virtio_blk: quiesce/unquiesce live IO when entering PM states
[linux-2.6-block.git] / drivers / nvme / host / fc.c
CommitLineData
e399441d
JS
1/*
2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
15 *
16 */
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18#include <linux/module.h>
19#include <linux/parser.h>
20#include <uapi/scsi/fc/fc_fs.h>
21#include <uapi/scsi/fc/fc_els.h>
61bff8ef 22#include <linux/delay.h>
e399441d
JS
23
24#include "nvme.h"
25#include "fabrics.h"
26#include <linux/nvme-fc-driver.h>
27#include <linux/nvme-fc.h>
28
29
30/* *************************** Data Structures/Defines ****************** */
31
32
33/*
34 * We handle AEN commands ourselves and don't even let the
35 * block layer know about them.
36 */
37#define NVME_FC_NR_AEN_COMMANDS 1
38#define NVME_FC_AQ_BLKMQ_DEPTH \
7aa1f427 39 (NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
e399441d
JS
40#define AEN_CMDID_BASE (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42enum nvme_fc_queue_flags {
43 NVME_FC_Q_CONNECTED = (1 << 0),
44};
45
46#define NVMEFC_QUEUE_DELAY 3 /* ms units */
47
48struct nvme_fc_queue {
49 struct nvme_fc_ctrl *ctrl;
50 struct device *dev;
51 struct blk_mq_hw_ctx *hctx;
52 void *lldd_handle;
53 int queue_size;
54 size_t cmnd_capsule_len;
55 u32 qnum;
56 u32 rqcnt;
57 u32 seqno;
58
59 u64 connection_id;
60 atomic_t csn;
61
62 unsigned long flags;
63} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
64
8d64daf7
JS
65enum nvme_fcop_flags {
66 FCOP_FLAGS_TERMIO = (1 << 0),
67 FCOP_FLAGS_RELEASED = (1 << 1),
68 FCOP_FLAGS_COMPLETE = (1 << 2),
78a7ac26 69 FCOP_FLAGS_AEN = (1 << 3),
8d64daf7
JS
70};
71
e399441d
JS
72struct nvmefc_ls_req_op {
73 struct nvmefc_ls_req ls_req;
74
c913a8b0 75 struct nvme_fc_rport *rport;
e399441d
JS
76 struct nvme_fc_queue *queue;
77 struct request *rq;
8d64daf7 78 u32 flags;
e399441d
JS
79
80 int ls_error;
81 struct completion ls_done;
c913a8b0 82 struct list_head lsreq_list; /* rport->ls_req_list */
e399441d
JS
83 bool req_queued;
84};
85
86enum nvme_fcpop_state {
87 FCPOP_STATE_UNINIT = 0,
88 FCPOP_STATE_IDLE = 1,
89 FCPOP_STATE_ACTIVE = 2,
90 FCPOP_STATE_ABORTED = 3,
78a7ac26 91 FCPOP_STATE_COMPLETE = 4,
e399441d
JS
92};
93
94struct nvme_fc_fcp_op {
95 struct nvme_request nreq; /*
96 * nvme/host/core.c
97 * requires this to be
98 * the 1st element in the
99 * private structure
100 * associated with the
101 * request.
102 */
103 struct nvmefc_fcp_req fcp_req;
104
105 struct nvme_fc_ctrl *ctrl;
106 struct nvme_fc_queue *queue;
107 struct request *rq;
108
109 atomic_t state;
78a7ac26 110 u32 flags;
e399441d
JS
111 u32 rqno;
112 u32 nents;
113
114 struct nvme_fc_cmd_iu cmd_iu;
115 struct nvme_fc_ersp_iu rsp_iu;
116};
117
118struct nvme_fc_lport {
119 struct nvme_fc_local_port localport;
120
121 struct ida endp_cnt;
122 struct list_head port_list; /* nvme_fc_port_list */
123 struct list_head endp_list;
124 struct device *dev; /* physical device for dma */
125 struct nvme_fc_port_template *ops;
126 struct kref ref;
127} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
128
129struct nvme_fc_rport {
130 struct nvme_fc_remote_port remoteport;
131
132 struct list_head endp_list; /* for lport->endp_list */
133 struct list_head ctrl_list;
c913a8b0
JS
134 struct list_head ls_req_list;
135 struct device *dev; /* physical device for dma */
136 struct nvme_fc_lport *lport;
e399441d
JS
137 spinlock_t lock;
138 struct kref ref;
139} __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
140
61bff8ef
JS
141enum nvme_fcctrl_flags {
142 FCCTRL_TERMIO = (1 << 0),
e399441d
JS
143};
144
145struct nvme_fc_ctrl {
146 spinlock_t lock;
147 struct nvme_fc_queue *queues;
e399441d
JS
148 struct device *dev;
149 struct nvme_fc_lport *lport;
150 struct nvme_fc_rport *rport;
151 u32 cnum;
152
153 u64 association_id;
154
e399441d 155 struct list_head ctrl_list; /* rport->ctrl_list */
e399441d
JS
156
157 struct blk_mq_tag_set admin_tag_set;
158 struct blk_mq_tag_set tag_set;
159
160 struct work_struct delete_work;
61bff8ef 161 struct delayed_work connect_work;
61bff8ef 162
e399441d 163 struct kref ref;
61bff8ef
JS
164 u32 flags;
165 u32 iocnt;
36715cf4 166 wait_queue_head_t ioabort_wait;
e399441d
JS
167
168 struct nvme_fc_fcp_op aen_ops[NVME_FC_NR_AEN_COMMANDS];
169
170 struct nvme_ctrl ctrl;
171};
172
173static inline struct nvme_fc_ctrl *
174to_fc_ctrl(struct nvme_ctrl *ctrl)
175{
176 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
177}
178
179static inline struct nvme_fc_lport *
180localport_to_lport(struct nvme_fc_local_port *portptr)
181{
182 return container_of(portptr, struct nvme_fc_lport, localport);
183}
184
185static inline struct nvme_fc_rport *
186remoteport_to_rport(struct nvme_fc_remote_port *portptr)
187{
188 return container_of(portptr, struct nvme_fc_rport, remoteport);
189}
190
191static inline struct nvmefc_ls_req_op *
192ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
193{
194 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
195}
196
197static inline struct nvme_fc_fcp_op *
198fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
199{
200 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
201}
202
203
204
205/* *************************** Globals **************************** */
206
207
208static DEFINE_SPINLOCK(nvme_fc_lock);
209
210static LIST_HEAD(nvme_fc_lport_list);
211static DEFINE_IDA(nvme_fc_local_port_cnt);
212static DEFINE_IDA(nvme_fc_ctrl_cnt);
213
e399441d
JS
214
215
216
217/* *********************** FC-NVME Port Management ************************ */
218
219static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
220static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
221 struct nvme_fc_queue *, unsigned int);
222
223
224/**
225 * nvme_fc_register_localport - transport entry point called by an
226 * LLDD to register the existence of a NVME
227 * host FC port.
228 * @pinfo: pointer to information about the port to be registered
229 * @template: LLDD entrypoints and operational parameters for the port
230 * @dev: physical hardware device node port corresponds to. Will be
231 * used for DMA mappings
232 * @lport_p: pointer to a local port pointer. Upon success, the routine
233 * will allocate a nvme_fc_local_port structure and place its
234 * address in the local port pointer. Upon failure, local port
235 * pointer will be set to 0.
236 *
237 * Returns:
238 * a completion status. Must be 0 upon success; a negative errno
239 * (ex: -ENXIO) upon failure.
240 */
241int
242nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
243 struct nvme_fc_port_template *template,
244 struct device *dev,
245 struct nvme_fc_local_port **portptr)
246{
247 struct nvme_fc_lport *newrec;
248 unsigned long flags;
249 int ret, idx;
250
251 if (!template->localport_delete || !template->remoteport_delete ||
252 !template->ls_req || !template->fcp_io ||
253 !template->ls_abort || !template->fcp_abort ||
254 !template->max_hw_queues || !template->max_sgl_segments ||
255 !template->max_dif_sgl_segments || !template->dma_boundary) {
256 ret = -EINVAL;
257 goto out_reghost_failed;
258 }
259
260 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
261 GFP_KERNEL);
262 if (!newrec) {
263 ret = -ENOMEM;
264 goto out_reghost_failed;
265 }
266
267 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
268 if (idx < 0) {
269 ret = -ENOSPC;
270 goto out_fail_kfree;
271 }
272
273 if (!get_device(dev) && dev) {
274 ret = -ENODEV;
275 goto out_ida_put;
276 }
277
278 INIT_LIST_HEAD(&newrec->port_list);
279 INIT_LIST_HEAD(&newrec->endp_list);
280 kref_init(&newrec->ref);
281 newrec->ops = template;
282 newrec->dev = dev;
283 ida_init(&newrec->endp_cnt);
284 newrec->localport.private = &newrec[1];
285 newrec->localport.node_name = pinfo->node_name;
286 newrec->localport.port_name = pinfo->port_name;
287 newrec->localport.port_role = pinfo->port_role;
288 newrec->localport.port_id = pinfo->port_id;
289 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
290 newrec->localport.port_num = idx;
291
292 spin_lock_irqsave(&nvme_fc_lock, flags);
293 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
294 spin_unlock_irqrestore(&nvme_fc_lock, flags);
295
296 if (dev)
297 dma_set_seg_boundary(dev, template->dma_boundary);
298
299 *portptr = &newrec->localport;
300 return 0;
301
302out_ida_put:
303 ida_simple_remove(&nvme_fc_local_port_cnt, idx);
304out_fail_kfree:
305 kfree(newrec);
306out_reghost_failed:
307 *portptr = NULL;
308
309 return ret;
310}
311EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
312
313static void
314nvme_fc_free_lport(struct kref *ref)
315{
316 struct nvme_fc_lport *lport =
317 container_of(ref, struct nvme_fc_lport, ref);
318 unsigned long flags;
319
320 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
321 WARN_ON(!list_empty(&lport->endp_list));
322
323 /* remove from transport list */
324 spin_lock_irqsave(&nvme_fc_lock, flags);
325 list_del(&lport->port_list);
326 spin_unlock_irqrestore(&nvme_fc_lock, flags);
327
328 /* let the LLDD know we've finished tearing it down */
329 lport->ops->localport_delete(&lport->localport);
330
331 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
332 ida_destroy(&lport->endp_cnt);
333
334 put_device(lport->dev);
335
336 kfree(lport);
337}
338
339static void
340nvme_fc_lport_put(struct nvme_fc_lport *lport)
341{
342 kref_put(&lport->ref, nvme_fc_free_lport);
343}
344
345static int
346nvme_fc_lport_get(struct nvme_fc_lport *lport)
347{
348 return kref_get_unless_zero(&lport->ref);
349}
350
351/**
352 * nvme_fc_unregister_localport - transport entry point called by an
353 * LLDD to deregister/remove a previously
354 * registered a NVME host FC port.
355 * @localport: pointer to the (registered) local port that is to be
356 * deregistered.
357 *
358 * Returns:
359 * a completion status. Must be 0 upon success; a negative errno
360 * (ex: -ENXIO) upon failure.
361 */
362int
363nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
364{
365 struct nvme_fc_lport *lport = localport_to_lport(portptr);
366 unsigned long flags;
367
368 if (!portptr)
369 return -EINVAL;
370
371 spin_lock_irqsave(&nvme_fc_lock, flags);
372
373 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
374 spin_unlock_irqrestore(&nvme_fc_lock, flags);
375 return -EINVAL;
376 }
377 portptr->port_state = FC_OBJSTATE_DELETED;
378
379 spin_unlock_irqrestore(&nvme_fc_lock, flags);
380
381 nvme_fc_lport_put(lport);
382
383 return 0;
384}
385EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
386
387/**
388 * nvme_fc_register_remoteport - transport entry point called by an
389 * LLDD to register the existence of a NVME
390 * subsystem FC port on its fabric.
391 * @localport: pointer to the (registered) local port that the remote
392 * subsystem port is connected to.
393 * @pinfo: pointer to information about the port to be registered
394 * @rport_p: pointer to a remote port pointer. Upon success, the routine
395 * will allocate a nvme_fc_remote_port structure and place its
396 * address in the remote port pointer. Upon failure, remote port
397 * pointer will be set to 0.
398 *
399 * Returns:
400 * a completion status. Must be 0 upon success; a negative errno
401 * (ex: -ENXIO) upon failure.
402 */
403int
404nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
405 struct nvme_fc_port_info *pinfo,
406 struct nvme_fc_remote_port **portptr)
407{
408 struct nvme_fc_lport *lport = localport_to_lport(localport);
409 struct nvme_fc_rport *newrec;
410 unsigned long flags;
411 int ret, idx;
412
413 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
414 GFP_KERNEL);
415 if (!newrec) {
416 ret = -ENOMEM;
417 goto out_reghost_failed;
418 }
419
420 if (!nvme_fc_lport_get(lport)) {
421 ret = -ESHUTDOWN;
422 goto out_kfree_rport;
423 }
424
425 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
426 if (idx < 0) {
427 ret = -ENOSPC;
428 goto out_lport_put;
429 }
430
431 INIT_LIST_HEAD(&newrec->endp_list);
432 INIT_LIST_HEAD(&newrec->ctrl_list);
c913a8b0 433 INIT_LIST_HEAD(&newrec->ls_req_list);
e399441d
JS
434 kref_init(&newrec->ref);
435 spin_lock_init(&newrec->lock);
436 newrec->remoteport.localport = &lport->localport;
c913a8b0
JS
437 newrec->dev = lport->dev;
438 newrec->lport = lport;
e399441d
JS
439 newrec->remoteport.private = &newrec[1];
440 newrec->remoteport.port_role = pinfo->port_role;
441 newrec->remoteport.node_name = pinfo->node_name;
442 newrec->remoteport.port_name = pinfo->port_name;
443 newrec->remoteport.port_id = pinfo->port_id;
444 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
445 newrec->remoteport.port_num = idx;
446
447 spin_lock_irqsave(&nvme_fc_lock, flags);
448 list_add_tail(&newrec->endp_list, &lport->endp_list);
449 spin_unlock_irqrestore(&nvme_fc_lock, flags);
450
451 *portptr = &newrec->remoteport;
452 return 0;
453
454out_lport_put:
455 nvme_fc_lport_put(lport);
456out_kfree_rport:
457 kfree(newrec);
458out_reghost_failed:
459 *portptr = NULL;
460 return ret;
e399441d
JS
461}
462EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
463
464static void
465nvme_fc_free_rport(struct kref *ref)
466{
467 struct nvme_fc_rport *rport =
468 container_of(ref, struct nvme_fc_rport, ref);
469 struct nvme_fc_lport *lport =
470 localport_to_lport(rport->remoteport.localport);
471 unsigned long flags;
472
473 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
474 WARN_ON(!list_empty(&rport->ctrl_list));
475
476 /* remove from lport list */
477 spin_lock_irqsave(&nvme_fc_lock, flags);
478 list_del(&rport->endp_list);
479 spin_unlock_irqrestore(&nvme_fc_lock, flags);
480
481 /* let the LLDD know we've finished tearing it down */
482 lport->ops->remoteport_delete(&rport->remoteport);
483
484 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
485
486 kfree(rport);
487
488 nvme_fc_lport_put(lport);
489}
490
491static void
492nvme_fc_rport_put(struct nvme_fc_rport *rport)
493{
494 kref_put(&rport->ref, nvme_fc_free_rport);
495}
496
497static int
498nvme_fc_rport_get(struct nvme_fc_rport *rport)
499{
500 return kref_get_unless_zero(&rport->ref);
501}
502
8d64daf7
JS
503static int
504nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
505{
506 struct nvmefc_ls_req_op *lsop;
507 unsigned long flags;
508
509restart:
510 spin_lock_irqsave(&rport->lock, flags);
511
512 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
513 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
514 lsop->flags |= FCOP_FLAGS_TERMIO;
515 spin_unlock_irqrestore(&rport->lock, flags);
516 rport->lport->ops->ls_abort(&rport->lport->localport,
517 &rport->remoteport,
518 &lsop->ls_req);
519 goto restart;
520 }
521 }
522 spin_unlock_irqrestore(&rport->lock, flags);
523
524 return 0;
525}
526
e399441d
JS
527/**
528 * nvme_fc_unregister_remoteport - transport entry point called by an
529 * LLDD to deregister/remove a previously
530 * registered a NVME subsystem FC port.
531 * @remoteport: pointer to the (registered) remote port that is to be
532 * deregistered.
533 *
534 * Returns:
535 * a completion status. Must be 0 upon success; a negative errno
536 * (ex: -ENXIO) upon failure.
537 */
538int
539nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
540{
541 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
542 struct nvme_fc_ctrl *ctrl;
543 unsigned long flags;
544
545 if (!portptr)
546 return -EINVAL;
547
548 spin_lock_irqsave(&rport->lock, flags);
549
550 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
551 spin_unlock_irqrestore(&rport->lock, flags);
552 return -EINVAL;
553 }
554 portptr->port_state = FC_OBJSTATE_DELETED;
555
556 /* tear down all associations to the remote port */
557 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
558 __nvme_fc_del_ctrl(ctrl);
559
560 spin_unlock_irqrestore(&rport->lock, flags);
561
8d64daf7
JS
562 nvme_fc_abort_lsops(rport);
563
e399441d
JS
564 nvme_fc_rport_put(rport);
565 return 0;
566}
567EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
568
569
570/* *********************** FC-NVME DMA Handling **************************** */
571
572/*
573 * The fcloop device passes in a NULL device pointer. Real LLD's will
574 * pass in a valid device pointer. If NULL is passed to the dma mapping
575 * routines, depending on the platform, it may or may not succeed, and
576 * may crash.
577 *
578 * As such:
579 * Wrapper all the dma routines and check the dev pointer.
580 *
581 * If simple mappings (return just a dma address, we'll noop them,
582 * returning a dma address of 0.
583 *
584 * On more complex mappings (dma_map_sg), a pseudo routine fills
585 * in the scatter list, setting all dma addresses to 0.
586 */
587
588static inline dma_addr_t
589fc_dma_map_single(struct device *dev, void *ptr, size_t size,
590 enum dma_data_direction dir)
591{
592 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
593}
594
595static inline int
596fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
597{
598 return dev ? dma_mapping_error(dev, dma_addr) : 0;
599}
600
601static inline void
602fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
603 enum dma_data_direction dir)
604{
605 if (dev)
606 dma_unmap_single(dev, addr, size, dir);
607}
608
609static inline void
610fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
611 enum dma_data_direction dir)
612{
613 if (dev)
614 dma_sync_single_for_cpu(dev, addr, size, dir);
615}
616
617static inline void
618fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
619 enum dma_data_direction dir)
620{
621 if (dev)
622 dma_sync_single_for_device(dev, addr, size, dir);
623}
624
625/* pseudo dma_map_sg call */
626static int
627fc_map_sg(struct scatterlist *sg, int nents)
628{
629 struct scatterlist *s;
630 int i;
631
632 WARN_ON(nents == 0 || sg[0].length == 0);
633
634 for_each_sg(sg, s, nents, i) {
635 s->dma_address = 0L;
636#ifdef CONFIG_NEED_SG_DMA_LENGTH
637 s->dma_length = s->length;
638#endif
639 }
640 return nents;
641}
642
643static inline int
644fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
645 enum dma_data_direction dir)
646{
647 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
648}
649
650static inline void
651fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
652 enum dma_data_direction dir)
653{
654 if (dev)
655 dma_unmap_sg(dev, sg, nents, dir);
656}
657
658
659/* *********************** FC-NVME LS Handling **************************** */
660
661static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
662static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
663
664
665static void
c913a8b0 666__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
e399441d 667{
c913a8b0 668 struct nvme_fc_rport *rport = lsop->rport;
e399441d
JS
669 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
670 unsigned long flags;
671
c913a8b0 672 spin_lock_irqsave(&rport->lock, flags);
e399441d
JS
673
674 if (!lsop->req_queued) {
c913a8b0 675 spin_unlock_irqrestore(&rport->lock, flags);
e399441d
JS
676 return;
677 }
678
679 list_del(&lsop->lsreq_list);
680
681 lsop->req_queued = false;
682
c913a8b0 683 spin_unlock_irqrestore(&rport->lock, flags);
e399441d 684
c913a8b0 685 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
e399441d
JS
686 (lsreq->rqstlen + lsreq->rsplen),
687 DMA_BIDIRECTIONAL);
688
c913a8b0 689 nvme_fc_rport_put(rport);
e399441d
JS
690}
691
692static int
c913a8b0 693__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
e399441d
JS
694 struct nvmefc_ls_req_op *lsop,
695 void (*done)(struct nvmefc_ls_req *req, int status))
696{
697 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
698 unsigned long flags;
c913a8b0 699 int ret = 0;
e399441d 700
c913a8b0
JS
701 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
702 return -ECONNREFUSED;
703
704 if (!nvme_fc_rport_get(rport))
e399441d
JS
705 return -ESHUTDOWN;
706
707 lsreq->done = done;
c913a8b0 708 lsop->rport = rport;
e399441d
JS
709 lsop->req_queued = false;
710 INIT_LIST_HEAD(&lsop->lsreq_list);
711 init_completion(&lsop->ls_done);
712
c913a8b0 713 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
e399441d
JS
714 lsreq->rqstlen + lsreq->rsplen,
715 DMA_BIDIRECTIONAL);
c913a8b0
JS
716 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
717 ret = -EFAULT;
718 goto out_putrport;
e399441d
JS
719 }
720 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
721
c913a8b0 722 spin_lock_irqsave(&rport->lock, flags);
e399441d 723
c913a8b0 724 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
e399441d
JS
725
726 lsop->req_queued = true;
727
c913a8b0 728 spin_unlock_irqrestore(&rport->lock, flags);
e399441d 729
c913a8b0
JS
730 ret = rport->lport->ops->ls_req(&rport->lport->localport,
731 &rport->remoteport, lsreq);
e399441d 732 if (ret)
c913a8b0
JS
733 goto out_unlink;
734
735 return 0;
736
737out_unlink:
738 lsop->ls_error = ret;
739 spin_lock_irqsave(&rport->lock, flags);
740 lsop->req_queued = false;
741 list_del(&lsop->lsreq_list);
742 spin_unlock_irqrestore(&rport->lock, flags);
743 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
744 (lsreq->rqstlen + lsreq->rsplen),
745 DMA_BIDIRECTIONAL);
746out_putrport:
747 nvme_fc_rport_put(rport);
e399441d
JS
748
749 return ret;
750}
751
752static void
753nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
754{
755 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
756
757 lsop->ls_error = status;
758 complete(&lsop->ls_done);
759}
760
761static int
c913a8b0 762nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
e399441d
JS
763{
764 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
765 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
766 int ret;
767
c913a8b0 768 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
e399441d 769
c913a8b0 770 if (!ret) {
e399441d
JS
771 /*
772 * No timeout/not interruptible as we need the struct
773 * to exist until the lldd calls us back. Thus mandate
774 * wait until driver calls back. lldd responsible for
775 * the timeout action
776 */
777 wait_for_completion(&lsop->ls_done);
778
c913a8b0 779 __nvme_fc_finish_ls_req(lsop);
e399441d 780
c913a8b0 781 ret = lsop->ls_error;
e399441d
JS
782 }
783
c913a8b0
JS
784 if (ret)
785 return ret;
786
e399441d
JS
787 /* ACC or RJT payload ? */
788 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
789 return -ENXIO;
790
791 return 0;
792}
793
c913a8b0
JS
794static int
795nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
e399441d
JS
796 struct nvmefc_ls_req_op *lsop,
797 void (*done)(struct nvmefc_ls_req *req, int status))
798{
e399441d
JS
799 /* don't wait for completion */
800
c913a8b0 801 return __nvme_fc_send_ls_req(rport, lsop, done);
e399441d
JS
802}
803
804/* Validation Error indexes into the string table below */
805enum {
806 VERR_NO_ERROR = 0,
807 VERR_LSACC = 1,
808 VERR_LSDESC_RQST = 2,
809 VERR_LSDESC_RQST_LEN = 3,
810 VERR_ASSOC_ID = 4,
811 VERR_ASSOC_ID_LEN = 5,
812 VERR_CONN_ID = 6,
813 VERR_CONN_ID_LEN = 7,
814 VERR_CR_ASSOC = 8,
815 VERR_CR_ASSOC_ACC_LEN = 9,
816 VERR_CR_CONN = 10,
817 VERR_CR_CONN_ACC_LEN = 11,
818 VERR_DISCONN = 12,
819 VERR_DISCONN_ACC_LEN = 13,
820};
821
822static char *validation_errors[] = {
823 "OK",
824 "Not LS_ACC",
825 "Not LSDESC_RQST",
826 "Bad LSDESC_RQST Length",
827 "Not Association ID",
828 "Bad Association ID Length",
829 "Not Connection ID",
830 "Bad Connection ID Length",
831 "Not CR_ASSOC Rqst",
832 "Bad CR_ASSOC ACC Length",
833 "Not CR_CONN Rqst",
834 "Bad CR_CONN ACC Length",
835 "Not Disconnect Rqst",
836 "Bad Disconnect ACC Length",
837};
838
839static int
840nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
841 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
842{
843 struct nvmefc_ls_req_op *lsop;
844 struct nvmefc_ls_req *lsreq;
845 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
846 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
847 int ret, fcret = 0;
848
849 lsop = kzalloc((sizeof(*lsop) +
850 ctrl->lport->ops->lsrqst_priv_sz +
851 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
852 if (!lsop) {
853 ret = -ENOMEM;
854 goto out_no_memory;
855 }
856 lsreq = &lsop->ls_req;
857
858 lsreq->private = (void *)&lsop[1];
859 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
860 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
861 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
862
863 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
864 assoc_rqst->desc_list_len =
865 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
866
867 assoc_rqst->assoc_cmd.desc_tag =
868 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
869 assoc_rqst->assoc_cmd.desc_len =
870 fcnvme_lsdesc_len(
871 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
872
873 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
874 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
875 /* Linux supports only Dynamic controllers */
876 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
8e412263 877 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
e399441d
JS
878 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
879 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
880 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
881 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
882
883 lsop->queue = queue;
884 lsreq->rqstaddr = assoc_rqst;
885 lsreq->rqstlen = sizeof(*assoc_rqst);
886 lsreq->rspaddr = assoc_acc;
887 lsreq->rsplen = sizeof(*assoc_acc);
888 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
889
c913a8b0 890 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
e399441d
JS
891 if (ret)
892 goto out_free_buffer;
893
894 /* process connect LS completion */
895
896 /* validate the ACC response */
897 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
898 fcret = VERR_LSACC;
f77fc87c 899 else if (assoc_acc->hdr.desc_list_len !=
e399441d
JS
900 fcnvme_lsdesc_len(
901 sizeof(struct fcnvme_ls_cr_assoc_acc)))
902 fcret = VERR_CR_ASSOC_ACC_LEN;
f77fc87c
JS
903 else if (assoc_acc->hdr.rqst.desc_tag !=
904 cpu_to_be32(FCNVME_LSDESC_RQST))
e399441d
JS
905 fcret = VERR_LSDESC_RQST;
906 else if (assoc_acc->hdr.rqst.desc_len !=
907 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
908 fcret = VERR_LSDESC_RQST_LEN;
909 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
910 fcret = VERR_CR_ASSOC;
911 else if (assoc_acc->associd.desc_tag !=
912 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
913 fcret = VERR_ASSOC_ID;
914 else if (assoc_acc->associd.desc_len !=
915 fcnvme_lsdesc_len(
916 sizeof(struct fcnvme_lsdesc_assoc_id)))
917 fcret = VERR_ASSOC_ID_LEN;
918 else if (assoc_acc->connectid.desc_tag !=
919 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
920 fcret = VERR_CONN_ID;
921 else if (assoc_acc->connectid.desc_len !=
922 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
923 fcret = VERR_CONN_ID_LEN;
924
925 if (fcret) {
926 ret = -EBADF;
927 dev_err(ctrl->dev,
928 "q %d connect failed: %s\n",
929 queue->qnum, validation_errors[fcret]);
930 } else {
931 ctrl->association_id =
932 be64_to_cpu(assoc_acc->associd.association_id);
933 queue->connection_id =
934 be64_to_cpu(assoc_acc->connectid.connection_id);
935 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
936 }
937
938out_free_buffer:
939 kfree(lsop);
940out_no_memory:
941 if (ret)
942 dev_err(ctrl->dev,
943 "queue %d connect admin queue failed (%d).\n",
944 queue->qnum, ret);
945 return ret;
946}
947
948static int
949nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
950 u16 qsize, u16 ersp_ratio)
951{
952 struct nvmefc_ls_req_op *lsop;
953 struct nvmefc_ls_req *lsreq;
954 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
955 struct fcnvme_ls_cr_conn_acc *conn_acc;
956 int ret, fcret = 0;
957
958 lsop = kzalloc((sizeof(*lsop) +
959 ctrl->lport->ops->lsrqst_priv_sz +
960 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
961 if (!lsop) {
962 ret = -ENOMEM;
963 goto out_no_memory;
964 }
965 lsreq = &lsop->ls_req;
966
967 lsreq->private = (void *)&lsop[1];
968 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
969 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
970 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
971
972 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
973 conn_rqst->desc_list_len = cpu_to_be32(
974 sizeof(struct fcnvme_lsdesc_assoc_id) +
975 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
976
977 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
978 conn_rqst->associd.desc_len =
979 fcnvme_lsdesc_len(
980 sizeof(struct fcnvme_lsdesc_assoc_id));
981 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
982 conn_rqst->connect_cmd.desc_tag =
983 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
984 conn_rqst->connect_cmd.desc_len =
985 fcnvme_lsdesc_len(
986 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
987 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
988 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
989 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
990
991 lsop->queue = queue;
992 lsreq->rqstaddr = conn_rqst;
993 lsreq->rqstlen = sizeof(*conn_rqst);
994 lsreq->rspaddr = conn_acc;
995 lsreq->rsplen = sizeof(*conn_acc);
996 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
997
c913a8b0 998 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
e399441d
JS
999 if (ret)
1000 goto out_free_buffer;
1001
1002 /* process connect LS completion */
1003
1004 /* validate the ACC response */
1005 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1006 fcret = VERR_LSACC;
f77fc87c 1007 else if (conn_acc->hdr.desc_list_len !=
e399441d
JS
1008 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1009 fcret = VERR_CR_CONN_ACC_LEN;
f77fc87c 1010 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
e399441d
JS
1011 fcret = VERR_LSDESC_RQST;
1012 else if (conn_acc->hdr.rqst.desc_len !=
1013 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1014 fcret = VERR_LSDESC_RQST_LEN;
1015 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1016 fcret = VERR_CR_CONN;
1017 else if (conn_acc->connectid.desc_tag !=
1018 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1019 fcret = VERR_CONN_ID;
1020 else if (conn_acc->connectid.desc_len !=
1021 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1022 fcret = VERR_CONN_ID_LEN;
1023
1024 if (fcret) {
1025 ret = -EBADF;
1026 dev_err(ctrl->dev,
1027 "q %d connect failed: %s\n",
1028 queue->qnum, validation_errors[fcret]);
1029 } else {
1030 queue->connection_id =
1031 be64_to_cpu(conn_acc->connectid.connection_id);
1032 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1033 }
1034
1035out_free_buffer:
1036 kfree(lsop);
1037out_no_memory:
1038 if (ret)
1039 dev_err(ctrl->dev,
1040 "queue %d connect command failed (%d).\n",
1041 queue->qnum, ret);
1042 return ret;
1043}
1044
1045static void
1046nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1047{
1048 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
e399441d 1049
c913a8b0 1050 __nvme_fc_finish_ls_req(lsop);
e399441d
JS
1051
1052 /* fc-nvme iniator doesn't care about success or failure of cmd */
1053
1054 kfree(lsop);
1055}
1056
1057/*
1058 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1059 * the FC-NVME Association. Terminating the association also
1060 * terminates the FC-NVME connections (per queue, both admin and io
1061 * queues) that are part of the association. E.g. things are torn
1062 * down, and the related FC-NVME Association ID and Connection IDs
1063 * become invalid.
1064 *
1065 * The behavior of the fc-nvme initiator is such that it's
1066 * understanding of the association and connections will implicitly
1067 * be torn down. The action is implicit as it may be due to a loss of
1068 * connectivity with the fc-nvme target, so you may never get a
1069 * response even if you tried. As such, the action of this routine
1070 * is to asynchronously send the LS, ignore any results of the LS, and
1071 * continue on with terminating the association. If the fc-nvme target
1072 * is present and receives the LS, it too can tear down.
1073 */
1074static void
1075nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1076{
1077 struct fcnvme_ls_disconnect_rqst *discon_rqst;
1078 struct fcnvme_ls_disconnect_acc *discon_acc;
1079 struct nvmefc_ls_req_op *lsop;
1080 struct nvmefc_ls_req *lsreq;
c913a8b0 1081 int ret;
e399441d
JS
1082
1083 lsop = kzalloc((sizeof(*lsop) +
1084 ctrl->lport->ops->lsrqst_priv_sz +
1085 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1086 GFP_KERNEL);
1087 if (!lsop)
1088 /* couldn't sent it... too bad */
1089 return;
1090
1091 lsreq = &lsop->ls_req;
1092
1093 lsreq->private = (void *)&lsop[1];
1094 discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1095 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1096 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1097
1098 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1099 discon_rqst->desc_list_len = cpu_to_be32(
1100 sizeof(struct fcnvme_lsdesc_assoc_id) +
1101 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1102
1103 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1104 discon_rqst->associd.desc_len =
1105 fcnvme_lsdesc_len(
1106 sizeof(struct fcnvme_lsdesc_assoc_id));
1107
1108 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1109
1110 discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1111 FCNVME_LSDESC_DISCONN_CMD);
1112 discon_rqst->discon_cmd.desc_len =
1113 fcnvme_lsdesc_len(
1114 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1115 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1116 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1117
1118 lsreq->rqstaddr = discon_rqst;
1119 lsreq->rqstlen = sizeof(*discon_rqst);
1120 lsreq->rspaddr = discon_acc;
1121 lsreq->rsplen = sizeof(*discon_acc);
1122 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1123
c913a8b0
JS
1124 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1125 nvme_fc_disconnect_assoc_done);
1126 if (ret)
1127 kfree(lsop);
e399441d
JS
1128
1129 /* only meaningful part to terminating the association */
1130 ctrl->association_id = 0;
1131}
1132
1133
1134/* *********************** NVME Ctrl Routines **************************** */
1135
78a7ac26 1136static void __nvme_fc_final_op_cleanup(struct request *rq);
f874d5d0 1137static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
e399441d
JS
1138
1139static int
1140nvme_fc_reinit_request(void *data, struct request *rq)
1141{
1142 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1143 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1144
1145 memset(cmdiu, 0, sizeof(*cmdiu));
1146 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1147 cmdiu->fc_id = NVME_CMD_FC_ID;
1148 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1149 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1150
1151 return 0;
1152}
1153
1154static void
1155__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1156 struct nvme_fc_fcp_op *op)
1157{
1158 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1159 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1160 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1161 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1162
1163 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1164}
1165
1166static void
d6296d39
CH
1167nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1168 unsigned int hctx_idx)
e399441d
JS
1169{
1170 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1171
d6296d39 1172 return __nvme_fc_exit_request(set->driver_data, op);
e399441d
JS
1173}
1174
78a7ac26
JS
1175static int
1176__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1177{
1178 int state;
1179
1180 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1181 if (state != FCPOP_STATE_ACTIVE) {
1182 atomic_set(&op->state, state);
1183 return -ECANCELED;
1184 }
1185
1186 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1187 &ctrl->rport->remoteport,
1188 op->queue->lldd_handle,
1189 &op->fcp_req);
1190
1191 return 0;
1192}
1193
e399441d 1194static void
78a7ac26 1195nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
e399441d
JS
1196{
1197 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
78a7ac26
JS
1198 unsigned long flags;
1199 int i, ret;
e399441d
JS
1200
1201 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
78a7ac26 1202 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
e399441d 1203 continue;
78a7ac26
JS
1204
1205 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
1206 if (ctrl->flags & FCCTRL_TERMIO) {
1207 ctrl->iocnt++;
1208 aen_op->flags |= FCOP_FLAGS_TERMIO;
1209 }
78a7ac26
JS
1210 spin_unlock_irqrestore(&ctrl->lock, flags);
1211
1212 ret = __nvme_fc_abort_op(ctrl, aen_op);
1213 if (ret) {
1214 /*
1215 * if __nvme_fc_abort_op failed the io wasn't
1216 * active. Thus this call path is running in
1217 * parallel to the io complete. Treat as non-error.
1218 */
1219
1220 /* back out the flags/counters */
1221 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
1222 if (ctrl->flags & FCCTRL_TERMIO)
1223 ctrl->iocnt--;
78a7ac26
JS
1224 aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1225 spin_unlock_irqrestore(&ctrl->lock, flags);
1226 return;
1227 }
e399441d
JS
1228 }
1229}
1230
78a7ac26
JS
1231static inline int
1232__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1233 struct nvme_fc_fcp_op *op)
1234{
1235 unsigned long flags;
1236 bool complete_rq = false;
1237
1238 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef 1239 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
36715cf4
JS
1240 if (ctrl->flags & FCCTRL_TERMIO) {
1241 if (!--ctrl->iocnt)
1242 wake_up(&ctrl->ioabort_wait);
1243 }
61bff8ef 1244 }
78a7ac26
JS
1245 if (op->flags & FCOP_FLAGS_RELEASED)
1246 complete_rq = true;
1247 else
1248 op->flags |= FCOP_FLAGS_COMPLETE;
1249 spin_unlock_irqrestore(&ctrl->lock, flags);
1250
1251 return complete_rq;
1252}
1253
baee29ac 1254static void
e399441d
JS
1255nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1256{
1257 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1258 struct request *rq = op->rq;
1259 struct nvmefc_fcp_req *freq = &op->fcp_req;
1260 struct nvme_fc_ctrl *ctrl = op->ctrl;
1261 struct nvme_fc_queue *queue = op->queue;
1262 struct nvme_completion *cqe = &op->rsp_iu.cqe;
458f280d 1263 struct nvme_command *sqe = &op->cmd_iu.sqe;
d663b69f 1264 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
27fa9bc5 1265 union nvme_result result;
f874d5d0 1266 bool complete_rq, terminate_assoc = true;
e399441d
JS
1267
1268 /*
1269 * WARNING:
1270 * The current linux implementation of a nvme controller
1271 * allocates a single tag set for all io queues and sizes
1272 * the io queues to fully hold all possible tags. Thus, the
1273 * implementation does not reference or care about the sqhd
1274 * value as it never needs to use the sqhd/sqtail pointers
1275 * for submission pacing.
1276 *
1277 * This affects the FC-NVME implementation in two ways:
1278 * 1) As the value doesn't matter, we don't need to waste
1279 * cycles extracting it from ERSPs and stamping it in the
1280 * cases where the transport fabricates CQEs on successful
1281 * completions.
1282 * 2) The FC-NVME implementation requires that delivery of
1283 * ERSP completions are to go back to the nvme layer in order
1284 * relative to the rsn, such that the sqhd value will always
1285 * be "in order" for the nvme layer. As the nvme layer in
1286 * linux doesn't care about sqhd, there's no need to return
1287 * them in order.
1288 *
1289 * Additionally:
1290 * As the core nvme layer in linux currently does not look at
1291 * every field in the cqe - in cases where the FC transport must
1292 * fabricate a CQE, the following fields will not be set as they
1293 * are not referenced:
1294 * cqe.sqid, cqe.sqhd, cqe.command_id
f874d5d0
JS
1295 *
1296 * Failure or error of an individual i/o, in a transport
1297 * detected fashion unrelated to the nvme completion status,
1298 * potentially cause the initiator and target sides to get out
1299 * of sync on SQ head/tail (aka outstanding io count allowed).
1300 * Per FC-NVME spec, failure of an individual command requires
1301 * the connection to be terminated, which in turn requires the
1302 * association to be terminated.
e399441d
JS
1303 */
1304
1305 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1306 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1307
1308 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
d663b69f 1309 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
62eeacb0 1310 else if (freq->status)
d663b69f 1311 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1312
1313 /*
1314 * For the linux implementation, if we have an unsuccesful
1315 * status, they blk-mq layer can typically be called with the
1316 * non-zero status and the content of the cqe isn't important.
1317 */
1318 if (status)
1319 goto done;
1320
1321 /*
1322 * command completed successfully relative to the wire
1323 * protocol. However, validate anything received and
1324 * extract the status and result from the cqe (create it
1325 * where necessary).
1326 */
1327
1328 switch (freq->rcv_rsplen) {
1329
1330 case 0:
1331 case NVME_FC_SIZEOF_ZEROS_RSP:
1332 /*
1333 * No response payload or 12 bytes of payload (which
1334 * should all be zeros) are considered successful and
1335 * no payload in the CQE by the transport.
1336 */
1337 if (freq->transferred_length !=
1338 be32_to_cpu(op->cmd_iu.data_len)) {
d663b69f 1339 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1340 goto done;
1341 }
27fa9bc5 1342 result.u64 = 0;
e399441d
JS
1343 break;
1344
1345 case sizeof(struct nvme_fc_ersp_iu):
1346 /*
1347 * The ERSP IU contains a full completion with CQE.
1348 * Validate ERSP IU and look at cqe.
1349 */
1350 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1351 (freq->rcv_rsplen / 4) ||
1352 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1353 freq->transferred_length ||
726a1080 1354 op->rsp_iu.status_code ||
458f280d 1355 sqe->common.command_id != cqe->command_id)) {
d663b69f 1356 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1357 goto done;
1358 }
27fa9bc5 1359 result = cqe->result;
d663b69f 1360 status = cqe->status;
e399441d
JS
1361 break;
1362
1363 default:
d663b69f 1364 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
e399441d
JS
1365 goto done;
1366 }
1367
f874d5d0
JS
1368 terminate_assoc = false;
1369
e399441d 1370done:
78a7ac26 1371 if (op->flags & FCOP_FLAGS_AEN) {
27fa9bc5 1372 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
78a7ac26
JS
1373 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1374 atomic_set(&op->state, FCPOP_STATE_IDLE);
1375 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
e399441d 1376 nvme_fc_ctrl_put(ctrl);
f874d5d0 1377 goto check_error;
e399441d
JS
1378 }
1379
78a7ac26
JS
1380 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1381 if (!complete_rq) {
1382 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
e392e1f1 1383 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
78a7ac26 1384 if (blk_queue_dying(rq->q))
e392e1f1 1385 status |= cpu_to_le16(NVME_SC_DNR << 1);
78a7ac26
JS
1386 }
1387 nvme_end_request(rq, status, result);
1388 } else
1389 __nvme_fc_final_op_cleanup(rq);
f874d5d0
JS
1390
1391check_error:
1392 if (terminate_assoc)
1393 nvme_fc_error_recovery(ctrl, "transport detected io error");
e399441d
JS
1394}
1395
1396static int
1397__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1398 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1399 struct request *rq, u32 rqno)
1400{
1401 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1402 int ret = 0;
1403
1404 memset(op, 0, sizeof(*op));
1405 op->fcp_req.cmdaddr = &op->cmd_iu;
1406 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1407 op->fcp_req.rspaddr = &op->rsp_iu;
1408 op->fcp_req.rsplen = sizeof(op->rsp_iu);
1409 op->fcp_req.done = nvme_fc_fcpio_done;
1410 op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1411 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1412 op->ctrl = ctrl;
1413 op->queue = queue;
1414 op->rq = rq;
1415 op->rqno = rqno;
1416
1417 cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1418 cmdiu->fc_id = NVME_CMD_FC_ID;
1419 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1420
1421 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1422 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1423 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1424 dev_err(ctrl->dev,
1425 "FCP Op failed - cmdiu dma mapping failed.\n");
1426 ret = EFAULT;
1427 goto out_on_error;
1428 }
1429
1430 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1431 &op->rsp_iu, sizeof(op->rsp_iu),
1432 DMA_FROM_DEVICE);
1433 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1434 dev_err(ctrl->dev,
1435 "FCP Op failed - rspiu dma mapping failed.\n");
1436 ret = EFAULT;
1437 }
1438
1439 atomic_set(&op->state, FCPOP_STATE_IDLE);
1440out_on_error:
1441 return ret;
1442}
1443
1444static int
d6296d39
CH
1445nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1446 unsigned int hctx_idx, unsigned int numa_node)
e399441d 1447{
d6296d39 1448 struct nvme_fc_ctrl *ctrl = set->driver_data;
e399441d 1449 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
76f983cb
CH
1450 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1451 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
e399441d
JS
1452
1453 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1454}
1455
1456static int
1457nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1458{
1459 struct nvme_fc_fcp_op *aen_op;
1460 struct nvme_fc_cmd_iu *cmdiu;
1461 struct nvme_command *sqe;
61bff8ef 1462 void *private;
e399441d
JS
1463 int i, ret;
1464
1465 aen_op = ctrl->aen_ops;
1466 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
61bff8ef
JS
1467 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1468 GFP_KERNEL);
1469 if (!private)
1470 return -ENOMEM;
1471
e399441d
JS
1472 cmdiu = &aen_op->cmd_iu;
1473 sqe = &cmdiu->sqe;
1474 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1475 aen_op, (struct request *)NULL,
1476 (AEN_CMDID_BASE + i));
61bff8ef
JS
1477 if (ret) {
1478 kfree(private);
e399441d 1479 return ret;
61bff8ef 1480 }
e399441d 1481
78a7ac26 1482 aen_op->flags = FCOP_FLAGS_AEN;
61bff8ef
JS
1483 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1484 aen_op->fcp_req.private = private;
78a7ac26 1485
e399441d
JS
1486 memset(sqe, 0, sizeof(*sqe));
1487 sqe->common.opcode = nvme_admin_async_event;
78a7ac26 1488 /* Note: core layer may overwrite the sqe.command_id value */
e399441d
JS
1489 sqe->common.command_id = AEN_CMDID_BASE + i;
1490 }
1491 return 0;
1492}
1493
61bff8ef
JS
1494static void
1495nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1496{
1497 struct nvme_fc_fcp_op *aen_op;
1498 int i;
1499
1500 aen_op = ctrl->aen_ops;
1501 for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1502 if (!aen_op->fcp_req.private)
1503 continue;
1504
1505 __nvme_fc_exit_request(ctrl, aen_op);
1506
1507 kfree(aen_op->fcp_req.private);
1508 aen_op->fcp_req.private = NULL;
1509 }
1510}
e399441d
JS
1511
1512static inline void
1513__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1514 unsigned int qidx)
1515{
1516 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1517
1518 hctx->driver_data = queue;
1519 queue->hctx = hctx;
1520}
1521
1522static int
1523nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1524 unsigned int hctx_idx)
1525{
1526 struct nvme_fc_ctrl *ctrl = data;
1527
1528 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1529
1530 return 0;
1531}
1532
1533static int
1534nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1535 unsigned int hctx_idx)
1536{
1537 struct nvme_fc_ctrl *ctrl = data;
1538
1539 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1540
1541 return 0;
1542}
1543
1544static void
1545nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1546{
1547 struct nvme_fc_queue *queue;
1548
1549 queue = &ctrl->queues[idx];
1550 memset(queue, 0, sizeof(*queue));
1551 queue->ctrl = ctrl;
1552 queue->qnum = idx;
1553 atomic_set(&queue->csn, 1);
1554 queue->dev = ctrl->dev;
1555
1556 if (idx > 0)
1557 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1558 else
1559 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1560
1561 queue->queue_size = queue_size;
1562
1563 /*
1564 * Considered whether we should allocate buffers for all SQEs
1565 * and CQEs and dma map them - mapping their respective entries
1566 * into the request structures (kernel vm addr and dma address)
1567 * thus the driver could use the buffers/mappings directly.
1568 * It only makes sense if the LLDD would use them for its
1569 * messaging api. It's very unlikely most adapter api's would use
1570 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1571 * structures were used instead.
1572 */
1573}
1574
1575/*
1576 * This routine terminates a queue at the transport level.
1577 * The transport has already ensured that all outstanding ios on
1578 * the queue have been terminated.
1579 * The transport will send a Disconnect LS request to terminate
1580 * the queue's connection. Termination of the admin queue will also
1581 * terminate the association at the target.
1582 */
1583static void
1584nvme_fc_free_queue(struct nvme_fc_queue *queue)
1585{
1586 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1587 return;
1588
1589 /*
1590 * Current implementation never disconnects a single queue.
1591 * It always terminates a whole association. So there is never
1592 * a disconnect(queue) LS sent to the target.
1593 */
1594
1595 queue->connection_id = 0;
1596 clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1597}
1598
1599static void
1600__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1601 struct nvme_fc_queue *queue, unsigned int qidx)
1602{
1603 if (ctrl->lport->ops->delete_queue)
1604 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1605 queue->lldd_handle);
1606 queue->lldd_handle = NULL;
1607}
1608
e399441d
JS
1609static void
1610nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1611{
1612 int i;
1613
d858e5f0 1614 for (i = 1; i < ctrl->ctrl.queue_count; i++)
e399441d
JS
1615 nvme_fc_free_queue(&ctrl->queues[i]);
1616}
1617
1618static int
1619__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1620 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1621{
1622 int ret = 0;
1623
1624 queue->lldd_handle = NULL;
1625 if (ctrl->lport->ops->create_queue)
1626 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1627 qidx, qsize, &queue->lldd_handle);
1628
1629 return ret;
1630}
1631
1632static void
1633nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1634{
d858e5f0 1635 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
e399441d
JS
1636 int i;
1637
d858e5f0 1638 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
e399441d
JS
1639 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1640}
1641
1642static int
1643nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1644{
1645 struct nvme_fc_queue *queue = &ctrl->queues[1];
17a1ec08 1646 int i, ret;
e399441d 1647
d858e5f0 1648 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
e399441d 1649 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
17a1ec08
JT
1650 if (ret)
1651 goto delete_queues;
e399441d
JS
1652 }
1653
1654 return 0;
17a1ec08
JT
1655
1656delete_queues:
1657 for (; i >= 0; i--)
1658 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1659 return ret;
e399441d
JS
1660}
1661
1662static int
1663nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1664{
1665 int i, ret = 0;
1666
d858e5f0 1667 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
e399441d
JS
1668 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1669 (qsize / 5));
1670 if (ret)
1671 break;
1672 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1673 if (ret)
1674 break;
1675 }
1676
1677 return ret;
1678}
1679
1680static void
1681nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1682{
1683 int i;
1684
d858e5f0 1685 for (i = 1; i < ctrl->ctrl.queue_count; i++)
e399441d
JS
1686 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1687}
1688
1689static void
1690nvme_fc_ctrl_free(struct kref *ref)
1691{
1692 struct nvme_fc_ctrl *ctrl =
1693 container_of(ref, struct nvme_fc_ctrl, ref);
1694 unsigned long flags;
1695
61bff8ef
JS
1696 if (ctrl->ctrl.tagset) {
1697 blk_cleanup_queue(ctrl->ctrl.connect_q);
1698 blk_mq_free_tag_set(&ctrl->tag_set);
e399441d
JS
1699 }
1700
61bff8ef
JS
1701 /* remove from rport list */
1702 spin_lock_irqsave(&ctrl->rport->lock, flags);
1703 list_del(&ctrl->ctrl_list);
1704 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1705
f9c5af5f 1706 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
61bff8ef
JS
1707 blk_cleanup_queue(ctrl->ctrl.admin_q);
1708 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1709
1710 kfree(ctrl->queues);
1711
e399441d
JS
1712 put_device(ctrl->dev);
1713 nvme_fc_rport_put(ctrl->rport);
1714
e399441d 1715 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
de41447a
EM
1716 if (ctrl->ctrl.opts)
1717 nvmf_free_options(ctrl->ctrl.opts);
e399441d
JS
1718 kfree(ctrl);
1719}
1720
1721static void
1722nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1723{
1724 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1725}
1726
1727static int
1728nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1729{
1730 return kref_get_unless_zero(&ctrl->ref);
1731}
1732
1733/*
1734 * All accesses from nvme core layer done - can now free the
1735 * controller. Called after last nvme_put_ctrl() call
1736 */
1737static void
61bff8ef 1738nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
e399441d
JS
1739{
1740 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1741
1742 WARN_ON(nctrl != &ctrl->ctrl);
1743
61bff8ef
JS
1744 nvme_fc_ctrl_put(ctrl);
1745}
e399441d 1746
61bff8ef
JS
1747static void
1748nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1749{
69fa9646
JS
1750 /* only proceed if in LIVE state - e.g. on first error */
1751 if (ctrl->ctrl.state != NVME_CTRL_LIVE)
1752 return;
1753
61bff8ef
JS
1754 dev_warn(ctrl->ctrl.device,
1755 "NVME-FC{%d}: transport association error detected: %s\n",
1756 ctrl->cnum, errmsg);
589ff775 1757 dev_warn(ctrl->ctrl.device,
61bff8ef 1758 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
e399441d 1759
61bff8ef
JS
1760 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1761 dev_err(ctrl->ctrl.device,
1762 "NVME-FC{%d}: error_recovery: Couldn't change state "
1763 "to RECONNECTING\n", ctrl->cnum);
1764 return;
e399441d
JS
1765 }
1766
d86c4d8e 1767 nvme_reset_ctrl(&ctrl->ctrl);
e399441d
JS
1768}
1769
baee29ac 1770static enum blk_eh_timer_return
e399441d
JS
1771nvme_fc_timeout(struct request *rq, bool reserved)
1772{
1773 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1774 struct nvme_fc_ctrl *ctrl = op->ctrl;
1775 int ret;
1776
1777 if (reserved)
1778 return BLK_EH_RESET_TIMER;
1779
1780 ret = __nvme_fc_abort_op(ctrl, op);
1781 if (ret)
1782 /* io wasn't active to abort consider it done */
1783 return BLK_EH_HANDLED;
1784
1785 /*
61bff8ef
JS
1786 * we can't individually ABTS an io without affecting the queue,
1787 * thus killing the queue, adn thus the association.
1788 * So resolve by performing a controller reset, which will stop
1789 * the host/io stack, terminate the association on the link,
1790 * and recreate an association on the link.
e399441d 1791 */
61bff8ef 1792 nvme_fc_error_recovery(ctrl, "io timeout error");
e399441d
JS
1793
1794 return BLK_EH_HANDLED;
1795}
1796
1797static int
1798nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1799 struct nvme_fc_fcp_op *op)
1800{
1801 struct nvmefc_fcp_req *freq = &op->fcp_req;
e399441d
JS
1802 enum dma_data_direction dir;
1803 int ret;
1804
1805 freq->sg_cnt = 0;
1806
b131c61d 1807 if (!blk_rq_payload_bytes(rq))
e399441d
JS
1808 return 0;
1809
1810 freq->sg_table.sgl = freq->first_sgl;
19e420bb
CH
1811 ret = sg_alloc_table_chained(&freq->sg_table,
1812 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
e399441d
JS
1813 if (ret)
1814 return -ENOMEM;
1815
1816 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
19e420bb 1817 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
e399441d
JS
1818 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1819 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1820 op->nents, dir);
1821 if (unlikely(freq->sg_cnt <= 0)) {
1822 sg_free_table_chained(&freq->sg_table, true);
1823 freq->sg_cnt = 0;
1824 return -EFAULT;
1825 }
1826
1827 /*
1828 * TODO: blk_integrity_rq(rq) for DIF
1829 */
1830 return 0;
1831}
1832
1833static void
1834nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1835 struct nvme_fc_fcp_op *op)
1836{
1837 struct nvmefc_fcp_req *freq = &op->fcp_req;
1838
1839 if (!freq->sg_cnt)
1840 return;
1841
1842 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1843 ((rq_data_dir(rq) == WRITE) ?
1844 DMA_TO_DEVICE : DMA_FROM_DEVICE));
1845
1846 nvme_cleanup_cmd(rq);
1847
1848 sg_free_table_chained(&freq->sg_table, true);
1849
1850 freq->sg_cnt = 0;
1851}
1852
1853/*
1854 * In FC, the queue is a logical thing. At transport connect, the target
1855 * creates its "queue" and returns a handle that is to be given to the
1856 * target whenever it posts something to the corresponding SQ. When an
1857 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1858 * command contained within the SQE, an io, and assigns a FC exchange
1859 * to it. The SQE and the associated SQ handle are sent in the initial
1860 * CMD IU sents on the exchange. All transfers relative to the io occur
1861 * as part of the exchange. The CQE is the last thing for the io,
1862 * which is transferred (explicitly or implicitly) with the RSP IU
1863 * sent on the exchange. After the CQE is received, the FC exchange is
1864 * terminaed and the Exchange may be used on a different io.
1865 *
1866 * The transport to LLDD api has the transport making a request for a
1867 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1868 * resource and transfers the command. The LLDD will then process all
1869 * steps to complete the io. Upon completion, the transport done routine
1870 * is called.
1871 *
1872 * So - while the operation is outstanding to the LLDD, there is a link
1873 * level FC exchange resource that is also outstanding. This must be
1874 * considered in all cleanup operations.
1875 */
fc17b653 1876static blk_status_t
e399441d
JS
1877nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1878 struct nvme_fc_fcp_op *op, u32 data_len,
1879 enum nvmefc_fcp_datadir io_dir)
1880{
1881 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1882 struct nvme_command *sqe = &cmdiu->sqe;
1883 u32 csn;
1884 int ret;
1885
61bff8ef
JS
1886 /*
1887 * before attempting to send the io, check to see if we believe
1888 * the target device is present
1889 */
1890 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
fc17b653 1891 return BLK_STS_IOERR;
61bff8ef 1892
e399441d 1893 if (!nvme_fc_ctrl_get(ctrl))
fc17b653 1894 return BLK_STS_IOERR;
e399441d
JS
1895
1896 /* format the FC-NVME CMD IU and fcp_req */
1897 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1898 csn = atomic_inc_return(&queue->csn);
1899 cmdiu->csn = cpu_to_be32(csn);
1900 cmdiu->data_len = cpu_to_be32(data_len);
1901 switch (io_dir) {
1902 case NVMEFC_FCP_WRITE:
1903 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1904 break;
1905 case NVMEFC_FCP_READ:
1906 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1907 break;
1908 case NVMEFC_FCP_NODATA:
1909 cmdiu->flags = 0;
1910 break;
1911 }
1912 op->fcp_req.payload_length = data_len;
1913 op->fcp_req.io_dir = io_dir;
1914 op->fcp_req.transferred_length = 0;
1915 op->fcp_req.rcv_rsplen = 0;
62eeacb0 1916 op->fcp_req.status = NVME_SC_SUCCESS;
e399441d
JS
1917 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1918
1919 /*
1920 * validate per fabric rules, set fields mandated by fabric spec
1921 * as well as those by FC-NVME spec.
1922 */
1923 WARN_ON_ONCE(sqe->common.metadata);
1924 WARN_ON_ONCE(sqe->common.dptr.prp1);
1925 WARN_ON_ONCE(sqe->common.dptr.prp2);
1926 sqe->common.flags |= NVME_CMD_SGL_METABUF;
1927
1928 /*
1929 * format SQE DPTR field per FC-NVME rules
1930 * type=data block descr; subtype=offset;
1931 * offset is currently 0.
1932 */
1933 sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1934 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1935 sqe->rw.dptr.sgl.addr = 0;
1936
78a7ac26 1937 if (!(op->flags & FCOP_FLAGS_AEN)) {
e399441d
JS
1938 ret = nvme_fc_map_data(ctrl, op->rq, op);
1939 if (ret < 0) {
e399441d
JS
1940 nvme_cleanup_cmd(op->rq);
1941 nvme_fc_ctrl_put(ctrl);
fc17b653
CH
1942 if (ret == -ENOMEM || ret == -EAGAIN)
1943 return BLK_STS_RESOURCE;
1944 return BLK_STS_IOERR;
e399441d
JS
1945 }
1946 }
1947
1948 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1949 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1950
1951 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1952
78a7ac26 1953 if (!(op->flags & FCOP_FLAGS_AEN))
e399441d
JS
1954 blk_mq_start_request(op->rq);
1955
1956 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1957 &ctrl->rport->remoteport,
1958 queue->lldd_handle, &op->fcp_req);
1959
1960 if (ret) {
b4dfd6ee 1961 if (op->rq) /* normal request */
e399441d 1962 nvme_fc_unmap_data(ctrl, op->rq, op);
e399441d
JS
1963 /* else - aen. no cleanup needed */
1964
1965 nvme_fc_ctrl_put(ctrl);
1966
1967 if (ret != -EBUSY)
fc17b653 1968 return BLK_STS_IOERR;
e399441d 1969
e5859d3a
SG
1970 if (op->rq)
1971 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1972
fc17b653 1973 return BLK_STS_RESOURCE;
e399441d
JS
1974 }
1975
fc17b653 1976 return BLK_STS_OK;
e399441d
JS
1977}
1978
fc17b653 1979static blk_status_t
e399441d
JS
1980nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1981 const struct blk_mq_queue_data *bd)
1982{
1983 struct nvme_ns *ns = hctx->queue->queuedata;
1984 struct nvme_fc_queue *queue = hctx->driver_data;
1985 struct nvme_fc_ctrl *ctrl = queue->ctrl;
1986 struct request *rq = bd->rq;
1987 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1988 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1989 struct nvme_command *sqe = &cmdiu->sqe;
1990 enum nvmefc_fcp_datadir io_dir;
1991 u32 data_len;
fc17b653 1992 blk_status_t ret;
e399441d
JS
1993
1994 ret = nvme_setup_cmd(ns, rq, sqe);
1995 if (ret)
1996 return ret;
1997
b131c61d 1998 data_len = blk_rq_payload_bytes(rq);
e399441d
JS
1999 if (data_len)
2000 io_dir = ((rq_data_dir(rq) == WRITE) ?
2001 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2002 else
2003 io_dir = NVMEFC_FCP_NODATA;
2004
2005 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2006}
2007
2008static struct blk_mq_tags *
2009nvme_fc_tagset(struct nvme_fc_queue *queue)
2010{
2011 if (queue->qnum == 0)
2012 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2013
2014 return queue->ctrl->tag_set.tags[queue->qnum - 1];
2015}
2016
2017static int
2018nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2019
2020{
2021 struct nvme_fc_queue *queue = hctx->driver_data;
2022 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2023 struct request *req;
2024 struct nvme_fc_fcp_op *op;
2025
2026 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
61bff8ef 2027 if (!req)
e399441d 2028 return 0;
e399441d
JS
2029
2030 op = blk_mq_rq_to_pdu(req);
2031
2032 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2033 (ctrl->lport->ops->poll_queue))
2034 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2035 queue->lldd_handle);
2036
2037 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2038}
2039
2040static void
2041nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2042{
2043 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2044 struct nvme_fc_fcp_op *aen_op;
61bff8ef
JS
2045 unsigned long flags;
2046 bool terminating = false;
fc17b653 2047 blk_status_t ret;
e399441d
JS
2048
2049 if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2050 return;
2051
61bff8ef
JS
2052 spin_lock_irqsave(&ctrl->lock, flags);
2053 if (ctrl->flags & FCCTRL_TERMIO)
2054 terminating = true;
2055 spin_unlock_irqrestore(&ctrl->lock, flags);
2056
2057 if (terminating)
2058 return;
2059
e399441d
JS
2060 aen_op = &ctrl->aen_ops[aer_idx];
2061
2062 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2063 NVMEFC_FCP_NODATA);
2064 if (ret)
2065 dev_err(ctrl->ctrl.device,
2066 "failed async event work [%d]\n", aer_idx);
2067}
2068
2069static void
78a7ac26 2070__nvme_fc_final_op_cleanup(struct request *rq)
e399441d
JS
2071{
2072 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2073 struct nvme_fc_ctrl *ctrl = op->ctrl;
e399441d 2074
78a7ac26
JS
2075 atomic_set(&op->state, FCPOP_STATE_IDLE);
2076 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2077 FCOP_FLAGS_COMPLETE);
e399441d 2078
e399441d 2079 nvme_fc_unmap_data(ctrl, rq, op);
77f02a7a 2080 nvme_complete_rq(rq);
e399441d
JS
2081 nvme_fc_ctrl_put(ctrl);
2082
e399441d
JS
2083}
2084
78a7ac26
JS
2085static void
2086nvme_fc_complete_rq(struct request *rq)
2087{
2088 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2089 struct nvme_fc_ctrl *ctrl = op->ctrl;
2090 unsigned long flags;
2091 bool completed = false;
2092
2093 /*
2094 * the core layer, on controller resets after calling
2095 * nvme_shutdown_ctrl(), calls complete_rq without our
2096 * calling blk_mq_complete_request(), thus there may still
2097 * be live i/o outstanding with the LLDD. Means transport has
2098 * to track complete calls vs fcpio_done calls to know what
2099 * path to take on completes and dones.
2100 */
2101 spin_lock_irqsave(&ctrl->lock, flags);
2102 if (op->flags & FCOP_FLAGS_COMPLETE)
2103 completed = true;
2104 else
2105 op->flags |= FCOP_FLAGS_RELEASED;
2106 spin_unlock_irqrestore(&ctrl->lock, flags);
2107
2108 if (completed)
2109 __nvme_fc_final_op_cleanup(rq);
2110}
2111
e399441d
JS
2112/*
2113 * This routine is used by the transport when it needs to find active
2114 * io on a queue that is to be terminated. The transport uses
2115 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2116 * this routine to kill them on a 1 by 1 basis.
2117 *
2118 * As FC allocates FC exchange for each io, the transport must contact
2119 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2120 * After terminating the exchange the LLDD will call the transport's
2121 * normal io done path for the request, but it will have an aborted
2122 * status. The done path will return the io request back to the block
2123 * layer with an error status.
2124 */
2125static void
2126nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2127{
2128 struct nvme_ctrl *nctrl = data;
2129 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2130 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
78a7ac26
JS
2131 unsigned long flags;
2132 int status;
e399441d
JS
2133
2134 if (!blk_mq_request_started(req))
2135 return;
2136
78a7ac26 2137 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
2138 if (ctrl->flags & FCCTRL_TERMIO) {
2139 ctrl->iocnt++;
2140 op->flags |= FCOP_FLAGS_TERMIO;
2141 }
78a7ac26
JS
2142 spin_unlock_irqrestore(&ctrl->lock, flags);
2143
e399441d 2144 status = __nvme_fc_abort_op(ctrl, op);
78a7ac26
JS
2145 if (status) {
2146 /*
2147 * if __nvme_fc_abort_op failed the io wasn't
2148 * active. Thus this call path is running in
2149 * parallel to the io complete. Treat as non-error.
2150 */
2151
2152 /* back out the flags/counters */
2153 spin_lock_irqsave(&ctrl->lock, flags);
61bff8ef
JS
2154 if (ctrl->flags & FCCTRL_TERMIO)
2155 ctrl->iocnt--;
78a7ac26
JS
2156 op->flags &= ~FCOP_FLAGS_TERMIO;
2157 spin_unlock_irqrestore(&ctrl->lock, flags);
e399441d 2158 return;
78a7ac26 2159 }
e399441d
JS
2160}
2161
78a7ac26 2162
61bff8ef
JS
2163static const struct blk_mq_ops nvme_fc_mq_ops = {
2164 .queue_rq = nvme_fc_queue_rq,
2165 .complete = nvme_fc_complete_rq,
2166 .init_request = nvme_fc_init_request,
2167 .exit_request = nvme_fc_exit_request,
2168 .reinit_request = nvme_fc_reinit_request,
2169 .init_hctx = nvme_fc_init_hctx,
2170 .poll = nvme_fc_poll,
2171 .timeout = nvme_fc_timeout,
2172};
e399441d 2173
61bff8ef
JS
2174static int
2175nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
e399441d 2176{
61bff8ef 2177 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
7314183d 2178 unsigned int nr_io_queues;
61bff8ef 2179 int ret;
e399441d 2180
7314183d
SG
2181 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2182 ctrl->lport->ops->max_hw_queues);
2183 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
61bff8ef
JS
2184 if (ret) {
2185 dev_info(ctrl->ctrl.device,
2186 "set_queue_count failed: %d\n", ret);
2187 return ret;
2188 }
e399441d 2189
7314183d
SG
2190 ctrl->ctrl.queue_count = nr_io_queues + 1;
2191 if (!nr_io_queues)
61bff8ef 2192 return 0;
e399441d 2193
61bff8ef 2194 nvme_fc_init_io_queues(ctrl);
e399441d 2195
61bff8ef
JS
2196 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2197 ctrl->tag_set.ops = &nvme_fc_mq_ops;
2198 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2199 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2200 ctrl->tag_set.numa_node = NUMA_NO_NODE;
2201 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2202 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2203 (SG_CHUNK_SIZE *
2204 sizeof(struct scatterlist)) +
2205 ctrl->lport->ops->fcprqst_priv_sz;
2206 ctrl->tag_set.driver_data = ctrl;
d858e5f0 2207 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
61bff8ef 2208 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
e399441d 2209
61bff8ef
JS
2210 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2211 if (ret)
2212 return ret;
e399441d 2213
61bff8ef 2214 ctrl->ctrl.tagset = &ctrl->tag_set;
e399441d 2215
61bff8ef
JS
2216 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2217 if (IS_ERR(ctrl->ctrl.connect_q)) {
2218 ret = PTR_ERR(ctrl->ctrl.connect_q);
2219 goto out_free_tag_set;
2220 }
e399441d 2221
61bff8ef 2222 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
e399441d 2223 if (ret)
61bff8ef 2224 goto out_cleanup_blk_queue;
e399441d 2225
61bff8ef
JS
2226 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2227 if (ret)
2228 goto out_delete_hw_queues;
e399441d
JS
2229
2230 return 0;
e399441d 2231
61bff8ef
JS
2232out_delete_hw_queues:
2233 nvme_fc_delete_hw_io_queues(ctrl);
2234out_cleanup_blk_queue:
2235 nvme_stop_keep_alive(&ctrl->ctrl);
2236 blk_cleanup_queue(ctrl->ctrl.connect_q);
2237out_free_tag_set:
2238 blk_mq_free_tag_set(&ctrl->tag_set);
2239 nvme_fc_free_io_queues(ctrl);
e399441d 2240
61bff8ef
JS
2241 /* force put free routine to ignore io queues */
2242 ctrl->ctrl.tagset = NULL;
2243
2244 return ret;
2245}
e399441d
JS
2246
2247static int
61bff8ef 2248nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
e399441d
JS
2249{
2250 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
7314183d 2251 unsigned int nr_io_queues;
e399441d
JS
2252 int ret;
2253
7314183d
SG
2254 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2255 ctrl->lport->ops->max_hw_queues);
2256 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
e399441d
JS
2257 if (ret) {
2258 dev_info(ctrl->ctrl.device,
2259 "set_queue_count failed: %d\n", ret);
2260 return ret;
2261 }
2262
7314183d 2263 ctrl->ctrl.queue_count = nr_io_queues + 1;
61bff8ef 2264 /* check for io queues existing */
d858e5f0 2265 if (ctrl->ctrl.queue_count == 1)
e399441d
JS
2266 return 0;
2267
e399441d
JS
2268 nvme_fc_init_io_queues(ctrl);
2269
61bff8ef 2270 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
e399441d 2271 if (ret)
61bff8ef 2272 goto out_free_io_queues;
e399441d
JS
2273
2274 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2275 if (ret)
61bff8ef 2276 goto out_free_io_queues;
e399441d
JS
2277
2278 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2279 if (ret)
2280 goto out_delete_hw_queues;
2281
cda5fd1a
SG
2282 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2283
e399441d
JS
2284 return 0;
2285
2286out_delete_hw_queues:
2287 nvme_fc_delete_hw_io_queues(ctrl);
61bff8ef 2288out_free_io_queues:
e399441d 2289 nvme_fc_free_io_queues(ctrl);
61bff8ef
JS
2290 return ret;
2291}
e399441d 2292
61bff8ef
JS
2293/*
2294 * This routine restarts the controller on the host side, and
2295 * on the link side, recreates the controller association.
2296 */
2297static int
2298nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2299{
2300 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2301 u32 segs;
2302 int ret;
2303 bool changed;
2304
fdf9dfa8 2305 ++ctrl->ctrl.nr_reconnects;
61bff8ef
JS
2306
2307 /*
2308 * Create the admin queue
2309 */
2310
2311 nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2312
2313 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2314 NVME_FC_AQ_BLKMQ_DEPTH);
2315 if (ret)
2316 goto out_free_queue;
2317
2318 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2319 NVME_FC_AQ_BLKMQ_DEPTH,
2320 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2321 if (ret)
2322 goto out_delete_hw_queue;
2323
2324 if (ctrl->ctrl.state != NVME_CTRL_NEW)
f9c5af5f 2325 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
61bff8ef
JS
2326
2327 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2328 if (ret)
2329 goto out_disconnect_admin_queue;
2330
2331 /*
2332 * Check controller capabilities
2333 *
2334 * todo:- add code to check if ctrl attributes changed from
2335 * prior connection values
2336 */
2337
20d0dfe6 2338 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
61bff8ef
JS
2339 if (ret) {
2340 dev_err(ctrl->ctrl.device,
2341 "prop_get NVME_REG_CAP failed\n");
2342 goto out_disconnect_admin_queue;
2343 }
2344
2345 ctrl->ctrl.sqsize =
20d0dfe6 2346 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
61bff8ef 2347
20d0dfe6 2348 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
61bff8ef
JS
2349 if (ret)
2350 goto out_disconnect_admin_queue;
2351
2352 segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2353 ctrl->lport->ops->max_sgl_segments);
2354 ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2355
2356 ret = nvme_init_identify(&ctrl->ctrl);
2357 if (ret)
2358 goto out_disconnect_admin_queue;
2359
2360 /* sanity checks */
2361
2362 /* FC-NVME does not have other data in the capsule */
2363 if (ctrl->ctrl.icdoff) {
2364 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2365 ctrl->ctrl.icdoff);
2366 goto out_disconnect_admin_queue;
2367 }
2368
2369 nvme_start_keep_alive(&ctrl->ctrl);
2370
2371 /* FC-NVME supports normal SGL Data Block Descriptors */
2372
2373 if (opts->queue_size > ctrl->ctrl.maxcmd) {
2374 /* warn if maxcmd is lower than queue_size */
2375 dev_warn(ctrl->ctrl.device,
2376 "queue_size %zu > ctrl maxcmd %u, reducing "
2377 "to queue_size\n",
2378 opts->queue_size, ctrl->ctrl.maxcmd);
2379 opts->queue_size = ctrl->ctrl.maxcmd;
2380 }
2381
2382 ret = nvme_fc_init_aen_ops(ctrl);
2383 if (ret)
2384 goto out_term_aen_ops;
2385
2386 /*
2387 * Create the io queues
2388 */
2389
d858e5f0 2390 if (ctrl->ctrl.queue_count > 1) {
61bff8ef
JS
2391 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2392 ret = nvme_fc_create_io_queues(ctrl);
2393 else
2394 ret = nvme_fc_reinit_io_queues(ctrl);
2395 if (ret)
2396 goto out_term_aen_ops;
2397 }
2398
2399 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2400 WARN_ON_ONCE(!changed);
2401
fdf9dfa8 2402 ctrl->ctrl.nr_reconnects = 0;
61bff8ef 2403
d858e5f0 2404 if (ctrl->ctrl.queue_count > 1) {
61bff8ef
JS
2405 nvme_start_queues(&ctrl->ctrl);
2406 nvme_queue_scan(&ctrl->ctrl);
2407 nvme_queue_async_events(&ctrl->ctrl);
2408 }
2409
2410 return 0; /* Success */
2411
2412out_term_aen_ops:
2413 nvme_fc_term_aen_ops(ctrl);
2414 nvme_stop_keep_alive(&ctrl->ctrl);
2415out_disconnect_admin_queue:
2416 /* send a Disconnect(association) LS to fc-nvme target */
2417 nvme_fc_xmt_disconnect_assoc(ctrl);
2418out_delete_hw_queue:
2419 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2420out_free_queue:
2421 nvme_fc_free_queue(&ctrl->queues[0]);
e399441d
JS
2422
2423 return ret;
2424}
2425
61bff8ef
JS
2426/*
2427 * This routine stops operation of the controller on the host side.
2428 * On the host os stack side: Admin and IO queues are stopped,
2429 * outstanding ios on them terminated via FC ABTS.
2430 * On the link side: the association is terminated.
2431 */
2432static void
2433nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2434{
2435 unsigned long flags;
2436
2437 nvme_stop_keep_alive(&ctrl->ctrl);
2438
2439 spin_lock_irqsave(&ctrl->lock, flags);
2440 ctrl->flags |= FCCTRL_TERMIO;
2441 ctrl->iocnt = 0;
2442 spin_unlock_irqrestore(&ctrl->lock, flags);
2443
2444 /*
2445 * If io queues are present, stop them and terminate all outstanding
2446 * ios on them. As FC allocates FC exchange for each io, the
2447 * transport must contact the LLDD to terminate the exchange,
2448 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2449 * to tell us what io's are busy and invoke a transport routine
2450 * to kill them with the LLDD. After terminating the exchange
2451 * the LLDD will call the transport's normal io done path, but it
2452 * will have an aborted status. The done path will return the
2453 * io requests back to the block layer as part of normal completions
2454 * (but with error status).
2455 */
d858e5f0 2456 if (ctrl->ctrl.queue_count > 1) {
61bff8ef
JS
2457 nvme_stop_queues(&ctrl->ctrl);
2458 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2459 nvme_fc_terminate_exchange, &ctrl->ctrl);
2460 }
2461
2462 /*
2463 * Other transports, which don't have link-level contexts bound
2464 * to sqe's, would try to gracefully shutdown the controller by
2465 * writing the registers for shutdown and polling (call
2466 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2467 * just aborted and we will wait on those contexts, and given
2468 * there was no indication of how live the controlelr is on the
2469 * link, don't send more io to create more contexts for the
2470 * shutdown. Let the controller fail via keepalive failure if
2471 * its still present.
2472 */
2473
2474 /*
2475 * clean up the admin queue. Same thing as above.
2476 * use blk_mq_tagset_busy_itr() and the transport routine to
2477 * terminate the exchanges.
2478 */
f9c5af5f 2479 blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
61bff8ef
JS
2480 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2481 nvme_fc_terminate_exchange, &ctrl->ctrl);
2482
2483 /* kill the aens as they are a separate path */
2484 nvme_fc_abort_aen_ops(ctrl);
2485
2486 /* wait for all io that had to be aborted */
2487 spin_lock_irqsave(&ctrl->lock, flags);
36715cf4 2488 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
61bff8ef
JS
2489 ctrl->flags &= ~FCCTRL_TERMIO;
2490 spin_unlock_irqrestore(&ctrl->lock, flags);
2491
2492 nvme_fc_term_aen_ops(ctrl);
2493
2494 /*
2495 * send a Disconnect(association) LS to fc-nvme target
2496 * Note: could have been sent at top of process, but
2497 * cleaner on link traffic if after the aborts complete.
2498 * Note: if association doesn't exist, association_id will be 0
2499 */
2500 if (ctrl->association_id)
2501 nvme_fc_xmt_disconnect_assoc(ctrl);
2502
2503 if (ctrl->ctrl.tagset) {
2504 nvme_fc_delete_hw_io_queues(ctrl);
2505 nvme_fc_free_io_queues(ctrl);
2506 }
2507
2508 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2509 nvme_fc_free_queue(&ctrl->queues[0]);
2510}
2511
2512static void
2513nvme_fc_delete_ctrl_work(struct work_struct *work)
2514{
2515 struct nvme_fc_ctrl *ctrl =
2516 container_of(work, struct nvme_fc_ctrl, delete_work);
2517
d86c4d8e 2518 cancel_work_sync(&ctrl->ctrl.reset_work);
61bff8ef
JS
2519 cancel_delayed_work_sync(&ctrl->connect_work);
2520
2521 /*
2522 * kill the association on the link side. this will block
2523 * waiting for io to terminate
2524 */
2525 nvme_fc_delete_association(ctrl);
2526
2527 /*
2528 * tear down the controller
a5321aa5
JS
2529 * After the last reference on the nvme ctrl is removed,
2530 * the transport nvme_fc_nvme_ctrl_freed() callback will be
2531 * invoked. From there, the transport will tear down it's
2532 * logical queues and association.
61bff8ef
JS
2533 */
2534 nvme_uninit_ctrl(&ctrl->ctrl);
2535
2536 nvme_put_ctrl(&ctrl->ctrl);
2537}
2538
5bbecdbc
JS
2539static bool
2540__nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
61bff8ef
JS
2541{
2542 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
5bbecdbc 2543 return true;
61bff8ef 2544
9a6327d2 2545 if (!queue_work(nvme_wq, &ctrl->delete_work))
5bbecdbc 2546 return true;
61bff8ef 2547
5bbecdbc
JS
2548 return false;
2549}
2550
2551static int
2552__nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2553{
2554 return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
61bff8ef
JS
2555}
2556
2557/*
2558 * Request from nvme core layer to delete the controller
2559 */
2560static int
2561nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2562{
2563 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2564 int ret;
2565
2566 if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2567 return -EBUSY;
2568
2569 ret = __nvme_fc_del_ctrl(ctrl);
2570
2571 if (!ret)
9a6327d2 2572 flush_workqueue(nvme_wq);
61bff8ef
JS
2573
2574 nvme_put_ctrl(&ctrl->ctrl);
2575
2576 return ret;
2577}
2578
5bbecdbc
JS
2579static void
2580nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2581{
2582 /* If we are resetting/deleting then do nothing */
2583 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2584 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2585 ctrl->ctrl.state == NVME_CTRL_LIVE);
2586 return;
2587 }
2588
589ff775 2589 dev_info(ctrl->ctrl.device,
5bbecdbc
JS
2590 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2591 ctrl->cnum, status);
2592
2593 if (nvmf_should_reconnect(&ctrl->ctrl)) {
2594 dev_info(ctrl->ctrl.device,
2595 "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2596 ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
9a6327d2 2597 queue_delayed_work(nvme_wq, &ctrl->connect_work,
5bbecdbc
JS
2598 ctrl->ctrl.opts->reconnect_delay * HZ);
2599 } else {
589ff775 2600 dev_warn(ctrl->ctrl.device,
5bbecdbc
JS
2601 "NVME-FC{%d}: Max reconnect attempts (%d) "
2602 "reached. Removing controller\n",
fdf9dfa8 2603 ctrl->cnum, ctrl->ctrl.nr_reconnects);
5bbecdbc
JS
2604 WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2605 }
2606}
2607
61bff8ef
JS
2608static void
2609nvme_fc_reset_ctrl_work(struct work_struct *work)
2610{
2611 struct nvme_fc_ctrl *ctrl =
d86c4d8e 2612 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
61bff8ef
JS
2613 int ret;
2614
2615 /* will block will waiting for io to terminate */
2616 nvme_fc_delete_association(ctrl);
2617
2618 ret = nvme_fc_create_association(ctrl);
5bbecdbc
JS
2619 if (ret)
2620 nvme_fc_reconnect_or_delete(ctrl, ret);
2621 else
61bff8ef
JS
2622 dev_info(ctrl->ctrl.device,
2623 "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2624}
2625
61bff8ef
JS
2626static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2627 .name = "fc",
2628 .module = THIS_MODULE,
d3d5b87d 2629 .flags = NVME_F_FABRICS,
61bff8ef
JS
2630 .reg_read32 = nvmf_reg_read32,
2631 .reg_read64 = nvmf_reg_read64,
2632 .reg_write32 = nvmf_reg_write32,
61bff8ef
JS
2633 .free_ctrl = nvme_fc_nvme_ctrl_freed,
2634 .submit_async_event = nvme_fc_submit_async_event,
2635 .delete_ctrl = nvme_fc_del_nvme_ctrl,
61bff8ef
JS
2636 .get_address = nvmf_get_address,
2637};
2638
2639static void
2640nvme_fc_connect_ctrl_work(struct work_struct *work)
2641{
2642 int ret;
2643
2644 struct nvme_fc_ctrl *ctrl =
2645 container_of(to_delayed_work(work),
2646 struct nvme_fc_ctrl, connect_work);
2647
2648 ret = nvme_fc_create_association(ctrl);
5bbecdbc
JS
2649 if (ret)
2650 nvme_fc_reconnect_or_delete(ctrl, ret);
2651 else
61bff8ef
JS
2652 dev_info(ctrl->ctrl.device,
2653 "NVME-FC{%d}: controller reconnect complete\n",
2654 ctrl->cnum);
2655}
2656
2657
2658static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2659 .queue_rq = nvme_fc_queue_rq,
2660 .complete = nvme_fc_complete_rq,
76f983cb 2661 .init_request = nvme_fc_init_request,
61bff8ef
JS
2662 .exit_request = nvme_fc_exit_request,
2663 .reinit_request = nvme_fc_reinit_request,
2664 .init_hctx = nvme_fc_init_admin_hctx,
2665 .timeout = nvme_fc_timeout,
2666};
2667
e399441d
JS
2668
2669static struct nvme_ctrl *
61bff8ef 2670nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
e399441d
JS
2671 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2672{
2673 struct nvme_fc_ctrl *ctrl;
2674 unsigned long flags;
2675 int ret, idx;
e399441d 2676
85e6a6ad
JS
2677 if (!(rport->remoteport.port_role &
2678 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2679 ret = -EBADR;
2680 goto out_fail;
2681 }
2682
e399441d
JS
2683 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2684 if (!ctrl) {
2685 ret = -ENOMEM;
2686 goto out_fail;
2687 }
2688
2689 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2690 if (idx < 0) {
2691 ret = -ENOSPC;
2692 goto out_free_ctrl;
2693 }
2694
2695 ctrl->ctrl.opts = opts;
2696 INIT_LIST_HEAD(&ctrl->ctrl_list);
e399441d
JS
2697 ctrl->lport = lport;
2698 ctrl->rport = rport;
2699 ctrl->dev = lport->dev;
e399441d
JS
2700 ctrl->cnum = idx;
2701
e399441d
JS
2702 get_device(ctrl->dev);
2703 kref_init(&ctrl->ref);
2704
61bff8ef 2705 INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
d86c4d8e 2706 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
61bff8ef 2707 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
e399441d
JS
2708 spin_lock_init(&ctrl->lock);
2709
2710 /* io queue count */
d858e5f0 2711 ctrl->ctrl.queue_count = min_t(unsigned int,
e399441d
JS
2712 opts->nr_io_queues,
2713 lport->ops->max_hw_queues);
d858e5f0 2714 ctrl->ctrl.queue_count++; /* +1 for admin queue */
e399441d
JS
2715
2716 ctrl->ctrl.sqsize = opts->queue_size - 1;
2717 ctrl->ctrl.kato = opts->kato;
2718
2719 ret = -ENOMEM;
d858e5f0
SG
2720 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
2721 sizeof(struct nvme_fc_queue), GFP_KERNEL);
e399441d 2722 if (!ctrl->queues)
61bff8ef 2723 goto out_free_ida;
e399441d 2724
61bff8ef
JS
2725 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2726 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2727 ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2728 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2729 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2730 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2731 (SG_CHUNK_SIZE *
2732 sizeof(struct scatterlist)) +
2733 ctrl->lport->ops->fcprqst_priv_sz;
2734 ctrl->admin_tag_set.driver_data = ctrl;
2735 ctrl->admin_tag_set.nr_hw_queues = 1;
2736 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
e399441d 2737
61bff8ef 2738 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
e399441d 2739 if (ret)
61bff8ef 2740 goto out_free_queues;
e399441d 2741
61bff8ef
JS
2742 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2743 if (IS_ERR(ctrl->ctrl.admin_q)) {
2744 ret = PTR_ERR(ctrl->ctrl.admin_q);
2745 goto out_free_admin_tag_set;
e399441d
JS
2746 }
2747
61bff8ef
JS
2748 /*
2749 * Would have been nice to init io queues tag set as well.
2750 * However, we require interaction from the controller
2751 * for max io queue count before we can do so.
2752 * Defer this to the connect path.
2753 */
e399441d 2754
61bff8ef
JS
2755 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2756 if (ret)
2757 goto out_cleanup_admin_q;
e399441d 2758
61bff8ef 2759 /* at this point, teardown path changes to ref counting on nvme ctrl */
e399441d
JS
2760
2761 spin_lock_irqsave(&rport->lock, flags);
2762 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2763 spin_unlock_irqrestore(&rport->lock, flags);
2764
61bff8ef
JS
2765 ret = nvme_fc_create_association(ctrl);
2766 if (ret) {
de41447a 2767 ctrl->ctrl.opts = NULL;
61bff8ef
JS
2768 /* initiate nvme ctrl ref counting teardown */
2769 nvme_uninit_ctrl(&ctrl->ctrl);
24b7f059 2770 nvme_put_ctrl(&ctrl->ctrl);
61bff8ef 2771
0b5a7669
JS
2772 /* Remove core ctrl ref. */
2773 nvme_put_ctrl(&ctrl->ctrl);
2774
61bff8ef
JS
2775 /* as we're past the point where we transition to the ref
2776 * counting teardown path, if we return a bad pointer here,
2777 * the calling routine, thinking it's prior to the
2778 * transition, will do an rport put. Since the teardown
2779 * path also does a rport put, we do an extra get here to
2780 * so proper order/teardown happens.
2781 */
2782 nvme_fc_rport_get(rport);
2783
2784 if (ret > 0)
2785 ret = -EIO;
2786 return ERR_PTR(ret);
e399441d
JS
2787 }
2788
2cb657bc
JS
2789 kref_get(&ctrl->ctrl.kref);
2790
61bff8ef
JS
2791 dev_info(ctrl->ctrl.device,
2792 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2793 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
e399441d 2794
61bff8ef 2795 return &ctrl->ctrl;
e399441d 2796
61bff8ef
JS
2797out_cleanup_admin_q:
2798 blk_cleanup_queue(ctrl->ctrl.admin_q);
2799out_free_admin_tag_set:
2800 blk_mq_free_tag_set(&ctrl->admin_tag_set);
2801out_free_queues:
2802 kfree(ctrl->queues);
e399441d 2803out_free_ida:
61bff8ef 2804 put_device(ctrl->dev);
e399441d
JS
2805 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2806out_free_ctrl:
2807 kfree(ctrl);
2808out_fail:
e399441d
JS
2809 /* exit via here doesn't follow ctlr ref points */
2810 return ERR_PTR(ret);
2811}
2812
2813enum {
2814 FCT_TRADDR_ERR = 0,
2815 FCT_TRADDR_WWNN = 1 << 0,
2816 FCT_TRADDR_WWPN = 1 << 1,
2817};
2818
2819struct nvmet_fc_traddr {
2820 u64 nn;
2821 u64 pn;
2822};
2823
2824static const match_table_t traddr_opt_tokens = {
2825 { FCT_TRADDR_WWNN, "nn-%s" },
2826 { FCT_TRADDR_WWPN, "pn-%s" },
2827 { FCT_TRADDR_ERR, NULL }
2828};
2829
2830static int
2831nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2832{
2833 substring_t args[MAX_OPT_ARGS];
2834 char *options, *o, *p;
2835 int token, ret = 0;
2836 u64 token64;
2837
2838 options = o = kstrdup(buf, GFP_KERNEL);
2839 if (!options)
2840 return -ENOMEM;
2841
2842 while ((p = strsep(&o, ":\n")) != NULL) {
2843 if (!*p)
2844 continue;
2845
2846 token = match_token(p, traddr_opt_tokens, args);
2847 switch (token) {
2848 case FCT_TRADDR_WWNN:
2849 if (match_u64(args, &token64)) {
2850 ret = -EINVAL;
2851 goto out;
2852 }
2853 traddr->nn = token64;
2854 break;
2855 case FCT_TRADDR_WWPN:
2856 if (match_u64(args, &token64)) {
2857 ret = -EINVAL;
2858 goto out;
2859 }
2860 traddr->pn = token64;
2861 break;
2862 default:
2863 pr_warn("unknown traddr token or missing value '%s'\n",
2864 p);
2865 ret = -EINVAL;
2866 goto out;
2867 }
2868 }
2869
2870out:
2871 kfree(options);
2872 return ret;
2873}
2874
2875static struct nvme_ctrl *
2876nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2877{
2878 struct nvme_fc_lport *lport;
2879 struct nvme_fc_rport *rport;
61bff8ef 2880 struct nvme_ctrl *ctrl;
e399441d
JS
2881 struct nvmet_fc_traddr laddr = { 0L, 0L };
2882 struct nvmet_fc_traddr raddr = { 0L, 0L };
2883 unsigned long flags;
2884 int ret;
2885
2886 ret = nvme_fc_parse_address(&raddr, opts->traddr);
2887 if (ret || !raddr.nn || !raddr.pn)
2888 return ERR_PTR(-EINVAL);
2889
2890 ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2891 if (ret || !laddr.nn || !laddr.pn)
2892 return ERR_PTR(-EINVAL);
2893
2894 /* find the host and remote ports to connect together */
2895 spin_lock_irqsave(&nvme_fc_lock, flags);
2896 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2897 if (lport->localport.node_name != laddr.nn ||
2898 lport->localport.port_name != laddr.pn)
2899 continue;
2900
2901 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2902 if (rport->remoteport.node_name != raddr.nn ||
2903 rport->remoteport.port_name != raddr.pn)
2904 continue;
2905
2906 /* if fail to get reference fall through. Will error */
2907 if (!nvme_fc_rport_get(rport))
2908 break;
2909
2910 spin_unlock_irqrestore(&nvme_fc_lock, flags);
2911
61bff8ef
JS
2912 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2913 if (IS_ERR(ctrl))
2914 nvme_fc_rport_put(rport);
2915 return ctrl;
e399441d
JS
2916 }
2917 }
2918 spin_unlock_irqrestore(&nvme_fc_lock, flags);
2919
2920 return ERR_PTR(-ENOENT);
2921}
2922
2923
2924static struct nvmf_transport_ops nvme_fc_transport = {
2925 .name = "fc",
2926 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
5bbecdbc 2927 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
e399441d
JS
2928 .create_ctrl = nvme_fc_create_ctrl,
2929};
2930
2931static int __init nvme_fc_init_module(void)
2932{
9a6327d2 2933 return nvmf_register_transport(&nvme_fc_transport);
e399441d
JS
2934}
2935
2936static void __exit nvme_fc_exit_module(void)
2937{
2938 /* sanity check - all lports should be removed */
2939 if (!list_empty(&nvme_fc_lport_list))
2940 pr_warn("%s: localport list not empty\n", __func__);
2941
2942 nvmf_unregister_transport(&nvme_fc_transport);
2943
e399441d
JS
2944 ida_destroy(&nvme_fc_local_port_cnt);
2945 ida_destroy(&nvme_fc_ctrl_cnt);
2946}
2947
2948module_init(nvme_fc_init_module);
2949module_exit(nvme_fc_exit_module);
2950
2951MODULE_LICENSE("GPL v2");