nvme-pci: set constant paramters in nvme_pci_alloc_ctrl
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
5f37396d 1// SPDX-License-Identifier: GPL-2.0
b60503ba
MW
2/*
3 * NVM Express device driver
6eb0d698 4 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
5 */
6
df4f9bc4 7#include <linux/acpi.h>
a0a3408e 8#include <linux/aer.h>
18119775 9#include <linux/async.h>
b60503ba 10#include <linux/blkdev.h>
a4aea562 11#include <linux/blk-mq.h>
dca51e78 12#include <linux/blk-mq-pci.h>
fe45e630 13#include <linux/blk-integrity.h>
ff5350a8 14#include <linux/dmi.h>
b60503ba
MW
15#include <linux/init.h>
16#include <linux/interrupt.h>
17#include <linux/io.h>
dc90f084 18#include <linux/memremap.h>
b60503ba
MW
19#include <linux/mm.h>
20#include <linux/module.h>
77bf25ea 21#include <linux/mutex.h>
d0877473 22#include <linux/once.h>
b60503ba 23#include <linux/pci.h>
d916b1be 24#include <linux/suspend.h>
e1e5e564 25#include <linux/t10-pi.h>
b60503ba 26#include <linux/types.h>
2f8e2c87 27#include <linux/io-64-nonatomic-lo-hi.h>
20d3bb92 28#include <linux/io-64-nonatomic-hi-lo.h>
a98e58e5 29#include <linux/sed-opal.h>
0f238ff5 30#include <linux/pci-p2pdma.h>
797a796a 31
604c01d5 32#include "trace.h"
f11bb3e2
CH
33#include "nvme.h"
34
c1e0cc7e 35#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
8a1d09a6 36#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
c965809c 37
a7a7cbe3 38#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 39
943e942e
JA
40/*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44#define NVME_MAX_KB_SZ 4096
45#define NVME_MAX_SEGS 127
46
58ffacb5 47static int use_threaded_interrupts;
2e21e445 48module_param(use_threaded_interrupts, int, 0444);
58ffacb5 49
8ffaadf7 50static bool use_cmb_sqes = true;
69f4eb9f 51module_param(use_cmb_sqes, bool, 0444);
8ffaadf7
JD
52MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
87ad72a5
CH
54static unsigned int max_host_mem_size_mb = 128;
55module_param(max_host_mem_size_mb, uint, 0444);
56MODULE_PARM_DESC(max_host_mem_size_mb,
57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 58
a7a7cbe3
CK
59static unsigned int sgl_threshold = SZ_32K;
60module_param(sgl_threshold, uint, 0644);
61MODULE_PARM_DESC(sgl_threshold,
62 "Use SGLs when average request segment size is larger or equal to "
63 "this size. Use 0 to disable SGLs.");
64
27453b45
SG
65#define NVME_PCI_MIN_QUEUE_SIZE 2
66#define NVME_PCI_MAX_QUEUE_SIZE 4095
b27c1e68 67static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68static const struct kernel_param_ops io_queue_depth_ops = {
69 .set = io_queue_depth_set,
61f3b896 70 .get = param_get_uint,
b27c1e68 71};
72
61f3b896 73static unsigned int io_queue_depth = 1024;
b27c1e68 74module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
27453b45 75MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
b27c1e68 76
9c9e76d5
WZ
77static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78{
79 unsigned int n;
80 int ret;
81
82 ret = kstrtouint(val, 10, &n);
83 if (ret != 0 || n > num_possible_cpus())
84 return -EINVAL;
85 return param_set_uint(val, kp);
86}
87
88static const struct kernel_param_ops io_queue_count_ops = {
89 .set = io_queue_count_set,
90 .get = param_get_uint,
91};
92
3f68baf7 93static unsigned int write_queues;
9c9e76d5 94module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
3b6592f7
JA
95MODULE_PARM_DESC(write_queues,
96 "Number of queues to use for writes. If not set, reads and writes "
97 "will share a queue set.");
98
3f68baf7 99static unsigned int poll_queues;
9c9e76d5 100module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
4b04cc6a
JA
101MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102
df4f9bc4
DB
103static bool noacpi;
104module_param(noacpi, bool, 0444);
105MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106
1c63dc66
CH
107struct nvme_dev;
108struct nvme_queue;
b3fffdef 109
a5cdb68c 110static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
8fae268b 111static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
d4b4ff8e 112
1c63dc66
CH
113/*
114 * Represents an NVM Express device. Each nvme_dev is a PCI function.
115 */
116struct nvme_dev {
147b27e4 117 struct nvme_queue *queues;
1c63dc66
CH
118 struct blk_mq_tag_set tagset;
119 struct blk_mq_tag_set admin_tagset;
120 u32 __iomem *dbs;
121 struct device *dev;
122 struct dma_pool *prp_page_pool;
123 struct dma_pool *prp_small_pool;
1c63dc66
CH
124 unsigned online_queues;
125 unsigned max_qid;
e20ba6e1 126 unsigned io_queues[HCTX_MAX_TYPES];
22b55601 127 unsigned int num_vecs;
7442ddce 128 u32 q_depth;
c1e0cc7e 129 int io_sqes;
1c63dc66 130 u32 db_stride;
1c63dc66 131 void __iomem *bar;
97f6ef64 132 unsigned long bar_mapped_size;
5c8809e6 133 struct work_struct remove_work;
77bf25ea 134 struct mutex shutdown_lock;
1c63dc66 135 bool subsystem;
1c63dc66 136 u64 cmb_size;
0f238ff5 137 bool cmb_use_sqes;
1c63dc66 138 u32 cmbsz;
202021c1 139 u32 cmbloc;
1c63dc66 140 struct nvme_ctrl ctrl;
d916b1be 141 u32 last_ps;
a5df5e79 142 bool hmb;
87ad72a5 143
943e942e
JA
144 mempool_t *iod_mempool;
145
87ad72a5 146 /* shadow doorbell buffer support: */
f9f38e33
HK
147 u32 *dbbuf_dbs;
148 dma_addr_t dbbuf_dbs_dma_addr;
149 u32 *dbbuf_eis;
150 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
151
152 /* host memory buffer support: */
153 u64 host_mem_size;
154 u32 nr_host_mem_descs;
4033f35d 155 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
156 struct nvme_host_mem_buf_desc *host_mem_descs;
157 void **host_mem_desc_bufs;
2a5bcfdd
WZ
158 unsigned int nr_allocated_queues;
159 unsigned int nr_write_queues;
160 unsigned int nr_poll_queues;
4d115420 161};
1fa6aead 162
b27c1e68 163static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
164{
27453b45
SG
165 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
166 NVME_PCI_MAX_QUEUE_SIZE);
b27c1e68 167}
168
f9f38e33
HK
169static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170{
171 return qid * 2 * stride;
172}
173
174static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175{
176 return (qid * 2 + 1) * stride;
177}
178
1c63dc66
CH
179static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180{
181 return container_of(ctrl, struct nvme_dev, ctrl);
182}
183
b60503ba
MW
184/*
185 * An NVM Express queue. Each device has at least two (one for admin
186 * commands and one for I/O commands).
187 */
188struct nvme_queue {
091b6092 189 struct nvme_dev *dev;
1ab0cd69 190 spinlock_t sq_lock;
c1e0cc7e 191 void *sq_cmds;
3a7afd8e
CH
192 /* only used for poll queues: */
193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
74943d45 194 struct nvme_completion *cqes;
b60503ba
MW
195 dma_addr_t sq_dma_addr;
196 dma_addr_t cq_dma_addr;
b60503ba 197 u32 __iomem *q_db;
7442ddce 198 u32 q_depth;
7c349dde 199 u16 cq_vector;
b60503ba 200 u16 sq_tail;
38210800 201 u16 last_sq_tail;
b60503ba 202 u16 cq_head;
c30341dc 203 u16 qid;
e9539f47 204 u8 cq_phase;
c1e0cc7e 205 u8 sqes;
4e224106
CH
206 unsigned long flags;
207#define NVMEQ_ENABLED 0
63223078 208#define NVMEQ_SQ_CMB 1
d1ed6aa1 209#define NVMEQ_DELETE_ERROR 2
7c349dde 210#define NVMEQ_POLLED 3
f9f38e33
HK
211 u32 *dbbuf_sq_db;
212 u32 *dbbuf_cq_db;
213 u32 *dbbuf_sq_ei;
214 u32 *dbbuf_cq_ei;
d1ed6aa1 215 struct completion delete_done;
b60503ba
MW
216};
217
71bd150c 218/*
9b048119
CH
219 * The nvme_iod describes the data in an I/O.
220 *
221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222 * to the actual struct scatterlist.
71bd150c
CH
223 */
224struct nvme_iod {
d49187e9 225 struct nvme_request req;
af7fae85 226 struct nvme_command cmd;
a7a7cbe3 227 bool use_sgl;
52da4f3f 228 bool aborted;
c372cdd1
KB
229 s8 nr_allocations; /* PRP list pool allocations. 0 means small
230 pool in use */
dff824b2 231 unsigned int dma_len; /* length of single DMA segment mapping */
c4c22c52 232 dma_addr_t first_dma;
783b94bd 233 dma_addr_t meta_dma;
91fb2b60 234 struct sg_table sgt;
b60503ba
MW
235};
236
2a5bcfdd 237static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
3b6592f7 238{
2a5bcfdd 239 return dev->nr_allocated_queues * 8 * dev->db_stride;
f9f38e33
HK
240}
241
242static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
243{
2a5bcfdd 244 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33 245
58847f12
KB
246 if (dev->dbbuf_dbs) {
247 /*
248 * Clear the dbbuf memory so the driver doesn't observe stale
249 * values from the previous instantiation.
250 */
251 memset(dev->dbbuf_dbs, 0, mem_size);
252 memset(dev->dbbuf_eis, 0, mem_size);
f9f38e33 253 return 0;
58847f12 254 }
f9f38e33
HK
255
256 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
257 &dev->dbbuf_dbs_dma_addr,
258 GFP_KERNEL);
259 if (!dev->dbbuf_dbs)
260 return -ENOMEM;
261 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
262 &dev->dbbuf_eis_dma_addr,
263 GFP_KERNEL);
264 if (!dev->dbbuf_eis) {
265 dma_free_coherent(dev->dev, mem_size,
266 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
267 dev->dbbuf_dbs = NULL;
268 return -ENOMEM;
269 }
270
271 return 0;
272}
273
274static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
275{
2a5bcfdd 276 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33
HK
277
278 if (dev->dbbuf_dbs) {
279 dma_free_coherent(dev->dev, mem_size,
280 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
281 dev->dbbuf_dbs = NULL;
282 }
283 if (dev->dbbuf_eis) {
284 dma_free_coherent(dev->dev, mem_size,
285 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
286 dev->dbbuf_eis = NULL;
287 }
288}
289
290static void nvme_dbbuf_init(struct nvme_dev *dev,
291 struct nvme_queue *nvmeq, int qid)
292{
293 if (!dev->dbbuf_dbs || !qid)
294 return;
295
296 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
297 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
298 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
299 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
300}
301
0f0d2c87
MI
302static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
303{
304 if (!nvmeq->qid)
305 return;
306
307 nvmeq->dbbuf_sq_db = NULL;
308 nvmeq->dbbuf_cq_db = NULL;
309 nvmeq->dbbuf_sq_ei = NULL;
310 nvmeq->dbbuf_cq_ei = NULL;
311}
312
f9f38e33
HK
313static void nvme_dbbuf_set(struct nvme_dev *dev)
314{
f66e2804 315 struct nvme_command c = { };
0f0d2c87 316 unsigned int i;
f9f38e33
HK
317
318 if (!dev->dbbuf_dbs)
319 return;
320
f9f38e33
HK
321 c.dbbuf.opcode = nvme_admin_dbbuf;
322 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
323 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
324
325 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 326 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
327 /* Free memory and continue on */
328 nvme_dbbuf_dma_free(dev);
0f0d2c87
MI
329
330 for (i = 1; i <= dev->online_queues; i++)
331 nvme_dbbuf_free(&dev->queues[i]);
f9f38e33
HK
332 }
333}
334
335static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
336{
337 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
338}
339
340/* Update dbbuf and return true if an MMIO is required */
341static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
342 volatile u32 *dbbuf_ei)
343{
344 if (dbbuf_db) {
345 u16 old_value;
346
347 /*
348 * Ensure that the queue is written before updating
349 * the doorbell in memory
350 */
351 wmb();
352
353 old_value = *dbbuf_db;
354 *dbbuf_db = value;
355
f1ed3df2
MW
356 /*
357 * Ensure that the doorbell is updated before reading the event
358 * index from memory. The controller needs to provide similar
359 * ordering to ensure the envent index is updated before reading
360 * the doorbell.
361 */
362 mb();
363
f9f38e33
HK
364 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
365 return false;
366 }
367
368 return true;
b60503ba
MW
369}
370
ac3dd5bd
JA
371/*
372 * Will slightly overestimate the number of pages needed. This is OK
373 * as it only leads to a small amount of wasted memory for the lifetime of
374 * the I/O.
375 */
b13c6393 376static int nvme_pci_npages_prp(void)
ac3dd5bd 377{
b13c6393 378 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
6c3c05b0 379 NVME_CTRL_PAGE_SIZE);
ac3dd5bd
JA
380 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
381}
382
a7a7cbe3
CK
383/*
384 * Calculates the number of pages needed for the SGL segments. For example a 4k
385 * page can accommodate 256 SGL descriptors.
386 */
b13c6393 387static int nvme_pci_npages_sgl(void)
ac3dd5bd 388{
b13c6393
CK
389 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
390 PAGE_SIZE);
f4800d6d 391}
ac3dd5bd 392
a4aea562
MB
393static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
394 unsigned int hctx_idx)
e85248e5 395{
a4aea562 396 struct nvme_dev *dev = data;
147b27e4 397 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 398
42483228
KB
399 WARN_ON(hctx_idx != 0);
400 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
42483228 401
a4aea562
MB
402 hctx->driver_data = nvmeq;
403 return 0;
e85248e5
MW
404}
405
a4aea562
MB
406static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
407 unsigned int hctx_idx)
b60503ba 408{
a4aea562 409 struct nvme_dev *dev = data;
147b27e4 410 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 411
42483228 412 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
413 hctx->driver_data = nvmeq;
414 return 0;
b60503ba
MW
415}
416
e559398f
CH
417static int nvme_pci_init_request(struct blk_mq_tag_set *set,
418 struct request *req, unsigned int hctx_idx,
419 unsigned int numa_node)
b60503ba 420{
d6296d39 421 struct nvme_dev *dev = set->driver_data;
f4800d6d 422 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
59e29ce6
SG
423
424 nvme_req(req)->ctrl = &dev->ctrl;
f4b9e6c9 425 nvme_req(req)->cmd = &iod->cmd;
a4aea562
MB
426 return 0;
427}
428
3b6592f7
JA
429static int queue_irq_offset(struct nvme_dev *dev)
430{
431 /* if we have more than 1 vec, admin queue offsets us by 1 */
432 if (dev->num_vecs > 1)
433 return 1;
434
435 return 0;
436}
437
a4e1d0b7 438static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
dca51e78
CH
439{
440 struct nvme_dev *dev = set->driver_data;
3b6592f7
JA
441 int i, qoff, offset;
442
443 offset = queue_irq_offset(dev);
444 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
445 struct blk_mq_queue_map *map = &set->map[i];
446
447 map->nr_queues = dev->io_queues[i];
448 if (!map->nr_queues) {
e20ba6e1 449 BUG_ON(i == HCTX_TYPE_DEFAULT);
7e849dd9 450 continue;
3b6592f7
JA
451 }
452
4b04cc6a
JA
453 /*
454 * The poll queue(s) doesn't have an IRQ (and hence IRQ
455 * affinity), so use the regular blk-mq cpu mapping
456 */
3b6592f7 457 map->queue_offset = qoff;
cb9e0e50 458 if (i != HCTX_TYPE_POLL && offset)
4b04cc6a
JA
459 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
460 else
461 blk_mq_map_queues(map);
3b6592f7
JA
462 qoff += map->nr_queues;
463 offset += map->nr_queues;
464 }
dca51e78
CH
465}
466
38210800
KB
467/*
468 * Write sq tail if we are asked to, or if the next command would wrap.
469 */
470static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
04f3eafd 471{
38210800
KB
472 if (!write_sq) {
473 u16 next_tail = nvmeq->sq_tail + 1;
474
475 if (next_tail == nvmeq->q_depth)
476 next_tail = 0;
477 if (next_tail != nvmeq->last_sq_tail)
478 return;
479 }
480
04f3eafd
JA
481 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
482 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
483 writel(nvmeq->sq_tail, nvmeq->q_db);
38210800 484 nvmeq->last_sq_tail = nvmeq->sq_tail;
04f3eafd
JA
485}
486
3233b94c
JA
487static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
488 struct nvme_command *cmd)
b60503ba 489{
c1e0cc7e 490 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
3233b94c 491 absolute_pointer(cmd), sizeof(*cmd));
90ea5ca4
CH
492 if (++nvmeq->sq_tail == nvmeq->q_depth)
493 nvmeq->sq_tail = 0;
04f3eafd
JA
494}
495
496static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
497{
498 struct nvme_queue *nvmeq = hctx->driver_data;
499
500 spin_lock(&nvmeq->sq_lock);
38210800
KB
501 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
502 nvme_write_sq_db(nvmeq, true);
90ea5ca4 503 spin_unlock(&nvmeq->sq_lock);
b60503ba
MW
504}
505
a7a7cbe3 506static void **nvme_pci_iod_list(struct request *req)
b60503ba 507{
f4800d6d 508 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
91fb2b60 509 return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
b60503ba
MW
510}
511
955b1b5a
MI
512static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
513{
a53232cb 514 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
20469a37 515 int nseg = blk_rq_nr_phys_segments(req);
955b1b5a
MI
516 unsigned int avg_seg_size;
517
20469a37 518 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a 519
253a0b76 520 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
955b1b5a 521 return false;
a53232cb 522 if (!nvmeq->qid)
955b1b5a
MI
523 return false;
524 if (!sgl_threshold || avg_seg_size < sgl_threshold)
525 return false;
526 return true;
527}
528
9275c206 529static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
b60503ba 530{
6c3c05b0 531 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
9275c206
CH
532 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
533 dma_addr_t dma_addr = iod->first_dma;
eca18b23 534 int i;
eca18b23 535
c372cdd1 536 for (i = 0; i < iod->nr_allocations; i++) {
9275c206
CH
537 __le64 *prp_list = nvme_pci_iod_list(req)[i];
538 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
539
540 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
541 dma_addr = next_dma_addr;
7fe07d14 542 }
9275c206 543}
dff824b2 544
9275c206
CH
545static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
546{
547 const int last_sg = SGES_PER_PAGE - 1;
548 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
549 dma_addr_t dma_addr = iod->first_dma;
550 int i;
dff824b2 551
c372cdd1 552 for (i = 0; i < iod->nr_allocations; i++) {
9275c206
CH
553 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
554 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
dff824b2 555
9275c206
CH
556 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
557 dma_addr = next_dma_addr;
558 }
9275c206 559}
a7a7cbe3 560
9275c206
CH
561static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
562{
563 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 564
9275c206
CH
565 if (iod->dma_len) {
566 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
567 rq_dma_dir(req));
568 return;
eca18b23 569 }
ac3dd5bd 570
91fb2b60
LG
571 WARN_ON_ONCE(!iod->sgt.nents);
572
573 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
9275c206 574
c372cdd1 575 if (iod->nr_allocations == 0)
9275c206
CH
576 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
577 iod->first_dma);
578 else if (iod->use_sgl)
579 nvme_free_sgls(dev, req);
580 else
581 nvme_free_prps(dev, req);
91fb2b60 582 mempool_free(iod->sgt.sgl, dev->iod_mempool);
b4ff9c8d
KB
583}
584
d0877473
KB
585static void nvme_print_sgl(struct scatterlist *sgl, int nents)
586{
587 int i;
588 struct scatterlist *sg;
589
590 for_each_sg(sgl, sg, nents, i) {
591 dma_addr_t phys = sg_phys(sg);
592 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
593 "dma_address:%pad dma_length:%d\n",
594 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
595 sg_dma_len(sg));
596 }
597}
598
a7a7cbe3
CK
599static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
600 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 601{
f4800d6d 602 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 603 struct dma_pool *pool;
b131c61d 604 int length = blk_rq_payload_bytes(req);
91fb2b60 605 struct scatterlist *sg = iod->sgt.sgl;
ff22b54f
MW
606 int dma_len = sg_dma_len(sg);
607 u64 dma_addr = sg_dma_address(sg);
6c3c05b0 608 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
e025344c 609 __le64 *prp_list;
a7a7cbe3 610 void **list = nvme_pci_iod_list(req);
e025344c 611 dma_addr_t prp_dma;
eca18b23 612 int nprps, i;
ff22b54f 613
6c3c05b0 614 length -= (NVME_CTRL_PAGE_SIZE - offset);
5228b328
JS
615 if (length <= 0) {
616 iod->first_dma = 0;
a7a7cbe3 617 goto done;
5228b328 618 }
ff22b54f 619
6c3c05b0 620 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f 621 if (dma_len) {
6c3c05b0 622 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f
MW
623 } else {
624 sg = sg_next(sg);
625 dma_addr = sg_dma_address(sg);
626 dma_len = sg_dma_len(sg);
627 }
628
6c3c05b0 629 if (length <= NVME_CTRL_PAGE_SIZE) {
edd10d33 630 iod->first_dma = dma_addr;
a7a7cbe3 631 goto done;
e025344c
SMM
632 }
633
6c3c05b0 634 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
99802a7a
MW
635 if (nprps <= (256 / 8)) {
636 pool = dev->prp_small_pool;
c372cdd1 637 iod->nr_allocations = 0;
99802a7a
MW
638 } else {
639 pool = dev->prp_page_pool;
c372cdd1 640 iod->nr_allocations = 1;
99802a7a
MW
641 }
642
69d2b571 643 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 644 if (!prp_list) {
c372cdd1 645 iod->nr_allocations = -1;
86eea289 646 return BLK_STS_RESOURCE;
b77954cb 647 }
eca18b23
MW
648 list[0] = prp_list;
649 iod->first_dma = prp_dma;
e025344c
SMM
650 i = 0;
651 for (;;) {
6c3c05b0 652 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
e025344c 653 __le64 *old_prp_list = prp_list;
69d2b571 654 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 655 if (!prp_list)
fa073216 656 goto free_prps;
c372cdd1 657 list[iod->nr_allocations++] = prp_list;
7523d834
MW
658 prp_list[0] = old_prp_list[i - 1];
659 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
660 i = 1;
e025344c
SMM
661 }
662 prp_list[i++] = cpu_to_le64(dma_addr);
6c3c05b0
CK
663 dma_len -= NVME_CTRL_PAGE_SIZE;
664 dma_addr += NVME_CTRL_PAGE_SIZE;
665 length -= NVME_CTRL_PAGE_SIZE;
e025344c
SMM
666 if (length <= 0)
667 break;
668 if (dma_len > 0)
669 continue;
86eea289
KB
670 if (unlikely(dma_len < 0))
671 goto bad_sgl;
e025344c
SMM
672 sg = sg_next(sg);
673 dma_addr = sg_dma_address(sg);
674 dma_len = sg_dma_len(sg);
ff22b54f 675 }
a7a7cbe3 676done:
91fb2b60 677 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
a7a7cbe3 678 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
86eea289 679 return BLK_STS_OK;
fa073216
CH
680free_prps:
681 nvme_free_prps(dev, req);
682 return BLK_STS_RESOURCE;
683bad_sgl:
91fb2b60 684 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
d0877473 685 "Invalid SGL for payload:%d nents:%d\n",
91fb2b60 686 blk_rq_payload_bytes(req), iod->sgt.nents);
86eea289 687 return BLK_STS_IOERR;
ff22b54f
MW
688}
689
a7a7cbe3
CK
690static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
691 struct scatterlist *sg)
692{
693 sge->addr = cpu_to_le64(sg_dma_address(sg));
694 sge->length = cpu_to_le32(sg_dma_len(sg));
695 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
696}
697
698static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
699 dma_addr_t dma_addr, int entries)
700{
701 sge->addr = cpu_to_le64(dma_addr);
702 if (entries < SGES_PER_PAGE) {
703 sge->length = cpu_to_le32(entries * sizeof(*sge));
704 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
705 } else {
706 sge->length = cpu_to_le32(PAGE_SIZE);
707 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
708 }
709}
710
711static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
91fb2b60 712 struct request *req, struct nvme_rw_command *cmd)
a7a7cbe3
CK
713{
714 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
715 struct dma_pool *pool;
716 struct nvme_sgl_desc *sg_list;
91fb2b60
LG
717 struct scatterlist *sg = iod->sgt.sgl;
718 unsigned int entries = iod->sgt.nents;
a7a7cbe3 719 dma_addr_t sgl_dma;
b0f2853b 720 int i = 0;
a7a7cbe3 721
a7a7cbe3
CK
722 /* setting the transfer type as SGL */
723 cmd->flags = NVME_CMD_SGL_METABUF;
724
b0f2853b 725 if (entries == 1) {
a7a7cbe3
CK
726 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
727 return BLK_STS_OK;
728 }
729
730 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
731 pool = dev->prp_small_pool;
c372cdd1 732 iod->nr_allocations = 0;
a7a7cbe3
CK
733 } else {
734 pool = dev->prp_page_pool;
c372cdd1 735 iod->nr_allocations = 1;
a7a7cbe3
CK
736 }
737
738 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
739 if (!sg_list) {
c372cdd1 740 iod->nr_allocations = -1;
a7a7cbe3
CK
741 return BLK_STS_RESOURCE;
742 }
743
744 nvme_pci_iod_list(req)[0] = sg_list;
745 iod->first_dma = sgl_dma;
746
747 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
748
749 do {
750 if (i == SGES_PER_PAGE) {
751 struct nvme_sgl_desc *old_sg_desc = sg_list;
752 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
753
754 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
755 if (!sg_list)
fa073216 756 goto free_sgls;
a7a7cbe3
CK
757
758 i = 0;
c372cdd1 759 nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
a7a7cbe3
CK
760 sg_list[i++] = *link;
761 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
762 }
763
764 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 765 sg = sg_next(sg);
b0f2853b 766 } while (--entries > 0);
a7a7cbe3 767
a7a7cbe3 768 return BLK_STS_OK;
fa073216
CH
769free_sgls:
770 nvme_free_sgls(dev, req);
771 return BLK_STS_RESOURCE;
a7a7cbe3
CK
772}
773
dff824b2
CH
774static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
775 struct request *req, struct nvme_rw_command *cmnd,
776 struct bio_vec *bv)
777{
778 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
6c3c05b0
CK
779 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
780 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
dff824b2
CH
781
782 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
783 if (dma_mapping_error(dev->dev, iod->first_dma))
784 return BLK_STS_RESOURCE;
785 iod->dma_len = bv->bv_len;
786
787 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
788 if (bv->bv_len > first_prp_len)
789 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
359c1f88 790 return BLK_STS_OK;
dff824b2
CH
791}
792
29791057
CH
793static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
794 struct request *req, struct nvme_rw_command *cmnd,
795 struct bio_vec *bv)
796{
797 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
798
799 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
800 if (dma_mapping_error(dev->dev, iod->first_dma))
801 return BLK_STS_RESOURCE;
802 iod->dma_len = bv->bv_len;
803
049bf372 804 cmnd->flags = NVME_CMD_SGL_METABUF;
29791057
CH
805 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
806 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
807 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
359c1f88 808 return BLK_STS_OK;
29791057
CH
809}
810
fc17b653 811static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 812 struct nvme_command *cmnd)
d29ec824 813{
f4800d6d 814 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
70479b71 815 blk_status_t ret = BLK_STS_RESOURCE;
91fb2b60 816 int rc;
d29ec824 817
dff824b2 818 if (blk_rq_nr_phys_segments(req) == 1) {
a53232cb 819 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
dff824b2
CH
820 struct bio_vec bv = req_bvec(req);
821
822 if (!is_pci_p2pdma_page(bv.bv_page)) {
6c3c05b0 823 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
dff824b2
CH
824 return nvme_setup_prp_simple(dev, req,
825 &cmnd->rw, &bv);
29791057 826
a53232cb 827 if (nvmeq->qid && sgl_threshold &&
253a0b76 828 nvme_ctrl_sgl_supported(&dev->ctrl))
29791057
CH
829 return nvme_setup_sgl_simple(dev, req,
830 &cmnd->rw, &bv);
dff824b2
CH
831 }
832 }
833
834 iod->dma_len = 0;
91fb2b60
LG
835 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
836 if (!iod->sgt.sgl)
d43f1ccf 837 return BLK_STS_RESOURCE;
91fb2b60
LG
838 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
839 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
840 if (!iod->sgt.orig_nents)
fa073216 841 goto out_free_sg;
d29ec824 842
91fb2b60
LG
843 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
844 DMA_ATTR_NO_WARN);
845 if (rc) {
846 if (rc == -EREMOTEIO)
847 ret = BLK_STS_TARGET;
fa073216 848 goto out_free_sg;
91fb2b60 849 }
d29ec824 850
70479b71 851 iod->use_sgl = nvme_pci_use_sgls(dev, req);
955b1b5a 852 if (iod->use_sgl)
91fb2b60 853 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
a7a7cbe3
CK
854 else
855 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
86eea289 856 if (ret != BLK_STS_OK)
fa073216
CH
857 goto out_unmap_sg;
858 return BLK_STS_OK;
859
860out_unmap_sg:
91fb2b60 861 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
fa073216 862out_free_sg:
91fb2b60 863 mempool_free(iod->sgt.sgl, dev->iod_mempool);
4aedb705
CH
864 return ret;
865}
3045c0d0 866
4aedb705
CH
867static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
868 struct nvme_command *cmnd)
869{
870 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
00df5cb4 871
4aedb705
CH
872 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
873 rq_dma_dir(req), 0);
874 if (dma_mapping_error(dev->dev, iod->meta_dma))
875 return BLK_STS_IOERR;
876 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
359c1f88 877 return BLK_STS_OK;
00df5cb4
MW
878}
879
62451a2b 880static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
edd10d33 881{
9b048119 882 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ebe6d874 883 blk_status_t ret;
e1e5e564 884
52da4f3f 885 iod->aborted = false;
c372cdd1 886 iod->nr_allocations = -1;
91fb2b60 887 iod->sgt.nents = 0;
9b048119 888
62451a2b 889 ret = nvme_setup_cmd(req->q->queuedata, req);
fc17b653 890 if (ret)
f4800d6d 891 return ret;
a4aea562 892
fc17b653 893 if (blk_rq_nr_phys_segments(req)) {
62451a2b 894 ret = nvme_map_data(dev, req, &iod->cmd);
fc17b653 895 if (ret)
9b048119 896 goto out_free_cmd;
fc17b653 897 }
a4aea562 898
4aedb705 899 if (blk_integrity_rq(req)) {
62451a2b 900 ret = nvme_map_metadata(dev, req, &iod->cmd);
4aedb705
CH
901 if (ret)
902 goto out_unmap_data;
903 }
904
aae239e1 905 blk_mq_start_request(req);
fc17b653 906 return BLK_STS_OK;
4aedb705
CH
907out_unmap_data:
908 nvme_unmap_data(dev, req);
f9d03f96
CH
909out_free_cmd:
910 nvme_cleanup_cmd(req);
ba1ca37e 911 return ret;
b60503ba 912}
e1e5e564 913
62451a2b
JA
914/*
915 * NOTE: ns is NULL when called on the admin queue.
916 */
917static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
918 const struct blk_mq_queue_data *bd)
919{
920 struct nvme_queue *nvmeq = hctx->driver_data;
921 struct nvme_dev *dev = nvmeq->dev;
922 struct request *req = bd->rq;
923 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
924 blk_status_t ret;
925
926 /*
927 * We should not need to do this, but we're still using this to
928 * ensure we can drain requests on a dying queue.
929 */
930 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
931 return BLK_STS_IOERR;
932
933 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
934 return nvme_fail_nonready_command(&dev->ctrl, req);
935
936 ret = nvme_prep_rq(dev, req);
937 if (unlikely(ret))
938 return ret;
939 spin_lock(&nvmeq->sq_lock);
940 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
941 nvme_write_sq_db(nvmeq, bd->last);
942 spin_unlock(&nvmeq->sq_lock);
943 return BLK_STS_OK;
944}
945
d62cbcf6
JA
946static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
947{
948 spin_lock(&nvmeq->sq_lock);
949 while (!rq_list_empty(*rqlist)) {
950 struct request *req = rq_list_pop(rqlist);
951 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
952
953 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
954 }
955 nvme_write_sq_db(nvmeq, true);
956 spin_unlock(&nvmeq->sq_lock);
957}
958
959static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
960{
961 /*
962 * We should not need to do this, but we're still using this to
963 * ensure we can drain requests on a dying queue.
964 */
965 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
966 return false;
967 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
968 return false;
969
970 req->mq_hctx->tags->rqs[req->tag] = req;
971 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
972}
973
974static void nvme_queue_rqs(struct request **rqlist)
975{
6bfec799 976 struct request *req, *next, *prev = NULL;
d62cbcf6
JA
977 struct request *requeue_list = NULL;
978
6bfec799 979 rq_list_for_each_safe(rqlist, req, next) {
d62cbcf6
JA
980 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
981
982 if (!nvme_prep_rq_batch(nvmeq, req)) {
983 /* detach 'req' and add to remainder list */
6bfec799
KB
984 rq_list_move(rqlist, &requeue_list, req, prev);
985
986 req = prev;
987 if (!req)
988 continue;
d62cbcf6
JA
989 }
990
6bfec799 991 if (!next || req->mq_hctx != next->mq_hctx) {
d62cbcf6 992 /* detach rest of list, and submit */
6bfec799 993 req->rq_next = NULL;
d62cbcf6 994 nvme_submit_cmds(nvmeq, rqlist);
6bfec799
KB
995 *rqlist = next;
996 prev = NULL;
997 } else
998 prev = req;
999 }
d62cbcf6
JA
1000
1001 *rqlist = requeue_list;
1002}
1003
c234a653 1004static __always_inline void nvme_pci_unmap_rq(struct request *req)
eee417b0 1005{
a53232cb
KB
1006 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1007 struct nvme_dev *dev = nvmeq->dev;
1008
1009 if (blk_integrity_rq(req)) {
1010 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 1011
4aedb705
CH
1012 dma_unmap_page(dev->dev, iod->meta_dma,
1013 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
a53232cb
KB
1014 }
1015
b15c592d 1016 if (blk_rq_nr_phys_segments(req))
4aedb705 1017 nvme_unmap_data(dev, req);
c234a653
JA
1018}
1019
1020static void nvme_pci_complete_rq(struct request *req)
1021{
1022 nvme_pci_unmap_rq(req);
77f02a7a 1023 nvme_complete_rq(req);
b60503ba
MW
1024}
1025
c234a653
JA
1026static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1027{
1028 nvme_complete_batch(iob, nvme_pci_unmap_rq);
1029}
1030
d783e0bd 1031/* We read the CQE phase first to check if the rest of the entry is valid */
750dde44 1032static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
d783e0bd 1033{
74943d45
KB
1034 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1035
1036 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
d783e0bd
MR
1037}
1038
eb281c82 1039static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 1040{
eb281c82 1041 u16 head = nvmeq->cq_head;
adf68f21 1042
397c699f
KB
1043 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1044 nvmeq->dbbuf_cq_ei))
1045 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
eb281c82 1046}
aae239e1 1047
cfa27356
CH
1048static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1049{
1050 if (!nvmeq->qid)
1051 return nvmeq->dev->admin_tagset.tags[0];
1052 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1053}
1054
c234a653
JA
1055static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1056 struct io_comp_batch *iob, u16 idx)
83a12fb7 1057{
74943d45 1058 struct nvme_completion *cqe = &nvmeq->cqes[idx];
62df8016 1059 __u16 command_id = READ_ONCE(cqe->command_id);
83a12fb7 1060 struct request *req;
adf68f21 1061
83a12fb7
SG
1062 /*
1063 * AEN requests are special as they don't time out and can
1064 * survive any kind of queue freeze and often don't respond to
1065 * aborts. We don't even bother to allocate a struct request
1066 * for them but rather special case them here.
1067 */
62df8016 1068 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
83a12fb7
SG
1069 nvme_complete_async_event(&nvmeq->dev->ctrl,
1070 cqe->status, &cqe->result);
a0fa9647 1071 return;
83a12fb7 1072 }
b60503ba 1073
e7006de6 1074 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
50b7c243
XT
1075 if (unlikely(!req)) {
1076 dev_warn(nvmeq->dev->ctrl.device,
1077 "invalid id %d completed on queue %d\n",
62df8016 1078 command_id, le16_to_cpu(cqe->sq_id));
50b7c243
XT
1079 return;
1080 }
1081
604c01d5 1082 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
c234a653
JA
1083 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1084 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1085 nvme_pci_complete_batch))
ff029451 1086 nvme_pci_complete_rq(req);
83a12fb7 1087}
b60503ba 1088
5cb525c8
JA
1089static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1090{
a0aac973 1091 u32 tmp = nvmeq->cq_head + 1;
a8de6639
AD
1092
1093 if (tmp == nvmeq->q_depth) {
5cb525c8 1094 nvmeq->cq_head = 0;
e2a366a4 1095 nvmeq->cq_phase ^= 1;
a8de6639
AD
1096 } else {
1097 nvmeq->cq_head = tmp;
b60503ba 1098 }
a0fa9647
JA
1099}
1100
c234a653
JA
1101static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1102 struct io_comp_batch *iob)
a0fa9647 1103{
1052b8ac 1104 int found = 0;
b60503ba 1105
1052b8ac 1106 while (nvme_cqe_pending(nvmeq)) {
bf392a5d 1107 found++;
b69e2ef2
KB
1108 /*
1109 * load-load control dependency between phase and the rest of
1110 * the cqe requires a full read memory barrier
1111 */
1112 dma_rmb();
c234a653 1113 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
5cb525c8 1114 nvme_update_cq_head(nvmeq);
920d13a8 1115 }
eb281c82 1116
324b494c 1117 if (found)
920d13a8 1118 nvme_ring_cq_doorbell(nvmeq);
5cb525c8 1119 return found;
b60503ba
MW
1120}
1121
1122static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5 1123{
58ffacb5 1124 struct nvme_queue *nvmeq = data;
4f502245 1125 DEFINE_IO_COMP_BATCH(iob);
5cb525c8 1126
4f502245
JA
1127 if (nvme_poll_cq(nvmeq, &iob)) {
1128 if (!rq_list_empty(iob.req_list))
1129 nvme_pci_complete_batch(&iob);
05fae499 1130 return IRQ_HANDLED;
4f502245 1131 }
05fae499 1132 return IRQ_NONE;
58ffacb5
MW
1133}
1134
1135static irqreturn_t nvme_irq_check(int irq, void *data)
1136{
1137 struct nvme_queue *nvmeq = data;
4e523547 1138
750dde44 1139 if (nvme_cqe_pending(nvmeq))
d783e0bd
MR
1140 return IRQ_WAKE_THREAD;
1141 return IRQ_NONE;
58ffacb5
MW
1142}
1143
0b2a8a9f 1144/*
fa059b85 1145 * Poll for completions for any interrupt driven queue
0b2a8a9f
CH
1146 * Can be called from any context.
1147 */
fa059b85 1148static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
a0fa9647 1149{
3a7afd8e 1150 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
a0fa9647 1151
fa059b85 1152 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
442e19b7 1153
fa059b85 1154 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
c234a653 1155 nvme_poll_cq(nvmeq, NULL);
fa059b85 1156 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
a0fa9647
JA
1157}
1158
5a72e899 1159static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
dabcefab
JA
1160{
1161 struct nvme_queue *nvmeq = hctx->driver_data;
dabcefab
JA
1162 bool found;
1163
1164 if (!nvme_cqe_pending(nvmeq))
1165 return 0;
1166
3a7afd8e 1167 spin_lock(&nvmeq->cq_poll_lock);
c234a653 1168 found = nvme_poll_cq(nvmeq, iob);
3a7afd8e 1169 spin_unlock(&nvmeq->cq_poll_lock);
dabcefab 1170
dabcefab
JA
1171 return found;
1172}
1173
ad22c355 1174static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 1175{
f866fc42 1176 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 1177 struct nvme_queue *nvmeq = &dev->queues[0];
f66e2804 1178 struct nvme_command c = { };
b60503ba 1179
a4aea562 1180 c.common.opcode = nvme_admin_async_event;
ad22c355 1181 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
3233b94c
JA
1182
1183 spin_lock(&nvmeq->sq_lock);
1184 nvme_sq_copy_cmd(nvmeq, &c);
1185 nvme_write_sq_db(nvmeq, true);
1186 spin_unlock(&nvmeq->sq_lock);
f705f837
CH
1187}
1188
b60503ba 1189static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1190{
f66e2804 1191 struct nvme_command c = { };
b60503ba 1192
b60503ba
MW
1193 c.delete_queue.opcode = opcode;
1194 c.delete_queue.qid = cpu_to_le16(id);
1195
1c63dc66 1196 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1197}
1198
b60503ba 1199static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
a8e3e0bb 1200 struct nvme_queue *nvmeq, s16 vector)
b60503ba 1201{
f66e2804 1202 struct nvme_command c = { };
4b04cc6a
JA
1203 int flags = NVME_QUEUE_PHYS_CONTIG;
1204
7c349dde 1205 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
4b04cc6a 1206 flags |= NVME_CQ_IRQ_ENABLED;
b60503ba 1207
d29ec824 1208 /*
16772ae6 1209 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1210 * is attached to the request.
1211 */
b60503ba
MW
1212 c.create_cq.opcode = nvme_admin_create_cq;
1213 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1214 c.create_cq.cqid = cpu_to_le16(qid);
1215 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1216 c.create_cq.cq_flags = cpu_to_le16(flags);
7c349dde 1217 c.create_cq.irq_vector = cpu_to_le16(vector);
b60503ba 1218
1c63dc66 1219 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1220}
1221
1222static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1223 struct nvme_queue *nvmeq)
1224{
9abd68ef 1225 struct nvme_ctrl *ctrl = &dev->ctrl;
f66e2804 1226 struct nvme_command c = { };
81c1cd98 1227 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1228
9abd68ef
JA
1229 /*
1230 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1231 * set. Since URGENT priority is zeroes, it makes all queues
1232 * URGENT.
1233 */
1234 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1235 flags |= NVME_SQ_PRIO_MEDIUM;
1236
d29ec824 1237 /*
16772ae6 1238 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1239 * is attached to the request.
1240 */
b60503ba
MW
1241 c.create_sq.opcode = nvme_admin_create_sq;
1242 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1243 c.create_sq.sqid = cpu_to_le16(qid);
1244 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1245 c.create_sq.sq_flags = cpu_to_le16(flags);
1246 c.create_sq.cqid = cpu_to_le16(qid);
1247
1c63dc66 1248 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1249}
1250
1251static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1252{
1253 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1254}
1255
1256static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1257{
1258 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1259}
1260
de671d61 1261static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1262{
a53232cb 1263 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
e44ac588 1264
27fa9bc5
CH
1265 dev_warn(nvmeq->dev->ctrl.device,
1266 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1267 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1268 blk_mq_free_request(req);
de671d61 1269 return RQ_END_IO_NONE;
bc5fc7e4
MW
1270}
1271
b2a0eb1a
KB
1272static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1273{
b2a0eb1a
KB
1274 /* If true, indicates loss of adapter communication, possibly by a
1275 * NVMe Subsystem reset.
1276 */
1277 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1278
ad70062c
JW
1279 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1280 switch (dev->ctrl.state) {
1281 case NVME_CTRL_RESETTING:
ad6a0a52 1282 case NVME_CTRL_CONNECTING:
b2a0eb1a 1283 return false;
ad70062c
JW
1284 default:
1285 break;
1286 }
b2a0eb1a
KB
1287
1288 /* We shouldn't reset unless the controller is on fatal error state
1289 * _or_ if we lost the communication with it.
1290 */
1291 if (!(csts & NVME_CSTS_CFS) && !nssro)
1292 return false;
1293
b2a0eb1a
KB
1294 return true;
1295}
1296
1297static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1298{
1299 /* Read a config register to help see what died. */
1300 u16 pci_status;
1301 int result;
1302
1303 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1304 &pci_status);
1305 if (result == PCIBIOS_SUCCESSFUL)
1306 dev_warn(dev->ctrl.device,
1307 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1308 csts, pci_status);
1309 else
1310 dev_warn(dev->ctrl.device,
1311 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1312 csts, result);
4641a8e6
KB
1313
1314 if (csts != ~0)
1315 return;
1316
1317 dev_warn(dev->ctrl.device,
1318 "Does your device have a faulty power saving mode enabled?\n");
1319 dev_warn(dev->ctrl.device,
1320 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
b2a0eb1a
KB
1321}
1322
9bdb4833 1323static enum blk_eh_timer_return nvme_timeout(struct request *req)
c30341dc 1324{
f4800d6d 1325 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a53232cb 1326 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
c30341dc 1327 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1328 struct request *abort_req;
f66e2804 1329 struct nvme_command cmd = { };
b2a0eb1a
KB
1330 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1331
651438bb
WX
1332 /* If PCI error recovery process is happening, we cannot reset or
1333 * the recovery mechanism will surely fail.
1334 */
1335 mb();
1336 if (pci_channel_offline(to_pci_dev(dev->dev)))
1337 return BLK_EH_RESET_TIMER;
1338
b2a0eb1a
KB
1339 /*
1340 * Reset immediately if the controller is failed
1341 */
1342 if (nvme_should_reset(dev, csts)) {
1343 nvme_warn_reset(dev, csts);
1344 nvme_dev_disable(dev, false);
d86c4d8e 1345 nvme_reset_ctrl(&dev->ctrl);
db8c48e4 1346 return BLK_EH_DONE;
b2a0eb1a 1347 }
c30341dc 1348
7776db1c
KB
1349 /*
1350 * Did we miss an interrupt?
1351 */
fa059b85 1352 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
5a72e899 1353 nvme_poll(req->mq_hctx, NULL);
fa059b85
KB
1354 else
1355 nvme_poll_irqdisable(nvmeq);
1356
bf392a5d 1357 if (blk_mq_request_completed(req)) {
7776db1c
KB
1358 dev_warn(dev->ctrl.device,
1359 "I/O %d QID %d timeout, completion polled\n",
1360 req->tag, nvmeq->qid);
db8c48e4 1361 return BLK_EH_DONE;
7776db1c
KB
1362 }
1363
31c7c7d2 1364 /*
fd634f41
CH
1365 * Shutdown immediately if controller times out while starting. The
1366 * reset work will see the pci device disabled when it gets the forced
1367 * cancellation error. All outstanding requests are completed on
db8c48e4 1368 * shutdown, so we return BLK_EH_DONE.
fd634f41 1369 */
4244140d
KB
1370 switch (dev->ctrl.state) {
1371 case NVME_CTRL_CONNECTING:
2036f726 1372 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
df561f66 1373 fallthrough;
2036f726 1374 case NVME_CTRL_DELETING:
b9cac43c 1375 dev_warn_ratelimited(dev->ctrl.device,
fd634f41
CH
1376 "I/O %d QID %d timeout, disable controller\n",
1377 req->tag, nvmeq->qid);
27fa9bc5 1378 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
7ad92f65 1379 nvme_dev_disable(dev, true);
db8c48e4 1380 return BLK_EH_DONE;
39a9dd81
KB
1381 case NVME_CTRL_RESETTING:
1382 return BLK_EH_RESET_TIMER;
4244140d
KB
1383 default:
1384 break;
c30341dc
KB
1385 }
1386
fd634f41 1387 /*
ee0d96d3
BW
1388 * Shutdown the controller immediately and schedule a reset if the
1389 * command was already aborted once before and still hasn't been
1390 * returned to the driver, or if this is the admin queue.
31c7c7d2 1391 */
f4800d6d 1392 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1393 dev_warn(dev->ctrl.device,
e1569a16
KB
1394 "I/O %d QID %d timeout, reset controller\n",
1395 req->tag, nvmeq->qid);
7ad92f65 1396 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
a5cdb68c 1397 nvme_dev_disable(dev, false);
d86c4d8e 1398 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1399
db8c48e4 1400 return BLK_EH_DONE;
c30341dc 1401 }
c30341dc 1402
e7a2a87d 1403 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1404 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1405 return BLK_EH_RESET_TIMER;
6bf25d16 1406 }
52da4f3f 1407 iod->aborted = true;
a4aea562 1408
c30341dc 1409 cmd.abort.opcode = nvme_admin_abort_cmd;
85f74acf 1410 cmd.abort.cid = nvme_cid(req);
c30341dc 1411 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1412
1b3c47c1 1413 dev_warn(nvmeq->dev->ctrl.device,
86141440
CH
1414 "I/O %d (%s) QID %d timeout, aborting\n",
1415 req->tag,
1416 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1417 nvmeq->qid);
e7a2a87d 1418
e559398f
CH
1419 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1420 BLK_MQ_REQ_NOWAIT);
e7a2a87d
CH
1421 if (IS_ERR(abort_req)) {
1422 atomic_inc(&dev->ctrl.abort_limit);
1423 return BLK_EH_RESET_TIMER;
1424 }
e559398f 1425 nvme_init_request(abort_req, &cmd);
e7a2a87d 1426
e2e53086 1427 abort_req->end_io = abort_endio;
e7a2a87d 1428 abort_req->end_io_data = NULL;
128126a7 1429 abort_req->rq_flags |= RQF_QUIET;
e2e53086 1430 blk_execute_rq_nowait(abort_req, false);
c30341dc 1431
31c7c7d2
CH
1432 /*
1433 * The aborted req will be completed on receiving the abort req.
1434 * We enable the timer again. If hit twice, it'll cause a device reset,
1435 * as the device then is in a faulty state.
1436 */
1437 return BLK_EH_RESET_TIMER;
c30341dc
KB
1438}
1439
a4aea562
MB
1440static void nvme_free_queue(struct nvme_queue *nvmeq)
1441{
8a1d09a6 1442 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
9e866774 1443 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
63223078
CH
1444 if (!nvmeq->sq_cmds)
1445 return;
0f238ff5 1446
63223078 1447 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
88a041f4 1448 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
8a1d09a6 1449 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1450 } else {
8a1d09a6 1451 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
63223078 1452 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
0f238ff5 1453 }
9e866774
MW
1454}
1455
a1a5ef99 1456static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1457{
1458 int i;
1459
d858e5f0 1460 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1461 dev->ctrl.queue_count--;
147b27e4 1462 nvme_free_queue(&dev->queues[i]);
121c7ad4 1463 }
22404274
KB
1464}
1465
4d115420
KB
1466/**
1467 * nvme_suspend_queue - put queue into suspended state
40581d1a 1468 * @nvmeq: queue to suspend
4d115420
KB
1469 */
1470static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1471{
4e224106 1472 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
2b25d981 1473 return 1;
a09115b2 1474
4e224106 1475 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
d1f06f4a 1476 mb();
a09115b2 1477
4e224106 1478 nvmeq->dev->online_queues--;
1c63dc66 1479 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
6ca1d902 1480 nvme_stop_admin_queue(&nvmeq->dev->ctrl);
7c349dde
KB
1481 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1482 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
4d115420
KB
1483 return 0;
1484}
b60503ba 1485
8fae268b
KB
1486static void nvme_suspend_io_queues(struct nvme_dev *dev)
1487{
1488 int i;
1489
1490 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1491 nvme_suspend_queue(&dev->queues[i]);
1492}
1493
a5cdb68c 1494static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1495{
147b27e4 1496 struct nvme_queue *nvmeq = &dev->queues[0];
4d115420 1497
a5cdb68c
KB
1498 if (shutdown)
1499 nvme_shutdown_ctrl(&dev->ctrl);
1500 else
b5b05048 1501 nvme_disable_ctrl(&dev->ctrl);
07836e65 1502
bf392a5d 1503 nvme_poll_irqdisable(nvmeq);
b60503ba
MW
1504}
1505
fa46c6fb
KB
1506/*
1507 * Called only on a device that has been disabled and after all other threads
9210c075
DZ
1508 * that can check this device's completion queues have synced, except
1509 * nvme_poll(). This is the last chance for the driver to see a natural
1510 * completion before nvme_cancel_request() terminates all incomplete requests.
fa46c6fb
KB
1511 */
1512static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1513{
fa46c6fb
KB
1514 int i;
1515
9210c075
DZ
1516 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1517 spin_lock(&dev->queues[i].cq_poll_lock);
c234a653 1518 nvme_poll_cq(&dev->queues[i], NULL);
9210c075
DZ
1519 spin_unlock(&dev->queues[i].cq_poll_lock);
1520 }
fa46c6fb
KB
1521}
1522
8ffaadf7
JD
1523static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1524 int entry_size)
1525{
1526 int q_depth = dev->q_depth;
5fd4ce1b 1527 unsigned q_size_aligned = roundup(q_depth * entry_size,
6c3c05b0 1528 NVME_CTRL_PAGE_SIZE);
8ffaadf7
JD
1529
1530 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1531 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
4e523547 1532
6c3c05b0 1533 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
c45f5c99 1534 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1535
1536 /*
1537 * Ensure the reduced q_depth is above some threshold where it
1538 * would be better to map queues in system memory with the
1539 * original depth
1540 */
1541 if (q_depth < 64)
1542 return -ENOMEM;
1543 }
1544
1545 return q_depth;
1546}
1547
1548static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
8a1d09a6 1549 int qid)
8ffaadf7 1550{
0f238ff5
LG
1551 struct pci_dev *pdev = to_pci_dev(dev->dev);
1552
1553 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
8a1d09a6 1554 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
bfac8e9f
AM
1555 if (nvmeq->sq_cmds) {
1556 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1557 nvmeq->sq_cmds);
1558 if (nvmeq->sq_dma_addr) {
1559 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1560 return 0;
1561 }
1562
8a1d09a6 1563 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1564 }
0f238ff5 1565 }
8ffaadf7 1566
8a1d09a6 1567 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
63223078 1568 &nvmeq->sq_dma_addr, GFP_KERNEL);
815c6704
KB
1569 if (!nvmeq->sq_cmds)
1570 return -ENOMEM;
8ffaadf7
JD
1571 return 0;
1572}
1573
a6ff7262 1574static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1575{
147b27e4 1576 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1577
62314e40
KB
1578 if (dev->ctrl.queue_count > qid)
1579 return 0;
b60503ba 1580
c1e0cc7e 1581 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
8a1d09a6
BH
1582 nvmeq->q_depth = depth;
1583 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
750afb08 1584 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1585 if (!nvmeq->cqes)
1586 goto free_nvmeq;
b60503ba 1587
8a1d09a6 1588 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
b60503ba
MW
1589 goto free_cqdma;
1590
091b6092 1591 nvmeq->dev = dev;
1ab0cd69 1592 spin_lock_init(&nvmeq->sq_lock);
3a7afd8e 1593 spin_lock_init(&nvmeq->cq_poll_lock);
b60503ba 1594 nvmeq->cq_head = 0;
82123460 1595 nvmeq->cq_phase = 1;
b80d5ccc 1596 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
c30341dc 1597 nvmeq->qid = qid;
d858e5f0 1598 dev->ctrl.queue_count++;
36a7e993 1599
147b27e4 1600 return 0;
b60503ba
MW
1601
1602 free_cqdma:
8a1d09a6
BH
1603 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1604 nvmeq->cq_dma_addr);
b60503ba 1605 free_nvmeq:
147b27e4 1606 return -ENOMEM;
b60503ba
MW
1607}
1608
dca51e78 1609static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1610{
0ff199cb
CH
1611 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1612 int nr = nvmeq->dev->ctrl.instance;
1613
1614 if (use_threaded_interrupts) {
1615 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1616 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1617 } else {
1618 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1619 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1620 }
3001082c
MW
1621}
1622
22404274 1623static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1624{
22404274 1625 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1626
22404274 1627 nvmeq->sq_tail = 0;
38210800 1628 nvmeq->last_sq_tail = 0;
22404274
KB
1629 nvmeq->cq_head = 0;
1630 nvmeq->cq_phase = 1;
b80d5ccc 1631 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
8a1d09a6 1632 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
f9f38e33 1633 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1634 dev->online_queues++;
3a7afd8e 1635 wmb(); /* ensure the first interrupt sees the initialization */
22404274
KB
1636}
1637
e4b9852a
CC
1638/*
1639 * Try getting shutdown_lock while setting up IO queues.
1640 */
1641static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1642{
1643 /*
1644 * Give up if the lock is being held by nvme_dev_disable.
1645 */
1646 if (!mutex_trylock(&dev->shutdown_lock))
1647 return -ENODEV;
1648
1649 /*
1650 * Controller is in wrong state, fail early.
1651 */
1652 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1653 mutex_unlock(&dev->shutdown_lock);
1654 return -ENODEV;
1655 }
1656
1657 return 0;
1658}
1659
4b04cc6a 1660static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
22404274
KB
1661{
1662 struct nvme_dev *dev = nvmeq->dev;
1663 int result;
7c349dde 1664 u16 vector = 0;
3f85d50b 1665
d1ed6aa1
CH
1666 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1667
22b55601
KB
1668 /*
1669 * A queue's vector matches the queue identifier unless the controller
1670 * has only one vector available.
1671 */
4b04cc6a
JA
1672 if (!polled)
1673 vector = dev->num_vecs == 1 ? 0 : qid;
1674 else
7c349dde 1675 set_bit(NVMEQ_POLLED, &nvmeq->flags);
4b04cc6a 1676
a8e3e0bb 1677 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
ded45505
KB
1678 if (result)
1679 return result;
b60503ba
MW
1680
1681 result = adapter_alloc_sq(dev, qid, nvmeq);
1682 if (result < 0)
ded45505 1683 return result;
c80b36cd 1684 if (result)
b60503ba
MW
1685 goto release_cq;
1686
a8e3e0bb 1687 nvmeq->cq_vector = vector;
4b04cc6a 1688
e4b9852a
CC
1689 result = nvme_setup_io_queues_trylock(dev);
1690 if (result)
1691 return result;
1692 nvme_init_queue(nvmeq, qid);
7c349dde 1693 if (!polled) {
4b04cc6a
JA
1694 result = queue_request_irq(nvmeq);
1695 if (result < 0)
1696 goto release_sq;
1697 }
b60503ba 1698
4e224106 1699 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
e4b9852a 1700 mutex_unlock(&dev->shutdown_lock);
22404274 1701 return result;
b60503ba 1702
a8e3e0bb 1703release_sq:
f25a2dfc 1704 dev->online_queues--;
e4b9852a 1705 mutex_unlock(&dev->shutdown_lock);
b60503ba 1706 adapter_delete_sq(dev, qid);
a8e3e0bb 1707release_cq:
b60503ba 1708 adapter_delete_cq(dev, qid);
22404274 1709 return result;
b60503ba
MW
1710}
1711
f363b089 1712static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1713 .queue_rq = nvme_queue_rq,
77f02a7a 1714 .complete = nvme_pci_complete_rq,
a4aea562 1715 .init_hctx = nvme_admin_init_hctx,
e559398f 1716 .init_request = nvme_pci_init_request,
a4aea562
MB
1717 .timeout = nvme_timeout,
1718};
1719
f363b089 1720static const struct blk_mq_ops nvme_mq_ops = {
376f7ef8 1721 .queue_rq = nvme_queue_rq,
d62cbcf6 1722 .queue_rqs = nvme_queue_rqs,
376f7ef8
CH
1723 .complete = nvme_pci_complete_rq,
1724 .commit_rqs = nvme_commit_rqs,
1725 .init_hctx = nvme_init_hctx,
e559398f 1726 .init_request = nvme_pci_init_request,
376f7ef8
CH
1727 .map_queues = nvme_pci_map_queues,
1728 .timeout = nvme_timeout,
1729 .poll = nvme_poll,
dabcefab
JA
1730};
1731
ea191d2f
KB
1732static void nvme_dev_remove_admin(struct nvme_dev *dev)
1733{
1c63dc66 1734 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1735 /*
1736 * If the controller was reset during removal, it's possible
1737 * user requests may be waiting on a stopped queue. Start the
1738 * queue to flush these to completion.
1739 */
6ca1d902 1740 nvme_start_admin_queue(&dev->ctrl);
6f8191fd 1741 blk_mq_destroy_queue(dev->ctrl.admin_q);
96ef1be5 1742 blk_put_queue(dev->ctrl.admin_q);
ea191d2f
KB
1743 blk_mq_free_tag_set(&dev->admin_tagset);
1744 }
1745}
1746
f91b727c 1747static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
a4aea562 1748{
f91b727c 1749 struct blk_mq_tag_set *set = &dev->admin_tagset;
e3e9d50c 1750
f91b727c
CH
1751 set->ops = &nvme_mq_admin_ops;
1752 set->nr_hw_queues = 1;
a4aea562 1753
f91b727c
CH
1754 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1755 set->timeout = NVME_ADMIN_TIMEOUT;
1756 set->numa_node = dev->ctrl.numa_node;
1757 set->cmd_size = sizeof(struct nvme_iod);
1758 set->flags = BLK_MQ_F_NO_SCHED;
1759 set->driver_data = dev;
a4aea562 1760
f91b727c
CH
1761 if (blk_mq_alloc_tag_set(set))
1762 return -ENOMEM;
1763 dev->ctrl.admin_tagset = set;
a4aea562 1764
f91b727c
CH
1765 dev->ctrl.admin_q = blk_mq_init_queue(set);
1766 if (IS_ERR(dev->ctrl.admin_q)) {
1767 blk_mq_free_tag_set(set);
1768 dev->ctrl.admin_q = NULL;
1769 return -ENOMEM;
1770 }
a4aea562
MB
1771 return 0;
1772}
1773
97f6ef64
XY
1774static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1775{
1776 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1777}
1778
1779static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1780{
1781 struct pci_dev *pdev = to_pci_dev(dev->dev);
1782
1783 if (size <= dev->bar_mapped_size)
1784 return 0;
1785 if (size > pci_resource_len(pdev, 0))
1786 return -ENOMEM;
1787 if (dev->bar)
1788 iounmap(dev->bar);
1789 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1790 if (!dev->bar) {
1791 dev->bar_mapped_size = 0;
1792 return -ENOMEM;
1793 }
1794 dev->bar_mapped_size = size;
1795 dev->dbs = dev->bar + NVME_REG_DBS;
1796
1797 return 0;
1798}
1799
01ad0990 1800static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1801{
ba47e386 1802 int result;
b60503ba
MW
1803 u32 aqa;
1804 struct nvme_queue *nvmeq;
1805
97f6ef64
XY
1806 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1807 if (result < 0)
1808 return result;
1809
8ef2074d 1810 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1811 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1812
7a67cbea
CH
1813 if (dev->subsystem &&
1814 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1815 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1816
b5b05048 1817 result = nvme_disable_ctrl(&dev->ctrl);
ba47e386
MW
1818 if (result < 0)
1819 return result;
b60503ba 1820
a6ff7262 1821 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1822 if (result)
1823 return result;
b60503ba 1824
635333e4
MG
1825 dev->ctrl.numa_node = dev_to_node(dev->dev);
1826
147b27e4 1827 nvmeq = &dev->queues[0];
b60503ba
MW
1828 aqa = nvmeq->q_depth - 1;
1829 aqa |= aqa << 16;
1830
7a67cbea
CH
1831 writel(aqa, dev->bar + NVME_REG_AQA);
1832 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1833 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1834
c0f2f45b 1835 result = nvme_enable_ctrl(&dev->ctrl);
025c557a 1836 if (result)
d4875622 1837 return result;
a4aea562 1838
2b25d981 1839 nvmeq->cq_vector = 0;
161b8be2 1840 nvme_init_queue(nvmeq, 0);
dca51e78 1841 result = queue_request_irq(nvmeq);
758dd7fd 1842 if (result) {
7c349dde 1843 dev->online_queues--;
d4875622 1844 return result;
758dd7fd 1845 }
025c557a 1846
4e224106 1847 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
b60503ba
MW
1848 return result;
1849}
1850
749941f2 1851static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1852{
4b04cc6a 1853 unsigned i, max, rw_queues;
749941f2 1854 int ret = 0;
42f61420 1855
d858e5f0 1856 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1857 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1858 ret = -ENOMEM;
42f61420 1859 break;
749941f2
CH
1860 }
1861 }
42f61420 1862
d858e5f0 1863 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
e20ba6e1
CH
1864 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1865 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1866 dev->io_queues[HCTX_TYPE_READ];
4b04cc6a
JA
1867 } else {
1868 rw_queues = max;
1869 }
1870
949928c1 1871 for (i = dev->online_queues; i <= max; i++) {
4b04cc6a
JA
1872 bool polled = i > rw_queues;
1873
1874 ret = nvme_create_queue(&dev->queues[i], i, polled);
d4875622 1875 if (ret)
42f61420 1876 break;
27e8166c 1877 }
749941f2
CH
1878
1879 /*
1880 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1881 * than the desired amount of queues, and even a controller without
1882 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1883 * be useful to upgrade a buggy firmware for example.
1884 */
1885 return ret >= 0 ? 0 : ret;
b60503ba
MW
1886}
1887
88de4598 1888static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1889{
88de4598
CH
1890 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1891
1892 return 1ULL << (12 + 4 * szu);
1893}
1894
1895static u32 nvme_cmb_size(struct nvme_dev *dev)
1896{
1897 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1898}
1899
f65efd6d 1900static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1901{
88de4598 1902 u64 size, offset;
8ffaadf7
JD
1903 resource_size_t bar_size;
1904 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1905 int bar;
8ffaadf7 1906
9fe5c59f
KB
1907 if (dev->cmb_size)
1908 return;
1909
20d3bb92
KJ
1910 if (NVME_CAP_CMBS(dev->ctrl.cap))
1911 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1912
7a67cbea 1913 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1914 if (!dev->cmbsz)
1915 return;
202021c1 1916 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1917
88de4598
CH
1918 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1919 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1920 bar = NVME_CMB_BIR(dev->cmbloc);
1921 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1922
1923 if (offset > bar_size)
f65efd6d 1924 return;
8ffaadf7 1925
20d3bb92
KJ
1926 /*
1927 * Tell the controller about the host side address mapping the CMB,
1928 * and enable CMB decoding for the NVMe 1.4+ scheme:
1929 */
1930 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1931 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1932 (pci_bus_address(pdev, bar) + offset),
1933 dev->bar + NVME_REG_CMBMSC);
1934 }
1935
8ffaadf7
JD
1936 /*
1937 * Controllers may support a CMB size larger than their BAR,
1938 * for example, due to being behind a bridge. Reduce the CMB to
1939 * the reported size of the BAR
1940 */
1941 if (size > bar_size - offset)
1942 size = bar_size - offset;
1943
0f238ff5
LG
1944 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1945 dev_warn(dev->ctrl.device,
1946 "failed to register the CMB\n");
f65efd6d 1947 return;
0f238ff5
LG
1948 }
1949
8ffaadf7 1950 dev->cmb_size = size;
0f238ff5
LG
1951 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1952
1953 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1954 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1955 pci_p2pmem_publish(pdev, true);
8ffaadf7
JD
1956}
1957
87ad72a5
CH
1958static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1959{
6c3c05b0 1960 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
4033f35d 1961 u64 dma_addr = dev->host_mem_descs_dma;
f66e2804 1962 struct nvme_command c = { };
87ad72a5
CH
1963 int ret;
1964
87ad72a5
CH
1965 c.features.opcode = nvme_admin_set_features;
1966 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1967 c.features.dword11 = cpu_to_le32(bits);
6c3c05b0 1968 c.features.dword12 = cpu_to_le32(host_mem_size);
87ad72a5
CH
1969 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1970 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1971 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1972
1973 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1974 if (ret) {
1975 dev_warn(dev->ctrl.device,
1976 "failed to set host mem (err %d, flags %#x).\n",
1977 ret, bits);
a5df5e79
KB
1978 } else
1979 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1980
87ad72a5
CH
1981 return ret;
1982}
1983
1984static void nvme_free_host_mem(struct nvme_dev *dev)
1985{
1986 int i;
1987
1988 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1989 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
6c3c05b0 1990 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 1991
cc667f6d
LD
1992 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1993 le64_to_cpu(desc->addr),
1994 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1995 }
1996
1997 kfree(dev->host_mem_desc_bufs);
1998 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
1999 dma_free_coherent(dev->dev,
2000 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2001 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 2002 dev->host_mem_descs = NULL;
7e5dd57e 2003 dev->nr_host_mem_descs = 0;
87ad72a5
CH
2004}
2005
92dc6895
CH
2006static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2007 u32 chunk_size)
9d713c2b 2008{
87ad72a5 2009 struct nvme_host_mem_buf_desc *descs;
92dc6895 2010 u32 max_entries, len;
4033f35d 2011 dma_addr_t descs_dma;
2ee0e4ed 2012 int i = 0;
87ad72a5 2013 void **bufs;
6fbcde66 2014 u64 size, tmp;
87ad72a5 2015
87ad72a5
CH
2016 tmp = (preferred + chunk_size - 1);
2017 do_div(tmp, chunk_size);
2018 max_entries = tmp;
044a9df1
CH
2019
2020 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2021 max_entries = dev->ctrl.hmmaxd;
2022
750afb08
LC
2023 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2024 &descs_dma, GFP_KERNEL);
87ad72a5
CH
2025 if (!descs)
2026 goto out;
2027
2028 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2029 if (!bufs)
2030 goto out_free_descs;
2031
244a8fe4 2032 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
2033 dma_addr_t dma_addr;
2034
50cdb7c6 2035 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
2036 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2037 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2038 if (!bufs[i])
2039 break;
2040
2041 descs[i].addr = cpu_to_le64(dma_addr);
6c3c05b0 2042 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
87ad72a5
CH
2043 i++;
2044 }
2045
92dc6895 2046 if (!size)
87ad72a5 2047 goto out_free_bufs;
87ad72a5 2048
87ad72a5
CH
2049 dev->nr_host_mem_descs = i;
2050 dev->host_mem_size = size;
2051 dev->host_mem_descs = descs;
4033f35d 2052 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
2053 dev->host_mem_desc_bufs = bufs;
2054 return 0;
2055
2056out_free_bufs:
2057 while (--i >= 0) {
6c3c05b0 2058 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 2059
cc667f6d
LD
2060 dma_free_attrs(dev->dev, size, bufs[i],
2061 le64_to_cpu(descs[i].addr),
2062 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
2063 }
2064
2065 kfree(bufs);
2066out_free_descs:
4033f35d
CH
2067 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2068 descs_dma);
87ad72a5 2069out:
87ad72a5
CH
2070 dev->host_mem_descs = NULL;
2071 return -ENOMEM;
2072}
2073
92dc6895
CH
2074static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2075{
9dc54a0d
CK
2076 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2077 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2078 u64 chunk_size;
92dc6895
CH
2079
2080 /* start big and work our way down */
9dc54a0d 2081 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
92dc6895
CH
2082 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2083 if (!min || dev->host_mem_size >= min)
2084 return 0;
2085 nvme_free_host_mem(dev);
2086 }
2087 }
2088
2089 return -ENOMEM;
2090}
2091
9620cfba 2092static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
2093{
2094 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2095 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2096 u64 min = (u64)dev->ctrl.hmmin * 4096;
2097 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 2098 int ret;
87ad72a5
CH
2099
2100 preferred = min(preferred, max);
2101 if (min > max) {
2102 dev_warn(dev->ctrl.device,
2103 "min host memory (%lld MiB) above limit (%d MiB).\n",
2104 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2105 nvme_free_host_mem(dev);
9620cfba 2106 return 0;
87ad72a5
CH
2107 }
2108
2109 /*
2110 * If we already have a buffer allocated check if we can reuse it.
2111 */
2112 if (dev->host_mem_descs) {
2113 if (dev->host_mem_size >= min)
2114 enable_bits |= NVME_HOST_MEM_RETURN;
2115 else
2116 nvme_free_host_mem(dev);
2117 }
2118
2119 if (!dev->host_mem_descs) {
92dc6895
CH
2120 if (nvme_alloc_host_mem(dev, min, preferred)) {
2121 dev_warn(dev->ctrl.device,
2122 "failed to allocate host memory buffer.\n");
9620cfba 2123 return 0; /* controller must work without HMB */
92dc6895
CH
2124 }
2125
2126 dev_info(dev->ctrl.device,
2127 "allocated %lld MiB host memory buffer.\n",
2128 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
2129 }
2130
9620cfba
CH
2131 ret = nvme_set_host_mem(dev, enable_bits);
2132 if (ret)
87ad72a5 2133 nvme_free_host_mem(dev);
9620cfba 2134 return ret;
9d713c2b
KB
2135}
2136
0521905e
KB
2137static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2138 char *buf)
2139{
2140 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2141
2142 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2143 ndev->cmbloc, ndev->cmbsz);
2144}
2145static DEVICE_ATTR_RO(cmb);
2146
1751e97a
KB
2147static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2148 char *buf)
2149{
2150 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2151
2152 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2153}
2154static DEVICE_ATTR_RO(cmbloc);
2155
2156static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2157 char *buf)
2158{
2159 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2160
2161 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2162}
2163static DEVICE_ATTR_RO(cmbsz);
2164
a5df5e79
KB
2165static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2166 char *buf)
2167{
2168 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2169
2170 return sysfs_emit(buf, "%d\n", ndev->hmb);
2171}
2172
2173static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2174 const char *buf, size_t count)
2175{
2176 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2177 bool new;
2178 int ret;
2179
2180 if (strtobool(buf, &new) < 0)
2181 return -EINVAL;
2182
2183 if (new == ndev->hmb)
2184 return count;
2185
2186 if (new) {
2187 ret = nvme_setup_host_mem(ndev);
2188 } else {
2189 ret = nvme_set_host_mem(ndev, 0);
2190 if (!ret)
2191 nvme_free_host_mem(ndev);
2192 }
2193
2194 if (ret < 0)
2195 return ret;
2196
2197 return count;
2198}
2199static DEVICE_ATTR_RW(hmb);
2200
0521905e
KB
2201static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2202 struct attribute *a, int n)
2203{
2204 struct nvme_ctrl *ctrl =
2205 dev_get_drvdata(container_of(kobj, struct device, kobj));
2206 struct nvme_dev *dev = to_nvme_dev(ctrl);
2207
1751e97a
KB
2208 if (a == &dev_attr_cmb.attr ||
2209 a == &dev_attr_cmbloc.attr ||
2210 a == &dev_attr_cmbsz.attr) {
2211 if (!dev->cmbsz)
2212 return 0;
2213 }
a5df5e79
KB
2214 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2215 return 0;
2216
0521905e
KB
2217 return a->mode;
2218}
2219
2220static struct attribute *nvme_pci_attrs[] = {
2221 &dev_attr_cmb.attr,
1751e97a
KB
2222 &dev_attr_cmbloc.attr,
2223 &dev_attr_cmbsz.attr,
a5df5e79 2224 &dev_attr_hmb.attr,
0521905e
KB
2225 NULL,
2226};
2227
86adbf0c 2228static const struct attribute_group nvme_pci_dev_attrs_group = {
0521905e
KB
2229 .attrs = nvme_pci_attrs,
2230 .is_visible = nvme_pci_attrs_are_visible,
2231};
2232
86adbf0c
CH
2233static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2234 &nvme_dev_attrs_group,
2235 &nvme_pci_dev_attrs_group,
2236 NULL,
2237};
2238
612b7286
ML
2239/*
2240 * nirqs is the number of interrupts available for write and read
2241 * queues. The core already reserved an interrupt for the admin queue.
2242 */
2243static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
3b6592f7 2244{
612b7286 2245 struct nvme_dev *dev = affd->priv;
2a5bcfdd 2246 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
3b6592f7
JA
2247
2248 /*
ee0d96d3 2249 * If there is no interrupt available for queues, ensure that
612b7286
ML
2250 * the default queue is set to 1. The affinity set size is
2251 * also set to one, but the irq core ignores it for this case.
2252 *
2253 * If only one interrupt is available or 'write_queue' == 0, combine
2254 * write and read queues.
2255 *
2256 * If 'write_queues' > 0, ensure it leaves room for at least one read
2257 * queue.
3b6592f7 2258 */
612b7286
ML
2259 if (!nrirqs) {
2260 nrirqs = 1;
2261 nr_read_queues = 0;
2a5bcfdd 2262 } else if (nrirqs == 1 || !nr_write_queues) {
612b7286 2263 nr_read_queues = 0;
2a5bcfdd 2264 } else if (nr_write_queues >= nrirqs) {
612b7286 2265 nr_read_queues = 1;
3b6592f7 2266 } else {
2a5bcfdd 2267 nr_read_queues = nrirqs - nr_write_queues;
3b6592f7 2268 }
612b7286
ML
2269
2270 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2271 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2272 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2273 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2274 affd->nr_sets = nr_read_queues ? 2 : 1;
3b6592f7
JA
2275}
2276
6451fe73 2277static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
3b6592f7
JA
2278{
2279 struct pci_dev *pdev = to_pci_dev(dev->dev);
3b6592f7 2280 struct irq_affinity affd = {
9cfef55b 2281 .pre_vectors = 1,
612b7286
ML
2282 .calc_sets = nvme_calc_irq_sets,
2283 .priv = dev,
3b6592f7 2284 };
21cc2f3f 2285 unsigned int irq_queues, poll_queues;
6451fe73
JA
2286
2287 /*
21cc2f3f
JX
2288 * Poll queues don't need interrupts, but we need at least one I/O queue
2289 * left over for non-polled I/O.
6451fe73 2290 */
21cc2f3f
JX
2291 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2292 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
3b6592f7 2293
21cc2f3f
JX
2294 /*
2295 * Initialize for the single interrupt case, will be updated in
2296 * nvme_calc_irq_sets().
2297 */
612b7286
ML
2298 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2299 dev->io_queues[HCTX_TYPE_READ] = 0;
3b6592f7 2300
66341331 2301 /*
21cc2f3f
JX
2302 * We need interrupts for the admin queue and each non-polled I/O queue,
2303 * but some Apple controllers require all queues to use the first
2304 * vector.
66341331 2305 */
21cc2f3f
JX
2306 irq_queues = 1;
2307 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2308 irq_queues += (nr_io_queues - poll_queues);
612b7286
ML
2309 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2310 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
3b6592f7
JA
2311}
2312
8fae268b
KB
2313static void nvme_disable_io_queues(struct nvme_dev *dev)
2314{
2315 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2316 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2317}
2318
2a5bcfdd
WZ
2319static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2320{
e3aef095
NS
2321 /*
2322 * If tags are shared with admin queue (Apple bug), then
2323 * make sure we only use one IO queue.
2324 */
2325 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2326 return 1;
2a5bcfdd
WZ
2327 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2328}
2329
8d85fce7 2330static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2331{
147b27e4 2332 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 2333 struct pci_dev *pdev = to_pci_dev(dev->dev);
2a5bcfdd 2334 unsigned int nr_io_queues;
97f6ef64 2335 unsigned long size;
2a5bcfdd 2336 int result;
b60503ba 2337
2a5bcfdd
WZ
2338 /*
2339 * Sample the module parameters once at reset time so that we have
2340 * stable values to work with.
2341 */
2342 dev->nr_write_queues = write_queues;
2343 dev->nr_poll_queues = poll_queues;
d38e9f04 2344
e3aef095 2345 nr_io_queues = dev->nr_allocated_queues - 1;
9a0be7ab
CH
2346 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2347 if (result < 0)
1b23484b 2348 return result;
9a0be7ab 2349
f5fa90dc 2350 if (nr_io_queues == 0)
a5229050 2351 return 0;
53dc180e 2352
e4b9852a
CC
2353 /*
2354 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2355 * from set to unset. If there is a window to it is truely freed,
2356 * pci_free_irq_vectors() jumping into this window will crash.
2357 * And take lock to avoid racing with pci_free_irq_vectors() in
2358 * nvme_dev_disable() path.
2359 */
2360 result = nvme_setup_io_queues_trylock(dev);
2361 if (result)
2362 return result;
2363 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2364 pci_free_irq(pdev, 0, adminq);
b60503ba 2365
0f238ff5 2366 if (dev->cmb_use_sqes) {
8ffaadf7
JD
2367 result = nvme_cmb_qdepth(dev, nr_io_queues,
2368 sizeof(struct nvme_command));
2369 if (result > 0)
2370 dev->q_depth = result;
2371 else
0f238ff5 2372 dev->cmb_use_sqes = false;
8ffaadf7
JD
2373 }
2374
97f6ef64
XY
2375 do {
2376 size = db_bar_size(dev, nr_io_queues);
2377 result = nvme_remap_bar(dev, size);
2378 if (!result)
2379 break;
e4b9852a
CC
2380 if (!--nr_io_queues) {
2381 result = -ENOMEM;
2382 goto out_unlock;
2383 }
97f6ef64
XY
2384 } while (1);
2385 adminq->q_db = dev->dbs;
f1938f6e 2386
8fae268b 2387 retry:
9d713c2b 2388 /* Deregister the admin queue's interrupt */
e4b9852a
CC
2389 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2390 pci_free_irq(pdev, 0, adminq);
9d713c2b 2391
e32efbfc
JA
2392 /*
2393 * If we enable msix early due to not intx, disable it again before
2394 * setting up the full range we need.
2395 */
dca51e78 2396 pci_free_irq_vectors(pdev);
3b6592f7
JA
2397
2398 result = nvme_setup_irqs(dev, nr_io_queues);
e4b9852a
CC
2399 if (result <= 0) {
2400 result = -EIO;
2401 goto out_unlock;
2402 }
3b6592f7 2403
22b55601 2404 dev->num_vecs = result;
4b04cc6a 2405 result = max(result - 1, 1);
e20ba6e1 2406 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
fa08a396 2407
063a8096
MW
2408 /*
2409 * Should investigate if there's a performance win from allocating
2410 * more queues than interrupt vectors; it might allow the submission
2411 * path to scale better, even if the receive path is limited by the
2412 * number of interrupts.
2413 */
dca51e78 2414 result = queue_request_irq(adminq);
7c349dde 2415 if (result)
e4b9852a 2416 goto out_unlock;
4e224106 2417 set_bit(NVMEQ_ENABLED, &adminq->flags);
e4b9852a 2418 mutex_unlock(&dev->shutdown_lock);
8fae268b
KB
2419
2420 result = nvme_create_io_queues(dev);
2421 if (result || dev->online_queues < 2)
2422 return result;
2423
2424 if (dev->online_queues - 1 < dev->max_qid) {
2425 nr_io_queues = dev->online_queues - 1;
2426 nvme_disable_io_queues(dev);
e4b9852a
CC
2427 result = nvme_setup_io_queues_trylock(dev);
2428 if (result)
2429 return result;
8fae268b
KB
2430 nvme_suspend_io_queues(dev);
2431 goto retry;
2432 }
2433 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2434 dev->io_queues[HCTX_TYPE_DEFAULT],
2435 dev->io_queues[HCTX_TYPE_READ],
2436 dev->io_queues[HCTX_TYPE_POLL]);
2437 return 0;
e4b9852a
CC
2438out_unlock:
2439 mutex_unlock(&dev->shutdown_lock);
2440 return result;
b60503ba
MW
2441}
2442
de671d61
JA
2443static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2444 blk_status_t error)
a5768aa8 2445{
db3cbfff 2446 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 2447
db3cbfff 2448 blk_mq_free_request(req);
d1ed6aa1 2449 complete(&nvmeq->delete_done);
de671d61 2450 return RQ_END_IO_NONE;
a5768aa8
KB
2451}
2452
de671d61
JA
2453static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2454 blk_status_t error)
a5768aa8 2455{
db3cbfff 2456 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 2457
d1ed6aa1
CH
2458 if (error)
2459 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
db3cbfff 2460
de671d61 2461 return nvme_del_queue_end(req, error);
a5768aa8
KB
2462}
2463
db3cbfff 2464static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 2465{
db3cbfff
KB
2466 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2467 struct request *req;
f66e2804 2468 struct nvme_command cmd = { };
bda4e0fb 2469
db3cbfff
KB
2470 cmd.delete_queue.opcode = opcode;
2471 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 2472
e559398f 2473 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
db3cbfff
KB
2474 if (IS_ERR(req))
2475 return PTR_ERR(req);
e559398f 2476 nvme_init_request(req, &cmd);
bda4e0fb 2477
e2e53086
CH
2478 if (opcode == nvme_admin_delete_cq)
2479 req->end_io = nvme_del_cq_end;
2480 else
2481 req->end_io = nvme_del_queue_end;
db3cbfff
KB
2482 req->end_io_data = nvmeq;
2483
d1ed6aa1 2484 init_completion(&nvmeq->delete_done);
128126a7 2485 req->rq_flags |= RQF_QUIET;
e2e53086 2486 blk_execute_rq_nowait(req, false);
db3cbfff 2487 return 0;
bda4e0fb
KB
2488}
2489
8fae268b 2490static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
a5768aa8 2491{
5271edd4 2492 int nr_queues = dev->online_queues - 1, sent = 0;
db3cbfff 2493 unsigned long timeout;
a5768aa8 2494
db3cbfff 2495 retry:
dc96f938 2496 timeout = NVME_ADMIN_TIMEOUT;
5271edd4
CH
2497 while (nr_queues > 0) {
2498 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2499 break;
2500 nr_queues--;
2501 sent++;
db3cbfff 2502 }
d1ed6aa1
CH
2503 while (sent) {
2504 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2505
2506 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
5271edd4
CH
2507 timeout);
2508 if (timeout == 0)
2509 return false;
d1ed6aa1 2510
d1ed6aa1 2511 sent--;
5271edd4
CH
2512 if (nr_queues)
2513 goto retry;
2514 }
2515 return true;
a5768aa8
KB
2516}
2517
2455a4b7 2518static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
b60503ba 2519{
2455a4b7 2520 struct blk_mq_tag_set * set = &dev->tagset;
2b1b7e78
JW
2521 int ret;
2522
2455a4b7
CH
2523 set->ops = &nvme_mq_ops;
2524 set->nr_hw_queues = dev->online_queues - 1;
6ee742fa
KB
2525 set->nr_maps = 1;
2526 if (dev->io_queues[HCTX_TYPE_READ])
2527 set->nr_maps = 2;
2455a4b7 2528 if (dev->io_queues[HCTX_TYPE_POLL])
6ee742fa 2529 set->nr_maps = 3;
2455a4b7
CH
2530 set->timeout = NVME_IO_TIMEOUT;
2531 set->numa_node = dev->ctrl.numa_node;
2532 set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2533 set->cmd_size = sizeof(struct nvme_iod);
2534 set->flags = BLK_MQ_F_SHOULD_MERGE;
2535 set->driver_data = dev;
d38e9f04 2536
2455a4b7
CH
2537 /*
2538 * Some Apple controllers requires tags to be unique
2539 * across admin and IO queue, so reserve the first 32
2540 * tags of the IO queue.
2541 */
2542 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2543 set->reserved_tags = NVME_AQ_DEPTH;
949928c1 2544
2455a4b7
CH
2545 ret = blk_mq_alloc_tag_set(set);
2546 if (ret) {
2547 dev_warn(dev->ctrl.device,
2548 "IO queues tagset allocation failed %d\n", ret);
2549 return;
ffe7704d 2550 }
2455a4b7
CH
2551 dev->ctrl.tagset = set;
2552}
949928c1 2553
2455a4b7
CH
2554static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2555{
2556 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2557 /* free previously allocated queues that are no longer usable */
2558 nvme_free_queues(dev, dev->online_queues);
b60503ba
MW
2559}
2560
b00a726a 2561static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2562{
b00a726a 2563 int result = -ENOMEM;
e75ec752 2564 struct pci_dev *pdev = to_pci_dev(dev->dev);
4bdf2603 2565 int dma_address_bits = 64;
0877cb0d
KB
2566
2567 if (pci_enable_device_mem(pdev))
2568 return result;
2569
0877cb0d 2570 pci_set_master(pdev);
0877cb0d 2571
4bdf2603
FS
2572 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2573 dma_address_bits = 48;
2574 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
052d0efa 2575 goto disable;
0877cb0d 2576
7a67cbea 2577 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2578 result = -ENODEV;
b00a726a 2579 goto disable;
0e53d180 2580 }
e32efbfc
JA
2581
2582 /*
a5229050
KB
2583 * Some devices and/or platforms don't advertise or work with INTx
2584 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2585 * adjust this later.
e32efbfc 2586 */
dca51e78
CH
2587 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2588 if (result < 0)
2589 return result;
e32efbfc 2590
20d0dfe6 2591 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2592
7442ddce 2593 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2594 io_queue_depth);
aa22c8e6 2595 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
20d0dfe6 2596 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2597 dev->dbs = dev->bar + 4096;
1f390c1f 2598
66341331
BH
2599 /*
2600 * Some Apple controllers require a non-standard SQE size.
2601 * Interestingly they also seem to ignore the CC:IOSQES register
2602 * so we don't bother updating it here.
2603 */
2604 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2605 dev->io_sqes = 7;
2606 else
2607 dev->io_sqes = NVME_NVM_IOSQES;
1f390c1f
SG
2608
2609 /*
2610 * Temporary fix for the Apple controller found in the MacBook8,1 and
2611 * some MacBook7,1 to avoid controller resets and data loss.
2612 */
2613 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2614 dev->q_depth = 2;
9bdcfb10
CH
2615 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2616 "set queue depth=%u to work around controller resets\n",
1f390c1f 2617 dev->q_depth);
d554b5e1
MP
2618 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2619 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2620 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2621 dev->q_depth = 64;
2622 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2623 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2624 }
2625
d38e9f04
BH
2626 /*
2627 * Controllers with the shared tags quirk need the IO queue to be
2628 * big enough so that we get 32 tags for the admin queue
2629 */
2630 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2631 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2632 dev->q_depth = NVME_AQ_DEPTH + 2;
2633 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2634 dev->q_depth);
2635 }
2636
2637
f65efd6d 2638 nvme_map_cmb(dev);
202021c1 2639
a0a3408e
KB
2640 pci_enable_pcie_error_reporting(pdev);
2641 pci_save_state(pdev);
0877cb0d
KB
2642 return 0;
2643
2644 disable:
0877cb0d
KB
2645 pci_disable_device(pdev);
2646 return result;
2647}
2648
2649static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2650{
2651 if (dev->bar)
2652 iounmap(dev->bar);
a1f447b3 2653 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2654}
2655
2656static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 2657{
e75ec752
CH
2658 struct pci_dev *pdev = to_pci_dev(dev->dev);
2659
dca51e78 2660 pci_free_irq_vectors(pdev);
0877cb0d 2661
a0a3408e
KB
2662 if (pci_is_enabled(pdev)) {
2663 pci_disable_pcie_error_reporting(pdev);
e75ec752 2664 pci_disable_device(pdev);
4d115420 2665 }
4d115420
KB
2666}
2667
a5cdb68c 2668static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2669{
e43269e6 2670 bool dead = true, freeze = false;
302ad8cc 2671 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2672
77bf25ea 2673 mutex_lock(&dev->shutdown_lock);
081f5e75
KB
2674 if (pci_is_enabled(pdev)) {
2675 u32 csts;
2676
2677 if (pci_device_is_present(pdev))
2678 csts = readl(dev->bar + NVME_REG_CSTS);
2679 else
2680 csts = ~0;
302ad8cc 2681
ebef7368 2682 if (dev->ctrl.state == NVME_CTRL_LIVE ||
e43269e6
KB
2683 dev->ctrl.state == NVME_CTRL_RESETTING) {
2684 freeze = true;
302ad8cc 2685 nvme_start_freeze(&dev->ctrl);
e43269e6 2686 }
302ad8cc
KB
2687 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2688 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2689 }
c21377f8 2690
302ad8cc
KB
2691 /*
2692 * Give the controller a chance to complete all entered requests if
2693 * doing a safe shutdown.
2694 */
e43269e6
KB
2695 if (!dead && shutdown && freeze)
2696 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
9a915a5b
JW
2697
2698 nvme_stop_queues(&dev->ctrl);
87ad72a5 2699
64ee0ac0 2700 if (!dead && dev->ctrl.queue_count > 0) {
8fae268b 2701 nvme_disable_io_queues(dev);
a5cdb68c 2702 nvme_disable_admin_queue(dev, shutdown);
4d115420 2703 }
8fae268b
KB
2704 nvme_suspend_io_queues(dev);
2705 nvme_suspend_queue(&dev->queues[0]);
b00a726a 2706 nvme_pci_disable(dev);
fa46c6fb 2707 nvme_reap_pending_cqes(dev);
07836e65 2708
1fcfca78
GL
2709 nvme_cancel_tagset(&dev->ctrl);
2710 nvme_cancel_admin_tagset(&dev->ctrl);
302ad8cc
KB
2711
2712 /*
2713 * The driver will not be starting up queues again if shutting down so
2714 * must flush all entered requests to their failed completion to avoid
2715 * deadlocking blk-mq hot-cpu notifier.
2716 */
c8e9e9b7 2717 if (shutdown) {
302ad8cc 2718 nvme_start_queues(&dev->ctrl);
c8e9e9b7 2719 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
6ca1d902 2720 nvme_start_admin_queue(&dev->ctrl);
c8e9e9b7 2721 }
77bf25ea 2722 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2723}
2724
c1ac9a4b
KB
2725static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2726{
2727 if (!nvme_wait_reset(&dev->ctrl))
2728 return -EBUSY;
2729 nvme_dev_disable(dev, shutdown);
2730 return 0;
2731}
2732
091b6092
MW
2733static int nvme_setup_prp_pools(struct nvme_dev *dev)
2734{
e75ec752 2735 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
c61b82c7
CH
2736 NVME_CTRL_PAGE_SIZE,
2737 NVME_CTRL_PAGE_SIZE, 0);
091b6092
MW
2738 if (!dev->prp_page_pool)
2739 return -ENOMEM;
2740
99802a7a 2741 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2742 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2743 256, 256, 0);
2744 if (!dev->prp_small_pool) {
2745 dma_pool_destroy(dev->prp_page_pool);
2746 return -ENOMEM;
2747 }
091b6092
MW
2748 return 0;
2749}
2750
2751static void nvme_release_prp_pools(struct nvme_dev *dev)
2752{
2753 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2754 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2755}
2756
081a7d95
CH
2757static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2758{
2759 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2760 size_t alloc_size = sizeof(__le64 *) * npages +
2761 sizeof(struct scatterlist) * NVME_MAX_SEGS;
2762
2763 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2764 dev->iod_mempool = mempool_create_node(1,
2765 mempool_kmalloc, mempool_kfree,
2766 (void *)alloc_size, GFP_KERNEL,
2767 dev_to_node(dev->dev));
2768 if (!dev->iod_mempool)
2769 return -ENOMEM;
2770 return 0;
2771}
2772
770597ec
KB
2773static void nvme_free_tagset(struct nvme_dev *dev)
2774{
2775 if (dev->tagset.tags)
2776 blk_mq_free_tag_set(&dev->tagset);
2777 dev->ctrl.tagset = NULL;
2778}
2779
2e87570b 2780/* pairs with nvme_pci_alloc_dev */
1673f1f0 2781static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2782{
1673f1f0 2783 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2784
770597ec 2785 nvme_free_tagset(dev);
253fd4ac
IR
2786 put_device(dev->dev);
2787 kfree(dev->queues);
5e82e952
KB
2788 kfree(dev);
2789}
2790
7c1ce408 2791static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
f58944e2 2792{
c1ac9a4b
KB
2793 /*
2794 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2795 * may be holding this pci_dev's device lock.
2796 */
2797 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
d22524a4 2798 nvme_get_ctrl(&dev->ctrl);
69d9a99c 2799 nvme_dev_disable(dev, false);
cd50f9b2 2800 nvme_mark_namespaces_dead(&dev->ctrl);
03e0f3a6 2801 if (!queue_work(nvme_wq, &dev->remove_work))
f58944e2
KB
2802 nvme_put_ctrl(&dev->ctrl);
2803}
2804
fd634f41 2805static void nvme_reset_work(struct work_struct *work)
5e82e952 2806{
d86c4d8e
CH
2807 struct nvme_dev *dev =
2808 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2809 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
e71afda4 2810 int result;
5e82e952 2811
7764656b
ZC
2812 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2813 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2814 dev->ctrl.state);
e71afda4 2815 result = -ENODEV;
fd634f41 2816 goto out;
e71afda4 2817 }
5e82e952 2818
fd634f41
CH
2819 /*
2820 * If we're called to reset a live controller first shut it down before
2821 * moving on.
2822 */
b00a726a 2823 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2824 nvme_dev_disable(dev, false);
d6135c3a 2825 nvme_sync_queues(&dev->ctrl);
5e82e952 2826
5c959d73 2827 mutex_lock(&dev->shutdown_lock);
b00a726a 2828 result = nvme_pci_enable(dev);
f0b50732 2829 if (result)
4726bcf3 2830 goto out_unlock;
f0b50732 2831
01ad0990 2832 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2833 if (result)
4726bcf3 2834 goto out_unlock;
f0b50732 2835
f91b727c
CH
2836 if (!dev->ctrl.admin_q) {
2837 result = nvme_pci_alloc_admin_tag_set(dev);
2838 if (result)
2839 goto out_unlock;
2840 } else {
2841 nvme_start_admin_queue(&dev->ctrl);
2842 }
b9afca3e 2843
5c959d73
KB
2844 mutex_unlock(&dev->shutdown_lock);
2845
2846 /*
2847 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2848 * initializing procedure here.
2849 */
2850 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2851 dev_warn(dev->ctrl.device,
2852 "failed to mark controller CONNECTING\n");
cee6c269 2853 result = -EBUSY;
5c959d73
KB
2854 goto out;
2855 }
943e942e 2856
94cc781f 2857 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
ce4541f4 2858 if (result)
f58944e2 2859 goto out;
ce4541f4 2860
f9f38e33
HK
2861 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2862 result = nvme_dbbuf_dma_alloc(dev);
2863 if (result)
2864 dev_warn(dev->dev,
2865 "unable to allocate dma for dbbuf\n");
2866 }
2867
9620cfba
CH
2868 if (dev->ctrl.hmpre) {
2869 result = nvme_setup_host_mem(dev);
2870 if (result < 0)
2871 goto out;
2872 }
87ad72a5 2873
f0b50732 2874 result = nvme_setup_io_queues(dev);
badc34d4 2875 if (result)
f58944e2 2876 goto out;
f0b50732 2877
0ffc7e98
CH
2878 if (dev->ctrl.tagset) {
2879 /*
2880 * This is a controller reset and we already have a tagset.
2881 * Freeze and update the number of I/O queues as thos might have
2882 * changed. If there are no I/O queues left after this reset,
2883 * keep the controller around but remove all namespaces.
2884 */
2885 if (dev->online_queues > 1) {
2886 nvme_start_queues(&dev->ctrl);
2887 nvme_wait_freeze(&dev->ctrl);
2888 nvme_pci_update_nr_queues(dev);
2889 nvme_dbbuf_set(dev);
2890 nvme_unfreeze(&dev->ctrl);
2891 } else {
2892 dev_warn(dev->ctrl.device, "IO queues lost\n");
cd50f9b2
CH
2893 nvme_mark_namespaces_dead(&dev->ctrl);
2894 nvme_start_queues(&dev->ctrl);
0ffc7e98
CH
2895 nvme_remove_namespaces(&dev->ctrl);
2896 nvme_free_tagset(dev);
2897 }
3cf519b5 2898 } else {
0ffc7e98
CH
2899 /*
2900 * First probe. Still allow the controller to show up even if
2901 * there are no namespaces.
2902 */
2903 if (dev->online_queues > 1) {
2455a4b7 2904 nvme_pci_alloc_tag_set(dev);
0ffc7e98
CH
2905 nvme_dbbuf_set(dev);
2906 } else {
2907 dev_warn(dev->ctrl.device, "IO queues not created\n");
2908 }
3cf519b5
CH
2909 }
2910
2b1b7e78
JW
2911 /*
2912 * If only admin queue live, keep it to do further investigation or
2913 * recovery.
2914 */
5d02a5c1 2915 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2b1b7e78 2916 dev_warn(dev->ctrl.device,
5d02a5c1 2917 "failed to mark controller live state\n");
e71afda4 2918 result = -ENODEV;
bb8d261e
CH
2919 goto out;
2920 }
92911a55 2921
d09f2b45 2922 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2923 return;
f0b50732 2924
4726bcf3
KB
2925 out_unlock:
2926 mutex_unlock(&dev->shutdown_lock);
3cf519b5 2927 out:
7c1ce408
CK
2928 if (result)
2929 dev_warn(dev->ctrl.device,
2930 "Removing after probe failure status: %d\n", result);
2931 nvme_remove_dead_ctrl(dev);
f0b50732
KB
2932}
2933
5c8809e6 2934static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2935{
5c8809e6 2936 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2937 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2938
2939 if (pci_get_drvdata(pdev))
921920ab 2940 device_release_driver(&pdev->dev);
1673f1f0 2941 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2942}
2943
1c63dc66 2944static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2945{
1c63dc66 2946 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2947 return 0;
9ca97374
TH
2948}
2949
5fd4ce1b 2950static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2951{
5fd4ce1b
CH
2952 writel(val, to_nvme_dev(ctrl)->bar + off);
2953 return 0;
2954}
4cc06521 2955
7fd8930f
CH
2956static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2957{
3a8ecc93 2958 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
7fd8930f 2959 return 0;
4cc06521
KB
2960}
2961
97c12223
KB
2962static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2963{
2964 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2965
2db24e4a 2966 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
97c12223
KB
2967}
2968
2f0dad17
KB
2969static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2970{
2971 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2972 struct nvme_subsystem *subsys = ctrl->subsys;
2973
2974 dev_err(ctrl->device,
2975 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2976 pdev->vendor, pdev->device,
2977 nvme_strlen(subsys->model, sizeof(subsys->model)),
2978 subsys->model, nvme_strlen(subsys->firmware_rev,
2979 sizeof(subsys->firmware_rev)),
2980 subsys->firmware_rev);
2981}
2982
2f859441
LG
2983static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2984{
2985 struct nvme_dev *dev = to_nvme_dev(ctrl);
2986
2987 return dma_pci_p2pdma_supported(dev->dev);
2988}
2989
1c63dc66 2990static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2991 .name = "pcie",
e439bb12 2992 .module = THIS_MODULE,
2f859441 2993 .flags = NVME_F_METADATA_SUPPORTED,
86adbf0c 2994 .dev_attr_groups = nvme_pci_dev_attr_groups,
1c63dc66 2995 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2996 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2997 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2998 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2999 .submit_async_event = nvme_pci_submit_async_event,
97c12223 3000 .get_address = nvme_pci_get_address,
2f0dad17 3001 .print_device_info = nvme_pci_print_device_info,
2f859441 3002 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
1c63dc66 3003};
4cc06521 3004
b00a726a
KB
3005static int nvme_dev_map(struct nvme_dev *dev)
3006{
b00a726a
KB
3007 struct pci_dev *pdev = to_pci_dev(dev->dev);
3008
a1f447b3 3009 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
3010 return -ENODEV;
3011
97f6ef64 3012 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
3013 goto release;
3014
9fa196e7 3015 return 0;
b00a726a 3016 release:
9fa196e7
MG
3017 pci_release_mem_regions(pdev);
3018 return -ENODEV;
b00a726a
KB
3019}
3020
8427bbc2 3021static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
3022{
3023 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3024 /*
3025 * Several Samsung devices seem to drop off the PCIe bus
3026 * randomly when APST is on and uses the deepest sleep state.
3027 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3028 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3029 * 950 PRO 256GB", but it seems to be restricted to two Dell
3030 * laptops.
3031 */
3032 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3033 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3034 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3035 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
3036 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3037 /*
3038 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
3039 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3040 * within few minutes after bootup on a Coffee Lake board -
3041 * ASUS PRIME Z370-A
8427bbc2
KHF
3042 */
3043 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
3044 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3045 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 3046 return NVME_QUIRK_NO_APST;
1fae37ac
S
3047 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3048 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3049 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3050 /*
3051 * Forcing to use host managed nvme power settings for
3052 * lowest idle power with quick resume latency on
3053 * Samsung and Toshiba SSDs based on suspend behavior
3054 * on Coffee Lake board for LENOVO C640
3055 */
3056 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3057 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3058 return NVME_QUIRK_SIMPLE_SUSPEND;
ff5350a8
AL
3059 }
3060
3061 return 0;
3062}
3063
18119775
KB
3064static void nvme_async_probe(void *data, async_cookie_t cookie)
3065{
3066 struct nvme_dev *dev = data;
80f513b5 3067
bd46a906 3068 flush_work(&dev->ctrl.reset_work);
18119775 3069 flush_work(&dev->ctrl.scan_work);
80f513b5 3070 nvme_put_ctrl(&dev->ctrl);
18119775
KB
3071}
3072
2e87570b
CH
3073static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3074 const struct pci_device_id *id)
b60503ba 3075{
ff5350a8 3076 unsigned long quirks = id->driver_data;
2e87570b
CH
3077 int node = dev_to_node(&pdev->dev);
3078 struct nvme_dev *dev;
3079 int ret = -ENOMEM;
b60503ba 3080
a4aea562 3081 if (node == NUMA_NO_NODE)
2fa84351 3082 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
3083
3084 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba 3085 if (!dev)
2e87570b
CH
3086 return NULL;
3087 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3088 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3089 mutex_init(&dev->shutdown_lock);
147b27e4 3090
2a5bcfdd
WZ
3091 dev->nr_write_queues = write_queues;
3092 dev->nr_poll_queues = poll_queues;
3093 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3094 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3095 sizeof(struct nvme_queue), GFP_KERNEL, node);
b60503ba 3096 if (!dev->queues)
2e87570b 3097 goto out_free_dev;
b60503ba 3098
e75ec752 3099 dev->dev = get_device(&pdev->dev);
4cc06521 3100
8427bbc2 3101 quirks |= check_vendor_combination_bug(pdev);
2744d7a0 3102 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
df4f9bc4
DB
3103 /*
3104 * Some systems use a bios work around to ask for D3 on
3105 * platforms that support kernel managed suspend.
3106 */
3107 dev_info(&pdev->dev,
3108 "platform quirk: setting simple suspend\n");
3109 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3110 }
2e87570b
CH
3111 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3112 quirks);
3113 if (ret)
3114 goto out_put_device;
3f30a79c
CH
3115
3116 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3117 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3118
3119 /*
3120 * Limit the max command size to prevent iod->sg allocations going
3121 * over a single page.
3122 */
3123 dev->ctrl.max_hw_sectors = min_t(u32,
3124 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9);
3125 dev->ctrl.max_segments = NVME_MAX_SEGS;
3126
3127 /*
3128 * There is no support for SGLs for metadata (yet), so we are limited to
3129 * a single integrity segment for the separate metadata pointer.
3130 */
3131 dev->ctrl.max_integrity_segments = 1;
2e87570b 3132 return dev;
df4f9bc4 3133
2e87570b
CH
3134out_put_device:
3135 put_device(dev->dev);
3136 kfree(dev->queues);
3137out_free_dev:
3138 kfree(dev);
3139 return ERR_PTR(ret);
3140}
3141
3142static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3143{
3144 struct nvme_dev *dev;
3145 int result = -ENOMEM;
3146
3147 dev = nvme_pci_alloc_dev(pdev, id);
3148 if (!dev)
3149 return -ENOMEM;
3150
3151 result = nvme_dev_map(dev);
3152 if (result)
3153 goto out_uninit_ctrl;
3154
3155 result = nvme_setup_prp_pools(dev);
081a7d95 3156 if (result)
2e87570b 3157 goto out_dev_unmap;
943e942e 3158
2e87570b 3159 result = nvme_pci_alloc_iod_mempool(dev);
b6e44b4c 3160 if (result)
2e87570b 3161 goto out_release_prp_pools;
b6e44b4c 3162
1b3c47c1 3163 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2e87570b 3164 pci_set_drvdata(pdev, dev);
1b3c47c1 3165
bd46a906 3166 nvme_reset_ctrl(&dev->ctrl);
18119775 3167 async_schedule(nvme_async_probe, dev);
b60503ba
MW
3168 return 0;
3169
2e87570b 3170out_release_prp_pools:
091b6092 3171 nvme_release_prp_pools(dev);
2e87570b 3172out_dev_unmap:
b00c9b7a 3173 nvme_dev_unmap(dev);
2e87570b
CH
3174out_uninit_ctrl:
3175 nvme_uninit_ctrl(&dev->ctrl);
b60503ba
MW
3176 return result;
3177}
3178
775755ed 3179static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 3180{
a6739479 3181 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
3182
3183 /*
3184 * We don't need to check the return value from waiting for the reset
3185 * state as pci_dev device lock is held, making it impossible to race
3186 * with ->remove().
3187 */
3188 nvme_disable_prepare_reset(dev, false);
3189 nvme_sync_queues(&dev->ctrl);
775755ed 3190}
f0d54a54 3191
775755ed
CH
3192static void nvme_reset_done(struct pci_dev *pdev)
3193{
f263fbb8 3194 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
3195
3196 if (!nvme_try_sched_reset(&dev->ctrl))
3197 flush_work(&dev->ctrl.reset_work);
f0d54a54
KB
3198}
3199
09ece142
KB
3200static void nvme_shutdown(struct pci_dev *pdev)
3201{
3202 struct nvme_dev *dev = pci_get_drvdata(pdev);
4e523547 3203
c1ac9a4b 3204 nvme_disable_prepare_reset(dev, true);
09ece142
KB
3205}
3206
f58944e2
KB
3207/*
3208 * The driver's remove may be called on a device in a partially initialized
3209 * state. This function must not have any dependencies on the device state in
3210 * order to proceed.
3211 */
8d85fce7 3212static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3213{
3214 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 3215
bb8d261e 3216 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
9a6b9458 3217 pci_set_drvdata(pdev, NULL);
0ff9d4e1 3218
6db28eda 3219 if (!pci_device_is_present(pdev)) {
0ff9d4e1 3220 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1d39e692 3221 nvme_dev_disable(dev, true);
6db28eda 3222 }
0ff9d4e1 3223
d86c4d8e 3224 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
3225 nvme_stop_ctrl(&dev->ctrl);
3226 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 3227 nvme_dev_disable(dev, true);
87ad72a5 3228 nvme_free_host_mem(dev);
a4aea562 3229 nvme_dev_remove_admin(dev);
c11b7716 3230 nvme_dbbuf_dma_free(dev);
a1a5ef99 3231 nvme_free_queues(dev, 0);
c11b7716 3232 mempool_destroy(dev->iod_mempool);
9a6b9458 3233 nvme_release_prp_pools(dev);
b00a726a 3234 nvme_dev_unmap(dev);
726612b6 3235 nvme_uninit_ctrl(&dev->ctrl);
b60503ba
MW
3236}
3237
671a6018 3238#ifdef CONFIG_PM_SLEEP
d916b1be
KB
3239static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3240{
3241 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3242}
3243
3244static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3245{
3246 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3247}
3248
3249static int nvme_resume(struct device *dev)
3250{
3251 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3252 struct nvme_ctrl *ctrl = &ndev->ctrl;
3253
4eaefe8c 3254 if (ndev->last_ps == U32_MAX ||
d916b1be 3255 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
e5ad96f3
KB
3256 goto reset;
3257 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3258 goto reset;
3259
d916b1be 3260 return 0;
e5ad96f3
KB
3261reset:
3262 return nvme_try_sched_reset(ctrl);
d916b1be
KB
3263}
3264
cd638946
KB
3265static int nvme_suspend(struct device *dev)
3266{
3267 struct pci_dev *pdev = to_pci_dev(dev);
3268 struct nvme_dev *ndev = pci_get_drvdata(pdev);
d916b1be
KB
3269 struct nvme_ctrl *ctrl = &ndev->ctrl;
3270 int ret = -EBUSY;
3271
4eaefe8c
RW
3272 ndev->last_ps = U32_MAX;
3273
d916b1be
KB
3274 /*
3275 * The platform does not remove power for a kernel managed suspend so
3276 * use host managed nvme power settings for lowest idle power if
3277 * possible. This should have quicker resume latency than a full device
3278 * shutdown. But if the firmware is involved after the suspend or the
3279 * device does not support any non-default power states, shut down the
3280 * device fully.
4eaefe8c
RW
3281 *
3282 * If ASPM is not enabled for the device, shut down the device and allow
3283 * the PCI bus layer to put it into D3 in order to take the PCIe link
3284 * down, so as to allow the platform to achieve its minimum low-power
3285 * state (which may not be possible if the link is up).
d916b1be 3286 */
4eaefe8c 3287 if (pm_suspend_via_firmware() || !ctrl->npss ||
cb32de1b 3288 !pcie_aspm_enabled(pdev) ||
c1ac9a4b
KB
3289 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3290 return nvme_disable_prepare_reset(ndev, true);
d916b1be
KB
3291
3292 nvme_start_freeze(ctrl);
3293 nvme_wait_freeze(ctrl);
3294 nvme_sync_queues(ctrl);
3295
5d02a5c1 3296 if (ctrl->state != NVME_CTRL_LIVE)
d916b1be
KB
3297 goto unfreeze;
3298
e5ad96f3
KB
3299 /*
3300 * Host memory access may not be successful in a system suspend state,
3301 * but the specification allows the controller to access memory in a
3302 * non-operational power state.
3303 */
3304 if (ndev->hmb) {
3305 ret = nvme_set_host_mem(ndev, 0);
3306 if (ret < 0)
3307 goto unfreeze;
3308 }
3309
d916b1be
KB
3310 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3311 if (ret < 0)
3312 goto unfreeze;
3313
7cbb5c6f
ML
3314 /*
3315 * A saved state prevents pci pm from generically controlling the
3316 * device's power. If we're using protocol specific settings, we don't
3317 * want pci interfering.
3318 */
3319 pci_save_state(pdev);
3320
d916b1be
KB
3321 ret = nvme_set_power_state(ctrl, ctrl->npss);
3322 if (ret < 0)
3323 goto unfreeze;
3324
3325 if (ret) {
7cbb5c6f
ML
3326 /* discard the saved state */
3327 pci_load_saved_state(pdev, NULL);
3328
d916b1be
KB
3329 /*
3330 * Clearing npss forces a controller reset on resume. The
05d3046f 3331 * correct value will be rediscovered then.
d916b1be 3332 */
c1ac9a4b 3333 ret = nvme_disable_prepare_reset(ndev, true);
d916b1be 3334 ctrl->npss = 0;
d916b1be 3335 }
d916b1be
KB
3336unfreeze:
3337 nvme_unfreeze(ctrl);
3338 return ret;
3339}
3340
3341static int nvme_simple_suspend(struct device *dev)
3342{
3343 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
4e523547 3344
c1ac9a4b 3345 return nvme_disable_prepare_reset(ndev, true);
cd638946
KB
3346}
3347
d916b1be 3348static int nvme_simple_resume(struct device *dev)
cd638946
KB
3349{
3350 struct pci_dev *pdev = to_pci_dev(dev);
3351 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3352
c1ac9a4b 3353 return nvme_try_sched_reset(&ndev->ctrl);
cd638946
KB
3354}
3355
21774222 3356static const struct dev_pm_ops nvme_dev_pm_ops = {
d916b1be
KB
3357 .suspend = nvme_suspend,
3358 .resume = nvme_resume,
3359 .freeze = nvme_simple_suspend,
3360 .thaw = nvme_simple_resume,
3361 .poweroff = nvme_simple_suspend,
3362 .restore = nvme_simple_resume,
3363};
3364#endif /* CONFIG_PM_SLEEP */
b60503ba 3365
a0a3408e
KB
3366static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3367 pci_channel_state_t state)
3368{
3369 struct nvme_dev *dev = pci_get_drvdata(pdev);
3370
3371 /*
3372 * A frozen channel requires a reset. When detected, this method will
3373 * shutdown the controller to quiesce. The controller will be restarted
3374 * after the slot reset through driver's slot_reset callback.
3375 */
a0a3408e
KB
3376 switch (state) {
3377 case pci_channel_io_normal:
3378 return PCI_ERS_RESULT_CAN_RECOVER;
3379 case pci_channel_io_frozen:
d011fb31
KB
3380 dev_warn(dev->ctrl.device,
3381 "frozen state error detected, reset controller\n");
a5cdb68c 3382 nvme_dev_disable(dev, false);
a0a3408e
KB
3383 return PCI_ERS_RESULT_NEED_RESET;
3384 case pci_channel_io_perm_failure:
d011fb31
KB
3385 dev_warn(dev->ctrl.device,
3386 "failure state error detected, request disconnect\n");
a0a3408e
KB
3387 return PCI_ERS_RESULT_DISCONNECT;
3388 }
3389 return PCI_ERS_RESULT_NEED_RESET;
3390}
3391
3392static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3393{
3394 struct nvme_dev *dev = pci_get_drvdata(pdev);
3395
1b3c47c1 3396 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 3397 pci_restore_state(pdev);
d86c4d8e 3398 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
3399 return PCI_ERS_RESULT_RECOVERED;
3400}
3401
3402static void nvme_error_resume(struct pci_dev *pdev)
3403{
72cd4cc2
KB
3404 struct nvme_dev *dev = pci_get_drvdata(pdev);
3405
3406 flush_work(&dev->ctrl.reset_work);
a0a3408e
KB
3407}
3408
1d352035 3409static const struct pci_error_handlers nvme_err_handler = {
b60503ba 3410 .error_detected = nvme_error_detected,
b60503ba
MW
3411 .slot_reset = nvme_slot_reset,
3412 .resume = nvme_error_resume,
775755ed
CH
3413 .reset_prepare = nvme_reset_prepare,
3414 .reset_done = nvme_reset_done,
b60503ba
MW
3415};
3416
6eb0d698 3417static const struct pci_device_id nvme_id_table[] = {
972b13e2 3418 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
08095e70 3419 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3420 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3421 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
99466e70 3422 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3423 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3424 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
99466e70 3425 .driver_data = NVME_QUIRK_STRIPE_SIZE |
25e58af4
WZ
3426 NVME_QUIRK_DEALLOCATE_ZEROES |
3427 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
972b13e2 3428 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
f99cb7af
DWF
3429 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3430 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0 3431 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
9abd68ef 3432 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
6c6aa2f2 3433 NVME_QUIRK_MEDIUM_PRIO_SQ |
ce4cc313
DM
3434 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3435 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
6299358d
JD
3436 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3437 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
540c801c 3438 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
7b210e4e 3439 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
66dd346b
CH
3440 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3441 NVME_QUIRK_BOGUS_NID, },
3442 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3443 .driver_data = NVME_QUIRK_BOGUS_NID, },
5bedd3af 3444 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
c98a8793
KB
3445 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3446 NVME_QUIRK_BOGUS_NID, },
0302ae60 3447 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
5e112d3f
JE
3448 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3449 NVME_QUIRK_NO_NS_DESC_LIST, },
54adc010
GP
3450 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3451 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
3452 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3453 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
3454 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3455 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
3456 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3457 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3458 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
7ee5c78c 3459 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
abbb5f59 3460 NVME_QUIRK_DISABLE_WRITE_ZEROES|
7ee5c78c 3461 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2cf7a77e
KB
3462 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3463 .driver_data = NVME_QUIRK_BOGUS_NID, },
c9e95c39 3464 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
73029c9b
KB
3465 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3466 NVME_QUIRK_BOGUS_NID, },
d14c2731
TH
3467 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3468 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3469 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3470 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
6e6a6828
PT
3471 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3472 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3473 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
e1c70d79
LVS
3474 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3475 .driver_data = NVME_QUIRK_BOGUS_NID, },
08b903b5 3476 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
1629de0e
PG
3477 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3478 NVME_QUIRK_BOGUS_NID, },
f03e42c6
GC
3479 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3480 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3481 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
41f38043
LS
3482 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3483 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
5611ec2b
KHF
3484 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3485 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
c4f01a77
KB
3486 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3487 .driver_data = NVME_QUIRK_BOGUS_NID, },
02ca079c
KHF
3488 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3489 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
89919929
CK
3490 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3491 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
43047e08 3492 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3493 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3494 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3495 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3497 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3499 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
dc22c1c0
ZB
3500 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3501 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
538e4a8c
TL
3502 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3503 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
ac9b57d4
XL
3504 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3505 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3507 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3508 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3509 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3510 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3511 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3512 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3513 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
70ce3455
CH
3514 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3515 .driver_data = NVME_QUIRK_BOGUS_NID, },
a98a945b
CH
3516 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3517 .driver_data = NVME_QUIRK_BOGUS_NID, },
3518 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3519 .driver_data = NVME_QUIRK_BOGUS_NID, },
3765fad5
SR
3520 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3521 .driver_data = NVME_QUIRK_BOGUS_NID, },
f37527a0
DK
3522 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3523 .driver_data = NVME_QUIRK_BOGUS_NID, },
d5d3c100
XR
3524 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3525 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
6b961bce
NW
3526 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3527 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
d6c52fa3
TG
3528 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3529 .driver_data = NVME_QUIRK_BOGUS_NID, },
200dccd0
SA
3530 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3531 .driver_data = NVME_QUIRK_BOGUS_NID, },
80b26240
A
3532 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3533 .driver_data = NVME_QUIRK_BOGUS_NID, },
4bdf2603
FS
3534 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3535 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3536 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3537 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3538 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3539 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3540 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3541 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3542 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3543 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3544 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3545 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
98f7b86a
AS
3546 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3547 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
124298bd 3548 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
66341331
BH
3549 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3550 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
d38e9f04 3551 NVME_QUIRK_128_BYTES_SQES |
a2941f6a
KB
3552 NVME_QUIRK_SHARED_TAGS |
3553 NVME_QUIRK_SKIP_CID_GEN },
0b85f59d 3554 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
b60503ba
MW
3555 { 0, }
3556};
3557MODULE_DEVICE_TABLE(pci, nvme_id_table);
3558
3559static struct pci_driver nvme_driver = {
3560 .name = "nvme",
3561 .id_table = nvme_id_table,
3562 .probe = nvme_probe,
8d85fce7 3563 .remove = nvme_remove,
09ece142 3564 .shutdown = nvme_shutdown,
d916b1be 3565#ifdef CONFIG_PM_SLEEP
cd638946
KB
3566 .driver = {
3567 .pm = &nvme_dev_pm_ops,
3568 },
d916b1be 3569#endif
74d986ab 3570 .sriov_configure = pci_sriov_configure_simple,
b60503ba
MW
3571 .err_handler = &nvme_err_handler,
3572};
3573
3574static int __init nvme_init(void)
3575{
81101540
CH
3576 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3577 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3578 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
612b7286 3579 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
c372cdd1
KB
3580 BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3581 S8_MAX);
17c33167 3582
9a6327d2 3583 return pci_register_driver(&nvme_driver);
b60503ba
MW
3584}
3585
3586static void __exit nvme_exit(void)
3587{
3588 pci_unregister_driver(&nvme_driver);
03e0f3a6 3589 flush_workqueue(nvme_wq);
b60503ba
MW
3590}
3591
3592MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3593MODULE_LICENSE("GPL");
c78b4713 3594MODULE_VERSION("1.0");
b60503ba
MW
3595module_init(nvme_init);
3596module_exit(nvme_exit);