
2783 */
2784 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2785 NVME_MAX_SEGS, true);
2786 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2787
2788 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2789 mempool_kfree,
2790 (void *) alloc_size,
2791 GFP_KERNEL, node);
2792 if (!dev->iod_mempool) {
2793 result = -ENOMEM;
2794 goto release_pools;
2795 }
2796
b6e44b4c
KB
2797 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2798 quirks);
2799 if (result)
2800 goto release_mempool;
2801
1b3c47c1
SG
2802 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2803
80f513b5 2804 nvme_get_ctrl(&dev->ctrl);
18119775 2805 async_schedule(nvme_async_probe, dev);
4caff8fc 2806
b60503ba
MW
2807 return 0;
2808
b6e44b4c
KB
2809 release_mempool:
2810 mempool_destroy(dev->iod_mempool);
0877cb0d 2811 release_pools:
091b6092 2812 nvme_release_prp_pools(dev);
b00c9b7a
CJ
2813 unmap:
2814 nvme_dev_unmap(dev);
a96d4f5c 2815 put_pci:
e75ec752 2816 put_device(dev->dev);
b60503ba
MW
2817 free:
2818 kfree(dev->queues);
b60503ba
MW
2819 kfree(dev);
2820 return result;
2821}
2822
775755ed 2823static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 2824{
a6739479 2825 struct nvme_dev *dev = pci_get_drvdata(pdev);
f263fbb8 2826 nvme_dev_disable(dev, false);
775755ed 2827}
f0d54a54 2828
775755ed
CH
2829static void nvme_reset_done(struct pci_dev *pdev)
2830{
f263fbb8 2831 struct nvme_dev *dev = pci_get_drvdata(pdev);
79c48ccf 2832 nvme_reset_ctrl_sync(&dev->ctrl);
f0d54a54
KB
2833}
2834
09ece142
KB
2835static void nvme_shutdown(struct pci_dev *pdev)
2836{
2837 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2838 nvme_dev_disable(dev, true);
09ece142
KB
2839}
2840
f58944e2
KB
2841/*
2842 * The driver's remove may be called on a device in a partially initialized
2843 * state. This function must not have any dependencies on the device state in
2844 * order to proceed.
2845 */
8d85fce7 2846static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2847{
2848 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2849
bb8d261e 2850 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
9a6b9458 2851 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2852
6db28eda 2853 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2854 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1d39e692 2855 nvme_dev_disable(dev, true);
cb4bfda6 2856 nvme_dev_remove_admin(dev);
6db28eda 2857 }
0ff9d4e1 2858
d86c4d8e 2859 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
2860 nvme_stop_ctrl(&dev->ctrl);
2861 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 2862 nvme_dev_disable(dev, true);
9fe5c59f 2863 nvme_release_cmb(dev);
87ad72a5 2864 nvme_free_host_mem(dev);
a4aea562 2865 nvme_dev_remove_admin(dev);
a1a5ef99 2866 nvme_free_queues(dev, 0);
d09f2b45 2867 nvme_uninit_ctrl(&dev->ctrl);
9a6b9458 2868 nvme_release_prp_pools(dev);
b00a726a 2869 nvme_dev_unmap(dev);
1673f1f0 2870 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2871}
2872
671a6018 2873#ifdef CONFIG_PM_SLEEP
cd638946
KB
2874static int nvme_suspend(struct device *dev)
2875{
2876 struct pci_dev *pdev = to_pci_dev(dev);
2877 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2878
a5cdb68c 2879 nvme_dev_disable(ndev, true);
cd638946
KB
2880 return 0;
2881}
2882
2883static int nvme_resume(struct device *dev)
2884{
2885 struct pci_dev *pdev = to_pci_dev(dev);
2886 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2887
d86c4d8e 2888 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2889 return 0;
cd638946 2890}
671a6018 2891#endif
cd638946
KB
2892
2893static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2894
a0a3408e
KB
2895static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2896 pci_channel_state_t state)
2897{
2898 struct nvme_dev *dev = pci_get_drvdata(pdev);
2899
2900 /*
2901 * A frozen channel requires a reset. When detected, this method will
2902 * shutdown the controller to quiesce. The controller will be restarted
2903 * after the slot reset through driver's slot_reset callback.
2904 */
a0a3408e
KB
2905 switch (state) {
2906 case pci_channel_io_normal:
2907 return PCI_ERS_RESULT_CAN_RECOVER;
2908 case pci_channel_io_frozen:
d011fb31
KB
2909 dev_warn(dev->ctrl.device,
2910 "frozen state error detected, reset controller\n");
a5cdb68c 2911 nvme_dev_disable(dev, false);
a0a3408e
KB
2912 return PCI_ERS_RESULT_NEED_RESET;
2913 case pci_channel_io_perm_failure:
d011fb31
KB
2914 dev_warn(dev->ctrl.device,
2915 "failure state error detected, request disconnect\n");
a0a3408e
KB
2916 return PCI_ERS_RESULT_DISCONNECT;
2917 }
2918 return PCI_ERS_RESULT_NEED_RESET;
2919}
2920
2921static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2922{
2923 struct nvme_dev *dev = pci_get_drvdata(pdev);
2924
1b3c47c1 2925 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2926 pci_restore_state(pdev);
d86c4d8e 2927 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2928 return PCI_ERS_RESULT_RECOVERED;
2929}
2930
2931static void nvme_error_resume(struct pci_dev *pdev)
2932{
72cd4cc2
KB
2933 struct nvme_dev *dev = pci_get_drvdata(pdev);
2934
2935 flush_work(&dev->ctrl.reset_work);
a0a3408e
KB
2936}
2937
1d352035 2938static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2939 .error_detected = nvme_error_detected,
b60503ba
MW
2940 .slot_reset = nvme_slot_reset,
2941 .resume = nvme_error_resume,
775755ed
CH
2942 .reset_prepare = nvme_reset_prepare,
2943 .reset_done = nvme_reset_done,
b60503ba
MW
2944};
2945
6eb0d698 2946static const struct pci_device_id nvme_id_table[] = {
106198ed 2947 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2948 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2949 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2950 { PCI_VDEVICE(INTEL, 0x0a53),
2951 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2952 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2953 { PCI_VDEVICE(INTEL, 0x0a54),
2954 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2955 NVME_QUIRK_DEALLOCATE_ZEROES, },
f99cb7af
DWF
2956 { PCI_VDEVICE(INTEL, 0x0a55),
2957 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2958 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0 2959 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
9abd68ef
JA
2960 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2961 NVME_QUIRK_MEDIUM_PRIO_SQ },
540c801c
KB
2962 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2963 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
0302ae60
MP
2964 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2965 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
54adc010
GP
2966 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2967 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
2968 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2969 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2970 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2971 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
2972 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2973 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2974 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2975 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
608cc4b1
CH
2976 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2977 .driver_data = NVME_QUIRK_LIGHTNVM, },
2978 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2979 .driver_data = NVME_QUIRK_LIGHTNVM, },
ea48e877
WX
2980 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2981 .driver_data = NVME_QUIRK_LIGHTNVM, },
b60503ba 2982 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2983 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2984 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2985 { 0, }
2986};
2987MODULE_DEVICE_TABLE(pci, nvme_id_table);
2988
2989static struct pci_driver nvme_driver = {
2990 .name = "nvme",
2991 .id_table = nvme_id_table,
2992 .probe = nvme_probe,
8d85fce7 2993 .remove = nvme_remove,
09ece142 2994 .shutdown = nvme_shutdown,
cd638946
KB
2995 .driver = {
2996 .pm = &nvme_dev_pm_ops,
2997 },
74d986ab 2998 .sriov_configure = pci_sriov_configure_simple,
b60503ba
MW
2999 .err_handler = &nvme_err_handler,
3000};
3001
3002static int __init nvme_init(void)
3003{
9a6327d2 3004 return pci_register_driver(&nvme_driver);
b60503ba
MW
3005}
3006
3007static void __exit nvme_exit(void)
3008{
3009 pci_unregister_driver(&nvme_driver);
03e0f3a6 3010 flush_workqueue(nvme_wq);
21bd78bc 3011 _nvme_check_size();
b60503ba
MW
3012}
3013
3014MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3015MODULE_LICENSE("GPL");
c78b4713 3016MODULE_VERSION("1.0");
b60503ba
MW
3017module_init(nvme_init);
3018module_exit(nvme_exit);