nvme: move a few things out of nvme_update_disk_info
[linux-2.6-block.git] / drivers / nvme / host / core.c
CommitLineData
bc50ad75 1// SPDX-License-Identifier: GPL-2.0
21d34711
CH
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
21d34711
CH
5 */
6
7#include <linux/blkdev.h>
8#include <linux/blk-mq.h>
fe45e630 9#include <linux/blk-integrity.h>
c95b708d 10#include <linux/compat.h>
5fd4ce1b 11#include <linux/delay.h>
21d34711 12#include <linux/errno.h>
1673f1f0 13#include <linux/hdreg.h>
21d34711 14#include <linux/kernel.h>
5bae7f73 15#include <linux/module.h>
958f2a0f 16#include <linux/backing-dev.h>
21d34711
CH
17#include <linux/slab.h>
18#include <linux/types.h>
1673f1f0
CH
19#include <linux/pr.h>
20#include <linux/ptrace.h>
21#include <linux/nvme_ioctl.h>
c5552fde 22#include <linux/pm_qos.h>
a1a825ab 23#include <linux/ratelimit.h>
1673f1f0 24#include <asm/unaligned.h>
21d34711
CH
25
26#include "nvme.h"
038bd4cb 27#include "fabrics.h"
f50fff73 28#include <linux/nvme-auth.h>
21d34711 29
35fe0d12
HR
30#define CREATE_TRACE_POINTS
31#include "trace.h"
32
f3ca80fc
CH
33#define NVME_MINORS (1U << MINORBITS)
34
1a893c2b
CH
35struct nvme_ns_info {
36 struct nvme_ns_ids ids;
37 u32 nsid;
38 __le32 anagrpid;
39 bool is_shared;
1e4ea66a 40 bool is_readonly;
1a893c2b 41 bool is_ready;
0dd6fff2 42 bool is_removed;
1a893c2b
CH
43};
44
8ae4e447
MO
45unsigned int admin_timeout = 60;
46module_param(admin_timeout, uint, 0644);
ba0ba7d3 47MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
576d55d6 48EXPORT_SYMBOL_GPL(admin_timeout);
ba0ba7d3 49
8ae4e447
MO
50unsigned int nvme_io_timeout = 30;
51module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
ba0ba7d3 52MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
576d55d6 53EXPORT_SYMBOL_GPL(nvme_io_timeout);
ba0ba7d3 54
b3b1b0b0 55static unsigned char shutdown_timeout = 5;
ba0ba7d3
ML
56module_param(shutdown_timeout, byte, 0644);
57MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58
44e44b29
CH
59static u8 nvme_max_retries = 5;
60module_param_named(max_retries, nvme_max_retries, byte, 0644);
f80ec966 61MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
5bae7f73 62
9947d6a0 63static unsigned long default_ps_max_latency_us = 100000;
c5552fde
AL
64module_param(default_ps_max_latency_us, ulong, 0644);
65MODULE_PARM_DESC(default_ps_max_latency_us,
66 "max power saving latency for new devices; use PM QOS to change per device");
67
c35e30b4
AL
68static bool force_apst;
69module_param(force_apst, bool, 0644);
70MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71
ebd8a93a
AB
72static unsigned long apst_primary_timeout_ms = 100;
73module_param(apst_primary_timeout_ms, ulong, 0644);
74MODULE_PARM_DESC(apst_primary_timeout_ms,
75 "primary APST timeout in ms");
76
77static unsigned long apst_secondary_timeout_ms = 2000;
78module_param(apst_secondary_timeout_ms, ulong, 0644);
79MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 "secondary APST timeout in ms");
81
82static unsigned long apst_primary_latency_tol_us = 15000;
83module_param(apst_primary_latency_tol_us, ulong, 0644);
84MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 "primary APST latency tolerance in us");
86
87static unsigned long apst_secondary_latency_tol_us = 100000;
88module_param(apst_secondary_latency_tol_us, ulong, 0644);
89MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 "secondary APST latency tolerance in us");
91
b227c59b
RS
92/*
93 * nvme_wq - hosts nvme related works that are not reset or delete
94 * nvme_reset_wq - hosts nvme reset works
95 * nvme_delete_wq - hosts nvme delete works
96 *
97b2512a
NK
97 * nvme_wq will host works such as scan, aen handling, fw activation,
98 * keep-alive, periodic reconnects etc. nvme_reset_wq
b227c59b
RS
99 * runs reset works which also flush works hosted on nvme_wq for
100 * serialization purposes. nvme_delete_wq host controller deletion
101 * works which flush reset works for serialization.
102 */
9a6327d2
SG
103struct workqueue_struct *nvme_wq;
104EXPORT_SYMBOL_GPL(nvme_wq);
105
b227c59b
RS
106struct workqueue_struct *nvme_reset_wq;
107EXPORT_SYMBOL_GPL(nvme_reset_wq);
108
109struct workqueue_struct *nvme_delete_wq;
110EXPORT_SYMBOL_GPL(nvme_delete_wq);
111
ab9e00cc
CH
112static LIST_HEAD(nvme_subsystems);
113static DEFINE_MUTEX(nvme_subsystems_lock);
1673f1f0 114
9843f685 115static DEFINE_IDA(nvme_instance_ida);
f68abd9c 116static dev_t nvme_ctrl_base_chr_devt;
f3ca80fc 117static struct class *nvme_class;
ab9e00cc 118static struct class *nvme_subsys_class;
f3ca80fc 119
2637baed
MI
120static DEFINE_IDA(nvme_ns_chr_minor_ida);
121static dev_t nvme_ns_chr_devt;
122static struct class *nvme_ns_chr_class;
123
12d9f070 124static void nvme_put_subsystem(struct nvme_subsystem *subsys);
cf39a6bc
SB
125static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
126 unsigned nsid);
b58da2d2
TS
127static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
128 struct nvme_command *cmd);
cf39a6bc 129
2405252a 130void nvme_queue_scan(struct nvme_ctrl *ctrl)
50e8d8ee
CH
131{
132 /*
133 * Only new queue scan work when admin and IO queues are both alive
134 */
e6e7f7ac 135 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
50e8d8ee
CH
136 queue_work(nvme_wq, &ctrl->scan_work);
137}
138
4c75f877
KB
139/*
140 * Use this function to proceed with scheduling reset_work for a controller
141 * that had previously been set to the resetting state. This is intended for
142 * code paths that can't be interrupted by other reset attempts. A hot removal
143 * may prevent this from succeeding.
144 */
c1ac9a4b 145int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
4c75f877 146{
e6e7f7ac 147 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
4c75f877
KB
148 return -EBUSY;
149 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
150 return -EBUSY;
151 return 0;
152}
c1ac9a4b 153EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
4c75f877 154
8c4dfea9
VG
155static void nvme_failfast_work(struct work_struct *work)
156{
157 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
158 struct nvme_ctrl, failfast_work);
159
e6e7f7ac 160 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
8c4dfea9
VG
161 return;
162
163 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
164 dev_info(ctrl->device, "failfast expired\n");
165 nvme_kick_requeue_lists(ctrl);
166}
167
168static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
169{
170 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
171 return;
172
173 schedule_delayed_work(&ctrl->failfast_work,
174 ctrl->opts->fast_io_fail_tmo * HZ);
175}
176
177static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
178{
179 if (!ctrl->opts)
180 return;
181
182 cancel_delayed_work_sync(&ctrl->failfast_work);
183 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
184}
185
186
d86c4d8e
CH
187int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
188{
189 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
190 return -EBUSY;
b227c59b 191 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
d86c4d8e
CH
192 return -EBUSY;
193 return 0;
194}
195EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
196
2405252a 197int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
d86c4d8e
CH
198{
199 int ret;
200
201 ret = nvme_reset_ctrl(ctrl);
8000d1fd 202 if (!ret) {
d86c4d8e 203 flush_work(&ctrl->reset_work);
e6e7f7ac 204 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
8000d1fd
NC
205 ret = -ENETRESET;
206 }
207
d86c4d8e
CH
208 return ret;
209}
210
a686ed75 211static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
c5017e85 212{
77d0612d 213 dev_info(ctrl->device,
e5ea42fa 214 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
77d0612d 215
4054637c 216 flush_work(&ctrl->reset_work);
6cd53d14
CH
217 nvme_stop_ctrl(ctrl);
218 nvme_remove_namespaces(ctrl);
c5017e85 219 ctrl->ops->delete_ctrl(ctrl);
6cd53d14 220 nvme_uninit_ctrl(ctrl);
c5017e85
CH
221}
222
a686ed75
BVA
223static void nvme_delete_ctrl_work(struct work_struct *work)
224{
225 struct nvme_ctrl *ctrl =
226 container_of(work, struct nvme_ctrl, delete_work);
227
228 nvme_do_delete_ctrl(ctrl);
229}
230
c5017e85
CH
231int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
232{
233 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234 return -EBUSY;
b227c59b 235 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
c5017e85
CH
236 return -EBUSY;
237 return 0;
238}
239EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
240
942e21c0 241void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
c5017e85 242{
c5017e85 243 /*
01fc08ff
YY
244 * Keep a reference until nvme_do_delete_ctrl() complete,
245 * since ->delete_ctrl can free the controller.
c5017e85
CH
246 */
247 nvme_get_ctrl(ctrl);
6721c18a 248 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
b9c77583 249 nvme_do_delete_ctrl(ctrl);
c5017e85 250 nvme_put_ctrl(ctrl);
c5017e85 251}
c5017e85 252
2f9c1736 253static blk_status_t nvme_error_status(u16 status)
27fa9bc5 254{
2f9c1736 255 switch (status & 0x7ff) {
27fa9bc5 256 case NVME_SC_SUCCESS:
2a842aca 257 return BLK_STS_OK;
27fa9bc5 258 case NVME_SC_CAP_EXCEEDED:
2a842aca 259 return BLK_STS_NOSPC;
e96fef2c 260 case NVME_SC_LBA_RANGE:
35038bff
KB
261 case NVME_SC_CMD_INTERRUPTED:
262 case NVME_SC_NS_NOT_READY:
e96fef2c
KB
263 return BLK_STS_TARGET;
264 case NVME_SC_BAD_ATTRIBUTES:
e02ab023 265 case NVME_SC_ONCS_NOT_SUPPORTED:
e96fef2c
KB
266 case NVME_SC_INVALID_OPCODE:
267 case NVME_SC_INVALID_FIELD:
268 case NVME_SC_INVALID_NS:
2a842aca 269 return BLK_STS_NOTSUPP;
e02ab023
JG
270 case NVME_SC_WRITE_FAULT:
271 case NVME_SC_READ_ERROR:
272 case NVME_SC_UNWRITTEN_BLOCK:
a751da33
CH
273 case NVME_SC_ACCESS_DENIED:
274 case NVME_SC_READ_ONLY:
e96fef2c 275 case NVME_SC_COMPARE_FAILED:
2a842aca 276 return BLK_STS_MEDIUM;
a751da33
CH
277 case NVME_SC_GUARD_CHECK:
278 case NVME_SC_APPTAG_CHECK:
279 case NVME_SC_REFTAG_CHECK:
280 case NVME_SC_INVALID_PI:
281 return BLK_STS_PROTECTION;
282 case NVME_SC_RESERVATION_CONFLICT:
7ba15083 283 return BLK_STS_RESV_CONFLICT;
1c0d12c0
SG
284 case NVME_SC_HOST_PATH_ERROR:
285 return BLK_STS_TRANSPORT;
afaf5c6c
KB
286 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
287 return BLK_STS_ZONE_ACTIVE_RESOURCE;
288 case NVME_SC_ZONE_TOO_MANY_OPEN:
289 return BLK_STS_ZONE_OPEN_RESOURCE;
2a842aca
CH
290 default:
291 return BLK_STS_IOERR;
27fa9bc5
CH
292 }
293}
27fa9bc5 294
49cd84b6
KB
295static void nvme_retry_req(struct request *req)
296{
49cd84b6
KB
297 unsigned long delay = 0;
298 u16 crd;
299
300 /* The mask and shift result must be <= 3 */
301 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
f9063a53
MI
302 if (crd)
303 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
49cd84b6
KB
304
305 nvme_req(req)->retries++;
306 blk_mq_requeue_request(req, false);
307 blk_mq_delay_kick_requeue_list(req->q, delay);
308}
309
bd83fe6f
AA
310static void nvme_log_error(struct request *req)
311{
312 struct nvme_ns *ns = req->q->queuedata;
313 struct nvme_request *nr = nvme_req(req);
314
315 if (ns) {
9419e71b 316 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
bd83fe6f
AA
317 ns->disk ? ns->disk->disk_name : "?",
318 nvme_get_opcode_str(nr->cmd->common.opcode),
319 nr->cmd->common.opcode,
0372dd4e 320 nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
9419e71b 321 blk_rq_bytes(req) >> ns->head->lba_shift,
bd83fe6f
AA
322 nvme_get_error_status_str(nr->status),
323 nr->status >> 8 & 7, /* Status Code Type */
324 nr->status & 0xff, /* Status Code */
325 nr->status & NVME_SC_MORE ? "MORE " : "",
326 nr->status & NVME_SC_DNR ? "DNR " : "");
327 return;
328 }
329
330 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
331 dev_name(nr->ctrl->device),
332 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
333 nr->cmd->common.opcode,
334 nvme_get_error_status_str(nr->status),
335 nr->status >> 8 & 7, /* Status Code Type */
336 nr->status & 0xff, /* Status Code */
337 nr->status & NVME_SC_MORE ? "MORE " : "",
338 nr->status & NVME_SC_DNR ? "DNR " : "");
339}
340
9f079dda
AA
341static void nvme_log_err_passthru(struct request *req)
342{
343 struct nvme_ns *ns = req->q->queuedata;
344 struct nvme_request *nr = nvme_req(req);
345
346 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
347 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
348 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
349 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
350 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
351 nr->cmd->common.opcode,
352 nvme_get_error_status_str(nr->status),
353 nr->status >> 8 & 7, /* Status Code Type */
354 nr->status & 0xff, /* Status Code */
355 nr->status & NVME_SC_MORE ? "MORE " : "",
356 nr->status & NVME_SC_DNR ? "DNR " : "",
357 nr->cmd->common.cdw10,
358 nr->cmd->common.cdw11,
359 nr->cmd->common.cdw12,
360 nr->cmd->common.cdw13,
361 nr->cmd->common.cdw14,
362 nr->cmd->common.cdw14);
363}
364
5ddaabe8
CH
365enum nvme_disposition {
366 COMPLETE,
367 RETRY,
368 FAILOVER,
f50fff73 369 AUTHENTICATE,
5ddaabe8
CH
370};
371
372static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
77f02a7a 373{
5ddaabe8
CH
374 if (likely(nvme_req(req)->status == 0))
375 return COMPLETE;
908e4564 376
f50fff73
HR
377 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
378 return AUTHENTICATE;
379
5ddaabe8
CH
380 if (blk_noretry_request(req) ||
381 (nvme_req(req)->status & NVME_SC_DNR) ||
382 nvme_req(req)->retries >= nvme_max_retries)
383 return COMPLETE;
ca5554a6 384
5ddaabe8 385 if (req->cmd_flags & REQ_NVME_MPATH) {
5eac5f33
CL
386 if (nvme_is_path_error(nvme_req(req)->status) ||
387 blk_queue_dying(req->q))
5ddaabe8 388 return FAILOVER;
5eac5f33
CL
389 } else {
390 if (blk_queue_dying(req->q))
391 return COMPLETE;
5ddaabe8 392 }
16686f3a 393
5ddaabe8
CH
394 return RETRY;
395}
6e3ca03e 396
c234a653 397static inline void nvme_end_req_zoned(struct request *req)
5ddaabe8 398{
5ddaabe8 399 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
0372dd4e
DW
400 req_op(req) == REQ_OP_ZONE_APPEND) {
401 struct nvme_ns *ns = req->q->queuedata;
402
403 req->__sector = nvme_lba_to_sect(ns->head,
240e6ee2 404 le64_to_cpu(nvme_req(req)->result.u64));
0372dd4e 405 }
c234a653
JA
406}
407
408static inline void nvme_end_req(struct request *req)
409{
410 blk_status_t status = nvme_error_status(nvme_req(req)->status);
35fe0d12 411
9f079dda
AA
412 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
413 if (blk_rq_is_passthrough(req))
414 nvme_log_err_passthru(req);
415 else
416 nvme_log_error(req);
417 }
c234a653 418 nvme_end_req_zoned(req);
2b59787a 419 nvme_trace_bio_complete(req);
d4d957b5
SG
420 if (req->cmd_flags & REQ_NVME_MPATH)
421 nvme_mpath_end_request(req);
908e4564 422 blk_mq_end_request(req, status);
77f02a7a 423}
5ddaabe8
CH
424
425void nvme_complete_rq(struct request *req)
426{
f50fff73
HR
427 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
428
5ddaabe8
CH
429 trace_nvme_complete_rq(req);
430 nvme_cleanup_cmd(req);
431
774a9636
US
432 /*
433 * Completions of long-running commands should not be able to
434 * defer sending of periodic keep alives, since the controller
435 * may have completed processing such commands a long time ago
436 * (arbitrarily close to command submission time).
437 * req->deadline - req->timeout is the command submission time
438 * in jiffies.
439 */
440 if (ctrl->kas &&
441 req->deadline - req->timeout >= ctrl->ka_last_check_time)
f50fff73 442 ctrl->comp_seen = true;
5ddaabe8
CH
443
444 switch (nvme_decide_disposition(req)) {
445 case COMPLETE:
446 nvme_end_req(req);
447 return;
448 case RETRY:
449 nvme_retry_req(req);
450 return;
451 case FAILOVER:
452 nvme_failover_req(req);
453 return;
f50fff73 454 case AUTHENTICATE:
d6800634 455#ifdef CONFIG_NVME_HOST_AUTH
f50fff73
HR
456 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
457 nvme_retry_req(req);
458#else
459 nvme_end_req(req);
460#endif
461 return;
5ddaabe8
CH
462 }
463}
77f02a7a
CH
464EXPORT_SYMBOL_GPL(nvme_complete_rq);
465
c234a653
JA
466void nvme_complete_batch_req(struct request *req)
467{
00e757b6 468 trace_nvme_complete_rq(req);
c234a653
JA
469 nvme_cleanup_cmd(req);
470 nvme_end_req_zoned(req);
471}
472EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
473
dda3248e
CL
474/*
475 * Called to unwind from ->queue_rq on a failed command submission so that the
476 * multipathing code gets called to potentially failover to another path.
477 * The caller needs to unwind all transport specific resource allocations and
478 * must return propagate the return value.
479 */
480blk_status_t nvme_host_path_error(struct request *req)
481{
482 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
483 blk_mq_set_request_complete(req);
484 nvme_complete_rq(req);
485 return BLK_STS_OK;
486}
487EXPORT_SYMBOL_GPL(nvme_host_path_error);
488
2dd6532e 489bool nvme_cancel_request(struct request *req, void *data)
c55a2fd4 490{
c55a2fd4
ML
491 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
492 "Cancelling I/O %d", req->tag);
493
d4f1d5f7
LY
494 /* don't abort one completed or idle request */
495 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
78ca4072
ML
496 return true;
497
2dc3947b 498 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
d3589381 499 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
15f73f5b 500 blk_mq_complete_request(req);
7baa8572 501 return true;
c55a2fd4
ML
502}
503EXPORT_SYMBOL_GPL(nvme_cancel_request);
504
25479069
CL
505void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
506{
507 if (ctrl->tagset) {
508 blk_mq_tagset_busy_iter(ctrl->tagset,
509 nvme_cancel_request, ctrl);
510 blk_mq_tagset_wait_completed_request(ctrl->tagset);
511 }
512}
513EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
514
515void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
516{
517 if (ctrl->admin_tagset) {
518 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
519 nvme_cancel_request, ctrl);
520 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
521 }
522}
523EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
524
bb8d261e
CH
525bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
526 enum nvme_ctrl_state new_state)
527{
f6b6a28e 528 enum nvme_ctrl_state old_state;
0a72bbba 529 unsigned long flags;
bb8d261e
CH
530 bool changed = false;
531
0a72bbba 532 spin_lock_irqsave(&ctrl->lock, flags);
f6b6a28e 533
e6e7f7ac 534 old_state = nvme_ctrl_state(ctrl);
bb8d261e
CH
535 switch (new_state) {
536 case NVME_CTRL_LIVE:
537 switch (old_state) {
7d2e8008 538 case NVME_CTRL_NEW:
bb8d261e 539 case NVME_CTRL_RESETTING:
ad6a0a52 540 case NVME_CTRL_CONNECTING:
bb8d261e 541 changed = true;
df561f66 542 fallthrough;
bb8d261e
CH
543 default:
544 break;
545 }
546 break;
547 case NVME_CTRL_RESETTING:
548 switch (old_state) {
549 case NVME_CTRL_NEW:
def61eca 550 case NVME_CTRL_LIVE:
def61eca 551 changed = true;
df561f66 552 fallthrough;
def61eca
CH
553 default:
554 break;
555 }
556 break;
ad6a0a52 557 case NVME_CTRL_CONNECTING:
def61eca 558 switch (old_state) {
b754a32c 559 case NVME_CTRL_NEW:
3cec7f9d 560 case NVME_CTRL_RESETTING:
bb8d261e 561 changed = true;
df561f66 562 fallthrough;
bb8d261e
CH
563 default:
564 break;
565 }
566 break;
567 case NVME_CTRL_DELETING:
568 switch (old_state) {
569 case NVME_CTRL_LIVE:
570 case NVME_CTRL_RESETTING:
ad6a0a52 571 case NVME_CTRL_CONNECTING:
bb8d261e 572 changed = true;
df561f66 573 fallthrough;
bb8d261e
CH
574 default:
575 break;
576 }
577 break;
ecca390e
SG
578 case NVME_CTRL_DELETING_NOIO:
579 switch (old_state) {
580 case NVME_CTRL_DELETING:
581 case NVME_CTRL_DEAD:
582 changed = true;
df561f66 583 fallthrough;
ecca390e
SG
584 default:
585 break;
586 }
587 break;
0ff9d4e1
KB
588 case NVME_CTRL_DEAD:
589 switch (old_state) {
590 case NVME_CTRL_DELETING:
591 changed = true;
df561f66 592 fallthrough;
0ff9d4e1
KB
593 default:
594 break;
595 }
596 break;
bb8d261e
CH
597 default:
598 break;
599 }
bb8d261e 600
c1ac9a4b 601 if (changed) {
e6e7f7ac 602 WRITE_ONCE(ctrl->state, new_state);
c1ac9a4b
KB
603 wake_up_all(&ctrl->state_wq);
604 }
bb8d261e 605
0a72bbba 606 spin_unlock_irqrestore(&ctrl->lock, flags);
8c4dfea9
VG
607 if (!changed)
608 return false;
609
e6e7f7ac 610 if (new_state == NVME_CTRL_LIVE) {
8c4dfea9
VG
611 if (old_state == NVME_CTRL_CONNECTING)
612 nvme_stop_failfast_work(ctrl);
32acab31 613 nvme_kick_requeue_lists(ctrl);
e6e7f7ac 614 } else if (new_state == NVME_CTRL_CONNECTING &&
8c4dfea9
VG
615 old_state == NVME_CTRL_RESETTING) {
616 nvme_start_failfast_work(ctrl);
617 }
bb8d261e
CH
618 return changed;
619}
620EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
621
c1ac9a4b
KB
622/*
623 * Returns true for sink states that can't ever transition back to live.
624 */
625static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
626{
e6e7f7ac 627 switch (nvme_ctrl_state(ctrl)) {
c1ac9a4b
KB
628 case NVME_CTRL_NEW:
629 case NVME_CTRL_LIVE:
630 case NVME_CTRL_RESETTING:
631 case NVME_CTRL_CONNECTING:
632 return false;
633 case NVME_CTRL_DELETING:
ecca390e 634 case NVME_CTRL_DELETING_NOIO:
c1ac9a4b
KB
635 case NVME_CTRL_DEAD:
636 return true;
637 default:
638 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
639 return true;
640 }
641}
642
643/*
644 * Waits for the controller state to be resetting, or returns false if it is
645 * not possible to ever transition to that state.
646 */
647bool nvme_wait_reset(struct nvme_ctrl *ctrl)
648{
649 wait_event(ctrl->state_wq,
650 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
651 nvme_state_terminal(ctrl));
e6e7f7ac 652 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
c1ac9a4b
KB
653}
654EXPORT_SYMBOL_GPL(nvme_wait_reset);
655
ed754e5d
CH
656static void nvme_free_ns_head(struct kref *ref)
657{
658 struct nvme_ns_head *head =
659 container_of(ref, struct nvme_ns_head, ref);
660
32acab31 661 nvme_mpath_remove_disk(head);
8b850475 662 ida_free(&head->subsys->ns_ida, head->instance);
f5ad3991 663 cleanup_srcu_struct(&head->srcu);
12d9f070 664 nvme_put_subsystem(head->subsys);
ed754e5d
CH
665 kfree(head);
666}
667
1496bd49 668bool nvme_tryget_ns_head(struct nvme_ns_head *head)
871ca3ef
CH
669{
670 return kref_get_unless_zero(&head->ref);
671}
672
1496bd49 673void nvme_put_ns_head(struct nvme_ns_head *head)
ed754e5d
CH
674{
675 kref_put(&head->ref, nvme_free_ns_head);
676}
677
1673f1f0
CH
678static void nvme_free_ns(struct kref *kref)
679{
680 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
681
1673f1f0 682 put_disk(ns->disk);
ed754e5d 683 nvme_put_ns_head(ns->head);
075790eb 684 nvme_put_ctrl(ns->ctrl);
1673f1f0
CH
685 kfree(ns);
686}
687
4c74d1f8
KJ
688static inline bool nvme_get_ns(struct nvme_ns *ns)
689{
690 return kref_get_unless_zero(&ns->kref);
691}
692
24493b8b 693void nvme_put_ns(struct nvme_ns *ns)
1673f1f0
CH
694{
695 kref_put(&ns->kref, nvme_free_ns);
696}
24493b8b 697EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
1673f1f0 698
bb06ec31
JS
699static inline void nvme_clear_nvme_request(struct request *req)
700{
ae5e6886 701 nvme_req(req)->status = 0;
c03fd85d
CK
702 nvme_req(req)->retries = 0;
703 nvme_req(req)->flags = 0;
704 req->rq_flags |= RQF_DONTPREP;
bb06ec31
JS
705}
706
e559398f
CH
707/* initialize a passthrough request */
708void nvme_init_request(struct request *req, struct nvme_command *cmd)
39dfe844 709{
9f079dda
AA
710 struct nvme_request *nr = nvme_req(req);
711 bool logging_enabled;
712
713 if (req->q->queuedata) {
714 struct nvme_ns *ns = req->q->disk->private_data;
715
716 logging_enabled = ns->passthru_err_log_enabled;
0d2e7c84 717 req->timeout = NVME_IO_TIMEOUT;
9f079dda
AA
718 } else { /* no queuedata implies admin queue */
719 logging_enabled = nr->ctrl->passthru_err_log_enabled;
dc96f938 720 req->timeout = NVME_ADMIN_TIMEOUT;
9f079dda
AA
721 }
722
723 if (!logging_enabled)
724 req->rq_flags |= RQF_QUIET;
21d34711 725
f4b9e6c9
KB
726 /* passthru commands should let the driver set the SGL flags */
727 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
728
21d34711 729 req->cmd_flags |= REQ_FAILFAST_DRIVER;
be42a33b 730 if (req->mq_hctx->type == HCTX_TYPE_POLL)
6ce913fe 731 req->cmd_flags |= REQ_POLLED;
bb06ec31 732 nvme_clear_nvme_request(req);
9f079dda 733 memcpy(nr->cmd, cmd, sizeof(*cmd));
39dfe844 734}
e559398f 735EXPORT_SYMBOL_GPL(nvme_init_request);
39dfe844 736
a9715744
TC
737/*
738 * For something we're not in a state to send to the device the default action
739 * is to busy it and retry it after the controller state is recovered. However,
740 * if the controller is deleting or if anything is marked for failfast or
741 * nvme multipath it is immediately failed.
742 *
743 * Note: commands used to initialize the controller will be marked for failfast.
744 * Note: nvme cli/ioctl commands are marked for failfast.
745 */
746blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
747 struct request *rq)
748{
e6e7f7ac
KB
749 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
750
751 if (state != NVME_CTRL_DELETING_NOIO &&
752 state != NVME_CTRL_DELETING &&
753 state != NVME_CTRL_DEAD &&
a9715744
TC
754 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
755 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
756 return BLK_STS_RESOURCE;
757 return nvme_host_path_error(rq);
758}
759EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
760
761bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
6d3c7fb1 762 bool queue_live, enum nvme_ctrl_state state)
a9715744
TC
763{
764 struct nvme_request *req = nvme_req(rq);
765
766 /*
767 * currently we have a problem sending passthru commands
768 * on the admin_q if the controller is not LIVE because we can't
769 * make sure that they are going out after the admin connect,
770 * controller enable and/or other commands in the initialization
771 * sequence. until the controller will be LIVE, fail with
772 * BLK_STS_RESOURCE so that they will be rescheduled.
773 */
774 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
775 return false;
776
777 if (ctrl->ops->flags & NVME_F_FABRICS) {
778 /*
779 * Only allow commands on a live queue, except for the connect
780 * command, which is require to set the queue live in the
781 * appropinquate states.
782 */
6d3c7fb1 783 switch (state) {
a9715744
TC
784 case NVME_CTRL_CONNECTING:
785 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
f50fff73
HR
786 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
787 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
788 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
a9715744
TC
789 return true;
790 break;
791 default:
792 break;
793 case NVME_CTRL_DEAD:
794 return false;
795 }
796 }
797
798 return queue_live;
799}
800EXPORT_SYMBOL_GPL(__nvme_check_ready);
801
8093f7ca
ML
802static inline void nvme_setup_flush(struct nvme_ns *ns,
803 struct nvme_command *cmnd)
804{
9c3d2929 805 memset(cmnd, 0, sizeof(*cmnd));
8093f7ca 806 cmnd->common.opcode = nvme_cmd_flush;
ed754e5d 807 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
8093f7ca
ML
808}
809
fc17b653 810static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
8093f7ca
ML
811 struct nvme_command *cmnd)
812{
b35ba01e 813 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
8093f7ca 814 struct nvme_dsm_range *range;
b35ba01e 815 struct bio *bio;
8093f7ca 816
530436c4
EH
817 /*
818 * Some devices do not consider the DSM 'Number of Ranges' field when
819 * determining how much data to DMA. Always allocate memory for maximum
820 * number of segments to prevent device reading beyond end of buffer.
821 */
822 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
823
824 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
cb5b7262
JA
825 if (!range) {
826 /*
827 * If we fail allocation our range, fallback to the controller
828 * discard page. If that's also busy, it's safe to return
829 * busy, as we know we can make progress once that's freed.
830 */
831 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
832 return BLK_STS_RESOURCE;
833
834 range = page_address(ns->ctrl->discard_page);
835 }
8093f7ca 836
37f0dc2e 837 if (queue_max_discard_segments(req->q) == 1) {
0372dd4e 838 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
9419e71b 839 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
37f0dc2e
ML
840
841 range[0].cattr = cpu_to_le32(0);
842 range[0].nlb = cpu_to_le32(nlb);
843 range[0].slba = cpu_to_le64(slba);
844 n = 1;
845 } else {
846 __rq_for_each_bio(bio, req) {
0372dd4e
DW
847 u64 slba = nvme_sect_to_lba(ns->head,
848 bio->bi_iter.bi_sector);
9419e71b 849 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
37f0dc2e
ML
850
851 if (n < segments) {
852 range[n].cattr = cpu_to_le32(0);
853 range[n].nlb = cpu_to_le32(nlb);
854 range[n].slba = cpu_to_le64(slba);
855 }
856 n++;
8cb6af7b 857 }
b35ba01e
CH
858 }
859
860 if (WARN_ON_ONCE(n != segments)) {
cb5b7262
JA
861 if (virt_to_page(range) == ns->ctrl->discard_page)
862 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
863 else
864 kfree(range);
fc17b653 865 return BLK_STS_IOERR;
b35ba01e 866 }
8093f7ca 867
9c3d2929 868 memset(cmnd, 0, sizeof(*cmnd));
8093f7ca 869 cmnd->dsm.opcode = nvme_cmd_dsm;
ed754e5d 870 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
f1dd03a8 871 cmnd->dsm.nr = cpu_to_le32(segments - 1);
8093f7ca
ML
872 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
873
4bee16da 874 bvec_set_virt(&req->special_vec, range, alloc_size);
f9d03f96 875 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
8093f7ca 876
fc17b653 877 return BLK_STS_OK;
8093f7ca 878}
8093f7ca 879
4020aad8
KB
880static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
881 struct request *req)
882{
883 u32 upper, lower;
884 u64 ref48;
885
886 /* both rw and write zeroes share the same reftag format */
9419e71b 887 switch (ns->head->guard_type) {
4020aad8
KB
888 case NVME_NVM_NS_16B_GUARD:
889 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
890 break;
891 case NVME_NVM_NS_64B_GUARD:
892 ref48 = ext_pi_ref_tag(req);
893 lower = lower_32_bits(ref48);
894 upper = upper_32_bits(ref48);
895
896 cmnd->rw.reftag = cpu_to_le32(lower);
897 cmnd->rw.cdw3 = cpu_to_le32(upper);
898 break;
899 default:
900 break;
901 }
902}
903
6e02318e
CK
904static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
905 struct request *req, struct nvme_command *cmnd)
906{
9c3d2929
JA
907 memset(cmnd, 0, sizeof(*cmnd));
908
6e02318e
CK
909 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
910 return nvme_setup_discard(ns, req, cmnd);
911
912 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
913 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
914 cmnd->write_zeroes.slba =
0372dd4e 915 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
6e02318e 916 cmnd->write_zeroes.length =
9419e71b 917 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
00b33cf3 918
9419e71b
DW
919 if (!(req->cmd_flags & REQ_NOUNMAP) &&
920 (ns->head->features & NVME_NS_DEAC))
1b96f862
CH
921 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
922
0372dd4e 923 if (nvme_ns_has_pi(ns->head)) {
1b96f862 924 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
00b33cf3 925
9419e71b 926 switch (ns->head->pi_type) {
00b33cf3
KJ
927 case NVME_NS_DPS_PI_TYPE1:
928 case NVME_NS_DPS_PI_TYPE2:
4020aad8 929 nvme_set_ref_tag(ns, cmnd, req);
00b33cf3
KJ
930 break;
931 }
932 }
933
6e02318e
CK
934 return BLK_STS_OK;
935}
936
ebe6d874 937static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
240e6ee2
KB
938 struct request *req, struct nvme_command *cmnd,
939 enum nvme_opcode op)
8093f7ca
ML
940{
941 u16 control = 0;
942 u32 dsmgmt = 0;
943
944 if (req->cmd_flags & REQ_FUA)
945 control |= NVME_RW_FUA;
946 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
947 control |= NVME_RW_LR;
948
949 if (req->cmd_flags & REQ_RAHEAD)
950 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
951
240e6ee2 952 cmnd->rw.opcode = op;
a9a7e30f 953 cmnd->rw.flags = 0;
ed754e5d 954 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
4020aad8
KB
955 cmnd->rw.cdw2 = 0;
956 cmnd->rw.cdw3 = 0;
a9a7e30f 957 cmnd->rw.metadata = 0;
0372dd4e
DW
958 cmnd->rw.slba =
959 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
9419e71b
DW
960 cmnd->rw.length =
961 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
a9a7e30f
JA
962 cmnd->rw.reftag = 0;
963 cmnd->rw.apptag = 0;
964 cmnd->rw.appmask = 0;
8093f7ca 965
9419e71b 966 if (ns->head->ms) {
715ea9e0
CH
967 /*
968 * If formated with metadata, the block layer always provides a
969 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
970 * we enable the PRACT bit for protection information or set the
971 * namespace capacity to zero to prevent any I/O.
972 */
973 if (!blk_integrity_rq(req)) {
0372dd4e 974 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
715ea9e0
CH
975 return BLK_STS_NOTSUPP;
976 control |= NVME_RW_PRINFO_PRACT;
977 }
978
9419e71b 979 switch (ns->head->pi_type) {
8093f7ca
ML
980 case NVME_NS_DPS_PI_TYPE3:
981 control |= NVME_RW_PRINFO_PRCHK_GUARD;
982 break;
983 case NVME_NS_DPS_PI_TYPE1:
984 case NVME_NS_DPS_PI_TYPE2:
985 control |= NVME_RW_PRINFO_PRCHK_GUARD |
986 NVME_RW_PRINFO_PRCHK_REF;
240e6ee2
KB
987 if (op == nvme_cmd_zone_append)
988 control |= NVME_RW_APPEND_PIREMAP;
4020aad8 989 nvme_set_ref_tag(ns, cmnd, req);
8093f7ca
ML
990 break;
991 }
8093f7ca
ML
992 }
993
994 cmnd->rw.control = cpu_to_le16(control);
995 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
ebe6d874 996 return 0;
8093f7ca
ML
997}
998
f7f1fc36
MG
999void nvme_cleanup_cmd(struct request *req)
1000{
f7f1fc36 1001 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
fc97e942 1002 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
cb5b7262 1003
3973e15f 1004 if (req->special_vec.bv_page == ctrl->discard_page)
fc97e942 1005 clear_bit_unlock(0, &ctrl->discard_page_busy);
cb5b7262 1006 else
3973e15f 1007 kfree(bvec_virt(&req->special_vec));
f7f1fc36
MG
1008 }
1009}
1010EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1011
f4b9e6c9 1012blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
8093f7ca 1013{
f4b9e6c9 1014 struct nvme_command *cmd = nvme_req(req)->cmd;
fc17b653 1015 blk_status_t ret = BLK_STS_OK;
8093f7ca 1016
9c3d2929 1017 if (!(req->rq_flags & RQF_DONTPREP))
c03fd85d 1018 nvme_clear_nvme_request(req);
987f699a 1019
aebf526b
CH
1020 switch (req_op(req)) {
1021 case REQ_OP_DRV_IN:
1022 case REQ_OP_DRV_OUT:
f4b9e6c9 1023 /* these are setup prior to execution in nvme_init_request() */
aebf526b
CH
1024 break;
1025 case REQ_OP_FLUSH:
8093f7ca 1026 nvme_setup_flush(ns, cmd);
aebf526b 1027 break;
240e6ee2
KB
1028 case REQ_OP_ZONE_RESET_ALL:
1029 case REQ_OP_ZONE_RESET:
1030 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1031 break;
1032 case REQ_OP_ZONE_OPEN:
1033 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1034 break;
1035 case REQ_OP_ZONE_CLOSE:
1036 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1037 break;
1038 case REQ_OP_ZONE_FINISH:
1039 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1040 break;
e850fd16 1041 case REQ_OP_WRITE_ZEROES:
6e02318e
CK
1042 ret = nvme_setup_write_zeroes(ns, req, cmd);
1043 break;
aebf526b 1044 case REQ_OP_DISCARD:
8093f7ca 1045 ret = nvme_setup_discard(ns, req, cmd);
aebf526b
CH
1046 break;
1047 case REQ_OP_READ:
240e6ee2
KB
1048 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1049 break;
aebf526b 1050 case REQ_OP_WRITE:
240e6ee2
KB
1051 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1052 break;
1053 case REQ_OP_ZONE_APPEND:
1054 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
aebf526b
CH
1055 break;
1056 default:
1057 WARN_ON_ONCE(1);
fc17b653 1058 return BLK_STS_IOERR;
aebf526b 1059 }
8093f7ca 1060
e7006de6 1061 cmd->common.command_id = nvme_cid(req);
5d87eb94 1062 trace_nvme_setup_cmd(req, cmd);
8093f7ca
ML
1063 return ret;
1064}
1065EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1066
ae5e6886
KB
1067/*
1068 * Return values:
1069 * 0: success
1070 * >0: nvme controller's cqe status response
1071 * <0: kernel error in lieu of controller response
1072 */
62281b9e 1073int nvme_execute_rq(struct request *rq, bool at_head)
ae5e6886
KB
1074{
1075 blk_status_t status;
1076
b84ba30b 1077 status = blk_execute_rq(rq, at_head);
ae5e6886
KB
1078 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1079 return -EINTR;
1080 if (nvme_req(rq)->status)
1081 return nvme_req(rq)->status;
1082 return blk_status_to_errno(status);
1083}
62281b9e 1084EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
ae5e6886 1085
4160982e
CH
1086/*
1087 * Returns 0 on success. If the result is negative, it's a Linux error code;
1088 * if the result is positive, it's an NVM Express status code
1089 */
1090int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
d49187e9 1091 union nvme_result *result, void *buffer, unsigned bufflen,
bd2687f2 1092 int qid, nvme_submit_flags_t flags)
4160982e
CH
1093{
1094 struct request *req;
1095 int ret;
bd2687f2 1096 blk_mq_req_flags_t blk_flags = 0;
4160982e 1097
bd2687f2
HR
1098 if (flags & NVME_SUBMIT_NOWAIT)
1099 blk_flags |= BLK_MQ_REQ_NOWAIT;
1100 if (flags & NVME_SUBMIT_RESERVED)
1101 blk_flags |= BLK_MQ_REQ_RESERVED;
39dfe844 1102 if (qid == NVME_QID_ANY)
bd2687f2 1103 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
39dfe844 1104 else
bd2687f2 1105 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
b10907b8 1106 qid - 1);
e559398f 1107
4160982e
CH
1108 if (IS_ERR(req))
1109 return PTR_ERR(req);
e559398f 1110 nvme_init_request(req, cmd);
48dae466
HR
1111 if (flags & NVME_SUBMIT_RETRY)
1112 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
4160982e 1113
21d34711
CH
1114 if (buffer && bufflen) {
1115 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1116 if (ret)
1117 goto out;
4160982e
CH
1118 }
1119
bd2687f2 1120 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
ae5e6886 1121 if (result && ret >= 0)
d49187e9 1122 *result = nvme_req(req)->result;
4160982e
CH
1123 out:
1124 blk_mq_free_request(req);
1125 return ret;
1126}
eb71f435 1127EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
4160982e
CH
1128
1129int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1130 void *buffer, unsigned bufflen)
1131{
6b46fa02 1132 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
bd2687f2 1133 NVME_QID_ANY, 0);
4160982e 1134}
576d55d6 1135EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
4160982e 1136
df21b6b1
LG
1137u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1138{
1139 u32 effects = 0;
1140
1141 if (ns) {
cc115cbe 1142 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
df21b6b1 1143 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
ed4a854b 1144 dev_warn_once(ctrl->device,
831ed60c 1145 "IO command:%02x has unusual effects:%08x\n",
ed4a854b 1146 opcode, effects);
df21b6b1 1147
831ed60c
CH
1148 /*
1149 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1150 * which would deadlock when done on an I/O command. Note that
1151 * We already warn about an unusual effect above.
1152 */
1153 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1154 } else {
cc115cbe 1155 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
831ed60c 1156 }
df21b6b1
LG
1157
1158 return effects;
1159}
1160EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1161
62281b9e 1162u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
df21b6b1
LG
1163{
1164 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1165
1166 /*
1167 * For simplicity, IO to all namespaces is quiesced even if the command
1168 * effects say only one namespace is affected.
1169 */
af0f446d 1170 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
df21b6b1
LG
1171 mutex_lock(&ctrl->scan_lock);
1172 mutex_lock(&ctrl->subsys->lock);
1173 nvme_mpath_start_freeze(ctrl->subsys);
1174 nvme_mpath_wait_freeze(ctrl->subsys);
1175 nvme_start_freeze(ctrl);
1176 nvme_wait_freeze(ctrl);
1177 }
1178 return effects;
1179}
62281b9e 1180EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
df21b6b1 1181
31a59782 1182void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
bc8fb906 1183 struct nvme_command *cmd, int status)
df21b6b1 1184{
af0f446d 1185 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
df21b6b1
LG
1186 nvme_unfreeze(ctrl);
1187 nvme_mpath_unfreeze(ctrl->subsys);
1188 mutex_unlock(&ctrl->subsys->lock);
df21b6b1
LG
1189 mutex_unlock(&ctrl->scan_lock);
1190 }
1e37a307 1191 if (effects & NVME_CMD_EFFECTS_CCC) {
d0dd594b
BL
1192 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1193 &ctrl->flags)) {
1194 dev_info(ctrl->device,
1e37a307 1195"controller capabilities changed, reset may be required to take effect.\n");
d0dd594b 1196 }
1e37a307 1197 }
df21b6b1
LG
1198 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1199 nvme_queue_scan(ctrl);
1200 flush_work(&ctrl->scan_work);
1201 }
31a59782 1202 if (ns)
1203 return;
b58da2d2
TS
1204
1205 switch (cmd->common.opcode) {
1206 case nvme_admin_set_features:
1207 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1208 case NVME_FEAT_KATO:
1209 /*
1210 * Keep alive commands interval on the host should be
1211 * updated when KATO is modified by Set Features
1212 * commands.
1213 */
1214 if (!status)
1215 nvme_update_keep_alive(ctrl, cmd);
1216 break;
1217 default:
1218 break;
1219 }
1220 break;
1221 default:
1222 break;
1223 }
df21b6b1 1224}
bc8fb906 1225EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
df21b6b1 1226
a70b81bd
HR
1227/*
1228 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1229 *
1230 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1231 * accounting for transport roundtrip times [..].
1232 */
ea4d453b
US
1233static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1234{
1235 unsigned long delay = ctrl->kato * HZ / 2;
1236
1237 /*
1238 * When using Traffic Based Keep Alive, we need to run
1239 * nvme_keep_alive_work at twice the normal frequency, as one
1240 * command completion can postpone sending a keep alive command
1241 * by up to twice the delay between runs.
1242 */
1243 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1244 delay /= 2;
1245 return delay;
1246}
1247
a70b81bd 1248static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
4160982e 1249{
136cfcb8
MD
1250 unsigned long now = jiffies;
1251 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1252 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1253
1254 if (time_after(now, ka_next_check_tm))
1255 delay = 0;
1256 else
1257 delay = ka_next_check_tm - now;
1258
1259 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
21d34711
CH
1260}
1261
de671d61
JA
1262static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1263 blk_status_t status)
038bd4cb
SG
1264{
1265 struct nvme_ctrl *ctrl = rq->end_io_data;
86880d64
JS
1266 unsigned long flags;
1267 bool startka = false;
c7275ce6
US
1268 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1269 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1270
1271 /*
1272 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1273 * at the desired frequency.
1274 */
1275 if (rtt <= delay) {
1276 delay -= rtt;
1277 } else {
1278 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1279 jiffies_to_msecs(rtt));
1280 delay = 0;
1281 }
038bd4cb
SG
1282
1283 blk_mq_free_request(rq);
1284
2a842aca 1285 if (status) {
038bd4cb 1286 dev_err(ctrl->device,
2a842aca
CH
1287 "failed nvme_keep_alive_end_io error=%d\n",
1288 status);
de671d61 1289 return RQ_END_IO_NONE;
038bd4cb
SG
1290 }
1291
774a9636 1292 ctrl->ka_last_check_time = jiffies;
6e3ca03e 1293 ctrl->comp_seen = false;
86880d64
JS
1294 spin_lock_irqsave(&ctrl->lock, flags);
1295 if (ctrl->state == NVME_CTRL_LIVE ||
1296 ctrl->state == NVME_CTRL_CONNECTING)
1297 startka = true;
1298 spin_unlock_irqrestore(&ctrl->lock, flags);
1299 if (startka)
c7275ce6 1300 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
de671d61 1301 return RQ_END_IO_NONE;
038bd4cb
SG
1302}
1303
038bd4cb
SG
1304static void nvme_keep_alive_work(struct work_struct *work)
1305{
1306 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1307 struct nvme_ctrl, ka_work);
6e3ca03e 1308 bool comp_seen = ctrl->comp_seen;
06c3c336 1309 struct request *rq;
6e3ca03e 1310
774a9636
US
1311 ctrl->ka_last_check_time = jiffies;
1312
6e3ca03e
SG
1313 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1314 dev_dbg(ctrl->device,
1315 "reschedule traffic based keep-alive timer\n");
1316 ctrl->comp_seen = false;
a70b81bd 1317 nvme_queue_keep_alive_work(ctrl);
6e3ca03e
SG
1318 return;
1319 }
038bd4cb 1320
e559398f
CH
1321 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1322 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
06c3c336 1323 if (IS_ERR(rq)) {
038bd4cb 1324 /* allocation failure, reset the controller */
985c5a32 1325 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
39bdc590 1326 nvme_reset_ctrl(ctrl);
038bd4cb
SG
1327 return;
1328 }
e559398f 1329 nvme_init_request(rq, &ctrl->ka_cmd);
06c3c336
CH
1330
1331 rq->timeout = ctrl->kato * HZ;
e2e53086 1332 rq->end_io = nvme_keep_alive_end_io;
06c3c336 1333 rq->end_io_data = ctrl;
e2e53086 1334 blk_execute_rq_nowait(rq, false);
038bd4cb
SG
1335}
1336
00b683db 1337static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
038bd4cb
SG
1338{
1339 if (unlikely(ctrl->kato == 0))
1340 return;
1341
a70b81bd 1342 nvme_queue_keep_alive_work(ctrl);
038bd4cb 1343}
038bd4cb
SG
1344
1345void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1346{
1347 if (unlikely(ctrl->kato == 0))
1348 return;
1349
1350 cancel_delayed_work_sync(&ctrl->ka_work);
1351}
1352EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1353
b58da2d2
TS
1354static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1355 struct nvme_command *cmd)
1356{
1357 unsigned int new_kato =
1358 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1359
1360 dev_info(ctrl->device,
1361 "keep alive interval updated from %u ms to %u ms\n",
1362 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1363
1364 nvme_stop_keep_alive(ctrl);
1365 ctrl->kato = new_kato;
1366 nvme_start_keep_alive(ctrl);
1367}
1368
b9a5c3d4
CH
1369/*
1370 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1371 * flag, thus sending any new CNS opcodes has a big chance of not working.
1372 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1373 * (but not for any later version).
1374 */
1375static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1376{
1377 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1378 return ctrl->vs < NVME_VS(1, 2, 0);
1379 return ctrl->vs < NVME_VS(1, 1, 0);
1380}
1381
3f7f25a9 1382static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
21d34711
CH
1383{
1384 struct nvme_command c = { };
1385 int error;
1386
1387 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1388 c.identify.opcode = nvme_admin_identify;
986994a2 1389 c.identify.cns = NVME_ID_CNS_CTRL;
21d34711
CH
1390
1391 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1392 if (!*id)
1393 return -ENOMEM;
1394
1395 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1396 sizeof(struct nvme_id_ctrl));
1397 if (error)
1398 kfree(*id);
1399 return error;
1400}
1401
ad95a613 1402static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
71010c30 1403 struct nvme_ns_id_desc *cur, bool *csi_seen)
ad95a613
CK
1404{
1405 const char *warn_str = "ctrl returned bogus length:";
1406 void *data = cur;
1407
1408 switch (cur->nidt) {
1409 case NVME_NIDT_EUI64:
1410 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1411 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1412 warn_str, cur->nidl);
1413 return -1;
1414 }
00ff400e
CH
1415 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1416 return NVME_NIDT_EUI64_LEN;
ad95a613
CK
1417 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1418 return NVME_NIDT_EUI64_LEN;
1419 case NVME_NIDT_NGUID:
1420 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1421 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1422 warn_str, cur->nidl);
1423 return -1;
1424 }
00ff400e
CH
1425 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1426 return NVME_NIDT_NGUID_LEN;
ad95a613
CK
1427 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1428 return NVME_NIDT_NGUID_LEN;
1429 case NVME_NIDT_UUID:
1430 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1431 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1432 warn_str, cur->nidl);
1433 return -1;
1434 }
00ff400e
CH
1435 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1436 return NVME_NIDT_UUID_LEN;
ad95a613
CK
1437 uuid_copy(&ids->uuid, data + sizeof(*cur));
1438 return NVME_NIDT_UUID_LEN;
71010c30
NC
1439 case NVME_NIDT_CSI:
1440 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1441 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1442 warn_str, cur->nidl);
1443 return -1;
1444 }
1445 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1446 *csi_seen = true;
1447 return NVME_NIDT_CSI_LEN;
ad95a613
CK
1448 default:
1449 /* Skip unknown types */
1450 return cur->nidl;
1451 }
1452}
1453
1a893c2b
CH
1454static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1455 struct nvme_ns_info *info)
3b22ba26
JT
1456{
1457 struct nvme_command c = { };
71010c30
NC
1458 bool csi_seen = false;
1459 int status, pos, len;
3b22ba26 1460 void *data;
3b22ba26 1461
8b7c0ff2
CH
1462 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1463 return 0;
5bedd3af
CH
1464 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1465 return 0;
1466
3b22ba26 1467 c.identify.opcode = nvme_admin_identify;
1a893c2b 1468 c.identify.nsid = cpu_to_le32(info->nsid);
3b22ba26
JT
1469 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1470
1471 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1472 if (!data)
1473 return -ENOMEM;
1474
cdbff4f2 1475 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
3b22ba26 1476 NVME_IDENTIFY_DATA_SIZE);
fb314eb0
CH
1477 if (status) {
1478 dev_warn(ctrl->device,
aa9d7295 1479 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1a893c2b 1480 info->nsid, status);
3b22ba26 1481 goto free_data;
fb314eb0 1482 }
3b22ba26
JT
1483
1484 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1485 struct nvme_ns_id_desc *cur = data + pos;
1486
1487 if (cur->nidl == 0)
1488 break;
1489
1a893c2b 1490 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
ad95a613 1491 if (len < 0)
71010c30 1492 break;
3b22ba26
JT
1493
1494 len += sizeof(*cur);
1495 }
71010c30
NC
1496
1497 if (nvme_multi_css(ctrl) && !csi_seen) {
1498 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1a893c2b 1499 info->nsid);
71010c30
NC
1500 status = -EINVAL;
1501 }
1502
3b22ba26
JT
1503free_data:
1504 kfree(data);
1505 return status;
1506}
1507
a1a825ab 1508int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1a893c2b 1509 struct nvme_id_ns **id)
21d34711
CH
1510{
1511 struct nvme_command c = { };
1512 int error;
1513
1514 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
778f067c
MG
1515 c.identify.opcode = nvme_admin_identify;
1516 c.identify.nsid = cpu_to_le32(nsid);
986994a2 1517 c.identify.cns = NVME_ID_CNS_NS;
21d34711 1518
331813f6
SG
1519 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1520 if (!*id)
1521 return -ENOMEM;
21d34711 1522
331813f6 1523 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
cdbff4f2 1524 if (error) {
d0de579c 1525 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
0dd6fff2 1526 kfree(*id);
cdbff4f2 1527 }
1a893c2b
CH
1528 return error;
1529}
00ff400e 1530
1a893c2b
CH
1531static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1532 struct nvme_ns_info *info)
1533{
1534 struct nvme_ns_ids *ids = &info->ids;
1535 struct nvme_id_ns *id;
1536 int ret;
1537
1538 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1539 if (ret)
1540 return ret;
0dd6fff2
CH
1541
1542 if (id->ncap == 0) {
1543 /* namespace not allocated or attached */
1544 info->is_removed = true;
e3139cef
ML
1545 ret = -ENODEV;
1546 goto error;
0dd6fff2
CH
1547 }
1548
1a893c2b
CH
1549 info->anagrpid = id->anagrpid;
1550 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1e4ea66a 1551 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1a893c2b 1552 info->is_ready = true;
00ff400e
CH
1553 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1554 dev_info(ctrl->device,
1555 "Ignoring bogus Namespace Identifiers\n");
1556 } else {
1557 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1558 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1a893c2b 1559 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
00ff400e
CH
1560 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1561 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1a893c2b 1562 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
00ff400e 1563 }
e3139cef
ML
1564
1565error:
1a893c2b 1566 kfree(id);
e3139cef 1567 return ret;
21d34711
CH
1568}
1569
1a893c2b
CH
1570static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1571 struct nvme_ns_info *info)
354201c5 1572{
1a893c2b 1573 struct nvme_id_ns_cs_indep *id;
354201c5
CH
1574 struct nvme_command c = {
1575 .identify.opcode = nvme_admin_identify,
1a893c2b 1576 .identify.nsid = cpu_to_le32(info->nsid),
354201c5
CH
1577 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1578 };
1579 int ret;
1580
1a893c2b
CH
1581 id = kmalloc(sizeof(*id), GFP_KERNEL);
1582 if (!id)
354201c5
CH
1583 return -ENOMEM;
1584
1a893c2b
CH
1585 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1586 if (!ret) {
1587 info->anagrpid = id->anagrpid;
1588 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1e4ea66a 1589 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1a893c2b 1590 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
354201c5 1591 }
1a893c2b
CH
1592 kfree(id);
1593 return ret;
354201c5
CH
1594}
1595
1a87ee65
KB
1596static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1597 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
21d34711 1598{
15755854 1599 union nvme_result res = { 0 };
cc72c442 1600 struct nvme_command c = { };
1cb3cce5 1601 int ret;
21d34711 1602
1a87ee65 1603 c.features.opcode = op;
21d34711
CH
1604 c.features.fid = cpu_to_le32(fid);
1605 c.features.dword11 = cpu_to_le32(dword11);
1606
d49187e9 1607 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
bd2687f2 1608 buffer, buflen, NVME_QID_ANY, 0);
9b47f77a 1609 if (ret >= 0 && result)
d49187e9 1610 *result = le32_to_cpu(res.u32);
1cb3cce5 1611 return ret;
21d34711
CH
1612}
1613
1a87ee65
KB
1614int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1615 unsigned int dword11, void *buffer, size_t buflen,
1616 u32 *result)
1617{
1618 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1619 buflen, result);
1620}
1621EXPORT_SYMBOL_GPL(nvme_set_features);
1622
1623int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1624 unsigned int dword11, void *buffer, size_t buflen,
1625 u32 *result)
1626{
1627 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1628 buflen, result);
1629}
1630EXPORT_SYMBOL_GPL(nvme_get_features);
1631
9a0be7ab
CH
1632int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1633{
1634 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1635 u32 result;
1636 int status, nr_io_queues;
1637
1a6fe74d 1638 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
9a0be7ab 1639 &result);
f5fa90dc 1640 if (status < 0)
9a0be7ab
CH
1641 return status;
1642
f5fa90dc
CH
1643 /*
1644 * Degraded controllers might return an error when setting the queue
1645 * count. We still want to be able to bring them online and offer
1646 * access to the admin queue, as that might be only way to fix them up.
1647 */
1648 if (status > 0) {
f0425db0 1649 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
f5fa90dc
CH
1650 *count = 0;
1651 } else {
1652 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1653 *count = min(*count, nr_io_queues);
1654 }
1655
9a0be7ab
CH
1656 return 0;
1657}
576d55d6 1658EXPORT_SYMBOL_GPL(nvme_set_queue_count);
9a0be7ab 1659
c0561f82 1660#define NVME_AEN_SUPPORTED \
85f8a435
SG
1661 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1662 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
c0561f82
HR
1663
1664static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1665{
fa441b71 1666 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
c0561f82
HR
1667 int status;
1668
fa441b71
WZ
1669 if (!supported_aens)
1670 return;
1671
1672 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1673 NULL, 0, &result);
c0561f82
HR
1674 if (status)
1675 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
fa441b71 1676 supported_aens);
93da4023
SG
1677
1678 queue_work(nvme_wq, &ctrl->async_event_work);
c0561f82
HR
1679}
1680
f5b9a51d 1681static int nvme_ns_open(struct nvme_ns *ns)
c225b610 1682{
c225b610 1683
32acab31 1684 /* should never be called due to GENHD_FL_HIDDEN */
30897388 1685 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
85088c4a 1686 goto fail;
4c74d1f8 1687 if (!nvme_get_ns(ns))
85088c4a
NC
1688 goto fail;
1689 if (!try_module_get(ns->ctrl->ops->module))
1690 goto fail_put_ns;
1691
c6424a90 1692 return 0;
85088c4a
NC
1693
1694fail_put_ns:
1695 nvme_put_ns(ns);
1696fail:
1697 return -ENXIO;
1673f1f0
CH
1698}
1699
f5b9a51d 1700static void nvme_ns_release(struct nvme_ns *ns)
1673f1f0 1701{
85088c4a
NC
1702
1703 module_put(ns->ctrl->ops->module);
1704 nvme_put_ns(ns);
1673f1f0
CH
1705}
1706
05bdb996 1707static int nvme_open(struct gendisk *disk, blk_mode_t mode)
f5b9a51d 1708{
d32e2bf8 1709 return nvme_ns_open(disk->private_data);
f5b9a51d
CH
1710}
1711
ae220766 1712static void nvme_release(struct gendisk *disk)
f5b9a51d
CH
1713{
1714 nvme_ns_release(disk->private_data);
1715}
1716
1496bd49 1717int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1673f1f0
CH
1718{
1719 /* some standard values */
1720 geo->heads = 1 << 6;
1721 geo->sectors = 1 << 5;
1722 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1723 return 0;
1724}
1725
f467b48e 1726static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head)
1673f1f0 1727{
cc72c442 1728 struct blk_integrity integrity = { };
1673f1f0 1729
414c62e2
CH
1730 blk_integrity_unregister(disk);
1731
f467b48e
CH
1732 if (!head->ms)
1733 return true;
1734
1735 /*
1736 * PI can always be supported as we can ask the controller to simply
1737 * insert/strip it, which is not possible for other kinds of metadata.
1738 */
1739 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1740 !(head->features & NVME_NS_METADATA_SUPPORTED))
1741 return nvme_ns_has_pi(head);
1742
d386aedc 1743 switch (head->pi_type) {
1673f1f0 1744 case NVME_NS_DPS_PI_TYPE3:
d386aedc 1745 switch (head->guard_type) {
4020aad8
KB
1746 case NVME_NVM_NS_16B_GUARD:
1747 integrity.profile = &t10_pi_type3_crc;
1748 integrity.tag_size = sizeof(u16) + sizeof(u32);
1749 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1750 break;
1751 case NVME_NVM_NS_64B_GUARD:
1752 integrity.profile = &ext_pi_type3_crc64;
1753 integrity.tag_size = sizeof(u16) + 6;
1754 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1755 break;
1756 default:
1757 integrity.profile = NULL;
1758 break;
1759 }
1673f1f0
CH
1760 break;
1761 case NVME_NS_DPS_PI_TYPE1:
1762 case NVME_NS_DPS_PI_TYPE2:
d386aedc 1763 switch (head->guard_type) {
4020aad8
KB
1764 case NVME_NVM_NS_16B_GUARD:
1765 integrity.profile = &t10_pi_type1_crc;
1766 integrity.tag_size = sizeof(u16);
1767 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1768 break;
1769 case NVME_NVM_NS_64B_GUARD:
1770 integrity.profile = &ext_pi_type1_crc64;
1771 integrity.tag_size = sizeof(u16);
1772 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1773 break;
1774 default:
1775 integrity.profile = NULL;
1776 break;
1777 }
1673f1f0
CH
1778 break;
1779 default:
1780 integrity.profile = NULL;
1781 break;
1782 }
4020aad8 1783
d386aedc 1784 integrity.tuple_size = head->ms;
921e81db 1785 integrity.pi_offset = head->pi_offset;
39b7baa4 1786 blk_integrity_register(disk, &integrity);
f467b48e 1787 return true;
1673f1f0 1788}
1673f1f0 1789
d386aedc
DW
1790static void nvme_config_discard(struct nvme_ctrl *ctrl, struct gendisk *disk,
1791 struct nvme_ns_head *head)
1673f1f0 1792{
26318571 1793 struct request_queue *queue = disk->queue;
f29886c2 1794 u32 max_discard_sectors;
30e5e929 1795
f29886c2
CH
1796 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(head, UINT_MAX)) {
1797 max_discard_sectors = nvme_lba_to_sect(head, ctrl->dmrsl);
1798 } else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
1799 max_discard_sectors = UINT_MAX;
1800 } else {
70200574 1801 blk_queue_max_discard_sectors(queue, 0);
3831761e
JA
1802 return;
1803 }
1804
b35ba01e
CH
1805 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1806 NVME_DSM_MAX_RANGES);
1807
d3074e9a
CH
1808 /*
1809 * If discard is already enabled, don't reset queue limits.
1810 *
1811 * This works around the fact that the block layer can't cope well with
1812 * updating the hardware limits when overridden through sysfs. This is
1813 * harmless because discard limits in NVMe are purely advisory.
1814 */
70200574 1815 if (queue->limits.max_discard_sectors)
3831761e
JA
1816 return;
1817
f29886c2 1818 blk_queue_max_discard_sectors(queue, max_discard_sectors);
3b946fe1
CH
1819 if (ctrl->dmrl)
1820 blk_queue_max_discard_segments(queue, ctrl->dmrl);
1821 else
1822 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
a4be9679 1823 queue->limits.discard_granularity = queue_logical_block_size(queue);
1673f1f0
CH
1824}
1825
002fab04
CH
1826static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1827{
1828 return uuid_equal(&a->uuid, &b->uuid) &&
1829 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
71010c30
NC
1830 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1831 a->csi == b->csi;
002fab04
CH
1832}
1833
d386aedc
DW
1834static int nvme_init_ms(struct nvme_ctrl *ctrl, struct nvme_ns_head *head,
1835 struct nvme_id_ns *id)
d4609ea8 1836{
4020aad8
KB
1837 bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1838 unsigned lbaf = nvme_lbaf_index(id->flbas);
4020aad8
KB
1839 struct nvme_command c = { };
1840 struct nvme_id_ns_nvm *nvm;
1841 int ret = 0;
1842 u32 elbaf;
1843
d386aedc
DW
1844 head->pi_size = 0;
1845 head->ms = le16_to_cpu(id->lbaf[lbaf].ms);
4020aad8 1846 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
d386aedc
DW
1847 head->pi_size = sizeof(struct t10_pi_tuple);
1848 head->guard_type = NVME_NVM_NS_16B_GUARD;
4020aad8
KB
1849 goto set_pi;
1850 }
d4609ea8 1851
4020aad8
KB
1852 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1853 if (!nvm)
1854 return -ENOMEM;
d4609ea8 1855
4020aad8 1856 c.identify.opcode = nvme_admin_identify;
d386aedc 1857 c.identify.nsid = cpu_to_le32(head->ns_id);
4020aad8
KB
1858 c.identify.cns = NVME_ID_CNS_CS_NS;
1859 c.identify.csi = NVME_CSI_NVM;
1860
d386aedc 1861 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
4020aad8
KB
1862 if (ret)
1863 goto free_data;
1864
1865 elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1866
1867 /* no support for storage tag formats right now */
1868 if (nvme_elbaf_sts(elbaf))
1869 goto free_data;
1870
d386aedc
DW
1871 head->guard_type = nvme_elbaf_guard_type(elbaf);
1872 switch (head->guard_type) {
4020aad8 1873 case NVME_NVM_NS_64B_GUARD:
d386aedc 1874 head->pi_size = sizeof(struct crc64_pi_tuple);
4020aad8
KB
1875 break;
1876 case NVME_NVM_NS_16B_GUARD:
d386aedc 1877 head->pi_size = sizeof(struct t10_pi_tuple);
4020aad8
KB
1878 break;
1879 default:
1880 break;
1881 }
1882
1883free_data:
1884 kfree(nvm);
1885set_pi:
921e81db 1886 if (head->pi_size && head->ms >= head->pi_size)
d386aedc 1887 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
d4609ea8 1888 else
d386aedc 1889 head->pi_type = 0;
d4609ea8 1890
921e81db
KJ
1891 if (first)
1892 head->pi_offset = 0;
1893 else
1894 head->pi_offset = head->ms - head->pi_size;
1895
4020aad8
KB
1896 return ret;
1897}
1898
d386aedc
DW
1899static int nvme_configure_metadata(struct nvme_ctrl *ctrl,
1900 struct nvme_ns_head *head, struct nvme_id_ns *id)
4020aad8 1901{
cd9aed60 1902 int ret;
4020aad8 1903
d386aedc 1904 ret = nvme_init_ms(ctrl, head, id);
cd9aed60
HR
1905 if (ret)
1906 return ret;
4020aad8 1907
d386aedc
DW
1908 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1909 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
cd9aed60 1910 return 0;
363f6368 1911
d4609ea8
CH
1912 if (ctrl->ops->flags & NVME_F_FABRICS) {
1913 /*
1914 * The NVMe over Fabrics specification only supports metadata as
1915 * part of the extended data LBA. We rely on HCA/HBA support to
1916 * remap the separate metadata buffer from the block layer.
1917 */
1918 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
cd9aed60 1919 return 0;
d39ad2a4 1920
d386aedc 1921 head->features |= NVME_NS_EXT_LBAS;
d39ad2a4
KB
1922
1923 /*
1924 * The current fabrics transport drivers support namespace
1925 * metadata formats only if nvme_ns_has_pi() returns true.
1926 * Suppress support for all other formats so the namespace will
1927 * have a 0 capacity and not be usable through the block stack.
1928 *
1929 * Note, this check will need to be modified if any drivers
1930 * gain the ability to use other metadata formats.
1931 */
d386aedc
DW
1932 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1933 head->features |= NVME_NS_METADATA_SUPPORTED;
d4609ea8
CH
1934 } else {
1935 /*
1936 * For PCIe controllers, we can't easily remap the separate
1937 * metadata buffer from the block layer and thus require a
1938 * separate metadata buffer for block layer metadata/PI support.
1939 * We allow extended LBAs for the passthrough interface, though.
1940 */
1941 if (id->flbas & NVME_NS_FLBAS_META_EXT)
d386aedc 1942 head->features |= NVME_NS_EXT_LBAS;
d4609ea8 1943 else
d386aedc 1944 head->features |= NVME_NS_METADATA_SUPPORTED;
d4609ea8 1945 }
cd9aed60 1946 return 0;
d4609ea8
CH
1947}
1948
152694c8
CH
1949static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1950{
1951 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1952}
1953
658d9f7c
CH
1954static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1955 struct request_queue *q)
1956{
c4485252 1957 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
658d9f7c 1958
152694c8
CH
1959 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1960 blk_queue_max_segments(q, min_t(u32, USHRT_MAX,
1961 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)));
f404dd92 1962 blk_queue_max_integrity_segments(q, ctrl->max_integrity_segments);
658d9f7c 1963 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
52fde2c0 1964 blk_queue_dma_alignment(q, 3);
658d9f7c
CH
1965 blk_queue_write_cache(q, vwc, vwc);
1966}
1967
a5b1cd61 1968static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id)
24b0b58c 1969{
a5b1cd61
CH
1970 struct gendisk *disk = ns->disk;
1971 struct nvme_ns_head *head = ns->head;
d386aedc 1972 u32 bs = 1U << head->lba_shift;
68ab60ca 1973 u32 atomic_bs, phys_bs, io_opt = 0;
a5b1cd61 1974 bool valid = true;
24b0b58c 1975
13f0b26b
CH
1976 /*
1977 * The block layer can't support LBA sizes larger than the page size
74fbc88e
KB
1978 * or smaller than a sector size yet, so catch this early and don't
1979 * allow block I/O.
13f0b26b 1980 */
01d550f0 1981 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
01fa0174 1982 bs = (1 << 9);
a5b1cd61 1983 valid = false;
01fa0174 1984 }
f9d5f457 1985
68ab60ca 1986 atomic_bs = phys_bs = bs;
81adb863
BVA
1987 if (id->nabo == 0) {
1988 /*
1989 * Bit 1 indicates whether NAWUPF is defined for this namespace
1990 * and whether it should be used instead of AWUPF. If NAWUPF ==
1991 * 0 then AWUPF must be used instead.
1992 */
92decf11 1993 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
81adb863
BVA
1994 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1995 else
a5b1cd61 1996 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
81adb863 1997 }
31fdad7b 1998
92decf11 1999 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
81adb863 2000 /* NPWG = Namespace Preferred Write Granularity */
31fdad7b 2001 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
81adb863 2002 /* NOWS = Namespace Optimal Write Size */
31fdad7b 2003 io_opt = bs * (1 + le16_to_cpu(id->nows));
81adb863
BVA
2004 }
2005
cee160fd 2006 blk_queue_logical_block_size(disk->queue, bs);
81adb863
BVA
2007 /*
2008 * Linux filesystems assume writing a single physical block is
2009 * an atomic operation. Hence limit the physical block size to the
2010 * value of the Atomic Write Unit Power Fail parameter.
2011 */
2012 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2013 blk_queue_io_min(disk->queue, phys_bs);
2014 blk_queue_io_opt(disk->queue, io_opt);
cee160fd 2015
a5b1cd61 2016 nvme_config_discard(ns->ctrl, disk, head);
63dfa100 2017
a5b1cd61 2018 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
63dfa100
CH
2019 blk_queue_max_write_zeroes_sectors(disk->queue, UINT_MAX);
2020 else
2021 blk_queue_max_write_zeroes_sectors(disk->queue,
a5b1cd61
CH
2022 ns->ctrl->max_zeroes_sectors);
2023 return valid;
24b0b58c
CH
2024}
2025
1e4ea66a
CH
2026static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2027{
2028 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2029}
2030
e83d776f
KB
2031static inline bool nvme_first_scan(struct gendisk *disk)
2032{
2033 /* nvme_alloc_ns() scans the disk prior to adding it */
50b4aecf 2034 return !disk_live(disk);
e83d776f
KB
2035}
2036
2037static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2038{
2039 struct nvme_ctrl *ctrl = ns->ctrl;
2040 u32 iob;
2041
2042 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2043 is_power_of_2(ctrl->max_hw_sectors))
2044 iob = ctrl->max_hw_sectors;
2045 else
0372dd4e 2046 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
e83d776f
KB
2047
2048 if (!iob)
2049 return;
2050
2051 if (!is_power_of_2(iob)) {
2052 if (nvme_first_scan(ns->disk))
2053 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2054 ns->disk->disk_name, iob);
2055 return;
2056 }
2057
2058 if (blk_queue_is_zoned(ns->disk->queue)) {
2059 if (nvme_first_scan(ns->disk))
2060 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2061 ns->disk->disk_name);
2062 return;
2063 }
2064
2065 blk_queue_chunk_sectors(ns->queue, iob);
2066}
2067
eb867ee9
JG
2068static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2069 struct nvme_ns_info *info)
2070{
2071 blk_mq_freeze_queue(ns->disk->queue);
2072 nvme_set_queue_limits(ns->ctrl, ns->queue);
2073 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2074 blk_mq_unfreeze_queue(ns->disk->queue);
2075
2076 if (nvme_ns_head_multipath(ns->head)) {
2077 blk_mq_freeze_queue(ns->head->disk->queue);
2078 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2079 nvme_mpath_revalidate_paths(ns);
2080 blk_stack_limits(&ns->head->disk->queue->limits,
2081 &ns->queue->limits, 0);
2082 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2083 blk_mq_unfreeze_queue(ns->head->disk->queue);
2084 }
2085
2086 /* Hide the block-interface for these devices */
2087 ns->disk->flags |= GENHD_FL_HIDDEN;
2088 set_bit(NVME_NS_READY, &ns->flags);
2089
2090 return 0;
2091}
2092
1a893c2b
CH
2093static int nvme_update_ns_info_block(struct nvme_ns *ns,
2094 struct nvme_ns_info *info)
ac81bfa9 2095{
1a893c2b 2096 struct nvme_id_ns *id;
a5b1cd61 2097 sector_t capacity;
1a893c2b 2098 unsigned lbaf;
240e6ee2 2099 int ret;
1673f1f0 2100
1a893c2b
CH
2101 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2102 if (ret)
2103 return ret;
2104
d8b90d60
EM
2105 if (id->ncap == 0) {
2106 /* namespace not allocated or attached */
2107 info->is_removed = true;
2108 ret = -ENODEV;
2109 goto error;
2110 }
2111
f9d5f457 2112 blk_mq_freeze_queue(ns->disk->queue);
1a893c2b 2113 lbaf = nvme_lbaf_index(id->flbas);
9419e71b 2114 ns->head->lba_shift = id->lbaf[lbaf].ds;
a1a825ab 2115 ns->head->nuse = le64_to_cpu(id->nuse);
a5b1cd61
CH
2116 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2117
8b7c0ff2 2118 nvme_set_queue_limits(ns->ctrl, ns->queue);
38adf94e 2119
d386aedc 2120 ret = nvme_configure_metadata(ns->ctrl, ns->head, id);
cd9aed60
HR
2121 if (ret < 0) {
2122 blk_mq_unfreeze_queue(ns->disk->queue);
2123 goto out;
2124 }
73d90386 2125 nvme_set_chunk_sectors(ns, id);
a5b1cd61
CH
2126 if (!nvme_update_disk_info(ns, id))
2127 capacity = 0;
2128
2129 /*
2130 * Register a metadata profile for PI, or the plain non-integrity NVMe
2131 * metadata masquerading as Type 0 if supported, otherwise reject block
2132 * I/O to namespaces with metadata except when the namespace supports
2133 * PI, as it can strip/insert in that case.
2134 */
2135 if (!nvme_init_integrity(ns->disk, ns->head))
2136 capacity = 0;
2137
2138 set_capacity_and_notify(ns->disk, capacity);
73d90386 2139
8b7c0ff2 2140 if (ns->head->ids.csi == NVME_CSI_ZNS) {
d525c3c0 2141 ret = nvme_update_zone_info(ns, lbaf);
e06b425b
CH
2142 if (ret) {
2143 blk_mq_unfreeze_queue(ns->disk->queue);
2144 goto out;
2145 }
71010c30
NC
2146 }
2147
1b96f862
CH
2148 /*
2149 * Only set the DEAC bit if the device guarantees that reads from
2150 * deallocated data return zeroes. While the DEAC bit does not
2151 * require that, it must be a no-op if reads from deallocated data
2152 * do not return zeroes.
2153 */
2154 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
9419e71b 2155 ns->head->features |= NVME_NS_DEAC;
1e4ea66a 2156 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
e7d65803 2157 set_bit(NVME_NS_READY, &ns->flags);
f9d5f457 2158 blk_mq_unfreeze_queue(ns->disk->queue);
1673f1f0 2159
3a9967ba 2160 if (blk_queue_is_zoned(ns->queue)) {
1b2f5d5d 2161 ret = blk_revalidate_disk_zones(ns->disk, NULL);
8685699c 2162 if (ret && !nvme_first_scan(ns->disk))
e06b425b 2163 goto out;
b29f8485
MG
2164 }
2165
30897388 2166 if (nvme_ns_head_multipath(ns->head)) {
f9d5f457 2167 blk_mq_freeze_queue(ns->head->disk->queue);
8f03cfa1
CH
2168 nvme_init_integrity(ns->head->disk, ns->head);
2169 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
1e4ea66a 2170 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
e7d65803 2171 nvme_mpath_revalidate_paths(ns);
b9b1a5d7
CH
2172 blk_stack_limits(&ns->head->disk->queue->limits,
2173 &ns->queue->limits, 0);
471aa704 2174 disk_update_readahead(ns->head->disk);
f9d5f457 2175 blk_mq_unfreeze_queue(ns->head->disk->queue);
8f676b85 2176 }
ac81bfa9 2177
e06b425b
CH
2178 ret = 0;
2179out:
a9e0e6bc
CH
2180 /*
2181 * If probing fails due an unsupported feature, hide the block device,
2182 * but still allow other access.
2183 */
2184 if (ret == -ENODEV) {
2185 ns->disk->flags |= GENHD_FL_HIDDEN;
602e57c9 2186 set_bit(NVME_NS_READY, &ns->flags);
a9e0e6bc
CH
2187 ret = 0;
2188 }
d8b90d60
EM
2189
2190error:
1a893c2b 2191 kfree(id);
240e6ee2
KB
2192 return ret;
2193}
2194
1a893c2b
CH
2195static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2196{
2197 switch (info->ids.csi) {
2198 case NVME_CSI_ZNS:
2199 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
eb867ee9
JG
2200 dev_info(ns->ctrl->device,
2201 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
1a893c2b 2202 info->nsid);
eb867ee9 2203 return nvme_update_ns_info_generic(ns, info);
1a893c2b
CH
2204 }
2205 return nvme_update_ns_info_block(ns, info);
2206 case NVME_CSI_NVM:
2207 return nvme_update_ns_info_block(ns, info);
2208 default:
eb867ee9
JG
2209 dev_info(ns->ctrl->device,
2210 "block device for nsid %u not supported (csi %u)\n",
2211 info->nsid, info->ids.csi);
2212 return nvme_update_ns_info_generic(ns, info);
1a893c2b
CH
2213 }
2214}
2215
a98e58e5 2216#ifdef CONFIG_BLK_SED_OPAL
94cc781f 2217static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
4f1244c8 2218 bool send)
a98e58e5 2219{
4f1244c8 2220 struct nvme_ctrl *ctrl = data;
cc72c442 2221 struct nvme_command cmd = { };
a98e58e5 2222
a98e58e5
SB
2223 if (send)
2224 cmd.common.opcode = nvme_admin_security_send;
2225 else
2226 cmd.common.opcode = nvme_admin_security_recv;
a98e58e5 2227 cmd.common.nsid = 0;
b7c8f366
CK
2228 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2229 cmd.common.cdw11 = cpu_to_le32(len);
a98e58e5 2230
6b46fa02 2231 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
bd2687f2 2232 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
a98e58e5 2233}
94cc781f
CH
2234
2235static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2236{
2237 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2238 if (!ctrl->opal_dev)
2239 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2240 else if (was_suspended)
2241 opal_unlock_from_suspend(ctrl->opal_dev);
2242 } else {
2243 free_opal_dev(ctrl->opal_dev);
2244 ctrl->opal_dev = NULL;
2245 }
2246}
2247#else
2248static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2249{
2250}
a98e58e5
SB
2251#endif /* CONFIG_BLK_SED_OPAL */
2252
8b4fb0f9
CH
2253#ifdef CONFIG_BLK_DEV_ZONED
2254static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2255 unsigned int nr_zones, report_zones_cb cb, void *data)
2256{
2257 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2258 data);
2259}
2260#else
2261#define nvme_report_zones NULL
2262#endif /* CONFIG_BLK_DEV_ZONED */
2263
942e21c0 2264const struct block_device_operations nvme_bdev_ops = {
1673f1f0
CH
2265 .owner = THIS_MODULE,
2266 .ioctl = nvme_ioctl,
a25d4261 2267 .compat_ioctl = blkdev_compat_ptr_ioctl,
1673f1f0
CH
2268 .open = nvme_open,
2269 .release = nvme_release,
2270 .getgeo = nvme_getgeo,
240e6ee2 2271 .report_zones = nvme_report_zones,
1673f1f0
CH
2272 .pr_ops = &nvme_pr_ops,
2273};
2274
e6d275de
CH
2275static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2276 u32 timeout, const char *op)
5fd4ce1b 2277{
e6d275de
CH
2278 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2279 u32 csts;
5fd4ce1b
CH
2280 int ret;
2281
2282 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
0df1e4f5
KB
2283 if (csts == ~0)
2284 return -ENODEV;
e6d275de 2285 if ((csts & mask) == val)
5fd4ce1b
CH
2286 break;
2287
3e98c244 2288 usleep_range(1000, 2000);
5fd4ce1b
CH
2289 if (fatal_signal_pending(current))
2290 return -EINTR;
354201c5 2291 if (time_after(jiffies, timeout_jiffies)) {
1b3c47c1 2292 dev_err(ctrl->device,
94d2e705 2293 "Device not ready; aborting %s, CSTS=0x%x\n",
e6d275de 2294 op, csts);
5fd4ce1b
CH
2295 return -ENODEV;
2296 }
2297 }
2298
2299 return ret;
2300}
2301
285b6e9b 2302int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
5fd4ce1b
CH
2303{
2304 int ret;
2305
2306 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
285b6e9b
CH
2307 if (shutdown)
2308 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2309 else
2310 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
5fd4ce1b
CH
2311
2312 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2313 if (ret)
2314 return ret;
54adc010 2315
285b6e9b
CH
2316 if (shutdown) {
2317 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2318 NVME_CSTS_SHST_CMPLT,
2319 ctrl->shutdown_timeout, "shutdown");
2320 }
b5a10c5f 2321 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
54adc010 2322 msleep(NVME_QUIRK_DELAY_AMOUNT);
e6d275de
CH
2323 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2324 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
5fd4ce1b 2325}
576d55d6 2326EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
5fd4ce1b 2327
c0f2f45b 2328int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
5fd4ce1b 2329{
6c3c05b0 2330 unsigned dev_page_min;
354201c5 2331 u32 timeout;
5fd4ce1b
CH
2332 int ret;
2333
c0f2f45b
SG
2334 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2335 if (ret) {
2336 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2337 return ret;
2338 }
2339 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2340
6c3c05b0 2341 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
1b3c47c1 2342 dev_err(ctrl->device,
5fd4ce1b 2343 "Minimum device page size %u too large for host (%u)\n",
6c3c05b0 2344 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
5fd4ce1b
CH
2345 return -ENODEV;
2346 }
2347
71010c30
NC
2348 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2349 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2350 else
2351 ctrl->ctrl_config = NVME_CC_CSS_NVM;
354201c5 2352
6cc834ba
KB
2353 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2354 ctrl->ctrl_config |= NVME_CC_CRIME;
354201c5 2355
6c3c05b0 2356 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
60b43f62 2357 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
5fd4ce1b 2358 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
aa41d2fe
NC
2359 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2360 if (ret)
2361 return ret;
5fd4ce1b 2362
aa41d2fe
NC
2363 /* Flush write to device (required if transport is PCI) */
2364 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2365 if (ret)
2366 return ret;
2367
6cc834ba
KB
2368 /* CAP value may change after initial CC write */
2369 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2370 if (ret)
2371 return ret;
2372
2373 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2374 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2375 u32 crto, ready_timeout;
2376
2377 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2378 if (ret) {
2379 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2380 ret);
2381 return ret;
2382 }
2383
2384 /*
2385 * CRTO should always be greater or equal to CAP.TO, but some
2386 * devices are known to get this wrong. Use the larger of the
2387 * two values.
2388 */
2389 if (ctrl->ctrl_config & NVME_CC_CRIME)
2390 ready_timeout = NVME_CRTO_CRIMT(crto);
2391 else
2392 ready_timeout = NVME_CRTO_CRWMT(crto);
2393
2394 if (ready_timeout < timeout)
2395 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2396 crto, ctrl->cap);
2397 else
2398 timeout = ready_timeout;
2399 }
2400
aa41d2fe 2401 ctrl->ctrl_config |= NVME_CC_ENABLE;
5fd4ce1b
CH
2402 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2403 if (ret)
2404 return ret;
e6d275de
CH
2405 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2406 (timeout + 1) / 2, "initialisation");
5fd4ce1b 2407}
576d55d6 2408EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
5fd4ce1b 2409
dbf86b39
JD
2410static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2411{
2412 __le64 ts;
2413 int ret;
2414
2415 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2416 return 0;
2417
2418 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2419 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2420 NULL);
2421 if (ret)
2422 dev_warn_once(ctrl->device,
2423 "could not set timestamp (%d)\n", ret);
2424 return ret;
2425}
2426
4020aad8 2427static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
49cd84b6
KB
2428{
2429 struct nvme_feat_host_behavior *host;
4020aad8 2430 u8 acre = 0, lbafee = 0;
49cd84b6
KB
2431 int ret;
2432
2433 /* Don't bother enabling the feature if retry delay is not reported */
4020aad8
KB
2434 if (ctrl->crdt[0])
2435 acre = NVME_ENABLE_ACRE;
2436 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2437 lbafee = NVME_ENABLE_LBAFEE;
2438
2439 if (!acre && !lbafee)
49cd84b6
KB
2440 return 0;
2441
2442 host = kzalloc(sizeof(*host), GFP_KERNEL);
2443 if (!host)
2444 return 0;
2445
4020aad8
KB
2446 host->acre = acre;
2447 host->lbafee = lbafee;
49cd84b6
KB
2448 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2449 host, sizeof(*host), NULL);
2450 kfree(host);
2451 return ret;
2452}
2453
ebd8a93a
AB
2454/*
2455 * The function checks whether the given total (exlat + enlat) latency of
2456 * a power state allows the latter to be used as an APST transition target.
2457 * It does so by comparing the latency to the primary and secondary latency
2458 * tolerances defined by module params. If there's a match, the corresponding
2459 * timeout value is returned and the matching tolerance index (1 or 2) is
2460 * reported.
2461 */
2462static bool nvme_apst_get_transition_time(u64 total_latency,
2463 u64 *transition_time, unsigned *last_index)
2464{
2465 if (total_latency <= apst_primary_latency_tol_us) {
2466 if (*last_index == 1)
2467 return false;
2468 *last_index = 1;
2469 *transition_time = apst_primary_timeout_ms;
2470 return true;
2471 }
2472 if (apst_secondary_timeout_ms &&
2473 total_latency <= apst_secondary_latency_tol_us) {
2474 if (*last_index <= 2)
2475 return false;
2476 *last_index = 2;
2477 *transition_time = apst_secondary_timeout_ms;
2478 return true;
2479 }
2480 return false;
2481}
2482
60df5de9
CH
2483/*
2484 * APST (Autonomous Power State Transition) lets us program a table of power
2485 * state transitions that the controller will perform automatically.
ebd8a93a
AB
2486 *
2487 * Depending on module params, one of the two supported techniques will be used:
2488 *
2489 * - If the parameters provide explicit timeouts and tolerances, they will be
2490 * used to build a table with up to 2 non-operational states to transition to.
2491 * The default parameter values were selected based on the values used by
2492 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2493 * regeneration of the APST table in the event of switching between external
2494 * and battery power, the timeouts and tolerances reflect a compromise
2495 * between values used by Microsoft for AC and battery scenarios.
2496 * - If not, we'll configure the table with a simple heuristic: we are willing
2497 * to spend at most 2% of the time transitioning between power states.
2498 * Therefore, when running in any given state, we will enter the next
2499 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2500 * microseconds, as long as that state's exit latency is under the requested
2501 * maximum latency.
60df5de9
CH
2502 *
2503 * We will not autonomously enter any non-operational state for which the total
2504 * latency exceeds ps_max_latency_us.
2505 *
2506 * Users can set ps_max_latency_us to zero to turn off APST.
2507 */
634b8325 2508static int nvme_configure_apst(struct nvme_ctrl *ctrl)
c5552fde 2509{
c5552fde 2510 struct nvme_feat_auto_pst *table;
60df5de9 2511 unsigned apste = 0;
fb0dc399 2512 u64 max_lat_us = 0;
60df5de9 2513 __le64 target = 0;
fb0dc399 2514 int max_ps = -1;
60df5de9 2515 int state;
c5552fde 2516 int ret;
ebd8a93a 2517 unsigned last_lt_index = UINT_MAX;
c5552fde
AL
2518
2519 /*
2520 * If APST isn't supported or if we haven't been initialized yet,
2521 * then don't do anything.
2522 */
2523 if (!ctrl->apsta)
634b8325 2524 return 0;
c5552fde
AL
2525
2526 if (ctrl->npss > 31) {
2527 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
634b8325 2528 return 0;
c5552fde
AL
2529 }
2530
2531 table = kzalloc(sizeof(*table), GFP_KERNEL);
2532 if (!table)
634b8325 2533 return 0;
c5552fde 2534
76a5af84 2535 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
c5552fde 2536 /* Turn off APST. */
fb0dc399 2537 dev_dbg(ctrl->device, "APST disabled\n");
60df5de9
CH
2538 goto done;
2539 }
c5552fde 2540
60df5de9
CH
2541 /*
2542 * Walk through all states from lowest- to highest-power.
2543 * According to the spec, lower-numbered states use more power. NPSS,
2544 * despite the name, is the index of the lowest-power state, not the
2545 * number of states.
2546 */
2547 for (state = (int)ctrl->npss; state >= 0; state--) {
2548 u64 total_latency_us, exit_latency_us, transition_ms;
da87591b 2549
60df5de9
CH
2550 if (target)
2551 table->entries[state] = target;
c5552fde 2552
c5552fde 2553 /*
60df5de9
CH
2554 * Don't allow transitions to the deepest state if it's quirked
2555 * off.
c5552fde 2556 */
60df5de9
CH
2557 if (state == ctrl->npss &&
2558 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2559 continue;
fb0dc399 2560
60df5de9
CH
2561 /*
2562 * Is this state a useful non-operational state for higher-power
2563 * states to autonomously transition to?
2564 */
2565 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2566 continue;
fb0dc399 2567
60df5de9
CH
2568 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2569 if (exit_latency_us > ctrl->ps_max_latency_us)
2570 continue;
c5552fde 2571
60df5de9
CH
2572 total_latency_us = exit_latency_us +
2573 le32_to_cpu(ctrl->psd[state].entry_lat);
fb0dc399 2574
60df5de9 2575 /*
ebd8a93a
AB
2576 * This state is good. It can be used as the APST idle target
2577 * for higher power states.
60df5de9 2578 */
ebd8a93a
AB
2579 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2580 if (!nvme_apst_get_transition_time(total_latency_us,
2581 &transition_ms, &last_lt_index))
2582 continue;
2583 } else {
2584 transition_ms = total_latency_us + 19;
2585 do_div(transition_ms, 20);
2586 if (transition_ms > (1 << 24) - 1)
2587 transition_ms = (1 << 24) - 1;
2588 }
60df5de9
CH
2589
2590 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2591 if (max_ps == -1)
2592 max_ps = state;
2593 if (total_latency_us > max_lat_us)
2594 max_lat_us = total_latency_us;
c5552fde
AL
2595 }
2596
60df5de9
CH
2597 if (max_ps == -1)
2598 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2599 else
2600 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2601 max_ps, max_lat_us, (int)sizeof(*table), table);
2602 apste = 1;
2603
2604done:
c5552fde
AL
2605 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2606 table, sizeof(*table), NULL);
2607 if (ret)
2608 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
c5552fde 2609 kfree(table);
634b8325 2610 return ret;
c5552fde
AL
2611}
2612
2613static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2614{
2615 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2616 u64 latency;
2617
2618 switch (val) {
2619 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2620 case PM_QOS_LATENCY_ANY:
2621 latency = U64_MAX;
2622 break;
2623
2624 default:
2625 latency = val;
2626 }
2627
2628 if (ctrl->ps_max_latency_us != latency) {
2629 ctrl->ps_max_latency_us = latency;
e6e7f7ac 2630 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
53fe2a30 2631 nvme_configure_apst(ctrl);
c5552fde
AL
2632 }
2633}
2634
bd4da3ab
AL
2635struct nvme_core_quirk_entry {
2636 /*
2637 * NVMe model and firmware strings are padded with spaces. For
2638 * simplicity, strings in the quirk table are padded with NULLs
2639 * instead.
2640 */
2641 u16 vid;
2642 const char *mn;
2643 const char *fr;
2644 unsigned long quirks;
2645};
2646
2647static const struct nvme_core_quirk_entry core_quirks[] = {
c5552fde 2648 {
be56945c
AL
2649 /*
2650 * This Toshiba device seems to die using any APST states. See:
2651 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2652 */
2653 .vid = 0x1179,
2654 .mn = "THNSF5256GPUK TOSHIBA",
c5552fde 2655 .quirks = NVME_QUIRK_NO_APST,
cb32de1b
ML
2656 },
2657 {
2658 /*
2659 * This LiteON CL1-3D*-Q11 firmware version has a race
2660 * condition associated with actions related to suspend to idle
2661 * LiteON has resolved the problem in future firmware
2662 */
2663 .vid = 0x14a4,
2664 .fr = "22301111",
2665 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
5a6254d5
EM
2666 },
2667 {
2668 /*
2669 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2670 * aborts I/O during any load, but more easily reproducible
2671 * with discards (fstrim).
2672 *
2673 * The device is left in a state where it is also not possible
2674 * to use "nvme set-feature" to disable APST, but booting with
2675 * nvme_core.default_ps_max_latency=0 works.
2676 */
2677 .vid = 0x1e0f,
2678 .mn = "KCD6XVUL6T40",
2679 .quirks = NVME_QUIRK_NO_APST,
e6487833
CH
2680 },
2681 {
2682 /*
2683 * The external Samsung X5 SSD fails initialization without a
2684 * delay before checking if it is ready and has a whole set of
2685 * other problems. To make this even more interesting, it
2686 * shares the PCI ID with internal Samsung 970 Evo Plus that
2687 * does not need or want these quirks.
2688 */
2689 .vid = 0x144d,
2690 .mn = "Samsung Portable SSD X5",
2691 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2692 NVME_QUIRK_NO_DEEPEST_PS |
2693 NVME_QUIRK_IGNORE_DEV_SUBNQN,
be56945c 2694 }
bd4da3ab
AL
2695};
2696
2697/* match is null-terminated but idstr is space-padded. */
2698static bool string_matches(const char *idstr, const char *match, size_t len)
2699{
2700 size_t matchlen;
2701
2702 if (!match)
2703 return true;
2704
2705 matchlen = strlen(match);
2706 WARN_ON_ONCE(matchlen > len);
2707
2708 if (memcmp(idstr, match, matchlen))
2709 return false;
2710
2711 for (; matchlen < len; matchlen++)
2712 if (idstr[matchlen] != ' ')
2713 return false;
2714
2715 return true;
2716}
2717
2718static bool quirk_matches(const struct nvme_id_ctrl *id,
2719 const struct nvme_core_quirk_entry *q)
2720{
2721 return q->vid == le16_to_cpu(id->vid) &&
2722 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2723 string_matches(id->fr, q->fr, sizeof(id->fr));
2724}
2725
ab9e00cc
CH
2726static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2727 struct nvme_id_ctrl *id)
180de007
CH
2728{
2729 size_t nqnlen;
2730 int off;
2731
6299358d
JD
2732 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2733 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2734 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
a8817cc0 2735 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
6299358d
JD
2736 return;
2737 }
180de007 2738
6299358d
JD
2739 if (ctrl->vs >= NVME_VS(1, 2, 1))
2740 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2741 }
180de007 2742
1abc6961
LB
2743 /*
2744 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2745 * Base Specification 2.0. It is slightly different from the format
2746 * specified there due to historic reasons, and we can't change it now.
2747 */
ab9e00cc 2748 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
3da584f5 2749 "nqn.2014.08.org.nvmexpress:%04x%04x",
180de007 2750 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
ab9e00cc 2751 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
180de007 2752 off += sizeof(id->sn);
ab9e00cc 2753 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
180de007 2754 off += sizeof(id->mn);
ab9e00cc
CH
2755 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2756}
2757
e654dfd3 2758static void nvme_release_subsystem(struct device *dev)
ab9e00cc 2759{
e654dfd3
LG
2760 struct nvme_subsystem *subsys =
2761 container_of(dev, struct nvme_subsystem, dev);
2762
733e4b69 2763 if (subsys->instance >= 0)
8b850475 2764 ida_free(&nvme_instance_ida, subsys->instance);
ab9e00cc
CH
2765 kfree(subsys);
2766}
2767
ab9e00cc
CH
2768static void nvme_destroy_subsystem(struct kref *ref)
2769{
2770 struct nvme_subsystem *subsys =
2771 container_of(ref, struct nvme_subsystem, ref);
2772
2773 mutex_lock(&nvme_subsystems_lock);
2774 list_del(&subsys->entry);
2775 mutex_unlock(&nvme_subsystems_lock);
2776
ed754e5d 2777 ida_destroy(&subsys->ns_ida);
ab9e00cc
CH
2778 device_del(&subsys->dev);
2779 put_device(&subsys->dev);
2780}
2781
2782static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2783{
2784 kref_put(&subsys->ref, nvme_destroy_subsystem);
2785}
2786
2787static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2788{
2789 struct nvme_subsystem *subsys;
2790
2791 lockdep_assert_held(&nvme_subsystems_lock);
2792
c26aa572
JS
2793 /*
2794 * Fail matches for discovery subsystems. This results
2795 * in each discovery controller bound to a unique subsystem.
2796 * This avoids issues with validating controller values
2797 * that can only be true when there is a single unique subsystem.
2798 * There may be multiple and completely independent entities
2799 * that provide discovery controllers.
2800 */
2801 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2802 return NULL;
2803
ab9e00cc
CH
2804 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2805 if (strcmp(subsys->subnqn, subsysnqn))
2806 continue;
2807 if (!kref_get_unless_zero(&subsys->ref))
2808 continue;
2809 return subsys;
2810 }
2811
2812 return NULL;
2813}
2814
5ab25a32
SG
2815static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2816{
2817 return ctrl->opts && ctrl->opts->discovery_nqn;
2818}
2819
1b1031ca
CH
2820static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2821 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
b837b283 2822{
1b1031ca 2823 struct nvme_ctrl *tmp;
b837b283 2824
32fd90c4
CH
2825 lockdep_assert_held(&nvme_subsystems_lock);
2826
1b1031ca 2827 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
e7c43fea 2828 if (nvme_state_terminal(tmp))
1b1031ca
CH
2829 continue;
2830
2831 if (tmp->cntlid == ctrl->cntlid) {
2832 dev_err(ctrl->device,
16cc33b2
KB
2833 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2834 ctrl->cntlid, dev_name(tmp->device),
2835 subsys->subnqn);
1b1031ca
CH
2836 return false;
2837 }
b837b283 2838
92decf11 2839 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
5ab25a32 2840 nvme_discovery_ctrl(ctrl))
1b1031ca
CH
2841 continue;
2842
2843 dev_err(ctrl->device,
2844 "Subsystem does not support multiple controllers\n");
2845 return false;
b837b283 2846 }
b837b283 2847
1b1031ca 2848 return true;
b837b283
IR
2849}
2850
ab9e00cc
CH
2851static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2852{
2853 struct nvme_subsystem *subsys, *found;
2854 int ret;
2855
2856 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2857 if (!subsys)
2858 return -ENOMEM;
733e4b69
KB
2859
2860 subsys->instance = -1;
ab9e00cc
CH
2861 mutex_init(&subsys->lock);
2862 kref_init(&subsys->ref);
2863 INIT_LIST_HEAD(&subsys->ctrls);
ed754e5d 2864 INIT_LIST_HEAD(&subsys->nsheads);
ab9e00cc
CH
2865 nvme_init_subnqn(subsys, ctrl, id);
2866 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2867 memcpy(subsys->model, id->mn, sizeof(subsys->model));
ab9e00cc
CH
2868 subsys->vendor_id = le16_to_cpu(id->vid);
2869 subsys->cmic = id->cmic;
954ae166
HR
2870
2871 /* Versions prior to 1.4 don't necessarily report a valid type */
2872 if (id->cntrltype == NVME_CTRL_DISC ||
2873 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2874 subsys->subtype = NVME_NQN_DISC;
2875 else
2876 subsys->subtype = NVME_NQN_NVME;
2877
20e8b689
HR
2878 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2879 dev_err(ctrl->device,
2880 "Subsystem %s is not a discovery controller",
2881 subsys->subnqn);
2882 kfree(subsys);
2883 return -EINVAL;
2884 }
81adb863 2885 subsys->awupf = le16_to_cpu(id->awupf);
e3d34794 2886 nvme_mpath_default_iopolicy(subsys);
ab9e00cc
CH
2887
2888 subsys->dev.class = nvme_subsys_class;
2889 subsys->dev.release = nvme_release_subsystem;
1e496938 2890 subsys->dev.groups = nvme_subsys_attrs_groups;
733e4b69 2891 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
ab9e00cc
CH
2892 device_initialize(&subsys->dev);
2893
2894 mutex_lock(&nvme_subsystems_lock);
2895 found = __nvme_find_get_subsystem(subsys->subnqn);
2896 if (found) {
e654dfd3 2897 put_device(&subsys->dev);
ab9e00cc 2898 subsys = found;
32fd90c4 2899
1b1031ca 2900 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
ab9e00cc 2901 ret = -EINVAL;
32fd90c4 2902 goto out_put_subsystem;
ab9e00cc 2903 }
ab9e00cc
CH
2904 } else {
2905 ret = device_add(&subsys->dev);
2906 if (ret) {
2907 dev_err(ctrl->device,
2908 "failed to register subsystem device.\n");
8c36e66f 2909 put_device(&subsys->dev);
ab9e00cc
CH
2910 goto out_unlock;
2911 }
ed754e5d 2912 ida_init(&subsys->ns_ida);
ab9e00cc
CH
2913 list_add_tail(&subsys->entry, &nvme_subsystems);
2914 }
2915
bc4f6e06
DC
2916 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2917 dev_name(ctrl->device));
2918 if (ret) {
ab9e00cc
CH
2919 dev_err(ctrl->device,
2920 "failed to create sysfs link from subsystem.\n");
32fd90c4 2921 goto out_put_subsystem;
ab9e00cc
CH
2922 }
2923
733e4b69
KB
2924 if (!found)
2925 subsys->instance = ctrl->instance;
32fd90c4 2926 ctrl->subsys = subsys;
ab9e00cc 2927 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
32fd90c4 2928 mutex_unlock(&nvme_subsystems_lock);
ab9e00cc
CH
2929 return 0;
2930
32fd90c4
CH
2931out_put_subsystem:
2932 nvme_put_subsystem(subsys);
ab9e00cc
CH
2933out_unlock:
2934 mutex_unlock(&nvme_subsystems_lock);
ab9e00cc 2935 return ret;
180de007
CH
2936}
2937
be93e87e 2938int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
0e98719b 2939 void *log, size_t size, u64 offset)
c627c487
KB
2940{
2941 struct nvme_command c = { };
71fb90eb 2942 u32 dwlen = nvme_bytes_to_numd(size);
70da6094
MB
2943
2944 c.get_log_page.opcode = nvme_admin_get_log_page;
0e98719b 2945 c.get_log_page.nsid = cpu_to_le32(nsid);
70da6094 2946 c.get_log_page.lid = log_page;
0e98719b 2947 c.get_log_page.lsp = lsp;
70da6094
MB
2948 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2949 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
7ec6074f
MB
2950 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2951 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
be93e87e 2952 c.get_log_page.csi = csi;
c627c487
KB
2953
2954 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2955}
2956
be93e87e
KB
2957static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2958 struct nvme_effects_log **log)
84fef62d 2959{
f6224b86 2960 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
84fef62d
KB
2961 int ret;
2962
be93e87e
KB
2963 if (cel)
2964 goto out;
84fef62d 2965
be93e87e
KB
2966 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2967 if (!cel)
2968 return -ENOMEM;
84fef62d 2969
46d2613e 2970 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
f6224b86 2971 cel, sizeof(*cel), 0);
84fef62d 2972 if (ret) {
be93e87e
KB
2973 kfree(cel);
2974 return ret;
84fef62d 2975 }
be93e87e 2976
f6224b86 2977 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
be93e87e 2978out:
f6224b86 2979 *log = cel;
be93e87e 2980 return 0;
180de007
CH
2981}
2982
5befc7c2 2983static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
7fd8930f 2984{
8609c63f 2985 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
7fd8930f 2986
8609c63f
BVA
2987 if (check_shl_overflow(1U, units + page_shift - 9, &val))
2988 return UINT_MAX;
2989 return val;
5befc7c2
KB
2990}
2991
2992static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2993{
2994 struct nvme_command c = { };
2995 struct nvme_id_ctrl_nvm *id;
2996 int ret;
2997
5befc7c2
KB
2998 /*
2999 * Even though NVMe spec explicitly states that MDTS is not applicable
3000 * to the write-zeroes, we are cautious and limit the size to the
3001 * controllers max_hw_sectors value, which is based on the MDTS field
3002 * and possibly other limiting factors.
3003 */
3004 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3005 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3006 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3007 else
3008 ctrl->max_zeroes_sectors = 0;
3009
def84ab6 3010 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
c917dd96
KB
3011 nvme_ctrl_limited_cns(ctrl) ||
3012 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
5befc7c2
KB
3013 return 0;
3014
3015 id = kzalloc(sizeof(*id), GFP_KERNEL);
3016 if (!id)
bcaf434b 3017 return -ENOMEM;
5befc7c2
KB
3018
3019 c.identify.opcode = nvme_admin_identify;
3020 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3021 c.identify.csi = NVME_CSI_NVM;
3022
3023 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3024 if (ret)
3025 goto free_data;
3026
3b946fe1 3027 ctrl->dmrl = id->dmrl;
1a86924e 3028 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
5befc7c2
KB
3029 if (id->wzsl)
3030 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3031
3032free_data:
c917dd96
KB
3033 if (ret > 0)
3034 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
5befc7c2
KB
3035 kfree(id);
3036 return ret;
3037}
3038
cc115cbe
KB
3039static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3040{
3041 struct nvme_effects_log *log = ctrl->effects;
3042
3043 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3044 NVME_CMD_EFFECTS_NCC |
3045 NVME_CMD_EFFECTS_CSE_MASK);
3046 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3047 NVME_CMD_EFFECTS_CSE_MASK);
3048
baff6491
KB
3049 /*
3050 * The spec says the result of a security receive command depends on
3051 * the previous security send command. As such, many vendors log this
3052 * command as one to submitted only when no other commands to the same
3053 * namespace are outstanding. The intention is to tell the host to
3054 * prevent mixing security send and receive.
3055 *
3056 * This driver can only enforce such exclusive access against IO
3057 * queues, though. We are not readily able to enforce such a rule for
3058 * two commands to the admin queue, which is the only queue that
3059 * matters for this command.
3060 *
3061 * Rather than blindly freezing the IO queues for this effect that
3062 * doesn't even apply to IO, mask it off.
3063 */
c0c33b94 3064 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
baff6491 3065
cc115cbe
KB
3066 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3067 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3068 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3069}
3070
3071static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3072{
3073 int ret = 0;
3074
3075 if (ctrl->effects)
3076 return 0;
3077
3078 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3079 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3080 if (ret < 0)
3081 return ret;
3082 }
3083
3084 if (!ctrl->effects) {
3085 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3086 if (!ctrl->effects)
3087 return -ENOMEM;
3088 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3089 }
3090
3091 nvme_init_known_nvm_effects(ctrl);
3092 return 0;
3093}
3094
68999d1d
GL
3095static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3096{
3097 /*
3098 * In fabrics we need to verify the cntlid matches the
3099 * admin connect
3100 */
3101 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3102 dev_err(ctrl->device,
3103 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3104 ctrl->cntlid, le16_to_cpu(id->cntlid));
3105 return -EINVAL;
3106 }
3107
3108 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3109 dev_err(ctrl->device,
3110 "keep-alive support is mandatory for fabrics\n");
3111 return -EINVAL;
3112 }
3113
7642138e 3114 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
2fcd3ab3
GL
3115 dev_err(ctrl->device,
3116 "I/O queue command capsule supported size %d < 4\n",
3117 ctrl->ioccsz);
3118 return -EINVAL;
3119 }
3120
7642138e 3121 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
2fcd3ab3
GL
3122 dev_err(ctrl->device,
3123 "I/O queue response capsule supported size %d < 1\n",
3124 ctrl->iorcsz);
3125 return -EINVAL;
3126 }
3127
49995681
GL
3128 if (!ctrl->maxcmd) {
3129 dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3130 return -EINVAL;
3131 }
3132
68999d1d
GL
3133 return 0;
3134}
3135
44ef5611 3136static int nvme_init_identify(struct nvme_ctrl *ctrl)
7fd8930f
CH
3137{
3138 struct nvme_id_ctrl *id;
a229dbf6 3139 u32 max_hw_sectors;
76a5af84 3140 bool prev_apst_enabled;
5befc7c2 3141 int ret;
f3ca80fc 3142
7fd8930f
CH
3143 ret = nvme_identify_ctrl(ctrl, &id);
3144 if (ret) {
1b3c47c1 3145 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
7fd8930f
CH
3146 return -EIO;
3147 }
3148
a89fcca8
GP
3149 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3150 ctrl->cntlid = le16_to_cpu(id->cntlid);
3151
bd4da3ab 3152 if (!ctrl->identified) {
44ef5611 3153 unsigned int i;
ab9e00cc 3154
bd4da3ab
AL
3155 /*
3156 * Check for quirks. Quirk can depend on firmware version,
3157 * so, in principle, the set of quirks present can change
3158 * across a reset. As a possible future enhancement, we
3159 * could re-scan for quirks every time we reinitialize
3160 * the device, but we'd have to make sure that the driver
3161 * behaves intelligently if the quirks change.
3162 */
bd4da3ab
AL
3163 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3164 if (quirk_matches(id, &core_quirks[i]))
3165 ctrl->quirks |= core_quirks[i].quirks;
3166 }
6f2d7152
PR
3167
3168 ret = nvme_init_subsystem(ctrl, id);
3169 if (ret)
3170 goto out_free;
cc115cbe
KB
3171
3172 ret = nvme_init_effects(ctrl, id);
3173 if (ret)
3174 goto out_free;
bd4da3ab 3175 }
a8eb6c1b
KB
3176 memcpy(ctrl->subsys->firmware_rev, id->fr,
3177 sizeof(ctrl->subsys->firmware_rev));
bd4da3ab 3178
c35e30b4 3179 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
f0425db0 3180 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
c35e30b4
AL
3181 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3182 }
3183
49cd84b6
KB
3184 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3185 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3186 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3187
8a9ae523 3188 ctrl->oacs = le16_to_cpu(id->oacs);
43e2d08d 3189 ctrl->oncs = le16_to_cpu(id->oncs);
2d466c7a 3190 ctrl->mtfa = le16_to_cpu(id->mtfa);
c0561f82 3191 ctrl->oaes = le32_to_cpu(id->oaes);
400b6a7b
GR
3192 ctrl->wctemp = le16_to_cpu(id->wctemp);
3193 ctrl->cctemp = le16_to_cpu(id->cctemp);
3194
6bf25d16 3195 atomic_set(&ctrl->abort_limit, id->acl + 1);
7fd8930f 3196 ctrl->vwc = id->vwc;
7fd8930f 3197 if (id->mdts)
5befc7c2 3198 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
7fd8930f 3199 else
a229dbf6
CH
3200 max_hw_sectors = UINT_MAX;
3201 ctrl->max_hw_sectors =
3202 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
7fd8930f 3203
da35825d 3204 nvme_set_queue_limits(ctrl, ctrl->admin_q);
07bfcd09 3205 ctrl->sgls = le32_to_cpu(id->sgls);
038bd4cb 3206 ctrl->kas = le16_to_cpu(id->kas);
0d0b660f 3207 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3e53ba38 3208 ctrl->ctratt = le32_to_cpu(id->ctratt);
07bfcd09 3209
86c2457a
MB
3210 ctrl->cntrltype = id->cntrltype;
3211 ctrl->dctype = id->dctype;
3212
07fbd32a
MP
3213 if (id->rtd3e) {
3214 /* us -> s */
f5af577d 3215 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
07fbd32a
MP
3216
3217 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3218 shutdown_timeout, 60);
3219
3220 if (ctrl->shutdown_timeout != shutdown_timeout)
1a3838d7 3221 dev_info(ctrl->device,
07fbd32a
MP
3222 "Shutdown timeout set to %u seconds\n",
3223 ctrl->shutdown_timeout);
3224 } else
3225 ctrl->shutdown_timeout = shutdown_timeout;
3226
c5552fde 3227 ctrl->npss = id->npss;
76a5af84
KHF
3228 ctrl->apsta = id->apsta;
3229 prev_apst_enabled = ctrl->apst_enabled;
c35e30b4
AL
3230 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3231 if (force_apst && id->apsta) {
f0425db0 3232 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
76a5af84 3233 ctrl->apst_enabled = true;
c35e30b4 3234 } else {
76a5af84 3235 ctrl->apst_enabled = false;
c35e30b4
AL
3236 }
3237 } else {
76a5af84 3238 ctrl->apst_enabled = id->apsta;
c35e30b4 3239 }
c5552fde
AL
3240 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3241
d3d5b87d 3242 if (ctrl->ops->flags & NVME_F_FABRICS) {
07bfcd09
CH
3243 ctrl->icdoff = le16_to_cpu(id->icdoff);
3244 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3245 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3246 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3247
68999d1d
GL
3248 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3249 if (ret)
634b8325 3250 goto out_free;
07bfcd09 3251 } else {
fe6d53c9
CH
3252 ctrl->hmpre = le32_to_cpu(id->hmpre);
3253 ctrl->hmmin = le32_to_cpu(id->hmmin);
044a9df1
CH
3254 ctrl->hmminds = le32_to_cpu(id->hmminds);
3255 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
07bfcd09 3256 }
da35825d 3257
5e1f6899 3258 ret = nvme_mpath_init_identify(ctrl, id);
0d0b660f 3259 if (ret < 0)
44ef5611 3260 goto out_free;
0d0b660f 3261
76a5af84 3262 if (ctrl->apst_enabled && !prev_apst_enabled)
c5552fde 3263 dev_pm_qos_expose_latency_tolerance(ctrl->device);
76a5af84 3264 else if (!ctrl->apst_enabled && prev_apst_enabled)
c5552fde
AL
3265 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3266
44ef5611
CK
3267out_free:
3268 kfree(id);
3269 return ret;
3270}
3271
3272/*
3273 * Initialize the cached copies of the Identify data and various controller
3274 * register in our nvme_ctrl structure. This should be called as soon as
3275 * the admin queue is fully up and running.
3276 */
94cc781f 3277int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
44ef5611
CK
3278{
3279 int ret;
3280
3281 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3282 if (ret) {
3283 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3284 return ret;
3285 }
3286
3287 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3288
3289 if (ctrl->vs >= NVME_VS(1, 1, 0))
3290 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3291
3292 ret = nvme_init_identify(ctrl);
3293 if (ret)
3294 return ret;
3295
634b8325
KB
3296 ret = nvme_configure_apst(ctrl);
3297 if (ret < 0)
3298 return ret;
95d54bd1 3299
dbf86b39
JD
3300 ret = nvme_configure_timestamp(ctrl);
3301 if (ret < 0)
3302 return ret;
634b8325 3303
4020aad8 3304 ret = nvme_configure_host_options(ctrl);
49cd84b6
KB
3305 if (ret < 0)
3306 return ret;
3307
94cc781f
CH
3308 nvme_configure_opal(ctrl, was_suspended);
3309
5ab25a32 3310 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
6b8cf940
CH
3311 /*
3312 * Do not return errors unless we are in a controller reset,
3313 * the controller works perfectly fine without hwmon.
3314 */
59e330f8 3315 ret = nvme_hwmon_init(ctrl);
6b8cf940 3316 if (ret == -EINTR)
59e330f8
KB
3317 return ret;
3318 }
400b6a7b 3319
d0dd594b 3320 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
bd4da3ab 3321 ctrl->identified = true;
c5552fde 3322
4733b65d
HR
3323 nvme_start_keep_alive(ctrl);
3324
634b8325 3325 return 0;
7fd8930f 3326}
f21c4769 3327EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
7fd8930f 3328
f3ca80fc 3329static int nvme_dev_open(struct inode *inode, struct file *file)
1673f1f0 3330{
a6a5149b
CH
3331 struct nvme_ctrl *ctrl =
3332 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
1673f1f0 3333
e6e7f7ac 3334 switch (nvme_ctrl_state(ctrl)) {
2b1b7e78 3335 case NVME_CTRL_LIVE:
2b1b7e78
JW
3336 break;
3337 default:
a6a5149b 3338 return -EWOULDBLOCK;
2b1b7e78
JW
3339 }
3340
52a3974f 3341 nvme_get_ctrl(ctrl);
4bab6909
CK
3342 if (!try_module_get(ctrl->ops->module)) {
3343 nvme_put_ctrl(ctrl);
52a3974f 3344 return -EINVAL;
4bab6909 3345 }
52a3974f 3346
a6a5149b 3347 file->private_data = ctrl;
f3ca80fc
CH
3348 return 0;
3349}
3350
52a3974f
CK
3351static int nvme_dev_release(struct inode *inode, struct file *file)
3352{
3353 struct nvme_ctrl *ctrl =
3354 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3355
3356 module_put(ctrl->ops->module);
3357 nvme_put_ctrl(ctrl);
3358 return 0;
3359}
3360
f3ca80fc
CH
3361static const struct file_operations nvme_dev_fops = {
3362 .owner = THIS_MODULE,
3363 .open = nvme_dev_open,
52a3974f 3364 .release = nvme_dev_release,
f3ca80fc 3365 .unlocked_ioctl = nvme_dev_ioctl,
1832f2d8 3366 .compat_ioctl = compat_ptr_ioctl,
58e5bdeb 3367 .uring_cmd = nvme_dev_uring_cmd,
f3ca80fc
CH
3368};
3369
5974ea7c 3370static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
ed754e5d
CH
3371 unsigned nsid)
3372{
3373 struct nvme_ns_head *h;
3374
5974ea7c 3375 lockdep_assert_held(&ctrl->subsys->lock);
ed754e5d 3376
5974ea7c
SM
3377 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3378 /*
3379 * Private namespaces can share NSIDs under some conditions.
3380 * In that case we can't use the same ns_head for namespaces
3381 * with the same NSID.
3382 */
3383 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
9edceaf4
DW
3384 continue;
3385 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
ed754e5d
CH
3386 return h;
3387 }
3388
3389 return NULL;
3390}
3391
fd8099e7
CH
3392static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3393 struct nvme_ns_ids *ids)
ed754e5d 3394{
e2724cb9
CH
3395 bool has_uuid = !uuid_is_null(&ids->uuid);
3396 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3397 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
ed754e5d
CH
3398 struct nvme_ns_head *h;
3399
3400 lockdep_assert_held(&subsys->lock);
3401
3402 list_for_each_entry(h, &subsys->nsheads, entry) {
e2724cb9
CH
3403 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3404 return -EINVAL;
3405 if (has_nguid &&
3406 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3407 return -EINVAL;
3408 if (has_eui64 &&
3409 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
ed754e5d
CH
3410 return -EINVAL;
3411 }
3412
3413 return 0;
3414}
3415
be5eb933
AM
3416static void nvme_cdev_rel(struct device *dev)
3417{
8b850475 3418 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
be5eb933
AM
3419}
3420
2637baed
MI
3421void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3422{
3423 cdev_device_del(cdev, cdev_device);
be5eb933 3424 put_device(cdev_device);
2637baed
MI
3425}
3426
3427int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3428 const struct file_operations *fops, struct module *owner)
3429{
3430 int minor, ret;
3431
8b850475 3432 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
2637baed
MI
3433 if (minor < 0)
3434 return minor;
3435 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3436 cdev_device->class = nvme_ns_chr_class;
be5eb933 3437 cdev_device->release = nvme_cdev_rel;
2637baed
MI
3438 device_initialize(cdev_device);
3439 cdev_init(cdev, fops);
3440 cdev->owner = owner;
3441 ret = cdev_device_add(cdev, cdev_device);
be5eb933 3442 if (ret)
3596a065 3443 put_device(cdev_device);
be5eb933 3444
2637baed
MI
3445 return ret;
3446}
3447
3448static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3449{
3450 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3451}
3452
3453static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3454{
3455 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3456 return 0;
3457}
3458
3459static const struct file_operations nvme_ns_chr_fops = {
3460 .owner = THIS_MODULE,
3461 .open = nvme_ns_chr_open,
3462 .release = nvme_ns_chr_release,
3463 .unlocked_ioctl = nvme_ns_chr_ioctl,
3464 .compat_ioctl = compat_ptr_ioctl,
456cba38 3465 .uring_cmd = nvme_ns_chr_uring_cmd,
585079b6 3466 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
2637baed
MI
3467};
3468
3469static int nvme_add_ns_cdev(struct nvme_ns *ns)
3470{
3471 int ret;
3472
3473 ns->cdev_device.parent = ns->ctrl->device;
3474 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3475 ns->ctrl->instance, ns->head->instance);
3476 if (ret)
3477 return ret;
be5eb933
AM
3478
3479 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3480 ns->ctrl->ops->module);
2637baed
MI
3481}
3482
ed754e5d 3483static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
1a893c2b 3484 struct nvme_ns_info *info)
ed754e5d
CH
3485{
3486 struct nvme_ns_head *head;
f3334447 3487 size_t size = sizeof(*head);
ed754e5d
CH
3488 int ret = -ENOMEM;
3489
f3334447
CH
3490#ifdef CONFIG_NVME_MULTIPATH
3491 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3492#endif
3493
3494 head = kzalloc(size, GFP_KERNEL);
ed754e5d
CH
3495 if (!head)
3496 goto out;
8b850475 3497 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
ed754e5d
CH
3498 if (ret < 0)
3499 goto out_free_head;
3500 head->instance = ret;
3501 INIT_LIST_HEAD(&head->list);
fd92c77f
MG
3502 ret = init_srcu_struct(&head->srcu);
3503 if (ret)
3504 goto out_ida_remove;
ed754e5d 3505 head->subsys = ctrl->subsys;
1a893c2b
CH
3506 head->ns_id = info->nsid;
3507 head->ids = info->ids;
3508 head->shared = info->is_shared;
a1a825ab
DW
3509 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3510 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
ed754e5d
CH
3511 kref_init(&head->ref);
3512
be93e87e
KB
3513 if (head->ids.csi) {
3514 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3515 if (ret)
3516 goto out_cleanup_srcu;
3517 } else
3518 head->effects = ctrl->effects;
3519
32acab31
CH
3520 ret = nvme_mpath_alloc_disk(ctrl, head);
3521 if (ret)
3522 goto out_cleanup_srcu;
3523
ed754e5d 3524 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
12d9f070
JW
3525
3526 kref_get(&ctrl->subsys->ref);
3527
ed754e5d
CH
3528 return head;
3529out_cleanup_srcu:
3530 cleanup_srcu_struct(&head->srcu);
fd92c77f 3531out_ida_remove:
8b850475 3532 ida_free(&ctrl->subsys->ns_ida, head->instance);
ed754e5d
CH
3533out_free_head:
3534 kfree(head);
3535out:
538af88e
SG
3536 if (ret > 0)
3537 ret = blk_status_to_errno(nvme_error_status(ret));
ed754e5d
CH
3538 return ERR_PTR(ret);
3539}
3540
2079f41e
CH
3541static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3542 struct nvme_ns_ids *ids)
3543{
3544 struct nvme_subsystem *s;
3545 int ret = 0;
3546
3547 /*
3548 * Note that this check is racy as we try to avoid holding the global
3549 * lock over the whole ns_head creation. But it is only intended as
3550 * a sanity check anyway.
3551 */
3552 mutex_lock(&nvme_subsystems_lock);
3553 list_for_each_entry(s, &nvme_subsystems, entry) {
3554 if (s == this)
3555 continue;
3556 mutex_lock(&s->lock);
3557 ret = nvme_subsys_check_duplicate_ids(s, ids);
3558 mutex_unlock(&s->lock);
3559 if (ret)
3560 break;
3561 }
3562 mutex_unlock(&nvme_subsystems_lock);
3563
3564 return ret;
3565}
3566
1a893c2b 3567static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
ed754e5d
CH
3568{
3569 struct nvme_ctrl *ctrl = ns->ctrl;
ed754e5d 3570 struct nvme_ns_head *head = NULL;
2079f41e
CH
3571 int ret;
3572
1a893c2b 3573 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
2079f41e 3574 if (ret) {
ac522fc6
CH
3575 /*
3576 * We've found two different namespaces on two different
3577 * subsystems that report the same ID. This is pretty nasty
3578 * for anything that actually requires unique device
3579 * identification. In the kernel we need this for multipathing,
3580 * and in user space the /dev/disk/by-id/ links rely on it.
3581 *
3582 * If the device also claims to be multi-path capable back off
3583 * here now and refuse the probe the second device as this is a
3584 * recipe for data corruption. If not this is probably a
3585 * cheap consumer device if on the PCIe bus, so let the user
3586 * proceed and use the shiny toy, but warn that with changing
3587 * probing order (which due to our async probing could just be
3588 * device taking longer to startup) the other device could show
3589 * up at any time.
3590 */
2f0dad17 3591 nvme_print_device_info(ctrl);
ac522fc6
CH
3592 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3593 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3594 info->is_shared)) {
3595 dev_err(ctrl->device,
3596 "ignoring nsid %d because of duplicate IDs\n",
3597 info->nsid);
3598 return ret;
3599 }
3600
3601 dev_err(ctrl->device,
3602 "clearing duplicate IDs for nsid %d\n", info->nsid);
3603 dev_err(ctrl->device,
3604 "use of /dev/disk/by-id/ may cause data corruption\n");
3605 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3606 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3607 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3608 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
2079f41e 3609 }
ed754e5d
CH
3610
3611 mutex_lock(&ctrl->subsys->lock);
1a893c2b 3612 head = nvme_find_ns_head(ctrl, info->nsid);
ed754e5d 3613 if (!head) {
1a893c2b 3614 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
e2d77d2e
CH
3615 if (ret) {
3616 dev_err(ctrl->device,
2079f41e 3617 "duplicate IDs in subsystem for nsid %d\n",
1a893c2b 3618 info->nsid);
e2d77d2e
CH
3619 goto out_unlock;
3620 }
1a893c2b 3621 head = nvme_alloc_ns_head(ctrl, info);
ed754e5d
CH
3622 if (IS_ERR(head)) {
3623 ret = PTR_ERR(head);
3624 goto out_unlock;
3625 }
ed754e5d 3626 } else {
6623c5b3 3627 ret = -EINVAL;
1a893c2b 3628 if (!info->is_shared || !head->shared) {
9ad1927a 3629 dev_err(ctrl->device,
1a893c2b
CH
3630 "Duplicate unshared namespace %d\n",
3631 info->nsid);
6623c5b3 3632 goto out_put_ns_head;
9ad1927a 3633 }
1a893c2b 3634 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
ed754e5d
CH
3635 dev_err(ctrl->device,
3636 "IDs don't match for shared namespace %d\n",
1a893c2b 3637 info->nsid);
6623c5b3 3638 goto out_put_ns_head;
ed754e5d 3639 }
ce8d7861 3640
2110a6bc 3641 if (!multipath) {
ce8d7861
CH
3642 dev_warn(ctrl->device,
3643 "Found shared namespace %d, but multipathing not supported.\n",
1a893c2b 3644 info->nsid);
ce8d7861
CH
3645 dev_warn_once(ctrl->device,
3646 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3647 }
ed754e5d
CH
3648 }
3649
772ea326 3650 list_add_tail_rcu(&ns->siblings, &head->list);
ed754e5d 3651 ns->head = head;
6623c5b3
CH
3652 mutex_unlock(&ctrl->subsys->lock);
3653 return 0;
ed754e5d 3654
6623c5b3
CH
3655out_put_ns_head:
3656 nvme_put_ns_head(head);
ed754e5d
CH
3657out_unlock:
3658 mutex_unlock(&ctrl->subsys->lock);
3659 return ret;
3660}
3661
24493b8b 3662struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
5bae7f73 3663{
32f0c4af 3664 struct nvme_ns *ns, *ret = NULL;
69d3b8ac 3665
765cc031 3666 down_read(&ctrl->namespaces_rwsem);
5bae7f73 3667 list_for_each_entry(ns, &ctrl->namespaces, list) {
ed754e5d 3668 if (ns->head->ns_id == nsid) {
4c74d1f8 3669 if (!nvme_get_ns(ns))
2dd41228 3670 continue;
32f0c4af
KB
3671 ret = ns;
3672 break;
3673 }
ed754e5d 3674 if (ns->head->ns_id > nsid)
5bae7f73
CH
3675 break;
3676 }
765cc031 3677 up_read(&ctrl->namespaces_rwsem);
32f0c4af 3678 return ret;
5bae7f73 3679}
24493b8b 3680EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
5bae7f73 3681
298ba0e3
CH
3682/*
3683 * Add the namespace to the controller list while keeping the list ordered.
3684 */
3685static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3686{
3687 struct nvme_ns *tmp;
3688
3689 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3690 if (tmp->head->ns_id < ns->head->ns_id) {
3691 list_add(&ns->list, &tmp->list);
3692 return;
3693 }
3694 }
3695 list_add(&ns->list, &ns->ctrl->namespaces);
3696}
3697
1a893c2b 3698static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
5bae7f73
CH
3699{
3700 struct nvme_ns *ns;
3701 struct gendisk *disk;
9953ab0c 3702 int node = ctrl->numa_node;
5bae7f73
CH
3703
3704 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3705 if (!ns)
1a893c2b 3706 return;
5bae7f73 3707
27e32cd2 3708 disk = blk_mq_alloc_disk(ctrl->tagset, NULL, ns);
5f432cce 3709 if (IS_ERR(disk))
ed754e5d 3710 goto out_free_ns;
5f432cce
CH
3711 disk->fops = &nvme_bdev_ops;
3712 disk->private_data = ns;
3713
3714 ns->disk = disk;
3715 ns->queue = disk->queue;
9f079dda 3716 ns->passthru_err_log_enabled = false;
e0596ab2 3717
7d30c81b 3718 if (ctrl->opts && ctrl->opts->data_digest)
1cb039f3 3719 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
958f2a0f 3720
8b904b5b 3721 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
2f859441
LG
3722 if (ctrl->ops->supports_pci_p2pdma &&
3723 ctrl->ops->supports_pci_p2pdma(ctrl))
e0596ab2
LG
3724 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3725
5bae7f73 3726 ns->ctrl = ctrl;
5bae7f73 3727 kref_init(&ns->kref);
5bae7f73 3728
1a893c2b 3729 if (nvme_init_ns_head(ns, info))
5f432cce 3730 goto out_cleanup_disk;
ac81bfa9 3731
9953ab0c 3732 /*
b739e137
CH
3733 * If multipathing is enabled, the device name for all disks and not
3734 * just those that represent shared namespaces needs to be based on the
3735 * subsystem instance. Using the controller instance for private
3736 * namespaces could lead to naming collisions between shared and private
3737 * namespaces if they don't use a common numbering scheme.
3738 *
3739 * If multipathing is not enabled, disk names must use the controller
3740 * instance as shared namespaces will show up as multiple block
3741 * devices.
9953ab0c 3742 */
35e797b0 3743 if (nvme_ns_head_multipath(ns->head)) {
b739e137
CH
3744 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3745 ctrl->instance, ns->head->instance);
3746 disk->flags |= GENHD_FL_HIDDEN;
3747 } else if (multipath) {
3748 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3749 ns->head->instance);
3750 } else {
9953ab0c
CH
3751 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3752 ns->head->instance);
b739e137 3753 }
3dc87dd0 3754
1a893c2b 3755 if (nvme_update_ns_info(ns, info))
5f432cce 3756 goto out_unlink_ns;
5bae7f73 3757
765cc031 3758 down_write(&ctrl->namespaces_rwsem);
839a40d1
BH
3759 /*
3760 * Ensure that no namespaces are added to the ctrl list after the queues
3761 * are frozen, thereby avoiding a deadlock between scan and reset.
3762 */
3763 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3764 up_write(&ctrl->namespaces_rwsem);
3765 goto out_unlink_ns;
3766 }
298ba0e3 3767 nvme_ns_add_to_ctrl_list(ns);
765cc031 3768 up_write(&ctrl->namespaces_rwsem);
d22524a4 3769 nvme_get_ctrl(ctrl);
ac81bfa9 3770
83ac678e 3771 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
ab3994f6
LC
3772 goto out_cleanup_ns_from_list;
3773
2637baed
MI
3774 if (!nvme_ns_head_multipath(ns->head))
3775 nvme_add_ns_cdev(ns);
32acab31 3776
1a893c2b 3777 nvme_mpath_add_disk(ns, info->anagrpid);
a3646451 3778 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
0d0b660f 3779
9f079dda
AA
3780 /*
3781 * Set ns->disk->device->driver_data to ns so we can access
3782 * ns->logging_enabled in nvme_passthru_err_log_enabled_store() and
3783 * nvme_passthru_err_log_enabled_show().
3784 */
3785 dev_set_drvdata(disk_to_dev(ns->disk), ns);
3786
adce7e98 3787 return;
5f432cce 3788
ab3994f6
LC
3789 out_cleanup_ns_from_list:
3790 nvme_put_ctrl(ctrl);
3791 down_write(&ctrl->namespaces_rwsem);
3792 list_del_init(&ns->list);
3793 up_write(&ctrl->namespaces_rwsem);
ed754e5d
CH
3794 out_unlink_ns:
3795 mutex_lock(&ctrl->subsys->lock);
3796 list_del_rcu(&ns->siblings);
d5675729
KB
3797 if (list_empty(&ns->head->list))
3798 list_del_init(&ns->head->entry);
ed754e5d 3799 mutex_unlock(&ctrl->subsys->lock);
a63b8370 3800 nvme_put_ns_head(ns->head);
5f432cce 3801 out_cleanup_disk:
8b9ab626 3802 put_disk(disk);
5bae7f73
CH
3803 out_free_ns:
3804 kfree(ns);
3805}
3806
3807static void nvme_ns_remove(struct nvme_ns *ns)
3808{
5396fdac
HR
3809 bool last_path = false;
3810
646017a6
KB
3811 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3812 return;
69d3b8ac 3813
e7d65803 3814 clear_bit(NVME_NS_READY, &ns->flags);
0a05226a 3815 set_capacity(ns->disk, 0);
a3646451 3816 nvme_fault_inject_fini(&ns->fault_inject);
2181e455 3817
d6d67427
CL
3818 /*
3819 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3820 * this ns going back into current_path.
3821 */
3822 synchronize_srcu(&ns->head->srcu);
3823
3824 /* wait for concurrent submissions */
3825 if (nvme_mpath_clear_current_path(ns))
3826 synchronize_srcu(&ns->head->srcu);
3827
2181e455
AE
3828 mutex_lock(&ns->ctrl->subsys->lock);
3829 list_del_rcu(&ns->siblings);
9edceaf4
DW
3830 if (list_empty(&ns->head->list)) {
3831 list_del_init(&ns->head->entry);
3832 last_path = true;
3833 }
2181e455 3834 mutex_unlock(&ns->ctrl->subsys->lock);
d5675729 3835
041bd1a1 3836 /* guarantee not available in head->list */
899d2a05 3837 synchronize_srcu(&ns->head->srcu);
041bd1a1 3838
5eba2005
CH
3839 if (!nvme_ns_head_multipath(ns->head))
3840 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3841 del_gendisk(ns->disk);
32f0c4af 3842
765cc031 3843 down_write(&ns->ctrl->namespaces_rwsem);
5bae7f73 3844 list_del_init(&ns->list);
765cc031 3845 up_write(&ns->ctrl->namespaces_rwsem);
32f0c4af 3846
5396fdac
HR
3847 if (last_path)
3848 nvme_mpath_shutdown_disk(ns->head);
5bae7f73
CH
3849 nvme_put_ns(ns);
3850}
3851
4450ba3b
CH
3852static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3853{
3854 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3855
3856 if (ns) {
3857 nvme_ns_remove(ns);
3858 nvme_put_ns(ns);
3859 }
3860}
3861
1a893c2b 3862static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
b2dc748a 3863{
d95c1f41 3864 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
b2dc748a 3865
1a893c2b 3866 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
af5d6f7b 3867 dev_err(ns->ctrl->device,
b2dc748a 3868 "identifiers changed for nsid %d\n", ns->head->ns_id);
1a893c2b 3869 goto out;
b2dc748a
CH
3870 }
3871
1a893c2b 3872 ret = nvme_update_ns_info(ns, info);
b2dc748a
CH
3873out:
3874 /*
0a05226a 3875 * Only remove the namespace if we got a fatal error back from the
b2dc748a 3876 * device, otherwise ignore the error and just move on.
0a05226a
CH
3877 *
3878 * TODO: we should probably schedule a delayed retry here.
b2dc748a 3879 */
d95c1f41 3880 if (ret > 0 && (ret & NVME_SC_DNR))
0a05226a 3881 nvme_ns_remove(ns);
b2dc748a
CH
3882}
3883
04c170f6 3884static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
540c801c 3885{
1a893c2b 3886 struct nvme_ns_info info = { .nsid = nsid };
540c801c 3887 struct nvme_ns *ns;
0dd6fff2 3888 int ret;
540c801c 3889
1a893c2b 3890 if (nvme_identify_ns_descs(ctrl, &info))
8b7c0ff2 3891 return;
540c801c 3892
1a893c2b 3893 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
71882e7d
CH
3894 dev_warn(ctrl->device,
3895 "command set not reported for nsid: %d\n", nsid);
3896 return;
3897 }
3898
354201c5 3899 /*
1a893c2b
CH
3900 * If available try to use the Command Set Idependent Identify Namespace
3901 * data structure to find all the generic information that is needed to
3902 * set up a namespace. If not fall back to the legacy version.
354201c5 3903 */
eb867ee9 3904 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
0dd6fff2
CH
3905 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3906 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3907 else
3908 ret = nvme_ns_info_from_identify(ctrl, &info);
3909
3910 if (info.is_removed)
3911 nvme_ns_remove_by_nsid(ctrl, nsid);
354201c5 3912
1a893c2b
CH
3913 /*
3914 * Ignore the namespace if it is not ready. We will get an AEN once it
3915 * becomes ready and restart the scan.
3916 */
0dd6fff2 3917 if (ret || !info.is_ready)
354201c5
CH
3918 return;
3919
32f0c4af 3920 ns = nvme_find_get_ns(ctrl, nsid);
8b7c0ff2 3921 if (ns) {
1a893c2b 3922 nvme_validate_ns(ns, &info);
8b7c0ff2 3923 nvme_put_ns(ns);
1a893c2b
CH
3924 } else {
3925 nvme_alloc_ns(ctrl, &info);
8b7c0ff2 3926 }
540c801c
KB
3927}
3928
47b0e50a
SB
3929static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3930 unsigned nsid)
3931{
3932 struct nvme_ns *ns, *next;
6f8e0d78 3933 LIST_HEAD(rm_list);
47b0e50a 3934
765cc031 3935 down_write(&ctrl->namespaces_rwsem);
47b0e50a 3936 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4f17344e 3937 if (ns->head->ns_id > nsid)
6f8e0d78 3938 list_move_tail(&ns->list, &rm_list);
47b0e50a 3939 }
765cc031 3940 up_write(&ctrl->namespaces_rwsem);
6f8e0d78
JW
3941
3942 list_for_each_entry_safe(ns, next, &rm_list, list)
3943 nvme_ns_remove(ns);
3944
47b0e50a
SB
3945}
3946
4005f28d 3947static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
540c801c 3948{
aec459b4 3949 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
540c801c 3950 __le32 *ns_list;
4005f28d
CH
3951 u32 prev = 0;
3952 int ret = 0, i;
540c801c 3953
42595eb7 3954 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
540c801c
KB
3955 if (!ns_list)
3956 return -ENOMEM;
3957
4005f28d 3958 for (;;) {
7b153362
CH
3959 struct nvme_command cmd = {
3960 .identify.opcode = nvme_admin_identify,
3961 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
3962 .identify.nsid = cpu_to_le32(prev),
3963 };
3964
3965 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3966 NVME_IDENTIFY_DATA_SIZE);
f781f3dd
MI
3967 if (ret) {
3968 dev_warn(ctrl->device,
3969 "Identify NS List failed (status=0x%x)\n", ret);
47b0e50a 3970 goto free;
f781f3dd 3971 }
540c801c 3972
aec459b4 3973 for (i = 0; i < nr_entries; i++) {
4005f28d 3974 u32 nsid = le32_to_cpu(ns_list[i]);
540c801c 3975
4005f28d
CH
3976 if (!nsid) /* end of the list? */
3977 goto out;
04c170f6 3978 nvme_scan_ns(ctrl, nsid);
4450ba3b
CH
3979 while (++prev < nsid)
3980 nvme_ns_remove_by_nsid(ctrl, prev);
540c801c 3981 }
540c801c
KB
3982 }
3983 out:
47b0e50a
SB
3984 nvme_remove_invalid_namespaces(ctrl, prev);
3985 free:
540c801c
KB
3986 kfree(ns_list);
3987 return ret;
3988}
3989
4005f28d 3990static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
5bae7f73 3991{
4005f28d
CH
3992 struct nvme_id_ctrl *id;
3993 u32 nn, i;
3994
3995 if (nvme_identify_ctrl(ctrl, &id))
3996 return;
3997 nn = le32_to_cpu(id->nn);
3998 kfree(id);
5bae7f73 3999
540c801c 4000 for (i = 1; i <= nn; i++)
04c170f6 4001 nvme_scan_ns(ctrl, i);
540c801c 4002
47b0e50a 4003 nvme_remove_invalid_namespaces(ctrl, nn);
5bae7f73
CH
4004}
4005
f493af37 4006static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
30d90964
CH
4007{
4008 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4009 __le32 *log;
f493af37 4010 int error;
30d90964
CH
4011
4012 log = kzalloc(log_size, GFP_KERNEL);
4013 if (!log)
f493af37 4014 return;
30d90964 4015
f493af37
CH
4016 /*
4017 * We need to read the log to clear the AEN, but we don't want to rely
4018 * on it for the changed namespace information as userspace could have
4019 * raced with us in reading the log page, which could cause us to miss
4020 * updates.
4021 */
be93e87e
KB
4022 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4023 NVME_CSI_NVM, log, log_size, 0);
f493af37 4024 if (error)
30d90964
CH
4025 dev_warn(ctrl->device,
4026 "reading changed ns log failed: %d\n", error);
30d90964 4027
30d90964 4028 kfree(log);
30d90964
CH
4029}
4030
5955be21 4031static void nvme_scan_work(struct work_struct *work)
5bae7f73 4032{
5955be21
CH
4033 struct nvme_ctrl *ctrl =
4034 container_of(work, struct nvme_ctrl, scan_work);
78288665 4035 int ret;
5bae7f73 4036
5d02a5c1 4037 /* No tagset on a live ctrl means IO queues could not created */
e6e7f7ac 4038 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
5955be21
CH
4039 return;
4040
78288665
CK
4041 /*
4042 * Identify controller limits can change at controller reset due to
4043 * new firmware download, even though it is not common we cannot ignore
4044 * such scenario. Controller's non-mdts limits are reported in the unit
4045 * of logical blocks that is dependent on the format of attached
4046 * namespace. Hence re-read the limits at the time of ns allocation.
4047 */
4048 ret = nvme_init_non_mdts_limits(ctrl);
4049 if (ret < 0) {
4050 dev_warn(ctrl->device,
4051 "reading non-mdts-limits failed: %d\n", ret);
4052 return;
4053 }
4054
77016199 4055 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
30d90964 4056 dev_info(ctrl->device, "rescanning namespaces.\n");
f493af37 4057 nvme_clear_changed_ns_log(ctrl);
30d90964
CH
4058 }
4059
e7ad43c3 4060 mutex_lock(&ctrl->scan_lock);
811f4de0 4061 if (nvme_ctrl_limited_cns(ctrl)) {
4005f28d 4062 nvme_scan_ns_sequential(ctrl);
811f4de0
US
4063 } else {
4064 /*
4065 * Fall back to sequential scan if DNR is set to handle broken
4066 * devices which should support Identify NS List (as per the VS
4067 * they report) but don't actually support it.
4068 */
4069 ret = nvme_scan_ns_list(ctrl);
4070 if (ret > 0 && ret & NVME_SC_DNR)
4071 nvme_scan_ns_sequential(ctrl);
4072 }
e7ad43c3 4073 mutex_unlock(&ctrl->scan_lock);
5955be21 4074}
5bae7f73 4075
32f0c4af
KB
4076/*
4077 * This function iterates the namespace list unlocked to allow recovery from
4078 * controller failure. It is up to the caller to ensure the namespace list is
4079 * not modified by scan work while this function is executing.
4080 */
5bae7f73
CH
4081void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4082{
4083 struct nvme_ns *ns, *next;
6f8e0d78 4084 LIST_HEAD(ns_list);
5bae7f73 4085
0157ec8d
SG
4086 /*
4087 * make sure to requeue I/O to all namespaces as these
4088 * might result from the scan itself and must complete
4089 * for the scan_work to make progress
4090 */
4091 nvme_mpath_clear_ctrl_paths(ctrl);
4092
1b95e817
ML
4093 /*
4094 * Unquiesce io queues so any pending IO won't hang, especially
4095 * those submitted from scan work
4096 */
4097 nvme_unquiesce_io_queues(ctrl);
4098
f6c8e432
SG
4099 /* prevent racing with ns scanning */
4100 flush_work(&ctrl->scan_work);
4101
0ff9d4e1
KB
4102 /*
4103 * The dead states indicates the controller was not gracefully
4104 * disconnected. In that case, we won't be able to flush any data while
4105 * removing the namespaces' disks; fail all the queues now to avoid
4106 * potentially having to clean up the failed sync later.
4107 */
e6e7f7ac 4108 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
cd50f9b2 4109 nvme_mark_namespaces_dead(ctrl);
0ff9d4e1 4110
ecca390e
SG
4111 /* this is a no-op when called from the controller reset handler */
4112 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4113
765cc031 4114 down_write(&ctrl->namespaces_rwsem);
6f8e0d78 4115 list_splice_init(&ctrl->namespaces, &ns_list);
765cc031 4116 up_write(&ctrl->namespaces_rwsem);
6f8e0d78
JW
4117
4118 list_for_each_entry_safe(ns, next, &ns_list, list)
5bae7f73
CH
4119 nvme_ns_remove(ns);
4120}
576d55d6 4121EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
5bae7f73 4122
23680f0b 4123static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
a42f42e5 4124{
23680f0b 4125 const struct nvme_ctrl *ctrl =
a42f42e5
SG
4126 container_of(dev, struct nvme_ctrl, ctrl_device);
4127 struct nvmf_ctrl_options *opts = ctrl->opts;
4128 int ret;
4129
4130 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4131 if (ret)
4132 return ret;
4133
4134 if (opts) {
4135 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4136 if (ret)
4137 return ret;
4138
4139 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4140 opts->trsvcid ?: "none");
4141 if (ret)
4142 return ret;
4143
4144 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4145 opts->host_traddr ?: "none");
3ede8f72
MB
4146 if (ret)
4147 return ret;
4148
4149 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4150 opts->host_iface ?: "none");
a42f42e5
SG
4151 }
4152 return ret;
4153}
4154
20d64911
MB
4155static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4156{
4157 char *envp[2] = { envdata, NULL };
4158
4159 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4160}
4161
e3d7874d
KB
4162static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4163{
4164 char *envp[2] = { NULL, NULL };
4165 u32 aen_result = ctrl->aen_result;
4166
4167 ctrl->aen_result = 0;
4168 if (!aen_result)
4169 return;
4170
4171 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4172 if (!envp[0])
4173 return;
4174 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4175 kfree(envp[0]);
4176}
4177
f866fc42
CH
4178static void nvme_async_event_work(struct work_struct *work)
4179{
4180 struct nvme_ctrl *ctrl =
4181 container_of(work, struct nvme_ctrl, async_event_work);
4182
e3d7874d 4183 nvme_aen_uevent(ctrl);
0fa0f99f
SG
4184
4185 /*
4186 * The transport drivers must guarantee AER submission here is safe by
4187 * flushing ctrl async_event_work after changing the controller state
4188 * from LIVE and before freeing the admin queue.
4189 */
e6e7f7ac 4190 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
0fa0f99f 4191 ctrl->ops->submit_async_event(ctrl);
f866fc42
CH
4192}
4193
b6dccf7f
AD
4194static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4195{
4196
4197 u32 csts;
4198
4199 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4200 return false;
4201
4202 if (csts == ~0)
4203 return false;
4204
4205 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4206}
4207
4208static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4209{
b6dccf7f
AD
4210 struct nvme_fw_slot_info_log *log;
4211
4212 log = kmalloc(sizeof(*log), GFP_KERNEL);
4213 if (!log)
4214 return;
4215
be93e87e 4216 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
983a338b 4217 log, sizeof(*log), 0)) {
0e98719b 4218 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
983a338b
DW
4219 goto out_free_log;
4220 }
4221
4222 if (log->afi & 0x70 || !(log->afi & 0x7)) {
4223 dev_info(ctrl->device,
4224 "Firmware is activated after next Controller Level Reset\n");
4225 goto out_free_log;
4226 }
4227
4228 memcpy(ctrl->subsys->firmware_rev, &log->frs[(log->afi & 0x7) - 1],
4229 sizeof(ctrl->subsys->firmware_rev));
4230
4231out_free_log:
b6dccf7f
AD
4232 kfree(log);
4233}
4234
4235static void nvme_fw_act_work(struct work_struct *work)
4236{
4237 struct nvme_ctrl *ctrl = container_of(work,
4238 struct nvme_ctrl, fw_act_work);
4239 unsigned long fw_act_timeout;
4240
f6fe0b2d
ML
4241 nvme_auth_stop(ctrl);
4242
b6dccf7f
AD
4243 if (ctrl->mtfa)
4244 fw_act_timeout = jiffies +
4245 msecs_to_jiffies(ctrl->mtfa * 100);
4246 else
4247 fw_act_timeout = jiffies +
4248 msecs_to_jiffies(admin_timeout * 1000);
4249
9f27bd70 4250 nvme_quiesce_io_queues(ctrl);
b6dccf7f
AD
4251 while (nvme_ctrl_pp_status(ctrl)) {
4252 if (time_after(jiffies, fw_act_timeout)) {
4253 dev_warn(ctrl->device,
4254 "Fw activation timeout, reset controller\n");
4c75f877
KB
4255 nvme_try_sched_reset(ctrl);
4256 return;
b6dccf7f
AD
4257 }
4258 msleep(100);
4259 }
4260
4c75f877 4261 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
b6dccf7f
AD
4262 return;
4263
9f27bd70 4264 nvme_unquiesce_io_queues(ctrl);
a806c6c8 4265 /* read FW slot information to clear the AER */
b6dccf7f 4266 nvme_get_fw_slot_info(ctrl);
371a982c
KB
4267
4268 queue_work(nvme_wq, &ctrl->async_event_work);
b6dccf7f
AD
4269}
4270
2c61c97f
MK
4271static u32 nvme_aer_type(u32 result)
4272{
4273 return result & 0x7;
4274}
4275
4276static u32 nvme_aer_subtype(u32 result)
4277{
4278 return (result & 0xff00) >> 8;
4279}
4280
371a982c 4281static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
868c2392 4282{
2c61c97f 4283 u32 aer_notice_type = nvme_aer_subtype(result);
371a982c 4284 bool requeue = true;
09bd1ff4
CK
4285
4286 switch (aer_notice_type) {
868c2392 4287 case NVME_AER_NOTICE_NS_CHANGED:
77016199 4288 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
868c2392
CH
4289 nvme_queue_scan(ctrl);
4290 break;
4291 case NVME_AER_NOTICE_FW_ACT_STARTING:
4c75f877
KB
4292 /*
4293 * We are (ab)using the RESETTING state to prevent subsequent
4294 * recovery actions from interfering with the controller's
4295 * firmware activation.
4296 */
f50fff73 4297 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
371a982c 4298 requeue = false;
4c75f877 4299 queue_work(nvme_wq, &ctrl->fw_act_work);
f50fff73 4300 }
868c2392 4301 break;
0d0b660f
CH
4302#ifdef CONFIG_NVME_MULTIPATH
4303 case NVME_AER_NOTICE_ANA:
4304 if (!ctrl->ana_log_buf)
4305 break;
4306 queue_work(nvme_wq, &ctrl->ana_work);
4307 break;
4308#endif
85f8a435
SG
4309 case NVME_AER_NOTICE_DISC_CHANGED:
4310 ctrl->aen_result = result;
4311 break;
868c2392
CH
4312 default:
4313 dev_warn(ctrl->device, "async event result %08x\n", result);
4314 }
371a982c 4315 return requeue;
868c2392
CH
4316}
4317
2c61c97f
MK
4318static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4319{
2c61c97f
MK
4320 dev_warn(ctrl->device, "resetting controller due to AER\n");
4321 nvme_reset_ctrl(ctrl);
4322}
4323
7bf58533 4324void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
287a63eb 4325 volatile union nvme_result *res)
f866fc42 4326{
7bf58533 4327 u32 result = le32_to_cpu(res->u32);
2c61c97f
MK
4328 u32 aer_type = nvme_aer_type(result);
4329 u32 aer_subtype = nvme_aer_subtype(result);
371a982c 4330 bool requeue = true;
f866fc42 4331
ad22c355 4332 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
f866fc42
CH
4333 return;
4334
6622b76f 4335 trace_nvme_async_event(ctrl, result);
09bd1ff4 4336 switch (aer_type) {
868c2392 4337 case NVME_AER_NOTICE:
371a982c 4338 requeue = nvme_handle_aen_notice(ctrl, result);
868c2392 4339 break;
e3d7874d 4340 case NVME_AER_ERROR:
2c61c97f
MK
4341 /*
4342 * For a persistent internal error, don't run async_event_work
4343 * to submit a new AER. The controller reset will do it.
4344 */
4345 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4346 nvme_handle_aer_persistent_error(ctrl);
4347 return;
4348 }
4349 fallthrough;
e3d7874d
KB
4350 case NVME_AER_SMART:
4351 case NVME_AER_CSS:
4352 case NVME_AER_VS:
4353 ctrl->aen_result = result;
7bf58533
CH
4354 break;
4355 default:
4356 break;
f866fc42 4357 }
371a982c
KB
4358
4359 if (requeue)
4360 queue_work(nvme_wq, &ctrl->async_event_work);
f866fc42 4361}
f866fc42 4362EXPORT_SYMBOL_GPL(nvme_complete_async_event);
f3ca80fc 4363
fe60e8c5 4364int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
db45e1a5 4365 const struct blk_mq_ops *ops, unsigned int cmd_size)
fe60e8c5
CH
4366{
4367 int ret;
4368
4369 memset(set, 0, sizeof(*set));
4370 set->ops = ops;
4371 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4372 if (ctrl->ops->flags & NVME_F_FABRICS)
4373 set->reserved_tags = NVMF_RESERVED_TAGS;
4374 set->numa_node = ctrl->numa_node;
db45e1a5
CH
4375 set->flags = BLK_MQ_F_NO_SCHED;
4376 if (ctrl->ops->flags & NVME_F_BLOCKING)
4377 set->flags |= BLK_MQ_F_BLOCKING;
fe60e8c5
CH
4378 set->cmd_size = cmd_size;
4379 set->driver_data = ctrl;
4380 set->nr_hw_queues = 1;
4381 set->timeout = NVME_ADMIN_TIMEOUT;
4382 ret = blk_mq_alloc_tag_set(set);
4383 if (ret)
4384 return ret;
4385
9ac4dd8c 4386 ctrl->admin_q = blk_mq_alloc_queue(set, NULL, NULL);
fe60e8c5
CH
4387 if (IS_ERR(ctrl->admin_q)) {
4388 ret = PTR_ERR(ctrl->admin_q);
4389 goto out_free_tagset;
4390 }
4391
4392 if (ctrl->ops->flags & NVME_F_FABRICS) {
9ac4dd8c 4393 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
fe60e8c5
CH
4394 if (IS_ERR(ctrl->fabrics_q)) {
4395 ret = PTR_ERR(ctrl->fabrics_q);
4396 goto out_cleanup_admin_q;
4397 }
4398 }
4399
4400 ctrl->admin_tagset = set;
4401 return 0;
4402
4403out_cleanup_admin_q:
4739824e 4404 blk_mq_destroy_queue(ctrl->admin_q);
2b3f056f 4405 blk_put_queue(ctrl->admin_q);
fe60e8c5 4406out_free_tagset:
fd62678a
ML
4407 blk_mq_free_tag_set(set);
4408 ctrl->admin_q = NULL;
4409 ctrl->fabrics_q = NULL;
fe60e8c5
CH
4410 return ret;
4411}
4412EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4413
4414void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4415{
4416 blk_mq_destroy_queue(ctrl->admin_q);
2b3f056f
CH
4417 blk_put_queue(ctrl->admin_q);
4418 if (ctrl->ops->flags & NVME_F_FABRICS) {
fe60e8c5 4419 blk_mq_destroy_queue(ctrl->fabrics_q);
2b3f056f
CH
4420 blk_put_queue(ctrl->fabrics_q);
4421 }
fe60e8c5
CH
4422 blk_mq_free_tag_set(ctrl->admin_tagset);
4423}
4424EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4425
4426int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
db45e1a5 4427 const struct blk_mq_ops *ops, unsigned int nr_maps,
fe60e8c5
CH
4428 unsigned int cmd_size)
4429{
4430 int ret;
4431
4432 memset(set, 0, sizeof(*set));
4433 set->ops = ops;
33b93727 4434 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
93b24f57
CH
4435 /*
4436 * Some Apple controllers requires tags to be unique across admin and
4437 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4438 */
4439 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4440 set->reserved_tags = NVME_AQ_DEPTH;
4441 else if (ctrl->ops->flags & NVME_F_FABRICS)
b794d1c2 4442 set->reserved_tags = NVMF_RESERVED_TAGS;
fe60e8c5 4443 set->numa_node = ctrl->numa_node;
db45e1a5
CH
4444 set->flags = BLK_MQ_F_SHOULD_MERGE;
4445 if (ctrl->ops->flags & NVME_F_BLOCKING)
4446 set->flags |= BLK_MQ_F_BLOCKING;
fe60e8c5
CH
4447 set->cmd_size = cmd_size,
4448 set->driver_data = ctrl;
4449 set->nr_hw_queues = ctrl->queue_count - 1;
4450 set->timeout = NVME_IO_TIMEOUT;
dcef7727 4451 set->nr_maps = nr_maps;
fe60e8c5
CH
4452 ret = blk_mq_alloc_tag_set(set);
4453 if (ret)
4454 return ret;
4455
4456 if (ctrl->ops->flags & NVME_F_FABRICS) {
9ac4dd8c 4457 ctrl->connect_q = blk_mq_alloc_queue(set, NULL, NULL);
fe60e8c5
CH
4458 if (IS_ERR(ctrl->connect_q)) {
4459 ret = PTR_ERR(ctrl->connect_q);
4460 goto out_free_tag_set;
4461 }
98d81f0d
CL
4462 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4463 ctrl->connect_q);
fe60e8c5
CH
4464 }
4465
4466 ctrl->tagset = set;
4467 return 0;
4468
4469out_free_tag_set:
4470 blk_mq_free_tag_set(set);
6fbf13c0 4471 ctrl->connect_q = NULL;
fe60e8c5
CH
4472 return ret;
4473}
4474EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4475
4476void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4477{
2b3f056f 4478 if (ctrl->ops->flags & NVME_F_FABRICS) {
fe60e8c5 4479 blk_mq_destroy_queue(ctrl->connect_q);
2b3f056f
CH
4480 blk_put_queue(ctrl->connect_q);
4481 }
fe60e8c5
CH
4482 blk_mq_free_tag_set(ctrl->tagset);
4483}
4484EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4485
d09f2b45 4486void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
576d55d6 4487{
0d0b660f 4488 nvme_mpath_stop(ctrl);
f50fff73 4489 nvme_auth_stop(ctrl);
3af755a4 4490 nvme_stop_keep_alive(ctrl);
8c4dfea9 4491 nvme_stop_failfast_work(ctrl);
f866fc42 4492 flush_work(&ctrl->async_event_work);
b6dccf7f 4493 cancel_work_sync(&ctrl->fw_act_work);
f7f70f4a
RL
4494 if (ctrl->ops->stop_ctrl)
4495 ctrl->ops->stop_ctrl(ctrl);
d09f2b45
SG
4496}
4497EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4498
4499void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4500{
93da4023
SG
4501 nvme_enable_aen(ctrl);
4502
f46ef9e8
SG
4503 /*
4504 * persistent discovery controllers need to send indication to userspace
4505 * to re-read the discovery log page to learn about possible changes
4506 * that were missed. We identify persistent discovery controllers by
4507 * checking that they started once before, hence are reconnecting back.
4508 */
2eb94dd5 4509 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
f46ef9e8
SG
4510 nvme_discovery_ctrl(ctrl))
4511 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4512
d09f2b45
SG
4513 if (ctrl->queue_count > 1) {
4514 nvme_queue_scan(ctrl);
9f27bd70 4515 nvme_unquiesce_io_queues(ctrl);
a4a6f3c8 4516 nvme_mpath_update(ctrl);
d09f2b45 4517 }
20d64911
MB
4518
4519 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
2eb94dd5 4520 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
d09f2b45
SG
4521}
4522EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5955be21 4523
d09f2b45
SG
4524void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4525{
ed7770f6 4526 nvme_hwmon_exit(ctrl);
f79d5fda 4527 nvme_fault_inject_fini(&ctrl->fault_inject);
510a405d 4528 dev_pm_qos_hide_latency_tolerance(ctrl->device);
a6a5149b 4529 cdev_device_del(&ctrl->cdev, ctrl->device);
726612b6 4530 nvme_put_ctrl(ctrl);
53029b04 4531}
576d55d6 4532EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
53029b04 4533
8168d23f
KB
4534static void nvme_free_cels(struct nvme_ctrl *ctrl)
4535{
4536 struct nvme_effects_log *cel;
4537 unsigned long i;
4538
8f8ea928 4539 xa_for_each(&ctrl->cels, i, cel) {
8168d23f
KB
4540 xa_erase(&ctrl->cels, i);
4541 kfree(cel);
4542 }
4543
4544 xa_destroy(&ctrl->cels);
4545}
4546
d22524a4 4547static void nvme_free_ctrl(struct device *dev)
53029b04 4548{
d22524a4
CH
4549 struct nvme_ctrl *ctrl =
4550 container_of(dev, struct nvme_ctrl, ctrl_device);
ab9e00cc 4551 struct nvme_subsystem *subsys = ctrl->subsys;
f3ca80fc 4552
192f6c29 4553 if (!subsys || ctrl->instance != subsys->instance)
8b850475 4554 ida_free(&nvme_instance_ida, ctrl->instance);
be8e82ca 4555 key_put(ctrl->tls_key);
8168d23f 4556 nvme_free_cels(ctrl);
0d0b660f 4557 nvme_mpath_uninit(ctrl);
f50fff73
HR
4558 nvme_auth_stop(ctrl);
4559 nvme_auth_free(ctrl);
092ff052 4560 __free_page(ctrl->discard_page);
94cc781f 4561 free_opal_dev(ctrl->opal_dev);
f3ca80fc 4562
ab9e00cc 4563 if (subsys) {
32fd90c4 4564 mutex_lock(&nvme_subsystems_lock);
ab9e00cc 4565 list_del(&ctrl->subsys_entry);
ab9e00cc 4566 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
32fd90c4 4567 mutex_unlock(&nvme_subsystems_lock);
ab9e00cc 4568 }
f3ca80fc
CH
4569
4570 ctrl->ops->free_ctrl(ctrl);
f3ca80fc 4571
ab9e00cc
CH
4572 if (subsys)
4573 nvme_put_subsystem(subsys);
f3ca80fc
CH
4574}
4575
4576/*
4577 * Initialize a NVMe controller structures. This needs to be called during
4578 * earliest initialization so that we have the initialized structured around
4579 * during probing.
4580 */
4581int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4582 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4583{
4584 int ret;
4585
e6e7f7ac 4586 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
9f079dda 4587 ctrl->passthru_err_log_enabled = false;
8c4dfea9 4588 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
bb8d261e 4589 spin_lock_init(&ctrl->lock);
e7ad43c3 4590 mutex_init(&ctrl->scan_lock);
f3ca80fc 4591 INIT_LIST_HEAD(&ctrl->namespaces);
1cf7a12e 4592 xa_init(&ctrl->cels);
765cc031 4593 init_rwsem(&ctrl->namespaces_rwsem);
f3ca80fc
CH
4594 ctrl->dev = dev;
4595 ctrl->ops = ops;
4596 ctrl->quirks = quirks;
4fea243e 4597 ctrl->numa_node = NUMA_NO_NODE;
5955be21 4598 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
f866fc42 4599 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
b6dccf7f 4600 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
c5017e85 4601 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
c1ac9a4b 4602 init_waitqueue_head(&ctrl->state_wq);
f3ca80fc 4603
230f1f9e 4604 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
8c4dfea9 4605 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
230f1f9e
JS
4606 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4607 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
136cfcb8 4608 ctrl->ka_last_check_time = jiffies;
230f1f9e 4609
cb5b7262
JA
4610 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4611 PAGE_SIZE);
4612 ctrl->discard_page = alloc_page(GFP_KERNEL);
4613 if (!ctrl->discard_page) {
4614 ret = -ENOMEM;
4615 goto out;
4616 }
4617
8b850475 4618 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
9843f685 4619 if (ret < 0)
f3ca80fc 4620 goto out;
9843f685 4621 ctrl->instance = ret;
f3ca80fc 4622
d22524a4
CH
4623 device_initialize(&ctrl->ctrl_device);
4624 ctrl->device = &ctrl->ctrl_device;
f68abd9c
JG
4625 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4626 ctrl->instance);
d22524a4
CH
4627 ctrl->device->class = nvme_class;
4628 ctrl->device->parent = ctrl->dev;
86adbf0c
CH
4629 if (ops->dev_attr_groups)
4630 ctrl->device->groups = ops->dev_attr_groups;
4631 else
4632 ctrl->device->groups = nvme_dev_attr_groups;
d22524a4
CH
4633 ctrl->device->release = nvme_free_ctrl;
4634 dev_set_drvdata(ctrl->device, ctrl);
4635 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4636 if (ret)
f3ca80fc 4637 goto out_release_instance;
f3ca80fc 4638
b780d741 4639 nvme_get_ctrl(ctrl);
a6a5149b
CH
4640 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4641 ctrl->cdev.owner = ops->module;
4642 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
d22524a4
CH
4643 if (ret)
4644 goto out_free_name;
f3ca80fc 4645
c5552fde
AL
4646 /*
4647 * Initialize latency tolerance controls. The sysfs files won't
4648 * be visible to userspace unless the device actually supports APST.
4649 */
4650 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4651 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4652 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4653
f79d5fda 4654 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5e1f6899 4655 nvme_mpath_init_ctrl(ctrl);
193a8c7e
SG
4656 ret = nvme_auth_init_ctrl(ctrl);
4657 if (ret)
4658 goto out_free_cdev;
f79d5fda 4659
f3ca80fc 4660 return 0;
193a8c7e 4661out_free_cdev:
3a12a0b8 4662 nvme_fault_inject_fini(&ctrl->fault_inject);
7ed5cf8e 4663 dev_pm_qos_hide_latency_tolerance(ctrl->device);
193a8c7e 4664 cdev_device_del(&ctrl->cdev, ctrl->device);
d22524a4 4665out_free_name:
b780d741 4666 nvme_put_ctrl(ctrl);
d6a2b953 4667 kfree_const(ctrl->device->kobj.name);
f3ca80fc 4668out_release_instance:
8b850475 4669 ida_free(&nvme_instance_ida, ctrl->instance);
f3ca80fc 4670out:
cb5b7262
JA
4671 if (ctrl->discard_page)
4672 __free_page(ctrl->discard_page);
f3ca80fc
CH
4673 return ret;
4674}
576d55d6 4675EXPORT_SYMBOL_GPL(nvme_init_ctrl);
f3ca80fc 4676
cd50f9b2
CH
4677/* let I/O to all namespaces fail in preparation for surprise removal */
4678void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
69d9a99c
KB
4679{
4680 struct nvme_ns *ns;
4681
765cc031 4682 down_read(&ctrl->namespaces_rwsem);
cf39a6bc 4683 list_for_each_entry(ns, &ctrl->namespaces, list)
cd50f9b2 4684 blk_mark_disk_dead(ns->disk);
765cc031 4685 up_read(&ctrl->namespaces_rwsem);
69d9a99c 4686}
cd50f9b2 4687EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
69d9a99c 4688
302ad8cc
KB
4689void nvme_unfreeze(struct nvme_ctrl *ctrl)
4690{
4691 struct nvme_ns *ns;
4692
765cc031 4693 down_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4694 list_for_each_entry(ns, &ctrl->namespaces, list)
4695 blk_mq_unfreeze_queue(ns->queue);
765cc031 4696 up_read(&ctrl->namespaces_rwsem);
839a40d1 4697 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
302ad8cc
KB
4698}
4699EXPORT_SYMBOL_GPL(nvme_unfreeze);
4700
7cf0d7c0 4701int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
302ad8cc
KB
4702{
4703 struct nvme_ns *ns;
4704
765cc031 4705 down_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4706 list_for_each_entry(ns, &ctrl->namespaces, list) {
4707 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4708 if (timeout <= 0)
4709 break;
4710 }
765cc031 4711 up_read(&ctrl->namespaces_rwsem);
7cf0d7c0 4712 return timeout;
302ad8cc
KB
4713}
4714EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4715
4716void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4717{
4718 struct nvme_ns *ns;
4719
765cc031 4720 down_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4721 list_for_each_entry(ns, &ctrl->namespaces, list)
4722 blk_mq_freeze_queue_wait(ns->queue);
765cc031 4723 up_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4724}
4725EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4726
4727void nvme_start_freeze(struct nvme_ctrl *ctrl)
4728{
4729 struct nvme_ns *ns;
4730
839a40d1 4731 set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
765cc031 4732 down_read(&ctrl->namespaces_rwsem);
302ad8cc 4733 list_for_each_entry(ns, &ctrl->namespaces, list)
1671d522 4734 blk_freeze_queue_start(ns->queue);
765cc031 4735 up_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4736}
4737EXPORT_SYMBOL_GPL(nvme_start_freeze);
4738
9f27bd70 4739void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
363c9aac 4740{
ba0718a6
CH
4741 if (!ctrl->tagset)
4742 return;
98d81f0d
CL
4743 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4744 blk_mq_quiesce_tagset(ctrl->tagset);
4745 else
4746 blk_mq_wait_quiesce_done(ctrl->tagset);
363c9aac 4747}
9f27bd70 4748EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
363c9aac 4749
9f27bd70 4750void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
363c9aac 4751{
ba0718a6
CH
4752 if (!ctrl->tagset)
4753 return;
98d81f0d
CL
4754 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4755 blk_mq_unquiesce_tagset(ctrl->tagset);
363c9aac 4756}
9f27bd70 4757EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
363c9aac 4758
9f27bd70 4759void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
a277654b 4760{
9e6a6b12
ML
4761 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4762 blk_mq_quiesce_queue(ctrl->admin_q);
26af1cd0 4763 else
483239c7 4764 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
a277654b 4765}
9f27bd70 4766EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
a277654b 4767
9f27bd70 4768void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
a277654b 4769{
9e6a6b12
ML
4770 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4771 blk_mq_unquiesce_queue(ctrl->admin_q);
a277654b 4772}
9f27bd70 4773EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
a277654b 4774
04800fbf 4775void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
d6135c3a
KB
4776{
4777 struct nvme_ns *ns;
4778
4779 down_read(&ctrl->namespaces_rwsem);
4780 list_for_each_entry(ns, &ctrl->namespaces, list)
4781 blk_sync_queue(ns->queue);
4782 up_read(&ctrl->namespaces_rwsem);
04800fbf
CL
4783}
4784EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
03894b7a 4785
04800fbf
CL
4786void nvme_sync_queues(struct nvme_ctrl *ctrl)
4787{
4788 nvme_sync_io_queues(ctrl);
03894b7a
EN
4789 if (ctrl->admin_q)
4790 blk_sync_queue(ctrl->admin_q);
d6135c3a
KB
4791}
4792EXPORT_SYMBOL_GPL(nvme_sync_queues);
4793
b2702aaa 4794struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
f783f444 4795{
b2702aaa
CK
4796 if (file->f_op != &nvme_dev_fops)
4797 return NULL;
4798 return file->private_data;
f783f444 4799}
b2702aaa 4800EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
f783f444 4801
81101540
CH
4802/*
4803 * Check we didn't inadvertently grow the command structure sizes:
4804 */
4805static inline void _nvme_check_size(void)
4806{
4807 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4808 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4809 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4810 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4811 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4812 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4813 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4814 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4815 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4816 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4817 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4818 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4819 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
354201c5
CH
4820 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4821 NVME_IDENTIFY_DATA_SIZE);
240e6ee2 4822 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4020aad8 4823 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
240e6ee2 4824 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5befc7c2 4825 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
81101540
CH
4826 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4827 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4828 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4829 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4020aad8 4830 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
81101540
CH
4831}
4832
4833
893a74b7 4834static int __init nvme_core_init(void)
5bae7f73 4835{
b227c59b 4836 int result = -ENOMEM;
5bae7f73 4837
81101540
CH
4838 _nvme_check_size();
4839
9a6327d2
SG
4840 nvme_wq = alloc_workqueue("nvme-wq",
4841 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4842 if (!nvme_wq)
b227c59b
RS
4843 goto out;
4844
4845 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4846 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4847 if (!nvme_reset_wq)
4848 goto destroy_wq;
4849
4850 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4851 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4852 if (!nvme_delete_wq)
4853 goto destroy_reset_wq;
9a6327d2 4854
f68abd9c
JG
4855 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4856 NVME_MINORS, "nvme");
f3ca80fc 4857 if (result < 0)
b227c59b 4858 goto destroy_delete_wq;
f3ca80fc 4859
1aaba11d 4860 nvme_class = class_create("nvme");
f3ca80fc
CH
4861 if (IS_ERR(nvme_class)) {
4862 result = PTR_ERR(nvme_class);
4863 goto unregister_chrdev;
4864 }
a42f42e5 4865 nvme_class->dev_uevent = nvme_class_uevent;
f3ca80fc 4866
1aaba11d 4867 nvme_subsys_class = class_create("nvme-subsystem");
ab9e00cc
CH
4868 if (IS_ERR(nvme_subsys_class)) {
4869 result = PTR_ERR(nvme_subsys_class);
4870 goto destroy_class;
4871 }
2637baed
MI
4872
4873 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4874 "nvme-generic");
4875 if (result < 0)
4876 goto destroy_subsys_class;
4877
1aaba11d 4878 nvme_ns_chr_class = class_create("nvme-generic");
2637baed
MI
4879 if (IS_ERR(nvme_ns_chr_class)) {
4880 result = PTR_ERR(nvme_ns_chr_class);
4881 goto unregister_generic_ns;
4882 }
9d77eb52
HR
4883 result = nvme_init_auth();
4884 if (result)
706add13 4885 goto destroy_ns_chr;
5bae7f73 4886 return 0;
f3ca80fc 4887
e481fc0a
SG
4888destroy_ns_chr:
4889 class_destroy(nvme_ns_chr_class);
2637baed
MI
4890unregister_generic_ns:
4891 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4892destroy_subsys_class:
4893 class_destroy(nvme_subsys_class);
ab9e00cc
CH
4894destroy_class:
4895 class_destroy(nvme_class);
9a6327d2 4896unregister_chrdev:
f68abd9c 4897 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
b227c59b
RS
4898destroy_delete_wq:
4899 destroy_workqueue(nvme_delete_wq);
4900destroy_reset_wq:
4901 destroy_workqueue(nvme_reset_wq);
9a6327d2
SG
4902destroy_wq:
4903 destroy_workqueue(nvme_wq);
b227c59b 4904out:
f3ca80fc 4905 return result;
5bae7f73
CH
4906}
4907
893a74b7 4908static void __exit nvme_core_exit(void)
5bae7f73 4909{
e481fc0a 4910 nvme_exit_auth();
2637baed 4911 class_destroy(nvme_ns_chr_class);
ab9e00cc 4912 class_destroy(nvme_subsys_class);
f3ca80fc 4913 class_destroy(nvme_class);
2637baed 4914 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
f68abd9c 4915 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
b227c59b
RS
4916 destroy_workqueue(nvme_delete_wq);
4917 destroy_workqueue(nvme_reset_wq);
9a6327d2 4918 destroy_workqueue(nvme_wq);
2637baed 4919 ida_destroy(&nvme_ns_chr_minor_ida);
f41cfd5d 4920 ida_destroy(&nvme_instance_ida);
5bae7f73 4921}
576d55d6
ML
4922
4923MODULE_LICENSE("GPL");
4924MODULE_VERSION("1.0");
92b0b0ff 4925MODULE_DESCRIPTION("NVMe host core framework");
576d55d6
ML
4926module_init(nvme_core_init);
4927module_exit(nvme_core_exit);