nvme: do not let the user delete a ctrl before a complete initialization
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
5f37396d 1// SPDX-License-Identifier: GPL-2.0
b60503ba
MW
2/*
3 * NVM Express device driver
6eb0d698 4 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
5 */
6
df4f9bc4 7#include <linux/acpi.h>
18119775 8#include <linux/async.h>
b60503ba 9#include <linux/blkdev.h>
a4aea562 10#include <linux/blk-mq.h>
dca51e78 11#include <linux/blk-mq-pci.h>
fe45e630 12#include <linux/blk-integrity.h>
ff5350a8 13#include <linux/dmi.h>
b60503ba
MW
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
99722c8a 17#include <linux/kstrtox.h>
dc90f084 18#include <linux/memremap.h>
b60503ba
MW
19#include <linux/mm.h>
20#include <linux/module.h>
77bf25ea 21#include <linux/mutex.h>
d0877473 22#include <linux/once.h>
b60503ba 23#include <linux/pci.h>
d916b1be 24#include <linux/suspend.h>
e1e5e564 25#include <linux/t10-pi.h>
b60503ba 26#include <linux/types.h>
2f8e2c87 27#include <linux/io-64-nonatomic-lo-hi.h>
20d3bb92 28#include <linux/io-64-nonatomic-hi-lo.h>
a98e58e5 29#include <linux/sed-opal.h>
0f238ff5 30#include <linux/pci-p2pdma.h>
797a796a 31
604c01d5 32#include "trace.h"
f11bb3e2
CH
33#include "nvme.h"
34
c1e0cc7e 35#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
8a1d09a6 36#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
c965809c 37
84173423 38#define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 39
943e942e
JA
40/*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
7846c1b5
KB
44#define NVME_MAX_KB_SZ 8192
45#define NVME_MAX_SEGS 128
46#define NVME_MAX_NR_ALLOCATIONS 5
943e942e 47
58ffacb5 48static int use_threaded_interrupts;
2e21e445 49module_param(use_threaded_interrupts, int, 0444);
58ffacb5 50
8ffaadf7 51static bool use_cmb_sqes = true;
69f4eb9f 52module_param(use_cmb_sqes, bool, 0444);
8ffaadf7
JD
53MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
87ad72a5
CH
55static unsigned int max_host_mem_size_mb = 128;
56module_param(max_host_mem_size_mb, uint, 0444);
57MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 59
a7a7cbe3
CK
60static unsigned int sgl_threshold = SZ_32K;
61module_param(sgl_threshold, uint, 0644);
62MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
27453b45
SG
66#define NVME_PCI_MIN_QUEUE_SIZE 2
67#define NVME_PCI_MAX_QUEUE_SIZE 4095
b27c1e68 68static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
61f3b896 71 .get = param_get_uint,
b27c1e68 72};
73
61f3b896 74static unsigned int io_queue_depth = 1024;
b27c1e68 75module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
27453b45 76MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
b27c1e68 77
9c9e76d5
WZ
78static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79{
80 unsigned int n;
81 int ret;
82
83 ret = kstrtouint(val, 10, &n);
84 if (ret != 0 || n > num_possible_cpus())
85 return -EINVAL;
86 return param_set_uint(val, kp);
87}
88
89static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
92};
93
3f68baf7 94static unsigned int write_queues;
9c9e76d5 95module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
3b6592f7
JA
96MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
99
3f68baf7 100static unsigned int poll_queues;
9c9e76d5 101module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
4b04cc6a
JA
102MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
df4f9bc4
DB
104static bool noacpi;
105module_param(noacpi, bool, 0444);
106MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
1c63dc66
CH
108struct nvme_dev;
109struct nvme_queue;
b3fffdef 110
a5cdb68c 111static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
7d879c90 112static void nvme_delete_io_queues(struct nvme_dev *dev);
e917a849 113static void nvme_update_attrs(struct nvme_dev *dev);
d4b4ff8e 114
1c63dc66
CH
115/*
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 */
118struct nvme_dev {
147b27e4 119 struct nvme_queue *queues;
1c63dc66
CH
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
122 u32 __iomem *dbs;
123 struct device *dev;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
1c63dc66
CH
126 unsigned online_queues;
127 unsigned max_qid;
e20ba6e1 128 unsigned io_queues[HCTX_MAX_TYPES];
22b55601 129 unsigned int num_vecs;
7442ddce 130 u32 q_depth;
c1e0cc7e 131 int io_sqes;
1c63dc66 132 u32 db_stride;
1c63dc66 133 void __iomem *bar;
97f6ef64 134 unsigned long bar_mapped_size;
77bf25ea 135 struct mutex shutdown_lock;
1c63dc66 136 bool subsystem;
1c63dc66 137 u64 cmb_size;
0f238ff5 138 bool cmb_use_sqes;
1c63dc66 139 u32 cmbsz;
202021c1 140 u32 cmbloc;
1c63dc66 141 struct nvme_ctrl ctrl;
d916b1be 142 u32 last_ps;
a5df5e79 143 bool hmb;
87ad72a5 144
943e942e
JA
145 mempool_t *iod_mempool;
146
87ad72a5 147 /* shadow doorbell buffer support: */
b5f96cb7 148 __le32 *dbbuf_dbs;
f9f38e33 149 dma_addr_t dbbuf_dbs_dma_addr;
b5f96cb7 150 __le32 *dbbuf_eis;
f9f38e33 151 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
152
153 /* host memory buffer support: */
154 u64 host_mem_size;
155 u32 nr_host_mem_descs;
4033f35d 156 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
157 struct nvme_host_mem_buf_desc *host_mem_descs;
158 void **host_mem_desc_bufs;
2a5bcfdd
WZ
159 unsigned int nr_allocated_queues;
160 unsigned int nr_write_queues;
161 unsigned int nr_poll_queues;
4d115420 162};
1fa6aead 163
b27c1e68 164static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165{
27453b45
SG
166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 NVME_PCI_MAX_QUEUE_SIZE);
b27c1e68 168}
169
f9f38e33
HK
170static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171{
172 return qid * 2 * stride;
173}
174
175static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176{
177 return (qid * 2 + 1) * stride;
178}
179
1c63dc66
CH
180static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181{
182 return container_of(ctrl, struct nvme_dev, ctrl);
183}
184
b60503ba
MW
185/*
186 * An NVM Express queue. Each device has at least two (one for admin
187 * commands and one for I/O commands).
188 */
189struct nvme_queue {
091b6092 190 struct nvme_dev *dev;
1ab0cd69 191 spinlock_t sq_lock;
c1e0cc7e 192 void *sq_cmds;
3a7afd8e
CH
193 /* only used for poll queues: */
194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
74943d45 195 struct nvme_completion *cqes;
b60503ba
MW
196 dma_addr_t sq_dma_addr;
197 dma_addr_t cq_dma_addr;
b60503ba 198 u32 __iomem *q_db;
7442ddce 199 u32 q_depth;
7c349dde 200 u16 cq_vector;
b60503ba 201 u16 sq_tail;
38210800 202 u16 last_sq_tail;
b60503ba 203 u16 cq_head;
c30341dc 204 u16 qid;
e9539f47 205 u8 cq_phase;
c1e0cc7e 206 u8 sqes;
4e224106
CH
207 unsigned long flags;
208#define NVMEQ_ENABLED 0
63223078 209#define NVMEQ_SQ_CMB 1
d1ed6aa1 210#define NVMEQ_DELETE_ERROR 2
7c349dde 211#define NVMEQ_POLLED 3
b5f96cb7
KJ
212 __le32 *dbbuf_sq_db;
213 __le32 *dbbuf_cq_db;
214 __le32 *dbbuf_sq_ei;
215 __le32 *dbbuf_cq_ei;
d1ed6aa1 216 struct completion delete_done;
b60503ba
MW
217};
218
7846c1b5
KB
219union nvme_descriptor {
220 struct nvme_sgl_desc *sg_list;
221 __le64 *prp_list;
222};
223
71bd150c 224/*
9b048119
CH
225 * The nvme_iod describes the data in an I/O.
226 *
227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228 * to the actual struct scatterlist.
71bd150c
CH
229 */
230struct nvme_iod {
d49187e9 231 struct nvme_request req;
af7fae85 232 struct nvme_command cmd;
52da4f3f 233 bool aborted;
c372cdd1
KB
234 s8 nr_allocations; /* PRP list pool allocations. 0 means small
235 pool in use */
dff824b2 236 unsigned int dma_len; /* length of single DMA segment mapping */
c4c22c52 237 dma_addr_t first_dma;
783b94bd 238 dma_addr_t meta_dma;
91fb2b60 239 struct sg_table sgt;
7846c1b5 240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
b60503ba
MW
241};
242
2a5bcfdd 243static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
3b6592f7 244{
2a5bcfdd 245 return dev->nr_allocated_queues * 8 * dev->db_stride;
f9f38e33
HK
246}
247
65a54646 248static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
f9f38e33 249{
2a5bcfdd 250 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33 251
65a54646
CH
252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 return;
254
58847f12
KB
255 if (dev->dbbuf_dbs) {
256 /*
257 * Clear the dbbuf memory so the driver doesn't observe stale
258 * values from the previous instantiation.
259 */
260 memset(dev->dbbuf_dbs, 0, mem_size);
261 memset(dev->dbbuf_eis, 0, mem_size);
65a54646 262 return;
58847f12 263 }
f9f38e33
HK
264
265 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266 &dev->dbbuf_dbs_dma_addr,
267 GFP_KERNEL);
268 if (!dev->dbbuf_dbs)
65a54646 269 goto fail;
f9f38e33
HK
270 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271 &dev->dbbuf_eis_dma_addr,
272 GFP_KERNEL);
65a54646
CH
273 if (!dev->dbbuf_eis)
274 goto fail_free_dbbuf_dbs;
275 return;
f9f38e33 276
65a54646
CH
277fail_free_dbbuf_dbs:
278 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279 dev->dbbuf_dbs_dma_addr);
280 dev->dbbuf_dbs = NULL;
281fail:
282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
f9f38e33
HK
283}
284
285static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286{
2a5bcfdd 287 unsigned int mem_size = nvme_dbbuf_size(dev);
f9f38e33
HK
288
289 if (dev->dbbuf_dbs) {
290 dma_free_coherent(dev->dev, mem_size,
291 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292 dev->dbbuf_dbs = NULL;
293 }
294 if (dev->dbbuf_eis) {
295 dma_free_coherent(dev->dev, mem_size,
296 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297 dev->dbbuf_eis = NULL;
298 }
299}
300
301static void nvme_dbbuf_init(struct nvme_dev *dev,
302 struct nvme_queue *nvmeq, int qid)
303{
304 if (!dev->dbbuf_dbs || !qid)
305 return;
306
307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311}
312
0f0d2c87
MI
313static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314{
315 if (!nvmeq->qid)
316 return;
317
318 nvmeq->dbbuf_sq_db = NULL;
319 nvmeq->dbbuf_cq_db = NULL;
320 nvmeq->dbbuf_sq_ei = NULL;
321 nvmeq->dbbuf_cq_ei = NULL;
322}
323
f9f38e33
HK
324static void nvme_dbbuf_set(struct nvme_dev *dev)
325{
f66e2804 326 struct nvme_command c = { };
0f0d2c87 327 unsigned int i;
f9f38e33
HK
328
329 if (!dev->dbbuf_dbs)
330 return;
331
f9f38e33
HK
332 c.dbbuf.opcode = nvme_admin_dbbuf;
333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335
336 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
338 /* Free memory and continue on */
339 nvme_dbbuf_dma_free(dev);
0f0d2c87
MI
340
341 for (i = 1; i <= dev->online_queues; i++)
342 nvme_dbbuf_free(&dev->queues[i]);
f9f38e33
HK
343 }
344}
345
346static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347{
348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349}
350
351/* Update dbbuf and return true if an MMIO is required */
b5f96cb7
KJ
352static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 volatile __le32 *dbbuf_ei)
f9f38e33
HK
354{
355 if (dbbuf_db) {
b5f96cb7 356 u16 old_value, event_idx;
f9f38e33
HK
357
358 /*
359 * Ensure that the queue is written before updating
360 * the doorbell in memory
361 */
362 wmb();
363
b5f96cb7
KJ
364 old_value = le32_to_cpu(*dbbuf_db);
365 *dbbuf_db = cpu_to_le32(value);
f9f38e33 366
f1ed3df2
MW
367 /*
368 * Ensure that the doorbell is updated before reading the event
369 * index from memory. The controller needs to provide similar
370 * ordering to ensure the envent index is updated before reading
371 * the doorbell.
372 */
373 mb();
374
b5f96cb7
KJ
375 event_idx = le32_to_cpu(*dbbuf_ei);
376 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
f9f38e33
HK
377 return false;
378 }
379
380 return true;
b60503ba
MW
381}
382
ac3dd5bd
JA
383/*
384 * Will slightly overestimate the number of pages needed. This is OK
385 * as it only leads to a small amount of wasted memory for the lifetime of
386 * the I/O.
387 */
b13c6393 388static int nvme_pci_npages_prp(void)
ac3dd5bd 389{
c89a529e
KB
390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
84173423 392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
ac3dd5bd
JA
393}
394
a4aea562
MB
395static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 unsigned int hctx_idx)
e85248e5 397{
0da7feaa 398 struct nvme_dev *dev = to_nvme_dev(data);
147b27e4 399 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 400
42483228
KB
401 WARN_ON(hctx_idx != 0);
402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
42483228 403
a4aea562
MB
404 hctx->driver_data = nvmeq;
405 return 0;
e85248e5
MW
406}
407
a4aea562
MB
408static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 unsigned int hctx_idx)
b60503ba 410{
0da7feaa 411 struct nvme_dev *dev = to_nvme_dev(data);
147b27e4 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 413
42483228 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
415 hctx->driver_data = nvmeq;
416 return 0;
b60503ba
MW
417}
418
e559398f
CH
419static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 struct request *req, unsigned int hctx_idx,
421 unsigned int numa_node)
b60503ba 422{
0da7feaa 423 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
f4800d6d 424 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
59e29ce6
SG
425
426 nvme_req(req)->ctrl = &dev->ctrl;
f4b9e6c9 427 nvme_req(req)->cmd = &iod->cmd;
a4aea562
MB
428 return 0;
429}
430
3b6592f7
JA
431static int queue_irq_offset(struct nvme_dev *dev)
432{
433 /* if we have more than 1 vec, admin queue offsets us by 1 */
434 if (dev->num_vecs > 1)
435 return 1;
436
437 return 0;
438}
439
a4e1d0b7 440static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
dca51e78 441{
0da7feaa 442 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
3b6592f7
JA
443 int i, qoff, offset;
444
445 offset = queue_irq_offset(dev);
446 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
447 struct blk_mq_queue_map *map = &set->map[i];
448
449 map->nr_queues = dev->io_queues[i];
450 if (!map->nr_queues) {
e20ba6e1 451 BUG_ON(i == HCTX_TYPE_DEFAULT);
7e849dd9 452 continue;
3b6592f7
JA
453 }
454
4b04cc6a
JA
455 /*
456 * The poll queue(s) doesn't have an IRQ (and hence IRQ
457 * affinity), so use the regular blk-mq cpu mapping
458 */
3b6592f7 459 map->queue_offset = qoff;
cb9e0e50 460 if (i != HCTX_TYPE_POLL && offset)
4b04cc6a
JA
461 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
462 else
463 blk_mq_map_queues(map);
3b6592f7
JA
464 qoff += map->nr_queues;
465 offset += map->nr_queues;
466 }
dca51e78
CH
467}
468
38210800
KB
469/*
470 * Write sq tail if we are asked to, or if the next command would wrap.
471 */
472static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
04f3eafd 473{
38210800
KB
474 if (!write_sq) {
475 u16 next_tail = nvmeq->sq_tail + 1;
476
477 if (next_tail == nvmeq->q_depth)
478 next_tail = 0;
479 if (next_tail != nvmeq->last_sq_tail)
480 return;
481 }
482
04f3eafd
JA
483 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
484 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
485 writel(nvmeq->sq_tail, nvmeq->q_db);
38210800 486 nvmeq->last_sq_tail = nvmeq->sq_tail;
04f3eafd
JA
487}
488
3233b94c
JA
489static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
490 struct nvme_command *cmd)
b60503ba 491{
c1e0cc7e 492 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
3233b94c 493 absolute_pointer(cmd), sizeof(*cmd));
90ea5ca4
CH
494 if (++nvmeq->sq_tail == nvmeq->q_depth)
495 nvmeq->sq_tail = 0;
04f3eafd
JA
496}
497
498static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
499{
500 struct nvme_queue *nvmeq = hctx->driver_data;
501
502 spin_lock(&nvmeq->sq_lock);
38210800
KB
503 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
504 nvme_write_sq_db(nvmeq, true);
90ea5ca4 505 spin_unlock(&nvmeq->sq_lock);
b60503ba
MW
506}
507
ae582935
KB
508static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
509 int nseg)
955b1b5a 510{
a53232cb 511 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
955b1b5a
MI
512 unsigned int avg_seg_size;
513
20469a37 514 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a 515
253a0b76 516 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
955b1b5a 517 return false;
a53232cb 518 if (!nvmeq->qid)
955b1b5a
MI
519 return false;
520 if (!sgl_threshold || avg_seg_size < sgl_threshold)
521 return false;
522 return true;
523}
524
9275c206 525static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
b60503ba 526{
6c3c05b0 527 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
9275c206
CH
528 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
529 dma_addr_t dma_addr = iod->first_dma;
eca18b23 530 int i;
eca18b23 531
c372cdd1 532 for (i = 0; i < iod->nr_allocations; i++) {
7846c1b5 533 __le64 *prp_list = iod->list[i].prp_list;
9275c206
CH
534 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
535
536 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
537 dma_addr = next_dma_addr;
7fe07d14 538 }
9275c206 539}
dff824b2 540
9275c206
CH
541static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
542{
543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 544
9275c206
CH
545 if (iod->dma_len) {
546 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
547 rq_dma_dir(req));
548 return;
eca18b23 549 }
ac3dd5bd 550
91fb2b60
LG
551 WARN_ON_ONCE(!iod->sgt.nents);
552
553 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
9275c206 554
c372cdd1 555 if (iod->nr_allocations == 0)
7846c1b5 556 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
9275c206 557 iod->first_dma);
8f0edf45 558 else if (iod->nr_allocations == 1)
7846c1b5 559 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
9275c206 560 iod->first_dma);
9275c206
CH
561 else
562 nvme_free_prps(dev, req);
91fb2b60 563 mempool_free(iod->sgt.sgl, dev->iod_mempool);
b4ff9c8d
KB
564}
565
d0877473
KB
566static void nvme_print_sgl(struct scatterlist *sgl, int nents)
567{
568 int i;
569 struct scatterlist *sg;
570
571 for_each_sg(sgl, sg, nents, i) {
572 dma_addr_t phys = sg_phys(sg);
573 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
574 "dma_address:%pad dma_length:%d\n",
575 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
576 sg_dma_len(sg));
577 }
578}
579
a7a7cbe3
CK
580static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
581 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 582{
f4800d6d 583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 584 struct dma_pool *pool;
b131c61d 585 int length = blk_rq_payload_bytes(req);
91fb2b60 586 struct scatterlist *sg = iod->sgt.sgl;
ff22b54f
MW
587 int dma_len = sg_dma_len(sg);
588 u64 dma_addr = sg_dma_address(sg);
6c3c05b0 589 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
e025344c
SMM
590 __le64 *prp_list;
591 dma_addr_t prp_dma;
eca18b23 592 int nprps, i;
ff22b54f 593
6c3c05b0 594 length -= (NVME_CTRL_PAGE_SIZE - offset);
5228b328
JS
595 if (length <= 0) {
596 iod->first_dma = 0;
a7a7cbe3 597 goto done;
5228b328 598 }
ff22b54f 599
6c3c05b0 600 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f 601 if (dma_len) {
6c3c05b0 602 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
ff22b54f
MW
603 } else {
604 sg = sg_next(sg);
605 dma_addr = sg_dma_address(sg);
606 dma_len = sg_dma_len(sg);
607 }
608
6c3c05b0 609 if (length <= NVME_CTRL_PAGE_SIZE) {
edd10d33 610 iod->first_dma = dma_addr;
a7a7cbe3 611 goto done;
e025344c
SMM
612 }
613
6c3c05b0 614 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
99802a7a
MW
615 if (nprps <= (256 / 8)) {
616 pool = dev->prp_small_pool;
c372cdd1 617 iod->nr_allocations = 0;
99802a7a
MW
618 } else {
619 pool = dev->prp_page_pool;
c372cdd1 620 iod->nr_allocations = 1;
99802a7a
MW
621 }
622
69d2b571 623 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 624 if (!prp_list) {
c372cdd1 625 iod->nr_allocations = -1;
86eea289 626 return BLK_STS_RESOURCE;
b77954cb 627 }
7846c1b5 628 iod->list[0].prp_list = prp_list;
eca18b23 629 iod->first_dma = prp_dma;
e025344c
SMM
630 i = 0;
631 for (;;) {
6c3c05b0 632 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
e025344c 633 __le64 *old_prp_list = prp_list;
69d2b571 634 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 635 if (!prp_list)
fa073216 636 goto free_prps;
7846c1b5 637 iod->list[iod->nr_allocations++].prp_list = prp_list;
7523d834
MW
638 prp_list[0] = old_prp_list[i - 1];
639 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
640 i = 1;
e025344c
SMM
641 }
642 prp_list[i++] = cpu_to_le64(dma_addr);
6c3c05b0
CK
643 dma_len -= NVME_CTRL_PAGE_SIZE;
644 dma_addr += NVME_CTRL_PAGE_SIZE;
645 length -= NVME_CTRL_PAGE_SIZE;
e025344c
SMM
646 if (length <= 0)
647 break;
648 if (dma_len > 0)
649 continue;
86eea289
KB
650 if (unlikely(dma_len < 0))
651 goto bad_sgl;
e025344c
SMM
652 sg = sg_next(sg);
653 dma_addr = sg_dma_address(sg);
654 dma_len = sg_dma_len(sg);
ff22b54f 655 }
a7a7cbe3 656done:
91fb2b60 657 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
a7a7cbe3 658 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
86eea289 659 return BLK_STS_OK;
fa073216
CH
660free_prps:
661 nvme_free_prps(dev, req);
662 return BLK_STS_RESOURCE;
663bad_sgl:
91fb2b60 664 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
d0877473 665 "Invalid SGL for payload:%d nents:%d\n",
91fb2b60 666 blk_rq_payload_bytes(req), iod->sgt.nents);
86eea289 667 return BLK_STS_IOERR;
ff22b54f
MW
668}
669
a7a7cbe3
CK
670static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
671 struct scatterlist *sg)
672{
673 sge->addr = cpu_to_le64(sg_dma_address(sg));
674 sge->length = cpu_to_le32(sg_dma_len(sg));
675 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
676}
677
678static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
679 dma_addr_t dma_addr, int entries)
680{
681 sge->addr = cpu_to_le64(dma_addr);
01df742d
KB
682 sge->length = cpu_to_le32(entries * sizeof(*sge));
683 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
a7a7cbe3
CK
684}
685
686static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
91fb2b60 687 struct request *req, struct nvme_rw_command *cmd)
a7a7cbe3
CK
688{
689 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
690 struct dma_pool *pool;
691 struct nvme_sgl_desc *sg_list;
91fb2b60
LG
692 struct scatterlist *sg = iod->sgt.sgl;
693 unsigned int entries = iod->sgt.nents;
a7a7cbe3 694 dma_addr_t sgl_dma;
b0f2853b 695 int i = 0;
a7a7cbe3 696
a7a7cbe3
CK
697 /* setting the transfer type as SGL */
698 cmd->flags = NVME_CMD_SGL_METABUF;
699
b0f2853b 700 if (entries == 1) {
a7a7cbe3
CK
701 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
702 return BLK_STS_OK;
703 }
704
705 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
706 pool = dev->prp_small_pool;
c372cdd1 707 iod->nr_allocations = 0;
a7a7cbe3
CK
708 } else {
709 pool = dev->prp_page_pool;
c372cdd1 710 iod->nr_allocations = 1;
a7a7cbe3
CK
711 }
712
713 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
714 if (!sg_list) {
c372cdd1 715 iod->nr_allocations = -1;
a7a7cbe3
CK
716 return BLK_STS_RESOURCE;
717 }
718
7846c1b5 719 iod->list[0].sg_list = sg_list;
a7a7cbe3
CK
720 iod->first_dma = sgl_dma;
721
722 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
a7a7cbe3 723 do {
a7a7cbe3 724 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 725 sg = sg_next(sg);
b0f2853b 726 } while (--entries > 0);
a7a7cbe3 727
a7a7cbe3
CK
728 return BLK_STS_OK;
729}
730
dff824b2
CH
731static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
732 struct request *req, struct nvme_rw_command *cmnd,
733 struct bio_vec *bv)
734{
735 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
6c3c05b0
CK
736 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
737 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
dff824b2
CH
738
739 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
740 if (dma_mapping_error(dev->dev, iod->first_dma))
741 return BLK_STS_RESOURCE;
742 iod->dma_len = bv->bv_len;
743
744 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
745 if (bv->bv_len > first_prp_len)
746 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
a56ea614
LR
747 else
748 cmnd->dptr.prp2 = 0;
359c1f88 749 return BLK_STS_OK;
dff824b2
CH
750}
751
29791057
CH
752static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
753 struct request *req, struct nvme_rw_command *cmnd,
754 struct bio_vec *bv)
755{
756 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757
758 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
759 if (dma_mapping_error(dev->dev, iod->first_dma))
760 return BLK_STS_RESOURCE;
761 iod->dma_len = bv->bv_len;
762
049bf372 763 cmnd->flags = NVME_CMD_SGL_METABUF;
29791057
CH
764 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
765 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
766 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
359c1f88 767 return BLK_STS_OK;
29791057
CH
768}
769
fc17b653 770static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 771 struct nvme_command *cmnd)
d29ec824 772{
f4800d6d 773 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
70479b71 774 blk_status_t ret = BLK_STS_RESOURCE;
91fb2b60 775 int rc;
d29ec824 776
dff824b2 777 if (blk_rq_nr_phys_segments(req) == 1) {
a53232cb 778 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
dff824b2
CH
779 struct bio_vec bv = req_bvec(req);
780
781 if (!is_pci_p2pdma_page(bv.bv_page)) {
6c3c05b0 782 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
dff824b2
CH
783 return nvme_setup_prp_simple(dev, req,
784 &cmnd->rw, &bv);
29791057 785
a53232cb 786 if (nvmeq->qid && sgl_threshold &&
253a0b76 787 nvme_ctrl_sgl_supported(&dev->ctrl))
29791057
CH
788 return nvme_setup_sgl_simple(dev, req,
789 &cmnd->rw, &bv);
dff824b2
CH
790 }
791 }
792
793 iod->dma_len = 0;
91fb2b60
LG
794 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
795 if (!iod->sgt.sgl)
d43f1ccf 796 return BLK_STS_RESOURCE;
91fb2b60
LG
797 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
798 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
799 if (!iod->sgt.orig_nents)
fa073216 800 goto out_free_sg;
d29ec824 801
91fb2b60
LG
802 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
803 DMA_ATTR_NO_WARN);
804 if (rc) {
805 if (rc == -EREMOTEIO)
806 ret = BLK_STS_TARGET;
fa073216 807 goto out_free_sg;
91fb2b60 808 }
d29ec824 809
b6c0c237 810 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
91fb2b60 811 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
a7a7cbe3
CK
812 else
813 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
86eea289 814 if (ret != BLK_STS_OK)
fa073216
CH
815 goto out_unmap_sg;
816 return BLK_STS_OK;
817
818out_unmap_sg:
91fb2b60 819 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
fa073216 820out_free_sg:
91fb2b60 821 mempool_free(iod->sgt.sgl, dev->iod_mempool);
4aedb705
CH
822 return ret;
823}
3045c0d0 824
4aedb705
CH
825static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
826 struct nvme_command *cmnd)
827{
828 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
00df5cb4 829
4aedb705
CH
830 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
831 rq_dma_dir(req), 0);
832 if (dma_mapping_error(dev->dev, iod->meta_dma))
833 return BLK_STS_IOERR;
834 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
359c1f88 835 return BLK_STS_OK;
00df5cb4
MW
836}
837
62451a2b 838static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
edd10d33 839{
9b048119 840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ebe6d874 841 blk_status_t ret;
e1e5e564 842
52da4f3f 843 iod->aborted = false;
c372cdd1 844 iod->nr_allocations = -1;
91fb2b60 845 iod->sgt.nents = 0;
9b048119 846
62451a2b 847 ret = nvme_setup_cmd(req->q->queuedata, req);
fc17b653 848 if (ret)
f4800d6d 849 return ret;
a4aea562 850
fc17b653 851 if (blk_rq_nr_phys_segments(req)) {
62451a2b 852 ret = nvme_map_data(dev, req, &iod->cmd);
fc17b653 853 if (ret)
9b048119 854 goto out_free_cmd;
fc17b653 855 }
a4aea562 856
4aedb705 857 if (blk_integrity_rq(req)) {
62451a2b 858 ret = nvme_map_metadata(dev, req, &iod->cmd);
4aedb705
CH
859 if (ret)
860 goto out_unmap_data;
861 }
862
6887fc64 863 nvme_start_request(req);
fc17b653 864 return BLK_STS_OK;
4aedb705
CH
865out_unmap_data:
866 nvme_unmap_data(dev, req);
f9d03f96
CH
867out_free_cmd:
868 nvme_cleanup_cmd(req);
ba1ca37e 869 return ret;
b60503ba 870}
e1e5e564 871
62451a2b
JA
872/*
873 * NOTE: ns is NULL when called on the admin queue.
874 */
875static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
876 const struct blk_mq_queue_data *bd)
877{
878 struct nvme_queue *nvmeq = hctx->driver_data;
879 struct nvme_dev *dev = nvmeq->dev;
880 struct request *req = bd->rq;
881 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
882 blk_status_t ret;
883
884 /*
885 * We should not need to do this, but we're still using this to
886 * ensure we can drain requests on a dying queue.
887 */
888 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
889 return BLK_STS_IOERR;
890
891 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
892 return nvme_fail_nonready_command(&dev->ctrl, req);
893
894 ret = nvme_prep_rq(dev, req);
895 if (unlikely(ret))
896 return ret;
897 spin_lock(&nvmeq->sq_lock);
898 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
899 nvme_write_sq_db(nvmeq, bd->last);
900 spin_unlock(&nvmeq->sq_lock);
901 return BLK_STS_OK;
902}
903
d62cbcf6
JA
904static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
905{
906 spin_lock(&nvmeq->sq_lock);
907 while (!rq_list_empty(*rqlist)) {
908 struct request *req = rq_list_pop(rqlist);
909 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
910
911 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
912 }
913 nvme_write_sq_db(nvmeq, true);
914 spin_unlock(&nvmeq->sq_lock);
915}
916
917static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
918{
919 /*
920 * We should not need to do this, but we're still using this to
921 * ensure we can drain requests on a dying queue.
922 */
923 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
924 return false;
925 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
926 return false;
927
928 req->mq_hctx->tags->rqs[req->tag] = req;
929 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
930}
931
932static void nvme_queue_rqs(struct request **rqlist)
933{
6bfec799 934 struct request *req, *next, *prev = NULL;
d62cbcf6
JA
935 struct request *requeue_list = NULL;
936
6bfec799 937 rq_list_for_each_safe(rqlist, req, next) {
d62cbcf6
JA
938 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
939
940 if (!nvme_prep_rq_batch(nvmeq, req)) {
941 /* detach 'req' and add to remainder list */
6bfec799
KB
942 rq_list_move(rqlist, &requeue_list, req, prev);
943
944 req = prev;
945 if (!req)
946 continue;
d62cbcf6
JA
947 }
948
6bfec799 949 if (!next || req->mq_hctx != next->mq_hctx) {
d62cbcf6 950 /* detach rest of list, and submit */
6bfec799 951 req->rq_next = NULL;
d62cbcf6 952 nvme_submit_cmds(nvmeq, rqlist);
6bfec799
KB
953 *rqlist = next;
954 prev = NULL;
955 } else
956 prev = req;
957 }
d62cbcf6
JA
958
959 *rqlist = requeue_list;
960}
961
c234a653 962static __always_inline void nvme_pci_unmap_rq(struct request *req)
eee417b0 963{
a53232cb
KB
964 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
965 struct nvme_dev *dev = nvmeq->dev;
966
967 if (blk_integrity_rq(req)) {
968 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 969
4aedb705
CH
970 dma_unmap_page(dev->dev, iod->meta_dma,
971 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
a53232cb
KB
972 }
973
b15c592d 974 if (blk_rq_nr_phys_segments(req))
4aedb705 975 nvme_unmap_data(dev, req);
c234a653
JA
976}
977
978static void nvme_pci_complete_rq(struct request *req)
979{
980 nvme_pci_unmap_rq(req);
77f02a7a 981 nvme_complete_rq(req);
b60503ba
MW
982}
983
c234a653
JA
984static void nvme_pci_complete_batch(struct io_comp_batch *iob)
985{
986 nvme_complete_batch(iob, nvme_pci_unmap_rq);
987}
988
d783e0bd 989/* We read the CQE phase first to check if the rest of the entry is valid */
750dde44 990static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
d783e0bd 991{
74943d45
KB
992 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
993
994 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
d783e0bd
MR
995}
996
eb281c82 997static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 998{
eb281c82 999 u16 head = nvmeq->cq_head;
adf68f21 1000
397c699f
KB
1001 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1002 nvmeq->dbbuf_cq_ei))
1003 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
eb281c82 1004}
aae239e1 1005
cfa27356
CH
1006static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1007{
1008 if (!nvmeq->qid)
1009 return nvmeq->dev->admin_tagset.tags[0];
1010 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1011}
1012
c234a653
JA
1013static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1014 struct io_comp_batch *iob, u16 idx)
83a12fb7 1015{
74943d45 1016 struct nvme_completion *cqe = &nvmeq->cqes[idx];
62df8016 1017 __u16 command_id = READ_ONCE(cqe->command_id);
83a12fb7 1018 struct request *req;
adf68f21 1019
83a12fb7
SG
1020 /*
1021 * AEN requests are special as they don't time out and can
1022 * survive any kind of queue freeze and often don't respond to
1023 * aborts. We don't even bother to allocate a struct request
1024 * for them but rather special case them here.
1025 */
62df8016 1026 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
83a12fb7
SG
1027 nvme_complete_async_event(&nvmeq->dev->ctrl,
1028 cqe->status, &cqe->result);
a0fa9647 1029 return;
83a12fb7 1030 }
b60503ba 1031
e7006de6 1032 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
50b7c243
XT
1033 if (unlikely(!req)) {
1034 dev_warn(nvmeq->dev->ctrl.device,
1035 "invalid id %d completed on queue %d\n",
62df8016 1036 command_id, le16_to_cpu(cqe->sq_id));
50b7c243
XT
1037 return;
1038 }
1039
604c01d5 1040 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
c234a653
JA
1041 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1042 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1043 nvme_pci_complete_batch))
ff029451 1044 nvme_pci_complete_rq(req);
83a12fb7 1045}
b60503ba 1046
5cb525c8
JA
1047static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1048{
a0aac973 1049 u32 tmp = nvmeq->cq_head + 1;
a8de6639
AD
1050
1051 if (tmp == nvmeq->q_depth) {
5cb525c8 1052 nvmeq->cq_head = 0;
e2a366a4 1053 nvmeq->cq_phase ^= 1;
a8de6639
AD
1054 } else {
1055 nvmeq->cq_head = tmp;
b60503ba 1056 }
a0fa9647
JA
1057}
1058
c234a653
JA
1059static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1060 struct io_comp_batch *iob)
a0fa9647 1061{
1052b8ac 1062 int found = 0;
b60503ba 1063
1052b8ac 1064 while (nvme_cqe_pending(nvmeq)) {
bf392a5d 1065 found++;
b69e2ef2
KB
1066 /*
1067 * load-load control dependency between phase and the rest of
1068 * the cqe requires a full read memory barrier
1069 */
1070 dma_rmb();
c234a653 1071 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
5cb525c8 1072 nvme_update_cq_head(nvmeq);
920d13a8 1073 }
eb281c82 1074
324b494c 1075 if (found)
920d13a8 1076 nvme_ring_cq_doorbell(nvmeq);
5cb525c8 1077 return found;
b60503ba
MW
1078}
1079
1080static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5 1081{
58ffacb5 1082 struct nvme_queue *nvmeq = data;
4f502245 1083 DEFINE_IO_COMP_BATCH(iob);
5cb525c8 1084
4f502245
JA
1085 if (nvme_poll_cq(nvmeq, &iob)) {
1086 if (!rq_list_empty(iob.req_list))
1087 nvme_pci_complete_batch(&iob);
05fae499 1088 return IRQ_HANDLED;
4f502245 1089 }
05fae499 1090 return IRQ_NONE;
58ffacb5
MW
1091}
1092
1093static irqreturn_t nvme_irq_check(int irq, void *data)
1094{
1095 struct nvme_queue *nvmeq = data;
4e523547 1096
750dde44 1097 if (nvme_cqe_pending(nvmeq))
d783e0bd
MR
1098 return IRQ_WAKE_THREAD;
1099 return IRQ_NONE;
58ffacb5
MW
1100}
1101
0b2a8a9f 1102/*
fa059b85 1103 * Poll for completions for any interrupt driven queue
0b2a8a9f
CH
1104 * Can be called from any context.
1105 */
fa059b85 1106static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
a0fa9647 1107{
3a7afd8e 1108 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
a0fa9647 1109
fa059b85 1110 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
442e19b7 1111
fa059b85 1112 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
c234a653 1113 nvme_poll_cq(nvmeq, NULL);
fa059b85 1114 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
a0fa9647
JA
1115}
1116
5a72e899 1117static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
dabcefab
JA
1118{
1119 struct nvme_queue *nvmeq = hctx->driver_data;
dabcefab
JA
1120 bool found;
1121
1122 if (!nvme_cqe_pending(nvmeq))
1123 return 0;
1124
3a7afd8e 1125 spin_lock(&nvmeq->cq_poll_lock);
c234a653 1126 found = nvme_poll_cq(nvmeq, iob);
3a7afd8e 1127 spin_unlock(&nvmeq->cq_poll_lock);
dabcefab 1128
dabcefab
JA
1129 return found;
1130}
1131
ad22c355 1132static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 1133{
f866fc42 1134 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 1135 struct nvme_queue *nvmeq = &dev->queues[0];
f66e2804 1136 struct nvme_command c = { };
b60503ba 1137
a4aea562 1138 c.common.opcode = nvme_admin_async_event;
ad22c355 1139 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
3233b94c
JA
1140
1141 spin_lock(&nvmeq->sq_lock);
1142 nvme_sq_copy_cmd(nvmeq, &c);
1143 nvme_write_sq_db(nvmeq, true);
1144 spin_unlock(&nvmeq->sq_lock);
f705f837
CH
1145}
1146
b60503ba 1147static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1148{
f66e2804 1149 struct nvme_command c = { };
b60503ba 1150
b60503ba
MW
1151 c.delete_queue.opcode = opcode;
1152 c.delete_queue.qid = cpu_to_le16(id);
1153
1c63dc66 1154 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1155}
1156
b60503ba 1157static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
a8e3e0bb 1158 struct nvme_queue *nvmeq, s16 vector)
b60503ba 1159{
f66e2804 1160 struct nvme_command c = { };
4b04cc6a
JA
1161 int flags = NVME_QUEUE_PHYS_CONTIG;
1162
7c349dde 1163 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
4b04cc6a 1164 flags |= NVME_CQ_IRQ_ENABLED;
b60503ba 1165
d29ec824 1166 /*
16772ae6 1167 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1168 * is attached to the request.
1169 */
b60503ba
MW
1170 c.create_cq.opcode = nvme_admin_create_cq;
1171 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1172 c.create_cq.cqid = cpu_to_le16(qid);
1173 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1174 c.create_cq.cq_flags = cpu_to_le16(flags);
7c349dde 1175 c.create_cq.irq_vector = cpu_to_le16(vector);
b60503ba 1176
1c63dc66 1177 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1178}
1179
1180static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1181 struct nvme_queue *nvmeq)
1182{
9abd68ef 1183 struct nvme_ctrl *ctrl = &dev->ctrl;
f66e2804 1184 struct nvme_command c = { };
81c1cd98 1185 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1186
9abd68ef
JA
1187 /*
1188 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1189 * set. Since URGENT priority is zeroes, it makes all queues
1190 * URGENT.
1191 */
1192 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1193 flags |= NVME_SQ_PRIO_MEDIUM;
1194
d29ec824 1195 /*
16772ae6 1196 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1197 * is attached to the request.
1198 */
b60503ba
MW
1199 c.create_sq.opcode = nvme_admin_create_sq;
1200 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1201 c.create_sq.sqid = cpu_to_le16(qid);
1202 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1203 c.create_sq.sq_flags = cpu_to_le16(flags);
1204 c.create_sq.cqid = cpu_to_le16(qid);
1205
1c63dc66 1206 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1207}
1208
1209static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1210{
1211 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1212}
1213
1214static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1215{
1216 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1217}
1218
de671d61 1219static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1220{
a53232cb 1221 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
e44ac588 1222
27fa9bc5
CH
1223 dev_warn(nvmeq->dev->ctrl.device,
1224 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1225 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1226 blk_mq_free_request(req);
de671d61 1227 return RQ_END_IO_NONE;
bc5fc7e4
MW
1228}
1229
b2a0eb1a
KB
1230static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1231{
b2a0eb1a
KB
1232 /* If true, indicates loss of adapter communication, possibly by a
1233 * NVMe Subsystem reset.
1234 */
1235 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1236
ad70062c
JW
1237 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1238 switch (dev->ctrl.state) {
1239 case NVME_CTRL_RESETTING:
ad6a0a52 1240 case NVME_CTRL_CONNECTING:
b2a0eb1a 1241 return false;
ad70062c
JW
1242 default:
1243 break;
1244 }
b2a0eb1a
KB
1245
1246 /* We shouldn't reset unless the controller is on fatal error state
1247 * _or_ if we lost the communication with it.
1248 */
1249 if (!(csts & NVME_CSTS_CFS) && !nssro)
1250 return false;
1251
b2a0eb1a
KB
1252 return true;
1253}
1254
1255static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1256{
1257 /* Read a config register to help see what died. */
1258 u16 pci_status;
1259 int result;
1260
1261 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1262 &pci_status);
1263 if (result == PCIBIOS_SUCCESSFUL)
1264 dev_warn(dev->ctrl.device,
1265 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1266 csts, pci_status);
1267 else
1268 dev_warn(dev->ctrl.device,
1269 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1270 csts, result);
4641a8e6
KB
1271
1272 if (csts != ~0)
1273 return;
1274
1275 dev_warn(dev->ctrl.device,
1276 "Does your device have a faulty power saving mode enabled?\n");
1277 dev_warn(dev->ctrl.device,
1278 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
b2a0eb1a
KB
1279}
1280
9bdb4833 1281static enum blk_eh_timer_return nvme_timeout(struct request *req)
c30341dc 1282{
f4800d6d 1283 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a53232cb 1284 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
c30341dc 1285 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1286 struct request *abort_req;
f66e2804 1287 struct nvme_command cmd = { };
b2a0eb1a
KB
1288 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1289
651438bb
WX
1290 /* If PCI error recovery process is happening, we cannot reset or
1291 * the recovery mechanism will surely fail.
1292 */
1293 mb();
1294 if (pci_channel_offline(to_pci_dev(dev->dev)))
1295 return BLK_EH_RESET_TIMER;
1296
b2a0eb1a
KB
1297 /*
1298 * Reset immediately if the controller is failed
1299 */
1300 if (nvme_should_reset(dev, csts)) {
1301 nvme_warn_reset(dev, csts);
1302 nvme_dev_disable(dev, false);
d86c4d8e 1303 nvme_reset_ctrl(&dev->ctrl);
db8c48e4 1304 return BLK_EH_DONE;
b2a0eb1a 1305 }
c30341dc 1306
7776db1c
KB
1307 /*
1308 * Did we miss an interrupt?
1309 */
fa059b85 1310 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
5a72e899 1311 nvme_poll(req->mq_hctx, NULL);
fa059b85
KB
1312 else
1313 nvme_poll_irqdisable(nvmeq);
1314
1c584208 1315 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
7776db1c
KB
1316 dev_warn(dev->ctrl.device,
1317 "I/O %d QID %d timeout, completion polled\n",
1318 req->tag, nvmeq->qid);
db8c48e4 1319 return BLK_EH_DONE;
7776db1c
KB
1320 }
1321
31c7c7d2 1322 /*
fd634f41
CH
1323 * Shutdown immediately if controller times out while starting. The
1324 * reset work will see the pci device disabled when it gets the forced
1325 * cancellation error. All outstanding requests are completed on
db8c48e4 1326 * shutdown, so we return BLK_EH_DONE.
fd634f41 1327 */
4244140d
KB
1328 switch (dev->ctrl.state) {
1329 case NVME_CTRL_CONNECTING:
2036f726 1330 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
df561f66 1331 fallthrough;
2036f726 1332 case NVME_CTRL_DELETING:
b9cac43c 1333 dev_warn_ratelimited(dev->ctrl.device,
fd634f41
CH
1334 "I/O %d QID %d timeout, disable controller\n",
1335 req->tag, nvmeq->qid);
27fa9bc5 1336 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
7ad92f65 1337 nvme_dev_disable(dev, true);
db8c48e4 1338 return BLK_EH_DONE;
39a9dd81
KB
1339 case NVME_CTRL_RESETTING:
1340 return BLK_EH_RESET_TIMER;
4244140d
KB
1341 default:
1342 break;
c30341dc
KB
1343 }
1344
fd634f41 1345 /*
ee0d96d3
BW
1346 * Shutdown the controller immediately and schedule a reset if the
1347 * command was already aborted once before and still hasn't been
1348 * returned to the driver, or if this is the admin queue.
31c7c7d2 1349 */
f4800d6d 1350 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1351 dev_warn(dev->ctrl.device,
e1569a16
KB
1352 "I/O %d QID %d timeout, reset controller\n",
1353 req->tag, nvmeq->qid);
7ad92f65 1354 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
a5cdb68c 1355 nvme_dev_disable(dev, false);
d86c4d8e 1356 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1357
db8c48e4 1358 return BLK_EH_DONE;
c30341dc 1359 }
c30341dc 1360
e7a2a87d 1361 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1362 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1363 return BLK_EH_RESET_TIMER;
6bf25d16 1364 }
52da4f3f 1365 iod->aborted = true;
a4aea562 1366
c30341dc 1367 cmd.abort.opcode = nvme_admin_abort_cmd;
85f74acf 1368 cmd.abort.cid = nvme_cid(req);
c30341dc 1369 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1370
1b3c47c1 1371 dev_warn(nvmeq->dev->ctrl.device,
86141440
CH
1372 "I/O %d (%s) QID %d timeout, aborting\n",
1373 req->tag,
1374 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1375 nvmeq->qid);
e7a2a87d 1376
e559398f
CH
1377 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1378 BLK_MQ_REQ_NOWAIT);
e7a2a87d
CH
1379 if (IS_ERR(abort_req)) {
1380 atomic_inc(&dev->ctrl.abort_limit);
1381 return BLK_EH_RESET_TIMER;
1382 }
e559398f 1383 nvme_init_request(abort_req, &cmd);
e7a2a87d 1384
e2e53086 1385 abort_req->end_io = abort_endio;
e7a2a87d 1386 abort_req->end_io_data = NULL;
e2e53086 1387 blk_execute_rq_nowait(abort_req, false);
c30341dc 1388
31c7c7d2
CH
1389 /*
1390 * The aborted req will be completed on receiving the abort req.
1391 * We enable the timer again. If hit twice, it'll cause a device reset,
1392 * as the device then is in a faulty state.
1393 */
1394 return BLK_EH_RESET_TIMER;
c30341dc
KB
1395}
1396
a4aea562
MB
1397static void nvme_free_queue(struct nvme_queue *nvmeq)
1398{
8a1d09a6 1399 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
9e866774 1400 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
63223078
CH
1401 if (!nvmeq->sq_cmds)
1402 return;
0f238ff5 1403
63223078 1404 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
88a041f4 1405 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
8a1d09a6 1406 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1407 } else {
8a1d09a6 1408 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
63223078 1409 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
0f238ff5 1410 }
9e866774
MW
1411}
1412
a1a5ef99 1413static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1414{
1415 int i;
1416
d858e5f0 1417 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1418 dev->ctrl.queue_count--;
147b27e4 1419 nvme_free_queue(&dev->queues[i]);
121c7ad4 1420 }
22404274
KB
1421}
1422
10981f23 1423static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
b60503ba 1424{
10981f23
CH
1425 struct nvme_queue *nvmeq = &dev->queues[qid];
1426
4e224106 1427 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
10981f23 1428 return;
a09115b2 1429
4e224106 1430 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
d1f06f4a 1431 mb();
a09115b2 1432
4e224106 1433 nvmeq->dev->online_queues--;
1c63dc66 1434 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
9f27bd70 1435 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
7c349dde 1436 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
10981f23 1437 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
4d115420 1438}
b60503ba 1439
8fae268b
KB
1440static void nvme_suspend_io_queues(struct nvme_dev *dev)
1441{
1442 int i;
1443
1444 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
10981f23 1445 nvme_suspend_queue(dev, i);
b60503ba
MW
1446}
1447
fa46c6fb
KB
1448/*
1449 * Called only on a device that has been disabled and after all other threads
9210c075
DZ
1450 * that can check this device's completion queues have synced, except
1451 * nvme_poll(). This is the last chance for the driver to see a natural
1452 * completion before nvme_cancel_request() terminates all incomplete requests.
fa46c6fb
KB
1453 */
1454static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1455{
fa46c6fb
KB
1456 int i;
1457
9210c075
DZ
1458 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1459 spin_lock(&dev->queues[i].cq_poll_lock);
c234a653 1460 nvme_poll_cq(&dev->queues[i], NULL);
9210c075
DZ
1461 spin_unlock(&dev->queues[i].cq_poll_lock);
1462 }
fa46c6fb
KB
1463}
1464
8ffaadf7
JD
1465static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1466 int entry_size)
1467{
1468 int q_depth = dev->q_depth;
5fd4ce1b 1469 unsigned q_size_aligned = roundup(q_depth * entry_size,
6c3c05b0 1470 NVME_CTRL_PAGE_SIZE);
8ffaadf7
JD
1471
1472 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1473 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
4e523547 1474
6c3c05b0 1475 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
c45f5c99 1476 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1477
1478 /*
1479 * Ensure the reduced q_depth is above some threshold where it
1480 * would be better to map queues in system memory with the
1481 * original depth
1482 */
1483 if (q_depth < 64)
1484 return -ENOMEM;
1485 }
1486
1487 return q_depth;
1488}
1489
1490static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
8a1d09a6 1491 int qid)
8ffaadf7 1492{
0f238ff5
LG
1493 struct pci_dev *pdev = to_pci_dev(dev->dev);
1494
1495 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
8a1d09a6 1496 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
bfac8e9f
AM
1497 if (nvmeq->sq_cmds) {
1498 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1499 nvmeq->sq_cmds);
1500 if (nvmeq->sq_dma_addr) {
1501 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1502 return 0;
1503 }
1504
8a1d09a6 1505 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
63223078 1506 }
0f238ff5 1507 }
8ffaadf7 1508
8a1d09a6 1509 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
63223078 1510 &nvmeq->sq_dma_addr, GFP_KERNEL);
815c6704
KB
1511 if (!nvmeq->sq_cmds)
1512 return -ENOMEM;
8ffaadf7
JD
1513 return 0;
1514}
1515
a6ff7262 1516static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1517{
147b27e4 1518 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1519
62314e40
KB
1520 if (dev->ctrl.queue_count > qid)
1521 return 0;
b60503ba 1522
c1e0cc7e 1523 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
8a1d09a6
BH
1524 nvmeq->q_depth = depth;
1525 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
750afb08 1526 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1527 if (!nvmeq->cqes)
1528 goto free_nvmeq;
b60503ba 1529
8a1d09a6 1530 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
b60503ba
MW
1531 goto free_cqdma;
1532
091b6092 1533 nvmeq->dev = dev;
1ab0cd69 1534 spin_lock_init(&nvmeq->sq_lock);
3a7afd8e 1535 spin_lock_init(&nvmeq->cq_poll_lock);
b60503ba 1536 nvmeq->cq_head = 0;
82123460 1537 nvmeq->cq_phase = 1;
b80d5ccc 1538 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
c30341dc 1539 nvmeq->qid = qid;
d858e5f0 1540 dev->ctrl.queue_count++;
36a7e993 1541
147b27e4 1542 return 0;
b60503ba
MW
1543
1544 free_cqdma:
8a1d09a6
BH
1545 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1546 nvmeq->cq_dma_addr);
b60503ba 1547 free_nvmeq:
147b27e4 1548 return -ENOMEM;
b60503ba
MW
1549}
1550
dca51e78 1551static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1552{
0ff199cb
CH
1553 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1554 int nr = nvmeq->dev->ctrl.instance;
1555
1556 if (use_threaded_interrupts) {
1557 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1558 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1559 } else {
1560 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1561 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1562 }
3001082c
MW
1563}
1564
22404274 1565static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1566{
22404274 1567 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1568
22404274 1569 nvmeq->sq_tail = 0;
38210800 1570 nvmeq->last_sq_tail = 0;
22404274
KB
1571 nvmeq->cq_head = 0;
1572 nvmeq->cq_phase = 1;
b80d5ccc 1573 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
8a1d09a6 1574 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
f9f38e33 1575 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1576 dev->online_queues++;
3a7afd8e 1577 wmb(); /* ensure the first interrupt sees the initialization */
22404274
KB
1578}
1579
e4b9852a
CC
1580/*
1581 * Try getting shutdown_lock while setting up IO queues.
1582 */
1583static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1584{
1585 /*
1586 * Give up if the lock is being held by nvme_dev_disable.
1587 */
1588 if (!mutex_trylock(&dev->shutdown_lock))
1589 return -ENODEV;
1590
1591 /*
1592 * Controller is in wrong state, fail early.
1593 */
1594 if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1595 mutex_unlock(&dev->shutdown_lock);
1596 return -ENODEV;
1597 }
1598
1599 return 0;
1600}
1601
4b04cc6a 1602static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
22404274
KB
1603{
1604 struct nvme_dev *dev = nvmeq->dev;
1605 int result;
7c349dde 1606 u16 vector = 0;
3f85d50b 1607
d1ed6aa1
CH
1608 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1609
22b55601
KB
1610 /*
1611 * A queue's vector matches the queue identifier unless the controller
1612 * has only one vector available.
1613 */
4b04cc6a
JA
1614 if (!polled)
1615 vector = dev->num_vecs == 1 ? 0 : qid;
1616 else
7c349dde 1617 set_bit(NVMEQ_POLLED, &nvmeq->flags);
4b04cc6a 1618
a8e3e0bb 1619 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
ded45505
KB
1620 if (result)
1621 return result;
b60503ba
MW
1622
1623 result = adapter_alloc_sq(dev, qid, nvmeq);
1624 if (result < 0)
ded45505 1625 return result;
c80b36cd 1626 if (result)
b60503ba
MW
1627 goto release_cq;
1628
a8e3e0bb 1629 nvmeq->cq_vector = vector;
4b04cc6a 1630
e4b9852a
CC
1631 result = nvme_setup_io_queues_trylock(dev);
1632 if (result)
1633 return result;
1634 nvme_init_queue(nvmeq, qid);
7c349dde 1635 if (!polled) {
4b04cc6a
JA
1636 result = queue_request_irq(nvmeq);
1637 if (result < 0)
1638 goto release_sq;
1639 }
b60503ba 1640
4e224106 1641 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
e4b9852a 1642 mutex_unlock(&dev->shutdown_lock);
22404274 1643 return result;
b60503ba 1644
a8e3e0bb 1645release_sq:
f25a2dfc 1646 dev->online_queues--;
e4b9852a 1647 mutex_unlock(&dev->shutdown_lock);
b60503ba 1648 adapter_delete_sq(dev, qid);
a8e3e0bb 1649release_cq:
b60503ba 1650 adapter_delete_cq(dev, qid);
22404274 1651 return result;
b60503ba
MW
1652}
1653
f363b089 1654static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1655 .queue_rq = nvme_queue_rq,
77f02a7a 1656 .complete = nvme_pci_complete_rq,
a4aea562 1657 .init_hctx = nvme_admin_init_hctx,
e559398f 1658 .init_request = nvme_pci_init_request,
a4aea562
MB
1659 .timeout = nvme_timeout,
1660};
1661
f363b089 1662static const struct blk_mq_ops nvme_mq_ops = {
376f7ef8 1663 .queue_rq = nvme_queue_rq,
d62cbcf6 1664 .queue_rqs = nvme_queue_rqs,
376f7ef8
CH
1665 .complete = nvme_pci_complete_rq,
1666 .commit_rqs = nvme_commit_rqs,
1667 .init_hctx = nvme_init_hctx,
e559398f 1668 .init_request = nvme_pci_init_request,
376f7ef8
CH
1669 .map_queues = nvme_pci_map_queues,
1670 .timeout = nvme_timeout,
1671 .poll = nvme_poll,
dabcefab
JA
1672};
1673
ea191d2f
KB
1674static void nvme_dev_remove_admin(struct nvme_dev *dev)
1675{
1c63dc66 1676 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1677 /*
1678 * If the controller was reset during removal, it's possible
1679 * user requests may be waiting on a stopped queue. Start the
1680 * queue to flush these to completion.
1681 */
9f27bd70 1682 nvme_unquiesce_admin_queue(&dev->ctrl);
0da7feaa 1683 nvme_remove_admin_tag_set(&dev->ctrl);
ea191d2f
KB
1684 }
1685}
1686
97f6ef64
XY
1687static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1688{
1689 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1690}
1691
1692static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1693{
1694 struct pci_dev *pdev = to_pci_dev(dev->dev);
1695
1696 if (size <= dev->bar_mapped_size)
1697 return 0;
1698 if (size > pci_resource_len(pdev, 0))
1699 return -ENOMEM;
1700 if (dev->bar)
1701 iounmap(dev->bar);
1702 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1703 if (!dev->bar) {
1704 dev->bar_mapped_size = 0;
1705 return -ENOMEM;
1706 }
1707 dev->bar_mapped_size = size;
1708 dev->dbs = dev->bar + NVME_REG_DBS;
1709
1710 return 0;
1711}
1712
01ad0990 1713static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1714{
ba47e386 1715 int result;
b60503ba
MW
1716 u32 aqa;
1717 struct nvme_queue *nvmeq;
1718
97f6ef64
XY
1719 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1720 if (result < 0)
1721 return result;
1722
8ef2074d 1723 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1724 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1725
7a67cbea
CH
1726 if (dev->subsystem &&
1727 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1728 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1729
285b6e9b
CH
1730 /*
1731 * If the device has been passed off to us in an enabled state, just
1732 * clear the enabled bit. The spec says we should set the 'shutdown
1733 * notification bits', but doing so may cause the device to complete
1734 * commands to the admin queue ... and we don't know what memory that
1735 * might be pointing at!
1736 */
1737 result = nvme_disable_ctrl(&dev->ctrl, false);
ba47e386
MW
1738 if (result < 0)
1739 return result;
b60503ba 1740
a6ff7262 1741 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1742 if (result)
1743 return result;
b60503ba 1744
635333e4
MG
1745 dev->ctrl.numa_node = dev_to_node(dev->dev);
1746
147b27e4 1747 nvmeq = &dev->queues[0];
b60503ba
MW
1748 aqa = nvmeq->q_depth - 1;
1749 aqa |= aqa << 16;
1750
7a67cbea
CH
1751 writel(aqa, dev->bar + NVME_REG_AQA);
1752 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1753 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1754
c0f2f45b 1755 result = nvme_enable_ctrl(&dev->ctrl);
025c557a 1756 if (result)
d4875622 1757 return result;
a4aea562 1758
2b25d981 1759 nvmeq->cq_vector = 0;
161b8be2 1760 nvme_init_queue(nvmeq, 0);
dca51e78 1761 result = queue_request_irq(nvmeq);
758dd7fd 1762 if (result) {
7c349dde 1763 dev->online_queues--;
d4875622 1764 return result;
758dd7fd 1765 }
025c557a 1766
4e224106 1767 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
b60503ba
MW
1768 return result;
1769}
1770
749941f2 1771static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1772{
4b04cc6a 1773 unsigned i, max, rw_queues;
749941f2 1774 int ret = 0;
42f61420 1775
d858e5f0 1776 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1777 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1778 ret = -ENOMEM;
42f61420 1779 break;
749941f2
CH
1780 }
1781 }
42f61420 1782
d858e5f0 1783 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
e20ba6e1
CH
1784 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1785 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1786 dev->io_queues[HCTX_TYPE_READ];
4b04cc6a
JA
1787 } else {
1788 rw_queues = max;
1789 }
1790
949928c1 1791 for (i = dev->online_queues; i <= max; i++) {
4b04cc6a
JA
1792 bool polled = i > rw_queues;
1793
1794 ret = nvme_create_queue(&dev->queues[i], i, polled);
d4875622 1795 if (ret)
42f61420 1796 break;
27e8166c 1797 }
749941f2
CH
1798
1799 /*
1800 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1801 * than the desired amount of queues, and even a controller without
1802 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1803 * be useful to upgrade a buggy firmware for example.
1804 */
1805 return ret >= 0 ? 0 : ret;
b60503ba
MW
1806}
1807
88de4598 1808static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1809{
88de4598
CH
1810 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1811
1812 return 1ULL << (12 + 4 * szu);
1813}
1814
1815static u32 nvme_cmb_size(struct nvme_dev *dev)
1816{
1817 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1818}
1819
f65efd6d 1820static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1821{
88de4598 1822 u64 size, offset;
8ffaadf7
JD
1823 resource_size_t bar_size;
1824 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1825 int bar;
8ffaadf7 1826
9fe5c59f
KB
1827 if (dev->cmb_size)
1828 return;
1829
20d3bb92
KJ
1830 if (NVME_CAP_CMBS(dev->ctrl.cap))
1831 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1832
7a67cbea 1833 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1834 if (!dev->cmbsz)
1835 return;
202021c1 1836 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1837
88de4598
CH
1838 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1839 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1840 bar = NVME_CMB_BIR(dev->cmbloc);
1841 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1842
1843 if (offset > bar_size)
f65efd6d 1844 return;
8ffaadf7 1845
20d3bb92
KJ
1846 /*
1847 * Tell the controller about the host side address mapping the CMB,
1848 * and enable CMB decoding for the NVMe 1.4+ scheme:
1849 */
1850 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1851 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1852 (pci_bus_address(pdev, bar) + offset),
1853 dev->bar + NVME_REG_CMBMSC);
1854 }
1855
8ffaadf7
JD
1856 /*
1857 * Controllers may support a CMB size larger than their BAR,
1858 * for example, due to being behind a bridge. Reduce the CMB to
1859 * the reported size of the BAR
1860 */
1861 if (size > bar_size - offset)
1862 size = bar_size - offset;
1863
0f238ff5
LG
1864 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1865 dev_warn(dev->ctrl.device,
1866 "failed to register the CMB\n");
f65efd6d 1867 return;
0f238ff5
LG
1868 }
1869
8ffaadf7 1870 dev->cmb_size = size;
0f238ff5
LG
1871 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1872
1873 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1874 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1875 pci_p2pmem_publish(pdev, true);
e917a849
KB
1876
1877 nvme_update_attrs(dev);
8ffaadf7
JD
1878}
1879
87ad72a5
CH
1880static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1881{
6c3c05b0 1882 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
4033f35d 1883 u64 dma_addr = dev->host_mem_descs_dma;
f66e2804 1884 struct nvme_command c = { };
87ad72a5
CH
1885 int ret;
1886
87ad72a5
CH
1887 c.features.opcode = nvme_admin_set_features;
1888 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1889 c.features.dword11 = cpu_to_le32(bits);
6c3c05b0 1890 c.features.dword12 = cpu_to_le32(host_mem_size);
87ad72a5
CH
1891 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1892 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1893 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1894
1895 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1896 if (ret) {
1897 dev_warn(dev->ctrl.device,
1898 "failed to set host mem (err %d, flags %#x).\n",
1899 ret, bits);
a5df5e79
KB
1900 } else
1901 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1902
87ad72a5
CH
1903 return ret;
1904}
1905
1906static void nvme_free_host_mem(struct nvme_dev *dev)
1907{
1908 int i;
1909
1910 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1911 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
6c3c05b0 1912 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 1913
cc667f6d
LD
1914 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1915 le64_to_cpu(desc->addr),
1916 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1917 }
1918
1919 kfree(dev->host_mem_desc_bufs);
1920 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
1921 dma_free_coherent(dev->dev,
1922 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1923 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 1924 dev->host_mem_descs = NULL;
7e5dd57e 1925 dev->nr_host_mem_descs = 0;
87ad72a5
CH
1926}
1927
92dc6895
CH
1928static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1929 u32 chunk_size)
9d713c2b 1930{
87ad72a5 1931 struct nvme_host_mem_buf_desc *descs;
92dc6895 1932 u32 max_entries, len;
4033f35d 1933 dma_addr_t descs_dma;
2ee0e4ed 1934 int i = 0;
87ad72a5 1935 void **bufs;
6fbcde66 1936 u64 size, tmp;
87ad72a5 1937
87ad72a5
CH
1938 tmp = (preferred + chunk_size - 1);
1939 do_div(tmp, chunk_size);
1940 max_entries = tmp;
044a9df1
CH
1941
1942 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1943 max_entries = dev->ctrl.hmmaxd;
1944
750afb08
LC
1945 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1946 &descs_dma, GFP_KERNEL);
87ad72a5
CH
1947 if (!descs)
1948 goto out;
1949
1950 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1951 if (!bufs)
1952 goto out_free_descs;
1953
244a8fe4 1954 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
1955 dma_addr_t dma_addr;
1956
50cdb7c6 1957 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1958 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1959 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1960 if (!bufs[i])
1961 break;
1962
1963 descs[i].addr = cpu_to_le64(dma_addr);
6c3c05b0 1964 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
87ad72a5
CH
1965 i++;
1966 }
1967
92dc6895 1968 if (!size)
87ad72a5 1969 goto out_free_bufs;
87ad72a5 1970
87ad72a5
CH
1971 dev->nr_host_mem_descs = i;
1972 dev->host_mem_size = size;
1973 dev->host_mem_descs = descs;
4033f35d 1974 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
1975 dev->host_mem_desc_bufs = bufs;
1976 return 0;
1977
1978out_free_bufs:
1979 while (--i >= 0) {
6c3c05b0 1980 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
87ad72a5 1981
cc667f6d
LD
1982 dma_free_attrs(dev->dev, size, bufs[i],
1983 le64_to_cpu(descs[i].addr),
1984 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1985 }
1986
1987 kfree(bufs);
1988out_free_descs:
4033f35d
CH
1989 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1990 descs_dma);
87ad72a5 1991out:
87ad72a5
CH
1992 dev->host_mem_descs = NULL;
1993 return -ENOMEM;
1994}
1995
92dc6895
CH
1996static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1997{
9dc54a0d
CK
1998 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1999 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2000 u64 chunk_size;
92dc6895
CH
2001
2002 /* start big and work our way down */
9dc54a0d 2003 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
92dc6895
CH
2004 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2005 if (!min || dev->host_mem_size >= min)
2006 return 0;
2007 nvme_free_host_mem(dev);
2008 }
2009 }
2010
2011 return -ENOMEM;
2012}
2013
9620cfba 2014static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
2015{
2016 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2017 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2018 u64 min = (u64)dev->ctrl.hmmin * 4096;
2019 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 2020 int ret;
87ad72a5 2021
acb71e53
CH
2022 if (!dev->ctrl.hmpre)
2023 return 0;
2024
87ad72a5
CH
2025 preferred = min(preferred, max);
2026 if (min > max) {
2027 dev_warn(dev->ctrl.device,
2028 "min host memory (%lld MiB) above limit (%d MiB).\n",
2029 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2030 nvme_free_host_mem(dev);
9620cfba 2031 return 0;
87ad72a5
CH
2032 }
2033
2034 /*
2035 * If we already have a buffer allocated check if we can reuse it.
2036 */
2037 if (dev->host_mem_descs) {
2038 if (dev->host_mem_size >= min)
2039 enable_bits |= NVME_HOST_MEM_RETURN;
2040 else
2041 nvme_free_host_mem(dev);
2042 }
2043
2044 if (!dev->host_mem_descs) {
92dc6895
CH
2045 if (nvme_alloc_host_mem(dev, min, preferred)) {
2046 dev_warn(dev->ctrl.device,
2047 "failed to allocate host memory buffer.\n");
9620cfba 2048 return 0; /* controller must work without HMB */
92dc6895
CH
2049 }
2050
2051 dev_info(dev->ctrl.device,
2052 "allocated %lld MiB host memory buffer.\n",
2053 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
2054 }
2055
9620cfba
CH
2056 ret = nvme_set_host_mem(dev, enable_bits);
2057 if (ret)
87ad72a5 2058 nvme_free_host_mem(dev);
9620cfba 2059 return ret;
9d713c2b
KB
2060}
2061
0521905e
KB
2062static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2063 char *buf)
2064{
2065 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2066
2067 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2068 ndev->cmbloc, ndev->cmbsz);
2069}
2070static DEVICE_ATTR_RO(cmb);
2071
1751e97a
KB
2072static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2073 char *buf)
2074{
2075 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2076
2077 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2078}
2079static DEVICE_ATTR_RO(cmbloc);
2080
2081static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2082 char *buf)
2083{
2084 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2085
2086 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2087}
2088static DEVICE_ATTR_RO(cmbsz);
2089
a5df5e79
KB
2090static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2091 char *buf)
2092{
2093 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2094
2095 return sysfs_emit(buf, "%d\n", ndev->hmb);
2096}
2097
2098static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2099 const char *buf, size_t count)
2100{
2101 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2102 bool new;
2103 int ret;
2104
99722c8a 2105 if (kstrtobool(buf, &new) < 0)
a5df5e79
KB
2106 return -EINVAL;
2107
2108 if (new == ndev->hmb)
2109 return count;
2110
2111 if (new) {
2112 ret = nvme_setup_host_mem(ndev);
2113 } else {
2114 ret = nvme_set_host_mem(ndev, 0);
2115 if (!ret)
2116 nvme_free_host_mem(ndev);
2117 }
2118
2119 if (ret < 0)
2120 return ret;
2121
2122 return count;
2123}
2124static DEVICE_ATTR_RW(hmb);
2125
0521905e
KB
2126static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2127 struct attribute *a, int n)
2128{
2129 struct nvme_ctrl *ctrl =
2130 dev_get_drvdata(container_of(kobj, struct device, kobj));
2131 struct nvme_dev *dev = to_nvme_dev(ctrl);
2132
1751e97a
KB
2133 if (a == &dev_attr_cmb.attr ||
2134 a == &dev_attr_cmbloc.attr ||
2135 a == &dev_attr_cmbsz.attr) {
2136 if (!dev->cmbsz)
2137 return 0;
2138 }
a5df5e79
KB
2139 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2140 return 0;
2141
0521905e
KB
2142 return a->mode;
2143}
2144
2145static struct attribute *nvme_pci_attrs[] = {
2146 &dev_attr_cmb.attr,
1751e97a
KB
2147 &dev_attr_cmbloc.attr,
2148 &dev_attr_cmbsz.attr,
a5df5e79 2149 &dev_attr_hmb.attr,
0521905e
KB
2150 NULL,
2151};
2152
86adbf0c 2153static const struct attribute_group nvme_pci_dev_attrs_group = {
0521905e
KB
2154 .attrs = nvme_pci_attrs,
2155 .is_visible = nvme_pci_attrs_are_visible,
2156};
2157
86adbf0c
CH
2158static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2159 &nvme_dev_attrs_group,
2160 &nvme_pci_dev_attrs_group,
2161 NULL,
2162};
2163
e917a849
KB
2164static void nvme_update_attrs(struct nvme_dev *dev)
2165{
2166 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2167}
2168
612b7286
ML
2169/*
2170 * nirqs is the number of interrupts available for write and read
2171 * queues. The core already reserved an interrupt for the admin queue.
2172 */
2173static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
3b6592f7 2174{
612b7286 2175 struct nvme_dev *dev = affd->priv;
2a5bcfdd 2176 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
3b6592f7
JA
2177
2178 /*
ee0d96d3 2179 * If there is no interrupt available for queues, ensure that
612b7286
ML
2180 * the default queue is set to 1. The affinity set size is
2181 * also set to one, but the irq core ignores it for this case.
2182 *
2183 * If only one interrupt is available or 'write_queue' == 0, combine
2184 * write and read queues.
2185 *
2186 * If 'write_queues' > 0, ensure it leaves room for at least one read
2187 * queue.
3b6592f7 2188 */
612b7286
ML
2189 if (!nrirqs) {
2190 nrirqs = 1;
2191 nr_read_queues = 0;
2a5bcfdd 2192 } else if (nrirqs == 1 || !nr_write_queues) {
612b7286 2193 nr_read_queues = 0;
2a5bcfdd 2194 } else if (nr_write_queues >= nrirqs) {
612b7286 2195 nr_read_queues = 1;
3b6592f7 2196 } else {
2a5bcfdd 2197 nr_read_queues = nrirqs - nr_write_queues;
3b6592f7 2198 }
612b7286
ML
2199
2200 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2201 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2202 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2203 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2204 affd->nr_sets = nr_read_queues ? 2 : 1;
3b6592f7
JA
2205}
2206
6451fe73 2207static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
3b6592f7
JA
2208{
2209 struct pci_dev *pdev = to_pci_dev(dev->dev);
3b6592f7 2210 struct irq_affinity affd = {
9cfef55b 2211 .pre_vectors = 1,
612b7286
ML
2212 .calc_sets = nvme_calc_irq_sets,
2213 .priv = dev,
3b6592f7 2214 };
21cc2f3f 2215 unsigned int irq_queues, poll_queues;
6451fe73
JA
2216
2217 /*
21cc2f3f
JX
2218 * Poll queues don't need interrupts, but we need at least one I/O queue
2219 * left over for non-polled I/O.
6451fe73 2220 */
21cc2f3f
JX
2221 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2222 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
3b6592f7 2223
21cc2f3f
JX
2224 /*
2225 * Initialize for the single interrupt case, will be updated in
2226 * nvme_calc_irq_sets().
2227 */
612b7286
ML
2228 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2229 dev->io_queues[HCTX_TYPE_READ] = 0;
3b6592f7 2230
66341331 2231 /*
21cc2f3f
JX
2232 * We need interrupts for the admin queue and each non-polled I/O queue,
2233 * but some Apple controllers require all queues to use the first
2234 * vector.
66341331 2235 */
21cc2f3f
JX
2236 irq_queues = 1;
2237 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2238 irq_queues += (nr_io_queues - poll_queues);
612b7286
ML
2239 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2240 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
3b6592f7
JA
2241}
2242
2a5bcfdd
WZ
2243static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2244{
e3aef095
NS
2245 /*
2246 * If tags are shared with admin queue (Apple bug), then
2247 * make sure we only use one IO queue.
2248 */
2249 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2250 return 1;
2a5bcfdd
WZ
2251 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2252}
2253
8d85fce7 2254static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2255{
147b27e4 2256 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 2257 struct pci_dev *pdev = to_pci_dev(dev->dev);
2a5bcfdd 2258 unsigned int nr_io_queues;
97f6ef64 2259 unsigned long size;
2a5bcfdd 2260 int result;
b60503ba 2261
2a5bcfdd
WZ
2262 /*
2263 * Sample the module parameters once at reset time so that we have
2264 * stable values to work with.
2265 */
2266 dev->nr_write_queues = write_queues;
2267 dev->nr_poll_queues = poll_queues;
d38e9f04 2268
e3aef095 2269 nr_io_queues = dev->nr_allocated_queues - 1;
9a0be7ab
CH
2270 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2271 if (result < 0)
1b23484b 2272 return result;
9a0be7ab 2273
f5fa90dc 2274 if (nr_io_queues == 0)
a5229050 2275 return 0;
53dc180e 2276
e4b9852a
CC
2277 /*
2278 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2279 * from set to unset. If there is a window to it is truely freed,
2280 * pci_free_irq_vectors() jumping into this window will crash.
2281 * And take lock to avoid racing with pci_free_irq_vectors() in
2282 * nvme_dev_disable() path.
2283 */
2284 result = nvme_setup_io_queues_trylock(dev);
2285 if (result)
2286 return result;
2287 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2288 pci_free_irq(pdev, 0, adminq);
b60503ba 2289
0f238ff5 2290 if (dev->cmb_use_sqes) {
8ffaadf7
JD
2291 result = nvme_cmb_qdepth(dev, nr_io_queues,
2292 sizeof(struct nvme_command));
88d356ca 2293 if (result > 0) {
8ffaadf7 2294 dev->q_depth = result;
88d356ca
CH
2295 dev->ctrl.sqsize = result - 1;
2296 } else {
0f238ff5 2297 dev->cmb_use_sqes = false;
88d356ca 2298 }
8ffaadf7
JD
2299 }
2300
97f6ef64
XY
2301 do {
2302 size = db_bar_size(dev, nr_io_queues);
2303 result = nvme_remap_bar(dev, size);
2304 if (!result)
2305 break;
e4b9852a
CC
2306 if (!--nr_io_queues) {
2307 result = -ENOMEM;
2308 goto out_unlock;
2309 }
97f6ef64
XY
2310 } while (1);
2311 adminq->q_db = dev->dbs;
f1938f6e 2312
8fae268b 2313 retry:
9d713c2b 2314 /* Deregister the admin queue's interrupt */
e4b9852a
CC
2315 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2316 pci_free_irq(pdev, 0, adminq);
9d713c2b 2317
e32efbfc
JA
2318 /*
2319 * If we enable msix early due to not intx, disable it again before
2320 * setting up the full range we need.
2321 */
dca51e78 2322 pci_free_irq_vectors(pdev);
3b6592f7
JA
2323
2324 result = nvme_setup_irqs(dev, nr_io_queues);
e4b9852a
CC
2325 if (result <= 0) {
2326 result = -EIO;
2327 goto out_unlock;
2328 }
3b6592f7 2329
22b55601 2330 dev->num_vecs = result;
4b04cc6a 2331 result = max(result - 1, 1);
e20ba6e1 2332 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
fa08a396 2333
063a8096
MW
2334 /*
2335 * Should investigate if there's a performance win from allocating
2336 * more queues than interrupt vectors; it might allow the submission
2337 * path to scale better, even if the receive path is limited by the
2338 * number of interrupts.
2339 */
dca51e78 2340 result = queue_request_irq(adminq);
7c349dde 2341 if (result)
e4b9852a 2342 goto out_unlock;
4e224106 2343 set_bit(NVMEQ_ENABLED, &adminq->flags);
e4b9852a 2344 mutex_unlock(&dev->shutdown_lock);
8fae268b
KB
2345
2346 result = nvme_create_io_queues(dev);
2347 if (result || dev->online_queues < 2)
2348 return result;
2349
2350 if (dev->online_queues - 1 < dev->max_qid) {
2351 nr_io_queues = dev->online_queues - 1;
7d879c90 2352 nvme_delete_io_queues(dev);
e4b9852a
CC
2353 result = nvme_setup_io_queues_trylock(dev);
2354 if (result)
2355 return result;
8fae268b
KB
2356 nvme_suspend_io_queues(dev);
2357 goto retry;
2358 }
2359 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2360 dev->io_queues[HCTX_TYPE_DEFAULT],
2361 dev->io_queues[HCTX_TYPE_READ],
2362 dev->io_queues[HCTX_TYPE_POLL]);
2363 return 0;
e4b9852a
CC
2364out_unlock:
2365 mutex_unlock(&dev->shutdown_lock);
2366 return result;
b60503ba
MW
2367}
2368
de671d61
JA
2369static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2370 blk_status_t error)
a5768aa8 2371{
db3cbfff 2372 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 2373
db3cbfff 2374 blk_mq_free_request(req);
d1ed6aa1 2375 complete(&nvmeq->delete_done);
de671d61 2376 return RQ_END_IO_NONE;
a5768aa8
KB
2377}
2378
de671d61
JA
2379static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2380 blk_status_t error)
a5768aa8 2381{
db3cbfff 2382 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 2383
d1ed6aa1
CH
2384 if (error)
2385 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
db3cbfff 2386
de671d61 2387 return nvme_del_queue_end(req, error);
a5768aa8
KB
2388}
2389
db3cbfff 2390static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 2391{
db3cbfff
KB
2392 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2393 struct request *req;
f66e2804 2394 struct nvme_command cmd = { };
bda4e0fb 2395
db3cbfff
KB
2396 cmd.delete_queue.opcode = opcode;
2397 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 2398
e559398f 2399 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
db3cbfff
KB
2400 if (IS_ERR(req))
2401 return PTR_ERR(req);
e559398f 2402 nvme_init_request(req, &cmd);
bda4e0fb 2403
e2e53086
CH
2404 if (opcode == nvme_admin_delete_cq)
2405 req->end_io = nvme_del_cq_end;
2406 else
2407 req->end_io = nvme_del_queue_end;
db3cbfff
KB
2408 req->end_io_data = nvmeq;
2409
d1ed6aa1 2410 init_completion(&nvmeq->delete_done);
e2e53086 2411 blk_execute_rq_nowait(req, false);
db3cbfff 2412 return 0;
bda4e0fb
KB
2413}
2414
7d879c90 2415static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
a5768aa8 2416{
5271edd4 2417 int nr_queues = dev->online_queues - 1, sent = 0;
db3cbfff 2418 unsigned long timeout;
a5768aa8 2419
db3cbfff 2420 retry:
dc96f938 2421 timeout = NVME_ADMIN_TIMEOUT;
5271edd4
CH
2422 while (nr_queues > 0) {
2423 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2424 break;
2425 nr_queues--;
2426 sent++;
db3cbfff 2427 }
d1ed6aa1
CH
2428 while (sent) {
2429 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2430
2431 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
5271edd4
CH
2432 timeout);
2433 if (timeout == 0)
2434 return false;
d1ed6aa1 2435
d1ed6aa1 2436 sent--;
5271edd4
CH
2437 if (nr_queues)
2438 goto retry;
2439 }
2440 return true;
a5768aa8
KB
2441}
2442
7d879c90 2443static void nvme_delete_io_queues(struct nvme_dev *dev)
b60503ba 2444{
7d879c90
CH
2445 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2446 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2447}
2b1b7e78 2448
0da7feaa 2449static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
b60503ba 2450{
2455a4b7 2451 if (dev->io_queues[HCTX_TYPE_POLL])
0da7feaa
CH
2452 return 3;
2453 if (dev->io_queues[HCTX_TYPE_READ])
2454 return 2;
2455 return 1;
2455a4b7 2456}
949928c1 2457
2455a4b7
CH
2458static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2459{
2460 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2461 /* free previously allocated queues that are no longer usable */
2462 nvme_free_queues(dev, dev->online_queues);
b60503ba
MW
2463}
2464
b00a726a 2465static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2466{
b00a726a 2467 int result = -ENOMEM;
e75ec752 2468 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2469
2470 if (pci_enable_device_mem(pdev))
2471 return result;
2472
0877cb0d 2473 pci_set_master(pdev);
0877cb0d 2474
7a67cbea 2475 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2476 result = -ENODEV;
b00a726a 2477 goto disable;
0e53d180 2478 }
e32efbfc
JA
2479
2480 /*
a5229050
KB
2481 * Some devices and/or platforms don't advertise or work with INTx
2482 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2483 * adjust this later.
e32efbfc 2484 */
dca51e78
CH
2485 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2486 if (result < 0)
09113abf 2487 goto disable;
e32efbfc 2488
20d0dfe6 2489 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2490
7442ddce 2491 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2492 io_queue_depth);
20d0dfe6 2493 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2494 dev->dbs = dev->bar + 4096;
1f390c1f 2495
66341331
BH
2496 /*
2497 * Some Apple controllers require a non-standard SQE size.
2498 * Interestingly they also seem to ignore the CC:IOSQES register
2499 * so we don't bother updating it here.
2500 */
2501 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2502 dev->io_sqes = 7;
2503 else
2504 dev->io_sqes = NVME_NVM_IOSQES;
1f390c1f
SG
2505
2506 /*
2507 * Temporary fix for the Apple controller found in the MacBook8,1 and
2508 * some MacBook7,1 to avoid controller resets and data loss.
2509 */
2510 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2511 dev->q_depth = 2;
9bdcfb10
CH
2512 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2513 "set queue depth=%u to work around controller resets\n",
1f390c1f 2514 dev->q_depth);
d554b5e1
MP
2515 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2516 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2517 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2518 dev->q_depth = 64;
2519 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2520 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2521 }
2522
d38e9f04
BH
2523 /*
2524 * Controllers with the shared tags quirk need the IO queue to be
2525 * big enough so that we get 32 tags for the admin queue
2526 */
2527 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2528 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2529 dev->q_depth = NVME_AQ_DEPTH + 2;
2530 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2531 dev->q_depth);
2532 }
88d356ca 2533 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
d38e9f04 2534
f65efd6d 2535 nvme_map_cmb(dev);
202021c1 2536
a0a3408e 2537 pci_save_state(pdev);
a6ee7f19 2538
09113abf
TZ
2539 result = nvme_pci_configure_admin_queue(dev);
2540 if (result)
2541 goto free_irq;
2542 return result;
0877cb0d 2543
09113abf
TZ
2544 free_irq:
2545 pci_free_irq_vectors(pdev);
0877cb0d 2546 disable:
0877cb0d
KB
2547 pci_disable_device(pdev);
2548 return result;
2549}
2550
2551static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2552{
2553 if (dev->bar)
2554 iounmap(dev->bar);
a1f447b3 2555 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2556}
2557
68e81eba 2558static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
0877cb0d 2559{
e75ec752 2560 struct pci_dev *pdev = to_pci_dev(dev->dev);
68e81eba 2561 u32 csts;
e75ec752 2562
68e81eba
CH
2563 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2564 return true;
2565 if (pdev->error_state != pci_channel_io_normal)
2566 return true;
0877cb0d 2567
68e81eba
CH
2568 csts = readl(dev->bar + NVME_REG_CSTS);
2569 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
4d115420
KB
2570}
2571
a5cdb68c 2572static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2573{
302ad8cc 2574 struct pci_dev *pdev = to_pci_dev(dev->dev);
68e81eba 2575 bool dead;
22404274 2576
77bf25ea 2577 mutex_lock(&dev->shutdown_lock);
68e81eba
CH
2578 dead = nvme_pci_ctrl_is_dead(dev);
2579 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2580 dev->ctrl.state == NVME_CTRL_RESETTING) {
2581 if (pci_is_enabled(pdev))
302ad8cc 2582 nvme_start_freeze(&dev->ctrl);
68e81eba
CH
2583 /*
2584 * Give the controller a chance to complete all entered requests
2585 * if doing a safe shutdown.
2586 */
2587 if (!dead && shutdown)
2588 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
c9d3bf88 2589 }
c21377f8 2590
9f27bd70 2591 nvme_quiesce_io_queues(&dev->ctrl);
87ad72a5 2592
64ee0ac0 2593 if (!dead && dev->ctrl.queue_count > 0) {
7d879c90 2594 nvme_delete_io_queues(dev);
47d42d22
CH
2595 nvme_disable_ctrl(&dev->ctrl, shutdown);
2596 nvme_poll_irqdisable(&dev->queues[0]);
4d115420 2597 }
8fae268b 2598 nvme_suspend_io_queues(dev);
10981f23 2599 nvme_suspend_queue(dev, 0);
c80767f7 2600 pci_free_irq_vectors(pdev);
1ad11eaf 2601 if (pci_is_enabled(pdev))
c80767f7 2602 pci_disable_device(pdev);
fa46c6fb 2603 nvme_reap_pending_cqes(dev);
07836e65 2604
1fcfca78
GL
2605 nvme_cancel_tagset(&dev->ctrl);
2606 nvme_cancel_admin_tagset(&dev->ctrl);
302ad8cc
KB
2607
2608 /*
2609 * The driver will not be starting up queues again if shutting down so
2610 * must flush all entered requests to their failed completion to avoid
2611 * deadlocking blk-mq hot-cpu notifier.
2612 */
c8e9e9b7 2613 if (shutdown) {
9f27bd70 2614 nvme_unquiesce_io_queues(&dev->ctrl);
c8e9e9b7 2615 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
9f27bd70 2616 nvme_unquiesce_admin_queue(&dev->ctrl);
c8e9e9b7 2617 }
77bf25ea 2618 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2619}
2620
c1ac9a4b
KB
2621static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2622{
2623 if (!nvme_wait_reset(&dev->ctrl))
2624 return -EBUSY;
2625 nvme_dev_disable(dev, shutdown);
2626 return 0;
2627}
2628
091b6092
MW
2629static int nvme_setup_prp_pools(struct nvme_dev *dev)
2630{
e75ec752 2631 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
c61b82c7
CH
2632 NVME_CTRL_PAGE_SIZE,
2633 NVME_CTRL_PAGE_SIZE, 0);
091b6092
MW
2634 if (!dev->prp_page_pool)
2635 return -ENOMEM;
2636
99802a7a 2637 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2638 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2639 256, 256, 0);
2640 if (!dev->prp_small_pool) {
2641 dma_pool_destroy(dev->prp_page_pool);
2642 return -ENOMEM;
2643 }
091b6092
MW
2644 return 0;
2645}
2646
2647static void nvme_release_prp_pools(struct nvme_dev *dev)
2648{
2649 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2650 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2651}
2652
081a7d95
CH
2653static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2654{
7846c1b5 2655 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
081a7d95 2656
081a7d95
CH
2657 dev->iod_mempool = mempool_create_node(1,
2658 mempool_kmalloc, mempool_kfree,
2659 (void *)alloc_size, GFP_KERNEL,
2660 dev_to_node(dev->dev));
2661 if (!dev->iod_mempool)
2662 return -ENOMEM;
2663 return 0;
2664}
2665
770597ec
KB
2666static void nvme_free_tagset(struct nvme_dev *dev)
2667{
2668 if (dev->tagset.tags)
0da7feaa 2669 nvme_remove_io_tag_set(&dev->ctrl);
770597ec
KB
2670 dev->ctrl.tagset = NULL;
2671}
2672
2e87570b 2673/* pairs with nvme_pci_alloc_dev */
1673f1f0 2674static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2675{
1673f1f0 2676 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2677
770597ec 2678 nvme_free_tagset(dev);
253fd4ac
IR
2679 put_device(dev->dev);
2680 kfree(dev->queues);
5e82e952
KB
2681 kfree(dev);
2682}
2683
fd634f41 2684static void nvme_reset_work(struct work_struct *work)
5e82e952 2685{
d86c4d8e
CH
2686 struct nvme_dev *dev =
2687 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2688 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
e71afda4 2689 int result;
5e82e952 2690
7764656b
ZC
2691 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2692 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2693 dev->ctrl.state);
8cb9f10b 2694 return;
e71afda4 2695 }
5e82e952 2696
fd634f41
CH
2697 /*
2698 * If we're called to reset a live controller first shut it down before
2699 * moving on.
2700 */
b00a726a 2701 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2702 nvme_dev_disable(dev, false);
d6135c3a 2703 nvme_sync_queues(&dev->ctrl);
5e82e952 2704
5c959d73 2705 mutex_lock(&dev->shutdown_lock);
b00a726a 2706 result = nvme_pci_enable(dev);
f0b50732 2707 if (result)
4726bcf3 2708 goto out_unlock;
9f27bd70 2709 nvme_unquiesce_admin_queue(&dev->ctrl);
5c959d73
KB
2710 mutex_unlock(&dev->shutdown_lock);
2711
2712 /*
2713 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2714 * initializing procedure here.
2715 */
2716 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2717 dev_warn(dev->ctrl.device,
2718 "failed to mark controller CONNECTING\n");
cee6c269 2719 result = -EBUSY;
5c959d73
KB
2720 goto out;
2721 }
943e942e 2722
94cc781f 2723 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
ce4541f4 2724 if (result)
f58944e2 2725 goto out;
ce4541f4 2726
65a54646 2727 nvme_dbbuf_dma_alloc(dev);
f9f38e33 2728
acb71e53
CH
2729 result = nvme_setup_host_mem(dev);
2730 if (result < 0)
2731 goto out;
87ad72a5 2732
f0b50732 2733 result = nvme_setup_io_queues(dev);
badc34d4 2734 if (result)
f58944e2 2735 goto out;
f0b50732 2736
2659e57b 2737 /*
eac3ef26
CH
2738 * Freeze and update the number of I/O queues as thos might have
2739 * changed. If there are no I/O queues left after this reset, keep the
2740 * controller around but remove all namespaces.
2659e57b 2741 */
eac3ef26 2742 if (dev->online_queues > 1) {
9f27bd70 2743 nvme_unquiesce_io_queues(&dev->ctrl);
302ad8cc 2744 nvme_wait_freeze(&dev->ctrl);
eac3ef26 2745 nvme_pci_update_nr_queues(dev);
2455a4b7 2746 nvme_dbbuf_set(dev);
302ad8cc 2747 nvme_unfreeze(&dev->ctrl);
3cf519b5 2748 } else {
eac3ef26
CH
2749 dev_warn(dev->ctrl.device, "IO queues lost\n");
2750 nvme_mark_namespaces_dead(&dev->ctrl);
9f27bd70 2751 nvme_unquiesce_io_queues(&dev->ctrl);
eac3ef26
CH
2752 nvme_remove_namespaces(&dev->ctrl);
2753 nvme_free_tagset(dev);
3cf519b5
CH
2754 }
2755
2b1b7e78
JW
2756 /*
2757 * If only admin queue live, keep it to do further investigation or
2758 * recovery.
2759 */
5d02a5c1 2760 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2b1b7e78 2761 dev_warn(dev->ctrl.device,
5d02a5c1 2762 "failed to mark controller live state\n");
e71afda4 2763 result = -ENODEV;
bb8d261e
CH
2764 goto out;
2765 }
92911a55 2766
d09f2b45 2767 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2768 return;
f0b50732 2769
4726bcf3
KB
2770 out_unlock:
2771 mutex_unlock(&dev->shutdown_lock);
3cf519b5 2772 out:
c7c16c5b
CH
2773 /*
2774 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2775 * may be holding this pci_dev's device lock.
2776 */
2777 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2778 result);
2779 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2780 nvme_dev_disable(dev, true);
2781 nvme_mark_namespaces_dead(&dev->ctrl);
2782 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
9a6b9458
KB
2783}
2784
1c63dc66 2785static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2786{
1c63dc66 2787 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2788 return 0;
9ca97374
TH
2789}
2790
5fd4ce1b 2791static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2792{
5fd4ce1b
CH
2793 writel(val, to_nvme_dev(ctrl)->bar + off);
2794 return 0;
2795}
4cc06521 2796
7fd8930f
CH
2797static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2798{
3a8ecc93 2799 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
7fd8930f 2800 return 0;
4cc06521
KB
2801}
2802
97c12223
KB
2803static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2804{
2805 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2806
2db24e4a 2807 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
97c12223
KB
2808}
2809
2f0dad17
KB
2810static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2811{
2812 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2813 struct nvme_subsystem *subsys = ctrl->subsys;
2814
2815 dev_err(ctrl->device,
2816 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2817 pdev->vendor, pdev->device,
2818 nvme_strlen(subsys->model, sizeof(subsys->model)),
2819 subsys->model, nvme_strlen(subsys->firmware_rev,
2820 sizeof(subsys->firmware_rev)),
2821 subsys->firmware_rev);
2822}
2823
2f859441
LG
2824static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2825{
2826 struct nvme_dev *dev = to_nvme_dev(ctrl);
2827
2828 return dma_pci_p2pdma_supported(dev->dev);
2829}
2830
1c63dc66 2831static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2832 .name = "pcie",
e439bb12 2833 .module = THIS_MODULE,
2f859441 2834 .flags = NVME_F_METADATA_SUPPORTED,
86adbf0c 2835 .dev_attr_groups = nvme_pci_dev_attr_groups,
1c63dc66 2836 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2837 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2838 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2839 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2840 .submit_async_event = nvme_pci_submit_async_event,
97c12223 2841 .get_address = nvme_pci_get_address,
2f0dad17 2842 .print_device_info = nvme_pci_print_device_info,
2f859441 2843 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
1c63dc66 2844};
4cc06521 2845
b00a726a
KB
2846static int nvme_dev_map(struct nvme_dev *dev)
2847{
b00a726a
KB
2848 struct pci_dev *pdev = to_pci_dev(dev->dev);
2849
a1f447b3 2850 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2851 return -ENODEV;
2852
97f6ef64 2853 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2854 goto release;
2855
9fa196e7 2856 return 0;
b00a726a 2857 release:
9fa196e7
MG
2858 pci_release_mem_regions(pdev);
2859 return -ENODEV;
b00a726a
KB
2860}
2861
8427bbc2 2862static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
2863{
2864 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2865 /*
2866 * Several Samsung devices seem to drop off the PCIe bus
2867 * randomly when APST is on and uses the deepest sleep state.
2868 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2869 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2870 * 950 PRO 256GB", but it seems to be restricted to two Dell
2871 * laptops.
2872 */
2873 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2874 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2875 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2876 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
2877 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2878 /*
2879 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
2880 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2881 * within few minutes after bootup on a Coffee Lake board -
2882 * ASUS PRIME Z370-A
8427bbc2
KHF
2883 */
2884 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
2885 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2886 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 2887 return NVME_QUIRK_NO_APST;
1fae37ac
S
2888 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2889 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2890 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2891 /*
2892 * Forcing to use host managed nvme power settings for
2893 * lowest idle power with quick resume latency on
2894 * Samsung and Toshiba SSDs based on suspend behavior
2895 * on Coffee Lake board for LENOVO C640
2896 */
2897 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2898 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2899 return NVME_QUIRK_SIMPLE_SUSPEND;
ff5350a8
AL
2900 }
2901
2902 return 0;
2903}
2904
2e87570b
CH
2905static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2906 const struct pci_device_id *id)
18119775 2907{
ff5350a8 2908 unsigned long quirks = id->driver_data;
2e87570b
CH
2909 int node = dev_to_node(&pdev->dev);
2910 struct nvme_dev *dev;
2911 int ret = -ENOMEM;
b60503ba 2912
a4aea562 2913 if (node == NUMA_NO_NODE)
2fa84351 2914 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2915
2916 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba 2917 if (!dev)
dc785d69 2918 return ERR_PTR(-ENOMEM);
2e87570b 2919 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2e87570b 2920 mutex_init(&dev->shutdown_lock);
147b27e4 2921
2a5bcfdd
WZ
2922 dev->nr_write_queues = write_queues;
2923 dev->nr_poll_queues = poll_queues;
2924 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2925 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2926 sizeof(struct nvme_queue), GFP_KERNEL, node);
b60503ba 2927 if (!dev->queues)
2e87570b 2928 goto out_free_dev;
b60503ba 2929
e75ec752 2930 dev->dev = get_device(&pdev->dev);
4cc06521 2931
8427bbc2 2932 quirks |= check_vendor_combination_bug(pdev);
2744d7a0 2933 if (!noacpi && acpi_storage_d3(&pdev->dev)) {
df4f9bc4
DB
2934 /*
2935 * Some systems use a bios work around to ask for D3 on
2936 * platforms that support kernel managed suspend.
2937 */
2938 dev_info(&pdev->dev,
2939 "platform quirk: setting simple suspend\n");
2940 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2941 }
2e87570b
CH
2942 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2943 quirks);
2944 if (ret)
2945 goto out_put_device;
924bd96e
CH
2946
2947 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2948 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2949 else
2950 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3f30a79c
CH
2951 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2952 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
df4f9bc4 2953
943e942e 2954 /*
3f30a79c
CH
2955 * Limit the max command size to prevent iod->sg allocations going
2956 * over a single page.
943e942e 2957 */
3f30a79c 2958 dev->ctrl.max_hw_sectors = min_t(u32,
3710e2b0 2959 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3f30a79c 2960 dev->ctrl.max_segments = NVME_MAX_SEGS;
943e942e 2961
3f30a79c
CH
2962 /*
2963 * There is no support for SGLs for metadata (yet), so we are limited to
2964 * a single integrity segment for the separate metadata pointer.
2965 */
2966 dev->ctrl.max_integrity_segments = 1;
2e87570b 2967 return dev;
df4f9bc4 2968
2e87570b
CH
2969out_put_device:
2970 put_device(dev->dev);
2971 kfree(dev->queues);
2972out_free_dev:
2973 kfree(dev);
2974 return ERR_PTR(ret);
2975}
943e942e 2976
2e87570b
CH
2977static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2978{
2979 struct nvme_dev *dev;
2980 int result = -ENOMEM;
2981
2982 dev = nvme_pci_alloc_dev(pdev, id);
dc785d69
IC
2983 if (IS_ERR(dev))
2984 return PTR_ERR(dev);
2e87570b
CH
2985
2986 result = nvme_dev_map(dev);
b6e44b4c 2987 if (result)
2e87570b
CH
2988 goto out_uninit_ctrl;
2989
2990 result = nvme_setup_prp_pools(dev);
081a7d95 2991 if (result)
2e87570b 2992 goto out_dev_unmap;
943e942e 2993
2e87570b 2994 result = nvme_pci_alloc_iod_mempool(dev);
b6e44b4c 2995 if (result)
2e87570b 2996 goto out_release_prp_pools;
b6e44b4c 2997
1b3c47c1
SG
2998 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2999
eac3ef26
CH
3000 result = nvme_pci_enable(dev);
3001 if (result)
3002 goto out_release_iod_mempool;
3003
0da7feaa
CH
3004 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3005 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
eac3ef26
CH
3006 if (result)
3007 goto out_disable;
3008
3009 /*
3010 * Mark the controller as connecting before sending admin commands to
3011 * allow the timeout handler to do the right thing.
3012 */
3013 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3014 dev_warn(dev->ctrl.device,
3015 "failed to mark controller CONNECTING\n");
3016 result = -EBUSY;
3017 goto out_disable;
3018 }
3019
3020 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3021 if (result)
3022 goto out_disable;
3023
3024 nvme_dbbuf_dma_alloc(dev);
3025
3026 result = nvme_setup_host_mem(dev);
3027 if (result < 0)
3028 goto out_disable;
3029
3030 result = nvme_setup_io_queues(dev);
3031 if (result)
3032 goto out_disable;
4caff8fc 3033
eac3ef26 3034 if (dev->online_queues > 1) {
0da7feaa
CH
3035 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3036 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
eac3ef26 3037 nvme_dbbuf_set(dev);
eac3ef26
CH
3038 }
3039
0da7feaa
CH
3040 if (!dev->ctrl.tagset)
3041 dev_warn(dev->ctrl.device, "IO queues not created\n");
3042
eac3ef26
CH
3043 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3044 dev_warn(dev->ctrl.device,
3045 "failed to mark controller live state\n");
3046 result = -ENODEV;
3047 goto out_disable;
3048 }
3049
2e87570b 3050 pci_set_drvdata(pdev, dev);
1b3c47c1 3051
eac3ef26
CH
3052 nvme_start_ctrl(&dev->ctrl);
3053 nvme_put_ctrl(&dev->ctrl);
5a5754a4 3054 flush_work(&dev->ctrl.scan_work);
b60503ba
MW
3055 return 0;
3056
eac3ef26
CH
3057out_disable:
3058 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3059 nvme_dev_disable(dev, true);
3060 nvme_free_host_mem(dev);
3061 nvme_dev_remove_admin(dev);
3062 nvme_dbbuf_dma_free(dev);
3063 nvme_free_queues(dev, 0);
3064out_release_iod_mempool:
b6e44b4c 3065 mempool_destroy(dev->iod_mempool);
2e87570b 3066out_release_prp_pools:
091b6092 3067 nvme_release_prp_pools(dev);
2e87570b 3068out_dev_unmap:
b00c9b7a 3069 nvme_dev_unmap(dev);
2e87570b
CH
3070out_uninit_ctrl:
3071 nvme_uninit_ctrl(&dev->ctrl);
b60503ba
MW
3072 return result;
3073}
3074
775755ed 3075static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 3076{
a6739479 3077 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
3078
3079 /*
3080 * We don't need to check the return value from waiting for the reset
3081 * state as pci_dev device lock is held, making it impossible to race
3082 * with ->remove().
3083 */
3084 nvme_disable_prepare_reset(dev, false);
3085 nvme_sync_queues(&dev->ctrl);
775755ed 3086}
f0d54a54 3087
775755ed
CH
3088static void nvme_reset_done(struct pci_dev *pdev)
3089{
f263fbb8 3090 struct nvme_dev *dev = pci_get_drvdata(pdev);
c1ac9a4b
KB
3091
3092 if (!nvme_try_sched_reset(&dev->ctrl))
3093 flush_work(&dev->ctrl.reset_work);
f0d54a54
KB
3094}
3095
09ece142
KB
3096static void nvme_shutdown(struct pci_dev *pdev)
3097{
3098 struct nvme_dev *dev = pci_get_drvdata(pdev);
4e523547 3099
c1ac9a4b 3100 nvme_disable_prepare_reset(dev, true);
09ece142
KB
3101}
3102
f58944e2
KB
3103/*
3104 * The driver's remove may be called on a device in a partially initialized
3105 * state. This function must not have any dependencies on the device state in
3106 * order to proceed.
3107 */
8d85fce7 3108static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3109{
3110 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 3111
bb8d261e 3112 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
9a6b9458 3113 pci_set_drvdata(pdev, NULL);
0ff9d4e1 3114
6db28eda 3115 if (!pci_device_is_present(pdev)) {
0ff9d4e1 3116 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1d39e692 3117 nvme_dev_disable(dev, true);
6db28eda 3118 }
0ff9d4e1 3119
d86c4d8e 3120 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
3121 nvme_stop_ctrl(&dev->ctrl);
3122 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 3123 nvme_dev_disable(dev, true);
87ad72a5 3124 nvme_free_host_mem(dev);
a4aea562 3125 nvme_dev_remove_admin(dev);
c11b7716 3126 nvme_dbbuf_dma_free(dev);
a1a5ef99 3127 nvme_free_queues(dev, 0);
c11b7716 3128 mempool_destroy(dev->iod_mempool);
9a6b9458 3129 nvme_release_prp_pools(dev);
b00a726a 3130 nvme_dev_unmap(dev);
726612b6 3131 nvme_uninit_ctrl(&dev->ctrl);
b60503ba
MW
3132}
3133
671a6018 3134#ifdef CONFIG_PM_SLEEP
d916b1be
KB
3135static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3136{
3137 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3138}
3139
3140static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3141{
3142 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3143}
3144
3145static int nvme_resume(struct device *dev)
3146{
3147 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3148 struct nvme_ctrl *ctrl = &ndev->ctrl;
3149
4eaefe8c 3150 if (ndev->last_ps == U32_MAX ||
d916b1be 3151 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
e5ad96f3
KB
3152 goto reset;
3153 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3154 goto reset;
3155
d916b1be 3156 return 0;
e5ad96f3
KB
3157reset:
3158 return nvme_try_sched_reset(ctrl);
d916b1be
KB
3159}
3160
cd638946
KB
3161static int nvme_suspend(struct device *dev)
3162{
3163 struct pci_dev *pdev = to_pci_dev(dev);
3164 struct nvme_dev *ndev = pci_get_drvdata(pdev);
d916b1be
KB
3165 struct nvme_ctrl *ctrl = &ndev->ctrl;
3166 int ret = -EBUSY;
3167
4eaefe8c
RW
3168 ndev->last_ps = U32_MAX;
3169
d916b1be
KB
3170 /*
3171 * The platform does not remove power for a kernel managed suspend so
3172 * use host managed nvme power settings for lowest idle power if
3173 * possible. This should have quicker resume latency than a full device
3174 * shutdown. But if the firmware is involved after the suspend or the
3175 * device does not support any non-default power states, shut down the
3176 * device fully.
4eaefe8c
RW
3177 *
3178 * If ASPM is not enabled for the device, shut down the device and allow
3179 * the PCI bus layer to put it into D3 in order to take the PCIe link
3180 * down, so as to allow the platform to achieve its minimum low-power
3181 * state (which may not be possible if the link is up).
d916b1be 3182 */
4eaefe8c 3183 if (pm_suspend_via_firmware() || !ctrl->npss ||
cb32de1b 3184 !pcie_aspm_enabled(pdev) ||
c1ac9a4b
KB
3185 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3186 return nvme_disable_prepare_reset(ndev, true);
d916b1be
KB
3187
3188 nvme_start_freeze(ctrl);
3189 nvme_wait_freeze(ctrl);
3190 nvme_sync_queues(ctrl);
3191
5d02a5c1 3192 if (ctrl->state != NVME_CTRL_LIVE)
d916b1be
KB
3193 goto unfreeze;
3194
e5ad96f3
KB
3195 /*
3196 * Host memory access may not be successful in a system suspend state,
3197 * but the specification allows the controller to access memory in a
3198 * non-operational power state.
3199 */
3200 if (ndev->hmb) {
3201 ret = nvme_set_host_mem(ndev, 0);
3202 if (ret < 0)
3203 goto unfreeze;
3204 }
3205
d916b1be
KB
3206 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3207 if (ret < 0)
3208 goto unfreeze;
3209
7cbb5c6f
ML
3210 /*
3211 * A saved state prevents pci pm from generically controlling the
3212 * device's power. If we're using protocol specific settings, we don't
3213 * want pci interfering.
3214 */
3215 pci_save_state(pdev);
3216
d916b1be
KB
3217 ret = nvme_set_power_state(ctrl, ctrl->npss);
3218 if (ret < 0)
3219 goto unfreeze;
3220
3221 if (ret) {
7cbb5c6f
ML
3222 /* discard the saved state */
3223 pci_load_saved_state(pdev, NULL);
3224
d916b1be
KB
3225 /*
3226 * Clearing npss forces a controller reset on resume. The
05d3046f 3227 * correct value will be rediscovered then.
d916b1be 3228 */
c1ac9a4b 3229 ret = nvme_disable_prepare_reset(ndev, true);
d916b1be 3230 ctrl->npss = 0;
d916b1be 3231 }
d916b1be
KB
3232unfreeze:
3233 nvme_unfreeze(ctrl);
3234 return ret;
3235}
3236
3237static int nvme_simple_suspend(struct device *dev)
3238{
3239 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
4e523547 3240
c1ac9a4b 3241 return nvme_disable_prepare_reset(ndev, true);
cd638946
KB
3242}
3243
d916b1be 3244static int nvme_simple_resume(struct device *dev)
cd638946
KB
3245{
3246 struct pci_dev *pdev = to_pci_dev(dev);
3247 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3248
c1ac9a4b 3249 return nvme_try_sched_reset(&ndev->ctrl);
cd638946
KB
3250}
3251
21774222 3252static const struct dev_pm_ops nvme_dev_pm_ops = {
d916b1be
KB
3253 .suspend = nvme_suspend,
3254 .resume = nvme_resume,
3255 .freeze = nvme_simple_suspend,
3256 .thaw = nvme_simple_resume,
3257 .poweroff = nvme_simple_suspend,
3258 .restore = nvme_simple_resume,
3259};
3260#endif /* CONFIG_PM_SLEEP */
b60503ba 3261
a0a3408e
KB
3262static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3263 pci_channel_state_t state)
3264{
3265 struct nvme_dev *dev = pci_get_drvdata(pdev);
3266
3267 /*
3268 * A frozen channel requires a reset. When detected, this method will
3269 * shutdown the controller to quiesce. The controller will be restarted
3270 * after the slot reset through driver's slot_reset callback.
3271 */
a0a3408e
KB
3272 switch (state) {
3273 case pci_channel_io_normal:
3274 return PCI_ERS_RESULT_CAN_RECOVER;
3275 case pci_channel_io_frozen:
d011fb31
KB
3276 dev_warn(dev->ctrl.device,
3277 "frozen state error detected, reset controller\n");
a5cdb68c 3278 nvme_dev_disable(dev, false);
a0a3408e
KB
3279 return PCI_ERS_RESULT_NEED_RESET;
3280 case pci_channel_io_perm_failure:
d011fb31
KB
3281 dev_warn(dev->ctrl.device,
3282 "failure state error detected, request disconnect\n");
a0a3408e
KB
3283 return PCI_ERS_RESULT_DISCONNECT;
3284 }
3285 return PCI_ERS_RESULT_NEED_RESET;
3286}
3287
3288static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3289{
3290 struct nvme_dev *dev = pci_get_drvdata(pdev);
3291
1b3c47c1 3292 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 3293 pci_restore_state(pdev);
d86c4d8e 3294 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
3295 return PCI_ERS_RESULT_RECOVERED;
3296}
3297
3298static void nvme_error_resume(struct pci_dev *pdev)
3299{
72cd4cc2
KB
3300 struct nvme_dev *dev = pci_get_drvdata(pdev);
3301
3302 flush_work(&dev->ctrl.reset_work);
a0a3408e
KB
3303}
3304
1d352035 3305static const struct pci_error_handlers nvme_err_handler = {
b60503ba 3306 .error_detected = nvme_error_detected,
b60503ba
MW
3307 .slot_reset = nvme_slot_reset,
3308 .resume = nvme_error_resume,
775755ed
CH
3309 .reset_prepare = nvme_reset_prepare,
3310 .reset_done = nvme_reset_done,
b60503ba
MW
3311};
3312
6eb0d698 3313static const struct pci_device_id nvme_id_table[] = {
972b13e2 3314 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
08095e70 3315 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3316 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3317 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
99466e70 3318 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 3319 NVME_QUIRK_DEALLOCATE_ZEROES, },
972b13e2 3320 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
99466e70 3321 .driver_data = NVME_QUIRK_STRIPE_SIZE |
25e58af4
WZ
3322 NVME_QUIRK_DEALLOCATE_ZEROES |
3323 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
972b13e2 3324 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
f99cb7af
DWF
3325 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3326 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0 3327 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
9abd68ef 3328 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
6c6aa2f2 3329 NVME_QUIRK_MEDIUM_PRIO_SQ |
ce4cc313
DM
3330 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3331 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
6299358d
JD
3332 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3333 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
540c801c 3334 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
7b210e4e 3335 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
66dd346b
CH
3336 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3337 NVME_QUIRK_BOGUS_NID, },
3338 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3339 .driver_data = NVME_QUIRK_BOGUS_NID, },
5bedd3af 3340 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
c98a8793
KB
3341 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3342 NVME_QUIRK_BOGUS_NID, },
0302ae60 3343 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
5e112d3f
JE
3344 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3345 NVME_QUIRK_NO_NS_DESC_LIST, },
54adc010
GP
3346 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3347 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
3348 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3349 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
3350 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3351 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
3352 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3353 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3354 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
7ee5c78c 3355 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
abbb5f59 3356 NVME_QUIRK_DISABLE_WRITE_ZEROES|
7ee5c78c 3357 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2cf7a77e
KB
3358 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3359 .driver_data = NVME_QUIRK_BOGUS_NID, },
c9e95c39 3360 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
73029c9b
KB
3361 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3362 NVME_QUIRK_BOGUS_NID, },
d14c2731
TH
3363 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3364 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3365 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3366 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
6e6a6828
PT
3367 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3368 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3369 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
e1c70d79
LVS
3370 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3371 .driver_data = NVME_QUIRK_BOGUS_NID, },
08b903b5 3372 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
1629de0e
PG
3373 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3374 NVME_QUIRK_BOGUS_NID, },
5f69f009
DW
3375 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3376 .driver_data = NVME_QUIRK_BOGUS_NID, },
f03e42c6
GC
3377 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3378 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3379 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
41f38043
LS
3380 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3381 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
d5ceb4d1
BH
3382 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3383 .driver_data = NVME_QUIRK_BOGUS_NID, },
5611ec2b
KHF
3384 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3385 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
c4f01a77
KB
3386 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3387 .driver_data = NVME_QUIRK_BOGUS_NID, },
02ca079c
KHF
3388 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3389 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
89919929
CK
3390 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3391 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
43047e08 3392 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3393 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3394 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3395 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3396 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3397 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3398 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3399 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
dc22c1c0
ZB
3400 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3401 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
538e4a8c
TL
3402 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3403 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
bd375fee
HV
3404 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3405 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
ac9b57d4
XL
3406 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3407 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3408 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3409 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3410 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3411 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3412 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3413 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3414 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3415 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
8d6e38f6
TDF
3416 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3417 .driver_data = NVME_QUIRK_BOGUS_NID, },
70ce3455
CH
3418 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3419 .driver_data = NVME_QUIRK_BOGUS_NID, },
a98a945b
CH
3420 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3421 .driver_data = NVME_QUIRK_BOGUS_NID, },
3422 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3423 .driver_data = NVME_QUIRK_BOGUS_NID, },
3765fad5
SR
3424 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3425 .driver_data = NVME_QUIRK_BOGUS_NID, },
f37527a0
DK
3426 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3427 .driver_data = NVME_QUIRK_BOGUS_NID, },
d5d3c100
XR
3428 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3429 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
6b961bce
NW
3430 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3431 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
d6c52fa3
TG
3432 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3433 .driver_data = NVME_QUIRK_BOGUS_NID, },
200dccd0
SA
3434 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3435 .driver_data = NVME_QUIRK_BOGUS_NID, },
80b26240
A
3436 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3437 .driver_data = NVME_QUIRK_BOGUS_NID, },
1616d6c3
SG
3438 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3439 .driver_data = NVME_QUIRK_BOGUS_NID, },
4bdf2603
FS
3440 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3441 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3442 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3443 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3444 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3445 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3446 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3447 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3448 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3449 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3450 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3451 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
98f7b86a
AS
3452 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3453 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
124298bd 3454 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
66341331
BH
3455 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3456 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
d38e9f04 3457 NVME_QUIRK_128_BYTES_SQES |
a2941f6a 3458 NVME_QUIRK_SHARED_TAGS |
453116a4
HM
3459 NVME_QUIRK_SKIP_CID_GEN |
3460 NVME_QUIRK_IDENTIFY_CNS },
0b85f59d 3461 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
b60503ba
MW
3462 { 0, }
3463};
3464MODULE_DEVICE_TABLE(pci, nvme_id_table);
3465
3466static struct pci_driver nvme_driver = {
3467 .name = "nvme",
3468 .id_table = nvme_id_table,
3469 .probe = nvme_probe,
8d85fce7 3470 .remove = nvme_remove,
09ece142 3471 .shutdown = nvme_shutdown,
cd638946 3472 .driver = {
eac3ef26
CH
3473 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3474#ifdef CONFIG_PM_SLEEP
3475 .pm = &nvme_dev_pm_ops,
d916b1be 3476#endif
eac3ef26 3477 },
74d986ab 3478 .sriov_configure = pci_sriov_configure_simple,
b60503ba
MW
3479 .err_handler = &nvme_err_handler,
3480};
3481
3482static int __init nvme_init(void)
3483{
81101540
CH
3484 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3485 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3486 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
612b7286 3487 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
01df742d 3488 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
7846c1b5
KB
3489 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3490 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
17c33167 3491
9a6327d2 3492 return pci_register_driver(&nvme_driver);
b60503ba
MW
3493}
3494
3495static void __exit nvme_exit(void)
3496{
3497 pci_unregister_driver(&nvme_driver);
03e0f3a6 3498 flush_workqueue(nvme_wq);
b60503ba
MW
3499}
3500
3501MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3502MODULE_LICENSE("GPL");
c78b4713 3503MODULE_VERSION("1.0");
b60503ba
MW
3504module_init(nvme_init);
3505module_exit(nvme_exit);