nvme/pci: Use async_schedule for initial reset work
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
18119775 16#include <linux/async.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
dca51e78 19#include <linux/blk-mq-pci.h>
ff5350a8 20#include <linux/dmi.h>
b60503ba
MW
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
b60503ba
MW
24#include <linux/mm.h>
25#include <linux/module.h>
77bf25ea 26#include <linux/mutex.h>
d0877473 27#include <linux/once.h>
b60503ba 28#include <linux/pci.h>
e1e5e564 29#include <linux/t10-pi.h>
b60503ba 30#include <linux/types.h>
2f8e2c87 31#include <linux/io-64-nonatomic-lo-hi.h>
a98e58e5 32#include <linux/sed-opal.h>
797a796a 33
f11bb3e2
CH
34#include "nvme.h"
35
b60503ba
MW
36#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
37#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
c965809c 38
a7a7cbe3 39#define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
9d43cf64 40
58ffacb5
MW
41static int use_threaded_interrupts;
42module_param(use_threaded_interrupts, int, 0);
43
8ffaadf7
JD
44static bool use_cmb_sqes = true;
45module_param(use_cmb_sqes, bool, 0644);
46MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
47
87ad72a5
CH
48static unsigned int max_host_mem_size_mb = 128;
49module_param(max_host_mem_size_mb, uint, 0444);
50MODULE_PARM_DESC(max_host_mem_size_mb,
51 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
1fa6aead 52
a7a7cbe3
CK
53static unsigned int sgl_threshold = SZ_32K;
54module_param(sgl_threshold, uint, 0644);
55MODULE_PARM_DESC(sgl_threshold,
56 "Use SGLs when average request segment size is larger or equal to "
57 "this size. Use 0 to disable SGLs.");
58
b27c1e68 59static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60static const struct kernel_param_ops io_queue_depth_ops = {
61 .set = io_queue_depth_set,
62 .get = param_get_int,
63};
64
65static int io_queue_depth = 1024;
66module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
1c63dc66
CH
69struct nvme_dev;
70struct nvme_queue;
b3fffdef 71
a0fa9647 72static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 73static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 74
1c63dc66
CH
75/*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78struct nvme_dev {
147b27e4 79 struct nvme_queue *queues;
1c63dc66
CH
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
1c63dc66
CH
86 unsigned online_queues;
87 unsigned max_qid;
22b55601 88 unsigned int num_vecs;
1c63dc66
CH
89 int q_depth;
90 u32 db_stride;
1c63dc66 91 void __iomem *bar;
97f6ef64 92 unsigned long bar_mapped_size;
5c8809e6 93 struct work_struct remove_work;
77bf25ea 94 struct mutex shutdown_lock;
1c63dc66 95 bool subsystem;
1c63dc66 96 void __iomem *cmb;
8969f1f8 97 pci_bus_addr_t cmb_bus_addr;
1c63dc66
CH
98 u64 cmb_size;
99 u32 cmbsz;
202021c1 100 u32 cmbloc;
1c63dc66 101 struct nvme_ctrl ctrl;
db3cbfff 102 struct completion ioq_wait;
87ad72a5
CH
103
104 /* shadow doorbell buffer support: */
f9f38e33
HK
105 u32 *dbbuf_dbs;
106 dma_addr_t dbbuf_dbs_dma_addr;
107 u32 *dbbuf_eis;
108 dma_addr_t dbbuf_eis_dma_addr;
87ad72a5
CH
109
110 /* host memory buffer support: */
111 u64 host_mem_size;
112 u32 nr_host_mem_descs;
4033f35d 113 dma_addr_t host_mem_descs_dma;
87ad72a5
CH
114 struct nvme_host_mem_buf_desc *host_mem_descs;
115 void **host_mem_desc_bufs;
4d115420 116};
1fa6aead 117
b27c1e68 118static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
119{
120 int n = 0, ret;
121
122 ret = kstrtoint(val, 10, &n);
123 if (ret != 0 || n < 2)
124 return -EINVAL;
125
126 return param_set_int(val, kp);
127}
128
f9f38e33
HK
129static inline unsigned int sq_idx(unsigned int qid, u32 stride)
130{
131 return qid * 2 * stride;
132}
133
134static inline unsigned int cq_idx(unsigned int qid, u32 stride)
135{
136 return (qid * 2 + 1) * stride;
137}
138
1c63dc66
CH
139static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
140{
141 return container_of(ctrl, struct nvme_dev, ctrl);
142}
143
b60503ba
MW
144/*
145 * An NVM Express queue. Each device has at least two (one for admin
146 * commands and one for I/O commands).
147 */
148struct nvme_queue {
149 struct device *q_dmadev;
091b6092 150 struct nvme_dev *dev;
b60503ba
MW
151 spinlock_t q_lock;
152 struct nvme_command *sq_cmds;
8ffaadf7 153 struct nvme_command __iomem *sq_cmds_io;
b60503ba 154 volatile struct nvme_completion *cqes;
42483228 155 struct blk_mq_tags **tags;
b60503ba
MW
156 dma_addr_t sq_dma_addr;
157 dma_addr_t cq_dma_addr;
b60503ba
MW
158 u32 __iomem *q_db;
159 u16 q_depth;
6222d172 160 s16 cq_vector;
b60503ba
MW
161 u16 sq_tail;
162 u16 cq_head;
c30341dc 163 u16 qid;
e9539f47
MW
164 u8 cq_phase;
165 u8 cqe_seen;
f9f38e33
HK
166 u32 *dbbuf_sq_db;
167 u32 *dbbuf_cq_db;
168 u32 *dbbuf_sq_ei;
169 u32 *dbbuf_cq_ei;
b60503ba
MW
170};
171
71bd150c
CH
172/*
173 * The nvme_iod describes the data in an I/O, including the list of PRP
174 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 175 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
176 * allocated to store the PRP list.
177 */
178struct nvme_iod {
d49187e9 179 struct nvme_request req;
f4800d6d 180 struct nvme_queue *nvmeq;
a7a7cbe3 181 bool use_sgl;
f4800d6d 182 int aborted;
71bd150c 183 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
184 int nents; /* Used in scatterlist */
185 int length; /* Of data, in bytes */
186 dma_addr_t first_dma;
bf684057 187 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
188 struct scatterlist *sg;
189 struct scatterlist inline_sg[0];
b60503ba
MW
190};
191
192/*
193 * Check we didin't inadvertently grow the command struct
194 */
195static inline void _nvme_check_size(void)
196{
197 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 202 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 203 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba 204 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
0add5e8e
JT
205 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
206 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
b60503ba 207 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 208 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
f9f38e33
HK
209 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
210}
211
212static inline unsigned int nvme_dbbuf_size(u32 stride)
213{
214 return ((num_possible_cpus() + 1) * 8 * stride);
215}
216
217static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
218{
219 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
220
221 if (dev->dbbuf_dbs)
222 return 0;
223
224 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
225 &dev->dbbuf_dbs_dma_addr,
226 GFP_KERNEL);
227 if (!dev->dbbuf_dbs)
228 return -ENOMEM;
229 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
230 &dev->dbbuf_eis_dma_addr,
231 GFP_KERNEL);
232 if (!dev->dbbuf_eis) {
233 dma_free_coherent(dev->dev, mem_size,
234 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
235 dev->dbbuf_dbs = NULL;
236 return -ENOMEM;
237 }
238
239 return 0;
240}
241
242static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
243{
244 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
245
246 if (dev->dbbuf_dbs) {
247 dma_free_coherent(dev->dev, mem_size,
248 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
249 dev->dbbuf_dbs = NULL;
250 }
251 if (dev->dbbuf_eis) {
252 dma_free_coherent(dev->dev, mem_size,
253 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
254 dev->dbbuf_eis = NULL;
255 }
256}
257
258static void nvme_dbbuf_init(struct nvme_dev *dev,
259 struct nvme_queue *nvmeq, int qid)
260{
261 if (!dev->dbbuf_dbs || !qid)
262 return;
263
264 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
266 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
267 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
268}
269
270static void nvme_dbbuf_set(struct nvme_dev *dev)
271{
272 struct nvme_command c;
273
274 if (!dev->dbbuf_dbs)
275 return;
276
277 memset(&c, 0, sizeof(c));
278 c.dbbuf.opcode = nvme_admin_dbbuf;
279 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
280 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
281
282 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
9bdcfb10 283 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
f9f38e33
HK
284 /* Free memory and continue on */
285 nvme_dbbuf_dma_free(dev);
286 }
287}
288
289static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
290{
291 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
292}
293
294/* Update dbbuf and return true if an MMIO is required */
295static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
296 volatile u32 *dbbuf_ei)
297{
298 if (dbbuf_db) {
299 u16 old_value;
300
301 /*
302 * Ensure that the queue is written before updating
303 * the doorbell in memory
304 */
305 wmb();
306
307 old_value = *dbbuf_db;
308 *dbbuf_db = value;
309
310 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
311 return false;
312 }
313
314 return true;
b60503ba
MW
315}
316
ac3dd5bd
JA
317/*
318 * Max size of iod being embedded in the request payload
319 */
320#define NVME_INT_PAGES 2
5fd4ce1b 321#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
322
323/*
324 * Will slightly overestimate the number of pages needed. This is OK
325 * as it only leads to a small amount of wasted memory for the lifetime of
326 * the I/O.
327 */
328static int nvme_npages(unsigned size, struct nvme_dev *dev)
329{
5fd4ce1b
CH
330 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
331 dev->ctrl.page_size);
ac3dd5bd
JA
332 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
333}
334
a7a7cbe3
CK
335/*
336 * Calculates the number of pages needed for the SGL segments. For example a 4k
337 * page can accommodate 256 SGL descriptors.
338 */
339static int nvme_pci_npages_sgl(unsigned int num_seg)
ac3dd5bd 340{
a7a7cbe3 341 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
f4800d6d 342}
ac3dd5bd 343
a7a7cbe3
CK
344static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
345 unsigned int size, unsigned int nseg, bool use_sgl)
f4800d6d 346{
a7a7cbe3
CK
347 size_t alloc_size;
348
349 if (use_sgl)
350 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
351 else
352 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
353
354 return alloc_size + sizeof(struct scatterlist) * nseg;
f4800d6d 355}
ac3dd5bd 356
a7a7cbe3 357static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
f4800d6d 358{
a7a7cbe3
CK
359 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
360 NVME_INT_BYTES(dev), NVME_INT_PAGES,
361 use_sgl);
362
363 return sizeof(struct nvme_iod) + alloc_size;
ac3dd5bd
JA
364}
365
a4aea562
MB
366static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
367 unsigned int hctx_idx)
e85248e5 368{
a4aea562 369 struct nvme_dev *dev = data;
147b27e4 370 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 371
42483228
KB
372 WARN_ON(hctx_idx != 0);
373 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
374 WARN_ON(nvmeq->tags);
375
a4aea562 376 hctx->driver_data = nvmeq;
42483228 377 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 378 return 0;
e85248e5
MW
379}
380
4af0e21c
KB
381static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
382{
383 struct nvme_queue *nvmeq = hctx->driver_data;
384
385 nvmeq->tags = NULL;
386}
387
a4aea562
MB
388static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
389 unsigned int hctx_idx)
b60503ba 390{
a4aea562 391 struct nvme_dev *dev = data;
147b27e4 392 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
a4aea562 393
42483228
KB
394 if (!nvmeq->tags)
395 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 396
42483228 397 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
398 hctx->driver_data = nvmeq;
399 return 0;
b60503ba
MW
400}
401
d6296d39
CH
402static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
403 unsigned int hctx_idx, unsigned int numa_node)
b60503ba 404{
d6296d39 405 struct nvme_dev *dev = set->driver_data;
f4800d6d 406 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
0350815a 407 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
147b27e4 408 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
a4aea562
MB
409
410 BUG_ON(!nvmeq);
f4800d6d 411 iod->nvmeq = nvmeq;
a4aea562
MB
412 return 0;
413}
414
dca51e78
CH
415static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
416{
417 struct nvme_dev *dev = set->driver_data;
418
22b55601
KB
419 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
420 dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
dca51e78
CH
421}
422
b60503ba 423/**
adf68f21 424 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
425 * @nvmeq: The queue to use
426 * @cmd: The command to send
427 *
428 * Safe to use from interrupt context
429 */
e3f879bf
SB
430static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
431 struct nvme_command *cmd)
b60503ba 432{
a4aea562
MB
433 u16 tail = nvmeq->sq_tail;
434
8ffaadf7
JD
435 if (nvmeq->sq_cmds_io)
436 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
437 else
438 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
439
b60503ba
MW
440 if (++tail == nvmeq->q_depth)
441 tail = 0;
f9f38e33
HK
442 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
443 nvmeq->dbbuf_sq_ei))
444 writel(tail, nvmeq->q_db);
b60503ba 445 nvmeq->sq_tail = tail;
b60503ba
MW
446}
447
a7a7cbe3 448static void **nvme_pci_iod_list(struct request *req)
b60503ba 449{
f4800d6d 450 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3 451 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
b60503ba
MW
452}
453
955b1b5a
MI
454static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
455{
456 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
20469a37 457 int nseg = blk_rq_nr_phys_segments(req);
955b1b5a
MI
458 unsigned int avg_seg_size;
459
20469a37
KB
460 if (nseg == 0)
461 return false;
462
463 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
955b1b5a
MI
464
465 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
466 return false;
467 if (!iod->nvmeq->qid)
468 return false;
469 if (!sgl_threshold || avg_seg_size < sgl_threshold)
470 return false;
471 return true;
472}
473
fc17b653 474static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 475{
f4800d6d 476 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
f9d03f96 477 int nseg = blk_rq_nr_phys_segments(rq);
b131c61d 478 unsigned int size = blk_rq_payload_bytes(rq);
ac3dd5bd 479
955b1b5a
MI
480 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
481
f4800d6d 482 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
a7a7cbe3
CK
483 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
484 iod->use_sgl);
485
486 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
f4800d6d 487 if (!iod->sg)
fc17b653 488 return BLK_STS_RESOURCE;
f4800d6d
CH
489 } else {
490 iod->sg = iod->inline_sg;
ac3dd5bd
JA
491 }
492
f4800d6d
CH
493 iod->aborted = 0;
494 iod->npages = -1;
495 iod->nents = 0;
496 iod->length = size;
f80ec966 497
fc17b653 498 return BLK_STS_OK;
ac3dd5bd
JA
499}
500
f4800d6d 501static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 502{
f4800d6d 503 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
504 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
505 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
506
eca18b23 507 int i;
eca18b23
MW
508
509 if (iod->npages == 0)
a7a7cbe3
CK
510 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
511 dma_addr);
512
eca18b23 513 for (i = 0; i < iod->npages; i++) {
a7a7cbe3
CK
514 void *addr = nvme_pci_iod_list(req)[i];
515
516 if (iod->use_sgl) {
517 struct nvme_sgl_desc *sg_list = addr;
518
519 next_dma_addr =
520 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
521 } else {
522 __le64 *prp_list = addr;
523
524 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
525 }
526
527 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
528 dma_addr = next_dma_addr;
eca18b23 529 }
ac3dd5bd 530
f4800d6d
CH
531 if (iod->sg != iod->inline_sg)
532 kfree(iod->sg);
b4ff9c8d
KB
533}
534
52b68d7e 535#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
536static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
537{
538 if (be32_to_cpu(pi->ref_tag) == v)
539 pi->ref_tag = cpu_to_be32(p);
540}
541
542static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
543{
544 if (be32_to_cpu(pi->ref_tag) == p)
545 pi->ref_tag = cpu_to_be32(v);
546}
547
548/**
549 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
550 *
551 * The virtual start sector is the one that was originally submitted by the
552 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
553 * start sector may be different. Remap protection information to match the
554 * physical LBA on writes, and back to the original seed on reads.
555 *
556 * Type 0 and 3 do not have a ref tag, so no remapping required.
557 */
558static void nvme_dif_remap(struct request *req,
559 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
560{
561 struct nvme_ns *ns = req->rq_disk->private_data;
562 struct bio_integrity_payload *bip;
563 struct t10_pi_tuple *pi;
564 void *p, *pmap;
565 u32 i, nlb, ts, phys, virt;
566
567 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
568 return;
569
570 bip = bio_integrity(req->bio);
571 if (!bip)
572 return;
573
574 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
575
576 p = pmap;
577 virt = bip_get_seed(bip);
578 phys = nvme_block_nr(ns, blk_rq_pos(req));
579 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 580 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
581
582 for (i = 0; i < nlb; i++, virt++, phys++) {
583 pi = (struct t10_pi_tuple *)p;
584 dif_swap(phys, virt, pi);
585 p += ts;
586 }
587 kunmap_atomic(pmap);
588}
52b68d7e
KB
589#else /* CONFIG_BLK_DEV_INTEGRITY */
590static void nvme_dif_remap(struct request *req,
591 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
592{
593}
594static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
595{
596}
597static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
598{
599}
52b68d7e
KB
600#endif
601
d0877473
KB
602static void nvme_print_sgl(struct scatterlist *sgl, int nents)
603{
604 int i;
605 struct scatterlist *sg;
606
607 for_each_sg(sgl, sg, nents, i) {
608 dma_addr_t phys = sg_phys(sg);
609 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
610 "dma_address:%pad dma_length:%d\n",
611 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
612 sg_dma_len(sg));
613 }
614}
615
a7a7cbe3
CK
616static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
617 struct request *req, struct nvme_rw_command *cmnd)
ff22b54f 618{
f4800d6d 619 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 620 struct dma_pool *pool;
b131c61d 621 int length = blk_rq_payload_bytes(req);
eca18b23 622 struct scatterlist *sg = iod->sg;
ff22b54f
MW
623 int dma_len = sg_dma_len(sg);
624 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 625 u32 page_size = dev->ctrl.page_size;
f137e0f1 626 int offset = dma_addr & (page_size - 1);
e025344c 627 __le64 *prp_list;
a7a7cbe3 628 void **list = nvme_pci_iod_list(req);
e025344c 629 dma_addr_t prp_dma;
eca18b23 630 int nprps, i;
ff22b54f 631
1d090624 632 length -= (page_size - offset);
5228b328
JS
633 if (length <= 0) {
634 iod->first_dma = 0;
a7a7cbe3 635 goto done;
5228b328 636 }
ff22b54f 637
1d090624 638 dma_len -= (page_size - offset);
ff22b54f 639 if (dma_len) {
1d090624 640 dma_addr += (page_size - offset);
ff22b54f
MW
641 } else {
642 sg = sg_next(sg);
643 dma_addr = sg_dma_address(sg);
644 dma_len = sg_dma_len(sg);
645 }
646
1d090624 647 if (length <= page_size) {
edd10d33 648 iod->first_dma = dma_addr;
a7a7cbe3 649 goto done;
e025344c
SMM
650 }
651
1d090624 652 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
653 if (nprps <= (256 / 8)) {
654 pool = dev->prp_small_pool;
eca18b23 655 iod->npages = 0;
99802a7a
MW
656 } else {
657 pool = dev->prp_page_pool;
eca18b23 658 iod->npages = 1;
99802a7a
MW
659 }
660
69d2b571 661 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 662 if (!prp_list) {
edd10d33 663 iod->first_dma = dma_addr;
eca18b23 664 iod->npages = -1;
86eea289 665 return BLK_STS_RESOURCE;
b77954cb 666 }
eca18b23
MW
667 list[0] = prp_list;
668 iod->first_dma = prp_dma;
e025344c
SMM
669 i = 0;
670 for (;;) {
1d090624 671 if (i == page_size >> 3) {
e025344c 672 __le64 *old_prp_list = prp_list;
69d2b571 673 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 674 if (!prp_list)
86eea289 675 return BLK_STS_RESOURCE;
eca18b23 676 list[iod->npages++] = prp_list;
7523d834
MW
677 prp_list[0] = old_prp_list[i - 1];
678 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
679 i = 1;
e025344c
SMM
680 }
681 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
682 dma_len -= page_size;
683 dma_addr += page_size;
684 length -= page_size;
e025344c
SMM
685 if (length <= 0)
686 break;
687 if (dma_len > 0)
688 continue;
86eea289
KB
689 if (unlikely(dma_len < 0))
690 goto bad_sgl;
e025344c
SMM
691 sg = sg_next(sg);
692 dma_addr = sg_dma_address(sg);
693 dma_len = sg_dma_len(sg);
ff22b54f
MW
694 }
695
a7a7cbe3
CK
696done:
697 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
698 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
699
86eea289
KB
700 return BLK_STS_OK;
701
702 bad_sgl:
d0877473
KB
703 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
704 "Invalid SGL for payload:%d nents:%d\n",
705 blk_rq_payload_bytes(req), iod->nents);
86eea289 706 return BLK_STS_IOERR;
ff22b54f
MW
707}
708
a7a7cbe3
CK
709static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
710 struct scatterlist *sg)
711{
712 sge->addr = cpu_to_le64(sg_dma_address(sg));
713 sge->length = cpu_to_le32(sg_dma_len(sg));
714 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
715}
716
717static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
718 dma_addr_t dma_addr, int entries)
719{
720 sge->addr = cpu_to_le64(dma_addr);
721 if (entries < SGES_PER_PAGE) {
722 sge->length = cpu_to_le32(entries * sizeof(*sge));
723 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
724 } else {
725 sge->length = cpu_to_le32(PAGE_SIZE);
726 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
727 }
728}
729
730static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
b0f2853b 731 struct request *req, struct nvme_rw_command *cmd, int entries)
a7a7cbe3
CK
732{
733 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a7a7cbe3
CK
734 struct dma_pool *pool;
735 struct nvme_sgl_desc *sg_list;
736 struct scatterlist *sg = iod->sg;
a7a7cbe3 737 dma_addr_t sgl_dma;
b0f2853b 738 int i = 0;
a7a7cbe3 739
a7a7cbe3
CK
740 /* setting the transfer type as SGL */
741 cmd->flags = NVME_CMD_SGL_METABUF;
742
b0f2853b 743 if (entries == 1) {
a7a7cbe3
CK
744 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
745 return BLK_STS_OK;
746 }
747
748 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
749 pool = dev->prp_small_pool;
750 iod->npages = 0;
751 } else {
752 pool = dev->prp_page_pool;
753 iod->npages = 1;
754 }
755
756 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
757 if (!sg_list) {
758 iod->npages = -1;
759 return BLK_STS_RESOURCE;
760 }
761
762 nvme_pci_iod_list(req)[0] = sg_list;
763 iod->first_dma = sgl_dma;
764
765 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
766
767 do {
768 if (i == SGES_PER_PAGE) {
769 struct nvme_sgl_desc *old_sg_desc = sg_list;
770 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
771
772 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
773 if (!sg_list)
774 return BLK_STS_RESOURCE;
775
776 i = 0;
777 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
778 sg_list[i++] = *link;
779 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
780 }
781
782 nvme_pci_sgl_set_data(&sg_list[i++], sg);
a7a7cbe3 783 sg = sg_next(sg);
b0f2853b 784 } while (--entries > 0);
a7a7cbe3 785
a7a7cbe3
CK
786 return BLK_STS_OK;
787}
788
fc17b653 789static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
b131c61d 790 struct nvme_command *cmnd)
d29ec824 791{
f4800d6d 792 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
793 struct request_queue *q = req->q;
794 enum dma_data_direction dma_dir = rq_data_dir(req) ?
795 DMA_TO_DEVICE : DMA_FROM_DEVICE;
fc17b653 796 blk_status_t ret = BLK_STS_IOERR;
b0f2853b 797 int nr_mapped;
d29ec824 798
f9d03f96 799 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
ba1ca37e
CH
800 iod->nents = blk_rq_map_sg(q, req, iod->sg);
801 if (!iod->nents)
802 goto out;
d29ec824 803
fc17b653 804 ret = BLK_STS_RESOURCE;
b0f2853b
CH
805 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
806 DMA_ATTR_NO_WARN);
807 if (!nr_mapped)
ba1ca37e 808 goto out;
d29ec824 809
955b1b5a 810 if (iod->use_sgl)
b0f2853b 811 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
a7a7cbe3
CK
812 else
813 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
814
86eea289 815 if (ret != BLK_STS_OK)
ba1ca37e 816 goto out_unmap;
0e5e4f0e 817
fc17b653 818 ret = BLK_STS_IOERR;
ba1ca37e
CH
819 if (blk_integrity_rq(req)) {
820 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
821 goto out_unmap;
0e5e4f0e 822
bf684057
CH
823 sg_init_table(&iod->meta_sg, 1);
824 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 825 goto out_unmap;
0e5e4f0e 826
b5d8af5b 827 if (req_op(req) == REQ_OP_WRITE)
ba1ca37e 828 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 829
bf684057 830 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 831 goto out_unmap;
d29ec824 832 }
00df5cb4 833
ba1ca37e 834 if (blk_integrity_rq(req))
bf684057 835 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
fc17b653 836 return BLK_STS_OK;
00df5cb4 837
ba1ca37e
CH
838out_unmap:
839 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
840out:
841 return ret;
00df5cb4
MW
842}
843
f4800d6d 844static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 845{
f4800d6d 846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
847 enum dma_data_direction dma_dir = rq_data_dir(req) ?
848 DMA_TO_DEVICE : DMA_FROM_DEVICE;
849
850 if (iod->nents) {
851 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
852 if (blk_integrity_rq(req)) {
b5d8af5b 853 if (req_op(req) == REQ_OP_READ)
d4f6c3ab 854 nvme_dif_remap(req, nvme_dif_complete);
bf684057 855 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 856 }
e19b127f 857 }
e1e5e564 858
f9d03f96 859 nvme_cleanup_cmd(req);
f4800d6d 860 nvme_free_iod(dev, req);
d4f6c3ab 861}
b60503ba 862
d29ec824
CH
863/*
864 * NOTE: ns is NULL when called on the admin queue.
865 */
fc17b653 866static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
a4aea562 867 const struct blk_mq_queue_data *bd)
edd10d33 868{
a4aea562
MB
869 struct nvme_ns *ns = hctx->queue->queuedata;
870 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 871 struct nvme_dev *dev = nvmeq->dev;
a4aea562 872 struct request *req = bd->rq;
ba1ca37e 873 struct nvme_command cmnd;
ebe6d874 874 blk_status_t ret;
e1e5e564 875
f9d03f96 876 ret = nvme_setup_cmd(ns, req, &cmnd);
fc17b653 877 if (ret)
f4800d6d 878 return ret;
a4aea562 879
b131c61d 880 ret = nvme_init_iod(req, dev);
fc17b653 881 if (ret)
f9d03f96 882 goto out_free_cmd;
a4aea562 883
fc17b653 884 if (blk_rq_nr_phys_segments(req)) {
b131c61d 885 ret = nvme_map_data(dev, req, &cmnd);
fc17b653
CH
886 if (ret)
887 goto out_cleanup_iod;
888 }
a4aea562 889
aae239e1 890 blk_mq_start_request(req);
a4aea562 891
ba1ca37e 892 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 893 if (unlikely(nvmeq->cq_vector < 0)) {
fc17b653 894 ret = BLK_STS_IOERR;
ae1fba20 895 spin_unlock_irq(&nvmeq->q_lock);
f9d03f96 896 goto out_cleanup_iod;
ae1fba20 897 }
ba1ca37e 898 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
899 nvme_process_cq(nvmeq);
900 spin_unlock_irq(&nvmeq->q_lock);
fc17b653 901 return BLK_STS_OK;
f9d03f96 902out_cleanup_iod:
f4800d6d 903 nvme_free_iod(dev, req);
f9d03f96
CH
904out_free_cmd:
905 nvme_cleanup_cmd(req);
ba1ca37e 906 return ret;
b60503ba 907}
e1e5e564 908
77f02a7a 909static void nvme_pci_complete_rq(struct request *req)
eee417b0 910{
f4800d6d 911 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562 912
77f02a7a
CH
913 nvme_unmap_data(iod->nvmeq->dev, req);
914 nvme_complete_rq(req);
b60503ba
MW
915}
916
d783e0bd
MR
917/* We read the CQE phase first to check if the rest of the entry is valid */
918static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
919 u16 phase)
920{
921 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
922}
923
eb281c82 924static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
b60503ba 925{
eb281c82 926 u16 head = nvmeq->cq_head;
adf68f21 927
eb281c82
SG
928 if (likely(nvmeq->cq_vector >= 0)) {
929 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
930 nvmeq->dbbuf_cq_ei))
931 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
932 }
933}
aae239e1 934
83a12fb7
SG
935static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
936 struct nvme_completion *cqe)
937{
938 struct request *req;
adf68f21 939
83a12fb7
SG
940 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
941 dev_warn(nvmeq->dev->ctrl.device,
942 "invalid id %d completed on queue %d\n",
943 cqe->command_id, le16_to_cpu(cqe->sq_id));
944 return;
b60503ba
MW
945 }
946
83a12fb7
SG
947 /*
948 * AEN requests are special as they don't time out and can
949 * survive any kind of queue freeze and often don't respond to
950 * aborts. We don't even bother to allocate a struct request
951 * for them but rather special case them here.
952 */
953 if (unlikely(nvmeq->qid == 0 &&
38dabe21 954 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
83a12fb7
SG
955 nvme_complete_async_event(&nvmeq->dev->ctrl,
956 cqe->status, &cqe->result);
a0fa9647 957 return;
83a12fb7 958 }
b60503ba 959
e9d8a0fd 960 nvmeq->cqe_seen = 1;
83a12fb7
SG
961 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
962 nvme_end_request(req, cqe->status, cqe->result);
963}
b60503ba 964
920d13a8
SG
965static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
966 struct nvme_completion *cqe)
b60503ba 967{
920d13a8
SG
968 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
969 *cqe = nvmeq->cqes[nvmeq->cq_head];
adf68f21 970
920d13a8
SG
971 if (++nvmeq->cq_head == nvmeq->q_depth) {
972 nvmeq->cq_head = 0;
973 nvmeq->cq_phase = !nvmeq->cq_phase;
b60503ba 974 }
920d13a8 975 return true;
b60503ba 976 }
920d13a8 977 return false;
a0fa9647
JA
978}
979
980static void nvme_process_cq(struct nvme_queue *nvmeq)
981{
920d13a8
SG
982 struct nvme_completion cqe;
983 int consumed = 0;
b60503ba 984
920d13a8
SG
985 while (nvme_read_cqe(nvmeq, &cqe)) {
986 nvme_handle_cqe(nvmeq, &cqe);
987 consumed++;
920d13a8 988 }
eb281c82 989
e9d8a0fd 990 if (consumed)
920d13a8 991 nvme_ring_cq_doorbell(nvmeq);
b60503ba
MW
992}
993
994static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
995{
996 irqreturn_t result;
997 struct nvme_queue *nvmeq = data;
998 spin_lock(&nvmeq->q_lock);
e9539f47
MW
999 nvme_process_cq(nvmeq);
1000 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1001 nvmeq->cqe_seen = 0;
58ffacb5
MW
1002 spin_unlock(&nvmeq->q_lock);
1003 return result;
1004}
1005
1006static irqreturn_t nvme_irq_check(int irq, void *data)
1007{
1008 struct nvme_queue *nvmeq = data;
d783e0bd
MR
1009 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1010 return IRQ_WAKE_THREAD;
1011 return IRQ_NONE;
58ffacb5
MW
1012}
1013
7776db1c 1014static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
a0fa9647 1015{
442e19b7
SG
1016 struct nvme_completion cqe;
1017 int found = 0, consumed = 0;
a0fa9647 1018
442e19b7
SG
1019 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1020 return 0;
a0fa9647 1021
442e19b7
SG
1022 spin_lock_irq(&nvmeq->q_lock);
1023 while (nvme_read_cqe(nvmeq, &cqe)) {
1024 nvme_handle_cqe(nvmeq, &cqe);
1025 consumed++;
1026
1027 if (tag == cqe.command_id) {
1028 found = 1;
1029 break;
1030 }
1031 }
1032
1033 if (consumed)
1034 nvme_ring_cq_doorbell(nvmeq);
1035 spin_unlock_irq(&nvmeq->q_lock);
1036
1037 return found;
a0fa9647
JA
1038}
1039
7776db1c
KB
1040static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1041{
1042 struct nvme_queue *nvmeq = hctx->driver_data;
1043
1044 return __nvme_poll(nvmeq, tag);
1045}
1046
ad22c355 1047static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
b60503ba 1048{
f866fc42 1049 struct nvme_dev *dev = to_nvme_dev(ctrl);
147b27e4 1050 struct nvme_queue *nvmeq = &dev->queues[0];
a4aea562 1051 struct nvme_command c;
b60503ba 1052
a4aea562
MB
1053 memset(&c, 0, sizeof(c));
1054 c.common.opcode = nvme_admin_async_event;
ad22c355 1055 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
3c0cf138 1056
9396dec9 1057 spin_lock_irq(&nvmeq->q_lock);
f866fc42 1058 __nvme_submit_cmd(nvmeq, &c);
9396dec9 1059 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
1060}
1061
b60503ba 1062static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 1063{
b60503ba
MW
1064 struct nvme_command c;
1065
1066 memset(&c, 0, sizeof(c));
1067 c.delete_queue.opcode = opcode;
1068 c.delete_queue.qid = cpu_to_le16(id);
1069
1c63dc66 1070 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1071}
1072
b60503ba
MW
1073static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1074 struct nvme_queue *nvmeq)
1075{
b60503ba
MW
1076 struct nvme_command c;
1077 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1078
d29ec824 1079 /*
16772ae6 1080 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1081 * is attached to the request.
1082 */
b60503ba
MW
1083 memset(&c, 0, sizeof(c));
1084 c.create_cq.opcode = nvme_admin_create_cq;
1085 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1086 c.create_cq.cqid = cpu_to_le16(qid);
1087 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1088 c.create_cq.cq_flags = cpu_to_le16(flags);
1089 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1090
1c63dc66 1091 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1092}
1093
1094static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1095 struct nvme_queue *nvmeq)
1096{
b60503ba 1097 struct nvme_command c;
81c1cd98 1098 int flags = NVME_QUEUE_PHYS_CONTIG;
b60503ba 1099
d29ec824 1100 /*
16772ae6 1101 * Note: we (ab)use the fact that the prp fields survive if no data
d29ec824
CH
1102 * is attached to the request.
1103 */
b60503ba
MW
1104 memset(&c, 0, sizeof(c));
1105 c.create_sq.opcode = nvme_admin_create_sq;
1106 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1107 c.create_sq.sqid = cpu_to_le16(qid);
1108 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1109 c.create_sq.sq_flags = cpu_to_le16(flags);
1110 c.create_sq.cqid = cpu_to_le16(qid);
1111
1c63dc66 1112 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1113}
1114
1115static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1116{
1117 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1118}
1119
1120static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1121{
1122 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1123}
1124
2a842aca 1125static void abort_endio(struct request *req, blk_status_t error)
bc5fc7e4 1126{
f4800d6d
CH
1127 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1128 struct nvme_queue *nvmeq = iod->nvmeq;
e44ac588 1129
27fa9bc5
CH
1130 dev_warn(nvmeq->dev->ctrl.device,
1131 "Abort status: 0x%x", nvme_req(req)->status);
e7a2a87d 1132 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 1133 blk_mq_free_request(req);
bc5fc7e4
MW
1134}
1135
b2a0eb1a
KB
1136static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1137{
1138
1139 /* If true, indicates loss of adapter communication, possibly by a
1140 * NVMe Subsystem reset.
1141 */
1142 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1143
ad70062c
JW
1144 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1145 switch (dev->ctrl.state) {
1146 case NVME_CTRL_RESETTING:
ad6a0a52 1147 case NVME_CTRL_CONNECTING:
b2a0eb1a 1148 return false;
ad70062c
JW
1149 default:
1150 break;
1151 }
b2a0eb1a
KB
1152
1153 /* We shouldn't reset unless the controller is on fatal error state
1154 * _or_ if we lost the communication with it.
1155 */
1156 if (!(csts & NVME_CSTS_CFS) && !nssro)
1157 return false;
1158
b2a0eb1a
KB
1159 return true;
1160}
1161
1162static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1163{
1164 /* Read a config register to help see what died. */
1165 u16 pci_status;
1166 int result;
1167
1168 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1169 &pci_status);
1170 if (result == PCIBIOS_SUCCESSFUL)
1171 dev_warn(dev->ctrl.device,
1172 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1173 csts, pci_status);
1174 else
1175 dev_warn(dev->ctrl.device,
1176 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1177 csts, result);
1178}
1179
31c7c7d2 1180static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1181{
f4800d6d
CH
1182 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1183 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 1184 struct nvme_dev *dev = nvmeq->dev;
a4aea562 1185 struct request *abort_req;
a4aea562 1186 struct nvme_command cmd;
b2a0eb1a
KB
1187 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1188
651438bb
WX
1189 /* If PCI error recovery process is happening, we cannot reset or
1190 * the recovery mechanism will surely fail.
1191 */
1192 mb();
1193 if (pci_channel_offline(to_pci_dev(dev->dev)))
1194 return BLK_EH_RESET_TIMER;
1195
b2a0eb1a
KB
1196 /*
1197 * Reset immediately if the controller is failed
1198 */
1199 if (nvme_should_reset(dev, csts)) {
1200 nvme_warn_reset(dev, csts);
1201 nvme_dev_disable(dev, false);
d86c4d8e 1202 nvme_reset_ctrl(&dev->ctrl);
b2a0eb1a
KB
1203 return BLK_EH_HANDLED;
1204 }
c30341dc 1205
7776db1c
KB
1206 /*
1207 * Did we miss an interrupt?
1208 */
1209 if (__nvme_poll(nvmeq, req->tag)) {
1210 dev_warn(dev->ctrl.device,
1211 "I/O %d QID %d timeout, completion polled\n",
1212 req->tag, nvmeq->qid);
1213 return BLK_EH_HANDLED;
1214 }
1215
31c7c7d2 1216 /*
fd634f41
CH
1217 * Shutdown immediately if controller times out while starting. The
1218 * reset work will see the pci device disabled when it gets the forced
1219 * cancellation error. All outstanding requests are completed on
1220 * shutdown, so we return BLK_EH_HANDLED.
1221 */
4244140d
KB
1222 switch (dev->ctrl.state) {
1223 case NVME_CTRL_CONNECTING:
1224 case NVME_CTRL_RESETTING:
1b3c47c1 1225 dev_warn(dev->ctrl.device,
fd634f41
CH
1226 "I/O %d QID %d timeout, disable controller\n",
1227 req->tag, nvmeq->qid);
a5cdb68c 1228 nvme_dev_disable(dev, false);
27fa9bc5 1229 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
fd634f41 1230 return BLK_EH_HANDLED;
4244140d
KB
1231 default:
1232 break;
c30341dc
KB
1233 }
1234
fd634f41
CH
1235 /*
1236 * Shutdown the controller immediately and schedule a reset if the
1237 * command was already aborted once before and still hasn't been
1238 * returned to the driver, or if this is the admin queue.
31c7c7d2 1239 */
f4800d6d 1240 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 1241 dev_warn(dev->ctrl.device,
e1569a16
KB
1242 "I/O %d QID %d timeout, reset controller\n",
1243 req->tag, nvmeq->qid);
a5cdb68c 1244 nvme_dev_disable(dev, false);
d86c4d8e 1245 nvme_reset_ctrl(&dev->ctrl);
c30341dc 1246
e1569a16
KB
1247 /*
1248 * Mark the request as handled, since the inline shutdown
1249 * forces all outstanding requests to complete.
1250 */
27fa9bc5 1251 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
e1569a16 1252 return BLK_EH_HANDLED;
c30341dc 1253 }
c30341dc 1254
e7a2a87d 1255 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 1256 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1257 return BLK_EH_RESET_TIMER;
6bf25d16 1258 }
7bf7d778 1259 iod->aborted = 1;
a4aea562 1260
c30341dc
KB
1261 memset(&cmd, 0, sizeof(cmd));
1262 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1263 cmd.abort.cid = req->tag;
c30341dc 1264 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 1265
1b3c47c1
SG
1266 dev_warn(nvmeq->dev->ctrl.device,
1267 "I/O %d QID %d timeout, aborting\n",
1268 req->tag, nvmeq->qid);
e7a2a87d
CH
1269
1270 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
eb71f435 1271 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
e7a2a87d
CH
1272 if (IS_ERR(abort_req)) {
1273 atomic_inc(&dev->ctrl.abort_limit);
1274 return BLK_EH_RESET_TIMER;
1275 }
1276
1277 abort_req->timeout = ADMIN_TIMEOUT;
1278 abort_req->end_io_data = NULL;
1279 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1280
31c7c7d2
CH
1281 /*
1282 * The aborted req will be completed on receiving the abort req.
1283 * We enable the timer again. If hit twice, it'll cause a device reset,
1284 * as the device then is in a faulty state.
1285 */
1286 return BLK_EH_RESET_TIMER;
c30341dc
KB
1287}
1288
a4aea562
MB
1289static void nvme_free_queue(struct nvme_queue *nvmeq)
1290{
9e866774
MW
1291 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1292 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1293 if (nvmeq->sq_cmds)
1294 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774 1295 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
9e866774
MW
1296}
1297
a1a5ef99 1298static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1299{
1300 int i;
1301
d858e5f0 1302 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
d858e5f0 1303 dev->ctrl.queue_count--;
147b27e4 1304 nvme_free_queue(&dev->queues[i]);
121c7ad4 1305 }
22404274
KB
1306}
1307
4d115420
KB
1308/**
1309 * nvme_suspend_queue - put queue into suspended state
1310 * @nvmeq - queue to suspend
4d115420
KB
1311 */
1312static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1313{
2b25d981 1314 int vector;
b60503ba 1315
a09115b2 1316 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1317 if (nvmeq->cq_vector == -1) {
1318 spin_unlock_irq(&nvmeq->q_lock);
1319 return 1;
1320 }
0ff199cb 1321 vector = nvmeq->cq_vector;
42f61420 1322 nvmeq->dev->online_queues--;
2b25d981 1323 nvmeq->cq_vector = -1;
a09115b2
MW
1324 spin_unlock_irq(&nvmeq->q_lock);
1325
1c63dc66 1326 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
c81545f9 1327 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1328
0ff199cb 1329 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
b60503ba 1330
4d115420
KB
1331 return 0;
1332}
b60503ba 1333
a5cdb68c 1334static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1335{
147b27e4 1336 struct nvme_queue *nvmeq = &dev->queues[0];
4d115420 1337
a5cdb68c
KB
1338 if (shutdown)
1339 nvme_shutdown_ctrl(&dev->ctrl);
1340 else
20d0dfe6 1341 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
07836e65
KB
1342
1343 spin_lock_irq(&nvmeq->q_lock);
1344 nvme_process_cq(nvmeq);
1345 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1346}
1347
8ffaadf7
JD
1348static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1349 int entry_size)
1350{
1351 int q_depth = dev->q_depth;
5fd4ce1b
CH
1352 unsigned q_size_aligned = roundup(q_depth * entry_size,
1353 dev->ctrl.page_size);
8ffaadf7
JD
1354
1355 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1356 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1357 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1358 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1359
1360 /*
1361 * Ensure the reduced q_depth is above some threshold where it
1362 * would be better to map queues in system memory with the
1363 * original depth
1364 */
1365 if (q_depth < 64)
1366 return -ENOMEM;
1367 }
1368
1369 return q_depth;
1370}
1371
1372static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1373 int qid, int depth)
1374{
815c6704
KB
1375 /* CMB SQEs will be mapped before creation */
1376 if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1377 return 0;
8ffaadf7 1378
815c6704
KB
1379 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1380 &nvmeq->sq_dma_addr, GFP_KERNEL);
1381 if (!nvmeq->sq_cmds)
1382 return -ENOMEM;
8ffaadf7
JD
1383 return 0;
1384}
1385
a6ff7262 1386static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
b60503ba 1387{
147b27e4 1388 struct nvme_queue *nvmeq = &dev->queues[qid];
b60503ba 1389
62314e40
KB
1390 if (dev->ctrl.queue_count > qid)
1391 return 0;
b60503ba 1392
e75ec752 1393 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1394 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1395 if (!nvmeq->cqes)
1396 goto free_nvmeq;
b60503ba 1397
8ffaadf7 1398 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1399 goto free_cqdma;
1400
e75ec752 1401 nvmeq->q_dmadev = dev->dev;
091b6092 1402 nvmeq->dev = dev;
b60503ba
MW
1403 spin_lock_init(&nvmeq->q_lock);
1404 nvmeq->cq_head = 0;
82123460 1405 nvmeq->cq_phase = 1;
b80d5ccc 1406 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1407 nvmeq->q_depth = depth;
c30341dc 1408 nvmeq->qid = qid;
758dd7fd 1409 nvmeq->cq_vector = -1;
d858e5f0 1410 dev->ctrl.queue_count++;
36a7e993 1411
147b27e4 1412 return 0;
b60503ba
MW
1413
1414 free_cqdma:
e75ec752 1415 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1416 nvmeq->cq_dma_addr);
1417 free_nvmeq:
147b27e4 1418 return -ENOMEM;
b60503ba
MW
1419}
1420
dca51e78 1421static int queue_request_irq(struct nvme_queue *nvmeq)
3001082c 1422{
0ff199cb
CH
1423 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1424 int nr = nvmeq->dev->ctrl.instance;
1425
1426 if (use_threaded_interrupts) {
1427 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1428 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1429 } else {
1430 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1431 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1432 }
3001082c
MW
1433}
1434
22404274 1435static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1436{
22404274 1437 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1438
7be50e93 1439 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1440 nvmeq->sq_tail = 0;
1441 nvmeq->cq_head = 0;
1442 nvmeq->cq_phase = 1;
b80d5ccc 1443 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1444 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
f9f38e33 1445 nvme_dbbuf_init(dev, nvmeq, qid);
42f61420 1446 dev->online_queues++;
7be50e93 1447 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1448}
1449
1450static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1451{
1452 struct nvme_dev *dev = nvmeq->dev;
1453 int result;
3f85d50b 1454
815c6704
KB
1455 if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1456 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1457 dev->ctrl.page_size);
1458 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1459 nvmeq->sq_cmds_io = dev->cmb + offset;
1460 }
1461
22b55601
KB
1462 /*
1463 * A queue's vector matches the queue identifier unless the controller
1464 * has only one vector available.
1465 */
1466 nvmeq->cq_vector = dev->num_vecs == 1 ? 0 : qid;
b60503ba
MW
1467 result = adapter_alloc_cq(dev, qid, nvmeq);
1468 if (result < 0)
f25a2dfc 1469 goto release_vector;
b60503ba
MW
1470
1471 result = adapter_alloc_sq(dev, qid, nvmeq);
1472 if (result < 0)
1473 goto release_cq;
1474
161b8be2 1475 nvme_init_queue(nvmeq, qid);
dca51e78 1476 result = queue_request_irq(nvmeq);
b60503ba
MW
1477 if (result < 0)
1478 goto release_sq;
1479
22404274 1480 return result;
b60503ba
MW
1481
1482 release_sq:
f25a2dfc 1483 dev->online_queues--;
b60503ba
MW
1484 adapter_delete_sq(dev, qid);
1485 release_cq:
1486 adapter_delete_cq(dev, qid);
f25a2dfc
JW
1487 release_vector:
1488 nvmeq->cq_vector = -1;
22404274 1489 return result;
b60503ba
MW
1490}
1491
f363b089 1492static const struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1493 .queue_rq = nvme_queue_rq,
77f02a7a 1494 .complete = nvme_pci_complete_rq,
a4aea562 1495 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1496 .exit_hctx = nvme_admin_exit_hctx,
0350815a 1497 .init_request = nvme_init_request,
a4aea562
MB
1498 .timeout = nvme_timeout,
1499};
1500
f363b089 1501static const struct blk_mq_ops nvme_mq_ops = {
a4aea562 1502 .queue_rq = nvme_queue_rq,
77f02a7a 1503 .complete = nvme_pci_complete_rq,
a4aea562
MB
1504 .init_hctx = nvme_init_hctx,
1505 .init_request = nvme_init_request,
dca51e78 1506 .map_queues = nvme_pci_map_queues,
a4aea562 1507 .timeout = nvme_timeout,
a0fa9647 1508 .poll = nvme_poll,
a4aea562
MB
1509};
1510
ea191d2f
KB
1511static void nvme_dev_remove_admin(struct nvme_dev *dev)
1512{
1c63dc66 1513 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1514 /*
1515 * If the controller was reset during removal, it's possible
1516 * user requests may be waiting on a stopped queue. Start the
1517 * queue to flush these to completion.
1518 */
c81545f9 1519 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1c63dc66 1520 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1521 blk_mq_free_tag_set(&dev->admin_tagset);
1522 }
1523}
1524
a4aea562
MB
1525static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1526{
1c63dc66 1527 if (!dev->ctrl.admin_q) {
a4aea562
MB
1528 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1529 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c 1530
38dabe21 1531 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
a4aea562 1532 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1533 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
a7a7cbe3 1534 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
d3484991 1535 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
a4aea562
MB
1536 dev->admin_tagset.driver_data = dev;
1537
1538 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1539 return -ENOMEM;
34b6c231 1540 dev->ctrl.admin_tagset = &dev->admin_tagset;
a4aea562 1541
1c63dc66
CH
1542 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1543 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1544 blk_mq_free_tag_set(&dev->admin_tagset);
1545 return -ENOMEM;
1546 }
1c63dc66 1547 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1548 nvme_dev_remove_admin(dev);
1c63dc66 1549 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1550 return -ENODEV;
1551 }
0fb59cbc 1552 } else
c81545f9 1553 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
a4aea562
MB
1554
1555 return 0;
1556}
1557
97f6ef64
XY
1558static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1559{
1560 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1561}
1562
1563static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1564{
1565 struct pci_dev *pdev = to_pci_dev(dev->dev);
1566
1567 if (size <= dev->bar_mapped_size)
1568 return 0;
1569 if (size > pci_resource_len(pdev, 0))
1570 return -ENOMEM;
1571 if (dev->bar)
1572 iounmap(dev->bar);
1573 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1574 if (!dev->bar) {
1575 dev->bar_mapped_size = 0;
1576 return -ENOMEM;
1577 }
1578 dev->bar_mapped_size = size;
1579 dev->dbs = dev->bar + NVME_REG_DBS;
1580
1581 return 0;
1582}
1583
01ad0990 1584static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1585{
ba47e386 1586 int result;
b60503ba
MW
1587 u32 aqa;
1588 struct nvme_queue *nvmeq;
1589
97f6ef64
XY
1590 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1591 if (result < 0)
1592 return result;
1593
8ef2074d 1594 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
20d0dfe6 1595 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
dfbac8c7 1596
7a67cbea
CH
1597 if (dev->subsystem &&
1598 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1599 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1600
20d0dfe6 1601 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
ba47e386
MW
1602 if (result < 0)
1603 return result;
b60503ba 1604
a6ff7262 1605 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
147b27e4
SG
1606 if (result)
1607 return result;
b60503ba 1608
147b27e4 1609 nvmeq = &dev->queues[0];
b60503ba
MW
1610 aqa = nvmeq->q_depth - 1;
1611 aqa |= aqa << 16;
1612
7a67cbea
CH
1613 writel(aqa, dev->bar + NVME_REG_AQA);
1614 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1615 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1616
20d0dfe6 1617 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
025c557a 1618 if (result)
d4875622 1619 return result;
a4aea562 1620
2b25d981 1621 nvmeq->cq_vector = 0;
161b8be2 1622 nvme_init_queue(nvmeq, 0);
dca51e78 1623 result = queue_request_irq(nvmeq);
758dd7fd
JD
1624 if (result) {
1625 nvmeq->cq_vector = -1;
d4875622 1626 return result;
758dd7fd 1627 }
025c557a 1628
b60503ba
MW
1629 return result;
1630}
1631
749941f2 1632static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1633{
949928c1 1634 unsigned i, max;
749941f2 1635 int ret = 0;
42f61420 1636
d858e5f0 1637 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
a6ff7262 1638 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
749941f2 1639 ret = -ENOMEM;
42f61420 1640 break;
749941f2
CH
1641 }
1642 }
42f61420 1643
d858e5f0 1644 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
949928c1 1645 for (i = dev->online_queues; i <= max; i++) {
147b27e4 1646 ret = nvme_create_queue(&dev->queues[i], i);
d4875622 1647 if (ret)
42f61420 1648 break;
27e8166c 1649 }
749941f2
CH
1650
1651 /*
1652 * Ignore failing Create SQ/CQ commands, we can continue with less
8adb8c14
MI
1653 * than the desired amount of queues, and even a controller without
1654 * I/O queues can still be used to issue admin commands. This might
749941f2
CH
1655 * be useful to upgrade a buggy firmware for example.
1656 */
1657 return ret >= 0 ? 0 : ret;
b60503ba
MW
1658}
1659
202021c1
SB
1660static ssize_t nvme_cmb_show(struct device *dev,
1661 struct device_attribute *attr,
1662 char *buf)
1663{
1664 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1665
c965809c 1666 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
202021c1
SB
1667 ndev->cmbloc, ndev->cmbsz);
1668}
1669static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1670
88de4598 1671static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
8ffaadf7 1672{
88de4598
CH
1673 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1674
1675 return 1ULL << (12 + 4 * szu);
1676}
1677
1678static u32 nvme_cmb_size(struct nvme_dev *dev)
1679{
1680 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1681}
1682
f65efd6d 1683static void nvme_map_cmb(struct nvme_dev *dev)
8ffaadf7 1684{
88de4598 1685 u64 size, offset;
8ffaadf7
JD
1686 resource_size_t bar_size;
1687 struct pci_dev *pdev = to_pci_dev(dev->dev);
8969f1f8 1688 int bar;
8ffaadf7 1689
7a67cbea 1690 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
f65efd6d
CH
1691 if (!dev->cmbsz)
1692 return;
202021c1 1693 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7 1694
202021c1 1695 if (!use_cmb_sqes)
f65efd6d 1696 return;
8ffaadf7 1697
88de4598
CH
1698 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1699 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
8969f1f8
CH
1700 bar = NVME_CMB_BIR(dev->cmbloc);
1701 bar_size = pci_resource_len(pdev, bar);
8ffaadf7
JD
1702
1703 if (offset > bar_size)
f65efd6d 1704 return;
8ffaadf7
JD
1705
1706 /*
1707 * Controllers may support a CMB size larger than their BAR,
1708 * for example, due to being behind a bridge. Reduce the CMB to
1709 * the reported size of the BAR
1710 */
1711 if (size > bar_size - offset)
1712 size = bar_size - offset;
1713
f65efd6d
CH
1714 dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1715 if (!dev->cmb)
1716 return;
8969f1f8 1717 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
8ffaadf7 1718 dev->cmb_size = size;
f65efd6d
CH
1719
1720 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1721 &dev_attr_cmb.attr, NULL))
1722 dev_warn(dev->ctrl.device,
1723 "failed to add sysfs attribute for CMB\n");
8ffaadf7
JD
1724}
1725
1726static inline void nvme_release_cmb(struct nvme_dev *dev)
1727{
1728 if (dev->cmb) {
1729 iounmap(dev->cmb);
1730 dev->cmb = NULL;
1c78f773
MG
1731 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1732 &dev_attr_cmb.attr, NULL);
1733 dev->cmbsz = 0;
8ffaadf7
JD
1734 }
1735}
1736
87ad72a5
CH
1737static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1738{
4033f35d 1739 u64 dma_addr = dev->host_mem_descs_dma;
87ad72a5 1740 struct nvme_command c;
87ad72a5
CH
1741 int ret;
1742
87ad72a5
CH
1743 memset(&c, 0, sizeof(c));
1744 c.features.opcode = nvme_admin_set_features;
1745 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1746 c.features.dword11 = cpu_to_le32(bits);
1747 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1748 ilog2(dev->ctrl.page_size));
1749 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1750 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1751 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1752
1753 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1754 if (ret) {
1755 dev_warn(dev->ctrl.device,
1756 "failed to set host mem (err %d, flags %#x).\n",
1757 ret, bits);
1758 }
87ad72a5
CH
1759 return ret;
1760}
1761
1762static void nvme_free_host_mem(struct nvme_dev *dev)
1763{
1764 int i;
1765
1766 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1767 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1768 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1769
1770 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1771 le64_to_cpu(desc->addr));
1772 }
1773
1774 kfree(dev->host_mem_desc_bufs);
1775 dev->host_mem_desc_bufs = NULL;
4033f35d
CH
1776 dma_free_coherent(dev->dev,
1777 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1778 dev->host_mem_descs, dev->host_mem_descs_dma);
87ad72a5 1779 dev->host_mem_descs = NULL;
7e5dd57e 1780 dev->nr_host_mem_descs = 0;
87ad72a5
CH
1781}
1782
92dc6895
CH
1783static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1784 u32 chunk_size)
9d713c2b 1785{
87ad72a5 1786 struct nvme_host_mem_buf_desc *descs;
92dc6895 1787 u32 max_entries, len;
4033f35d 1788 dma_addr_t descs_dma;
2ee0e4ed 1789 int i = 0;
87ad72a5 1790 void **bufs;
6fbcde66 1791 u64 size, tmp;
87ad72a5 1792
87ad72a5
CH
1793 tmp = (preferred + chunk_size - 1);
1794 do_div(tmp, chunk_size);
1795 max_entries = tmp;
044a9df1
CH
1796
1797 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1798 max_entries = dev->ctrl.hmmaxd;
1799
4033f35d
CH
1800 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1801 &descs_dma, GFP_KERNEL);
87ad72a5
CH
1802 if (!descs)
1803 goto out;
1804
1805 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1806 if (!bufs)
1807 goto out_free_descs;
1808
244a8fe4 1809 for (size = 0; size < preferred && i < max_entries; size += len) {
87ad72a5
CH
1810 dma_addr_t dma_addr;
1811
50cdb7c6 1812 len = min_t(u64, chunk_size, preferred - size);
87ad72a5
CH
1813 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1814 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1815 if (!bufs[i])
1816 break;
1817
1818 descs[i].addr = cpu_to_le64(dma_addr);
1819 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1820 i++;
1821 }
1822
92dc6895 1823 if (!size)
87ad72a5 1824 goto out_free_bufs;
87ad72a5 1825
87ad72a5
CH
1826 dev->nr_host_mem_descs = i;
1827 dev->host_mem_size = size;
1828 dev->host_mem_descs = descs;
4033f35d 1829 dev->host_mem_descs_dma = descs_dma;
87ad72a5
CH
1830 dev->host_mem_desc_bufs = bufs;
1831 return 0;
1832
1833out_free_bufs:
1834 while (--i >= 0) {
1835 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1836
1837 dma_free_coherent(dev->dev, size, bufs[i],
1838 le64_to_cpu(descs[i].addr));
1839 }
1840
1841 kfree(bufs);
1842out_free_descs:
4033f35d
CH
1843 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1844 descs_dma);
87ad72a5 1845out:
87ad72a5
CH
1846 dev->host_mem_descs = NULL;
1847 return -ENOMEM;
1848}
1849
92dc6895
CH
1850static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1851{
1852 u32 chunk_size;
1853
1854 /* start big and work our way down */
30f92d62 1855 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
044a9df1 1856 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
92dc6895
CH
1857 chunk_size /= 2) {
1858 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1859 if (!min || dev->host_mem_size >= min)
1860 return 0;
1861 nvme_free_host_mem(dev);
1862 }
1863 }
1864
1865 return -ENOMEM;
1866}
1867
9620cfba 1868static int nvme_setup_host_mem(struct nvme_dev *dev)
87ad72a5
CH
1869{
1870 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1871 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1872 u64 min = (u64)dev->ctrl.hmmin * 4096;
1873 u32 enable_bits = NVME_HOST_MEM_ENABLE;
6fbcde66 1874 int ret;
87ad72a5
CH
1875
1876 preferred = min(preferred, max);
1877 if (min > max) {
1878 dev_warn(dev->ctrl.device,
1879 "min host memory (%lld MiB) above limit (%d MiB).\n",
1880 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1881 nvme_free_host_mem(dev);
9620cfba 1882 return 0;
87ad72a5
CH
1883 }
1884
1885 /*
1886 * If we already have a buffer allocated check if we can reuse it.
1887 */
1888 if (dev->host_mem_descs) {
1889 if (dev->host_mem_size >= min)
1890 enable_bits |= NVME_HOST_MEM_RETURN;
1891 else
1892 nvme_free_host_mem(dev);
1893 }
1894
1895 if (!dev->host_mem_descs) {
92dc6895
CH
1896 if (nvme_alloc_host_mem(dev, min, preferred)) {
1897 dev_warn(dev->ctrl.device,
1898 "failed to allocate host memory buffer.\n");
9620cfba 1899 return 0; /* controller must work without HMB */
92dc6895
CH
1900 }
1901
1902 dev_info(dev->ctrl.device,
1903 "allocated %lld MiB host memory buffer.\n",
1904 dev->host_mem_size >> ilog2(SZ_1M));
87ad72a5
CH
1905 }
1906
9620cfba
CH
1907 ret = nvme_set_host_mem(dev, enable_bits);
1908 if (ret)
87ad72a5 1909 nvme_free_host_mem(dev);
9620cfba 1910 return ret;
9d713c2b
KB
1911}
1912
8d85fce7 1913static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1914{
147b27e4 1915 struct nvme_queue *adminq = &dev->queues[0];
e75ec752 1916 struct pci_dev *pdev = to_pci_dev(dev->dev);
97f6ef64
XY
1917 int result, nr_io_queues;
1918 unsigned long size;
b60503ba 1919
22b55601
KB
1920 struct irq_affinity affd = {
1921 .pre_vectors = 1
1922 };
1923
16ccfff2 1924 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1925 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1926 if (result < 0)
1b23484b 1927 return result;
9a0be7ab 1928
f5fa90dc 1929 if (nr_io_queues == 0)
a5229050 1930 return 0;
b60503ba 1931
88de4598 1932 if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
8ffaadf7
JD
1933 result = nvme_cmb_qdepth(dev, nr_io_queues,
1934 sizeof(struct nvme_command));
1935 if (result > 0)
1936 dev->q_depth = result;
1937 else
1938 nvme_release_cmb(dev);
1939 }
1940
97f6ef64
XY
1941 do {
1942 size = db_bar_size(dev, nr_io_queues);
1943 result = nvme_remap_bar(dev, size);
1944 if (!result)
1945 break;
1946 if (!--nr_io_queues)
1947 return -ENOMEM;
1948 } while (1);
1949 adminq->q_db = dev->dbs;
f1938f6e 1950
9d713c2b 1951 /* Deregister the admin queue's interrupt */
0ff199cb 1952 pci_free_irq(pdev, 0, adminq);
9d713c2b 1953
e32efbfc
JA
1954 /*
1955 * If we enable msix early due to not intx, disable it again before
1956 * setting up the full range we need.
1957 */
dca51e78 1958 pci_free_irq_vectors(pdev);
22b55601
KB
1959 result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1960 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1961 if (result <= 0)
dca51e78 1962 return -EIO;
22b55601
KB
1963 dev->num_vecs = result;
1964 dev->max_qid = max(result - 1, 1);
fa08a396 1965
063a8096
MW
1966 /*
1967 * Should investigate if there's a performance win from allocating
1968 * more queues than interrupt vectors; it might allow the submission
1969 * path to scale better, even if the receive path is limited by the
1970 * number of interrupts.
1971 */
063a8096 1972
dca51e78 1973 result = queue_request_irq(adminq);
758dd7fd
JD
1974 if (result) {
1975 adminq->cq_vector = -1;
d4875622 1976 return result;
758dd7fd 1977 }
749941f2 1978 return nvme_create_io_queues(dev);
b60503ba
MW
1979}
1980
2a842aca 1981static void nvme_del_queue_end(struct request *req, blk_status_t error)
a5768aa8 1982{
db3cbfff 1983 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1984
db3cbfff
KB
1985 blk_mq_free_request(req);
1986 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1987}
1988
2a842aca 1989static void nvme_del_cq_end(struct request *req, blk_status_t error)
a5768aa8 1990{
db3cbfff 1991 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1992
db3cbfff
KB
1993 if (!error) {
1994 unsigned long flags;
1995
2e39e0f6
ML
1996 /*
1997 * We might be called with the AQ q_lock held
1998 * and the I/O queue q_lock should always
1999 * nest inside the AQ one.
2000 */
2001 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
2002 SINGLE_DEPTH_NESTING);
db3cbfff
KB
2003 nvme_process_cq(nvmeq);
2004 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 2005 }
db3cbfff
KB
2006
2007 nvme_del_queue_end(req, error);
a5768aa8
KB
2008}
2009
db3cbfff 2010static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 2011{
db3cbfff
KB
2012 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2013 struct request *req;
2014 struct nvme_command cmd;
bda4e0fb 2015
db3cbfff
KB
2016 memset(&cmd, 0, sizeof(cmd));
2017 cmd.delete_queue.opcode = opcode;
2018 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 2019
eb71f435 2020 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
db3cbfff
KB
2021 if (IS_ERR(req))
2022 return PTR_ERR(req);
bda4e0fb 2023
db3cbfff
KB
2024 req->timeout = ADMIN_TIMEOUT;
2025 req->end_io_data = nvmeq;
2026
2027 blk_execute_rq_nowait(q, NULL, req, false,
2028 opcode == nvme_admin_delete_cq ?
2029 nvme_del_cq_end : nvme_del_queue_end);
2030 return 0;
bda4e0fb
KB
2031}
2032
ee9aebb2 2033static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 2034{
ee9aebb2 2035 int pass, queues = dev->online_queues - 1;
db3cbfff
KB
2036 unsigned long timeout;
2037 u8 opcode = nvme_admin_delete_sq;
a5768aa8 2038
db3cbfff 2039 for (pass = 0; pass < 2; pass++) {
014a0d60 2040 int sent = 0, i = queues;
db3cbfff
KB
2041
2042 reinit_completion(&dev->ioq_wait);
2043 retry:
2044 timeout = ADMIN_TIMEOUT;
c21377f8 2045 for (; i > 0; i--, sent++)
147b27e4 2046 if (nvme_delete_queue(&dev->queues[i], opcode))
db3cbfff 2047 break;
c21377f8 2048
db3cbfff
KB
2049 while (sent--) {
2050 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2051 if (timeout == 0)
2052 return;
2053 if (i)
2054 goto retry;
2055 }
2056 opcode = nvme_admin_delete_cq;
2057 }
a5768aa8
KB
2058}
2059
422ef0c7 2060/*
2b1b7e78 2061 * return error value only when tagset allocation failed
422ef0c7 2062 */
8d85fce7 2063static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2064{
2b1b7e78
JW
2065 int ret;
2066
5bae7f73 2067 if (!dev->ctrl.tagset) {
ffe7704d
KB
2068 dev->tagset.ops = &nvme_mq_ops;
2069 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2070 dev->tagset.timeout = NVME_IO_TIMEOUT;
2071 dev->tagset.numa_node = dev_to_node(dev->dev);
2072 dev->tagset.queue_depth =
a4aea562 2073 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
a7a7cbe3
CK
2074 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2075 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2076 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2077 nvme_pci_cmd_size(dev, true));
2078 }
ffe7704d
KB
2079 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2080 dev->tagset.driver_data = dev;
b60503ba 2081
2b1b7e78
JW
2082 ret = blk_mq_alloc_tag_set(&dev->tagset);
2083 if (ret) {
2084 dev_warn(dev->ctrl.device,
2085 "IO queues tagset allocation failed %d\n", ret);
2086 return ret;
2087 }
5bae7f73 2088 dev->ctrl.tagset = &dev->tagset;
f9f38e33
HK
2089
2090 nvme_dbbuf_set(dev);
949928c1
KB
2091 } else {
2092 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2093
2094 /* Free previously allocated queues that are no longer usable */
2095 nvme_free_queues(dev, dev->online_queues);
ffe7704d 2096 }
949928c1 2097
e1e5e564 2098 return 0;
b60503ba
MW
2099}
2100
b00a726a 2101static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 2102{
b00a726a 2103 int result = -ENOMEM;
e75ec752 2104 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2105
2106 if (pci_enable_device_mem(pdev))
2107 return result;
2108
0877cb0d 2109 pci_set_master(pdev);
0877cb0d 2110
e75ec752
CH
2111 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2112 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2113 goto disable;
0877cb0d 2114
7a67cbea 2115 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 2116 result = -ENODEV;
b00a726a 2117 goto disable;
0e53d180 2118 }
e32efbfc
JA
2119
2120 /*
a5229050
KB
2121 * Some devices and/or platforms don't advertise or work with INTx
2122 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2123 * adjust this later.
e32efbfc 2124 */
dca51e78
CH
2125 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2126 if (result < 0)
2127 return result;
e32efbfc 2128
20d0dfe6 2129 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
7a67cbea 2130
20d0dfe6 2131 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
b27c1e68 2132 io_queue_depth);
20d0dfe6 2133 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
7a67cbea 2134 dev->dbs = dev->bar + 4096;
1f390c1f
SG
2135
2136 /*
2137 * Temporary fix for the Apple controller found in the MacBook8,1 and
2138 * some MacBook7,1 to avoid controller resets and data loss.
2139 */
2140 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2141 dev->q_depth = 2;
9bdcfb10
CH
2142 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2143 "set queue depth=%u to work around controller resets\n",
1f390c1f 2144 dev->q_depth);
d554b5e1
MP
2145 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2146 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
20d0dfe6 2147 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
d554b5e1
MP
2148 dev->q_depth = 64;
2149 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2150 "set queue depth=%u\n", dev->q_depth);
1f390c1f
SG
2151 }
2152
f65efd6d 2153 nvme_map_cmb(dev);
202021c1 2154
a0a3408e
KB
2155 pci_enable_pcie_error_reporting(pdev);
2156 pci_save_state(pdev);
0877cb0d
KB
2157 return 0;
2158
2159 disable:
0877cb0d
KB
2160 pci_disable_device(pdev);
2161 return result;
2162}
2163
2164static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
2165{
2166 if (dev->bar)
2167 iounmap(dev->bar);
a1f447b3 2168 pci_release_mem_regions(to_pci_dev(dev->dev));
b00a726a
KB
2169}
2170
2171static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 2172{
e75ec752
CH
2173 struct pci_dev *pdev = to_pci_dev(dev->dev);
2174
f63572df 2175 nvme_release_cmb(dev);
dca51e78 2176 pci_free_irq_vectors(pdev);
0877cb0d 2177
a0a3408e
KB
2178 if (pci_is_enabled(pdev)) {
2179 pci_disable_pcie_error_reporting(pdev);
e75ec752 2180 pci_disable_device(pdev);
4d115420 2181 }
4d115420
KB
2182}
2183
a5cdb68c 2184static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 2185{
ee9aebb2 2186 int i;
302ad8cc
KB
2187 bool dead = true;
2188 struct pci_dev *pdev = to_pci_dev(dev->dev);
22404274 2189
77bf25ea 2190 mutex_lock(&dev->shutdown_lock);
302ad8cc
KB
2191 if (pci_is_enabled(pdev)) {
2192 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2193
ebef7368
KB
2194 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2195 dev->ctrl.state == NVME_CTRL_RESETTING)
302ad8cc
KB
2196 nvme_start_freeze(&dev->ctrl);
2197 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2198 pdev->error_state != pci_channel_io_normal);
c9d3bf88 2199 }
c21377f8 2200
302ad8cc
KB
2201 /*
2202 * Give the controller a chance to complete all entered requests if
2203 * doing a safe shutdown.
2204 */
87ad72a5
CH
2205 if (!dead) {
2206 if (shutdown)
2207 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
9a915a5b
JW
2208 }
2209
2210 nvme_stop_queues(&dev->ctrl);
87ad72a5 2211
64ee0ac0 2212 if (!dead && dev->ctrl.queue_count > 0) {
87ad72a5
CH
2213 /*
2214 * If the controller is still alive tell it to stop using the
2215 * host memory buffer. In theory the shutdown / reset should
2216 * make sure that it doesn't access the host memoery anymore,
2217 * but I'd rather be safe than sorry..
2218 */
2219 if (dev->host_mem_descs)
2220 nvme_set_host_mem(dev, 0);
ee9aebb2 2221 nvme_disable_io_queues(dev);
a5cdb68c 2222 nvme_disable_admin_queue(dev, shutdown);
4d115420 2223 }
ee9aebb2
KB
2224 for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2225 nvme_suspend_queue(&dev->queues[i]);
2226
b00a726a 2227 nvme_pci_disable(dev);
07836e65 2228
e1958e65
ML
2229 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2230 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
302ad8cc
KB
2231
2232 /*
2233 * The driver will not be starting up queues again if shutting down so
2234 * must flush all entered requests to their failed completion to avoid
2235 * deadlocking blk-mq hot-cpu notifier.
2236 */
2237 if (shutdown)
2238 nvme_start_queues(&dev->ctrl);
77bf25ea 2239 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
2240}
2241
091b6092
MW
2242static int nvme_setup_prp_pools(struct nvme_dev *dev)
2243{
e75ec752 2244 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2245 PAGE_SIZE, PAGE_SIZE, 0);
2246 if (!dev->prp_page_pool)
2247 return -ENOMEM;
2248
99802a7a 2249 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2250 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2251 256, 256, 0);
2252 if (!dev->prp_small_pool) {
2253 dma_pool_destroy(dev->prp_page_pool);
2254 return -ENOMEM;
2255 }
091b6092
MW
2256 return 0;
2257}
2258
2259static void nvme_release_prp_pools(struct nvme_dev *dev)
2260{
2261 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2262 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2263}
2264
1673f1f0 2265static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2266{
1673f1f0 2267 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2268
f9f38e33 2269 nvme_dbbuf_dma_free(dev);
e75ec752 2270 put_device(dev->dev);
4af0e21c
KB
2271 if (dev->tagset.tags)
2272 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2273 if (dev->ctrl.admin_q)
2274 blk_put_queue(dev->ctrl.admin_q);
5e82e952 2275 kfree(dev->queues);
e286bcfc 2276 free_opal_dev(dev->ctrl.opal_dev);
5e82e952
KB
2277 kfree(dev);
2278}
2279
f58944e2
KB
2280static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2281{
237045fc 2282 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2 2283
d22524a4 2284 nvme_get_ctrl(&dev->ctrl);
69d9a99c 2285 nvme_dev_disable(dev, false);
03e0f3a6 2286 if (!queue_work(nvme_wq, &dev->remove_work))
f58944e2
KB
2287 nvme_put_ctrl(&dev->ctrl);
2288}
2289
fd634f41 2290static void nvme_reset_work(struct work_struct *work)
5e82e952 2291{
d86c4d8e
CH
2292 struct nvme_dev *dev =
2293 container_of(work, struct nvme_dev, ctrl.reset_work);
a98e58e5 2294 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
f58944e2 2295 int result = -ENODEV;
2b1b7e78 2296 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
5e82e952 2297
82b057ca 2298 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
fd634f41 2299 goto out;
5e82e952 2300
fd634f41
CH
2301 /*
2302 * If we're called to reset a live controller first shut it down before
2303 * moving on.
2304 */
b00a726a 2305 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 2306 nvme_dev_disable(dev, false);
5e82e952 2307
ad70062c 2308 /*
ad6a0a52 2309 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
ad70062c
JW
2310 * initializing procedure here.
2311 */
ad6a0a52 2312 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
ad70062c 2313 dev_warn(dev->ctrl.device,
ad6a0a52 2314 "failed to mark controller CONNECTING\n");
ad70062c
JW
2315 goto out;
2316 }
2317
b00a726a 2318 result = nvme_pci_enable(dev);
f0b50732 2319 if (result)
3cf519b5 2320 goto out;
f0b50732 2321
01ad0990 2322 result = nvme_pci_configure_admin_queue(dev);
f0b50732 2323 if (result)
f58944e2 2324 goto out;
f0b50732 2325
0fb59cbc
KB
2326 result = nvme_alloc_admin_tags(dev);
2327 if (result)
f58944e2 2328 goto out;
b9afca3e 2329
ce4541f4
CH
2330 result = nvme_init_identify(&dev->ctrl);
2331 if (result)
f58944e2 2332 goto out;
ce4541f4 2333
e286bcfc
SB
2334 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2335 if (!dev->ctrl.opal_dev)
2336 dev->ctrl.opal_dev =
2337 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2338 else if (was_suspend)
2339 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2340 } else {
2341 free_opal_dev(dev->ctrl.opal_dev);
2342 dev->ctrl.opal_dev = NULL;
4f1244c8 2343 }
a98e58e5 2344
f9f38e33
HK
2345 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2346 result = nvme_dbbuf_dma_alloc(dev);
2347 if (result)
2348 dev_warn(dev->dev,
2349 "unable to allocate dma for dbbuf\n");
2350 }
2351
9620cfba
CH
2352 if (dev->ctrl.hmpre) {
2353 result = nvme_setup_host_mem(dev);
2354 if (result < 0)
2355 goto out;
2356 }
87ad72a5 2357
f0b50732 2358 result = nvme_setup_io_queues(dev);
badc34d4 2359 if (result)
f58944e2 2360 goto out;
f0b50732 2361
2659e57b
CH
2362 /*
2363 * Keep the controller around but remove all namespaces if we don't have
2364 * any working I/O queue.
2365 */
3cf519b5 2366 if (dev->online_queues < 2) {
1b3c47c1 2367 dev_warn(dev->ctrl.device, "IO queues not created\n");
3b24774e 2368 nvme_kill_queues(&dev->ctrl);
5bae7f73 2369 nvme_remove_namespaces(&dev->ctrl);
2b1b7e78 2370 new_state = NVME_CTRL_ADMIN_ONLY;
3cf519b5 2371 } else {
25646264 2372 nvme_start_queues(&dev->ctrl);
302ad8cc 2373 nvme_wait_freeze(&dev->ctrl);
2b1b7e78
JW
2374 /* hit this only when allocate tagset fails */
2375 if (nvme_dev_add(dev))
2376 new_state = NVME_CTRL_ADMIN_ONLY;
302ad8cc 2377 nvme_unfreeze(&dev->ctrl);
3cf519b5
CH
2378 }
2379
2b1b7e78
JW
2380 /*
2381 * If only admin queue live, keep it to do further investigation or
2382 * recovery.
2383 */
2384 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2385 dev_warn(dev->ctrl.device,
2386 "failed to mark controller state %d\n", new_state);
bb8d261e
CH
2387 goto out;
2388 }
92911a55 2389
d09f2b45 2390 nvme_start_ctrl(&dev->ctrl);
3cf519b5 2391 return;
f0b50732 2392
3cf519b5 2393 out:
f58944e2 2394 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
2395}
2396
5c8809e6 2397static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2398{
5c8809e6 2399 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2400 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 2401
69d9a99c 2402 nvme_kill_queues(&dev->ctrl);
9a6b9458 2403 if (pci_get_drvdata(pdev))
921920ab 2404 device_release_driver(&pdev->dev);
1673f1f0 2405 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2406}
2407
1c63dc66 2408static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2409{
1c63dc66 2410 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2411 return 0;
9ca97374
TH
2412}
2413
5fd4ce1b 2414static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2415{
5fd4ce1b
CH
2416 writel(val, to_nvme_dev(ctrl)->bar + off);
2417 return 0;
2418}
4cc06521 2419
7fd8930f
CH
2420static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2421{
2422 *val = readq(to_nvme_dev(ctrl)->bar + off);
2423 return 0;
4cc06521
KB
2424}
2425
97c12223
KB
2426static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2427{
2428 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2429
2430 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2431}
2432
1c63dc66 2433static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1a353d85 2434 .name = "pcie",
e439bb12 2435 .module = THIS_MODULE,
c81bfba9 2436 .flags = NVME_F_METADATA_SUPPORTED,
1c63dc66 2437 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2438 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2439 .reg_read64 = nvme_pci_reg_read64,
1673f1f0 2440 .free_ctrl = nvme_pci_free_ctrl,
f866fc42 2441 .submit_async_event = nvme_pci_submit_async_event,
97c12223 2442 .get_address = nvme_pci_get_address,
1c63dc66 2443};
4cc06521 2444
b00a726a
KB
2445static int nvme_dev_map(struct nvme_dev *dev)
2446{
b00a726a
KB
2447 struct pci_dev *pdev = to_pci_dev(dev->dev);
2448
a1f447b3 2449 if (pci_request_mem_regions(pdev, "nvme"))
b00a726a
KB
2450 return -ENODEV;
2451
97f6ef64 2452 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
b00a726a
KB
2453 goto release;
2454
9fa196e7 2455 return 0;
b00a726a 2456 release:
9fa196e7
MG
2457 pci_release_mem_regions(pdev);
2458 return -ENODEV;
b00a726a
KB
2459}
2460
8427bbc2 2461static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
ff5350a8
AL
2462{
2463 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2464 /*
2465 * Several Samsung devices seem to drop off the PCIe bus
2466 * randomly when APST is on and uses the deepest sleep state.
2467 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2468 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2469 * 950 PRO 256GB", but it seems to be restricted to two Dell
2470 * laptops.
2471 */
2472 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2473 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2474 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2475 return NVME_QUIRK_NO_DEEPEST_PS;
8427bbc2
KHF
2476 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2477 /*
2478 * Samsung SSD 960 EVO drops off the PCIe bus after system
467c77d4
JJ
2479 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2480 * within few minutes after bootup on a Coffee Lake board -
2481 * ASUS PRIME Z370-A
8427bbc2
KHF
2482 */
2483 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
467c77d4
JJ
2484 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2485 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
8427bbc2 2486 return NVME_QUIRK_NO_APST;
ff5350a8
AL
2487 }
2488
2489 return 0;
2490}
2491
18119775
KB
2492static void nvme_async_probe(void *data, async_cookie_t cookie)
2493{
2494 struct nvme_dev *dev = data;
2495 nvme_reset_ctrl_sync(&dev->ctrl);
2496 flush_work(&dev->ctrl.scan_work);
2497}
2498
8d85fce7 2499static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2500{
a4aea562 2501 int node, result = -ENOMEM;
b60503ba 2502 struct nvme_dev *dev;
ff5350a8 2503 unsigned long quirks = id->driver_data;
b60503ba 2504
a4aea562
MB
2505 node = dev_to_node(&pdev->dev);
2506 if (node == NUMA_NO_NODE)
2fa84351 2507 set_dev_node(&pdev->dev, first_memory_node);
a4aea562
MB
2508
2509 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2510 if (!dev)
2511 return -ENOMEM;
147b27e4
SG
2512
2513 dev->queues = kcalloc_node(num_possible_cpus() + 1,
2514 sizeof(struct nvme_queue), GFP_KERNEL, node);
b60503ba
MW
2515 if (!dev->queues)
2516 goto free;
2517
e75ec752 2518 dev->dev = get_device(&pdev->dev);
9a6b9458 2519 pci_set_drvdata(pdev, dev);
1c63dc66 2520
b00a726a
KB
2521 result = nvme_dev_map(dev);
2522 if (result)
b00c9b7a 2523 goto put_pci;
b00a726a 2524
d86c4d8e 2525 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
5c8809e6 2526 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2527 mutex_init(&dev->shutdown_lock);
db3cbfff 2528 init_completion(&dev->ioq_wait);
b60503ba 2529
091b6092
MW
2530 result = nvme_setup_prp_pools(dev);
2531 if (result)
b00c9b7a 2532 goto unmap;
4cc06521 2533
8427bbc2 2534 quirks |= check_vendor_combination_bug(pdev);
ff5350a8 2535
f3ca80fc 2536 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
ff5350a8 2537 quirks);
4cc06521 2538 if (result)
2e1d8448 2539 goto release_pools;
740216fc 2540
1b3c47c1
SG
2541 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2542
18119775 2543 async_schedule(nvme_async_probe, dev);
4caff8fc 2544
b60503ba
MW
2545 return 0;
2546
0877cb0d 2547 release_pools:
091b6092 2548 nvme_release_prp_pools(dev);
b00c9b7a
CJ
2549 unmap:
2550 nvme_dev_unmap(dev);
a96d4f5c 2551 put_pci:
e75ec752 2552 put_device(dev->dev);
b60503ba
MW
2553 free:
2554 kfree(dev->queues);
b60503ba
MW
2555 kfree(dev);
2556 return result;
2557}
2558
775755ed 2559static void nvme_reset_prepare(struct pci_dev *pdev)
f0d54a54 2560{
a6739479 2561 struct nvme_dev *dev = pci_get_drvdata(pdev);
f263fbb8 2562 nvme_dev_disable(dev, false);
775755ed 2563}
f0d54a54 2564
775755ed
CH
2565static void nvme_reset_done(struct pci_dev *pdev)
2566{
f263fbb8 2567 struct nvme_dev *dev = pci_get_drvdata(pdev);
79c48ccf 2568 nvme_reset_ctrl_sync(&dev->ctrl);
f0d54a54
KB
2569}
2570
09ece142
KB
2571static void nvme_shutdown(struct pci_dev *pdev)
2572{
2573 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2574 nvme_dev_disable(dev, true);
09ece142
KB
2575}
2576
f58944e2
KB
2577/*
2578 * The driver's remove may be called on a device in a partially initialized
2579 * state. This function must not have any dependencies on the device state in
2580 * order to proceed.
2581 */
8d85fce7 2582static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2583{
2584 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2585
bb8d261e
CH
2586 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2587
d86c4d8e 2588 cancel_work_sync(&dev->ctrl.reset_work);
9a6b9458 2589 pci_set_drvdata(pdev, NULL);
0ff9d4e1 2590
6db28eda 2591 if (!pci_device_is_present(pdev)) {
0ff9d4e1 2592 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
6db28eda
KB
2593 nvme_dev_disable(dev, false);
2594 }
0ff9d4e1 2595
d86c4d8e 2596 flush_work(&dev->ctrl.reset_work);
d09f2b45
SG
2597 nvme_stop_ctrl(&dev->ctrl);
2598 nvme_remove_namespaces(&dev->ctrl);
a5cdb68c 2599 nvme_dev_disable(dev, true);
87ad72a5 2600 nvme_free_host_mem(dev);
a4aea562 2601 nvme_dev_remove_admin(dev);
a1a5ef99 2602 nvme_free_queues(dev, 0);
d09f2b45 2603 nvme_uninit_ctrl(&dev->ctrl);
9a6b9458 2604 nvme_release_prp_pools(dev);
b00a726a 2605 nvme_dev_unmap(dev);
1673f1f0 2606 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2607}
2608
13880f5b
KB
2609static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2610{
2611 int ret = 0;
2612
2613 if (numvfs == 0) {
2614 if (pci_vfs_assigned(pdev)) {
2615 dev_warn(&pdev->dev,
2616 "Cannot disable SR-IOV VFs while assigned\n");
2617 return -EPERM;
2618 }
2619 pci_disable_sriov(pdev);
2620 return 0;
2621 }
2622
2623 ret = pci_enable_sriov(pdev, numvfs);
2624 return ret ? ret : numvfs;
2625}
2626
671a6018 2627#ifdef CONFIG_PM_SLEEP
cd638946
KB
2628static int nvme_suspend(struct device *dev)
2629{
2630 struct pci_dev *pdev = to_pci_dev(dev);
2631 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2632
a5cdb68c 2633 nvme_dev_disable(ndev, true);
cd638946
KB
2634 return 0;
2635}
2636
2637static int nvme_resume(struct device *dev)
2638{
2639 struct pci_dev *pdev = to_pci_dev(dev);
2640 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2641
d86c4d8e 2642 nvme_reset_ctrl(&ndev->ctrl);
9a6b9458 2643 return 0;
cd638946 2644}
671a6018 2645#endif
cd638946
KB
2646
2647static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2648
a0a3408e
KB
2649static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2650 pci_channel_state_t state)
2651{
2652 struct nvme_dev *dev = pci_get_drvdata(pdev);
2653
2654 /*
2655 * A frozen channel requires a reset. When detected, this method will
2656 * shutdown the controller to quiesce. The controller will be restarted
2657 * after the slot reset through driver's slot_reset callback.
2658 */
a0a3408e
KB
2659 switch (state) {
2660 case pci_channel_io_normal:
2661 return PCI_ERS_RESULT_CAN_RECOVER;
2662 case pci_channel_io_frozen:
d011fb31
KB
2663 dev_warn(dev->ctrl.device,
2664 "frozen state error detected, reset controller\n");
a5cdb68c 2665 nvme_dev_disable(dev, false);
a0a3408e
KB
2666 return PCI_ERS_RESULT_NEED_RESET;
2667 case pci_channel_io_perm_failure:
d011fb31
KB
2668 dev_warn(dev->ctrl.device,
2669 "failure state error detected, request disconnect\n");
a0a3408e
KB
2670 return PCI_ERS_RESULT_DISCONNECT;
2671 }
2672 return PCI_ERS_RESULT_NEED_RESET;
2673}
2674
2675static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2676{
2677 struct nvme_dev *dev = pci_get_drvdata(pdev);
2678
1b3c47c1 2679 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e 2680 pci_restore_state(pdev);
d86c4d8e 2681 nvme_reset_ctrl(&dev->ctrl);
a0a3408e
KB
2682 return PCI_ERS_RESULT_RECOVERED;
2683}
2684
2685static void nvme_error_resume(struct pci_dev *pdev)
2686{
2687 pci_cleanup_aer_uncorrect_error_status(pdev);
2688}
2689
1d352035 2690static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2691 .error_detected = nvme_error_detected,
b60503ba
MW
2692 .slot_reset = nvme_slot_reset,
2693 .resume = nvme_error_resume,
775755ed
CH
2694 .reset_prepare = nvme_reset_prepare,
2695 .reset_done = nvme_reset_done,
b60503ba
MW
2696};
2697
6eb0d698 2698static const struct pci_device_id nvme_id_table[] = {
106198ed 2699 { PCI_VDEVICE(INTEL, 0x0953),
08095e70 2700 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2701 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2702 { PCI_VDEVICE(INTEL, 0x0a53),
2703 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2704 NVME_QUIRK_DEALLOCATE_ZEROES, },
99466e70
KB
2705 { PCI_VDEVICE(INTEL, 0x0a54),
2706 .driver_data = NVME_QUIRK_STRIPE_SIZE |
e850fd16 2707 NVME_QUIRK_DEALLOCATE_ZEROES, },
f99cb7af
DWF
2708 { PCI_VDEVICE(INTEL, 0x0a55),
2709 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2710 NVME_QUIRK_DEALLOCATE_ZEROES, },
50af47d0
AL
2711 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2712 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
540c801c
KB
2713 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2714 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
0302ae60
MP
2715 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
2716 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
54adc010
GP
2717 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2718 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
8c97eecc
JL
2719 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2720 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
015282c9
WW
2721 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2722 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
d554b5e1
MP
2723 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2724 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2725 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2726 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
608cc4b1
CH
2727 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2728 .driver_data = NVME_QUIRK_LIGHTNVM, },
2729 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2730 .driver_data = NVME_QUIRK_LIGHTNVM, },
ea48e877
WX
2731 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2732 .driver_data = NVME_QUIRK_LIGHTNVM, },
b60503ba 2733 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2734 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
124298bd 2735 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
b60503ba
MW
2736 { 0, }
2737};
2738MODULE_DEVICE_TABLE(pci, nvme_id_table);
2739
2740static struct pci_driver nvme_driver = {
2741 .name = "nvme",
2742 .id_table = nvme_id_table,
2743 .probe = nvme_probe,
8d85fce7 2744 .remove = nvme_remove,
09ece142 2745 .shutdown = nvme_shutdown,
cd638946
KB
2746 .driver = {
2747 .pm = &nvme_dev_pm_ops,
2748 },
13880f5b 2749 .sriov_configure = nvme_pci_sriov_configure,
b60503ba
MW
2750 .err_handler = &nvme_err_handler,
2751};
2752
2753static int __init nvme_init(void)
2754{
9a6327d2 2755 return pci_register_driver(&nvme_driver);
b60503ba
MW
2756}
2757
2758static void __exit nvme_exit(void)
2759{
2760 pci_unregister_driver(&nvme_driver);
03e0f3a6 2761 flush_workqueue(nvme_wq);
21bd78bc 2762 _nvme_check_size();
b60503ba
MW
2763}
2764
2765MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2766MODULE_LICENSE("GPL");
c78b4713 2767MODULE_VERSION("1.0");
b60503ba
MW
2768module_init(nvme_init);
2769module_exit(nvme_exit);