nvme: rework NVME_AUTH Kconfig selection
[linux-2.6-block.git] / drivers / nvme / host / core.c
CommitLineData
bc50ad75 1// SPDX-License-Identifier: GPL-2.0
21d34711
CH
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
21d34711
CH
5 */
6
7#include <linux/blkdev.h>
8#include <linux/blk-mq.h>
fe45e630 9#include <linux/blk-integrity.h>
c95b708d 10#include <linux/compat.h>
5fd4ce1b 11#include <linux/delay.h>
21d34711 12#include <linux/errno.h>
1673f1f0 13#include <linux/hdreg.h>
21d34711 14#include <linux/kernel.h>
5bae7f73 15#include <linux/module.h>
958f2a0f 16#include <linux/backing-dev.h>
21d34711
CH
17#include <linux/slab.h>
18#include <linux/types.h>
1673f1f0
CH
19#include <linux/pr.h>
20#include <linux/ptrace.h>
21#include <linux/nvme_ioctl.h>
c5552fde 22#include <linux/pm_qos.h>
1673f1f0 23#include <asm/unaligned.h>
21d34711
CH
24
25#include "nvme.h"
038bd4cb 26#include "fabrics.h"
f50fff73 27#include <linux/nvme-auth.h>
9d77eb52 28#include <linux/nvme-keyring.h>
21d34711 29
35fe0d12
HR
30#define CREATE_TRACE_POINTS
31#include "trace.h"
32
f3ca80fc
CH
33#define NVME_MINORS (1U << MINORBITS)
34
1a893c2b
CH
35struct nvme_ns_info {
36 struct nvme_ns_ids ids;
37 u32 nsid;
38 __le32 anagrpid;
39 bool is_shared;
1e4ea66a 40 bool is_readonly;
1a893c2b 41 bool is_ready;
0dd6fff2 42 bool is_removed;
1a893c2b
CH
43};
44
8ae4e447
MO
45unsigned int admin_timeout = 60;
46module_param(admin_timeout, uint, 0644);
ba0ba7d3 47MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
576d55d6 48EXPORT_SYMBOL_GPL(admin_timeout);
ba0ba7d3 49
8ae4e447
MO
50unsigned int nvme_io_timeout = 30;
51module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
ba0ba7d3 52MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
576d55d6 53EXPORT_SYMBOL_GPL(nvme_io_timeout);
ba0ba7d3 54
b3b1b0b0 55static unsigned char shutdown_timeout = 5;
ba0ba7d3
ML
56module_param(shutdown_timeout, byte, 0644);
57MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58
44e44b29
CH
59static u8 nvme_max_retries = 5;
60module_param_named(max_retries, nvme_max_retries, byte, 0644);
f80ec966 61MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
5bae7f73 62
9947d6a0 63static unsigned long default_ps_max_latency_us = 100000;
c5552fde
AL
64module_param(default_ps_max_latency_us, ulong, 0644);
65MODULE_PARM_DESC(default_ps_max_latency_us,
66 "max power saving latency for new devices; use PM QOS to change per device");
67
c35e30b4
AL
68static bool force_apst;
69module_param(force_apst, bool, 0644);
70MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71
ebd8a93a
AB
72static unsigned long apst_primary_timeout_ms = 100;
73module_param(apst_primary_timeout_ms, ulong, 0644);
74MODULE_PARM_DESC(apst_primary_timeout_ms,
75 "primary APST timeout in ms");
76
77static unsigned long apst_secondary_timeout_ms = 2000;
78module_param(apst_secondary_timeout_ms, ulong, 0644);
79MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 "secondary APST timeout in ms");
81
82static unsigned long apst_primary_latency_tol_us = 15000;
83module_param(apst_primary_latency_tol_us, ulong, 0644);
84MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 "primary APST latency tolerance in us");
86
87static unsigned long apst_secondary_latency_tol_us = 100000;
88module_param(apst_secondary_latency_tol_us, ulong, 0644);
89MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 "secondary APST latency tolerance in us");
91
b227c59b
RS
92/*
93 * nvme_wq - hosts nvme related works that are not reset or delete
94 * nvme_reset_wq - hosts nvme reset works
95 * nvme_delete_wq - hosts nvme delete works
96 *
97b2512a
NK
97 * nvme_wq will host works such as scan, aen handling, fw activation,
98 * keep-alive, periodic reconnects etc. nvme_reset_wq
b227c59b
RS
99 * runs reset works which also flush works hosted on nvme_wq for
100 * serialization purposes. nvme_delete_wq host controller deletion
101 * works which flush reset works for serialization.
102 */
9a6327d2
SG
103struct workqueue_struct *nvme_wq;
104EXPORT_SYMBOL_GPL(nvme_wq);
105
b227c59b
RS
106struct workqueue_struct *nvme_reset_wq;
107EXPORT_SYMBOL_GPL(nvme_reset_wq);
108
109struct workqueue_struct *nvme_delete_wq;
110EXPORT_SYMBOL_GPL(nvme_delete_wq);
111
ab9e00cc
CH
112static LIST_HEAD(nvme_subsystems);
113static DEFINE_MUTEX(nvme_subsystems_lock);
1673f1f0 114
9843f685 115static DEFINE_IDA(nvme_instance_ida);
f68abd9c 116static dev_t nvme_ctrl_base_chr_devt;
f3ca80fc 117static struct class *nvme_class;
ab9e00cc 118static struct class *nvme_subsys_class;
f3ca80fc 119
2637baed
MI
120static DEFINE_IDA(nvme_ns_chr_minor_ida);
121static dev_t nvme_ns_chr_devt;
122static struct class *nvme_ns_chr_class;
123
12d9f070 124static void nvme_put_subsystem(struct nvme_subsystem *subsys);
cf39a6bc
SB
125static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
126 unsigned nsid);
b58da2d2
TS
127static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
128 struct nvme_command *cmd);
cf39a6bc 129
2405252a 130void nvme_queue_scan(struct nvme_ctrl *ctrl)
50e8d8ee
CH
131{
132 /*
133 * Only new queue scan work when admin and IO queues are both alive
134 */
5d02a5c1 135 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
50e8d8ee
CH
136 queue_work(nvme_wq, &ctrl->scan_work);
137}
138
4c75f877
KB
139/*
140 * Use this function to proceed with scheduling reset_work for a controller
141 * that had previously been set to the resetting state. This is intended for
142 * code paths that can't be interrupted by other reset attempts. A hot removal
143 * may prevent this from succeeding.
144 */
c1ac9a4b 145int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
4c75f877
KB
146{
147 if (ctrl->state != NVME_CTRL_RESETTING)
148 return -EBUSY;
149 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
150 return -EBUSY;
151 return 0;
152}
c1ac9a4b 153EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
4c75f877 154
8c4dfea9
VG
155static void nvme_failfast_work(struct work_struct *work)
156{
157 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
158 struct nvme_ctrl, failfast_work);
159
160 if (ctrl->state != NVME_CTRL_CONNECTING)
161 return;
162
163 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
164 dev_info(ctrl->device, "failfast expired\n");
165 nvme_kick_requeue_lists(ctrl);
166}
167
168static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
169{
170 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
171 return;
172
173 schedule_delayed_work(&ctrl->failfast_work,
174 ctrl->opts->fast_io_fail_tmo * HZ);
175}
176
177static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
178{
179 if (!ctrl->opts)
180 return;
181
182 cancel_delayed_work_sync(&ctrl->failfast_work);
183 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
184}
185
186
d86c4d8e
CH
187int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
188{
189 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
190 return -EBUSY;
b227c59b 191 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
d86c4d8e
CH
192 return -EBUSY;
193 return 0;
194}
195EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
196
2405252a 197int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
d86c4d8e
CH
198{
199 int ret;
200
201 ret = nvme_reset_ctrl(ctrl);
8000d1fd 202 if (!ret) {
d86c4d8e 203 flush_work(&ctrl->reset_work);
5d02a5c1 204 if (ctrl->state != NVME_CTRL_LIVE)
8000d1fd
NC
205 ret = -ENETRESET;
206 }
207
d86c4d8e
CH
208 return ret;
209}
210
a686ed75 211static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
c5017e85 212{
77d0612d 213 dev_info(ctrl->device,
e5ea42fa 214 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
77d0612d 215
4054637c 216 flush_work(&ctrl->reset_work);
6cd53d14
CH
217 nvme_stop_ctrl(ctrl);
218 nvme_remove_namespaces(ctrl);
c5017e85 219 ctrl->ops->delete_ctrl(ctrl);
6cd53d14 220 nvme_uninit_ctrl(ctrl);
c5017e85
CH
221}
222
a686ed75
BVA
223static void nvme_delete_ctrl_work(struct work_struct *work)
224{
225 struct nvme_ctrl *ctrl =
226 container_of(work, struct nvme_ctrl, delete_work);
227
228 nvme_do_delete_ctrl(ctrl);
229}
230
c5017e85
CH
231int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
232{
233 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234 return -EBUSY;
b227c59b 235 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
c5017e85
CH
236 return -EBUSY;
237 return 0;
238}
239EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
240
942e21c0 241void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
c5017e85 242{
c5017e85 243 /*
01fc08ff
YY
244 * Keep a reference until nvme_do_delete_ctrl() complete,
245 * since ->delete_ctrl can free the controller.
c5017e85
CH
246 */
247 nvme_get_ctrl(ctrl);
6721c18a 248 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
b9c77583 249 nvme_do_delete_ctrl(ctrl);
c5017e85 250 nvme_put_ctrl(ctrl);
c5017e85 251}
c5017e85 252
2f9c1736 253static blk_status_t nvme_error_status(u16 status)
27fa9bc5 254{
2f9c1736 255 switch (status & 0x7ff) {
27fa9bc5 256 case NVME_SC_SUCCESS:
2a842aca 257 return BLK_STS_OK;
27fa9bc5 258 case NVME_SC_CAP_EXCEEDED:
2a842aca 259 return BLK_STS_NOSPC;
e96fef2c 260 case NVME_SC_LBA_RANGE:
35038bff
KB
261 case NVME_SC_CMD_INTERRUPTED:
262 case NVME_SC_NS_NOT_READY:
e96fef2c
KB
263 return BLK_STS_TARGET;
264 case NVME_SC_BAD_ATTRIBUTES:
e02ab023 265 case NVME_SC_ONCS_NOT_SUPPORTED:
e96fef2c
KB
266 case NVME_SC_INVALID_OPCODE:
267 case NVME_SC_INVALID_FIELD:
268 case NVME_SC_INVALID_NS:
2a842aca 269 return BLK_STS_NOTSUPP;
e02ab023
JG
270 case NVME_SC_WRITE_FAULT:
271 case NVME_SC_READ_ERROR:
272 case NVME_SC_UNWRITTEN_BLOCK:
a751da33
CH
273 case NVME_SC_ACCESS_DENIED:
274 case NVME_SC_READ_ONLY:
e96fef2c 275 case NVME_SC_COMPARE_FAILED:
2a842aca 276 return BLK_STS_MEDIUM;
a751da33
CH
277 case NVME_SC_GUARD_CHECK:
278 case NVME_SC_APPTAG_CHECK:
279 case NVME_SC_REFTAG_CHECK:
280 case NVME_SC_INVALID_PI:
281 return BLK_STS_PROTECTION;
282 case NVME_SC_RESERVATION_CONFLICT:
7ba15083 283 return BLK_STS_RESV_CONFLICT;
1c0d12c0
SG
284 case NVME_SC_HOST_PATH_ERROR:
285 return BLK_STS_TRANSPORT;
afaf5c6c
KB
286 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
287 return BLK_STS_ZONE_ACTIVE_RESOURCE;
288 case NVME_SC_ZONE_TOO_MANY_OPEN:
289 return BLK_STS_ZONE_OPEN_RESOURCE;
2a842aca
CH
290 default:
291 return BLK_STS_IOERR;
27fa9bc5
CH
292 }
293}
27fa9bc5 294
49cd84b6
KB
295static void nvme_retry_req(struct request *req)
296{
49cd84b6
KB
297 unsigned long delay = 0;
298 u16 crd;
299
300 /* The mask and shift result must be <= 3 */
301 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
f9063a53
MI
302 if (crd)
303 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
49cd84b6
KB
304
305 nvme_req(req)->retries++;
306 blk_mq_requeue_request(req, false);
307 blk_mq_delay_kick_requeue_list(req->q, delay);
308}
309
bd83fe6f
AA
310static void nvme_log_error(struct request *req)
311{
312 struct nvme_ns *ns = req->q->queuedata;
313 struct nvme_request *nr = nvme_req(req);
314
315 if (ns) {
316 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
317 ns->disk ? ns->disk->disk_name : "?",
318 nvme_get_opcode_str(nr->cmd->common.opcode),
319 nr->cmd->common.opcode,
320 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
321 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
322 nvme_get_error_status_str(nr->status),
323 nr->status >> 8 & 7, /* Status Code Type */
324 nr->status & 0xff, /* Status Code */
325 nr->status & NVME_SC_MORE ? "MORE " : "",
326 nr->status & NVME_SC_DNR ? "DNR " : "");
327 return;
328 }
329
330 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
331 dev_name(nr->ctrl->device),
332 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
333 nr->cmd->common.opcode,
334 nvme_get_error_status_str(nr->status),
335 nr->status >> 8 & 7, /* Status Code Type */
336 nr->status & 0xff, /* Status Code */
337 nr->status & NVME_SC_MORE ? "MORE " : "",
338 nr->status & NVME_SC_DNR ? "DNR " : "");
339}
340
5ddaabe8
CH
341enum nvme_disposition {
342 COMPLETE,
343 RETRY,
344 FAILOVER,
f50fff73 345 AUTHENTICATE,
5ddaabe8
CH
346};
347
348static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
77f02a7a 349{
5ddaabe8
CH
350 if (likely(nvme_req(req)->status == 0))
351 return COMPLETE;
908e4564 352
f50fff73
HR
353 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
354 return AUTHENTICATE;
355
5ddaabe8
CH
356 if (blk_noretry_request(req) ||
357 (nvme_req(req)->status & NVME_SC_DNR) ||
358 nvme_req(req)->retries >= nvme_max_retries)
359 return COMPLETE;
ca5554a6 360
5ddaabe8 361 if (req->cmd_flags & REQ_NVME_MPATH) {
5eac5f33
CL
362 if (nvme_is_path_error(nvme_req(req)->status) ||
363 blk_queue_dying(req->q))
5ddaabe8 364 return FAILOVER;
5eac5f33
CL
365 } else {
366 if (blk_queue_dying(req->q))
367 return COMPLETE;
5ddaabe8 368 }
16686f3a 369
5ddaabe8
CH
370 return RETRY;
371}
6e3ca03e 372
c234a653 373static inline void nvme_end_req_zoned(struct request *req)
5ddaabe8 374{
5ddaabe8
CH
375 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
376 req_op(req) == REQ_OP_ZONE_APPEND)
240e6ee2
KB
377 req->__sector = nvme_lba_to_sect(req->q->queuedata,
378 le64_to_cpu(nvme_req(req)->result.u64));
c234a653
JA
379}
380
381static inline void nvme_end_req(struct request *req)
382{
383 blk_status_t status = nvme_error_status(nvme_req(req)->status);
35fe0d12 384
b42b6f44 385 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
bd83fe6f 386 nvme_log_error(req);
c234a653 387 nvme_end_req_zoned(req);
2b59787a 388 nvme_trace_bio_complete(req);
d4d957b5
SG
389 if (req->cmd_flags & REQ_NVME_MPATH)
390 nvme_mpath_end_request(req);
908e4564 391 blk_mq_end_request(req, status);
77f02a7a 392}
5ddaabe8
CH
393
394void nvme_complete_rq(struct request *req)
395{
f50fff73
HR
396 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
397
5ddaabe8
CH
398 trace_nvme_complete_rq(req);
399 nvme_cleanup_cmd(req);
400
774a9636
US
401 /*
402 * Completions of long-running commands should not be able to
403 * defer sending of periodic keep alives, since the controller
404 * may have completed processing such commands a long time ago
405 * (arbitrarily close to command submission time).
406 * req->deadline - req->timeout is the command submission time
407 * in jiffies.
408 */
409 if (ctrl->kas &&
410 req->deadline - req->timeout >= ctrl->ka_last_check_time)
f50fff73 411 ctrl->comp_seen = true;
5ddaabe8
CH
412
413 switch (nvme_decide_disposition(req)) {
414 case COMPLETE:
415 nvme_end_req(req);
416 return;
417 case RETRY:
418 nvme_retry_req(req);
419 return;
420 case FAILOVER:
421 nvme_failover_req(req);
422 return;
f50fff73 423 case AUTHENTICATE:
d6800634 424#ifdef CONFIG_NVME_HOST_AUTH
f50fff73
HR
425 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
426 nvme_retry_req(req);
427#else
428 nvme_end_req(req);
429#endif
430 return;
5ddaabe8
CH
431 }
432}
77f02a7a
CH
433EXPORT_SYMBOL_GPL(nvme_complete_rq);
434
c234a653
JA
435void nvme_complete_batch_req(struct request *req)
436{
00e757b6 437 trace_nvme_complete_rq(req);
c234a653
JA
438 nvme_cleanup_cmd(req);
439 nvme_end_req_zoned(req);
440}
441EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
442
dda3248e
CL
443/*
444 * Called to unwind from ->queue_rq on a failed command submission so that the
445 * multipathing code gets called to potentially failover to another path.
446 * The caller needs to unwind all transport specific resource allocations and
447 * must return propagate the return value.
448 */
449blk_status_t nvme_host_path_error(struct request *req)
450{
451 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
452 blk_mq_set_request_complete(req);
453 nvme_complete_rq(req);
454 return BLK_STS_OK;
455}
456EXPORT_SYMBOL_GPL(nvme_host_path_error);
457
2dd6532e 458bool nvme_cancel_request(struct request *req, void *data)
c55a2fd4 459{
c55a2fd4
ML
460 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
461 "Cancelling I/O %d", req->tag);
462
d4f1d5f7
LY
463 /* don't abort one completed or idle request */
464 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
78ca4072
ML
465 return true;
466
2dc3947b 467 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
d3589381 468 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
15f73f5b 469 blk_mq_complete_request(req);
7baa8572 470 return true;
c55a2fd4
ML
471}
472EXPORT_SYMBOL_GPL(nvme_cancel_request);
473
25479069
CL
474void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
475{
476 if (ctrl->tagset) {
477 blk_mq_tagset_busy_iter(ctrl->tagset,
478 nvme_cancel_request, ctrl);
479 blk_mq_tagset_wait_completed_request(ctrl->tagset);
480 }
481}
482EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
483
484void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
485{
486 if (ctrl->admin_tagset) {
487 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
488 nvme_cancel_request, ctrl);
489 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
490 }
491}
492EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
493
bb8d261e
CH
494bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
495 enum nvme_ctrl_state new_state)
496{
f6b6a28e 497 enum nvme_ctrl_state old_state;
0a72bbba 498 unsigned long flags;
bb8d261e
CH
499 bool changed = false;
500
0a72bbba 501 spin_lock_irqsave(&ctrl->lock, flags);
f6b6a28e
GKB
502
503 old_state = ctrl->state;
bb8d261e
CH
504 switch (new_state) {
505 case NVME_CTRL_LIVE:
506 switch (old_state) {
7d2e8008 507 case NVME_CTRL_NEW:
bb8d261e 508 case NVME_CTRL_RESETTING:
ad6a0a52 509 case NVME_CTRL_CONNECTING:
bb8d261e 510 changed = true;
df561f66 511 fallthrough;
bb8d261e
CH
512 default:
513 break;
514 }
515 break;
516 case NVME_CTRL_RESETTING:
517 switch (old_state) {
518 case NVME_CTRL_NEW:
def61eca 519 case NVME_CTRL_LIVE:
def61eca 520 changed = true;
df561f66 521 fallthrough;
def61eca
CH
522 default:
523 break;
524 }
525 break;
ad6a0a52 526 case NVME_CTRL_CONNECTING:
def61eca 527 switch (old_state) {
b754a32c 528 case NVME_CTRL_NEW:
3cec7f9d 529 case NVME_CTRL_RESETTING:
bb8d261e 530 changed = true;
df561f66 531 fallthrough;
bb8d261e
CH
532 default:
533 break;
534 }
535 break;
536 case NVME_CTRL_DELETING:
537 switch (old_state) {
538 case NVME_CTRL_LIVE:
539 case NVME_CTRL_RESETTING:
ad6a0a52 540 case NVME_CTRL_CONNECTING:
bb8d261e 541 changed = true;
df561f66 542 fallthrough;
bb8d261e
CH
543 default:
544 break;
545 }
546 break;
ecca390e
SG
547 case NVME_CTRL_DELETING_NOIO:
548 switch (old_state) {
549 case NVME_CTRL_DELETING:
550 case NVME_CTRL_DEAD:
551 changed = true;
df561f66 552 fallthrough;
ecca390e
SG
553 default:
554 break;
555 }
556 break;
0ff9d4e1
KB
557 case NVME_CTRL_DEAD:
558 switch (old_state) {
559 case NVME_CTRL_DELETING:
560 changed = true;
df561f66 561 fallthrough;
0ff9d4e1
KB
562 default:
563 break;
564 }
565 break;
bb8d261e
CH
566 default:
567 break;
568 }
bb8d261e 569
c1ac9a4b 570 if (changed) {
bb8d261e 571 ctrl->state = new_state;
c1ac9a4b
KB
572 wake_up_all(&ctrl->state_wq);
573 }
bb8d261e 574
0a72bbba 575 spin_unlock_irqrestore(&ctrl->lock, flags);
8c4dfea9
VG
576 if (!changed)
577 return false;
578
579 if (ctrl->state == NVME_CTRL_LIVE) {
580 if (old_state == NVME_CTRL_CONNECTING)
581 nvme_stop_failfast_work(ctrl);
32acab31 582 nvme_kick_requeue_lists(ctrl);
8c4dfea9
VG
583 } else if (ctrl->state == NVME_CTRL_CONNECTING &&
584 old_state == NVME_CTRL_RESETTING) {
585 nvme_start_failfast_work(ctrl);
586 }
bb8d261e
CH
587 return changed;
588}
589EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
590
c1ac9a4b
KB
591/*
592 * Returns true for sink states that can't ever transition back to live.
593 */
594static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
595{
596 switch (ctrl->state) {
597 case NVME_CTRL_NEW:
598 case NVME_CTRL_LIVE:
599 case NVME_CTRL_RESETTING:
600 case NVME_CTRL_CONNECTING:
601 return false;
602 case NVME_CTRL_DELETING:
ecca390e 603 case NVME_CTRL_DELETING_NOIO:
c1ac9a4b
KB
604 case NVME_CTRL_DEAD:
605 return true;
606 default:
607 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
608 return true;
609 }
610}
611
612/*
613 * Waits for the controller state to be resetting, or returns false if it is
614 * not possible to ever transition to that state.
615 */
616bool nvme_wait_reset(struct nvme_ctrl *ctrl)
617{
618 wait_event(ctrl->state_wq,
619 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
620 nvme_state_terminal(ctrl));
621 return ctrl->state == NVME_CTRL_RESETTING;
622}
623EXPORT_SYMBOL_GPL(nvme_wait_reset);
624
ed754e5d
CH
625static void nvme_free_ns_head(struct kref *ref)
626{
627 struct nvme_ns_head *head =
628 container_of(ref, struct nvme_ns_head, ref);
629
32acab31 630 nvme_mpath_remove_disk(head);
8b850475 631 ida_free(&head->subsys->ns_ida, head->instance);
f5ad3991 632 cleanup_srcu_struct(&head->srcu);
12d9f070 633 nvme_put_subsystem(head->subsys);
ed754e5d
CH
634 kfree(head);
635}
636
1496bd49 637bool nvme_tryget_ns_head(struct nvme_ns_head *head)
871ca3ef
CH
638{
639 return kref_get_unless_zero(&head->ref);
640}
641
1496bd49 642void nvme_put_ns_head(struct nvme_ns_head *head)
ed754e5d
CH
643{
644 kref_put(&head->ref, nvme_free_ns_head);
645}
646
1673f1f0
CH
647static void nvme_free_ns(struct kref *kref)
648{
649 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
650
1673f1f0 651 put_disk(ns->disk);
ed754e5d 652 nvme_put_ns_head(ns->head);
075790eb 653 nvme_put_ctrl(ns->ctrl);
1673f1f0
CH
654 kfree(ns);
655}
656
4c74d1f8
KJ
657static inline bool nvme_get_ns(struct nvme_ns *ns)
658{
659 return kref_get_unless_zero(&ns->kref);
660}
661
24493b8b 662void nvme_put_ns(struct nvme_ns *ns)
1673f1f0
CH
663{
664 kref_put(&ns->kref, nvme_free_ns);
665}
24493b8b 666EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
1673f1f0 667
bb06ec31
JS
668static inline void nvme_clear_nvme_request(struct request *req)
669{
ae5e6886 670 nvme_req(req)->status = 0;
c03fd85d
CK
671 nvme_req(req)->retries = 0;
672 nvme_req(req)->flags = 0;
673 req->rq_flags |= RQF_DONTPREP;
bb06ec31
JS
674}
675
e559398f
CH
676/* initialize a passthrough request */
677void nvme_init_request(struct request *req, struct nvme_command *cmd)
39dfe844 678{
0d2e7c84
CK
679 if (req->q->queuedata)
680 req->timeout = NVME_IO_TIMEOUT;
681 else /* no queuedata implies admin queue */
dc96f938 682 req->timeout = NVME_ADMIN_TIMEOUT;
21d34711 683
f4b9e6c9
KB
684 /* passthru commands should let the driver set the SGL flags */
685 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
686
21d34711 687 req->cmd_flags |= REQ_FAILFAST_DRIVER;
be42a33b 688 if (req->mq_hctx->type == HCTX_TYPE_POLL)
6ce913fe 689 req->cmd_flags |= REQ_POLLED;
bb06ec31 690 nvme_clear_nvme_request(req);
d7ac8dca 691 req->rq_flags |= RQF_QUIET;
f4b9e6c9 692 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
39dfe844 693}
e559398f 694EXPORT_SYMBOL_GPL(nvme_init_request);
39dfe844 695
a9715744
TC
696/*
697 * For something we're not in a state to send to the device the default action
698 * is to busy it and retry it after the controller state is recovered. However,
699 * if the controller is deleting or if anything is marked for failfast or
700 * nvme multipath it is immediately failed.
701 *
702 * Note: commands used to initialize the controller will be marked for failfast.
703 * Note: nvme cli/ioctl commands are marked for failfast.
704 */
705blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
706 struct request *rq)
707{
708 if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
8b77fa6f 709 ctrl->state != NVME_CTRL_DELETING &&
a9715744
TC
710 ctrl->state != NVME_CTRL_DEAD &&
711 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
712 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
713 return BLK_STS_RESOURCE;
714 return nvme_host_path_error(rq);
715}
716EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
717
718bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
719 bool queue_live)
720{
721 struct nvme_request *req = nvme_req(rq);
722
723 /*
724 * currently we have a problem sending passthru commands
725 * on the admin_q if the controller is not LIVE because we can't
726 * make sure that they are going out after the admin connect,
727 * controller enable and/or other commands in the initialization
728 * sequence. until the controller will be LIVE, fail with
729 * BLK_STS_RESOURCE so that they will be rescheduled.
730 */
731 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
732 return false;
733
734 if (ctrl->ops->flags & NVME_F_FABRICS) {
735 /*
736 * Only allow commands on a live queue, except for the connect
737 * command, which is require to set the queue live in the
738 * appropinquate states.
739 */
740 switch (ctrl->state) {
741 case NVME_CTRL_CONNECTING:
742 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
f50fff73
HR
743 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
744 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
745 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
a9715744
TC
746 return true;
747 break;
748 default:
749 break;
750 case NVME_CTRL_DEAD:
751 return false;
752 }
753 }
754
755 return queue_live;
756}
757EXPORT_SYMBOL_GPL(__nvme_check_ready);
758
8093f7ca
ML
759static inline void nvme_setup_flush(struct nvme_ns *ns,
760 struct nvme_command *cmnd)
761{
9c3d2929 762 memset(cmnd, 0, sizeof(*cmnd));
8093f7ca 763 cmnd->common.opcode = nvme_cmd_flush;
ed754e5d 764 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
8093f7ca
ML
765}
766
fc17b653 767static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
8093f7ca
ML
768 struct nvme_command *cmnd)
769{
b35ba01e 770 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
8093f7ca 771 struct nvme_dsm_range *range;
b35ba01e 772 struct bio *bio;
8093f7ca 773
530436c4
EH
774 /*
775 * Some devices do not consider the DSM 'Number of Ranges' field when
776 * determining how much data to DMA. Always allocate memory for maximum
777 * number of segments to prevent device reading beyond end of buffer.
778 */
779 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
780
781 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
cb5b7262
JA
782 if (!range) {
783 /*
784 * If we fail allocation our range, fallback to the controller
785 * discard page. If that's also busy, it's safe to return
786 * busy, as we know we can make progress once that's freed.
787 */
788 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
789 return BLK_STS_RESOURCE;
790
791 range = page_address(ns->ctrl->discard_page);
792 }
8093f7ca 793
37f0dc2e
ML
794 if (queue_max_discard_segments(req->q) == 1) {
795 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
796 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
797
798 range[0].cattr = cpu_to_le32(0);
799 range[0].nlb = cpu_to_le32(nlb);
800 range[0].slba = cpu_to_le64(slba);
801 n = 1;
802 } else {
803 __rq_for_each_bio(bio, req) {
804 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
805 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
806
807 if (n < segments) {
808 range[n].cattr = cpu_to_le32(0);
809 range[n].nlb = cpu_to_le32(nlb);
810 range[n].slba = cpu_to_le64(slba);
811 }
812 n++;
8cb6af7b 813 }
b35ba01e
CH
814 }
815
816 if (WARN_ON_ONCE(n != segments)) {
cb5b7262
JA
817 if (virt_to_page(range) == ns->ctrl->discard_page)
818 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
819 else
820 kfree(range);
fc17b653 821 return BLK_STS_IOERR;
b35ba01e 822 }
8093f7ca 823
9c3d2929 824 memset(cmnd, 0, sizeof(*cmnd));
8093f7ca 825 cmnd->dsm.opcode = nvme_cmd_dsm;
ed754e5d 826 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
f1dd03a8 827 cmnd->dsm.nr = cpu_to_le32(segments - 1);
8093f7ca
ML
828 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
829
4bee16da 830 bvec_set_virt(&req->special_vec, range, alloc_size);
f9d03f96 831 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
8093f7ca 832
fc17b653 833 return BLK_STS_OK;
8093f7ca 834}
8093f7ca 835
4020aad8
KB
836static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
837 struct request *req)
838{
839 u32 upper, lower;
840 u64 ref48;
841
842 /* both rw and write zeroes share the same reftag format */
843 switch (ns->guard_type) {
844 case NVME_NVM_NS_16B_GUARD:
845 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
846 break;
847 case NVME_NVM_NS_64B_GUARD:
848 ref48 = ext_pi_ref_tag(req);
849 lower = lower_32_bits(ref48);
850 upper = upper_32_bits(ref48);
851
852 cmnd->rw.reftag = cpu_to_le32(lower);
853 cmnd->rw.cdw3 = cpu_to_le32(upper);
854 break;
855 default:
856 break;
857 }
858}
859
6e02318e
CK
860static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
861 struct request *req, struct nvme_command *cmnd)
862{
9c3d2929
JA
863 memset(cmnd, 0, sizeof(*cmnd));
864
6e02318e
CK
865 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
866 return nvme_setup_discard(ns, req, cmnd);
867
868 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
869 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
870 cmnd->write_zeroes.slba =
314d48dd 871 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
6e02318e
CK
872 cmnd->write_zeroes.length =
873 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
00b33cf3 874
1b96f862
CH
875 if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
876 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
877
00b33cf3 878 if (nvme_ns_has_pi(ns)) {
1b96f862 879 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
00b33cf3
KJ
880
881 switch (ns->pi_type) {
882 case NVME_NS_DPS_PI_TYPE1:
883 case NVME_NS_DPS_PI_TYPE2:
4020aad8 884 nvme_set_ref_tag(ns, cmnd, req);
00b33cf3
KJ
885 break;
886 }
887 }
888
6e02318e
CK
889 return BLK_STS_OK;
890}
891
ebe6d874 892static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
240e6ee2
KB
893 struct request *req, struct nvme_command *cmnd,
894 enum nvme_opcode op)
8093f7ca
ML
895{
896 u16 control = 0;
897 u32 dsmgmt = 0;
898
899 if (req->cmd_flags & REQ_FUA)
900 control |= NVME_RW_FUA;
901 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
902 control |= NVME_RW_LR;
903
904 if (req->cmd_flags & REQ_RAHEAD)
905 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
906
240e6ee2 907 cmnd->rw.opcode = op;
a9a7e30f 908 cmnd->rw.flags = 0;
ed754e5d 909 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
4020aad8
KB
910 cmnd->rw.cdw2 = 0;
911 cmnd->rw.cdw3 = 0;
a9a7e30f 912 cmnd->rw.metadata = 0;
314d48dd 913 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
8093f7ca 914 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
a9a7e30f
JA
915 cmnd->rw.reftag = 0;
916 cmnd->rw.apptag = 0;
917 cmnd->rw.appmask = 0;
8093f7ca
ML
918
919 if (ns->ms) {
715ea9e0
CH
920 /*
921 * If formated with metadata, the block layer always provides a
922 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
923 * we enable the PRACT bit for protection information or set the
924 * namespace capacity to zero to prevent any I/O.
925 */
926 if (!blk_integrity_rq(req)) {
927 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
928 return BLK_STS_NOTSUPP;
929 control |= NVME_RW_PRINFO_PRACT;
930 }
931
8093f7ca
ML
932 switch (ns->pi_type) {
933 case NVME_NS_DPS_PI_TYPE3:
934 control |= NVME_RW_PRINFO_PRCHK_GUARD;
935 break;
936 case NVME_NS_DPS_PI_TYPE1:
937 case NVME_NS_DPS_PI_TYPE2:
938 control |= NVME_RW_PRINFO_PRCHK_GUARD |
939 NVME_RW_PRINFO_PRCHK_REF;
240e6ee2
KB
940 if (op == nvme_cmd_zone_append)
941 control |= NVME_RW_APPEND_PIREMAP;
4020aad8 942 nvme_set_ref_tag(ns, cmnd, req);
8093f7ca
ML
943 break;
944 }
8093f7ca
ML
945 }
946
947 cmnd->rw.control = cpu_to_le16(control);
948 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
ebe6d874 949 return 0;
8093f7ca
ML
950}
951
f7f1fc36
MG
952void nvme_cleanup_cmd(struct request *req)
953{
f7f1fc36 954 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
fc97e942 955 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
cb5b7262 956
3973e15f 957 if (req->special_vec.bv_page == ctrl->discard_page)
fc97e942 958 clear_bit_unlock(0, &ctrl->discard_page_busy);
cb5b7262 959 else
3973e15f 960 kfree(bvec_virt(&req->special_vec));
f7f1fc36
MG
961 }
962}
963EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
964
f4b9e6c9 965blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
8093f7ca 966{
f4b9e6c9 967 struct nvme_command *cmd = nvme_req(req)->cmd;
fc17b653 968 blk_status_t ret = BLK_STS_OK;
8093f7ca 969
9c3d2929 970 if (!(req->rq_flags & RQF_DONTPREP))
c03fd85d 971 nvme_clear_nvme_request(req);
987f699a 972
aebf526b
CH
973 switch (req_op(req)) {
974 case REQ_OP_DRV_IN:
975 case REQ_OP_DRV_OUT:
f4b9e6c9 976 /* these are setup prior to execution in nvme_init_request() */
aebf526b
CH
977 break;
978 case REQ_OP_FLUSH:
8093f7ca 979 nvme_setup_flush(ns, cmd);
aebf526b 980 break;
240e6ee2
KB
981 case REQ_OP_ZONE_RESET_ALL:
982 case REQ_OP_ZONE_RESET:
983 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
984 break;
985 case REQ_OP_ZONE_OPEN:
986 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
987 break;
988 case REQ_OP_ZONE_CLOSE:
989 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
990 break;
991 case REQ_OP_ZONE_FINISH:
992 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
993 break;
e850fd16 994 case REQ_OP_WRITE_ZEROES:
6e02318e
CK
995 ret = nvme_setup_write_zeroes(ns, req, cmd);
996 break;
aebf526b 997 case REQ_OP_DISCARD:
8093f7ca 998 ret = nvme_setup_discard(ns, req, cmd);
aebf526b
CH
999 break;
1000 case REQ_OP_READ:
240e6ee2
KB
1001 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1002 break;
aebf526b 1003 case REQ_OP_WRITE:
240e6ee2
KB
1004 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1005 break;
1006 case REQ_OP_ZONE_APPEND:
1007 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
aebf526b
CH
1008 break;
1009 default:
1010 WARN_ON_ONCE(1);
fc17b653 1011 return BLK_STS_IOERR;
aebf526b 1012 }
8093f7ca 1013
e7006de6 1014 cmd->common.command_id = nvme_cid(req);
5d87eb94 1015 trace_nvme_setup_cmd(req, cmd);
8093f7ca
ML
1016 return ret;
1017}
1018EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1019
ae5e6886
KB
1020/*
1021 * Return values:
1022 * 0: success
1023 * >0: nvme controller's cqe status response
1024 * <0: kernel error in lieu of controller response
1025 */
62281b9e 1026int nvme_execute_rq(struct request *rq, bool at_head)
ae5e6886
KB
1027{
1028 blk_status_t status;
1029
b84ba30b 1030 status = blk_execute_rq(rq, at_head);
ae5e6886
KB
1031 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1032 return -EINTR;
1033 if (nvme_req(rq)->status)
1034 return nvme_req(rq)->status;
1035 return blk_status_to_errno(status);
1036}
62281b9e 1037EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
ae5e6886 1038
4160982e
CH
1039/*
1040 * Returns 0 on success. If the result is negative, it's a Linux error code;
1041 * if the result is positive, it's an NVM Express status code
1042 */
1043int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
d49187e9 1044 union nvme_result *result, void *buffer, unsigned bufflen,
6b46fa02 1045 int qid, int at_head, blk_mq_req_flags_t flags)
4160982e
CH
1046{
1047 struct request *req;
1048 int ret;
1049
39dfe844 1050 if (qid == NVME_QID_ANY)
e559398f 1051 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
39dfe844 1052 else
e559398f 1053 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
b10907b8 1054 qid - 1);
e559398f 1055
4160982e
CH
1056 if (IS_ERR(req))
1057 return PTR_ERR(req);
e559398f 1058 nvme_init_request(req, cmd);
4160982e 1059
21d34711
CH
1060 if (buffer && bufflen) {
1061 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1062 if (ret)
1063 goto out;
4160982e
CH
1064 }
1065
ba326643 1066 ret = nvme_execute_rq(req, at_head);
ae5e6886 1067 if (result && ret >= 0)
d49187e9 1068 *result = nvme_req(req)->result;
4160982e
CH
1069 out:
1070 blk_mq_free_request(req);
1071 return ret;
1072}
eb71f435 1073EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
4160982e
CH
1074
1075int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1076 void *buffer, unsigned bufflen)
1077{
6b46fa02 1078 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
be42a33b 1079 NVME_QID_ANY, 0, 0);
4160982e 1080}
576d55d6 1081EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
4160982e 1082
df21b6b1
LG
1083u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1084{
1085 u32 effects = 0;
1086
1087 if (ns) {
cc115cbe 1088 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
df21b6b1 1089 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
ed4a854b 1090 dev_warn_once(ctrl->device,
831ed60c 1091 "IO command:%02x has unusual effects:%08x\n",
ed4a854b 1092 opcode, effects);
df21b6b1 1093
831ed60c
CH
1094 /*
1095 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1096 * which would deadlock when done on an I/O command. Note that
1097 * We already warn about an unusual effect above.
1098 */
1099 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1100 } else {
cc115cbe 1101 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
831ed60c 1102 }
df21b6b1
LG
1103
1104 return effects;
1105}
1106EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1107
62281b9e 1108u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
df21b6b1
LG
1109{
1110 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1111
1112 /*
1113 * For simplicity, IO to all namespaces is quiesced even if the command
1114 * effects say only one namespace is affected.
1115 */
af0f446d 1116 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
df21b6b1
LG
1117 mutex_lock(&ctrl->scan_lock);
1118 mutex_lock(&ctrl->subsys->lock);
1119 nvme_mpath_start_freeze(ctrl->subsys);
1120 nvme_mpath_wait_freeze(ctrl->subsys);
1121 nvme_start_freeze(ctrl);
1122 nvme_wait_freeze(ctrl);
1123 }
1124 return effects;
1125}
62281b9e 1126EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
df21b6b1 1127
31a59782 1128void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
bc8fb906 1129 struct nvme_command *cmd, int status)
df21b6b1 1130{
af0f446d 1131 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
df21b6b1
LG
1132 nvme_unfreeze(ctrl);
1133 nvme_mpath_unfreeze(ctrl->subsys);
1134 mutex_unlock(&ctrl->subsys->lock);
df21b6b1
LG
1135 mutex_unlock(&ctrl->scan_lock);
1136 }
1e37a307 1137 if (effects & NVME_CMD_EFFECTS_CCC) {
d0dd594b
BL
1138 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1139 &ctrl->flags)) {
1140 dev_info(ctrl->device,
1e37a307 1141"controller capabilities changed, reset may be required to take effect.\n");
d0dd594b 1142 }
1e37a307 1143 }
df21b6b1
LG
1144 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1145 nvme_queue_scan(ctrl);
1146 flush_work(&ctrl->scan_work);
1147 }
31a59782 1148 if (ns)
1149 return;
b58da2d2
TS
1150
1151 switch (cmd->common.opcode) {
1152 case nvme_admin_set_features:
1153 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1154 case NVME_FEAT_KATO:
1155 /*
1156 * Keep alive commands interval on the host should be
1157 * updated when KATO is modified by Set Features
1158 * commands.
1159 */
1160 if (!status)
1161 nvme_update_keep_alive(ctrl, cmd);
1162 break;
1163 default:
1164 break;
1165 }
1166 break;
1167 default:
1168 break;
1169 }
df21b6b1 1170}
bc8fb906 1171EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
df21b6b1 1172
a70b81bd
HR
1173/*
1174 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1175 *
1176 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1177 * accounting for transport roundtrip times [..].
1178 */
ea4d453b
US
1179static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1180{
1181 unsigned long delay = ctrl->kato * HZ / 2;
1182
1183 /*
1184 * When using Traffic Based Keep Alive, we need to run
1185 * nvme_keep_alive_work at twice the normal frequency, as one
1186 * command completion can postpone sending a keep alive command
1187 * by up to twice the delay between runs.
1188 */
1189 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1190 delay /= 2;
1191 return delay;
1192}
1193
a70b81bd 1194static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
4160982e 1195{
ea4d453b
US
1196 queue_delayed_work(nvme_wq, &ctrl->ka_work,
1197 nvme_keep_alive_work_period(ctrl));
21d34711
CH
1198}
1199
de671d61
JA
1200static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1201 blk_status_t status)
038bd4cb
SG
1202{
1203 struct nvme_ctrl *ctrl = rq->end_io_data;
86880d64
JS
1204 unsigned long flags;
1205 bool startka = false;
c7275ce6
US
1206 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1207 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1208
1209 /*
1210 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1211 * at the desired frequency.
1212 */
1213 if (rtt <= delay) {
1214 delay -= rtt;
1215 } else {
1216 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1217 jiffies_to_msecs(rtt));
1218 delay = 0;
1219 }
038bd4cb
SG
1220
1221 blk_mq_free_request(rq);
1222
2a842aca 1223 if (status) {
038bd4cb 1224 dev_err(ctrl->device,
2a842aca
CH
1225 "failed nvme_keep_alive_end_io error=%d\n",
1226 status);
de671d61 1227 return RQ_END_IO_NONE;
038bd4cb
SG
1228 }
1229
774a9636 1230 ctrl->ka_last_check_time = jiffies;
6e3ca03e 1231 ctrl->comp_seen = false;
86880d64
JS
1232 spin_lock_irqsave(&ctrl->lock, flags);
1233 if (ctrl->state == NVME_CTRL_LIVE ||
1234 ctrl->state == NVME_CTRL_CONNECTING)
1235 startka = true;
1236 spin_unlock_irqrestore(&ctrl->lock, flags);
1237 if (startka)
c7275ce6 1238 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
de671d61 1239 return RQ_END_IO_NONE;
038bd4cb
SG
1240}
1241
038bd4cb
SG
1242static void nvme_keep_alive_work(struct work_struct *work)
1243{
1244 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1245 struct nvme_ctrl, ka_work);
6e3ca03e 1246 bool comp_seen = ctrl->comp_seen;
06c3c336 1247 struct request *rq;
6e3ca03e 1248
774a9636
US
1249 ctrl->ka_last_check_time = jiffies;
1250
6e3ca03e
SG
1251 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1252 dev_dbg(ctrl->device,
1253 "reschedule traffic based keep-alive timer\n");
1254 ctrl->comp_seen = false;
a70b81bd 1255 nvme_queue_keep_alive_work(ctrl);
6e3ca03e
SG
1256 return;
1257 }
038bd4cb 1258
e559398f
CH
1259 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1260 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
06c3c336 1261 if (IS_ERR(rq)) {
038bd4cb 1262 /* allocation failure, reset the controller */
985c5a32 1263 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
39bdc590 1264 nvme_reset_ctrl(ctrl);
038bd4cb
SG
1265 return;
1266 }
e559398f 1267 nvme_init_request(rq, &ctrl->ka_cmd);
06c3c336
CH
1268
1269 rq->timeout = ctrl->kato * HZ;
e2e53086 1270 rq->end_io = nvme_keep_alive_end_io;
06c3c336 1271 rq->end_io_data = ctrl;
e2e53086 1272 blk_execute_rq_nowait(rq, false);
038bd4cb
SG
1273}
1274
00b683db 1275static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
038bd4cb
SG
1276{
1277 if (unlikely(ctrl->kato == 0))
1278 return;
1279
a70b81bd 1280 nvme_queue_keep_alive_work(ctrl);
038bd4cb 1281}
038bd4cb
SG
1282
1283void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1284{
1285 if (unlikely(ctrl->kato == 0))
1286 return;
1287
1288 cancel_delayed_work_sync(&ctrl->ka_work);
1289}
1290EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1291
b58da2d2
TS
1292static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1293 struct nvme_command *cmd)
1294{
1295 unsigned int new_kato =
1296 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1297
1298 dev_info(ctrl->device,
1299 "keep alive interval updated from %u ms to %u ms\n",
1300 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1301
1302 nvme_stop_keep_alive(ctrl);
1303 ctrl->kato = new_kato;
1304 nvme_start_keep_alive(ctrl);
1305}
1306
b9a5c3d4
CH
1307/*
1308 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1309 * flag, thus sending any new CNS opcodes has a big chance of not working.
1310 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1311 * (but not for any later version).
1312 */
1313static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1314{
1315 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1316 return ctrl->vs < NVME_VS(1, 2, 0);
1317 return ctrl->vs < NVME_VS(1, 1, 0);
1318}
1319
3f7f25a9 1320static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
21d34711
CH
1321{
1322 struct nvme_command c = { };
1323 int error;
1324
1325 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1326 c.identify.opcode = nvme_admin_identify;
986994a2 1327 c.identify.cns = NVME_ID_CNS_CTRL;
21d34711
CH
1328
1329 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1330 if (!*id)
1331 return -ENOMEM;
1332
1333 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1334 sizeof(struct nvme_id_ctrl));
1335 if (error)
1336 kfree(*id);
1337 return error;
1338}
1339
ad95a613 1340static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
71010c30 1341 struct nvme_ns_id_desc *cur, bool *csi_seen)
ad95a613
CK
1342{
1343 const char *warn_str = "ctrl returned bogus length:";
1344 void *data = cur;
1345
1346 switch (cur->nidt) {
1347 case NVME_NIDT_EUI64:
1348 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1349 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1350 warn_str, cur->nidl);
1351 return -1;
1352 }
00ff400e
CH
1353 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1354 return NVME_NIDT_EUI64_LEN;
ad95a613
CK
1355 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1356 return NVME_NIDT_EUI64_LEN;
1357 case NVME_NIDT_NGUID:
1358 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1359 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1360 warn_str, cur->nidl);
1361 return -1;
1362 }
00ff400e
CH
1363 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1364 return NVME_NIDT_NGUID_LEN;
ad95a613
CK
1365 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1366 return NVME_NIDT_NGUID_LEN;
1367 case NVME_NIDT_UUID:
1368 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1369 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1370 warn_str, cur->nidl);
1371 return -1;
1372 }
00ff400e
CH
1373 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1374 return NVME_NIDT_UUID_LEN;
ad95a613
CK
1375 uuid_copy(&ids->uuid, data + sizeof(*cur));
1376 return NVME_NIDT_UUID_LEN;
71010c30
NC
1377 case NVME_NIDT_CSI:
1378 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1379 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1380 warn_str, cur->nidl);
1381 return -1;
1382 }
1383 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1384 *csi_seen = true;
1385 return NVME_NIDT_CSI_LEN;
ad95a613
CK
1386 default:
1387 /* Skip unknown types */
1388 return cur->nidl;
1389 }
1390}
1391
1a893c2b
CH
1392static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1393 struct nvme_ns_info *info)
3b22ba26
JT
1394{
1395 struct nvme_command c = { };
71010c30
NC
1396 bool csi_seen = false;
1397 int status, pos, len;
3b22ba26 1398 void *data;
3b22ba26 1399
8b7c0ff2
CH
1400 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1401 return 0;
5bedd3af
CH
1402 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1403 return 0;
1404
3b22ba26 1405 c.identify.opcode = nvme_admin_identify;
1a893c2b 1406 c.identify.nsid = cpu_to_le32(info->nsid);
3b22ba26
JT
1407 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1408
1409 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1410 if (!data)
1411 return -ENOMEM;
1412
cdbff4f2 1413 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
3b22ba26 1414 NVME_IDENTIFY_DATA_SIZE);
fb314eb0
CH
1415 if (status) {
1416 dev_warn(ctrl->device,
aa9d7295 1417 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1a893c2b 1418 info->nsid, status);
3b22ba26 1419 goto free_data;
fb314eb0 1420 }
3b22ba26
JT
1421
1422 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1423 struct nvme_ns_id_desc *cur = data + pos;
1424
1425 if (cur->nidl == 0)
1426 break;
1427
1a893c2b 1428 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
ad95a613 1429 if (len < 0)
71010c30 1430 break;
3b22ba26
JT
1431
1432 len += sizeof(*cur);
1433 }
71010c30
NC
1434
1435 if (nvme_multi_css(ctrl) && !csi_seen) {
1436 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1a893c2b 1437 info->nsid);
71010c30
NC
1438 status = -EINVAL;
1439 }
1440
3b22ba26
JT
1441free_data:
1442 kfree(data);
1443 return status;
1444}
1445
8b7c0ff2 1446static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1a893c2b 1447 struct nvme_id_ns **id)
21d34711
CH
1448{
1449 struct nvme_command c = { };
1450 int error;
1451
1452 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
778f067c
MG
1453 c.identify.opcode = nvme_admin_identify;
1454 c.identify.nsid = cpu_to_le32(nsid);
986994a2 1455 c.identify.cns = NVME_ID_CNS_NS;
21d34711 1456
331813f6
SG
1457 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1458 if (!*id)
1459 return -ENOMEM;
21d34711 1460
331813f6 1461 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
cdbff4f2 1462 if (error) {
d0de579c 1463 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
0dd6fff2 1464 kfree(*id);
cdbff4f2 1465 }
1a893c2b
CH
1466 return error;
1467}
00ff400e 1468
1a893c2b
CH
1469static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1470 struct nvme_ns_info *info)
1471{
1472 struct nvme_ns_ids *ids = &info->ids;
1473 struct nvme_id_ns *id;
1474 int ret;
1475
1476 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1477 if (ret)
1478 return ret;
0dd6fff2
CH
1479
1480 if (id->ncap == 0) {
1481 /* namespace not allocated or attached */
1482 info->is_removed = true;
1483 return -ENODEV;
1484 }
1485
1a893c2b
CH
1486 info->anagrpid = id->anagrpid;
1487 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1e4ea66a 1488 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1a893c2b 1489 info->is_ready = true;
00ff400e
CH
1490 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1491 dev_info(ctrl->device,
1492 "Ignoring bogus Namespace Identifiers\n");
1493 } else {
1494 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1495 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1a893c2b 1496 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
00ff400e
CH
1497 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1498 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1a893c2b 1499 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
00ff400e 1500 }
1a893c2b 1501 kfree(id);
b8b8cd01 1502 return 0;
21d34711
CH
1503}
1504
1a893c2b
CH
1505static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1506 struct nvme_ns_info *info)
354201c5 1507{
1a893c2b 1508 struct nvme_id_ns_cs_indep *id;
354201c5
CH
1509 struct nvme_command c = {
1510 .identify.opcode = nvme_admin_identify,
1a893c2b 1511 .identify.nsid = cpu_to_le32(info->nsid),
354201c5
CH
1512 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1513 };
1514 int ret;
1515
1a893c2b
CH
1516 id = kmalloc(sizeof(*id), GFP_KERNEL);
1517 if (!id)
354201c5
CH
1518 return -ENOMEM;
1519
1a893c2b
CH
1520 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1521 if (!ret) {
1522 info->anagrpid = id->anagrpid;
1523 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1e4ea66a 1524 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1a893c2b 1525 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
354201c5 1526 }
1a893c2b
CH
1527 kfree(id);
1528 return ret;
354201c5
CH
1529}
1530
1a87ee65
KB
1531static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1532 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
21d34711 1533{
15755854 1534 union nvme_result res = { 0 };
cc72c442 1535 struct nvme_command c = { };
1cb3cce5 1536 int ret;
21d34711 1537
1a87ee65 1538 c.features.opcode = op;
21d34711
CH
1539 c.features.fid = cpu_to_le32(fid);
1540 c.features.dword11 = cpu_to_le32(dword11);
1541
d49187e9 1542 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
6b46fa02 1543 buffer, buflen, NVME_QID_ANY, 0, 0);
9b47f77a 1544 if (ret >= 0 && result)
d49187e9 1545 *result = le32_to_cpu(res.u32);
1cb3cce5 1546 return ret;
21d34711
CH
1547}
1548
1a87ee65
KB
1549int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1550 unsigned int dword11, void *buffer, size_t buflen,
1551 u32 *result)
1552{
1553 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1554 buflen, result);
1555}
1556EXPORT_SYMBOL_GPL(nvme_set_features);
1557
1558int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1559 unsigned int dword11, void *buffer, size_t buflen,
1560 u32 *result)
1561{
1562 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1563 buflen, result);
1564}
1565EXPORT_SYMBOL_GPL(nvme_get_features);
1566
9a0be7ab
CH
1567int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1568{
1569 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1570 u32 result;
1571 int status, nr_io_queues;
1572
1a6fe74d 1573 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
9a0be7ab 1574 &result);
f5fa90dc 1575 if (status < 0)
9a0be7ab
CH
1576 return status;
1577
f5fa90dc
CH
1578 /*
1579 * Degraded controllers might return an error when setting the queue
1580 * count. We still want to be able to bring them online and offer
1581 * access to the admin queue, as that might be only way to fix them up.
1582 */
1583 if (status > 0) {
f0425db0 1584 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
f5fa90dc
CH
1585 *count = 0;
1586 } else {
1587 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1588 *count = min(*count, nr_io_queues);
1589 }
1590
9a0be7ab
CH
1591 return 0;
1592}
576d55d6 1593EXPORT_SYMBOL_GPL(nvme_set_queue_count);
9a0be7ab 1594
c0561f82 1595#define NVME_AEN_SUPPORTED \
85f8a435
SG
1596 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1597 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
c0561f82
HR
1598
1599static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1600{
fa441b71 1601 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
c0561f82
HR
1602 int status;
1603
fa441b71
WZ
1604 if (!supported_aens)
1605 return;
1606
1607 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1608 NULL, 0, &result);
c0561f82
HR
1609 if (status)
1610 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
fa441b71 1611 supported_aens);
93da4023
SG
1612
1613 queue_work(nvme_wq, &ctrl->async_event_work);
c0561f82
HR
1614}
1615
f5b9a51d 1616static int nvme_ns_open(struct nvme_ns *ns)
c225b610 1617{
c225b610 1618
32acab31 1619 /* should never be called due to GENHD_FL_HIDDEN */
30897388 1620 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
85088c4a 1621 goto fail;
4c74d1f8 1622 if (!nvme_get_ns(ns))
85088c4a
NC
1623 goto fail;
1624 if (!try_module_get(ns->ctrl->ops->module))
1625 goto fail_put_ns;
1626
c6424a90 1627 return 0;
85088c4a
NC
1628
1629fail_put_ns:
1630 nvme_put_ns(ns);
1631fail:
1632 return -ENXIO;
1673f1f0
CH
1633}
1634
f5b9a51d 1635static void nvme_ns_release(struct nvme_ns *ns)
1673f1f0 1636{
85088c4a
NC
1637
1638 module_put(ns->ctrl->ops->module);
1639 nvme_put_ns(ns);
1673f1f0
CH
1640}
1641
05bdb996 1642static int nvme_open(struct gendisk *disk, blk_mode_t mode)
f5b9a51d 1643{
d32e2bf8 1644 return nvme_ns_open(disk->private_data);
f5b9a51d
CH
1645}
1646
ae220766 1647static void nvme_release(struct gendisk *disk)
f5b9a51d
CH
1648{
1649 nvme_ns_release(disk->private_data);
1650}
1651
1496bd49 1652int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1673f1f0
CH
1653{
1654 /* some standard values */
1655 geo->heads = 1 << 6;
1656 geo->sectors = 1 << 5;
1657 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1658 return 0;
1659}
1660
1661#ifdef CONFIG_BLK_DEV_INTEGRITY
4020aad8 1662static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
95093350 1663 u32 max_integrity_segments)
1673f1f0 1664{
cc72c442 1665 struct blk_integrity integrity = { };
1673f1f0 1666
4020aad8 1667 switch (ns->pi_type) {
1673f1f0 1668 case NVME_NS_DPS_PI_TYPE3:
4020aad8
KB
1669 switch (ns->guard_type) {
1670 case NVME_NVM_NS_16B_GUARD:
1671 integrity.profile = &t10_pi_type3_crc;
1672 integrity.tag_size = sizeof(u16) + sizeof(u32);
1673 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1674 break;
1675 case NVME_NVM_NS_64B_GUARD:
1676 integrity.profile = &ext_pi_type3_crc64;
1677 integrity.tag_size = sizeof(u16) + 6;
1678 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1679 break;
1680 default:
1681 integrity.profile = NULL;
1682 break;
1683 }
1673f1f0
CH
1684 break;
1685 case NVME_NS_DPS_PI_TYPE1:
1686 case NVME_NS_DPS_PI_TYPE2:
4020aad8
KB
1687 switch (ns->guard_type) {
1688 case NVME_NVM_NS_16B_GUARD:
1689 integrity.profile = &t10_pi_type1_crc;
1690 integrity.tag_size = sizeof(u16);
1691 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1692 break;
1693 case NVME_NVM_NS_64B_GUARD:
1694 integrity.profile = &ext_pi_type1_crc64;
1695 integrity.tag_size = sizeof(u16);
1696 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1697 break;
1698 default:
1699 integrity.profile = NULL;
1700 break;
1701 }
1673f1f0
CH
1702 break;
1703 default:
1704 integrity.profile = NULL;
1705 break;
1706 }
4020aad8
KB
1707
1708 integrity.tuple_size = ns->ms;
39b7baa4 1709 blk_integrity_register(disk, &integrity);
95093350 1710 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1673f1f0
CH
1711}
1712#else
4020aad8 1713static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
95093350 1714 u32 max_integrity_segments)
1673f1f0
CH
1715{
1716}
1717#endif /* CONFIG_BLK_DEV_INTEGRITY */
1718
26318571 1719static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1673f1f0 1720{
3831761e 1721 struct nvme_ctrl *ctrl = ns->ctrl;
26318571 1722 struct request_queue *queue = disk->queue;
30e5e929
CH
1723 u32 size = queue_logical_block_size(queue);
1724
d3205ab7
KB
1725 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1726 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1727
5befc7c2 1728 if (ctrl->max_discard_sectors == 0) {
70200574 1729 blk_queue_max_discard_sectors(queue, 0);
3831761e
JA
1730 return;
1731 }
1732
b35ba01e
CH
1733 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1734 NVME_DSM_MAX_RANGES);
1735
30e5e929 1736 queue->limits.discard_granularity = size;
f5d11840 1737
3831761e 1738 /* If discard is already enabled, don't reset queue limits */
70200574 1739 if (queue->limits.max_discard_sectors)
3831761e
JA
1740 return;
1741
5befc7c2
KB
1742 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1743 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
e850fd16
CH
1744
1745 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
30e5e929 1746 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1673f1f0
CH
1747}
1748
002fab04
CH
1749static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1750{
1751 return uuid_equal(&a->uuid, &b->uuid) &&
1752 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
71010c30
NC
1753 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1754 a->csi == b->csi;
002fab04
CH
1755}
1756
4020aad8 1757static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
d4609ea8 1758{
4020aad8
KB
1759 bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1760 unsigned lbaf = nvme_lbaf_index(id->flbas);
d4609ea8 1761 struct nvme_ctrl *ctrl = ns->ctrl;
4020aad8
KB
1762 struct nvme_command c = { };
1763 struct nvme_id_ns_nvm *nvm;
1764 int ret = 0;
1765 u32 elbaf;
1766
1767 ns->pi_size = 0;
1768 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1769 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1770 ns->pi_size = sizeof(struct t10_pi_tuple);
1771 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1772 goto set_pi;
1773 }
d4609ea8 1774
4020aad8
KB
1775 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1776 if (!nvm)
1777 return -ENOMEM;
d4609ea8 1778
4020aad8
KB
1779 c.identify.opcode = nvme_admin_identify;
1780 c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1781 c.identify.cns = NVME_ID_CNS_CS_NS;
1782 c.identify.csi = NVME_CSI_NVM;
1783
1784 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1785 if (ret)
1786 goto free_data;
1787
1788 elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1789
1790 /* no support for storage tag formats right now */
1791 if (nvme_elbaf_sts(elbaf))
1792 goto free_data;
1793
1794 ns->guard_type = nvme_elbaf_guard_type(elbaf);
1795 switch (ns->guard_type) {
1796 case NVME_NVM_NS_64B_GUARD:
1797 ns->pi_size = sizeof(struct crc64_pi_tuple);
1798 break;
1799 case NVME_NVM_NS_16B_GUARD:
1800 ns->pi_size = sizeof(struct t10_pi_tuple);
1801 break;
1802 default:
1803 break;
1804 }
1805
1806free_data:
1807 kfree(nvm);
1808set_pi:
1809 if (ns->pi_size && (first || ns->ms == ns->pi_size))
d4609ea8
CH
1810 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1811 else
1812 ns->pi_type = 0;
1813
4020aad8
KB
1814 return ret;
1815}
1816
1817static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1818{
1819 struct nvme_ctrl *ctrl = ns->ctrl;
1820
1821 if (nvme_init_ms(ns, id))
1822 return;
1823
d4609ea8
CH
1824 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1825 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
363f6368
CH
1826 return;
1827
d4609ea8
CH
1828 if (ctrl->ops->flags & NVME_F_FABRICS) {
1829 /*
1830 * The NVMe over Fabrics specification only supports metadata as
1831 * part of the extended data LBA. We rely on HCA/HBA support to
1832 * remap the separate metadata buffer from the block layer.
1833 */
1834 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
363f6368 1835 return;
d39ad2a4
KB
1836
1837 ns->features |= NVME_NS_EXT_LBAS;
1838
1839 /*
1840 * The current fabrics transport drivers support namespace
1841 * metadata formats only if nvme_ns_has_pi() returns true.
1842 * Suppress support for all other formats so the namespace will
1843 * have a 0 capacity and not be usable through the block stack.
1844 *
1845 * Note, this check will need to be modified if any drivers
1846 * gain the ability to use other metadata formats.
1847 */
1848 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1849 ns->features |= NVME_NS_METADATA_SUPPORTED;
d4609ea8
CH
1850 } else {
1851 /*
1852 * For PCIe controllers, we can't easily remap the separate
1853 * metadata buffer from the block layer and thus require a
1854 * separate metadata buffer for block layer metadata/PI support.
1855 * We allow extended LBAs for the passthrough interface, though.
1856 */
1857 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1858 ns->features |= NVME_NS_EXT_LBAS;
1859 else
1860 ns->features |= NVME_NS_METADATA_SUPPORTED;
1861 }
d4609ea8
CH
1862}
1863
658d9f7c
CH
1864static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1865 struct request_queue *q)
1866{
c4485252 1867 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
658d9f7c
CH
1868
1869 if (ctrl->max_hw_sectors) {
1870 u32 max_segments =
1871 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1872
1873 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1874 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1875 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1876 }
1877 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
52fde2c0 1878 blk_queue_dma_alignment(q, 3);
658d9f7c
CH
1879 blk_queue_write_cache(q, vwc, vwc);
1880}
1881
24b0b58c
CH
1882static void nvme_update_disk_info(struct gendisk *disk,
1883 struct nvme_ns *ns, struct nvme_id_ns *id)
1884{
e08f2ae8 1885 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
bdbfcd5f 1886 u32 bs = 1U << ns->lba_shift;
68ab60ca 1887 u32 atomic_bs, phys_bs, io_opt = 0;
24b0b58c 1888
13f0b26b
CH
1889 /*
1890 * The block layer can't support LBA sizes larger than the page size
1891 * yet, so catch this early and don't allow block I/O.
1892 */
01fa0174 1893 if (ns->lba_shift > PAGE_SHIFT) {
13f0b26b 1894 capacity = 0;
01fa0174
SG
1895 bs = (1 << 9);
1896 }
f9d5f457 1897
24b0b58c
CH
1898 blk_integrity_unregister(disk);
1899
68ab60ca 1900 atomic_bs = phys_bs = bs;
81adb863
BVA
1901 if (id->nabo == 0) {
1902 /*
1903 * Bit 1 indicates whether NAWUPF is defined for this namespace
1904 * and whether it should be used instead of AWUPF. If NAWUPF ==
1905 * 0 then AWUPF must be used instead.
1906 */
92decf11 1907 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
81adb863
BVA
1908 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1909 else
1910 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
81adb863 1911 }
31fdad7b 1912
92decf11 1913 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
81adb863 1914 /* NPWG = Namespace Preferred Write Granularity */
31fdad7b 1915 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
81adb863 1916 /* NOWS = Namespace Optimal Write Size */
31fdad7b 1917 io_opt = bs * (1 + le16_to_cpu(id->nows));
81adb863
BVA
1918 }
1919
cee160fd 1920 blk_queue_logical_block_size(disk->queue, bs);
81adb863
BVA
1921 /*
1922 * Linux filesystems assume writing a single physical block is
1923 * an atomic operation. Hence limit the physical block size to the
1924 * value of the Atomic Write Unit Power Fail parameter.
1925 */
1926 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1927 blk_queue_io_min(disk->queue, phys_bs);
1928 blk_queue_io_opt(disk->queue, io_opt);
cee160fd 1929
b29f8485
MG
1930 /*
1931 * Register a metadata profile for PI, or the plain non-integrity NVMe
1932 * metadata masquerading as Type 0 if supported, otherwise reject block
1933 * I/O to namespaces with metadata except when the namespace supports
1934 * PI, as it can strip/insert in that case.
1935 */
1936 if (ns->ms) {
1937 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1938 (ns->features & NVME_NS_METADATA_SUPPORTED))
4020aad8 1939 nvme_init_integrity(disk, ns,
95093350 1940 ns->ctrl->max_integrity_segments);
b29f8485
MG
1941 else if (!nvme_ns_has_pi(ns))
1942 capacity = 0;
1943 }
1944
449f4ec9 1945 set_capacity_and_notify(disk, capacity);
b1aafb35 1946
26318571 1947 nvme_config_discard(disk, ns);
5befc7c2
KB
1948 blk_queue_max_write_zeroes_sectors(disk->queue,
1949 ns->ctrl->max_zeroes_sectors);
24b0b58c
CH
1950}
1951
1e4ea66a
CH
1952static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1953{
1954 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1955}
1956
e83d776f
KB
1957static inline bool nvme_first_scan(struct gendisk *disk)
1958{
1959 /* nvme_alloc_ns() scans the disk prior to adding it */
50b4aecf 1960 return !disk_live(disk);
e83d776f
KB
1961}
1962
1963static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1964{
1965 struct nvme_ctrl *ctrl = ns->ctrl;
1966 u32 iob;
1967
1968 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1969 is_power_of_2(ctrl->max_hw_sectors))
1970 iob = ctrl->max_hw_sectors;
1971 else
1972 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1973
1974 if (!iob)
1975 return;
1976
1977 if (!is_power_of_2(iob)) {
1978 if (nvme_first_scan(ns->disk))
1979 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1980 ns->disk->disk_name, iob);
1981 return;
1982 }
1983
1984 if (blk_queue_is_zoned(ns->disk->queue)) {
1985 if (nvme_first_scan(ns->disk))
1986 pr_warn("%s: ignoring zoned namespace IO boundary\n",
1987 ns->disk->disk_name);
1988 return;
1989 }
1990
1991 blk_queue_chunk_sectors(ns->queue, iob);
1992}
1993
eb867ee9
JG
1994static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1995 struct nvme_ns_info *info)
1996{
1997 blk_mq_freeze_queue(ns->disk->queue);
1998 nvme_set_queue_limits(ns->ctrl, ns->queue);
1999 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2000 blk_mq_unfreeze_queue(ns->disk->queue);
2001
2002 if (nvme_ns_head_multipath(ns->head)) {
2003 blk_mq_freeze_queue(ns->head->disk->queue);
2004 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2005 nvme_mpath_revalidate_paths(ns);
2006 blk_stack_limits(&ns->head->disk->queue->limits,
2007 &ns->queue->limits, 0);
2008 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2009 blk_mq_unfreeze_queue(ns->head->disk->queue);
2010 }
2011
2012 /* Hide the block-interface for these devices */
2013 ns->disk->flags |= GENHD_FL_HIDDEN;
2014 set_bit(NVME_NS_READY, &ns->flags);
2015
2016 return 0;
2017}
2018
1a893c2b
CH
2019static int nvme_update_ns_info_block(struct nvme_ns *ns,
2020 struct nvme_ns_info *info)
ac81bfa9 2021{
1a893c2b
CH
2022 struct nvme_id_ns *id;
2023 unsigned lbaf;
240e6ee2 2024 int ret;
1673f1f0 2025
1a893c2b
CH
2026 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2027 if (ret)
2028 return ret;
2029
f9d5f457 2030 blk_mq_freeze_queue(ns->disk->queue);
1a893c2b 2031 lbaf = nvme_lbaf_index(id->flbas);
240e6ee2 2032 ns->lba_shift = id->lbaf[lbaf].ds;
8b7c0ff2 2033 nvme_set_queue_limits(ns->ctrl, ns->queue);
38adf94e 2034
363f6368 2035 nvme_configure_metadata(ns, id);
73d90386
DLM
2036 nvme_set_chunk_sectors(ns, id);
2037 nvme_update_disk_info(ns->disk, ns, id);
2038
8b7c0ff2 2039 if (ns->head->ids.csi == NVME_CSI_ZNS) {
d525c3c0 2040 ret = nvme_update_zone_info(ns, lbaf);
e06b425b
CH
2041 if (ret) {
2042 blk_mq_unfreeze_queue(ns->disk->queue);
2043 goto out;
2044 }
71010c30
NC
2045 }
2046
1b96f862
CH
2047 /*
2048 * Only set the DEAC bit if the device guarantees that reads from
2049 * deallocated data return zeroes. While the DEAC bit does not
2050 * require that, it must be a no-op if reads from deallocated data
2051 * do not return zeroes.
2052 */
2053 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2054 ns->features |= NVME_NS_DEAC;
1e4ea66a 2055 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
e7d65803 2056 set_bit(NVME_NS_READY, &ns->flags);
f9d5f457 2057 blk_mq_unfreeze_queue(ns->disk->queue);
1673f1f0 2058
3a9967ba
CH
2059 if (blk_queue_is_zoned(ns->queue)) {
2060 ret = nvme_revalidate_zones(ns);
8685699c 2061 if (ret && !nvme_first_scan(ns->disk))
e06b425b 2062 goto out;
b29f8485
MG
2063 }
2064
30897388 2065 if (nvme_ns_head_multipath(ns->head)) {
f9d5f457 2066 blk_mq_freeze_queue(ns->head->disk->queue);
32acab31 2067 nvme_update_disk_info(ns->head->disk, ns, id);
1e4ea66a 2068 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
e7d65803 2069 nvme_mpath_revalidate_paths(ns);
b9b1a5d7
CH
2070 blk_stack_limits(&ns->head->disk->queue->limits,
2071 &ns->queue->limits, 0);
471aa704 2072 disk_update_readahead(ns->head->disk);
f9d5f457 2073 blk_mq_unfreeze_queue(ns->head->disk->queue);
8f676b85 2074 }
ac81bfa9 2075
e06b425b
CH
2076 ret = 0;
2077out:
a9e0e6bc
CH
2078 /*
2079 * If probing fails due an unsupported feature, hide the block device,
2080 * but still allow other access.
2081 */
2082 if (ret == -ENODEV) {
2083 ns->disk->flags |= GENHD_FL_HIDDEN;
602e57c9 2084 set_bit(NVME_NS_READY, &ns->flags);
a9e0e6bc
CH
2085 ret = 0;
2086 }
1a893c2b 2087 kfree(id);
240e6ee2
KB
2088 return ret;
2089}
2090
1a893c2b
CH
2091static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2092{
2093 switch (info->ids.csi) {
2094 case NVME_CSI_ZNS:
2095 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
eb867ee9
JG
2096 dev_info(ns->ctrl->device,
2097 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
1a893c2b 2098 info->nsid);
eb867ee9 2099 return nvme_update_ns_info_generic(ns, info);
1a893c2b
CH
2100 }
2101 return nvme_update_ns_info_block(ns, info);
2102 case NVME_CSI_NVM:
2103 return nvme_update_ns_info_block(ns, info);
2104 default:
eb867ee9
JG
2105 dev_info(ns->ctrl->device,
2106 "block device for nsid %u not supported (csi %u)\n",
2107 info->nsid, info->ids.csi);
2108 return nvme_update_ns_info_generic(ns, info);
1a893c2b
CH
2109 }
2110}
2111
a98e58e5 2112#ifdef CONFIG_BLK_SED_OPAL
94cc781f 2113static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
4f1244c8 2114 bool send)
a98e58e5 2115{
4f1244c8 2116 struct nvme_ctrl *ctrl = data;
cc72c442 2117 struct nvme_command cmd = { };
a98e58e5 2118
a98e58e5
SB
2119 if (send)
2120 cmd.common.opcode = nvme_admin_security_send;
2121 else
2122 cmd.common.opcode = nvme_admin_security_recv;
a98e58e5 2123 cmd.common.nsid = 0;
b7c8f366
CK
2124 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2125 cmd.common.cdw11 = cpu_to_le32(len);
a98e58e5 2126
6b46fa02 2127 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
be42a33b 2128 NVME_QID_ANY, 1, 0);
a98e58e5 2129}
94cc781f
CH
2130
2131static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2132{
2133 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2134 if (!ctrl->opal_dev)
2135 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2136 else if (was_suspended)
2137 opal_unlock_from_suspend(ctrl->opal_dev);
2138 } else {
2139 free_opal_dev(ctrl->opal_dev);
2140 ctrl->opal_dev = NULL;
2141 }
2142}
2143#else
2144static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2145{
2146}
a98e58e5
SB
2147#endif /* CONFIG_BLK_SED_OPAL */
2148
8b4fb0f9
CH
2149#ifdef CONFIG_BLK_DEV_ZONED
2150static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2151 unsigned int nr_zones, report_zones_cb cb, void *data)
2152{
2153 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2154 data);
2155}
2156#else
2157#define nvme_report_zones NULL
2158#endif /* CONFIG_BLK_DEV_ZONED */
2159
942e21c0 2160const struct block_device_operations nvme_bdev_ops = {
1673f1f0
CH
2161 .owner = THIS_MODULE,
2162 .ioctl = nvme_ioctl,
a25d4261 2163 .compat_ioctl = blkdev_compat_ptr_ioctl,
1673f1f0
CH
2164 .open = nvme_open,
2165 .release = nvme_release,
2166 .getgeo = nvme_getgeo,
240e6ee2 2167 .report_zones = nvme_report_zones,
1673f1f0
CH
2168 .pr_ops = &nvme_pr_ops,
2169};
2170
e6d275de
CH
2171static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2172 u32 timeout, const char *op)
5fd4ce1b 2173{
e6d275de
CH
2174 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2175 u32 csts;
5fd4ce1b
CH
2176 int ret;
2177
2178 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
0df1e4f5
KB
2179 if (csts == ~0)
2180 return -ENODEV;
e6d275de 2181 if ((csts & mask) == val)
5fd4ce1b
CH
2182 break;
2183
3e98c244 2184 usleep_range(1000, 2000);
5fd4ce1b
CH
2185 if (fatal_signal_pending(current))
2186 return -EINTR;
354201c5 2187 if (time_after(jiffies, timeout_jiffies)) {
1b3c47c1 2188 dev_err(ctrl->device,
94d2e705 2189 "Device not ready; aborting %s, CSTS=0x%x\n",
e6d275de 2190 op, csts);
5fd4ce1b
CH
2191 return -ENODEV;
2192 }
2193 }
2194
2195 return ret;
2196}
2197
285b6e9b 2198int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
5fd4ce1b
CH
2199{
2200 int ret;
2201
2202 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
285b6e9b
CH
2203 if (shutdown)
2204 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2205 else
2206 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
5fd4ce1b
CH
2207
2208 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2209 if (ret)
2210 return ret;
54adc010 2211
285b6e9b
CH
2212 if (shutdown) {
2213 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2214 NVME_CSTS_SHST_CMPLT,
2215 ctrl->shutdown_timeout, "shutdown");
2216 }
b5a10c5f 2217 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
54adc010 2218 msleep(NVME_QUIRK_DELAY_AMOUNT);
e6d275de
CH
2219 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2220 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
5fd4ce1b 2221}
576d55d6 2222EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
5fd4ce1b 2223
c0f2f45b 2224int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
5fd4ce1b 2225{
6c3c05b0 2226 unsigned dev_page_min;
354201c5 2227 u32 timeout;
5fd4ce1b
CH
2228 int ret;
2229
c0f2f45b
SG
2230 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2231 if (ret) {
2232 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2233 return ret;
2234 }
2235 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2236
6c3c05b0 2237 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
1b3c47c1 2238 dev_err(ctrl->device,
5fd4ce1b 2239 "Minimum device page size %u too large for host (%u)\n",
6c3c05b0 2240 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
5fd4ce1b
CH
2241 return -ENODEV;
2242 }
2243
71010c30
NC
2244 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2245 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2246 else
2247 ctrl->ctrl_config = NVME_CC_CSS_NVM;
354201c5 2248
6cc834ba
KB
2249 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2250 ctrl->ctrl_config |= NVME_CC_CRIME;
354201c5 2251
6c3c05b0 2252 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
60b43f62 2253 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
5fd4ce1b 2254 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
aa41d2fe
NC
2255 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2256 if (ret)
2257 return ret;
5fd4ce1b 2258
aa41d2fe
NC
2259 /* Flush write to device (required if transport is PCI) */
2260 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2261 if (ret)
2262 return ret;
2263
6cc834ba
KB
2264 /* CAP value may change after initial CC write */
2265 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2266 if (ret)
2267 return ret;
2268
2269 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2270 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2271 u32 crto, ready_timeout;
2272
2273 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2274 if (ret) {
2275 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2276 ret);
2277 return ret;
2278 }
2279
2280 /*
2281 * CRTO should always be greater or equal to CAP.TO, but some
2282 * devices are known to get this wrong. Use the larger of the
2283 * two values.
2284 */
2285 if (ctrl->ctrl_config & NVME_CC_CRIME)
2286 ready_timeout = NVME_CRTO_CRIMT(crto);
2287 else
2288 ready_timeout = NVME_CRTO_CRWMT(crto);
2289
2290 if (ready_timeout < timeout)
2291 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2292 crto, ctrl->cap);
2293 else
2294 timeout = ready_timeout;
2295 }
2296
aa41d2fe 2297 ctrl->ctrl_config |= NVME_CC_ENABLE;
5fd4ce1b
CH
2298 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2299 if (ret)
2300 return ret;
e6d275de
CH
2301 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2302 (timeout + 1) / 2, "initialisation");
5fd4ce1b 2303}
576d55d6 2304EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
5fd4ce1b 2305
dbf86b39
JD
2306static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2307{
2308 __le64 ts;
2309 int ret;
2310
2311 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2312 return 0;
2313
2314 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2315 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2316 NULL);
2317 if (ret)
2318 dev_warn_once(ctrl->device,
2319 "could not set timestamp (%d)\n", ret);
2320 return ret;
2321}
2322
4020aad8 2323static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
49cd84b6
KB
2324{
2325 struct nvme_feat_host_behavior *host;
4020aad8 2326 u8 acre = 0, lbafee = 0;
49cd84b6
KB
2327 int ret;
2328
2329 /* Don't bother enabling the feature if retry delay is not reported */
4020aad8
KB
2330 if (ctrl->crdt[0])
2331 acre = NVME_ENABLE_ACRE;
2332 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2333 lbafee = NVME_ENABLE_LBAFEE;
2334
2335 if (!acre && !lbafee)
49cd84b6
KB
2336 return 0;
2337
2338 host = kzalloc(sizeof(*host), GFP_KERNEL);
2339 if (!host)
2340 return 0;
2341
4020aad8
KB
2342 host->acre = acre;
2343 host->lbafee = lbafee;
49cd84b6
KB
2344 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2345 host, sizeof(*host), NULL);
2346 kfree(host);
2347 return ret;
2348}
2349
ebd8a93a
AB
2350/*
2351 * The function checks whether the given total (exlat + enlat) latency of
2352 * a power state allows the latter to be used as an APST transition target.
2353 * It does so by comparing the latency to the primary and secondary latency
2354 * tolerances defined by module params. If there's a match, the corresponding
2355 * timeout value is returned and the matching tolerance index (1 or 2) is
2356 * reported.
2357 */
2358static bool nvme_apst_get_transition_time(u64 total_latency,
2359 u64 *transition_time, unsigned *last_index)
2360{
2361 if (total_latency <= apst_primary_latency_tol_us) {
2362 if (*last_index == 1)
2363 return false;
2364 *last_index = 1;
2365 *transition_time = apst_primary_timeout_ms;
2366 return true;
2367 }
2368 if (apst_secondary_timeout_ms &&
2369 total_latency <= apst_secondary_latency_tol_us) {
2370 if (*last_index <= 2)
2371 return false;
2372 *last_index = 2;
2373 *transition_time = apst_secondary_timeout_ms;
2374 return true;
2375 }
2376 return false;
2377}
2378
60df5de9
CH
2379/*
2380 * APST (Autonomous Power State Transition) lets us program a table of power
2381 * state transitions that the controller will perform automatically.
ebd8a93a
AB
2382 *
2383 * Depending on module params, one of the two supported techniques will be used:
2384 *
2385 * - If the parameters provide explicit timeouts and tolerances, they will be
2386 * used to build a table with up to 2 non-operational states to transition to.
2387 * The default parameter values were selected based on the values used by
2388 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2389 * regeneration of the APST table in the event of switching between external
2390 * and battery power, the timeouts and tolerances reflect a compromise
2391 * between values used by Microsoft for AC and battery scenarios.
2392 * - If not, we'll configure the table with a simple heuristic: we are willing
2393 * to spend at most 2% of the time transitioning between power states.
2394 * Therefore, when running in any given state, we will enter the next
2395 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2396 * microseconds, as long as that state's exit latency is under the requested
2397 * maximum latency.
60df5de9
CH
2398 *
2399 * We will not autonomously enter any non-operational state for which the total
2400 * latency exceeds ps_max_latency_us.
2401 *
2402 * Users can set ps_max_latency_us to zero to turn off APST.
2403 */
634b8325 2404static int nvme_configure_apst(struct nvme_ctrl *ctrl)
c5552fde 2405{
c5552fde 2406 struct nvme_feat_auto_pst *table;
60df5de9 2407 unsigned apste = 0;
fb0dc399 2408 u64 max_lat_us = 0;
60df5de9 2409 __le64 target = 0;
fb0dc399 2410 int max_ps = -1;
60df5de9 2411 int state;
c5552fde 2412 int ret;
ebd8a93a 2413 unsigned last_lt_index = UINT_MAX;
c5552fde
AL
2414
2415 /*
2416 * If APST isn't supported or if we haven't been initialized yet,
2417 * then don't do anything.
2418 */
2419 if (!ctrl->apsta)
634b8325 2420 return 0;
c5552fde
AL
2421
2422 if (ctrl->npss > 31) {
2423 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
634b8325 2424 return 0;
c5552fde
AL
2425 }
2426
2427 table = kzalloc(sizeof(*table), GFP_KERNEL);
2428 if (!table)
634b8325 2429 return 0;
c5552fde 2430
76a5af84 2431 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
c5552fde 2432 /* Turn off APST. */
fb0dc399 2433 dev_dbg(ctrl->device, "APST disabled\n");
60df5de9
CH
2434 goto done;
2435 }
c5552fde 2436
60df5de9
CH
2437 /*
2438 * Walk through all states from lowest- to highest-power.
2439 * According to the spec, lower-numbered states use more power. NPSS,
2440 * despite the name, is the index of the lowest-power state, not the
2441 * number of states.
2442 */
2443 for (state = (int)ctrl->npss; state >= 0; state--) {
2444 u64 total_latency_us, exit_latency_us, transition_ms;
da87591b 2445
60df5de9
CH
2446 if (target)
2447 table->entries[state] = target;
c5552fde 2448
c5552fde 2449 /*
60df5de9
CH
2450 * Don't allow transitions to the deepest state if it's quirked
2451 * off.
c5552fde 2452 */
60df5de9
CH
2453 if (state == ctrl->npss &&
2454 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2455 continue;
fb0dc399 2456
60df5de9
CH
2457 /*
2458 * Is this state a useful non-operational state for higher-power
2459 * states to autonomously transition to?
2460 */
2461 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2462 continue;
fb0dc399 2463
60df5de9
CH
2464 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2465 if (exit_latency_us > ctrl->ps_max_latency_us)
2466 continue;
c5552fde 2467
60df5de9
CH
2468 total_latency_us = exit_latency_us +
2469 le32_to_cpu(ctrl->psd[state].entry_lat);
fb0dc399 2470
60df5de9 2471 /*
ebd8a93a
AB
2472 * This state is good. It can be used as the APST idle target
2473 * for higher power states.
60df5de9 2474 */
ebd8a93a
AB
2475 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2476 if (!nvme_apst_get_transition_time(total_latency_us,
2477 &transition_ms, &last_lt_index))
2478 continue;
2479 } else {
2480 transition_ms = total_latency_us + 19;
2481 do_div(transition_ms, 20);
2482 if (transition_ms > (1 << 24) - 1)
2483 transition_ms = (1 << 24) - 1;
2484 }
60df5de9
CH
2485
2486 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2487 if (max_ps == -1)
2488 max_ps = state;
2489 if (total_latency_us > max_lat_us)
2490 max_lat_us = total_latency_us;
c5552fde
AL
2491 }
2492
60df5de9
CH
2493 if (max_ps == -1)
2494 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2495 else
2496 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2497 max_ps, max_lat_us, (int)sizeof(*table), table);
2498 apste = 1;
2499
2500done:
c5552fde
AL
2501 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2502 table, sizeof(*table), NULL);
2503 if (ret)
2504 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
c5552fde 2505 kfree(table);
634b8325 2506 return ret;
c5552fde
AL
2507}
2508
2509static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2510{
2511 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2512 u64 latency;
2513
2514 switch (val) {
2515 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2516 case PM_QOS_LATENCY_ANY:
2517 latency = U64_MAX;
2518 break;
2519
2520 default:
2521 latency = val;
2522 }
2523
2524 if (ctrl->ps_max_latency_us != latency) {
2525 ctrl->ps_max_latency_us = latency;
53fe2a30
CH
2526 if (ctrl->state == NVME_CTRL_LIVE)
2527 nvme_configure_apst(ctrl);
c5552fde
AL
2528 }
2529}
2530
bd4da3ab
AL
2531struct nvme_core_quirk_entry {
2532 /*
2533 * NVMe model and firmware strings are padded with spaces. For
2534 * simplicity, strings in the quirk table are padded with NULLs
2535 * instead.
2536 */
2537 u16 vid;
2538 const char *mn;
2539 const char *fr;
2540 unsigned long quirks;
2541};
2542
2543static const struct nvme_core_quirk_entry core_quirks[] = {
c5552fde 2544 {
be56945c
AL
2545 /*
2546 * This Toshiba device seems to die using any APST states. See:
2547 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2548 */
2549 .vid = 0x1179,
2550 .mn = "THNSF5256GPUK TOSHIBA",
c5552fde 2551 .quirks = NVME_QUIRK_NO_APST,
cb32de1b
ML
2552 },
2553 {
2554 /*
2555 * This LiteON CL1-3D*-Q11 firmware version has a race
2556 * condition associated with actions related to suspend to idle
2557 * LiteON has resolved the problem in future firmware
2558 */
2559 .vid = 0x14a4,
2560 .fr = "22301111",
2561 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
5a6254d5
EM
2562 },
2563 {
2564 /*
2565 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2566 * aborts I/O during any load, but more easily reproducible
2567 * with discards (fstrim).
2568 *
2569 * The device is left in a state where it is also not possible
2570 * to use "nvme set-feature" to disable APST, but booting with
2571 * nvme_core.default_ps_max_latency=0 works.
2572 */
2573 .vid = 0x1e0f,
2574 .mn = "KCD6XVUL6T40",
2575 .quirks = NVME_QUIRK_NO_APST,
e6487833
CH
2576 },
2577 {
2578 /*
2579 * The external Samsung X5 SSD fails initialization without a
2580 * delay before checking if it is ready and has a whole set of
2581 * other problems. To make this even more interesting, it
2582 * shares the PCI ID with internal Samsung 970 Evo Plus that
2583 * does not need or want these quirks.
2584 */
2585 .vid = 0x144d,
2586 .mn = "Samsung Portable SSD X5",
2587 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2588 NVME_QUIRK_NO_DEEPEST_PS |
2589 NVME_QUIRK_IGNORE_DEV_SUBNQN,
be56945c 2590 }
bd4da3ab
AL
2591};
2592
2593/* match is null-terminated but idstr is space-padded. */
2594static bool string_matches(const char *idstr, const char *match, size_t len)
2595{
2596 size_t matchlen;
2597
2598 if (!match)
2599 return true;
2600
2601 matchlen = strlen(match);
2602 WARN_ON_ONCE(matchlen > len);
2603
2604 if (memcmp(idstr, match, matchlen))
2605 return false;
2606
2607 for (; matchlen < len; matchlen++)
2608 if (idstr[matchlen] != ' ')
2609 return false;
2610
2611 return true;
2612}
2613
2614static bool quirk_matches(const struct nvme_id_ctrl *id,
2615 const struct nvme_core_quirk_entry *q)
2616{
2617 return q->vid == le16_to_cpu(id->vid) &&
2618 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2619 string_matches(id->fr, q->fr, sizeof(id->fr));
2620}
2621
ab9e00cc
CH
2622static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2623 struct nvme_id_ctrl *id)
180de007
CH
2624{
2625 size_t nqnlen;
2626 int off;
2627
6299358d
JD
2628 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2629 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2630 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
a8817cc0 2631 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
6299358d
JD
2632 return;
2633 }
180de007 2634
6299358d
JD
2635 if (ctrl->vs >= NVME_VS(1, 2, 1))
2636 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2637 }
180de007 2638
1abc6961
LB
2639 /*
2640 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2641 * Base Specification 2.0. It is slightly different from the format
2642 * specified there due to historic reasons, and we can't change it now.
2643 */
ab9e00cc 2644 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
3da584f5 2645 "nqn.2014.08.org.nvmexpress:%04x%04x",
180de007 2646 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
ab9e00cc 2647 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
180de007 2648 off += sizeof(id->sn);
ab9e00cc 2649 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
180de007 2650 off += sizeof(id->mn);
ab9e00cc
CH
2651 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2652}
2653
e654dfd3 2654static void nvme_release_subsystem(struct device *dev)
ab9e00cc 2655{
e654dfd3
LG
2656 struct nvme_subsystem *subsys =
2657 container_of(dev, struct nvme_subsystem, dev);
2658
733e4b69 2659 if (subsys->instance >= 0)
8b850475 2660 ida_free(&nvme_instance_ida, subsys->instance);
ab9e00cc
CH
2661 kfree(subsys);
2662}
2663
ab9e00cc
CH
2664static void nvme_destroy_subsystem(struct kref *ref)
2665{
2666 struct nvme_subsystem *subsys =
2667 container_of(ref, struct nvme_subsystem, ref);
2668
2669 mutex_lock(&nvme_subsystems_lock);
2670 list_del(&subsys->entry);
2671 mutex_unlock(&nvme_subsystems_lock);
2672
ed754e5d 2673 ida_destroy(&subsys->ns_ida);
ab9e00cc
CH
2674 device_del(&subsys->dev);
2675 put_device(&subsys->dev);
2676}
2677
2678static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2679{
2680 kref_put(&subsys->ref, nvme_destroy_subsystem);
2681}
2682
2683static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2684{
2685 struct nvme_subsystem *subsys;
2686
2687 lockdep_assert_held(&nvme_subsystems_lock);
2688
c26aa572
JS
2689 /*
2690 * Fail matches for discovery subsystems. This results
2691 * in each discovery controller bound to a unique subsystem.
2692 * This avoids issues with validating controller values
2693 * that can only be true when there is a single unique subsystem.
2694 * There may be multiple and completely independent entities
2695 * that provide discovery controllers.
2696 */
2697 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2698 return NULL;
2699
ab9e00cc
CH
2700 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2701 if (strcmp(subsys->subnqn, subsysnqn))
2702 continue;
2703 if (!kref_get_unless_zero(&subsys->ref))
2704 continue;
2705 return subsys;
2706 }
2707
2708 return NULL;
2709}
2710
5ab25a32
SG
2711static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2712{
2713 return ctrl->opts && ctrl->opts->discovery_nqn;
2714}
2715
1b1031ca
CH
2716static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2717 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
b837b283 2718{
1b1031ca 2719 struct nvme_ctrl *tmp;
b837b283 2720
32fd90c4
CH
2721 lockdep_assert_held(&nvme_subsystems_lock);
2722
1b1031ca 2723 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
e7c43fea 2724 if (nvme_state_terminal(tmp))
1b1031ca
CH
2725 continue;
2726
2727 if (tmp->cntlid == ctrl->cntlid) {
2728 dev_err(ctrl->device,
16cc33b2
KB
2729 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2730 ctrl->cntlid, dev_name(tmp->device),
2731 subsys->subnqn);
1b1031ca
CH
2732 return false;
2733 }
b837b283 2734
92decf11 2735 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
5ab25a32 2736 nvme_discovery_ctrl(ctrl))
1b1031ca
CH
2737 continue;
2738
2739 dev_err(ctrl->device,
2740 "Subsystem does not support multiple controllers\n");
2741 return false;
b837b283 2742 }
b837b283 2743
1b1031ca 2744 return true;
b837b283
IR
2745}
2746
ab9e00cc
CH
2747static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2748{
2749 struct nvme_subsystem *subsys, *found;
2750 int ret;
2751
2752 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2753 if (!subsys)
2754 return -ENOMEM;
733e4b69
KB
2755
2756 subsys->instance = -1;
ab9e00cc
CH
2757 mutex_init(&subsys->lock);
2758 kref_init(&subsys->ref);
2759 INIT_LIST_HEAD(&subsys->ctrls);
ed754e5d 2760 INIT_LIST_HEAD(&subsys->nsheads);
ab9e00cc
CH
2761 nvme_init_subnqn(subsys, ctrl, id);
2762 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2763 memcpy(subsys->model, id->mn, sizeof(subsys->model));
ab9e00cc
CH
2764 subsys->vendor_id = le16_to_cpu(id->vid);
2765 subsys->cmic = id->cmic;
954ae166
HR
2766
2767 /* Versions prior to 1.4 don't necessarily report a valid type */
2768 if (id->cntrltype == NVME_CTRL_DISC ||
2769 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2770 subsys->subtype = NVME_NQN_DISC;
2771 else
2772 subsys->subtype = NVME_NQN_NVME;
2773
20e8b689
HR
2774 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2775 dev_err(ctrl->device,
2776 "Subsystem %s is not a discovery controller",
2777 subsys->subnqn);
2778 kfree(subsys);
2779 return -EINVAL;
2780 }
81adb863 2781 subsys->awupf = le16_to_cpu(id->awupf);
e3d34794 2782 nvme_mpath_default_iopolicy(subsys);
ab9e00cc
CH
2783
2784 subsys->dev.class = nvme_subsys_class;
2785 subsys->dev.release = nvme_release_subsystem;
1e496938 2786 subsys->dev.groups = nvme_subsys_attrs_groups;
733e4b69 2787 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
ab9e00cc
CH
2788 device_initialize(&subsys->dev);
2789
2790 mutex_lock(&nvme_subsystems_lock);
2791 found = __nvme_find_get_subsystem(subsys->subnqn);
2792 if (found) {
e654dfd3 2793 put_device(&subsys->dev);
ab9e00cc 2794 subsys = found;
32fd90c4 2795
1b1031ca 2796 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
ab9e00cc 2797 ret = -EINVAL;
32fd90c4 2798 goto out_put_subsystem;
ab9e00cc 2799 }
ab9e00cc
CH
2800 } else {
2801 ret = device_add(&subsys->dev);
2802 if (ret) {
2803 dev_err(ctrl->device,
2804 "failed to register subsystem device.\n");
8c36e66f 2805 put_device(&subsys->dev);
ab9e00cc
CH
2806 goto out_unlock;
2807 }
ed754e5d 2808 ida_init(&subsys->ns_ida);
ab9e00cc
CH
2809 list_add_tail(&subsys->entry, &nvme_subsystems);
2810 }
2811
bc4f6e06
DC
2812 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2813 dev_name(ctrl->device));
2814 if (ret) {
ab9e00cc
CH
2815 dev_err(ctrl->device,
2816 "failed to create sysfs link from subsystem.\n");
32fd90c4 2817 goto out_put_subsystem;
ab9e00cc
CH
2818 }
2819
733e4b69
KB
2820 if (!found)
2821 subsys->instance = ctrl->instance;
32fd90c4 2822 ctrl->subsys = subsys;
ab9e00cc 2823 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
32fd90c4 2824 mutex_unlock(&nvme_subsystems_lock);
ab9e00cc
CH
2825 return 0;
2826
32fd90c4
CH
2827out_put_subsystem:
2828 nvme_put_subsystem(subsys);
ab9e00cc
CH
2829out_unlock:
2830 mutex_unlock(&nvme_subsystems_lock);
ab9e00cc 2831 return ret;
180de007
CH
2832}
2833
be93e87e 2834int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
0e98719b 2835 void *log, size_t size, u64 offset)
c627c487
KB
2836{
2837 struct nvme_command c = { };
71fb90eb 2838 u32 dwlen = nvme_bytes_to_numd(size);
70da6094
MB
2839
2840 c.get_log_page.opcode = nvme_admin_get_log_page;
0e98719b 2841 c.get_log_page.nsid = cpu_to_le32(nsid);
70da6094 2842 c.get_log_page.lid = log_page;
0e98719b 2843 c.get_log_page.lsp = lsp;
70da6094
MB
2844 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2845 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
7ec6074f
MB
2846 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2847 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
be93e87e 2848 c.get_log_page.csi = csi;
c627c487
KB
2849
2850 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2851}
2852
be93e87e
KB
2853static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2854 struct nvme_effects_log **log)
84fef62d 2855{
f6224b86 2856 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
84fef62d
KB
2857 int ret;
2858
be93e87e
KB
2859 if (cel)
2860 goto out;
84fef62d 2861
be93e87e
KB
2862 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2863 if (!cel)
2864 return -ENOMEM;
84fef62d 2865
46d2613e 2866 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
f6224b86 2867 cel, sizeof(*cel), 0);
84fef62d 2868 if (ret) {
be93e87e
KB
2869 kfree(cel);
2870 return ret;
84fef62d 2871 }
be93e87e 2872
f6224b86 2873 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
be93e87e 2874out:
f6224b86 2875 *log = cel;
be93e87e 2876 return 0;
180de007
CH
2877}
2878
5befc7c2 2879static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
7fd8930f 2880{
8609c63f 2881 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
7fd8930f 2882
8609c63f
BVA
2883 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2884 return UINT_MAX;
2885 return val;
5befc7c2
KB
2886}
2887
2888static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2889{
2890 struct nvme_command c = { };
2891 struct nvme_id_ctrl_nvm *id;
2892 int ret;
2893
2894 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2895 ctrl->max_discard_sectors = UINT_MAX;
2896 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2897 } else {
2898 ctrl->max_discard_sectors = 0;
2899 ctrl->max_discard_segments = 0;
f3ca80fc 2900 }
7fd8930f 2901
5befc7c2
KB
2902 /*
2903 * Even though NVMe spec explicitly states that MDTS is not applicable
2904 * to the write-zeroes, we are cautious and limit the size to the
2905 * controllers max_hw_sectors value, which is based on the MDTS field
2906 * and possibly other limiting factors.
2907 */
2908 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2909 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2910 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2911 else
2912 ctrl->max_zeroes_sectors = 0;
2913
def84ab6 2914 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
c917dd96
KB
2915 nvme_ctrl_limited_cns(ctrl) ||
2916 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
5befc7c2
KB
2917 return 0;
2918
2919 id = kzalloc(sizeof(*id), GFP_KERNEL);
2920 if (!id)
bcaf434b 2921 return -ENOMEM;
5befc7c2
KB
2922
2923 c.identify.opcode = nvme_admin_identify;
2924 c.identify.cns = NVME_ID_CNS_CS_CTRL;
2925 c.identify.csi = NVME_CSI_NVM;
2926
2927 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2928 if (ret)
2929 goto free_data;
2930
2931 if (id->dmrl)
2932 ctrl->max_discard_segments = id->dmrl;
1a86924e 2933 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
5befc7c2
KB
2934 if (id->wzsl)
2935 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2936
2937free_data:
c917dd96
KB
2938 if (ret > 0)
2939 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
5befc7c2
KB
2940 kfree(id);
2941 return ret;
2942}
2943
cc115cbe
KB
2944static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2945{
2946 struct nvme_effects_log *log = ctrl->effects;
2947
2948 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2949 NVME_CMD_EFFECTS_NCC |
2950 NVME_CMD_EFFECTS_CSE_MASK);
2951 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2952 NVME_CMD_EFFECTS_CSE_MASK);
2953
baff6491
KB
2954 /*
2955 * The spec says the result of a security receive command depends on
2956 * the previous security send command. As such, many vendors log this
2957 * command as one to submitted only when no other commands to the same
2958 * namespace are outstanding. The intention is to tell the host to
2959 * prevent mixing security send and receive.
2960 *
2961 * This driver can only enforce such exclusive access against IO
2962 * queues, though. We are not readily able to enforce such a rule for
2963 * two commands to the admin queue, which is the only queue that
2964 * matters for this command.
2965 *
2966 * Rather than blindly freezing the IO queues for this effect that
2967 * doesn't even apply to IO, mask it off.
2968 */
c0c33b94 2969 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
baff6491 2970
cc115cbe
KB
2971 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2972 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2973 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2974}
2975
2976static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2977{
2978 int ret = 0;
2979
2980 if (ctrl->effects)
2981 return 0;
2982
2983 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2984 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2985 if (ret < 0)
2986 return ret;
2987 }
2988
2989 if (!ctrl->effects) {
2990 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2991 if (!ctrl->effects)
2992 return -ENOMEM;
2993 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
2994 }
2995
2996 nvme_init_known_nvm_effects(ctrl);
2997 return 0;
2998}
2999
44ef5611 3000static int nvme_init_identify(struct nvme_ctrl *ctrl)
7fd8930f
CH
3001{
3002 struct nvme_id_ctrl *id;
a229dbf6 3003 u32 max_hw_sectors;
76a5af84 3004 bool prev_apst_enabled;
5befc7c2 3005 int ret;
f3ca80fc 3006
7fd8930f
CH
3007 ret = nvme_identify_ctrl(ctrl, &id);
3008 if (ret) {
1b3c47c1 3009 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
7fd8930f
CH
3010 return -EIO;
3011 }
3012
a89fcca8
GP
3013 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3014 ctrl->cntlid = le16_to_cpu(id->cntlid);
3015
bd4da3ab 3016 if (!ctrl->identified) {
44ef5611 3017 unsigned int i;
ab9e00cc 3018
bd4da3ab
AL
3019 /*
3020 * Check for quirks. Quirk can depend on firmware version,
3021 * so, in principle, the set of quirks present can change
3022 * across a reset. As a possible future enhancement, we
3023 * could re-scan for quirks every time we reinitialize
3024 * the device, but we'd have to make sure that the driver
3025 * behaves intelligently if the quirks change.
3026 */
bd4da3ab
AL
3027 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3028 if (quirk_matches(id, &core_quirks[i]))
3029 ctrl->quirks |= core_quirks[i].quirks;
3030 }
6f2d7152
PR
3031
3032 ret = nvme_init_subsystem(ctrl, id);
3033 if (ret)
3034 goto out_free;
cc115cbe
KB
3035
3036 ret = nvme_init_effects(ctrl, id);
3037 if (ret)
3038 goto out_free;
bd4da3ab 3039 }
a8eb6c1b
KB
3040 memcpy(ctrl->subsys->firmware_rev, id->fr,
3041 sizeof(ctrl->subsys->firmware_rev));
bd4da3ab 3042
c35e30b4 3043 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
f0425db0 3044 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
c35e30b4
AL
3045 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3046 }
3047
49cd84b6
KB
3048 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3049 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3050 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3051
8a9ae523 3052 ctrl->oacs = le16_to_cpu(id->oacs);
43e2d08d 3053 ctrl->oncs = le16_to_cpu(id->oncs);
2d466c7a 3054 ctrl->mtfa = le16_to_cpu(id->mtfa);
c0561f82 3055 ctrl->oaes = le32_to_cpu(id->oaes);
400b6a7b
GR
3056 ctrl->wctemp = le16_to_cpu(id->wctemp);
3057 ctrl->cctemp = le16_to_cpu(id->cctemp);
3058
6bf25d16 3059 atomic_set(&ctrl->abort_limit, id->acl + 1);
7fd8930f 3060 ctrl->vwc = id->vwc;
7fd8930f 3061 if (id->mdts)
5befc7c2 3062 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
7fd8930f 3063 else
a229dbf6
CH
3064 max_hw_sectors = UINT_MAX;
3065 ctrl->max_hw_sectors =
3066 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
7fd8930f 3067
da35825d 3068 nvme_set_queue_limits(ctrl, ctrl->admin_q);
07bfcd09 3069 ctrl->sgls = le32_to_cpu(id->sgls);
038bd4cb 3070 ctrl->kas = le16_to_cpu(id->kas);
0d0b660f 3071 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3e53ba38 3072 ctrl->ctratt = le32_to_cpu(id->ctratt);
07bfcd09 3073
86c2457a
MB
3074 ctrl->cntrltype = id->cntrltype;
3075 ctrl->dctype = id->dctype;
3076
07fbd32a
MP
3077 if (id->rtd3e) {
3078 /* us -> s */
f5af577d 3079 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
07fbd32a
MP
3080
3081 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3082 shutdown_timeout, 60);
3083
3084 if (ctrl->shutdown_timeout != shutdown_timeout)
1a3838d7 3085 dev_info(ctrl->device,
07fbd32a
MP
3086 "Shutdown timeout set to %u seconds\n",
3087 ctrl->shutdown_timeout);
3088 } else
3089 ctrl->shutdown_timeout = shutdown_timeout;
3090
c5552fde 3091 ctrl->npss = id->npss;
76a5af84
KHF
3092 ctrl->apsta = id->apsta;
3093 prev_apst_enabled = ctrl->apst_enabled;
c35e30b4
AL
3094 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3095 if (force_apst && id->apsta) {
f0425db0 3096 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
76a5af84 3097 ctrl->apst_enabled = true;
c35e30b4 3098 } else {
76a5af84 3099 ctrl->apst_enabled = false;
c35e30b4
AL
3100 }
3101 } else {
76a5af84 3102 ctrl->apst_enabled = id->apsta;
c35e30b4 3103 }
c5552fde
AL
3104 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3105
d3d5b87d 3106 if (ctrl->ops->flags & NVME_F_FABRICS) {
07bfcd09
CH
3107 ctrl->icdoff = le16_to_cpu(id->icdoff);
3108 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3109 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3110 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3111
3112 /*
3113 * In fabrics we need to verify the cntlid matches the
3114 * admin connect
3115 */
634b8325 3116 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
a8157ff3
JS
3117 dev_err(ctrl->device,
3118 "Mismatching cntlid: Connect %u vs Identify "
3119 "%u, rejecting\n",
3120 ctrl->cntlid, le16_to_cpu(id->cntlid));
07bfcd09 3121 ret = -EINVAL;
634b8325
KB
3122 goto out_free;
3123 }
038bd4cb 3124
5ab25a32 3125 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
f0425db0 3126 dev_err(ctrl->device,
038bd4cb
SG
3127 "keep-alive support is mandatory for fabrics\n");
3128 ret = -EINVAL;
634b8325 3129 goto out_free;
038bd4cb 3130 }
07bfcd09 3131 } else {
fe6d53c9
CH
3132 ctrl->hmpre = le32_to_cpu(id->hmpre);
3133 ctrl->hmmin = le32_to_cpu(id->hmmin);
044a9df1
CH
3134 ctrl->hmminds = le32_to_cpu(id->hmminds);
3135 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
07bfcd09 3136 }
da35825d 3137
5e1f6899 3138 ret = nvme_mpath_init_identify(ctrl, id);
0d0b660f 3139 if (ret < 0)
44ef5611 3140 goto out_free;
0d0b660f 3141
76a5af84 3142 if (ctrl->apst_enabled && !prev_apst_enabled)
c5552fde 3143 dev_pm_qos_expose_latency_tolerance(ctrl->device);
76a5af84 3144 else if (!ctrl->apst_enabled && prev_apst_enabled)
c5552fde
AL
3145 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3146
44ef5611
CK
3147out_free:
3148 kfree(id);
3149 return ret;
3150}
3151
3152/*
3153 * Initialize the cached copies of the Identify data and various controller
3154 * register in our nvme_ctrl structure. This should be called as soon as
3155 * the admin queue is fully up and running.
3156 */
94cc781f 3157int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
44ef5611
CK
3158{
3159 int ret;
3160
3161 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3162 if (ret) {
3163 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3164 return ret;
3165 }
3166
3167 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3168
3169 if (ctrl->vs >= NVME_VS(1, 1, 0))
3170 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3171
3172 ret = nvme_init_identify(ctrl);
3173 if (ret)
3174 return ret;
3175
634b8325
KB
3176 ret = nvme_configure_apst(ctrl);
3177 if (ret < 0)
3178 return ret;
95d54bd1 3179
dbf86b39
JD
3180 ret = nvme_configure_timestamp(ctrl);
3181 if (ret < 0)
3182 return ret;
634b8325 3183
4020aad8 3184 ret = nvme_configure_host_options(ctrl);
49cd84b6
KB
3185 if (ret < 0)
3186 return ret;
3187
94cc781f
CH
3188 nvme_configure_opal(ctrl, was_suspended);
3189
5ab25a32 3190 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
6b8cf940
CH
3191 /*
3192 * Do not return errors unless we are in a controller reset,
3193 * the controller works perfectly fine without hwmon.
3194 */
59e330f8 3195 ret = nvme_hwmon_init(ctrl);
6b8cf940 3196 if (ret == -EINTR)
59e330f8
KB
3197 return ret;
3198 }
400b6a7b 3199
d0dd594b 3200 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
bd4da3ab 3201 ctrl->identified = true;
c5552fde 3202
634b8325 3203 return 0;
7fd8930f 3204}
f21c4769 3205EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
7fd8930f 3206
f3ca80fc 3207static int nvme_dev_open(struct inode *inode, struct file *file)
1673f1f0 3208{
a6a5149b
CH
3209 struct nvme_ctrl *ctrl =
3210 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
1673f1f0 3211
2b1b7e78
JW
3212 switch (ctrl->state) {
3213 case NVME_CTRL_LIVE:
2b1b7e78
JW
3214 break;
3215 default:
a6a5149b 3216 return -EWOULDBLOCK;
2b1b7e78
JW
3217 }
3218
52a3974f 3219 nvme_get_ctrl(ctrl);
4bab6909
CK
3220 if (!try_module_get(ctrl->ops->module)) {
3221 nvme_put_ctrl(ctrl);
52a3974f 3222 return -EINVAL;
4bab6909 3223 }
52a3974f 3224
a6a5149b 3225 file->private_data = ctrl;
f3ca80fc
CH
3226 return 0;
3227}
3228
52a3974f
CK
3229static int nvme_dev_release(struct inode *inode, struct file *file)
3230{
3231 struct nvme_ctrl *ctrl =
3232 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3233
3234 module_put(ctrl->ops->module);
3235 nvme_put_ctrl(ctrl);
3236 return 0;
3237}
3238
f3ca80fc
CH
3239static const struct file_operations nvme_dev_fops = {
3240 .owner = THIS_MODULE,
3241 .open = nvme_dev_open,
52a3974f 3242 .release = nvme_dev_release,
f3ca80fc 3243 .unlocked_ioctl = nvme_dev_ioctl,
1832f2d8 3244 .compat_ioctl = compat_ptr_ioctl,
58e5bdeb 3245 .uring_cmd = nvme_dev_uring_cmd,
f3ca80fc
CH
3246};
3247
5974ea7c 3248static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
ed754e5d
CH
3249 unsigned nsid)
3250{
3251 struct nvme_ns_head *h;
3252
5974ea7c 3253 lockdep_assert_held(&ctrl->subsys->lock);
ed754e5d 3254
5974ea7c
SM
3255 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3256 /*
3257 * Private namespaces can share NSIDs under some conditions.
3258 * In that case we can't use the same ns_head for namespaces
3259 * with the same NSID.
3260 */
3261 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
9edceaf4
DW
3262 continue;
3263 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
ed754e5d
CH
3264 return h;
3265 }
3266
3267 return NULL;
3268}
3269
fd8099e7
CH
3270static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3271 struct nvme_ns_ids *ids)
ed754e5d 3272{
e2724cb9
CH
3273 bool has_uuid = !uuid_is_null(&ids->uuid);
3274 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3275 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
ed754e5d
CH
3276 struct nvme_ns_head *h;
3277
3278 lockdep_assert_held(&subsys->lock);
3279
3280 list_for_each_entry(h, &subsys->nsheads, entry) {
e2724cb9
CH
3281 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3282 return -EINVAL;
3283 if (has_nguid &&
3284 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3285 return -EINVAL;
3286 if (has_eui64 &&
3287 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
ed754e5d
CH
3288 return -EINVAL;
3289 }
3290
3291 return 0;
3292}
3293
be5eb933
AM
3294static void nvme_cdev_rel(struct device *dev)
3295{
8b850475 3296 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
be5eb933
AM
3297}
3298
2637baed
MI
3299void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3300{
3301 cdev_device_del(cdev, cdev_device);
be5eb933 3302 put_device(cdev_device);
2637baed
MI
3303}
3304
3305int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3306 const struct file_operations *fops, struct module *owner)
3307{
3308 int minor, ret;
3309
8b850475 3310 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
2637baed
MI
3311 if (minor < 0)
3312 return minor;
3313 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3314 cdev_device->class = nvme_ns_chr_class;
be5eb933 3315 cdev_device->release = nvme_cdev_rel;
2637baed
MI
3316 device_initialize(cdev_device);
3317 cdev_init(cdev, fops);
3318 cdev->owner = owner;
3319 ret = cdev_device_add(cdev, cdev_device);
be5eb933 3320 if (ret)
3596a065 3321 put_device(cdev_device);
be5eb933 3322
2637baed
MI
3323 return ret;
3324}
3325
3326static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3327{
3328 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3329}
3330
3331static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3332{
3333 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3334 return 0;
3335}
3336
3337static const struct file_operations nvme_ns_chr_fops = {
3338 .owner = THIS_MODULE,
3339 .open = nvme_ns_chr_open,
3340 .release = nvme_ns_chr_release,
3341 .unlocked_ioctl = nvme_ns_chr_ioctl,
3342 .compat_ioctl = compat_ptr_ioctl,
456cba38 3343 .uring_cmd = nvme_ns_chr_uring_cmd,
585079b6 3344 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
2637baed
MI
3345};
3346
3347static int nvme_add_ns_cdev(struct nvme_ns *ns)
3348{
3349 int ret;
3350
3351 ns->cdev_device.parent = ns->ctrl->device;
3352 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3353 ns->ctrl->instance, ns->head->instance);
3354 if (ret)
3355 return ret;
be5eb933
AM
3356
3357 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3358 ns->ctrl->ops->module);
2637baed
MI
3359}
3360
ed754e5d 3361static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
1a893c2b 3362 struct nvme_ns_info *info)
ed754e5d
CH
3363{
3364 struct nvme_ns_head *head;
f3334447 3365 size_t size = sizeof(*head);
ed754e5d
CH
3366 int ret = -ENOMEM;
3367
f3334447
CH
3368#ifdef CONFIG_NVME_MULTIPATH
3369 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3370#endif
3371
3372 head = kzalloc(size, GFP_KERNEL);
ed754e5d
CH
3373 if (!head)
3374 goto out;
8b850475 3375 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
ed754e5d
CH
3376 if (ret < 0)
3377 goto out_free_head;
3378 head->instance = ret;
3379 INIT_LIST_HEAD(&head->list);
fd92c77f
MG
3380 ret = init_srcu_struct(&head->srcu);
3381 if (ret)
3382 goto out_ida_remove;
ed754e5d 3383 head->subsys = ctrl->subsys;
1a893c2b
CH
3384 head->ns_id = info->nsid;
3385 head->ids = info->ids;
3386 head->shared = info->is_shared;
ed754e5d
CH
3387 kref_init(&head->ref);
3388
be93e87e
KB
3389 if (head->ids.csi) {
3390 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3391 if (ret)
3392 goto out_cleanup_srcu;
3393 } else
3394 head->effects = ctrl->effects;
3395
32acab31
CH
3396 ret = nvme_mpath_alloc_disk(ctrl, head);
3397 if (ret)
3398 goto out_cleanup_srcu;
3399
ed754e5d 3400 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
12d9f070
JW
3401
3402 kref_get(&ctrl->subsys->ref);
3403
ed754e5d
CH
3404 return head;
3405out_cleanup_srcu:
3406 cleanup_srcu_struct(&head->srcu);
fd92c77f 3407out_ida_remove:
8b850475 3408 ida_free(&ctrl->subsys->ns_ida, head->instance);
ed754e5d
CH
3409out_free_head:
3410 kfree(head);
3411out:
538af88e
SG
3412 if (ret > 0)
3413 ret = blk_status_to_errno(nvme_error_status(ret));
ed754e5d
CH
3414 return ERR_PTR(ret);
3415}
3416
2079f41e
CH
3417static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3418 struct nvme_ns_ids *ids)
3419{
3420 struct nvme_subsystem *s;
3421 int ret = 0;
3422
3423 /*
3424 * Note that this check is racy as we try to avoid holding the global
3425 * lock over the whole ns_head creation. But it is only intended as
3426 * a sanity check anyway.
3427 */
3428 mutex_lock(&nvme_subsystems_lock);
3429 list_for_each_entry(s, &nvme_subsystems, entry) {
3430 if (s == this)
3431 continue;
3432 mutex_lock(&s->lock);
3433 ret = nvme_subsys_check_duplicate_ids(s, ids);
3434 mutex_unlock(&s->lock);
3435 if (ret)
3436 break;
3437 }
3438 mutex_unlock(&nvme_subsystems_lock);
3439
3440 return ret;
3441}
3442
1a893c2b 3443static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
ed754e5d
CH
3444{
3445 struct nvme_ctrl *ctrl = ns->ctrl;
ed754e5d 3446 struct nvme_ns_head *head = NULL;
2079f41e
CH
3447 int ret;
3448
1a893c2b 3449 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
2079f41e 3450 if (ret) {
ac522fc6
CH
3451 /*
3452 * We've found two different namespaces on two different
3453 * subsystems that report the same ID. This is pretty nasty
3454 * for anything that actually requires unique device
3455 * identification. In the kernel we need this for multipathing,
3456 * and in user space the /dev/disk/by-id/ links rely on it.
3457 *
3458 * If the device also claims to be multi-path capable back off
3459 * here now and refuse the probe the second device as this is a
3460 * recipe for data corruption. If not this is probably a
3461 * cheap consumer device if on the PCIe bus, so let the user
3462 * proceed and use the shiny toy, but warn that with changing
3463 * probing order (which due to our async probing could just be
3464 * device taking longer to startup) the other device could show
3465 * up at any time.
3466 */
2f0dad17 3467 nvme_print_device_info(ctrl);
ac522fc6
CH
3468 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3469 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3470 info->is_shared)) {
3471 dev_err(ctrl->device,
3472 "ignoring nsid %d because of duplicate IDs\n",
3473 info->nsid);
3474 return ret;
3475 }
3476
3477 dev_err(ctrl->device,
3478 "clearing duplicate IDs for nsid %d\n", info->nsid);
3479 dev_err(ctrl->device,
3480 "use of /dev/disk/by-id/ may cause data corruption\n");
3481 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3482 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3483 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3484 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
2079f41e 3485 }
ed754e5d
CH
3486
3487 mutex_lock(&ctrl->subsys->lock);
1a893c2b 3488 head = nvme_find_ns_head(ctrl, info->nsid);
ed754e5d 3489 if (!head) {
1a893c2b 3490 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
e2d77d2e
CH
3491 if (ret) {
3492 dev_err(ctrl->device,
2079f41e 3493 "duplicate IDs in subsystem for nsid %d\n",
1a893c2b 3494 info->nsid);
e2d77d2e
CH
3495 goto out_unlock;
3496 }
1a893c2b 3497 head = nvme_alloc_ns_head(ctrl, info);
ed754e5d
CH
3498 if (IS_ERR(head)) {
3499 ret = PTR_ERR(head);
3500 goto out_unlock;
3501 }
ed754e5d 3502 } else {
6623c5b3 3503 ret = -EINVAL;
1a893c2b 3504 if (!info->is_shared || !head->shared) {
9ad1927a 3505 dev_err(ctrl->device,
1a893c2b
CH
3506 "Duplicate unshared namespace %d\n",
3507 info->nsid);
6623c5b3 3508 goto out_put_ns_head;
9ad1927a 3509 }
1a893c2b 3510 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
ed754e5d
CH
3511 dev_err(ctrl->device,
3512 "IDs don't match for shared namespace %d\n",
1a893c2b 3513 info->nsid);
6623c5b3 3514 goto out_put_ns_head;
ed754e5d 3515 }
ce8d7861 3516
2110a6bc 3517 if (!multipath) {
ce8d7861
CH
3518 dev_warn(ctrl->device,
3519 "Found shared namespace %d, but multipathing not supported.\n",
1a893c2b 3520 info->nsid);
ce8d7861
CH
3521 dev_warn_once(ctrl->device,
3522 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3523 }
ed754e5d
CH
3524 }
3525
772ea326 3526 list_add_tail_rcu(&ns->siblings, &head->list);
ed754e5d 3527 ns->head = head;
6623c5b3
CH
3528 mutex_unlock(&ctrl->subsys->lock);
3529 return 0;
ed754e5d 3530
6623c5b3
CH
3531out_put_ns_head:
3532 nvme_put_ns_head(head);
ed754e5d
CH
3533out_unlock:
3534 mutex_unlock(&ctrl->subsys->lock);
3535 return ret;
3536}
3537
24493b8b 3538struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
5bae7f73 3539{
32f0c4af 3540 struct nvme_ns *ns, *ret = NULL;
69d3b8ac 3541
765cc031 3542 down_read(&ctrl->namespaces_rwsem);
5bae7f73 3543 list_for_each_entry(ns, &ctrl->namespaces, list) {
ed754e5d 3544 if (ns->head->ns_id == nsid) {
4c74d1f8 3545 if (!nvme_get_ns(ns))
2dd41228 3546 continue;
32f0c4af
KB
3547 ret = ns;
3548 break;
3549 }
ed754e5d 3550 if (ns->head->ns_id > nsid)
5bae7f73
CH
3551 break;
3552 }
765cc031 3553 up_read(&ctrl->namespaces_rwsem);
32f0c4af 3554 return ret;
5bae7f73 3555}
24493b8b 3556EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
5bae7f73 3557
298ba0e3
CH
3558/*
3559 * Add the namespace to the controller list while keeping the list ordered.
3560 */
3561static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3562{
3563 struct nvme_ns *tmp;
3564
3565 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3566 if (tmp->head->ns_id < ns->head->ns_id) {
3567 list_add(&ns->list, &tmp->list);
3568 return;
3569 }
3570 }
3571 list_add(&ns->list, &ns->ctrl->namespaces);
3572}
3573
1a893c2b 3574static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
5bae7f73
CH
3575{
3576 struct nvme_ns *ns;
3577 struct gendisk *disk;
9953ab0c 3578 int node = ctrl->numa_node;
5bae7f73
CH
3579
3580 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3581 if (!ns)
1a893c2b 3582 return;
5bae7f73 3583
5f432cce
CH
3584 disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3585 if (IS_ERR(disk))
ed754e5d 3586 goto out_free_ns;
5f432cce
CH
3587 disk->fops = &nvme_bdev_ops;
3588 disk->private_data = ns;
3589
3590 ns->disk = disk;
3591 ns->queue = disk->queue;
e0596ab2 3592
7d30c81b 3593 if (ctrl->opts && ctrl->opts->data_digest)
1cb039f3 3594 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
958f2a0f 3595
8b904b5b 3596 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
2f859441
LG
3597 if (ctrl->ops->supports_pci_p2pdma &&
3598 ctrl->ops->supports_pci_p2pdma(ctrl))
e0596ab2
LG
3599 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3600
5bae7f73 3601 ns->ctrl = ctrl;
5bae7f73 3602 kref_init(&ns->kref);
5bae7f73 3603
1a893c2b 3604 if (nvme_init_ns_head(ns, info))
5f432cce 3605 goto out_cleanup_disk;
ac81bfa9 3606
9953ab0c 3607 /*
b739e137
CH
3608 * If multipathing is enabled, the device name for all disks and not
3609 * just those that represent shared namespaces needs to be based on the
3610 * subsystem instance. Using the controller instance for private
3611 * namespaces could lead to naming collisions between shared and private
3612 * namespaces if they don't use a common numbering scheme.
3613 *
3614 * If multipathing is not enabled, disk names must use the controller
3615 * instance as shared namespaces will show up as multiple block
3616 * devices.
9953ab0c 3617 */
35e797b0 3618 if (nvme_ns_head_multipath(ns->head)) {
b739e137
CH
3619 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3620 ctrl->instance, ns->head->instance);
3621 disk->flags |= GENHD_FL_HIDDEN;
3622 } else if (multipath) {
3623 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3624 ns->head->instance);
3625 } else {
9953ab0c
CH
3626 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3627 ns->head->instance);
b739e137 3628 }
3dc87dd0 3629
1a893c2b 3630 if (nvme_update_ns_info(ns, info))
5f432cce 3631 goto out_unlink_ns;
5bae7f73 3632
765cc031 3633 down_write(&ctrl->namespaces_rwsem);
298ba0e3 3634 nvme_ns_add_to_ctrl_list(ns);
765cc031 3635 up_write(&ctrl->namespaces_rwsem);
d22524a4 3636 nvme_get_ctrl(ctrl);
ac81bfa9 3637
ab3994f6
LC
3638 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3639 goto out_cleanup_ns_from_list;
3640
2637baed
MI
3641 if (!nvme_ns_head_multipath(ns->head))
3642 nvme_add_ns_cdev(ns);
32acab31 3643
1a893c2b 3644 nvme_mpath_add_disk(ns, info->anagrpid);
a3646451 3645 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
0d0b660f 3646
adce7e98 3647 return;
5f432cce 3648
ab3994f6
LC
3649 out_cleanup_ns_from_list:
3650 nvme_put_ctrl(ctrl);
3651 down_write(&ctrl->namespaces_rwsem);
3652 list_del_init(&ns->list);
3653 up_write(&ctrl->namespaces_rwsem);
ed754e5d
CH
3654 out_unlink_ns:
3655 mutex_lock(&ctrl->subsys->lock);
3656 list_del_rcu(&ns->siblings);
d5675729
KB
3657 if (list_empty(&ns->head->list))
3658 list_del_init(&ns->head->entry);
ed754e5d 3659 mutex_unlock(&ctrl->subsys->lock);
a63b8370 3660 nvme_put_ns_head(ns->head);
5f432cce 3661 out_cleanup_disk:
8b9ab626 3662 put_disk(disk);
5bae7f73
CH
3663 out_free_ns:
3664 kfree(ns);
3665}
3666
3667static void nvme_ns_remove(struct nvme_ns *ns)
3668{
5396fdac
HR
3669 bool last_path = false;
3670
646017a6
KB
3671 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3672 return;
69d3b8ac 3673
e7d65803 3674 clear_bit(NVME_NS_READY, &ns->flags);
0a05226a 3675 set_capacity(ns->disk, 0);
a3646451 3676 nvme_fault_inject_fini(&ns->fault_inject);
2181e455 3677
d6d67427
CL
3678 /*
3679 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3680 * this ns going back into current_path.
3681 */
3682 synchronize_srcu(&ns->head->srcu);
3683
3684 /* wait for concurrent submissions */
3685 if (nvme_mpath_clear_current_path(ns))
3686 synchronize_srcu(&ns->head->srcu);
3687
2181e455
AE
3688 mutex_lock(&ns->ctrl->subsys->lock);
3689 list_del_rcu(&ns->siblings);
9edceaf4
DW
3690 if (list_empty(&ns->head->list)) {
3691 list_del_init(&ns->head->entry);
3692 last_path = true;
3693 }
2181e455 3694 mutex_unlock(&ns->ctrl->subsys->lock);
d5675729 3695
041bd1a1 3696 /* guarantee not available in head->list */
899d2a05 3697 synchronize_srcu(&ns->head->srcu);
041bd1a1 3698
5eba2005
CH
3699 if (!nvme_ns_head_multipath(ns->head))
3700 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3701 del_gendisk(ns->disk);
32f0c4af 3702
765cc031 3703 down_write(&ns->ctrl->namespaces_rwsem);
5bae7f73 3704 list_del_init(&ns->list);
765cc031 3705 up_write(&ns->ctrl->namespaces_rwsem);
32f0c4af 3706
5396fdac
HR
3707 if (last_path)
3708 nvme_mpath_shutdown_disk(ns->head);
5bae7f73
CH
3709 nvme_put_ns(ns);
3710}
3711
4450ba3b
CH
3712static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3713{
3714 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3715
3716 if (ns) {
3717 nvme_ns_remove(ns);
3718 nvme_put_ns(ns);
3719 }
3720}
3721
1a893c2b 3722static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
b2dc748a 3723{
d95c1f41 3724 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
b2dc748a 3725
1a893c2b 3726 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
af5d6f7b 3727 dev_err(ns->ctrl->device,
b2dc748a 3728 "identifiers changed for nsid %d\n", ns->head->ns_id);
1a893c2b 3729 goto out;
b2dc748a
CH
3730 }
3731
1a893c2b 3732 ret = nvme_update_ns_info(ns, info);
b2dc748a
CH
3733out:
3734 /*
0a05226a 3735 * Only remove the namespace if we got a fatal error back from the
b2dc748a 3736 * device, otherwise ignore the error and just move on.
0a05226a
CH
3737 *
3738 * TODO: we should probably schedule a delayed retry here.
b2dc748a 3739 */
d95c1f41 3740 if (ret > 0 && (ret & NVME_SC_DNR))
0a05226a 3741 nvme_ns_remove(ns);
b2dc748a
CH
3742}
3743
04c170f6 3744static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
540c801c 3745{
1a893c2b 3746 struct nvme_ns_info info = { .nsid = nsid };
540c801c 3747 struct nvme_ns *ns;
0dd6fff2 3748 int ret;
540c801c 3749
1a893c2b 3750 if (nvme_identify_ns_descs(ctrl, &info))
8b7c0ff2 3751 return;
540c801c 3752
1a893c2b 3753 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
71882e7d
CH
3754 dev_warn(ctrl->device,
3755 "command set not reported for nsid: %d\n", nsid);
3756 return;
3757 }
3758
354201c5 3759 /*
1a893c2b
CH
3760 * If available try to use the Command Set Idependent Identify Namespace
3761 * data structure to find all the generic information that is needed to
3762 * set up a namespace. If not fall back to the legacy version.
354201c5 3763 */
eb867ee9 3764 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
0dd6fff2
CH
3765 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3766 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3767 else
3768 ret = nvme_ns_info_from_identify(ctrl, &info);
3769
3770 if (info.is_removed)
3771 nvme_ns_remove_by_nsid(ctrl, nsid);
354201c5 3772
1a893c2b
CH
3773 /*
3774 * Ignore the namespace if it is not ready. We will get an AEN once it
3775 * becomes ready and restart the scan.
3776 */
0dd6fff2 3777 if (ret || !info.is_ready)
354201c5
CH
3778 return;
3779
32f0c4af 3780 ns = nvme_find_get_ns(ctrl, nsid);
8b7c0ff2 3781 if (ns) {
1a893c2b 3782 nvme_validate_ns(ns, &info);
8b7c0ff2 3783 nvme_put_ns(ns);
1a893c2b
CH
3784 } else {
3785 nvme_alloc_ns(ctrl, &info);
8b7c0ff2 3786 }
540c801c
KB
3787}
3788
47b0e50a
SB
3789static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3790 unsigned nsid)
3791{
3792 struct nvme_ns *ns, *next;
6f8e0d78 3793 LIST_HEAD(rm_list);
47b0e50a 3794
765cc031 3795 down_write(&ctrl->namespaces_rwsem);
47b0e50a 3796 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4f17344e 3797 if (ns->head->ns_id > nsid)
6f8e0d78 3798 list_move_tail(&ns->list, &rm_list);
47b0e50a 3799 }
765cc031 3800 up_write(&ctrl->namespaces_rwsem);
6f8e0d78
JW
3801
3802 list_for_each_entry_safe(ns, next, &rm_list, list)
3803 nvme_ns_remove(ns);
3804
47b0e50a
SB
3805}
3806
4005f28d 3807static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
540c801c 3808{
aec459b4 3809 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
540c801c 3810 __le32 *ns_list;
4005f28d
CH
3811 u32 prev = 0;
3812 int ret = 0, i;
540c801c 3813
42595eb7 3814 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
540c801c
KB
3815 if (!ns_list)
3816 return -ENOMEM;
3817
4005f28d 3818 for (;;) {
7b153362
CH
3819 struct nvme_command cmd = {
3820 .identify.opcode = nvme_admin_identify,
3821 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
3822 .identify.nsid = cpu_to_le32(prev),
3823 };
3824
3825 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3826 NVME_IDENTIFY_DATA_SIZE);
f781f3dd
MI
3827 if (ret) {
3828 dev_warn(ctrl->device,
3829 "Identify NS List failed (status=0x%x)\n", ret);
47b0e50a 3830 goto free;
f781f3dd 3831 }
540c801c 3832
aec459b4 3833 for (i = 0; i < nr_entries; i++) {
4005f28d 3834 u32 nsid = le32_to_cpu(ns_list[i]);
540c801c 3835
4005f28d
CH
3836 if (!nsid) /* end of the list? */
3837 goto out;
04c170f6 3838 nvme_scan_ns(ctrl, nsid);
4450ba3b
CH
3839 while (++prev < nsid)
3840 nvme_ns_remove_by_nsid(ctrl, prev);
540c801c 3841 }
540c801c
KB
3842 }
3843 out:
47b0e50a
SB
3844 nvme_remove_invalid_namespaces(ctrl, prev);
3845 free:
540c801c
KB
3846 kfree(ns_list);
3847 return ret;
3848}
3849
4005f28d 3850static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
5bae7f73 3851{
4005f28d
CH
3852 struct nvme_id_ctrl *id;
3853 u32 nn, i;
3854
3855 if (nvme_identify_ctrl(ctrl, &id))
3856 return;
3857 nn = le32_to_cpu(id->nn);
3858 kfree(id);
5bae7f73 3859
540c801c 3860 for (i = 1; i <= nn; i++)
04c170f6 3861 nvme_scan_ns(ctrl, i);
540c801c 3862
47b0e50a 3863 nvme_remove_invalid_namespaces(ctrl, nn);
5bae7f73
CH
3864}
3865
f493af37 3866static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
30d90964
CH
3867{
3868 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3869 __le32 *log;
f493af37 3870 int error;
30d90964
CH
3871
3872 log = kzalloc(log_size, GFP_KERNEL);
3873 if (!log)
f493af37 3874 return;
30d90964 3875
f493af37
CH
3876 /*
3877 * We need to read the log to clear the AEN, but we don't want to rely
3878 * on it for the changed namespace information as userspace could have
3879 * raced with us in reading the log page, which could cause us to miss
3880 * updates.
3881 */
be93e87e
KB
3882 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3883 NVME_CSI_NVM, log, log_size, 0);
f493af37 3884 if (error)
30d90964
CH
3885 dev_warn(ctrl->device,
3886 "reading changed ns log failed: %d\n", error);
30d90964 3887
30d90964 3888 kfree(log);
30d90964
CH
3889}
3890
5955be21 3891static void nvme_scan_work(struct work_struct *work)
5bae7f73 3892{
5955be21
CH
3893 struct nvme_ctrl *ctrl =
3894 container_of(work, struct nvme_ctrl, scan_work);
78288665 3895 int ret;
5bae7f73 3896
5d02a5c1
KB
3897 /* No tagset on a live ctrl means IO queues could not created */
3898 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
5955be21
CH
3899 return;
3900
78288665
CK
3901 /*
3902 * Identify controller limits can change at controller reset due to
3903 * new firmware download, even though it is not common we cannot ignore
3904 * such scenario. Controller's non-mdts limits are reported in the unit
3905 * of logical blocks that is dependent on the format of attached
3906 * namespace. Hence re-read the limits at the time of ns allocation.
3907 */
3908 ret = nvme_init_non_mdts_limits(ctrl);
3909 if (ret < 0) {
3910 dev_warn(ctrl->device,
3911 "reading non-mdts-limits failed: %d\n", ret);
3912 return;
3913 }
3914
77016199 3915 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
30d90964 3916 dev_info(ctrl->device, "rescanning namespaces.\n");
f493af37 3917 nvme_clear_changed_ns_log(ctrl);
30d90964
CH
3918 }
3919
e7ad43c3 3920 mutex_lock(&ctrl->scan_lock);
811f4de0 3921 if (nvme_ctrl_limited_cns(ctrl)) {
4005f28d 3922 nvme_scan_ns_sequential(ctrl);
811f4de0
US
3923 } else {
3924 /*
3925 * Fall back to sequential scan if DNR is set to handle broken
3926 * devices which should support Identify NS List (as per the VS
3927 * they report) but don't actually support it.
3928 */
3929 ret = nvme_scan_ns_list(ctrl);
3930 if (ret > 0 && ret & NVME_SC_DNR)
3931 nvme_scan_ns_sequential(ctrl);
3932 }
e7ad43c3 3933 mutex_unlock(&ctrl->scan_lock);
5955be21 3934}
5bae7f73 3935
32f0c4af
KB
3936/*
3937 * This function iterates the namespace list unlocked to allow recovery from
3938 * controller failure. It is up to the caller to ensure the namespace list is
3939 * not modified by scan work while this function is executing.
3940 */
5bae7f73
CH
3941void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3942{
3943 struct nvme_ns *ns, *next;
6f8e0d78 3944 LIST_HEAD(ns_list);
5bae7f73 3945
0157ec8d
SG
3946 /*
3947 * make sure to requeue I/O to all namespaces as these
3948 * might result from the scan itself and must complete
3949 * for the scan_work to make progress
3950 */
3951 nvme_mpath_clear_ctrl_paths(ctrl);
3952
1b95e817
ML
3953 /*
3954 * Unquiesce io queues so any pending IO won't hang, especially
3955 * those submitted from scan work
3956 */
3957 nvme_unquiesce_io_queues(ctrl);
3958
f6c8e432
SG
3959 /* prevent racing with ns scanning */
3960 flush_work(&ctrl->scan_work);
3961
0ff9d4e1
KB
3962 /*
3963 * The dead states indicates the controller was not gracefully
3964 * disconnected. In that case, we won't be able to flush any data while
3965 * removing the namespaces' disks; fail all the queues now to avoid
3966 * potentially having to clean up the failed sync later.
3967 */
1b95e817 3968 if (ctrl->state == NVME_CTRL_DEAD)
cd50f9b2 3969 nvme_mark_namespaces_dead(ctrl);
0ff9d4e1 3970
ecca390e
SG
3971 /* this is a no-op when called from the controller reset handler */
3972 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3973
765cc031 3974 down_write(&ctrl->namespaces_rwsem);
6f8e0d78 3975 list_splice_init(&ctrl->namespaces, &ns_list);
765cc031 3976 up_write(&ctrl->namespaces_rwsem);
6f8e0d78
JW
3977
3978 list_for_each_entry_safe(ns, next, &ns_list, list)
5bae7f73
CH
3979 nvme_ns_remove(ns);
3980}
576d55d6 3981EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
5bae7f73 3982
23680f0b 3983static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
a42f42e5 3984{
23680f0b 3985 const struct nvme_ctrl *ctrl =
a42f42e5
SG
3986 container_of(dev, struct nvme_ctrl, ctrl_device);
3987 struct nvmf_ctrl_options *opts = ctrl->opts;
3988 int ret;
3989
3990 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3991 if (ret)
3992 return ret;
3993
3994 if (opts) {
3995 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3996 if (ret)
3997 return ret;
3998
3999 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4000 opts->trsvcid ?: "none");
4001 if (ret)
4002 return ret;
4003
4004 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4005 opts->host_traddr ?: "none");
3ede8f72
MB
4006 if (ret)
4007 return ret;
4008
4009 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4010 opts->host_iface ?: "none");
a42f42e5
SG
4011 }
4012 return ret;
4013}
4014
20d64911
MB
4015static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4016{
4017 char *envp[2] = { envdata, NULL };
4018
4019 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4020}
4021
e3d7874d
KB
4022static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4023{
4024 char *envp[2] = { NULL, NULL };
4025 u32 aen_result = ctrl->aen_result;
4026
4027 ctrl->aen_result = 0;
4028 if (!aen_result)
4029 return;
4030
4031 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4032 if (!envp[0])
4033 return;
4034 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4035 kfree(envp[0]);
4036}
4037
f866fc42
CH
4038static void nvme_async_event_work(struct work_struct *work)
4039{
4040 struct nvme_ctrl *ctrl =
4041 container_of(work, struct nvme_ctrl, async_event_work);
4042
e3d7874d 4043 nvme_aen_uevent(ctrl);
0fa0f99f
SG
4044
4045 /*
4046 * The transport drivers must guarantee AER submission here is safe by
4047 * flushing ctrl async_event_work after changing the controller state
4048 * from LIVE and before freeing the admin queue.
4049 */
4050 if (ctrl->state == NVME_CTRL_LIVE)
4051 ctrl->ops->submit_async_event(ctrl);
f866fc42
CH
4052}
4053
b6dccf7f
AD
4054static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4055{
4056
4057 u32 csts;
4058
4059 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4060 return false;
4061
4062 if (csts == ~0)
4063 return false;
4064
4065 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4066}
4067
4068static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4069{
b6dccf7f
AD
4070 struct nvme_fw_slot_info_log *log;
4071
4072 log = kmalloc(sizeof(*log), GFP_KERNEL);
4073 if (!log)
4074 return;
4075
be93e87e
KB
4076 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4077 log, sizeof(*log), 0))
0e98719b 4078 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
b6dccf7f
AD
4079 kfree(log);
4080}
4081
4082static void nvme_fw_act_work(struct work_struct *work)
4083{
4084 struct nvme_ctrl *ctrl = container_of(work,
4085 struct nvme_ctrl, fw_act_work);
4086 unsigned long fw_act_timeout;
4087
4088 if (ctrl->mtfa)
4089 fw_act_timeout = jiffies +
4090 msecs_to_jiffies(ctrl->mtfa * 100);
4091 else
4092 fw_act_timeout = jiffies +
4093 msecs_to_jiffies(admin_timeout * 1000);
4094
9f27bd70 4095 nvme_quiesce_io_queues(ctrl);
b6dccf7f
AD
4096 while (nvme_ctrl_pp_status(ctrl)) {
4097 if (time_after(jiffies, fw_act_timeout)) {
4098 dev_warn(ctrl->device,
4099 "Fw activation timeout, reset controller\n");
4c75f877
KB
4100 nvme_try_sched_reset(ctrl);
4101 return;
b6dccf7f
AD
4102 }
4103 msleep(100);
4104 }
4105
4c75f877 4106 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
b6dccf7f
AD
4107 return;
4108
9f27bd70 4109 nvme_unquiesce_io_queues(ctrl);
a806c6c8 4110 /* read FW slot information to clear the AER */
b6dccf7f 4111 nvme_get_fw_slot_info(ctrl);
371a982c
KB
4112
4113 queue_work(nvme_wq, &ctrl->async_event_work);
b6dccf7f
AD
4114}
4115
2c61c97f
MK
4116static u32 nvme_aer_type(u32 result)
4117{
4118 return result & 0x7;
4119}
4120
4121static u32 nvme_aer_subtype(u32 result)
4122{
4123 return (result & 0xff00) >> 8;
4124}
4125
371a982c 4126static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
868c2392 4127{
2c61c97f 4128 u32 aer_notice_type = nvme_aer_subtype(result);
371a982c 4129 bool requeue = true;
09bd1ff4
CK
4130
4131 switch (aer_notice_type) {
868c2392 4132 case NVME_AER_NOTICE_NS_CHANGED:
77016199 4133 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
868c2392
CH
4134 nvme_queue_scan(ctrl);
4135 break;
4136 case NVME_AER_NOTICE_FW_ACT_STARTING:
4c75f877
KB
4137 /*
4138 * We are (ab)using the RESETTING state to prevent subsequent
4139 * recovery actions from interfering with the controller's
4140 * firmware activation.
4141 */
f50fff73
HR
4142 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4143 nvme_auth_stop(ctrl);
371a982c 4144 requeue = false;
4c75f877 4145 queue_work(nvme_wq, &ctrl->fw_act_work);
f50fff73 4146 }
868c2392 4147 break;
0d0b660f
CH
4148#ifdef CONFIG_NVME_MULTIPATH
4149 case NVME_AER_NOTICE_ANA:
4150 if (!ctrl->ana_log_buf)
4151 break;
4152 queue_work(nvme_wq, &ctrl->ana_work);
4153 break;
4154#endif
85f8a435
SG
4155 case NVME_AER_NOTICE_DISC_CHANGED:
4156 ctrl->aen_result = result;
4157 break;
868c2392
CH
4158 default:
4159 dev_warn(ctrl->device, "async event result %08x\n", result);
4160 }
371a982c 4161 return requeue;
868c2392
CH
4162}
4163
2c61c97f
MK
4164static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4165{
2c61c97f
MK
4166 dev_warn(ctrl->device, "resetting controller due to AER\n");
4167 nvme_reset_ctrl(ctrl);
4168}
4169
7bf58533 4170void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
287a63eb 4171 volatile union nvme_result *res)
f866fc42 4172{
7bf58533 4173 u32 result = le32_to_cpu(res->u32);
2c61c97f
MK
4174 u32 aer_type = nvme_aer_type(result);
4175 u32 aer_subtype = nvme_aer_subtype(result);
371a982c 4176 bool requeue = true;
f866fc42 4177
ad22c355 4178 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
f866fc42
CH
4179 return;
4180
6622b76f 4181 trace_nvme_async_event(ctrl, result);
09bd1ff4 4182 switch (aer_type) {
868c2392 4183 case NVME_AER_NOTICE:
371a982c 4184 requeue = nvme_handle_aen_notice(ctrl, result);
868c2392 4185 break;
e3d7874d 4186 case NVME_AER_ERROR:
2c61c97f
MK
4187 /*
4188 * For a persistent internal error, don't run async_event_work
4189 * to submit a new AER. The controller reset will do it.
4190 */
4191 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4192 nvme_handle_aer_persistent_error(ctrl);
4193 return;
4194 }
4195 fallthrough;
e3d7874d
KB
4196 case NVME_AER_SMART:
4197 case NVME_AER_CSS:
4198 case NVME_AER_VS:
4199 ctrl->aen_result = result;
7bf58533
CH
4200 break;
4201 default:
4202 break;
f866fc42 4203 }
371a982c
KB
4204
4205 if (requeue)
4206 queue_work(nvme_wq, &ctrl->async_event_work);
f866fc42 4207}
f866fc42 4208EXPORT_SYMBOL_GPL(nvme_complete_async_event);
f3ca80fc 4209
fe60e8c5 4210int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
db45e1a5 4211 const struct blk_mq_ops *ops, unsigned int cmd_size)
fe60e8c5
CH
4212{
4213 int ret;
4214
4215 memset(set, 0, sizeof(*set));
4216 set->ops = ops;
4217 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4218 if (ctrl->ops->flags & NVME_F_FABRICS)
4219 set->reserved_tags = NVMF_RESERVED_TAGS;
4220 set->numa_node = ctrl->numa_node;
db45e1a5
CH
4221 set->flags = BLK_MQ_F_NO_SCHED;
4222 if (ctrl->ops->flags & NVME_F_BLOCKING)
4223 set->flags |= BLK_MQ_F_BLOCKING;
fe60e8c5
CH
4224 set->cmd_size = cmd_size;
4225 set->driver_data = ctrl;
4226 set->nr_hw_queues = 1;
4227 set->timeout = NVME_ADMIN_TIMEOUT;
4228 ret = blk_mq_alloc_tag_set(set);
4229 if (ret)
4230 return ret;
4231
4232 ctrl->admin_q = blk_mq_init_queue(set);
4233 if (IS_ERR(ctrl->admin_q)) {
4234 ret = PTR_ERR(ctrl->admin_q);
4235 goto out_free_tagset;
4236 }
4237
4238 if (ctrl->ops->flags & NVME_F_FABRICS) {
4239 ctrl->fabrics_q = blk_mq_init_queue(set);
4240 if (IS_ERR(ctrl->fabrics_q)) {
4241 ret = PTR_ERR(ctrl->fabrics_q);
4242 goto out_cleanup_admin_q;
4243 }
4244 }
4245
4246 ctrl->admin_tagset = set;
4247 return 0;
4248
4249out_cleanup_admin_q:
4739824e 4250 blk_mq_destroy_queue(ctrl->admin_q);
2b3f056f 4251 blk_put_queue(ctrl->admin_q);
fe60e8c5 4252out_free_tagset:
fd62678a
ML
4253 blk_mq_free_tag_set(set);
4254 ctrl->admin_q = NULL;
4255 ctrl->fabrics_q = NULL;
fe60e8c5
CH
4256 return ret;
4257}
4258EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4259
4260void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4261{
4262 blk_mq_destroy_queue(ctrl->admin_q);
2b3f056f
CH
4263 blk_put_queue(ctrl->admin_q);
4264 if (ctrl->ops->flags & NVME_F_FABRICS) {
fe60e8c5 4265 blk_mq_destroy_queue(ctrl->fabrics_q);
2b3f056f
CH
4266 blk_put_queue(ctrl->fabrics_q);
4267 }
fe60e8c5
CH
4268 blk_mq_free_tag_set(ctrl->admin_tagset);
4269}
4270EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4271
4272int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
db45e1a5 4273 const struct blk_mq_ops *ops, unsigned int nr_maps,
fe60e8c5
CH
4274 unsigned int cmd_size)
4275{
4276 int ret;
4277
4278 memset(set, 0, sizeof(*set));
4279 set->ops = ops;
33b93727 4280 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
93b24f57
CH
4281 /*
4282 * Some Apple controllers requires tags to be unique across admin and
4283 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4284 */
4285 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4286 set->reserved_tags = NVME_AQ_DEPTH;
4287 else if (ctrl->ops->flags & NVME_F_FABRICS)
b794d1c2 4288 set->reserved_tags = NVMF_RESERVED_TAGS;
fe60e8c5 4289 set->numa_node = ctrl->numa_node;
db45e1a5
CH
4290 set->flags = BLK_MQ_F_SHOULD_MERGE;
4291 if (ctrl->ops->flags & NVME_F_BLOCKING)
4292 set->flags |= BLK_MQ_F_BLOCKING;
fe60e8c5
CH
4293 set->cmd_size = cmd_size,
4294 set->driver_data = ctrl;
4295 set->nr_hw_queues = ctrl->queue_count - 1;
4296 set->timeout = NVME_IO_TIMEOUT;
dcef7727 4297 set->nr_maps = nr_maps;
fe60e8c5
CH
4298 ret = blk_mq_alloc_tag_set(set);
4299 if (ret)
4300 return ret;
4301
4302 if (ctrl->ops->flags & NVME_F_FABRICS) {
4303 ctrl->connect_q = blk_mq_init_queue(set);
4304 if (IS_ERR(ctrl->connect_q)) {
4305 ret = PTR_ERR(ctrl->connect_q);
4306 goto out_free_tag_set;
4307 }
98d81f0d
CL
4308 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4309 ctrl->connect_q);
fe60e8c5
CH
4310 }
4311
4312 ctrl->tagset = set;
4313 return 0;
4314
4315out_free_tag_set:
4316 blk_mq_free_tag_set(set);
6fbf13c0 4317 ctrl->connect_q = NULL;
fe60e8c5
CH
4318 return ret;
4319}
4320EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4321
4322void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4323{
2b3f056f 4324 if (ctrl->ops->flags & NVME_F_FABRICS) {
fe60e8c5 4325 blk_mq_destroy_queue(ctrl->connect_q);
2b3f056f
CH
4326 blk_put_queue(ctrl->connect_q);
4327 }
fe60e8c5
CH
4328 blk_mq_free_tag_set(ctrl->tagset);
4329}
4330EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4331
d09f2b45 4332void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
576d55d6 4333{
0d0b660f 4334 nvme_mpath_stop(ctrl);
f50fff73 4335 nvme_auth_stop(ctrl);
d09f2b45 4336 nvme_stop_keep_alive(ctrl);
8c4dfea9 4337 nvme_stop_failfast_work(ctrl);
f866fc42 4338 flush_work(&ctrl->async_event_work);
b6dccf7f 4339 cancel_work_sync(&ctrl->fw_act_work);
f7f70f4a
RL
4340 if (ctrl->ops->stop_ctrl)
4341 ctrl->ops->stop_ctrl(ctrl);
d09f2b45
SG
4342}
4343EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4344
4345void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4346{
5887450b 4347 nvme_start_keep_alive(ctrl);
d09f2b45 4348
93da4023
SG
4349 nvme_enable_aen(ctrl);
4350
f46ef9e8
SG
4351 /*
4352 * persistent discovery controllers need to send indication to userspace
4353 * to re-read the discovery log page to learn about possible changes
4354 * that were missed. We identify persistent discovery controllers by
4355 * checking that they started once before, hence are reconnecting back.
4356 */
2eb94dd5 4357 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
f46ef9e8
SG
4358 nvme_discovery_ctrl(ctrl))
4359 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4360
d09f2b45
SG
4361 if (ctrl->queue_count > 1) {
4362 nvme_queue_scan(ctrl);
9f27bd70 4363 nvme_unquiesce_io_queues(ctrl);
a4a6f3c8 4364 nvme_mpath_update(ctrl);
d09f2b45 4365 }
20d64911
MB
4366
4367 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
2eb94dd5 4368 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
d09f2b45
SG
4369}
4370EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5955be21 4371
d09f2b45
SG
4372void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4373{
ed7770f6 4374 nvme_hwmon_exit(ctrl);
f79d5fda 4375 nvme_fault_inject_fini(&ctrl->fault_inject);
510a405d 4376 dev_pm_qos_hide_latency_tolerance(ctrl->device);
a6a5149b 4377 cdev_device_del(&ctrl->cdev, ctrl->device);
726612b6 4378 nvme_put_ctrl(ctrl);
53029b04 4379}
576d55d6 4380EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
53029b04 4381
8168d23f
KB
4382static void nvme_free_cels(struct nvme_ctrl *ctrl)
4383{
4384 struct nvme_effects_log *cel;
4385 unsigned long i;
4386
8f8ea928 4387 xa_for_each(&ctrl->cels, i, cel) {
8168d23f
KB
4388 xa_erase(&ctrl->cels, i);
4389 kfree(cel);
4390 }
4391
4392 xa_destroy(&ctrl->cels);
4393}
4394
d22524a4 4395static void nvme_free_ctrl(struct device *dev)
53029b04 4396{
d22524a4
CH
4397 struct nvme_ctrl *ctrl =
4398 container_of(dev, struct nvme_ctrl, ctrl_device);
ab9e00cc 4399 struct nvme_subsystem *subsys = ctrl->subsys;
f3ca80fc 4400
192f6c29 4401 if (!subsys || ctrl->instance != subsys->instance)
8b850475 4402 ida_free(&nvme_instance_ida, ctrl->instance);
be8e82ca 4403 key_put(ctrl->tls_key);
8168d23f 4404 nvme_free_cels(ctrl);
0d0b660f 4405 nvme_mpath_uninit(ctrl);
f50fff73
HR
4406 nvme_auth_stop(ctrl);
4407 nvme_auth_free(ctrl);
092ff052 4408 __free_page(ctrl->discard_page);
94cc781f 4409 free_opal_dev(ctrl->opal_dev);
f3ca80fc 4410
ab9e00cc 4411 if (subsys) {
32fd90c4 4412 mutex_lock(&nvme_subsystems_lock);
ab9e00cc 4413 list_del(&ctrl->subsys_entry);
ab9e00cc 4414 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
32fd90c4 4415 mutex_unlock(&nvme_subsystems_lock);
ab9e00cc 4416 }
f3ca80fc
CH
4417
4418 ctrl->ops->free_ctrl(ctrl);
f3ca80fc 4419
ab9e00cc
CH
4420 if (subsys)
4421 nvme_put_subsystem(subsys);
f3ca80fc
CH
4422}
4423
4424/*
4425 * Initialize a NVMe controller structures. This needs to be called during
4426 * earliest initialization so that we have the initialized structured around
4427 * during probing.
4428 */
4429int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4430 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4431{
4432 int ret;
4433
bb8d261e 4434 ctrl->state = NVME_CTRL_NEW;
8c4dfea9 4435 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
bb8d261e 4436 spin_lock_init(&ctrl->lock);
e7ad43c3 4437 mutex_init(&ctrl->scan_lock);
f3ca80fc 4438 INIT_LIST_HEAD(&ctrl->namespaces);
1cf7a12e 4439 xa_init(&ctrl->cels);
765cc031 4440 init_rwsem(&ctrl->namespaces_rwsem);
f3ca80fc
CH
4441 ctrl->dev = dev;
4442 ctrl->ops = ops;
4443 ctrl->quirks = quirks;
4fea243e 4444 ctrl->numa_node = NUMA_NO_NODE;
5955be21 4445 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
f866fc42 4446 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
b6dccf7f 4447 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
c5017e85 4448 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
c1ac9a4b 4449 init_waitqueue_head(&ctrl->state_wq);
f3ca80fc 4450
230f1f9e 4451 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
8c4dfea9 4452 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
230f1f9e
JS
4453 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4454 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4455
cb5b7262
JA
4456 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4457 PAGE_SIZE);
4458 ctrl->discard_page = alloc_page(GFP_KERNEL);
4459 if (!ctrl->discard_page) {
4460 ret = -ENOMEM;
4461 goto out;
4462 }
4463
8b850475 4464 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
9843f685 4465 if (ret < 0)
f3ca80fc 4466 goto out;
9843f685 4467 ctrl->instance = ret;
f3ca80fc 4468
d22524a4
CH
4469 device_initialize(&ctrl->ctrl_device);
4470 ctrl->device = &ctrl->ctrl_device;
f68abd9c
JG
4471 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4472 ctrl->instance);
d22524a4
CH
4473 ctrl->device->class = nvme_class;
4474 ctrl->device->parent = ctrl->dev;
86adbf0c
CH
4475 if (ops->dev_attr_groups)
4476 ctrl->device->groups = ops->dev_attr_groups;
4477 else
4478 ctrl->device->groups = nvme_dev_attr_groups;
d22524a4
CH
4479 ctrl->device->release = nvme_free_ctrl;
4480 dev_set_drvdata(ctrl->device, ctrl);
4481 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4482 if (ret)
f3ca80fc 4483 goto out_release_instance;
f3ca80fc 4484
b780d741 4485 nvme_get_ctrl(ctrl);
a6a5149b
CH
4486 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4487 ctrl->cdev.owner = ops->module;
4488 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
d22524a4
CH
4489 if (ret)
4490 goto out_free_name;
f3ca80fc 4491
c5552fde
AL
4492 /*
4493 * Initialize latency tolerance controls. The sysfs files won't
4494 * be visible to userspace unless the device actually supports APST.
4495 */
4496 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4497 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4498 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4499
f79d5fda 4500 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5e1f6899 4501 nvme_mpath_init_ctrl(ctrl);
193a8c7e
SG
4502 ret = nvme_auth_init_ctrl(ctrl);
4503 if (ret)
4504 goto out_free_cdev;
f79d5fda 4505
f3ca80fc 4506 return 0;
193a8c7e 4507out_free_cdev:
3a12a0b8 4508 nvme_fault_inject_fini(&ctrl->fault_inject);
7ed5cf8e 4509 dev_pm_qos_hide_latency_tolerance(ctrl->device);
193a8c7e 4510 cdev_device_del(&ctrl->cdev, ctrl->device);
d22524a4 4511out_free_name:
b780d741 4512 nvme_put_ctrl(ctrl);
d6a2b953 4513 kfree_const(ctrl->device->kobj.name);
f3ca80fc 4514out_release_instance:
8b850475 4515 ida_free(&nvme_instance_ida, ctrl->instance);
f3ca80fc 4516out:
cb5b7262
JA
4517 if (ctrl->discard_page)
4518 __free_page(ctrl->discard_page);
f3ca80fc
CH
4519 return ret;
4520}
576d55d6 4521EXPORT_SYMBOL_GPL(nvme_init_ctrl);
f3ca80fc 4522
cd50f9b2
CH
4523/* let I/O to all namespaces fail in preparation for surprise removal */
4524void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
69d9a99c
KB
4525{
4526 struct nvme_ns *ns;
4527
765cc031 4528 down_read(&ctrl->namespaces_rwsem);
cf39a6bc 4529 list_for_each_entry(ns, &ctrl->namespaces, list)
cd50f9b2 4530 blk_mark_disk_dead(ns->disk);
765cc031 4531 up_read(&ctrl->namespaces_rwsem);
69d9a99c 4532}
cd50f9b2 4533EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
69d9a99c 4534
302ad8cc
KB
4535void nvme_unfreeze(struct nvme_ctrl *ctrl)
4536{
4537 struct nvme_ns *ns;
4538
765cc031 4539 down_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4540 list_for_each_entry(ns, &ctrl->namespaces, list)
4541 blk_mq_unfreeze_queue(ns->queue);
765cc031 4542 up_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4543}
4544EXPORT_SYMBOL_GPL(nvme_unfreeze);
4545
7cf0d7c0 4546int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
302ad8cc
KB
4547{
4548 struct nvme_ns *ns;
4549
765cc031 4550 down_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4551 list_for_each_entry(ns, &ctrl->namespaces, list) {
4552 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4553 if (timeout <= 0)
4554 break;
4555 }
765cc031 4556 up_read(&ctrl->namespaces_rwsem);
7cf0d7c0 4557 return timeout;
302ad8cc
KB
4558}
4559EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4560
4561void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4562{
4563 struct nvme_ns *ns;
4564
765cc031 4565 down_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4566 list_for_each_entry(ns, &ctrl->namespaces, list)
4567 blk_mq_freeze_queue_wait(ns->queue);
765cc031 4568 up_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4569}
4570EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4571
4572void nvme_start_freeze(struct nvme_ctrl *ctrl)
4573{
4574 struct nvme_ns *ns;
4575
765cc031 4576 down_read(&ctrl->namespaces_rwsem);
302ad8cc 4577 list_for_each_entry(ns, &ctrl->namespaces, list)
1671d522 4578 blk_freeze_queue_start(ns->queue);
765cc031 4579 up_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4580}
4581EXPORT_SYMBOL_GPL(nvme_start_freeze);
4582
9f27bd70 4583void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
363c9aac 4584{
ba0718a6
CH
4585 if (!ctrl->tagset)
4586 return;
98d81f0d
CL
4587 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4588 blk_mq_quiesce_tagset(ctrl->tagset);
4589 else
4590 blk_mq_wait_quiesce_done(ctrl->tagset);
363c9aac 4591}
9f27bd70 4592EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
363c9aac 4593
9f27bd70 4594void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
363c9aac 4595{
ba0718a6
CH
4596 if (!ctrl->tagset)
4597 return;
98d81f0d
CL
4598 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4599 blk_mq_unquiesce_tagset(ctrl->tagset);
363c9aac 4600}
9f27bd70 4601EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
363c9aac 4602
9f27bd70 4603void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
a277654b 4604{
9e6a6b12
ML
4605 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4606 blk_mq_quiesce_queue(ctrl->admin_q);
26af1cd0 4607 else
483239c7 4608 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
a277654b 4609}
9f27bd70 4610EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
a277654b 4611
9f27bd70 4612void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
a277654b 4613{
9e6a6b12
ML
4614 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4615 blk_mq_unquiesce_queue(ctrl->admin_q);
a277654b 4616}
9f27bd70 4617EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
a277654b 4618
04800fbf 4619void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
d6135c3a
KB
4620{
4621 struct nvme_ns *ns;
4622
4623 down_read(&ctrl->namespaces_rwsem);
4624 list_for_each_entry(ns, &ctrl->namespaces, list)
4625 blk_sync_queue(ns->queue);
4626 up_read(&ctrl->namespaces_rwsem);
04800fbf
CL
4627}
4628EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
03894b7a 4629
04800fbf
CL
4630void nvme_sync_queues(struct nvme_ctrl *ctrl)
4631{
4632 nvme_sync_io_queues(ctrl);
03894b7a
EN
4633 if (ctrl->admin_q)
4634 blk_sync_queue(ctrl->admin_q);
d6135c3a
KB
4635}
4636EXPORT_SYMBOL_GPL(nvme_sync_queues);
4637
b2702aaa 4638struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
f783f444 4639{
b2702aaa
CK
4640 if (file->f_op != &nvme_dev_fops)
4641 return NULL;
4642 return file->private_data;
f783f444 4643}
b2702aaa 4644EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
f783f444 4645
81101540
CH
4646/*
4647 * Check we didn't inadvertently grow the command structure sizes:
4648 */
4649static inline void _nvme_check_size(void)
4650{
4651 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4652 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4653 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4654 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4655 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4656 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4657 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4658 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4659 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4660 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4661 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4662 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4663 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
354201c5
CH
4664 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4665 NVME_IDENTIFY_DATA_SIZE);
240e6ee2 4666 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4020aad8 4667 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
240e6ee2 4668 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5befc7c2 4669 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
81101540
CH
4670 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4671 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4672 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4673 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4020aad8 4674 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
81101540
CH
4675}
4676
4677
893a74b7 4678static int __init nvme_core_init(void)
5bae7f73 4679{
b227c59b 4680 int result = -ENOMEM;
5bae7f73 4681
81101540
CH
4682 _nvme_check_size();
4683
9a6327d2
SG
4684 nvme_wq = alloc_workqueue("nvme-wq",
4685 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4686 if (!nvme_wq)
b227c59b
RS
4687 goto out;
4688
4689 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4690 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4691 if (!nvme_reset_wq)
4692 goto destroy_wq;
4693
4694 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4695 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4696 if (!nvme_delete_wq)
4697 goto destroy_reset_wq;
9a6327d2 4698
f68abd9c
JG
4699 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4700 NVME_MINORS, "nvme");
f3ca80fc 4701 if (result < 0)
b227c59b 4702 goto destroy_delete_wq;
f3ca80fc 4703
1aaba11d 4704 nvme_class = class_create("nvme");
f3ca80fc
CH
4705 if (IS_ERR(nvme_class)) {
4706 result = PTR_ERR(nvme_class);
4707 goto unregister_chrdev;
4708 }
a42f42e5 4709 nvme_class->dev_uevent = nvme_class_uevent;
f3ca80fc 4710
1aaba11d 4711 nvme_subsys_class = class_create("nvme-subsystem");
ab9e00cc
CH
4712 if (IS_ERR(nvme_subsys_class)) {
4713 result = PTR_ERR(nvme_subsys_class);
4714 goto destroy_class;
4715 }
2637baed
MI
4716
4717 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4718 "nvme-generic");
4719 if (result < 0)
4720 goto destroy_subsys_class;
4721
1aaba11d 4722 nvme_ns_chr_class = class_create("nvme-generic");
2637baed
MI
4723 if (IS_ERR(nvme_ns_chr_class)) {
4724 result = PTR_ERR(nvme_ns_chr_class);
4725 goto unregister_generic_ns;
4726 }
9d77eb52 4727 result = nvme_keyring_init();
e481fc0a
SG
4728 if (result)
4729 goto destroy_ns_chr;
9d77eb52
HR
4730 result = nvme_init_auth();
4731 if (result)
4732 goto keyring_exit;
5bae7f73 4733 return 0;
f3ca80fc 4734
9d77eb52
HR
4735keyring_exit:
4736 nvme_keyring_exit();
e481fc0a
SG
4737destroy_ns_chr:
4738 class_destroy(nvme_ns_chr_class);
2637baed
MI
4739unregister_generic_ns:
4740 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4741destroy_subsys_class:
4742 class_destroy(nvme_subsys_class);
ab9e00cc
CH
4743destroy_class:
4744 class_destroy(nvme_class);
9a6327d2 4745unregister_chrdev:
f68abd9c 4746 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
b227c59b
RS
4747destroy_delete_wq:
4748 destroy_workqueue(nvme_delete_wq);
4749destroy_reset_wq:
4750 destroy_workqueue(nvme_reset_wq);
9a6327d2
SG
4751destroy_wq:
4752 destroy_workqueue(nvme_wq);
b227c59b 4753out:
f3ca80fc 4754 return result;
5bae7f73
CH
4755}
4756
893a74b7 4757static void __exit nvme_core_exit(void)
5bae7f73 4758{
e481fc0a 4759 nvme_exit_auth();
9d77eb52 4760 nvme_keyring_exit();
2637baed 4761 class_destroy(nvme_ns_chr_class);
ab9e00cc 4762 class_destroy(nvme_subsys_class);
f3ca80fc 4763 class_destroy(nvme_class);
2637baed 4764 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
f68abd9c 4765 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
b227c59b
RS
4766 destroy_workqueue(nvme_delete_wq);
4767 destroy_workqueue(nvme_reset_wq);
9a6327d2 4768 destroy_workqueue(nvme_wq);
2637baed 4769 ida_destroy(&nvme_ns_chr_minor_ida);
f41cfd5d 4770 ida_destroy(&nvme_instance_ida);
5bae7f73 4771}
576d55d6
ML
4772
4773MODULE_LICENSE("GPL");
4774MODULE_VERSION("1.0");
4775module_init(nvme_core_init);
4776module_exit(nvme_core_exit);