nvme-pci: Unblock reset_work on IO failure
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
5f37396d 1// SPDX-License-Identifier: GPL-2.0
b60503ba
MW
2/*
3 * NVM Express device driver
6eb0d698 4 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
5 */
6
a0a3408e 7#include <linux/aer.h>
18119775 8#include <linux/async.h>
b60503ba 9#include <linux/blkdev.h>
a4aea562 10#include <linux/blk-mq.h>
dca51e78 11#include <linux/blk-mq-pci.h>
ff5350a8 12#include <linux/dmi.h>
b60503ba
MW
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
b60503ba
MW
16#include <linux/mm.h>
17#include <linux/module.h>
77bf25ea 18#include <linux/mutex.h>
d0877473 19#include <linux/once.h>
b60503ba 20#include <linux/pci.h>
e1e5e564 21#include <linux/t10-pi.h>
b60503ba 22#include <linux/types.h>
2f8e2c87 23#include <linux/io-64-nonatomic-lo-hi.h>
a98e58e5 24#include <linux/sed-opal.h>
0f238ff5 25#include <linux/pci-p2pdma.h>
797a796a 26
604c01d5 27#include "trace.h"
f11bb3e2
CH
28#include "nvme.h"
29
b60503ba
MW
30#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
31#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 32
a7a7cbe3 33#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 34
943e942e
JA
35/*
36 * These can be higher, but we need to ensure that any command doesn't
37 * require an sg allocation that needs more than a page of data.
38 */
39#define NVME_MAX_KB_SZ 4096
40#define NVME_MAX_SEGS 127
41
58ffacb5
MW
42static int use_threaded_interrupts;
43module_param(use_threaded_interrupts, int, 0);
44
8ffaadf7 45static bool use_cmb_sqes = true;
69f4eb9f 46module_param(use_cmb_sqes, bool, 0444);
8ffaadf7
JD
47MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
48
87ad72a5
CH
49static unsigned int max_host_mem_size_mb = 128;
50module_param(max_host_mem_size_mb, uint, 0444);
51MODULE_PARM_DESC(max_host_mem_size_mb,
52 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 53
a7a7cbe3
CK
54static unsigned int sgl_threshold = SZ_32K;
55module_param(sgl_threshold, uint, 0644);
56MODULE_PARM_DESC(sgl_threshold,
57 "Use SGLs when average request segment size is larger or equal to "
58 "this size. Use 0 to disable SGLs.");
59
b27c1e68 60static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
61static const struct kernel_param_ops io_queue_depth_ops = {
62 .set = io_queue_depth_set,
63 .get = param_get_int,
64};
65
66static int io_queue_depth = 1024;
67module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
68MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
69
3b6592f7
JA
70static int queue_count_set(const char *val, const struct kernel_param *kp);
71static const struct kernel_param_ops queue_count_ops = {
72 .set = queue_count_set,
73 .get = param_get_int,
74};
75
76static int write_queues;
77module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
78MODULE_PARM_DESC(write_queues,
79 "Number of queues to use for writes. If not set, reads and writes "
80 "will share a queue set.");
81
a4668d9b 82static int poll_queues = 0;
4b04cc6a
JA
83module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
84MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
85
1c63dc66
CH
86struct nvme_dev;
87struct nvme_queue;
b3fffdef 88
a5cdb68c 89static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
8fae268b 90static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
d4b4ff8e 91
1c63dc66
CH
92/*
93 * Represents an NVM Express device. Each nvme_dev is a PCI function.
94 */
95struct nvme_dev {
147b27e4 96 struct nvme_queue *queues;
1c63dc66
CH
97 struct blk_mq_tag_set tagset;
98 struct blk_mq_tag_set admin_tagset;
99 u32 __iomem *dbs;
100 struct device *dev;
101 struct dma_pool *prp_page_pool;
102 struct dma_pool *prp_small_pool;
1c63dc66
CH
103 unsigned online_queues;
104 unsigned max_qid;
e20ba6e1 105 unsigned io_queues[HCTX_MAX_TYPES];
22b55601 106 unsigned int num_vecs;
1c63dc66
CH
107 int q_depth;
108 u32 db_stride;
1c63dc66 109 void __iomem *bar;
97f6ef64 110 unsigned long bar_mapped_size;
5c8809e6 111 struct work_struct remove_work;
77bf25ea 112 struct mutex shutdown_lock;
1c63dc66 113 bool subsystem;
1c63dc66 114 u64 cmb_size;
0f238ff5 115 bool cmb_use_sqes;
1c63dc66 116 u32 cmbsz;
202021c1 117 u32 cmbloc;
1c63dc66 118 struct nvme_ctrl ctrl;
87ad72a5 119
943e942e
JA
120 mempool_t *iod_mempool;
121
87ad72a5 122 /* shadow doorbell buffer support: */
f9f38e33
HK
123 u32 *dbbuf_dbs;
124 dma_addr_t dbbuf_dbs_dma_addr;
125 u32 *dbbuf_eis;
126 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
127
128 /* host memory buffer support: */
129 u64 host_mem_size;
130 u32 nr_host_mem_descs;
4033f35d 131 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
132 struct nvme_host_mem_buf_desc *host_mem_descs;
133 void **host_mem_desc_bufs;
4d115420 134};
1fa6aead 135
b27c1e68 136static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
137{
138 int n = 0, ret;
139
140 ret = kstrtoint(val, 10, &n);
141 if (ret != 0 || n < 2)
142 return -EINVAL;
143
144 return param_set_int(val, kp);
145}
146
3b6592f7
JA
147static int queue_count_set(const char *val, const struct kernel_param *kp)
148{
66564867 149 int n, ret;
3b6592f7
JA
150
151 ret = kstrtoint(val, 10, &n);
e895fedf
BVA
152 if (ret)
153 return ret;
3b6592f7
JA
154 if (n > num_possible_cpus())
155 n = num_possible_cpus();
156
157 return param_set_int(val, kp);
158}
159
f9f38e33
HK
160static inline unsigned int sq_idx(unsigned int qid, u32 stride)
161{
162 return qid * 2 * stride;
163}
164
165static inline unsigned int cq_idx(unsigned int qid, u32 stride)
166{
167 return (qid * 2 + 1) * stride;
168}
169
1c63dc66
CH
170static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
171{
172 return container_of(ctrl, struct nvme_dev, ctrl);
173}
174
b60503ba
MW
175/*
176 * An NVM Express queue. Each device has at least two (one for admin
177 * commands and one for I/O commands).
178 */
179struct nvme_queue {
091b6092 180 struct nvme_dev *dev;
1ab0cd69 181 spinlock_t sq_lock;
b60503ba 182 struct nvme_command *sq_cmds;
3a7afd8e
CH
183 /* only used for poll queues: */
184 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
b60503ba 185 volatile struct nvme_completion *cqes;
42483228 186 struct blk_mq_tags **tags;
b60503ba
MW
187 dma_addr_t sq_dma_addr;
188 dma_addr_t cq_dma_addr;
b60503ba
MW
189 u32 __iomem *q_db;
190 u16 q_depth;
7c349dde 191 u16 cq_vector;
b60503ba 192 u16 sq_tail;
04f3eafd 193 u16 last_sq_tail;
b60503ba 194 u16 cq_head;
68fa9dbe 195 u16 last_cq_head;
c30341dc 196 u16 qid;
e9539f47 197 u8 cq_phase;
4e224106
CH
198 unsigned long flags;
199#define NVMEQ_ENABLED 0
63223078 200#define NVMEQ_SQ_CMB 1
d1ed6aa1 201#define NVMEQ_DELETE_ERROR 2
7c349dde 202#define NVMEQ_POLLED 3
f9f38e33
HK
203 u32 *dbbuf_sq_db;
204 u32 *dbbuf_cq_db;
205 u32 *dbbuf_sq_ei;
206 u32 *dbbuf_cq_ei;
d1ed6aa1 207 struct completion delete_done;
b60503ba
MW
208};
209
71bd150c 210/*
9b048119
CH
211 * The nvme_iod describes the data in an I/O.
212 *
213 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
214 * to the actual struct scatterlist.
71bd150c
CH
215 */
216struct nvme_iod {
d49187e9 217 struct nvme_request req;
f4800d6d 218 struct nvme_queue *nvmeq;
a7a7cbe3 219 bool use_sgl;
f4800d6d 220 int aborted;
71bd150c 221 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c 222 int nents; /* Used in scatterlist */
71bd150c 223 dma_addr_t first_dma;
dff824b2 224 unsigned int dma_len; /* length of single DMA segment mapping */
783b94bd 225 dma_addr_t meta_dma;
f4800d6d 226 struct scatterlist *sg;
b60503ba
MW
227};
228
3b6592f7
JA
229static unsigned int max_io_queues(void)
230{
4b04cc6a 231 return num_possible_cpus() + write_queues + poll_queues;
3b6592f7
JA
232}
233
234static unsigned int max_queue_count(void)
235{
236 /* IO queues + admin queue */
237 return 1 + max_io_queues();
238}
239
f9f38e33
HK
240static inline unsigned int nvme_dbbuf_size(u32 stride)
241{
3b6592f7 242 return (max_queue_count() * 8 * stride);
f9f38e33
HK
243}
244
245static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
246{
247 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
248
249 if (dev->dbbuf_dbs)
250 return 0;
251
252 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
253 &dev->dbbuf_dbs_dma_addr,
254 GFP_KERNEL);
255 if (!dev->dbbuf_dbs)
256 return -ENOMEM;
257 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
258 &dev->dbbuf_eis_dma_addr,
259 GFP_KERNEL);
260 if (!dev->dbbuf_eis) {
261 dma_free_coherent(dev->dev, mem_size,
262 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
263 dev->dbbuf_dbs = NULL;
264 return -ENOMEM;
265 }
266
267 return 0;
268}
269
270static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
271{
272 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
273
274 if (dev->dbbuf_dbs) {
275 dma_free_coherent(dev->dev, mem_size,
276 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
277 dev->dbbuf_dbs = NULL;
278 }
279 if (dev->dbbuf_eis) {
280 dma_free_coherent(dev->dev, mem_size,
281 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
282 dev->dbbuf_eis = NULL;
283 }
284}
285
286static void nvme_dbbuf_init(struct nvme_dev *dev,
287 struct nvme_queue *nvmeq, int qid)
288{
289 if (!dev->dbbuf_dbs || !qid)
290 return;
291
292 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
293 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
294 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
295 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
296}
297
298static void nvme_dbbuf_set(struct nvme_dev *dev)
299{
300 struct nvme_command c;
301
302 if (!dev->dbbuf_dbs)
303 return;
304
305 memset(&c, 0, sizeof(c));
306 c.dbbuf.opcode = nvme_admin_dbbuf;
307 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
308 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
309
310 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 311 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
312 /* Free memory and continue on */
313 nvme_dbbuf_dma_free(dev);
314 }
315}
316
317static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
318{
319 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
320}
321
322/* Update dbbuf and return true if an MMIO is required */
323static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
324 volatile u32 *dbbuf_ei)
325{
326 if (dbbuf_db) {
327 u16 old_value;
328
329 /*
330 * Ensure that the queue is written before updating
331 * the doorbell in memory
332 */
333 wmb();
334
335 old_value = *dbbuf_db;
336 *dbbuf_db = value;
337
f1ed3df2
MW
338 /*
339 * Ensure that the doorbell is updated before reading the event
340 * index from memory. The controller needs to provide similar
341 * ordering to ensure the envent index is updated before reading
342 * the doorbell.
343 */
344 mb();
345
f9f38e33
HK
346 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
347 return false;
348 }
349
350 return true;
b60503ba
MW
351}
352
ac3dd5bd
JA
353/*
354 * Will slightly overestimate the number of pages needed. This is OK
355 * as it only leads to a small amount of wasted memory for the lifetime of
356 * the I/O.
357 */
358static int nvme_npages(unsigned size, struct nvme_dev *dev)
359{
5fd4ce1b
CH
360 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
361 dev->ctrl.page_size);
ac3dd5bd
JA
362 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
363}
364
a7a7cbe3
CK
365/*
366 * Calculates the number of pages needed for the SGL segments. For example a 4k
367 * page can accommodate 256 SGL descriptors.
368 */
369static int nvme_pci_npages_sgl(unsigned int num_seg)
ac3dd5bd 370{
a7a7cbe3 371 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
f4800d6d 372}
ac3dd5bd 373
a7a7cbe3
CK
374static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
375 unsigned int size, unsigned int nseg, bool use_sgl)
f4800d6d 376{
a7a7cbe3
CK
377 size_t alloc_size;
378
379 if (use_sgl)
380 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
381 else
382 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
383
384 return alloc_size + sizeof(struct scatterlist) * nseg;
f4800d6d 385}
ac3dd5bd 386
a4aea562
MB
387static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
388 unsigned int hctx_idx)
e85248e5 389{
a4aea562 390 struct nvme_dev *dev = data;
147b27e4 391 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 392
42483228
KB
393 WARN_ON(hctx_idx != 0);
394 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
395 WARN_ON(nvmeq->tags);
396
a4aea562 397 hctx->driver_data = nvmeq;
42483228 398 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 399 return 0;
e85248e5
MW
400}
401
4af0e21c
KB
402static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
403{
404 struct nvme_queue *nvmeq = hctx->driver_data;
405
406 nvmeq->tags = NULL;
407}
408
a4aea562
MB
409static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410 unsigned int hctx_idx)
b60503ba 411{
a4aea562 412 struct nvme_dev *dev = data;
147b27e4 413 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 414
42483228
KB
415 if (!nvmeq->tags)
416 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 417
42483228 418 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
419 hctx->driver_data = nvmeq;
420 return 0;
b60503ba
MW
421}
422
d6296d39
CH
423static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
424 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 425{
d6296d39 426 struct nvme_dev *dev = set->driver_data;
f4800d6d 427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a 428 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
147b27e4 429 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
a4aea562
MB
430
431 BUG_ON(!nvmeq);
f4800d6d 432 iod->nvmeq = nvmeq;
59e29ce6
SG
433
434 nvme_req(req)->ctrl = &dev->ctrl;
a4aea562
MB
435 return 0;
436}
437
3b6592f7
JA
438static int queue_irq_offset(struct nvme_dev *dev)
439{
440 /* if we have more than 1 vec, admin queue offsets us by 1 */
441 if (dev->num_vecs > 1)
442 return 1;
443
444 return 0;
445}
446
dca51e78
CH
447static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
448{
449 struct nvme_dev *dev = set->driver_data;
3b6592f7
JA
450 int i, qoff, offset;
451
452 offset = queue_irq_offset(dev);
453 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
454 struct blk_mq_queue_map *map = &set->map[i];
455
456 map->nr_queues = dev->io_queues[i];
457 if (!map->nr_queues) {
e20ba6e1 458 BUG_ON(i == HCTX_TYPE_DEFAULT);
7e849dd9 459 continue;
3b6592f7
JA
460 }
461
4b04cc6a
JA
462 /*
463 * The poll queue(s) doesn't have an IRQ (and hence IRQ
464 * affinity), so use the regular blk-mq cpu mapping
465 */
3b6592f7 466 map->queue_offset = qoff;
e20ba6e1 467 if (i != HCTX_TYPE_POLL)
4b04cc6a
JA
468 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
469 else
470 blk_mq_map_queues(map);
3b6592f7
JA
471 qoff += map->nr_queues;
472 offset += map->nr_queues;
473 }
474
475 return 0;
dca51e78
CH
476}
477
04f3eafd
JA
478/*
479 * Write sq tail if we are asked to, or if the next command would wrap.
480 */
481static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
482{
483 if (!write_sq) {
484 u16 next_tail = nvmeq->sq_tail + 1;
485
486 if (next_tail == nvmeq->q_depth)
487 next_tail = 0;
488 if (next_tail != nvmeq->last_sq_tail)
489 return;
490 }
491
492 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
493 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
494 writel(nvmeq->sq_tail, nvmeq->q_db);
495 nvmeq->last_sq_tail = nvmeq->sq_tail;
496}
497
b60503ba 498/**
90ea5ca4 499 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
500 * @nvmeq: The queue to use
501 * @cmd: The command to send
04f3eafd 502 * @write_sq: whether to write to the SQ doorbell
b60503ba 503 */
04f3eafd
JA
504static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
505 bool write_sq)
b60503ba 506{
90ea5ca4 507 spin_lock(&nvmeq->sq_lock);
0f238ff5 508 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
90ea5ca4
CH
509 if (++nvmeq->sq_tail == nvmeq->q_depth)
510 nvmeq->sq_tail = 0;
04f3eafd
JA
511 nvme_write_sq_db(nvmeq, write_sq);
512 spin_unlock(&nvmeq->sq_lock);
513}
514
515static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
516{
517 struct nvme_queue *nvmeq = hctx->driver_data;
518
519 spin_lock(&nvmeq->sq_lock);
520 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
521 nvme_write_sq_db(nvmeq, true);
90ea5ca4 522 spin_unlock(&nvmeq->sq_lock);
b60503ba
MW
523}
524
a7a7cbe3 525static void **nvme_pci_iod_list(struct request *req)
b60503ba 526{
f4800d6d 527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 528 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
529}
530
955b1b5a
MI
531static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
532{
533 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
20469a37 534 int nseg = blk_rq_nr_phys_segments(req);
955b1b5a
MI
535 unsigned int avg_seg_size;
536
20469a37
KB
537 if (nseg == 0)
538 return false;
539
540 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a
MI
541
542 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
543 return false;
544 if (!iod->nvmeq->qid)
545 return false;
546 if (!sgl_threshold || avg_seg_size < sgl_threshold)
547 return false;
548 return true;
549}
550
7fe07d14 551static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 552{
f4800d6d 553 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
7fe07d14
CH
554 enum dma_data_direction dma_dir = rq_data_dir(req) ?
555 DMA_TO_DEVICE : DMA_FROM_DEVICE;
a7a7cbe3
CK
556 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
557 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
eca18b23 558 int i;
eca18b23 559
dff824b2
CH
560 if (iod->dma_len) {
561 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, dma_dir);
562 return;
7fe07d14
CH
563 }
564
dff824b2
CH
565 WARN_ON_ONCE(!iod->nents);
566
567 /* P2PDMA requests do not need to be unmapped */
568 if (!is_pci_p2pdma_page(sg_page(iod->sg)))
569 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
570
571
eca18b23 572 if (iod->npages == 0)
a7a7cbe3
CK
573 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
574 dma_addr);
575
eca18b23 576 for (i = 0; i < iod->npages; i++) {
a7a7cbe3
CK
577 void *addr = nvme_pci_iod_list(req)[i];
578
579 if (iod->use_sgl) {
580 struct nvme_sgl_desc *sg_list = addr;
581
582 next_dma_addr =
583 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
584 } else {
585 __le64 *prp_list = addr;
586
587 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
588 }
589
590 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
591 dma_addr = next_dma_addr;
eca18b23 592 }
ac3dd5bd 593
d43f1ccf 594 mempool_free(iod->sg, dev->iod_mempool);
b4ff9c8d
KB
595}
596
d0877473
KB
597static void nvme_print_sgl(struct scatterlist *sgl, int nents)
598{
599 int i;
600 struct scatterlist *sg;
601
602 for_each_sg(sgl, sg, nents, i) {
603 dma_addr_t phys = sg_phys(sg);
604 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
605 "dma_address:%pad dma_length:%d\n",
606 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
607 sg_dma_len(sg));
608 }
609}
610
a7a7cbe3
CK
611static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
612 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 613{
f4800d6d 614 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 615 struct dma_pool *pool;
b131c61d 616 int length = blk_rq_payload_bytes(req);
eca18b23 617 struct scatterlist *sg = iod->sg;
ff22b54f
MW
618 int dma_len = sg_dma_len(sg);
619 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 620 u32 page_size = dev->ctrl.page_size;
f137e0f1 621 int offset = dma_addr & (page_size - 1);
e025344c 622 __le64 *prp_list;
a7a7cbe3 623 void **list = nvme_pci_iod_list(req);
e025344c 624 dma_addr_t prp_dma;
eca18b23 625 int nprps, i;
ff22b54f 626
1d090624 627 length -= (page_size - offset);
5228b328
JS
628 if (length <= 0) {
629 iod->first_dma = 0;
a7a7cbe3 630 goto done;
5228b328 631 }
ff22b54f 632
1d090624 633 dma_len -= (page_size - offset);
ff22b54f 634 if (dma_len) {
1d090624 635 dma_addr += (page_size - offset);
ff22b54f
MW
636 } else {
637 sg = sg_next(sg);
638 dma_addr = sg_dma_address(sg);
639 dma_len = sg_dma_len(sg);
640 }
641
1d090624 642 if (length <= page_size) {
edd10d33 643 iod->first_dma = dma_addr;
a7a7cbe3 644 goto done;
e025344c
SMM
645 }
646
1d090624 647 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
648 if (nprps <= (256 / 8)) {
649 pool = dev->prp_small_pool;
eca18b23 650 iod->npages = 0;
99802a7a
MW
651 } else {
652 pool = dev->prp_page_pool;
eca18b23 653 iod->npages = 1;
99802a7a
MW
654 }
655
69d2b571 656 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 657 if (!prp_list) {
edd10d33 658 iod->first_dma = dma_addr;
eca18b23 659 iod->npages = -1;
86eea289 660 return BLK_STS_RESOURCE;
b77954cb 661 }
eca18b23
MW
662 list[0] = prp_list;
663 iod->first_dma = prp_dma;
e025344c
SMM
664 i = 0;
665 for (;;) {
1d090624 666 if (i == page_size >> 3) {
e025344c 667 __le64 *old_prp_list = prp_list;
69d2b571 668 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 669 if (!prp_list)
86eea289 670 return BLK_STS_RESOURCE;
eca18b23 671 list[iod->npages++] = prp_list;
7523d834
MW
672 prp_list[0] = old_prp_list[i - 1];
673 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
674 i = 1;
e025344c
SMM
675 }
676 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
677 dma_len -= page_size;
678 dma_addr += page_size;
679 length -= page_size;
e025344c
SMM
680 if (length <= 0)
681 break;
682 if (dma_len > 0)
683 continue;
86eea289
KB
684 if (unlikely(dma_len < 0))
685 goto bad_sgl;
e025344c
SMM
686 sg = sg_next(sg);
687 dma_addr = sg_dma_address(sg);
688 dma_len = sg_dma_len(sg);
ff22b54f
MW
689 }
690
a7a7cbe3
CK
691done:
692 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
693 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
694
86eea289
KB
695 return BLK_STS_OK;
696
697 bad_sgl:
d0877473
KB
698 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
699 "Invalid SGL for payload:%d nents:%d\n",
700 blk_rq_payload_bytes(req), iod->nents);
86eea289 701 return BLK_STS_IOERR;
ff22b54f
MW
702}
703
a7a7cbe3
CK
704static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
705 struct scatterlist *sg)
706{
707 sge->addr = cpu_to_le64(sg_dma_address(sg));
708 sge->length = cpu_to_le32(sg_dma_len(sg));
709 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
710}
711
712static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
713 dma_addr_t dma_addr, int entries)
714{
715 sge->addr = cpu_to_le64(dma_addr);
716 if (entries < SGES_PER_PAGE) {
717 sge->length = cpu_to_le32(entries * sizeof(*sge));
718 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
719 } else {
720 sge->length = cpu_to_le32(PAGE_SIZE);
721 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
722 }
723}
724
725static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
b0f2853b 726 struct request *req, struct nvme_rw_command *cmd, int entries)
a7a7cbe3
CK
727{
728 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
729 struct dma_pool *pool;
730 struct nvme_sgl_desc *sg_list;
731 struct scatterlist *sg = iod->sg;
a7a7cbe3 732 dma_addr_t sgl_dma;
b0f2853b 733 int i = 0;
a7a7cbe3 734
a7a7cbe3
CK
735 /* setting the transfer type as SGL */
736 cmd->flags = NVME_CMD_SGL_METABUF;
737
b0f2853b 738 if (entries == 1) {
a7a7cbe3
CK
739 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
740 return BLK_STS_OK;
741 }
742
743 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
744 pool = dev->prp_small_pool;
745 iod->npages = 0;
746 } else {
747 pool = dev->prp_page_pool;
748 iod->npages = 1;
749 }
750
751 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
752 if (!sg_list) {
753 iod->npages = -1;
754 return BLK_STS_RESOURCE;
755 }
756
757 nvme_pci_iod_list(req)[0] = sg_list;
758 iod->first_dma = sgl_dma;
759
760 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
761
762 do {
763 if (i == SGES_PER_PAGE) {
764 struct nvme_sgl_desc *old_sg_desc = sg_list;
765 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
766
767 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
768 if (!sg_list)
769 return BLK_STS_RESOURCE;
770
771 i = 0;
772 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
773 sg_list[i++] = *link;
774 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
775 }
776
777 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 778 sg = sg_next(sg);
b0f2853b 779 } while (--entries > 0);
a7a7cbe3 780
a7a7cbe3
CK
781 return BLK_STS_OK;
782}
783
dff824b2
CH
784static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
785 struct request *req, struct nvme_rw_command *cmnd,
786 struct bio_vec *bv)
787{
788 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789 unsigned int first_prp_len = dev->ctrl.page_size - bv->bv_offset;
790
791 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
792 if (dma_mapping_error(dev->dev, iod->first_dma))
793 return BLK_STS_RESOURCE;
794 iod->dma_len = bv->bv_len;
795
796 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
797 if (bv->bv_len > first_prp_len)
798 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
799 return 0;
800}
801
29791057
CH
802static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
803 struct request *req, struct nvme_rw_command *cmnd,
804 struct bio_vec *bv)
805{
806 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
807
808 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
809 if (dma_mapping_error(dev->dev, iod->first_dma))
810 return BLK_STS_RESOURCE;
811 iod->dma_len = bv->bv_len;
812
049bf372 813 cmnd->flags = NVME_CMD_SGL_METABUF;
29791057
CH
814 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
815 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
816 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
817 return 0;
818}
819
fc17b653 820static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 821 struct nvme_command *cmnd)
d29ec824 822{
f4800d6d 823 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
70479b71 824 blk_status_t ret = BLK_STS_RESOURCE;
b0f2853b 825 int nr_mapped;
d29ec824 826
dff824b2
CH
827 if (blk_rq_nr_phys_segments(req) == 1) {
828 struct bio_vec bv = req_bvec(req);
829
830 if (!is_pci_p2pdma_page(bv.bv_page)) {
831 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
832 return nvme_setup_prp_simple(dev, req,
833 &cmnd->rw, &bv);
29791057
CH
834
835 if (iod->nvmeq->qid &&
836 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
837 return nvme_setup_sgl_simple(dev, req,
838 &cmnd->rw, &bv);
dff824b2
CH
839 }
840 }
841
842 iod->dma_len = 0;
d43f1ccf
CH
843 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
844 if (!iod->sg)
845 return BLK_STS_RESOURCE;
f9d03f96 846 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
70479b71 847 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
ba1ca37e
CH
848 if (!iod->nents)
849 goto out;
d29ec824 850
e0596ab2
LG
851 if (is_pci_p2pdma_page(sg_page(iod->sg)))
852 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
70479b71 853 rq_dma_dir(req));
e0596ab2
LG
854 else
855 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
70479b71 856 rq_dma_dir(req), DMA_ATTR_NO_WARN);
b0f2853b 857 if (!nr_mapped)
ba1ca37e 858 goto out;
d29ec824 859
70479b71 860 iod->use_sgl = nvme_pci_use_sgls(dev, req);
955b1b5a 861 if (iod->use_sgl)
b0f2853b 862 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
a7a7cbe3
CK
863 else
864 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
4aedb705 865out:
86eea289 866 if (ret != BLK_STS_OK)
4aedb705
CH
867 nvme_unmap_data(dev, req);
868 return ret;
869}
3045c0d0 870
4aedb705
CH
871static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
872 struct nvme_command *cmnd)
873{
874 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
00df5cb4 875
4aedb705
CH
876 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
877 rq_dma_dir(req), 0);
878 if (dma_mapping_error(dev->dev, iod->meta_dma))
879 return BLK_STS_IOERR;
880 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
881 return 0;
00df5cb4
MW
882}
883
d29ec824
CH
884/*
885 * NOTE: ns is NULL when called on the admin queue.
886 */
fc17b653 887static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 888 const struct blk_mq_queue_data *bd)
edd10d33 889{
a4aea562
MB
890 struct nvme_ns *ns = hctx->queue->queuedata;
891 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 892 struct nvme_dev *dev = nvmeq->dev;
a4aea562 893 struct request *req = bd->rq;
9b048119 894 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e 895 struct nvme_command cmnd;
ebe6d874 896 blk_status_t ret;
e1e5e564 897
9b048119
CH
898 iod->aborted = 0;
899 iod->npages = -1;
900 iod->nents = 0;
901
d1f06f4a
JA
902 /*
903 * We should not need to do this, but we're still using this to
904 * ensure we can drain requests on a dying queue.
905 */
4e224106 906 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
d1f06f4a
JA
907 return BLK_STS_IOERR;
908
f9d03f96 909 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 910 if (ret)
f4800d6d 911 return ret;
a4aea562 912
fc17b653 913 if (blk_rq_nr_phys_segments(req)) {
b131c61d 914 ret = nvme_map_data(dev, req, &cmnd);
fc17b653 915 if (ret)
9b048119 916 goto out_free_cmd;
fc17b653 917 }
a4aea562 918
4aedb705
CH
919 if (blk_integrity_rq(req)) {
920 ret = nvme_map_metadata(dev, req, &cmnd);
921 if (ret)
922 goto out_unmap_data;
923 }
924
aae239e1 925 blk_mq_start_request(req);
04f3eafd 926 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
fc17b653 927 return BLK_STS_OK;
4aedb705
CH
928out_unmap_data:
929 nvme_unmap_data(dev, req);
f9d03f96
CH
930out_free_cmd:
931 nvme_cleanup_cmd(req);
ba1ca37e 932 return ret;
b60503ba 933}
e1e5e564 934
77f02a7a 935static void nvme_pci_complete_rq(struct request *req)
eee417b0 936{
f4800d6d 937 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
4aedb705 938 struct nvme_dev *dev = iod->nvmeq->dev;
a4aea562 939
915f04c9 940 nvme_cleanup_cmd(req);
4aedb705
CH
941 if (blk_integrity_rq(req))
942 dma_unmap_page(dev->dev, iod->meta_dma,
943 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
b15c592d 944 if (blk_rq_nr_phys_segments(req))
4aedb705 945 nvme_unmap_data(dev, req);
77f02a7a 946 nvme_complete_rq(req);
b60503ba
MW
947}
948
d783e0bd 949/* We read the CQE phase first to check if the rest of the entry is valid */
750dde44 950static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
d783e0bd 951{
750dde44
CH
952 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
953 nvmeq->cq_phase;
d783e0bd
MR
954}
955
eb281c82 956static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 957{
eb281c82 958 u16 head = nvmeq->cq_head;
adf68f21 959
397c699f
KB
960 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
961 nvmeq->dbbuf_cq_ei))
962 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
eb281c82 963}
aae239e1 964
5cb525c8 965static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
83a12fb7 966{
5cb525c8 967 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
83a12fb7 968 struct request *req;
adf68f21 969
83a12fb7
SG
970 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
971 dev_warn(nvmeq->dev->ctrl.device,
972 "invalid id %d completed on queue %d\n",
973 cqe->command_id, le16_to_cpu(cqe->sq_id));
974 return;
b60503ba
MW
975 }
976
83a12fb7
SG
977 /*
978 * AEN requests are special as they don't time out and can
979 * survive any kind of queue freeze and often don't respond to
980 * aborts. We don't even bother to allocate a struct request
981 * for them but rather special case them here.
982 */
983 if (unlikely(nvmeq->qid == 0 &&
38dabe21 984 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
83a12fb7
SG
985 nvme_complete_async_event(&nvmeq->dev->ctrl,
986 cqe->status, &cqe->result);
a0fa9647 987 return;
83a12fb7 988 }
b60503ba 989
83a12fb7 990 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
604c01d5 991 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
83a12fb7
SG
992 nvme_end_request(req, cqe->status, cqe->result);
993}
b60503ba 994
5cb525c8 995static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
b60503ba 996{
5cb525c8
JA
997 while (start != end) {
998 nvme_handle_cqe(nvmeq, start);
999 if (++start == nvmeq->q_depth)
1000 start = 0;
1001 }
1002}
adf68f21 1003
5cb525c8
JA
1004static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1005{
dcca1662 1006 if (nvmeq->cq_head == nvmeq->q_depth - 1) {
5cb525c8
JA
1007 nvmeq->cq_head = 0;
1008 nvmeq->cq_phase = !nvmeq->cq_phase;
dcca1662
HY
1009 } else {
1010 nvmeq->cq_head++;
b60503ba 1011 }
a0fa9647
JA
1012}
1013
1052b8ac
JA
1014static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1015 u16 *end, unsigned int tag)
a0fa9647 1016{
1052b8ac 1017 int found = 0;
b60503ba 1018
5cb525c8 1019 *start = nvmeq->cq_head;
1052b8ac
JA
1020 while (nvme_cqe_pending(nvmeq)) {
1021 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1022 found++;
5cb525c8 1023 nvme_update_cq_head(nvmeq);
920d13a8 1024 }
5cb525c8 1025 *end = nvmeq->cq_head;
eb281c82 1026
5cb525c8 1027 if (*start != *end)
920d13a8 1028 nvme_ring_cq_doorbell(nvmeq);
5cb525c8 1029 return found;
b60503ba
MW
1030}
1031
1032static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5 1033{
58ffacb5 1034 struct nvme_queue *nvmeq = data;
68fa9dbe 1035 irqreturn_t ret = IRQ_NONE;
5cb525c8
JA
1036 u16 start, end;
1037
3a7afd8e
CH
1038 /*
1039 * The rmb/wmb pair ensures we see all updates from a previous run of
1040 * the irq handler, even if that was on another CPU.
1041 */
1042 rmb();
68fa9dbe
JA
1043 if (nvmeq->cq_head != nvmeq->last_cq_head)
1044 ret = IRQ_HANDLED;
5cb525c8 1045 nvme_process_cq(nvmeq, &start, &end, -1);
68fa9dbe 1046 nvmeq->last_cq_head = nvmeq->cq_head;
3a7afd8e 1047 wmb();
5cb525c8 1048
68fa9dbe
JA
1049 if (start != end) {
1050 nvme_complete_cqes(nvmeq, start, end);
1051 return IRQ_HANDLED;
1052 }
1053
1054 return ret;
58ffacb5
MW
1055}
1056
1057static irqreturn_t nvme_irq_check(int irq, void *data)
1058{
1059 struct nvme_queue *nvmeq = data;
750dde44 1060 if (nvme_cqe_pending(nvmeq))
d783e0bd
MR
1061 return IRQ_WAKE_THREAD;
1062 return IRQ_NONE;
58ffacb5
MW
1063}
1064
0b2a8a9f
CH
1065/*
1066 * Poll for completions any queue, including those not dedicated to polling.
1067 * Can be called from any context.
1068 */
1069static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 1070{
3a7afd8e 1071 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
5cb525c8 1072 u16 start, end;
1052b8ac 1073 int found;
a0fa9647 1074
3a7afd8e
CH
1075 /*
1076 * For a poll queue we need to protect against the polling thread
1077 * using the CQ lock. For normal interrupt driven threads we have
1078 * to disable the interrupt to avoid racing with it.
1079 */
7c349dde 1080 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
3a7afd8e 1081 spin_lock(&nvmeq->cq_poll_lock);
91a509f8 1082 found = nvme_process_cq(nvmeq, &start, &end, tag);
3a7afd8e 1083 spin_unlock(&nvmeq->cq_poll_lock);
91a509f8
CH
1084 } else {
1085 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1086 found = nvme_process_cq(nvmeq, &start, &end, tag);
3a7afd8e 1087 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
91a509f8 1088 }
442e19b7 1089
5cb525c8 1090 nvme_complete_cqes(nvmeq, start, end);
442e19b7 1091 return found;
a0fa9647
JA
1092}
1093
9743139c 1094static int nvme_poll(struct blk_mq_hw_ctx *hctx)
dabcefab
JA
1095{
1096 struct nvme_queue *nvmeq = hctx->driver_data;
1097 u16 start, end;
1098 bool found;
1099
1100 if (!nvme_cqe_pending(nvmeq))
1101 return 0;
1102
3a7afd8e 1103 spin_lock(&nvmeq->cq_poll_lock);
9743139c 1104 found = nvme_process_cq(nvmeq, &start, &end, -1);
3a7afd8e 1105 spin_unlock(&nvmeq->cq_poll_lock);
dabcefab
JA
1106
1107 nvme_complete_cqes(nvmeq, start, end);
1108 return found;
1109}
1110
ad22c355 1111static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 1112{
f866fc42 1113 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 1114 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 1115 struct nvme_command c;
b60503ba 1116
a4aea562
MB
1117 memset(&c, 0, sizeof(c));
1118 c.common.opcode = nvme_admin_async_event;
ad22c355 1119 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
04f3eafd 1120 nvme_submit_cmd(nvmeq, &c, true);
f705f837
CH
1121}
1122
b60503ba 1123static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1124{
b60503ba
MW
1125 struct nvme_command c;
1126
1127 memset(&c, 0, sizeof(c));
1128 c.delete_queue.opcode = opcode;
1129 c.delete_queue.qid = cpu_to_le16(id);
1130
1c63dc66 1131 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1132}
1133
b60503ba 1134static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
a8e3e0bb 1135 struct nvme_queue *nvmeq, s16 vector)
b60503ba 1136{
b60503ba 1137 struct nvme_command c;
4b04cc6a
JA
1138 int flags = NVME_QUEUE_PHYS_CONTIG;
1139
7c349dde 1140 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
4b04cc6a 1141 flags |= NVME_CQ_IRQ_ENABLED;
b60503ba 1142
d29ec824 1143 /*
16772ae6 1144 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1145 * is attached to the request.
1146 */
b60503ba
MW
1147 memset(&c, 0, sizeof(c));
1148 c.create_cq.opcode = nvme_admin_create_cq;
1149 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1150 c.create_cq.cqid = cpu_to_le16(qid);
1151 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1152 c.create_cq.cq_flags = cpu_to_le16(flags);
7c349dde 1153 c.create_cq.irq_vector = cpu_to_le16(vector);
b60503ba 1154
1c63dc66 1155 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1156}
1157
1158static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1159 struct nvme_queue *nvmeq)
1160{
9abd68ef 1161 struct nvme_ctrl *ctrl = &dev->ctrl;
b60503ba 1162 struct nvme_command c;
81c1cd98 1163 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1164
9abd68ef
JA
1165 /*
1166 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1167 * set. Since URGENT priority is zeroes, it makes all queues
1168 * URGENT.
1169 */
1170 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1171 flags |= NVME_SQ_PRIO_MEDIUM;
1172
d29ec824 1173 /*
16772ae6 1174 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1175 * is attached to the request.
1176 */
b60503ba
MW
1177 memset(&c, 0, sizeof(c));
1178 c.create_sq.opcode = nvme_admin_create_sq;
1179 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1180 c.create_sq.sqid = cpu_to_le16(qid);
1181 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1182 c.create_sq.sq_flags = cpu_to_le16(flags);
1183 c.create_sq.cqid = cpu_to_le16(qid);
1184
1c63dc66 1185 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1186}
1187
1188static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1189{
1190 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1191}
1192
1193static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1194{
1195 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1196}
1197
2a842aca 1198static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1199{
f4800d6d
CH
1200 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1201 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 1202
27fa9bc5
CH
1203 dev_warn(nvmeq->dev->ctrl.device,
1204 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1205 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1206 blk_mq_free_request(req);
bc5fc7e4
MW
1207}
1208
b2a0eb1a
KB
1209static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1210{
1211
1212 /* If true, indicates loss of adapter communication, possibly by a
1213 * NVMe Subsystem reset.
1214 */
1215 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1216
ad70062c
JW
1217 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1218 switch (dev->ctrl.state) {
1219 case NVME_CTRL_RESETTING:
ad6a0a52 1220 case NVME_CTRL_CONNECTING:
b2a0eb1a 1221 return false;
ad70062c
JW
1222 default:
1223 break;
1224 }
b2a0eb1a
KB
1225
1226 /* We shouldn't reset unless the controller is on fatal error state
1227 * _or_ if we lost the communication with it.
1228 */
1229 if (!(csts & NVME_CSTS_CFS) && !nssro)
1230 return false;
1231
b2a0eb1a
KB
1232 return true;
1233}
1234
1235static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1236{
1237 /* Read a config register to help see what died. */
1238 u16 pci_status;
1239 int result;
1240
1241 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1242 &pci_status);
1243 if (result == PCIBIOS_SUCCESSFUL)
1244 dev_warn(dev->ctrl.device,
1245 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1246 csts, pci_status);
1247 else
1248 dev_warn(dev->ctrl.device,
1249 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1250 csts, result);
1251}
1252
31c7c7d2 1253static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1254{
f4800d6d
CH
1255 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1256 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 1257 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1258 struct request *abort_req;
a4aea562 1259 struct nvme_command cmd;
b2a0eb1a
KB
1260 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1261
651438bb
WX
1262 /* If PCI error recovery process is happening, we cannot reset or
1263 * the recovery mechanism will surely fail.
1264 */
1265 mb();
1266 if (pci_channel_offline(to_pci_dev(dev->dev)))
1267 return BLK_EH_RESET_TIMER;
1268
b2a0eb1a
KB
1269 /*
1270 * Reset immediately if the controller is failed
1271 */
1272 if (nvme_should_reset(dev, csts)) {
1273 nvme_warn_reset(dev, csts);
1274 nvme_dev_disable(dev, false);
d86c4d8e 1275 nvme_reset_ctrl(&dev->ctrl);
db8c48e4 1276 return BLK_EH_DONE;
b2a0eb1a 1277 }
c30341dc 1278
7776db1c
KB
1279 /*
1280 * Did we miss an interrupt?
1281 */
0b2a8a9f 1282 if (nvme_poll_irqdisable(nvmeq, req->tag)) {
7776db1c
KB
1283 dev_warn(dev->ctrl.device,
1284 "I/O %d QID %d timeout, completion polled\n",
1285 req->tag, nvmeq->qid);
db8c48e4 1286 return BLK_EH_DONE;
7776db1c
KB
1287 }
1288
31c7c7d2 1289 /*
fd634f41
CH
1290 * Shutdown immediately if controller times out while starting. The
1291 * reset work will see the pci device disabled when it gets the forced
1292 * cancellation error. All outstanding requests are completed on
db8c48e4 1293 * shutdown, so we return BLK_EH_DONE.
fd634f41 1294 */
4244140d
KB
1295 switch (dev->ctrl.state) {
1296 case NVME_CTRL_CONNECTING:
2036f726
KB
1297 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1298 /* fall through */
1299 case NVME_CTRL_DELETING:
b9cac43c 1300 dev_warn_ratelimited(dev->ctrl.device,
fd634f41
CH
1301 "I/O %d QID %d timeout, disable controller\n",
1302 req->tag, nvmeq->qid);
2036f726 1303 nvme_dev_disable(dev, true);
27fa9bc5 1304 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
db8c48e4 1305 return BLK_EH_DONE;
39a9dd81
KB
1306 case NVME_CTRL_RESETTING:
1307 return BLK_EH_RESET_TIMER;
4244140d
KB
1308 default:
1309 break;
c30341dc
KB
1310 }
1311
fd634f41
CH
1312 /*
1313 * Shutdown the controller immediately and schedule a reset if the
1314 * command was already aborted once before and still hasn't been
1315 * returned to the driver, or if this is the admin queue.
31c7c7d2 1316 */
f4800d6d 1317 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1318 dev_warn(dev->ctrl.device,
e1569a16
KB
1319 "I/O %d QID %d timeout, reset controller\n",
1320 req->tag, nvmeq->qid);
a5cdb68c 1321 nvme_dev_disable(dev, false);
d86c4d8e 1322 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1323
27fa9bc5 1324 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
db8c48e4 1325 return BLK_EH_DONE;
c30341dc 1326 }
c30341dc 1327
e7a2a87d 1328 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1329 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1330 return BLK_EH_RESET_TIMER;
6bf25d16 1331 }
7bf7d778 1332 iod->aborted = 1;
a4aea562 1333
c30341dc
KB
1334 memset(&cmd, 0, sizeof(cmd));
1335 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1336 cmd.abort.cid = req->tag;
c30341dc 1337 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1338
1b3c47c1
SG
1339 dev_warn(nvmeq->dev->ctrl.device,
1340 "I/O %d QID %d timeout, aborting\n",
1341 req->tag, nvmeq->qid);
e7a2a87d
CH
1342
1343 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1344 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1345 if (IS_ERR(abort_req)) {
1346 atomic_inc(&dev->ctrl.abort_limit);
1347 return BLK_EH_RESET_TIMER;
1348 }
1349
1350 abort_req->timeout = ADMIN_TIMEOUT;
1351 abort_req->end_io_data = NULL;
1352 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1353
31c7c7d2
CH
1354 /*
1355 * The aborted req will be completed on receiving the abort req.
1356 * We enable the timer again. If hit twice, it'll cause a device reset,
1357 * as the device then is in a faulty state.
1358 */
1359 return BLK_EH_RESET_TIMER;
c30341dc
KB
1360}
1361
a4aea562
MB
1362static void nvme_free_queue(struct nvme_queue *nvmeq)
1363{
88a041f4 1364 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq->q_depth),
9e866774 1365 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
63223078
CH
1366 if (!nvmeq->sq_cmds)
1367 return;
0f238ff5 1368
63223078 1369 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
88a041f4 1370 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
63223078
CH
1371 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1372 } else {
88a041f4 1373 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq->q_depth),
63223078 1374 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
0f238ff5 1375 }
9e866774
MW
1376}
1377
a1a5ef99 1378static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1379{
1380 int i;
1381
d858e5f0 1382 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1383 dev->ctrl.queue_count--;
147b27e4 1384 nvme_free_queue(&dev->queues[i]);
121c7ad4 1385 }
22404274
KB
1386}
1387
4d115420
KB
1388/**
1389 * nvme_suspend_queue - put queue into suspended state
40581d1a 1390 * @nvmeq: queue to suspend
4d115420
KB
1391 */
1392static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1393{
4e224106 1394 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
2b25d981 1395 return 1;
a09115b2 1396
4e224106 1397 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
d1f06f4a 1398 mb();
a09115b2 1399
4e224106 1400 nvmeq->dev->online_queues--;
1c63dc66 1401 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
c81545f9 1402 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
7c349dde
KB
1403 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1404 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
4d115420
KB
1405 return 0;
1406}
b60503ba 1407
8fae268b
KB
1408static void nvme_suspend_io_queues(struct nvme_dev *dev)
1409{
1410 int i;
1411
1412 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1413 nvme_suspend_queue(&dev->queues[i]);
1414}
1415
a5cdb68c 1416static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1417{
147b27e4 1418 struct nvme_queue *nvmeq = &dev->queues[0];
4d115420 1419
a5cdb68c
KB
1420 if (shutdown)
1421 nvme_shutdown_ctrl(&dev->ctrl);
1422 else
20d0dfe6 1423 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
07836e65 1424
0b2a8a9f 1425 nvme_poll_irqdisable(nvmeq, -1);
b60503ba
MW
1426}
1427
8ffaadf7
JD
1428static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1429 int entry_size)
1430{
1431 int q_depth = dev->q_depth;
5fd4ce1b
CH
1432 unsigned q_size_aligned = roundup(q_depth * entry_size,
1433 dev->ctrl.page_size);
8ffaadf7
JD
1434
1435 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1436 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1437 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1438 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1439
1440 /*
1441 * Ensure the reduced q_depth is above some threshold where it
1442 * would be better to map queues in system memory with the
1443 * original depth
1444 */
1445 if (q_depth < 64)
1446 return -ENOMEM;
1447 }
1448
1449 return q_depth;
1450}
1451
1452static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1453 int qid, int depth)
1454{
0f238ff5
LG
1455 struct pci_dev *pdev = to_pci_dev(dev->dev);
1456
1457 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1458 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1459 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1460 nvmeq->sq_cmds);
63223078
CH
1461 if (nvmeq->sq_dma_addr) {
1462 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1463 return 0;
1464 }
0f238ff5 1465 }
8ffaadf7 1466
63223078
CH
1467 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1468 &nvmeq->sq_dma_addr, GFP_KERNEL);
815c6704
KB
1469 if (!nvmeq->sq_cmds)
1470 return -ENOMEM;
8ffaadf7
JD
1471 return 0;
1472}
1473
a6ff7262 1474static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1475{
147b27e4 1476 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1477
62314e40
KB
1478 if (dev->ctrl.queue_count > qid)
1479 return 0;
b60503ba 1480
750afb08
LC
1481 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1482 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1483 if (!nvmeq->cqes)
1484 goto free_nvmeq;
b60503ba 1485
8ffaadf7 1486 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1487 goto free_cqdma;
1488
091b6092 1489 nvmeq->dev = dev;
1ab0cd69 1490 spin_lock_init(&nvmeq->sq_lock);
3a7afd8e 1491 spin_lock_init(&nvmeq->cq_poll_lock);
b60503ba 1492 nvmeq->cq_head = 0;
82123460 1493 nvmeq->cq_phase = 1;
b80d5ccc 1494 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1495 nvmeq->q_depth = depth;
c30341dc 1496 nvmeq->qid = qid;
d858e5f0 1497 dev->ctrl.queue_count++;
36a7e993 1498
147b27e4 1499 return 0;
b60503ba
MW
1500
1501 free_cqdma:
e75ec752 1502 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1503 nvmeq->cq_dma_addr);
1504 free_nvmeq:
147b27e4 1505 return -ENOMEM;
b60503ba
MW
1506}
1507
dca51e78 1508static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1509{
0ff199cb
CH
1510 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1511 int nr = nvmeq->dev->ctrl.instance;
1512
1513 if (use_threaded_interrupts) {
1514 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1515 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1516 } else {
1517 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1518 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1519 }
3001082c
MW
1520}
1521
22404274 1522static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1523{
22404274 1524 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1525
22404274 1526 nvmeq->sq_tail = 0;
04f3eafd 1527 nvmeq->last_sq_tail = 0;
22404274
KB
1528 nvmeq->cq_head = 0;
1529 nvmeq->cq_phase = 1;
b80d5ccc 1530 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1531 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1532 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1533 dev->online_queues++;
3a7afd8e 1534 wmb(); /* ensure the first interrupt sees the initialization */
22404274
KB
1535}
1536
4b04cc6a 1537static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
22404274
KB
1538{
1539 struct nvme_dev *dev = nvmeq->dev;
1540 int result;
7c349dde 1541 u16 vector = 0;
3f85d50b 1542
d1ed6aa1
CH
1543 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1544
22b55601
KB
1545 /*
1546 * A queue's vector matches the queue identifier unless the controller
1547 * has only one vector available.
1548 */
4b04cc6a
JA
1549 if (!polled)
1550 vector = dev->num_vecs == 1 ? 0 : qid;
1551 else
7c349dde 1552 set_bit(NVMEQ_POLLED, &nvmeq->flags);
4b04cc6a 1553
a8e3e0bb 1554 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
ded45505
KB
1555 if (result)
1556 return result;
b60503ba
MW
1557
1558 result = adapter_alloc_sq(dev, qid, nvmeq);
1559 if (result < 0)
ded45505
KB
1560 return result;
1561 else if (result)
b60503ba
MW
1562 goto release_cq;
1563
a8e3e0bb 1564 nvmeq->cq_vector = vector;
161b8be2 1565 nvme_init_queue(nvmeq, qid);
4b04cc6a 1566
7c349dde
KB
1567 if (!polled) {
1568 nvmeq->cq_vector = vector;
4b04cc6a
JA
1569 result = queue_request_irq(nvmeq);
1570 if (result < 0)
1571 goto release_sq;
1572 }
b60503ba 1573
4e224106 1574 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
22404274 1575 return result;
b60503ba 1576
a8e3e0bb 1577release_sq:
f25a2dfc 1578 dev->online_queues--;
b60503ba 1579 adapter_delete_sq(dev, qid);
a8e3e0bb 1580release_cq:
b60503ba 1581 adapter_delete_cq(dev, qid);
22404274 1582 return result;
b60503ba
MW
1583}
1584
f363b089 1585static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1586 .queue_rq = nvme_queue_rq,
77f02a7a 1587 .complete = nvme_pci_complete_rq,
a4aea562 1588 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1589 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1590 .init_request = nvme_init_request,
a4aea562
MB
1591 .timeout = nvme_timeout,
1592};
1593
f363b089 1594static const struct blk_mq_ops nvme_mq_ops = {
376f7ef8
CH
1595 .queue_rq = nvme_queue_rq,
1596 .complete = nvme_pci_complete_rq,
1597 .commit_rqs = nvme_commit_rqs,
1598 .init_hctx = nvme_init_hctx,
1599 .init_request = nvme_init_request,
1600 .map_queues = nvme_pci_map_queues,
1601 .timeout = nvme_timeout,
1602 .poll = nvme_poll,
dabcefab
JA
1603};
1604
ea191d2f
KB
1605static void nvme_dev_remove_admin(struct nvme_dev *dev)
1606{
1c63dc66 1607 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1608 /*
1609 * If the controller was reset during removal, it's possible
1610 * user requests may be waiting on a stopped queue. Start the
1611 * queue to flush these to completion.
1612 */
c81545f9 1613 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1c63dc66 1614 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1615 blk_mq_free_tag_set(&dev->admin_tagset);
1616 }
1617}
1618
a4aea562
MB
1619static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1620{
1c63dc66 1621 if (!dev->ctrl.admin_q) {
a4aea562
MB
1622 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1623 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c 1624
38dabe21 1625 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
a4aea562 1626 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1627 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
d43f1ccf 1628 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
d3484991 1629 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1630 dev->admin_tagset.driver_data = dev;
1631
1632 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1633 return -ENOMEM;
34b6c231 1634 dev->ctrl.admin_tagset = &dev->admin_tagset;
a4aea562 1635
1c63dc66
CH
1636 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1637 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1638 blk_mq_free_tag_set(&dev->admin_tagset);
1639 return -ENOMEM;
1640 }
1c63dc66 1641 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1642 nvme_dev_remove_admin(dev);
1c63dc66 1643 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1644 return -ENODEV;
1645 }
0fb59cbc 1646 } else
c81545f9 1647 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
a4aea562
MB
1648
1649 return 0;
1650}
1651
97f6ef64
XY
1652static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1653{
1654 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1655}
1656
1657static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1658{
1659 struct pci_dev *pdev = to_pci_dev(dev->dev);
1660
1661 if (size <= dev->bar_mapped_size)
1662 return 0;
1663 if (size > pci_resource_len(pdev, 0))
1664 return -ENOMEM;
1665 if (dev->bar)
1666 iounmap(dev->bar);
1667 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1668 if (!dev->bar) {
1669 dev->bar_mapped_size = 0;
1670 return -ENOMEM;
1671 }
1672 dev->bar_mapped_size = size;
1673 dev->dbs = dev->bar + NVME_REG_DBS;
1674
1675 return 0;
1676}
1677
01ad0990 1678static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1679{
ba47e386 1680 int result;
b60503ba
MW
1681 u32 aqa;
1682 struct nvme_queue *nvmeq;
1683
97f6ef64
XY
1684 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1685 if (result < 0)
1686 return result;
1687
8ef2074d 1688 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1689 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1690
7a67cbea
CH
1691 if (dev->subsystem &&
1692 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1693 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1694
20d0dfe6 1695 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
ba47e386
MW
1696 if (result < 0)
1697 return result;
b60503ba 1698
a6ff7262 1699 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1700 if (result)
1701 return result;
b60503ba 1702
147b27e4 1703 nvmeq = &dev->queues[0];
b60503ba
MW
1704 aqa = nvmeq->q_depth - 1;
1705 aqa |= aqa << 16;
1706
7a67cbea
CH
1707 writel(aqa, dev->bar + NVME_REG_AQA);
1708 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1709 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1710
20d0dfe6 1711 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
025c557a 1712 if (result)
d4875622 1713 return result;
a4aea562 1714
2b25d981 1715 nvmeq->cq_vector = 0;
161b8be2 1716 nvme_init_queue(nvmeq, 0);
dca51e78 1717 result = queue_request_irq(nvmeq);
758dd7fd 1718 if (result) {
7c349dde 1719 dev->online_queues--;
d4875622 1720 return result;
758dd7fd 1721 }
025c557a 1722
4e224106 1723 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
b60503ba
MW
1724 return result;
1725}
1726
749941f2 1727static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1728{
4b04cc6a 1729 unsigned i, max, rw_queues;
749941f2 1730 int ret = 0;
42f61420 1731
d858e5f0 1732 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1733 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1734 ret = -ENOMEM;
42f61420 1735 break;
749941f2
CH
1736 }
1737 }
42f61420 1738
d858e5f0 1739 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
e20ba6e1
CH
1740 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1741 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1742 dev->io_queues[HCTX_TYPE_READ];
4b04cc6a
JA
1743 } else {
1744 rw_queues = max;
1745 }
1746
949928c1 1747 for (i = dev->online_queues; i <= max; i++) {
4b04cc6a
JA
1748 bool polled = i > rw_queues;
1749
1750 ret = nvme_create_queue(&dev->queues[i], i, polled);
d4875622 1751 if (ret)
42f61420 1752 break;
27e8166c 1753 }
749941f2
CH
1754
1755 /*
1756 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1757 * than the desired amount of queues, and even a controller without
1758 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1759 * be useful to upgrade a buggy firmware for example.
1760 */
1761 return ret >= 0 ? 0 : ret;
b60503ba
MW
1762}
1763
202021c1
SB
1764static ssize_t nvme_cmb_show(struct device *dev,
1765 struct device_attribute *attr,
1766 char *buf)
1767{
1768 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1769
c965809c 1770 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1771 ndev->cmbloc, ndev->cmbsz);
1772}
1773static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1774
88de4598 1775static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1776{
88de4598
CH
1777 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1778
1779 return 1ULL << (12 + 4 * szu);
1780}
1781
1782static u32 nvme_cmb_size(struct nvme_dev *dev)
1783{
1784 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1785}
1786
f65efd6d 1787static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1788{
88de4598 1789 u64 size, offset;
8ffaadf7
JD
1790 resource_size_t bar_size;
1791 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1792 int bar;
8ffaadf7 1793
9fe5c59f
KB
1794 if (dev->cmb_size)
1795 return;
1796
7a67cbea 1797 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1798 if (!dev->cmbsz)
1799 return;
202021c1 1800 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1801
88de4598
CH
1802 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1803 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1804 bar = NVME_CMB_BIR(dev->cmbloc);
1805 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1806
1807 if (offset > bar_size)
f65efd6d 1808 return;
8ffaadf7
JD
1809
1810 /*
1811 * Controllers may support a CMB size larger than their BAR,
1812 * for example, due to being behind a bridge. Reduce the CMB to
1813 * the reported size of the BAR
1814 */
1815 if (size > bar_size - offset)
1816 size = bar_size - offset;
1817
0f238ff5
LG
1818 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1819 dev_warn(dev->ctrl.device,
1820 "failed to register the CMB\n");
f65efd6d 1821 return;
0f238ff5
LG
1822 }
1823
8ffaadf7 1824 dev->cmb_size = size;
0f238ff5
LG
1825 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1826
1827 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1828 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1829 pci_p2pmem_publish(pdev, true);
f65efd6d
CH
1830
1831 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1832 &dev_attr_cmb.attr, NULL))
1833 dev_warn(dev->ctrl.device,
1834 "failed to add sysfs attribute for CMB\n");
8ffaadf7
JD
1835}
1836
1837static inline void nvme_release_cmb(struct nvme_dev *dev)
1838{
0f238ff5 1839 if (dev->cmb_size) {
1c78f773
MG
1840 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1841 &dev_attr_cmb.attr, NULL);
0f238ff5 1842 dev->cmb_size = 0;
8ffaadf7
JD
1843 }
1844}
1845
87ad72a5
CH
1846static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1847{
4033f35d 1848 u64 dma_addr = dev->host_mem_descs_dma;
87ad72a5 1849 struct nvme_command c;
87ad72a5
CH
1850 int ret;
1851
87ad72a5
CH
1852 memset(&c, 0, sizeof(c));
1853 c.features.opcode = nvme_admin_set_features;
1854 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1855 c.features.dword11 = cpu_to_le32(bits);
1856 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1857 ilog2(dev->ctrl.page_size));
1858 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1859 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1860 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1861
1862 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1863 if (ret) {
1864 dev_warn(dev->ctrl.device,
1865 "failed to set host mem (err %d, flags %#x).\n",
1866 ret, bits);
1867 }
87ad72a5
CH
1868 return ret;
1869}
1870
1871static void nvme_free_host_mem(struct nvme_dev *dev)
1872{
1873 int i;
1874
1875 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1876 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1877 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1878
cc667f6d
LD
1879 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1880 le64_to_cpu(desc->addr),
1881 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1882 }
1883
1884 kfree(dev->host_mem_desc_bufs);
1885 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
1886 dma_free_coherent(dev->dev,
1887 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1888 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 1889 dev->host_mem_descs = NULL;
7e5dd57e 1890 dev->nr_host_mem_descs = 0;
87ad72a5
CH
1891}
1892
92dc6895
CH
1893static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1894 u32 chunk_size)
9d713c2b 1895{
87ad72a5 1896 struct nvme_host_mem_buf_desc *descs;
92dc6895 1897 u32 max_entries, len;
4033f35d 1898 dma_addr_t descs_dma;
2ee0e4ed 1899 int i = 0;
87ad72a5 1900 void **bufs;
6fbcde66 1901 u64 size, tmp;
87ad72a5 1902
87ad72a5
CH
1903 tmp = (preferred + chunk_size - 1);
1904 do_div(tmp, chunk_size);
1905 max_entries = tmp;
044a9df1
CH
1906
1907 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1908 max_entries = dev->ctrl.hmmaxd;
1909
750afb08
LC
1910 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1911 &descs_dma, GFP_KERNEL);
87ad72a5
CH
1912 if (!descs)
1913 goto out;
1914
1915 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1916 if (!bufs)
1917 goto out_free_descs;
1918
244a8fe4 1919 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
1920 dma_addr_t dma_addr;
1921
50cdb7c6 1922 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1923 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1924 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1925 if (!bufs[i])
1926 break;
1927
1928 descs[i].addr = cpu_to_le64(dma_addr);
1929 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1930 i++;
1931 }
1932
92dc6895 1933 if (!size)
87ad72a5 1934 goto out_free_bufs;
87ad72a5 1935
87ad72a5
CH
1936 dev->nr_host_mem_descs = i;
1937 dev->host_mem_size = size;
1938 dev->host_mem_descs = descs;
4033f35d 1939 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
1940 dev->host_mem_desc_bufs = bufs;
1941 return 0;
1942
1943out_free_bufs:
1944 while (--i >= 0) {
1945 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1946
cc667f6d
LD
1947 dma_free_attrs(dev->dev, size, bufs[i],
1948 le64_to_cpu(descs[i].addr),
1949 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
87ad72a5
CH
1950 }
1951
1952 kfree(bufs);
1953out_free_descs:
4033f35d
CH
1954 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1955 descs_dma);
87ad72a5 1956out:
87ad72a5
CH
1957 dev->host_mem_descs = NULL;
1958 return -ENOMEM;
1959}
1960
92dc6895
CH
1961static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1962{
1963 u32 chunk_size;
1964
1965 /* start big and work our way down */
30f92d62 1966 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
044a9df1 1967 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
92dc6895
CH
1968 chunk_size /= 2) {
1969 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1970 if (!min || dev->host_mem_size >= min)
1971 return 0;
1972 nvme_free_host_mem(dev);
1973 }
1974 }
1975
1976 return -ENOMEM;
1977}
1978
9620cfba 1979static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
1980{
1981 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1982 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1983 u64 min = (u64)dev->ctrl.hmmin * 4096;
1984 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 1985 int ret;
87ad72a5
CH
1986
1987 preferred = min(preferred, max);
1988 if (min > max) {
1989 dev_warn(dev->ctrl.device,
1990 "min host memory (%lld MiB) above limit (%d MiB).\n",
1991 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1992 nvme_free_host_mem(dev);
9620cfba 1993 return 0;
87ad72a5
CH
1994 }
1995
1996 /*
1997 * If we already have a buffer allocated check if we can reuse it.
1998 */
1999 if (dev->host_mem_descs) {
2000 if (dev->host_mem_size >= min)
2001 enable_bits |= NVME_HOST_MEM_RETURN;
2002 else
2003 nvme_free_host_mem(dev);
2004 }
2005
2006 if (!dev->host_mem_descs) {
92dc6895
CH
2007 if (nvme_alloc_host_mem(dev, min, preferred)) {
2008 dev_warn(dev->ctrl.device,
2009 "failed to allocate host memory buffer.\n");
9620cfba 2010 return 0; /* controller must work without HMB */
92dc6895
CH
2011 }
2012
2013 dev_info(dev->ctrl.device,
2014 "allocated %lld MiB host memory buffer.\n",
2015 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
2016 }
2017
9620cfba
CH
2018 ret = nvme_set_host_mem(dev, enable_bits);
2019 if (ret)
87ad72a5 2020 nvme_free_host_mem(dev);
9620cfba 2021 return ret;
9d713c2b
KB
2022}
2023
612b7286
ML
2024/*
2025 * nirqs is the number of interrupts available for write and read
2026 * queues. The core already reserved an interrupt for the admin queue.
2027 */
2028static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
3b6592f7 2029{
612b7286
ML
2030 struct nvme_dev *dev = affd->priv;
2031 unsigned int nr_read_queues;
3b6592f7
JA
2032
2033 /*
612b7286
ML
2034 * If there is no interupt available for queues, ensure that
2035 * the default queue is set to 1. The affinity set size is
2036 * also set to one, but the irq core ignores it for this case.
2037 *
2038 * If only one interrupt is available or 'write_queue' == 0, combine
2039 * write and read queues.
2040 *
2041 * If 'write_queues' > 0, ensure it leaves room for at least one read
2042 * queue.
3b6592f7 2043 */
612b7286
ML
2044 if (!nrirqs) {
2045 nrirqs = 1;
2046 nr_read_queues = 0;
2047 } else if (nrirqs == 1 || !write_queues) {
2048 nr_read_queues = 0;
2049 } else if (write_queues >= nrirqs) {
2050 nr_read_queues = 1;
3b6592f7 2051 } else {
612b7286 2052 nr_read_queues = nrirqs - write_queues;
3b6592f7 2053 }
612b7286
ML
2054
2055 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2056 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2057 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2058 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2059 affd->nr_sets = nr_read_queues ? 2 : 1;
3b6592f7
JA
2060}
2061
6451fe73 2062static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
3b6592f7
JA
2063{
2064 struct pci_dev *pdev = to_pci_dev(dev->dev);
3b6592f7 2065 struct irq_affinity affd = {
9cfef55b 2066 .pre_vectors = 1,
612b7286
ML
2067 .calc_sets = nvme_calc_irq_sets,
2068 .priv = dev,
3b6592f7 2069 };
6451fe73
JA
2070 unsigned int irq_queues, this_p_queues;
2071
2072 /*
2073 * Poll queues don't need interrupts, but we need at least one IO
2074 * queue left over for non-polled IO.
2075 */
2076 this_p_queues = poll_queues;
2077 if (this_p_queues >= nr_io_queues) {
2078 this_p_queues = nr_io_queues - 1;
2079 irq_queues = 1;
2080 } else {
c45b1fa2 2081 irq_queues = nr_io_queues - this_p_queues + 1;
6451fe73
JA
2082 }
2083 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
3b6592f7 2084
612b7286
ML
2085 /* Initialize for the single interrupt case */
2086 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2087 dev->io_queues[HCTX_TYPE_READ] = 0;
3b6592f7 2088
612b7286
ML
2089 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2090 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
3b6592f7
JA
2091}
2092
8fae268b
KB
2093static void nvme_disable_io_queues(struct nvme_dev *dev)
2094{
2095 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2096 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2097}
2098
8d85fce7 2099static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2100{
147b27e4 2101 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 2102 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
2103 int result, nr_io_queues;
2104 unsigned long size;
b60503ba 2105
3b6592f7 2106 nr_io_queues = max_io_queues();
9a0be7ab
CH
2107 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2108 if (result < 0)
1b23484b 2109 return result;
9a0be7ab 2110
f5fa90dc 2111 if (nr_io_queues == 0)
a5229050 2112 return 0;
4e224106
CH
2113
2114 clear_bit(NVMEQ_ENABLED, &adminq->flags);
b60503ba 2115
0f238ff5 2116 if (dev->cmb_use_sqes) {
8ffaadf7
JD
2117 result = nvme_cmb_qdepth(dev, nr_io_queues,
2118 sizeof(struct nvme_command));
2119 if (result > 0)
2120 dev->q_depth = result;
2121 else
0f238ff5 2122 dev->cmb_use_sqes = false;
8ffaadf7
JD
2123 }
2124
97f6ef64
XY
2125 do {
2126 size = db_bar_size(dev, nr_io_queues);
2127 result = nvme_remap_bar(dev, size);
2128 if (!result)
2129 break;
2130 if (!--nr_io_queues)
2131 return -ENOMEM;
2132 } while (1);
2133 adminq->q_db = dev->dbs;
f1938f6e 2134
8fae268b 2135 retry:
9d713c2b 2136 /* Deregister the admin queue's interrupt */
0ff199cb 2137 pci_free_irq(pdev, 0, adminq);
9d713c2b 2138
e32efbfc
JA
2139 /*
2140 * If we enable msix early due to not intx, disable it again before
2141 * setting up the full range we need.
2142 */
dca51e78 2143 pci_free_irq_vectors(pdev);
3b6592f7
JA
2144
2145 result = nvme_setup_irqs(dev, nr_io_queues);
22b55601 2146 if (result <= 0)
dca51e78 2147 return -EIO;
3b6592f7 2148
22b55601 2149 dev->num_vecs = result;
4b04cc6a 2150 result = max(result - 1, 1);
e20ba6e1 2151 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
fa08a396 2152
063a8096
MW
2153 /*
2154 * Should investigate if there's a performance win from allocating
2155 * more queues than interrupt vectors; it might allow the submission
2156 * path to scale better, even if the receive path is limited by the
2157 * number of interrupts.
2158 */
dca51e78 2159 result = queue_request_irq(adminq);
7c349dde 2160 if (result)
d4875622 2161 return result;
4e224106 2162 set_bit(NVMEQ_ENABLED, &adminq->flags);
8fae268b
KB
2163
2164 result = nvme_create_io_queues(dev);
2165 if (result || dev->online_queues < 2)
2166 return result;
2167
2168 if (dev->online_queues - 1 < dev->max_qid) {
2169 nr_io_queues = dev->online_queues - 1;
2170 nvme_disable_io_queues(dev);
2171 nvme_suspend_io_queues(dev);
2172 goto retry;
2173 }
2174 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2175 dev->io_queues[HCTX_TYPE_DEFAULT],
2176 dev->io_queues[HCTX_TYPE_READ],
2177 dev->io_queues[HCTX_TYPE_POLL]);
2178 return 0;
b60503ba
MW
2179}
2180
2a842aca 2181static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 2182{
db3cbfff 2183 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 2184
db3cbfff 2185 blk_mq_free_request(req);
d1ed6aa1 2186 complete(&nvmeq->delete_done);
a5768aa8
KB
2187}
2188
2a842aca 2189static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 2190{
db3cbfff 2191 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 2192
d1ed6aa1
CH
2193 if (error)
2194 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
db3cbfff
KB
2195
2196 nvme_del_queue_end(req, error);
a5768aa8
KB
2197}
2198
db3cbfff 2199static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 2200{
db3cbfff
KB
2201 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2202 struct request *req;
2203 struct nvme_command cmd;
bda4e0fb 2204
db3cbfff
KB
2205 memset(&cmd, 0, sizeof(cmd));
2206 cmd.delete_queue.opcode = opcode;
2207 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 2208
eb71f435 2209 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
2210 if (IS_ERR(req))
2211 return PTR_ERR(req);
bda4e0fb 2212
db3cbfff
KB
2213 req->timeout = ADMIN_TIMEOUT;
2214 req->end_io_data = nvmeq;
2215
d1ed6aa1 2216 init_completion(&nvmeq->delete_done);
db3cbfff
KB
2217 blk_execute_rq_nowait(q, NULL, req, false,
2218 opcode == nvme_admin_delete_cq ?
2219 nvme_del_cq_end : nvme_del_queue_end);
2220 return 0;
bda4e0fb
KB
2221}
2222
8fae268b 2223static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
a5768aa8 2224{
5271edd4 2225 int nr_queues = dev->online_queues - 1, sent = 0;
db3cbfff 2226 unsigned long timeout;
a5768aa8 2227
db3cbfff 2228 retry:
5271edd4
CH
2229 timeout = ADMIN_TIMEOUT;
2230 while (nr_queues > 0) {
2231 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2232 break;
2233 nr_queues--;
2234 sent++;
db3cbfff 2235 }
d1ed6aa1
CH
2236 while (sent) {
2237 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2238
2239 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
5271edd4
CH
2240 timeout);
2241 if (timeout == 0)
2242 return false;
d1ed6aa1
CH
2243
2244 /* handle any remaining CQEs */
2245 if (opcode == nvme_admin_delete_cq &&
2246 !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2247 nvme_poll_irqdisable(nvmeq, -1);
2248
2249 sent--;
5271edd4
CH
2250 if (nr_queues)
2251 goto retry;
2252 }
2253 return true;
a5768aa8
KB
2254}
2255
422ef0c7 2256/*
2b1b7e78 2257 * return error value only when tagset allocation failed
422ef0c7 2258 */
8d85fce7 2259static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2260{
2b1b7e78
JW
2261 int ret;
2262
5bae7f73 2263 if (!dev->ctrl.tagset) {
376f7ef8 2264 dev->tagset.ops = &nvme_mq_ops;
ffe7704d 2265 dev->tagset.nr_hw_queues = dev->online_queues - 1;
ed92ad37
CH
2266 dev->tagset.nr_maps = 2; /* default + read */
2267 if (dev->io_queues[HCTX_TYPE_POLL])
2268 dev->tagset.nr_maps++;
ffe7704d
KB
2269 dev->tagset.timeout = NVME_IO_TIMEOUT;
2270 dev->tagset.numa_node = dev_to_node(dev->dev);
2271 dev->tagset.queue_depth =
a4aea562 2272 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
d43f1ccf 2273 dev->tagset.cmd_size = sizeof(struct nvme_iod);
ffe7704d
KB
2274 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2275 dev->tagset.driver_data = dev;
b60503ba 2276
2b1b7e78
JW
2277 ret = blk_mq_alloc_tag_set(&dev->tagset);
2278 if (ret) {
2279 dev_warn(dev->ctrl.device,
2280 "IO queues tagset allocation failed %d\n", ret);
2281 return ret;
2282 }
5bae7f73 2283 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
2284 } else {
2285 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2286
2287 /* Free previously allocated queues that are no longer usable */
2288 nvme_free_queues(dev, dev->online_queues);
ffe7704d 2289 }
949928c1 2290
e8fd41bb 2291 nvme_dbbuf_set(dev);
e1e5e564 2292 return 0;
b60503ba
MW
2293}
2294
b00a726a 2295static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2296{
b00a726a 2297 int result = -ENOMEM;
e75ec752 2298 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2299
2300 if (pci_enable_device_mem(pdev))
2301 return result;
2302
0877cb0d 2303 pci_set_master(pdev);
0877cb0d 2304
e75ec752
CH
2305 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2306 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2307 goto disable;
0877cb0d 2308
7a67cbea 2309 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2310 result = -ENODEV;
b00a726a 2311 goto disable;
0e53d180 2312 }
e32efbfc
JA
2313
2314 /*
a5229050
KB
2315 * Some devices and/or platforms don't advertise or work with INTx
2316 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2317 * adjust this later.
e32efbfc 2318 */
dca51e78
CH
2319 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2320 if (result < 0)
2321 return result;
e32efbfc 2322
20d0dfe6 2323 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2324
20d0dfe6 2325 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2326 io_queue_depth);
20d0dfe6 2327 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2328 dev->dbs = dev->bar + 4096;
1f390c1f
SG
2329
2330 /*
2331 * Temporary fix for the Apple controller found in the MacBook8,1 and
2332 * some MacBook7,1 to avoid controller resets and data loss.
2333 */
2334 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2335 dev->q_depth = 2;
9bdcfb10
CH
2336 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2337 "set queue depth=%u to work around controller resets\n",
1f390c1f 2338 dev->q_depth);
d554b5e1
MP
2339 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2340 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2341 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2342 dev->q_depth = 64;
2343 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2344 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2345 }
2346
f65efd6d 2347 nvme_map_cmb(dev);
202021c1 2348
a0a3408e
KB
2349 pci_enable_pcie_error_reporting(pdev);
2350 pci_save_state(pdev);
0877cb0d
KB
2351 return 0;
2352
2353 disable:
0877cb0d
KB
2354 pci_disable_device(pdev);
2355 return result;
2356}
2357
2358static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2359{
2360 if (dev->bar)
2361 iounmap(dev->bar);
a1f447b3 2362 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2363}
2364
2365static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 2366{
e75ec752
CH
2367 struct pci_dev *pdev = to_pci_dev(dev->dev);
2368
dca51e78 2369 pci_free_irq_vectors(pdev);
0877cb0d 2370
a0a3408e
KB
2371 if (pci_is_enabled(pdev)) {
2372 pci_disable_pcie_error_reporting(pdev);
e75ec752 2373 pci_disable_device(pdev);
4d115420 2374 }
4d115420
KB
2375}
2376
a5cdb68c 2377static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2378{
e43269e6 2379 bool dead = true, freeze = false;
302ad8cc 2380 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2381
77bf25ea 2382 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
2383 if (pci_is_enabled(pdev)) {
2384 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2385
ebef7368 2386 if (dev->ctrl.state == NVME_CTRL_LIVE ||
e43269e6
KB
2387 dev->ctrl.state == NVME_CTRL_RESETTING) {
2388 freeze = true;
302ad8cc 2389 nvme_start_freeze(&dev->ctrl);
e43269e6 2390 }
302ad8cc
KB
2391 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2392 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2393 }
c21377f8 2394
302ad8cc
KB
2395 /*
2396 * Give the controller a chance to complete all entered requests if
2397 * doing a safe shutdown.
2398 */
e43269e6
KB
2399 if (!dead && shutdown && freeze)
2400 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
9a915a5b
JW
2401
2402 nvme_stop_queues(&dev->ctrl);
87ad72a5 2403
64ee0ac0 2404 if (!dead && dev->ctrl.queue_count > 0) {
8fae268b 2405 nvme_disable_io_queues(dev);
a5cdb68c 2406 nvme_disable_admin_queue(dev, shutdown);
4d115420 2407 }
8fae268b
KB
2408 nvme_suspend_io_queues(dev);
2409 nvme_suspend_queue(&dev->queues[0]);
b00a726a 2410 nvme_pci_disable(dev);
07836e65 2411
e1958e65
ML
2412 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2413 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2414
2415 /*
2416 * The driver will not be starting up queues again if shutting down so
2417 * must flush all entered requests to their failed completion to avoid
2418 * deadlocking blk-mq hot-cpu notifier.
2419 */
c8e9e9b7 2420 if (shutdown) {
302ad8cc 2421 nvme_start_queues(&dev->ctrl);
c8e9e9b7
KB
2422 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2423 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2424 }
77bf25ea 2425 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2426}
2427
091b6092
MW
2428static int nvme_setup_prp_pools(struct nvme_dev *dev)
2429{
e75ec752 2430 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2431 PAGE_SIZE, PAGE_SIZE, 0);
2432 if (!dev->prp_page_pool)
2433 return -ENOMEM;
2434
99802a7a 2435 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2436 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2437 256, 256, 0);
2438 if (!dev->prp_small_pool) {
2439 dma_pool_destroy(dev->prp_page_pool);
2440 return -ENOMEM;
2441 }
091b6092
MW
2442 return 0;
2443}
2444
2445static void nvme_release_prp_pools(struct nvme_dev *dev)
2446{
2447 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2448 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2449}
2450
1673f1f0 2451static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2452{
1673f1f0 2453 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2454
f9f38e33 2455 nvme_dbbuf_dma_free(dev);
e75ec752 2456 put_device(dev->dev);
4af0e21c
KB
2457 if (dev->tagset.tags)
2458 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2459 if (dev->ctrl.admin_q)
2460 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2461 kfree(dev->queues);
e286bcfc 2462 free_opal_dev(dev->ctrl.opal_dev);
943e942e 2463 mempool_destroy(dev->iod_mempool);
5e82e952
KB
2464 kfree(dev);
2465}
2466
f58944e2
KB
2467static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2468{
237045fc 2469 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2 2470
d22524a4 2471 nvme_get_ctrl(&dev->ctrl);
69d9a99c 2472 nvme_dev_disable(dev, false);
9f9cafc1 2473 nvme_kill_queues(&dev->ctrl);
03e0f3a6 2474 if (!queue_work(nvme_wq, &dev->remove_work))
f58944e2
KB
2475 nvme_put_ctrl(&dev->ctrl);
2476}
2477
fd634f41 2478static void nvme_reset_work(struct work_struct *work)
5e82e952 2479{
d86c4d8e
CH
2480 struct nvme_dev *dev =
2481 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2482 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2483 int result = -ENODEV;
2b1b7e78 2484 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
5e82e952 2485
82b057ca 2486 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2487 goto out;
5e82e952 2488
fd634f41
CH
2489 /*
2490 * If we're called to reset a live controller first shut it down before
2491 * moving on.
2492 */
b00a726a 2493 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2494 nvme_dev_disable(dev, false);
5e82e952 2495
5c959d73 2496 mutex_lock(&dev->shutdown_lock);
b00a726a 2497 result = nvme_pci_enable(dev);
f0b50732 2498 if (result)
4726bcf3 2499 goto out_unlock;
f0b50732 2500
01ad0990 2501 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2502 if (result)
4726bcf3 2503 goto out_unlock;
f0b50732 2504
0fb59cbc
KB
2505 result = nvme_alloc_admin_tags(dev);
2506 if (result)
4726bcf3 2507 goto out_unlock;
b9afca3e 2508
943e942e
JA
2509 /*
2510 * Limit the max command size to prevent iod->sg allocations going
2511 * over a single page.
2512 */
2513 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2514 dev->ctrl.max_segments = NVME_MAX_SEGS;
5c959d73
KB
2515 mutex_unlock(&dev->shutdown_lock);
2516
2517 /*
2518 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2519 * initializing procedure here.
2520 */
2521 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2522 dev_warn(dev->ctrl.device,
2523 "failed to mark controller CONNECTING\n");
2524 goto out;
2525 }
943e942e 2526
ce4541f4
CH
2527 result = nvme_init_identify(&dev->ctrl);
2528 if (result)
f58944e2 2529 goto out;
ce4541f4 2530
e286bcfc
SB
2531 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2532 if (!dev->ctrl.opal_dev)
2533 dev->ctrl.opal_dev =
2534 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2535 else if (was_suspend)
2536 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2537 } else {
2538 free_opal_dev(dev->ctrl.opal_dev);
2539 dev->ctrl.opal_dev = NULL;
4f1244c8 2540 }
a98e58e5 2541
f9f38e33
HK
2542 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2543 result = nvme_dbbuf_dma_alloc(dev);
2544 if (result)
2545 dev_warn(dev->dev,
2546 "unable to allocate dma for dbbuf\n");
2547 }
2548
9620cfba
CH
2549 if (dev->ctrl.hmpre) {
2550 result = nvme_setup_host_mem(dev);
2551 if (result < 0)
2552 goto out;
2553 }
87ad72a5 2554
f0b50732 2555 result = nvme_setup_io_queues(dev);
badc34d4 2556 if (result)
f58944e2 2557 goto out;
f0b50732 2558
2659e57b
CH
2559 /*
2560 * Keep the controller around but remove all namespaces if we don't have
2561 * any working I/O queue.
2562 */
3cf519b5 2563 if (dev->online_queues < 2) {
1b3c47c1 2564 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2565 nvme_kill_queues(&dev->ctrl);
5bae7f73 2566 nvme_remove_namespaces(&dev->ctrl);
2b1b7e78 2567 new_state = NVME_CTRL_ADMIN_ONLY;
3cf519b5 2568 } else {
25646264 2569 nvme_start_queues(&dev->ctrl);
302ad8cc 2570 nvme_wait_freeze(&dev->ctrl);
2b1b7e78
JW
2571 /* hit this only when allocate tagset fails */
2572 if (nvme_dev_add(dev))
2573 new_state = NVME_CTRL_ADMIN_ONLY;
302ad8cc 2574 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2575 }
2576
2b1b7e78
JW
2577 /*
2578 * If only admin queue live, keep it to do further investigation or
2579 * recovery.
2580 */
2581 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2582 dev_warn(dev->ctrl.device,
2583 "failed to mark controller state %d\n", new_state);
bb8d261e
CH
2584 goto out;
2585 }
92911a55 2586
d09f2b45 2587 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2588 return;
f0b50732 2589
4726bcf3
KB
2590 out_unlock:
2591 mutex_unlock(&dev->shutdown_lock);
3cf519b5 2592 out:
f58944e2 2593 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2594}
2595
5c8809e6 2596static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2597{
5c8809e6 2598 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2599 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2600
2601 if (pci_get_drvdata(pdev))
921920ab 2602 device_release_driver(&pdev->dev);
1673f1f0 2603 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2604}
2605
1c63dc66 2606static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2607{
1c63dc66 2608 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2609 return 0;
9ca97374
TH
2610}
2611
5fd4ce1b 2612static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2613{
5fd4ce1b
CH
2614 writel(val, to_nvme_dev(ctrl)->bar + off);
2615 return 0;
2616}
4cc06521 2617
7fd8930f
CH
2618static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2619{
2620 *val = readq(to_nvme_dev(ctrl)->bar + off);
2621 return 0;
4cc06521
KB
2622}
2623
97c12223
KB
2624static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2625{
2626 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2627
2628 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2629}
2630
1c63dc66 2631static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2632 .name = "pcie",
e439bb12 2633 .module = THIS_MODULE,
e0596ab2
LG
2634 .flags = NVME_F_METADATA_SUPPORTED |
2635 NVME_F_PCI_P2PDMA,
1c63dc66 2636 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2637 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2638 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2639 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2640 .submit_async_event = nvme_pci_submit_async_event,
97c12223 2641 .get_address = nvme_pci_get_address,
1c63dc66 2642};
4cc06521 2643
b00a726a
KB
2644static int nvme_dev_map(struct nvme_dev *dev)
2645{
b00a726a
KB
2646 struct pci_dev *pdev = to_pci_dev(dev->dev);
2647
a1f447b3 2648 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2649 return -ENODEV;
2650
97f6ef64 2651 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2652 goto release;
2653
9fa196e7 2654 return 0;
b00a726a 2655 release:
9fa196e7
MG
2656 pci_release_mem_regions(pdev);
2657 return -ENODEV;
b00a726a
KB
2658}
2659
8427bbc2 2660static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
2661{
2662 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2663 /*
2664 * Several Samsung devices seem to drop off the PCIe bus
2665 * randomly when APST is on and uses the deepest sleep state.
2666 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2667 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2668 * 950 PRO 256GB", but it seems to be restricted to two Dell
2669 * laptops.
2670 */
2671 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2672 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2673 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2674 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
2675 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2676 /*
2677 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
2678 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2679 * within few minutes after bootup on a Coffee Lake board -
2680 * ASUS PRIME Z370-A
8427bbc2
KHF
2681 */
2682 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
2683 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2684 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 2685 return NVME_QUIRK_NO_APST;
ff5350a8
AL
2686 }
2687
2688 return 0;
2689}
2690
18119775
KB
2691static void nvme_async_probe(void *data, async_cookie_t cookie)
2692{
2693 struct nvme_dev *dev = data;
80f513b5 2694
18119775
KB
2695 nvme_reset_ctrl_sync(&dev->ctrl);
2696 flush_work(&dev->ctrl.scan_work);
80f513b5 2697 nvme_put_ctrl(&dev->ctrl);
18119775
KB
2698}
2699
8d85fce7 2700static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2701{
a4aea562 2702 int node, result = -ENOMEM;
b60503ba 2703 struct nvme_dev *dev;
ff5350a8 2704 unsigned long quirks = id->driver_data;
943e942e 2705 size_t alloc_size;
b60503ba 2706
a4aea562
MB
2707 node = dev_to_node(&pdev->dev);
2708 if (node == NUMA_NO_NODE)
2fa84351 2709 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2710
2711 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2712 if (!dev)
2713 return -ENOMEM;
147b27e4 2714
3b6592f7
JA
2715 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2716 GFP_KERNEL, node);
b60503ba
MW
2717 if (!dev->queues)
2718 goto free;
2719
e75ec752 2720 dev->dev = get_device(&pdev->dev);
9a6b9458 2721 pci_set_drvdata(pdev, dev);
1c63dc66 2722
b00a726a
KB
2723 result = nvme_dev_map(dev);
2724 if (result)
b00c9b7a 2725 goto put_pci;
b00a726a 2726
d86c4d8e 2727 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2728 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2729 mutex_init(&dev->shutdown_lock);
b60503ba 2730
091b6092
MW
2731 result = nvme_setup_prp_pools(dev);
2732 if (result)
b00c9b7a 2733 goto unmap;
4cc06521 2734
8427bbc2 2735 quirks |= check_vendor_combination_bug(pdev);
ff5350a8 2736
943e942e
JA
2737 /*
2738 * Double check that our mempool alloc size will cover the biggest
2739 * command we support.
2740 */
2741 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2742 NVME_MAX_SEGS, true);
2743 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2744
2745 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2746 mempool_kfree,
2747 (void *) alloc_size,
2748 GFP_KERNEL, node);
2749 if (!dev->iod_mempool) {
2750 result = -ENOMEM;
2751 goto release_pools;
2752 }
2753
b6e44b4c
KB
2754 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2755 quirks);
2756 if (result)
2757 goto release_mempool;
2758
1b3c47c1
SG
2759 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2760
80f513b5 2761 nvme_get_ctrl(&dev->ctrl);
18119775 2762 async_schedule(nvme_async_probe, dev);
4caff8fc 2763
b60503ba
MW
2764 return 0;
2765
b6e44b4c
KB
2766 release_mempool:
2767 mempool_destroy(dev->iod_mempool);
0877cb0d 2768 release_pools:
091b6092 2769 nvme_release_prp_pools(dev);
b00c9b7a
CJ
2770 unmap:
2771 nvme_dev_unmap(dev);
a96d4f5c 2772 put_pci:
e75ec752 2773 put_device(dev->dev);
b60503ba
MW
2774 free:
2775 kfree(dev->queues);
b60503ba
MW
2776 kfree(dev);
2777 return result;
2778}
2779
775755ed 2780static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 2781{
a6739479 2782 struct nvme_dev *dev = pci_get_drvdata(pdev);
f263fbb8 2783 nvme_dev_disable(dev, false);
775755ed 2784}
f0d54a54 2785
775755ed
CH
2786static void nvme_reset_done(struct pci_dev *pdev)
2787{
f263fbb8 2788 struct nvme_dev *dev = pci_get_drvdata(pdev);
79c48ccf 2789 nvme_reset_ctrl_sync(&dev->ctrl);
f0d54a54
KB
2790}
2791
09ece142
KB
2792static void nvme_shutdown(struct pci_dev *pdev)
2793{
2794 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2795 nvme_dev_disable(dev, true);
09ece142
KB
2796}
2797
f58944e2
KB
2798/*
2799 * The driver's remove may be called on a device in a partially initialized
2800 * state. This function must not have any dependencies on the device state in
2801 * order to proceed.
2802 */
8d85fce7 2803static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2804{
2805 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2806
bb8d261e 2807 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
9a6b9458 2808 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2809
6db28eda 2810 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2811 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1d39e692 2812 nvme_dev_disable(dev, true);
cb4bfda6 2813 nvme_dev_remove_admin(dev);
6db28eda 2814 }
0ff9d4e1 2815
d86c4d8e 2816 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
2817 nvme_stop_ctrl(&dev->ctrl);
2818 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 2819 nvme_dev_disable(dev, true);
9fe5c59f 2820 nvme_release_cmb(dev);
87ad72a5 2821 nvme_free_host_mem(dev);
a4aea562 2822 nvme_dev_remove_admin(dev);
a1a5ef99 2823 nvme_free_queues(dev, 0);
d09f2b45 2824 nvme_uninit_ctrl(&dev->ctrl);
9a6b9458 2825 nvme_release_prp_pools(dev);
b00a726a 2826 nvme_dev_unmap(dev);
1673f1f0 2827 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2828}
2829
671a6018 2830#ifdef CONFIG_PM_SLEEP
cd638946
KB
2831static int nvme_suspend(struct device *dev)
2832{
2833 struct pci_dev *pdev = to_pci_dev(dev);
2834 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2835
a5cdb68c 2836 nvme_dev_disable(ndev, true);
cd638946
KB
2837 return 0;
2838}
2839
2840static int nvme_resume(struct device *dev)
2841{
2842 struct pci_dev *pdev = to_pci_dev(dev);
2843 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2844
d86c4d8e 2845 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2846 return 0;
cd638946 2847}
671a6018 2848#endif
cd638946
KB
2849
2850static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2851
a0a3408e
KB
2852static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2853 pci_channel_state_t state)
2854{
2855 struct nvme_dev *dev = pci_get_drvdata(pdev);
2856
2857 /*
2858 * A frozen channel requires a reset. When detected, this method will
2859 * shutdown the controller to quiesce. The controller will be restarted
2860 * after the slot reset through driver's slot_reset callback.
2861 */
a0a3408e
KB
2862 switch (state) {
2863 case pci_channel_io_normal:
2864 return PCI_ERS_RESULT_CAN_RECOVER;
2865 case pci_channel_io_frozen:
d011fb31
KB
2866 dev_warn(dev->ctrl.device,
2867 "frozen state error detected, reset controller\n");
a5cdb68c 2868 nvme_dev_disable(dev, false);
a0a3408e
KB
2869 return PCI_ERS_RESULT_NEED_RESET;
2870 case pci_channel_io_perm_failure:
d011fb31
KB
2871 dev_warn(dev->ctrl.device,
2872 "failure state error detected, request disconnect\n");
a0a3408e
KB
2873 return PCI_ERS_RESULT_DISCONNECT;
2874 }
2875 return PCI_ERS_RESULT_NEED_RESET;
2876}
2877
2878static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2879{
2880 struct nvme_dev *dev = pci_get_drvdata(pdev);
2881
1b3c47c1 2882 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2883 pci_restore_state(pdev);
d86c4d8e 2884 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2885 return PCI_ERS_RESULT_RECOVERED;
2886}
2887
2888static void nvme_error_resume(struct pci_dev *pdev)
2889{
72cd4cc2
KB
2890 struct nvme_dev *dev = pci_get_drvdata(pdev);
2891
2892 flush_work(&dev->ctrl.reset_work);
a0a3408e
KB
2893}
2894
1d352035 2895static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2896 .error_detected = nvme_error_detected,
b60503ba
MW
2897 .slot_reset = nvme_slot_reset,
2898 .resume = nvme_error_resume,
775755ed
CH
2899 .reset_prepare = nvme_reset_prepare,
2900 .reset_done = nvme_reset_done,
b60503ba
MW
2901};
2902
6eb0d698 2903static const struct pci_device_id nvme_id_table[] = {
106198ed 2904 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2905 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2906 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2907 { PCI_VDEVICE(INTEL, 0x0a53),
2908 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2909 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2910 { PCI_VDEVICE(INTEL, 0x0a54),
2911 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2912 NVME_QUIRK_DEALLOCATE_ZEROES, },
f99cb7af
DWF
2913 { PCI_VDEVICE(INTEL, 0x0a55),
2914 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2915 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0 2916 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
9abd68ef
JA
2917 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2918 NVME_QUIRK_MEDIUM_PRIO_SQ },
6299358d
JD
2919 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
2920 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
540c801c 2921 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
7b210e4e
CH
2922 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
2923 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
0302ae60
MP
2924 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2925 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
54adc010
GP
2926 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2927 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
2928 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2929 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2930 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2931 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
2932 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2933 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2934 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2935 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
608cc4b1
CH
2936 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2937 .driver_data = NVME_QUIRK_LIGHTNVM, },
2938 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2939 .driver_data = NVME_QUIRK_LIGHTNVM, },
ea48e877
WX
2940 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2941 .driver_data = NVME_QUIRK_LIGHTNVM, },
b60503ba 2942 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2943 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2944 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2945 { 0, }
2946};
2947MODULE_DEVICE_TABLE(pci, nvme_id_table);
2948
2949static struct pci_driver nvme_driver = {
2950 .name = "nvme",
2951 .id_table = nvme_id_table,
2952 .probe = nvme_probe,
8d85fce7 2953 .remove = nvme_remove,
09ece142 2954 .shutdown = nvme_shutdown,
cd638946
KB
2955 .driver = {
2956 .pm = &nvme_dev_pm_ops,
2957 },
74d986ab 2958 .sriov_configure = pci_sriov_configure_simple,
b60503ba
MW
2959 .err_handler = &nvme_err_handler,
2960};
2961
2962static int __init nvme_init(void)
2963{
81101540
CH
2964 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
2965 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
2966 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
612b7286 2967 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
9a6327d2 2968 return pci_register_driver(&nvme_driver);
b60503ba
MW
2969}
2970
2971static void __exit nvme_exit(void)
2972{
2973 pci_unregister_driver(&nvme_driver);
03e0f3a6 2974 flush_workqueue(nvme_wq);
b60503ba
MW
2975}
2976
2977MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2978MODULE_LICENSE("GPL");
c78b4713 2979MODULE_VERSION("1.0");
b60503ba
MW
2980module_init(nvme_init);
2981module_exit(nvme_exit);