Merge tag 'x86-asm-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-block.git] / drivers / nvme / host / core.c
CommitLineData
bc50ad75 1// SPDX-License-Identifier: GPL-2.0
21d34711
CH
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
21d34711
CH
5 */
6
7#include <linux/blkdev.h>
8#include <linux/blk-mq.h>
fe45e630 9#include <linux/blk-integrity.h>
c95b708d 10#include <linux/compat.h>
5fd4ce1b 11#include <linux/delay.h>
21d34711 12#include <linux/errno.h>
1673f1f0 13#include <linux/hdreg.h>
21d34711 14#include <linux/kernel.h>
5bae7f73 15#include <linux/module.h>
958f2a0f 16#include <linux/backing-dev.h>
21d34711
CH
17#include <linux/slab.h>
18#include <linux/types.h>
1673f1f0
CH
19#include <linux/pr.h>
20#include <linux/ptrace.h>
21#include <linux/nvme_ioctl.h>
c5552fde 22#include <linux/pm_qos.h>
a1a825ab 23#include <linux/ratelimit.h>
1673f1f0 24#include <asm/unaligned.h>
21d34711
CH
25
26#include "nvme.h"
038bd4cb 27#include "fabrics.h"
f50fff73 28#include <linux/nvme-auth.h>
21d34711 29
35fe0d12
HR
30#define CREATE_TRACE_POINTS
31#include "trace.h"
32
f3ca80fc
CH
33#define NVME_MINORS (1U << MINORBITS)
34
1a893c2b
CH
35struct nvme_ns_info {
36 struct nvme_ns_ids ids;
37 u32 nsid;
38 __le32 anagrpid;
39 bool is_shared;
1e4ea66a 40 bool is_readonly;
1a893c2b 41 bool is_ready;
0dd6fff2 42 bool is_removed;
1a893c2b
CH
43};
44
8ae4e447
MO
45unsigned int admin_timeout = 60;
46module_param(admin_timeout, uint, 0644);
ba0ba7d3 47MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
576d55d6 48EXPORT_SYMBOL_GPL(admin_timeout);
ba0ba7d3 49
8ae4e447
MO
50unsigned int nvme_io_timeout = 30;
51module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
ba0ba7d3 52MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
576d55d6 53EXPORT_SYMBOL_GPL(nvme_io_timeout);
ba0ba7d3 54
b3b1b0b0 55static unsigned char shutdown_timeout = 5;
ba0ba7d3
ML
56module_param(shutdown_timeout, byte, 0644);
57MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58
44e44b29
CH
59static u8 nvme_max_retries = 5;
60module_param_named(max_retries, nvme_max_retries, byte, 0644);
f80ec966 61MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
5bae7f73 62
9947d6a0 63static unsigned long default_ps_max_latency_us = 100000;
c5552fde
AL
64module_param(default_ps_max_latency_us, ulong, 0644);
65MODULE_PARM_DESC(default_ps_max_latency_us,
66 "max power saving latency for new devices; use PM QOS to change per device");
67
c35e30b4
AL
68static bool force_apst;
69module_param(force_apst, bool, 0644);
70MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71
ebd8a93a
AB
72static unsigned long apst_primary_timeout_ms = 100;
73module_param(apst_primary_timeout_ms, ulong, 0644);
74MODULE_PARM_DESC(apst_primary_timeout_ms,
75 "primary APST timeout in ms");
76
77static unsigned long apst_secondary_timeout_ms = 2000;
78module_param(apst_secondary_timeout_ms, ulong, 0644);
79MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 "secondary APST timeout in ms");
81
82static unsigned long apst_primary_latency_tol_us = 15000;
83module_param(apst_primary_latency_tol_us, ulong, 0644);
84MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 "primary APST latency tolerance in us");
86
87static unsigned long apst_secondary_latency_tol_us = 100000;
88module_param(apst_secondary_latency_tol_us, ulong, 0644);
89MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 "secondary APST latency tolerance in us");
91
b227c59b
RS
92/*
93 * nvme_wq - hosts nvme related works that are not reset or delete
94 * nvme_reset_wq - hosts nvme reset works
95 * nvme_delete_wq - hosts nvme delete works
96 *
97b2512a
NK
97 * nvme_wq will host works such as scan, aen handling, fw activation,
98 * keep-alive, periodic reconnects etc. nvme_reset_wq
b227c59b
RS
99 * runs reset works which also flush works hosted on nvme_wq for
100 * serialization purposes. nvme_delete_wq host controller deletion
101 * works which flush reset works for serialization.
102 */
9a6327d2
SG
103struct workqueue_struct *nvme_wq;
104EXPORT_SYMBOL_GPL(nvme_wq);
105
b227c59b
RS
106struct workqueue_struct *nvme_reset_wq;
107EXPORT_SYMBOL_GPL(nvme_reset_wq);
108
109struct workqueue_struct *nvme_delete_wq;
110EXPORT_SYMBOL_GPL(nvme_delete_wq);
111
ab9e00cc
CH
112static LIST_HEAD(nvme_subsystems);
113static DEFINE_MUTEX(nvme_subsystems_lock);
1673f1f0 114
9843f685 115static DEFINE_IDA(nvme_instance_ida);
f68abd9c 116static dev_t nvme_ctrl_base_chr_devt;
ab21f3d9
RM
117static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
118static const struct class nvme_class = {
119 .name = "nvme",
120 .dev_uevent = nvme_class_uevent,
121};
122
123static const struct class nvme_subsys_class = {
124 .name = "nvme-subsystem",
125};
f3ca80fc 126
2637baed
MI
127static DEFINE_IDA(nvme_ns_chr_minor_ida);
128static dev_t nvme_ns_chr_devt;
ab21f3d9
RM
129static const struct class nvme_ns_chr_class = {
130 .name = "nvme-generic",
131};
2637baed 132
12d9f070 133static void nvme_put_subsystem(struct nvme_subsystem *subsys);
cf39a6bc
SB
134static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
135 unsigned nsid);
b58da2d2
TS
136static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
137 struct nvme_command *cmd);
cf39a6bc 138
2405252a 139void nvme_queue_scan(struct nvme_ctrl *ctrl)
50e8d8ee
CH
140{
141 /*
142 * Only new queue scan work when admin and IO queues are both alive
143 */
e6e7f7ac 144 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
50e8d8ee
CH
145 queue_work(nvme_wq, &ctrl->scan_work);
146}
147
4c75f877
KB
148/*
149 * Use this function to proceed with scheduling reset_work for a controller
150 * that had previously been set to the resetting state. This is intended for
151 * code paths that can't be interrupted by other reset attempts. A hot removal
152 * may prevent this from succeeding.
153 */
c1ac9a4b 154int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
4c75f877 155{
e6e7f7ac 156 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
4c75f877
KB
157 return -EBUSY;
158 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 return -EBUSY;
160 return 0;
161}
c1ac9a4b 162EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
4c75f877 163
8c4dfea9
VG
164static void nvme_failfast_work(struct work_struct *work)
165{
166 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 struct nvme_ctrl, failfast_work);
168
e6e7f7ac 169 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
8c4dfea9
VG
170 return;
171
172 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 dev_info(ctrl->device, "failfast expired\n");
174 nvme_kick_requeue_lists(ctrl);
175}
176
177static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178{
179 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 return;
181
182 schedule_delayed_work(&ctrl->failfast_work,
183 ctrl->opts->fast_io_fail_tmo * HZ);
184}
185
186static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187{
188 if (!ctrl->opts)
189 return;
190
191 cancel_delayed_work_sync(&ctrl->failfast_work);
192 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193}
194
195
d86c4d8e
CH
196int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197{
198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 return -EBUSY;
b227c59b 200 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
d86c4d8e
CH
201 return -EBUSY;
202 return 0;
203}
204EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205
2405252a 206int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
d86c4d8e
CH
207{
208 int ret;
209
210 ret = nvme_reset_ctrl(ctrl);
8000d1fd 211 if (!ret) {
d86c4d8e 212 flush_work(&ctrl->reset_work);
e6e7f7ac 213 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
8000d1fd
NC
214 ret = -ENETRESET;
215 }
216
d86c4d8e
CH
217 return ret;
218}
219
a686ed75 220static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
c5017e85 221{
77d0612d 222 dev_info(ctrl->device,
e5ea42fa 223 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
77d0612d 224
4054637c 225 flush_work(&ctrl->reset_work);
6cd53d14
CH
226 nvme_stop_ctrl(ctrl);
227 nvme_remove_namespaces(ctrl);
c5017e85 228 ctrl->ops->delete_ctrl(ctrl);
6cd53d14 229 nvme_uninit_ctrl(ctrl);
c5017e85
CH
230}
231
a686ed75
BVA
232static void nvme_delete_ctrl_work(struct work_struct *work)
233{
234 struct nvme_ctrl *ctrl =
235 container_of(work, struct nvme_ctrl, delete_work);
236
237 nvme_do_delete_ctrl(ctrl);
238}
239
c5017e85
CH
240int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241{
242 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 return -EBUSY;
b227c59b 244 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
c5017e85
CH
245 return -EBUSY;
246 return 0;
247}
248EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249
942e21c0 250void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
c5017e85 251{
c5017e85 252 /*
01fc08ff
YY
253 * Keep a reference until nvme_do_delete_ctrl() complete,
254 * since ->delete_ctrl can free the controller.
c5017e85
CH
255 */
256 nvme_get_ctrl(ctrl);
6721c18a 257 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
b9c77583 258 nvme_do_delete_ctrl(ctrl);
c5017e85 259 nvme_put_ctrl(ctrl);
c5017e85 260}
c5017e85 261
2f9c1736 262static blk_status_t nvme_error_status(u16 status)
27fa9bc5 263{
2f9c1736 264 switch (status & 0x7ff) {
27fa9bc5 265 case NVME_SC_SUCCESS:
2a842aca 266 return BLK_STS_OK;
27fa9bc5 267 case NVME_SC_CAP_EXCEEDED:
2a842aca 268 return BLK_STS_NOSPC;
e96fef2c 269 case NVME_SC_LBA_RANGE:
35038bff
KB
270 case NVME_SC_CMD_INTERRUPTED:
271 case NVME_SC_NS_NOT_READY:
e96fef2c
KB
272 return BLK_STS_TARGET;
273 case NVME_SC_BAD_ATTRIBUTES:
e02ab023 274 case NVME_SC_ONCS_NOT_SUPPORTED:
e96fef2c
KB
275 case NVME_SC_INVALID_OPCODE:
276 case NVME_SC_INVALID_FIELD:
277 case NVME_SC_INVALID_NS:
2a842aca 278 return BLK_STS_NOTSUPP;
e02ab023
JG
279 case NVME_SC_WRITE_FAULT:
280 case NVME_SC_READ_ERROR:
281 case NVME_SC_UNWRITTEN_BLOCK:
a751da33
CH
282 case NVME_SC_ACCESS_DENIED:
283 case NVME_SC_READ_ONLY:
e96fef2c 284 case NVME_SC_COMPARE_FAILED:
2a842aca 285 return BLK_STS_MEDIUM;
a751da33
CH
286 case NVME_SC_GUARD_CHECK:
287 case NVME_SC_APPTAG_CHECK:
288 case NVME_SC_REFTAG_CHECK:
289 case NVME_SC_INVALID_PI:
290 return BLK_STS_PROTECTION;
291 case NVME_SC_RESERVATION_CONFLICT:
7ba15083 292 return BLK_STS_RESV_CONFLICT;
1c0d12c0
SG
293 case NVME_SC_HOST_PATH_ERROR:
294 return BLK_STS_TRANSPORT;
afaf5c6c
KB
295 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 case NVME_SC_ZONE_TOO_MANY_OPEN:
298 return BLK_STS_ZONE_OPEN_RESOURCE;
2a842aca
CH
299 default:
300 return BLK_STS_IOERR;
27fa9bc5
CH
301 }
302}
27fa9bc5 303
49cd84b6
KB
304static void nvme_retry_req(struct request *req)
305{
49cd84b6
KB
306 unsigned long delay = 0;
307 u16 crd;
308
309 /* The mask and shift result must be <= 3 */
310 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
f9063a53
MI
311 if (crd)
312 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
49cd84b6
KB
313
314 nvme_req(req)->retries++;
315 blk_mq_requeue_request(req, false);
316 blk_mq_delay_kick_requeue_list(req->q, delay);
317}
318
bd83fe6f
AA
319static void nvme_log_error(struct request *req)
320{
321 struct nvme_ns *ns = req->q->queuedata;
322 struct nvme_request *nr = nvme_req(req);
323
324 if (ns) {
9419e71b 325 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
bd83fe6f
AA
326 ns->disk ? ns->disk->disk_name : "?",
327 nvme_get_opcode_str(nr->cmd->common.opcode),
328 nr->cmd->common.opcode,
0372dd4e 329 nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
9419e71b 330 blk_rq_bytes(req) >> ns->head->lba_shift,
bd83fe6f
AA
331 nvme_get_error_status_str(nr->status),
332 nr->status >> 8 & 7, /* Status Code Type */
333 nr->status & 0xff, /* Status Code */
334 nr->status & NVME_SC_MORE ? "MORE " : "",
335 nr->status & NVME_SC_DNR ? "DNR " : "");
336 return;
337 }
338
339 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
340 dev_name(nr->ctrl->device),
341 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
342 nr->cmd->common.opcode,
343 nvme_get_error_status_str(nr->status),
344 nr->status >> 8 & 7, /* Status Code Type */
345 nr->status & 0xff, /* Status Code */
346 nr->status & NVME_SC_MORE ? "MORE " : "",
347 nr->status & NVME_SC_DNR ? "DNR " : "");
348}
349
9f079dda
AA
350static void nvme_log_err_passthru(struct request *req)
351{
352 struct nvme_ns *ns = req->q->queuedata;
353 struct nvme_request *nr = nvme_req(req);
354
355 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
356 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
357 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
358 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
359 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 nr->cmd->common.opcode,
361 nvme_get_error_status_str(nr->status),
362 nr->status >> 8 & 7, /* Status Code Type */
363 nr->status & 0xff, /* Status Code */
364 nr->status & NVME_SC_MORE ? "MORE " : "",
365 nr->status & NVME_SC_DNR ? "DNR " : "",
366 nr->cmd->common.cdw10,
367 nr->cmd->common.cdw11,
368 nr->cmd->common.cdw12,
369 nr->cmd->common.cdw13,
370 nr->cmd->common.cdw14,
371 nr->cmd->common.cdw14);
372}
373
5ddaabe8
CH
374enum nvme_disposition {
375 COMPLETE,
376 RETRY,
377 FAILOVER,
f50fff73 378 AUTHENTICATE,
5ddaabe8
CH
379};
380
381static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
77f02a7a 382{
5ddaabe8
CH
383 if (likely(nvme_req(req)->status == 0))
384 return COMPLETE;
908e4564 385
f50fff73
HR
386 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
387 return AUTHENTICATE;
388
5ddaabe8
CH
389 if (blk_noretry_request(req) ||
390 (nvme_req(req)->status & NVME_SC_DNR) ||
391 nvme_req(req)->retries >= nvme_max_retries)
392 return COMPLETE;
ca5554a6 393
5ddaabe8 394 if (req->cmd_flags & REQ_NVME_MPATH) {
5eac5f33
CL
395 if (nvme_is_path_error(nvme_req(req)->status) ||
396 blk_queue_dying(req->q))
5ddaabe8 397 return FAILOVER;
5eac5f33
CL
398 } else {
399 if (blk_queue_dying(req->q))
400 return COMPLETE;
5ddaabe8 401 }
16686f3a 402
5ddaabe8
CH
403 return RETRY;
404}
6e3ca03e 405
c234a653 406static inline void nvme_end_req_zoned(struct request *req)
5ddaabe8 407{
5ddaabe8 408 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
0372dd4e
DW
409 req_op(req) == REQ_OP_ZONE_APPEND) {
410 struct nvme_ns *ns = req->q->queuedata;
411
412 req->__sector = nvme_lba_to_sect(ns->head,
240e6ee2 413 le64_to_cpu(nvme_req(req)->result.u64));
0372dd4e 414 }
c234a653
JA
415}
416
417static inline void nvme_end_req(struct request *req)
418{
419 blk_status_t status = nvme_error_status(nvme_req(req)->status);
35fe0d12 420
9f079dda
AA
421 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
422 if (blk_rq_is_passthrough(req))
423 nvme_log_err_passthru(req);
424 else
425 nvme_log_error(req);
426 }
c234a653 427 nvme_end_req_zoned(req);
2b59787a 428 nvme_trace_bio_complete(req);
d4d957b5
SG
429 if (req->cmd_flags & REQ_NVME_MPATH)
430 nvme_mpath_end_request(req);
908e4564 431 blk_mq_end_request(req, status);
77f02a7a 432}
5ddaabe8
CH
433
434void nvme_complete_rq(struct request *req)
435{
f50fff73
HR
436 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
437
5ddaabe8
CH
438 trace_nvme_complete_rq(req);
439 nvme_cleanup_cmd(req);
440
774a9636
US
441 /*
442 * Completions of long-running commands should not be able to
443 * defer sending of periodic keep alives, since the controller
444 * may have completed processing such commands a long time ago
445 * (arbitrarily close to command submission time).
446 * req->deadline - req->timeout is the command submission time
447 * in jiffies.
448 */
449 if (ctrl->kas &&
450 req->deadline - req->timeout >= ctrl->ka_last_check_time)
f50fff73 451 ctrl->comp_seen = true;
5ddaabe8
CH
452
453 switch (nvme_decide_disposition(req)) {
454 case COMPLETE:
455 nvme_end_req(req);
456 return;
457 case RETRY:
458 nvme_retry_req(req);
459 return;
460 case FAILOVER:
461 nvme_failover_req(req);
462 return;
f50fff73 463 case AUTHENTICATE:
d6800634 464#ifdef CONFIG_NVME_HOST_AUTH
f50fff73
HR
465 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
466 nvme_retry_req(req);
467#else
468 nvme_end_req(req);
469#endif
470 return;
5ddaabe8
CH
471 }
472}
77f02a7a
CH
473EXPORT_SYMBOL_GPL(nvme_complete_rq);
474
c234a653
JA
475void nvme_complete_batch_req(struct request *req)
476{
00e757b6 477 trace_nvme_complete_rq(req);
c234a653
JA
478 nvme_cleanup_cmd(req);
479 nvme_end_req_zoned(req);
480}
481EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
482
dda3248e
CL
483/*
484 * Called to unwind from ->queue_rq on a failed command submission so that the
485 * multipathing code gets called to potentially failover to another path.
486 * The caller needs to unwind all transport specific resource allocations and
487 * must return propagate the return value.
488 */
489blk_status_t nvme_host_path_error(struct request *req)
490{
491 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
492 blk_mq_set_request_complete(req);
493 nvme_complete_rq(req);
494 return BLK_STS_OK;
495}
496EXPORT_SYMBOL_GPL(nvme_host_path_error);
497
2dd6532e 498bool nvme_cancel_request(struct request *req, void *data)
c55a2fd4 499{
c55a2fd4
ML
500 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
501 "Cancelling I/O %d", req->tag);
502
d4f1d5f7
LY
503 /* don't abort one completed or idle request */
504 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
78ca4072
ML
505 return true;
506
2dc3947b 507 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
d3589381 508 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
15f73f5b 509 blk_mq_complete_request(req);
7baa8572 510 return true;
c55a2fd4
ML
511}
512EXPORT_SYMBOL_GPL(nvme_cancel_request);
513
25479069
CL
514void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
515{
516 if (ctrl->tagset) {
517 blk_mq_tagset_busy_iter(ctrl->tagset,
518 nvme_cancel_request, ctrl);
519 blk_mq_tagset_wait_completed_request(ctrl->tagset);
520 }
521}
522EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
523
524void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
525{
526 if (ctrl->admin_tagset) {
527 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
528 nvme_cancel_request, ctrl);
529 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
530 }
531}
532EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
533
bb8d261e
CH
534bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
535 enum nvme_ctrl_state new_state)
536{
f6b6a28e 537 enum nvme_ctrl_state old_state;
0a72bbba 538 unsigned long flags;
bb8d261e
CH
539 bool changed = false;
540
0a72bbba 541 spin_lock_irqsave(&ctrl->lock, flags);
f6b6a28e 542
e6e7f7ac 543 old_state = nvme_ctrl_state(ctrl);
bb8d261e
CH
544 switch (new_state) {
545 case NVME_CTRL_LIVE:
546 switch (old_state) {
7d2e8008 547 case NVME_CTRL_NEW:
bb8d261e 548 case NVME_CTRL_RESETTING:
ad6a0a52 549 case NVME_CTRL_CONNECTING:
bb8d261e 550 changed = true;
df561f66 551 fallthrough;
bb8d261e
CH
552 default:
553 break;
554 }
555 break;
556 case NVME_CTRL_RESETTING:
557 switch (old_state) {
558 case NVME_CTRL_NEW:
def61eca 559 case NVME_CTRL_LIVE:
def61eca 560 changed = true;
df561f66 561 fallthrough;
def61eca
CH
562 default:
563 break;
564 }
565 break;
ad6a0a52 566 case NVME_CTRL_CONNECTING:
def61eca 567 switch (old_state) {
b754a32c 568 case NVME_CTRL_NEW:
3cec7f9d 569 case NVME_CTRL_RESETTING:
bb8d261e 570 changed = true;
df561f66 571 fallthrough;
bb8d261e
CH
572 default:
573 break;
574 }
575 break;
576 case NVME_CTRL_DELETING:
577 switch (old_state) {
578 case NVME_CTRL_LIVE:
579 case NVME_CTRL_RESETTING:
ad6a0a52 580 case NVME_CTRL_CONNECTING:
bb8d261e 581 changed = true;
df561f66 582 fallthrough;
bb8d261e
CH
583 default:
584 break;
585 }
586 break;
ecca390e
SG
587 case NVME_CTRL_DELETING_NOIO:
588 switch (old_state) {
589 case NVME_CTRL_DELETING:
590 case NVME_CTRL_DEAD:
591 changed = true;
df561f66 592 fallthrough;
ecca390e
SG
593 default:
594 break;
595 }
596 break;
0ff9d4e1
KB
597 case NVME_CTRL_DEAD:
598 switch (old_state) {
599 case NVME_CTRL_DELETING:
600 changed = true;
df561f66 601 fallthrough;
0ff9d4e1
KB
602 default:
603 break;
604 }
605 break;
bb8d261e
CH
606 default:
607 break;
608 }
bb8d261e 609
c1ac9a4b 610 if (changed) {
e6e7f7ac 611 WRITE_ONCE(ctrl->state, new_state);
c1ac9a4b
KB
612 wake_up_all(&ctrl->state_wq);
613 }
bb8d261e 614
0a72bbba 615 spin_unlock_irqrestore(&ctrl->lock, flags);
8c4dfea9
VG
616 if (!changed)
617 return false;
618
e6e7f7ac 619 if (new_state == NVME_CTRL_LIVE) {
8c4dfea9
VG
620 if (old_state == NVME_CTRL_CONNECTING)
621 nvme_stop_failfast_work(ctrl);
32acab31 622 nvme_kick_requeue_lists(ctrl);
e6e7f7ac 623 } else if (new_state == NVME_CTRL_CONNECTING &&
8c4dfea9
VG
624 old_state == NVME_CTRL_RESETTING) {
625 nvme_start_failfast_work(ctrl);
626 }
bb8d261e
CH
627 return changed;
628}
629EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
630
c1ac9a4b
KB
631/*
632 * Returns true for sink states that can't ever transition back to live.
633 */
634static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
635{
e6e7f7ac 636 switch (nvme_ctrl_state(ctrl)) {
c1ac9a4b
KB
637 case NVME_CTRL_NEW:
638 case NVME_CTRL_LIVE:
639 case NVME_CTRL_RESETTING:
640 case NVME_CTRL_CONNECTING:
641 return false;
642 case NVME_CTRL_DELETING:
ecca390e 643 case NVME_CTRL_DELETING_NOIO:
c1ac9a4b
KB
644 case NVME_CTRL_DEAD:
645 return true;
646 default:
647 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
648 return true;
649 }
650}
651
652/*
653 * Waits for the controller state to be resetting, or returns false if it is
654 * not possible to ever transition to that state.
655 */
656bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657{
658 wait_event(ctrl->state_wq,
659 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660 nvme_state_terminal(ctrl));
e6e7f7ac 661 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
c1ac9a4b
KB
662}
663EXPORT_SYMBOL_GPL(nvme_wait_reset);
664
ed754e5d
CH
665static void nvme_free_ns_head(struct kref *ref)
666{
667 struct nvme_ns_head *head =
668 container_of(ref, struct nvme_ns_head, ref);
669
32acab31 670 nvme_mpath_remove_disk(head);
8b850475 671 ida_free(&head->subsys->ns_ida, head->instance);
f5ad3991 672 cleanup_srcu_struct(&head->srcu);
12d9f070 673 nvme_put_subsystem(head->subsys);
ed754e5d
CH
674 kfree(head);
675}
676
1496bd49 677bool nvme_tryget_ns_head(struct nvme_ns_head *head)
871ca3ef
CH
678{
679 return kref_get_unless_zero(&head->ref);
680}
681
1496bd49 682void nvme_put_ns_head(struct nvme_ns_head *head)
ed754e5d
CH
683{
684 kref_put(&head->ref, nvme_free_ns_head);
685}
686
1673f1f0
CH
687static void nvme_free_ns(struct kref *kref)
688{
689 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
690
1673f1f0 691 put_disk(ns->disk);
ed754e5d 692 nvme_put_ns_head(ns->head);
075790eb 693 nvme_put_ctrl(ns->ctrl);
1673f1f0
CH
694 kfree(ns);
695}
696
4c74d1f8
KJ
697static inline bool nvme_get_ns(struct nvme_ns *ns)
698{
699 return kref_get_unless_zero(&ns->kref);
700}
701
24493b8b 702void nvme_put_ns(struct nvme_ns *ns)
1673f1f0
CH
703{
704 kref_put(&ns->kref, nvme_free_ns);
705}
24493b8b 706EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
1673f1f0 707
bb06ec31
JS
708static inline void nvme_clear_nvme_request(struct request *req)
709{
ae5e6886 710 nvme_req(req)->status = 0;
c03fd85d
CK
711 nvme_req(req)->retries = 0;
712 nvme_req(req)->flags = 0;
713 req->rq_flags |= RQF_DONTPREP;
bb06ec31
JS
714}
715
e559398f
CH
716/* initialize a passthrough request */
717void nvme_init_request(struct request *req, struct nvme_command *cmd)
39dfe844 718{
9f079dda
AA
719 struct nvme_request *nr = nvme_req(req);
720 bool logging_enabled;
721
722 if (req->q->queuedata) {
723 struct nvme_ns *ns = req->q->disk->private_data;
724
1f4137e8 725 logging_enabled = ns->head->passthru_err_log_enabled;
0d2e7c84 726 req->timeout = NVME_IO_TIMEOUT;
9f079dda
AA
727 } else { /* no queuedata implies admin queue */
728 logging_enabled = nr->ctrl->passthru_err_log_enabled;
dc96f938 729 req->timeout = NVME_ADMIN_TIMEOUT;
9f079dda
AA
730 }
731
732 if (!logging_enabled)
733 req->rq_flags |= RQF_QUIET;
21d34711 734
f4b9e6c9
KB
735 /* passthru commands should let the driver set the SGL flags */
736 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
737
21d34711 738 req->cmd_flags |= REQ_FAILFAST_DRIVER;
be42a33b 739 if (req->mq_hctx->type == HCTX_TYPE_POLL)
6ce913fe 740 req->cmd_flags |= REQ_POLLED;
bb06ec31 741 nvme_clear_nvme_request(req);
9f079dda 742 memcpy(nr->cmd, cmd, sizeof(*cmd));
39dfe844 743}
e559398f 744EXPORT_SYMBOL_GPL(nvme_init_request);
39dfe844 745
a9715744
TC
746/*
747 * For something we're not in a state to send to the device the default action
748 * is to busy it and retry it after the controller state is recovered. However,
749 * if the controller is deleting or if anything is marked for failfast or
750 * nvme multipath it is immediately failed.
751 *
752 * Note: commands used to initialize the controller will be marked for failfast.
753 * Note: nvme cli/ioctl commands are marked for failfast.
754 */
755blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
756 struct request *rq)
757{
e6e7f7ac
KB
758 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
759
760 if (state != NVME_CTRL_DELETING_NOIO &&
761 state != NVME_CTRL_DELETING &&
762 state != NVME_CTRL_DEAD &&
a9715744
TC
763 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
764 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
765 return BLK_STS_RESOURCE;
766 return nvme_host_path_error(rq);
767}
768EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
769
770bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
6d3c7fb1 771 bool queue_live, enum nvme_ctrl_state state)
a9715744
TC
772{
773 struct nvme_request *req = nvme_req(rq);
774
775 /*
776 * currently we have a problem sending passthru commands
777 * on the admin_q if the controller is not LIVE because we can't
778 * make sure that they are going out after the admin connect,
779 * controller enable and/or other commands in the initialization
780 * sequence. until the controller will be LIVE, fail with
781 * BLK_STS_RESOURCE so that they will be rescheduled.
782 */
783 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
784 return false;
785
786 if (ctrl->ops->flags & NVME_F_FABRICS) {
787 /*
788 * Only allow commands on a live queue, except for the connect
789 * command, which is require to set the queue live in the
790 * appropinquate states.
791 */
6d3c7fb1 792 switch (state) {
a9715744
TC
793 case NVME_CTRL_CONNECTING:
794 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
f50fff73
HR
795 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
796 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
797 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
a9715744
TC
798 return true;
799 break;
800 default:
801 break;
802 case NVME_CTRL_DEAD:
803 return false;
804 }
805 }
806
807 return queue_live;
808}
809EXPORT_SYMBOL_GPL(__nvme_check_ready);
810
8093f7ca
ML
811static inline void nvme_setup_flush(struct nvme_ns *ns,
812 struct nvme_command *cmnd)
813{
9c3d2929 814 memset(cmnd, 0, sizeof(*cmnd));
8093f7ca 815 cmnd->common.opcode = nvme_cmd_flush;
ed754e5d 816 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
8093f7ca
ML
817}
818
fc17b653 819static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
8093f7ca
ML
820 struct nvme_command *cmnd)
821{
b35ba01e 822 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
8093f7ca 823 struct nvme_dsm_range *range;
b35ba01e 824 struct bio *bio;
8093f7ca 825
530436c4
EH
826 /*
827 * Some devices do not consider the DSM 'Number of Ranges' field when
828 * determining how much data to DMA. Always allocate memory for maximum
829 * number of segments to prevent device reading beyond end of buffer.
830 */
831 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
832
833 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
cb5b7262
JA
834 if (!range) {
835 /*
836 * If we fail allocation our range, fallback to the controller
837 * discard page. If that's also busy, it's safe to return
838 * busy, as we know we can make progress once that's freed.
839 */
840 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
841 return BLK_STS_RESOURCE;
842
843 range = page_address(ns->ctrl->discard_page);
844 }
8093f7ca 845
37f0dc2e 846 if (queue_max_discard_segments(req->q) == 1) {
0372dd4e 847 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
9419e71b 848 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
37f0dc2e
ML
849
850 range[0].cattr = cpu_to_le32(0);
851 range[0].nlb = cpu_to_le32(nlb);
852 range[0].slba = cpu_to_le64(slba);
853 n = 1;
854 } else {
855 __rq_for_each_bio(bio, req) {
0372dd4e
DW
856 u64 slba = nvme_sect_to_lba(ns->head,
857 bio->bi_iter.bi_sector);
9419e71b 858 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
37f0dc2e
ML
859
860 if (n < segments) {
861 range[n].cattr = cpu_to_le32(0);
862 range[n].nlb = cpu_to_le32(nlb);
863 range[n].slba = cpu_to_le64(slba);
864 }
865 n++;
8cb6af7b 866 }
b35ba01e
CH
867 }
868
869 if (WARN_ON_ONCE(n != segments)) {
cb5b7262
JA
870 if (virt_to_page(range) == ns->ctrl->discard_page)
871 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
872 else
873 kfree(range);
fc17b653 874 return BLK_STS_IOERR;
b35ba01e 875 }
8093f7ca 876
9c3d2929 877 memset(cmnd, 0, sizeof(*cmnd));
8093f7ca 878 cmnd->dsm.opcode = nvme_cmd_dsm;
ed754e5d 879 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
f1dd03a8 880 cmnd->dsm.nr = cpu_to_le32(segments - 1);
8093f7ca
ML
881 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
882
4bee16da 883 bvec_set_virt(&req->special_vec, range, alloc_size);
f9d03f96 884 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
8093f7ca 885
fc17b653 886 return BLK_STS_OK;
8093f7ca 887}
8093f7ca 888
4020aad8
KB
889static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
890 struct request *req)
891{
892 u32 upper, lower;
893 u64 ref48;
894
895 /* both rw and write zeroes share the same reftag format */
9419e71b 896 switch (ns->head->guard_type) {
4020aad8
KB
897 case NVME_NVM_NS_16B_GUARD:
898 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
899 break;
900 case NVME_NVM_NS_64B_GUARD:
901 ref48 = ext_pi_ref_tag(req);
902 lower = lower_32_bits(ref48);
903 upper = upper_32_bits(ref48);
904
905 cmnd->rw.reftag = cpu_to_le32(lower);
906 cmnd->rw.cdw3 = cpu_to_le32(upper);
907 break;
908 default:
909 break;
910 }
911}
912
6e02318e
CK
913static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
914 struct request *req, struct nvme_command *cmnd)
915{
9c3d2929
JA
916 memset(cmnd, 0, sizeof(*cmnd));
917
6e02318e
CK
918 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
919 return nvme_setup_discard(ns, req, cmnd);
920
921 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
922 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
923 cmnd->write_zeroes.slba =
0372dd4e 924 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
6e02318e 925 cmnd->write_zeroes.length =
9419e71b 926 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
00b33cf3 927
9419e71b
DW
928 if (!(req->cmd_flags & REQ_NOUNMAP) &&
929 (ns->head->features & NVME_NS_DEAC))
1b96f862
CH
930 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
931
0372dd4e 932 if (nvme_ns_has_pi(ns->head)) {
1b96f862 933 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
00b33cf3 934
9419e71b 935 switch (ns->head->pi_type) {
00b33cf3
KJ
936 case NVME_NS_DPS_PI_TYPE1:
937 case NVME_NS_DPS_PI_TYPE2:
4020aad8 938 nvme_set_ref_tag(ns, cmnd, req);
00b33cf3
KJ
939 break;
940 }
941 }
942
6e02318e
CK
943 return BLK_STS_OK;
944}
945
ebe6d874 946static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
240e6ee2
KB
947 struct request *req, struct nvme_command *cmnd,
948 enum nvme_opcode op)
8093f7ca
ML
949{
950 u16 control = 0;
951 u32 dsmgmt = 0;
952
953 if (req->cmd_flags & REQ_FUA)
954 control |= NVME_RW_FUA;
955 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
956 control |= NVME_RW_LR;
957
958 if (req->cmd_flags & REQ_RAHEAD)
959 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
960
240e6ee2 961 cmnd->rw.opcode = op;
a9a7e30f 962 cmnd->rw.flags = 0;
ed754e5d 963 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
4020aad8
KB
964 cmnd->rw.cdw2 = 0;
965 cmnd->rw.cdw3 = 0;
a9a7e30f 966 cmnd->rw.metadata = 0;
0372dd4e
DW
967 cmnd->rw.slba =
968 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
9419e71b
DW
969 cmnd->rw.length =
970 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
a9a7e30f
JA
971 cmnd->rw.reftag = 0;
972 cmnd->rw.apptag = 0;
973 cmnd->rw.appmask = 0;
8093f7ca 974
9419e71b 975 if (ns->head->ms) {
715ea9e0
CH
976 /*
977 * If formated with metadata, the block layer always provides a
978 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
979 * we enable the PRACT bit for protection information or set the
980 * namespace capacity to zero to prevent any I/O.
981 */
982 if (!blk_integrity_rq(req)) {
0372dd4e 983 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
715ea9e0
CH
984 return BLK_STS_NOTSUPP;
985 control |= NVME_RW_PRINFO_PRACT;
986 }
987
9419e71b 988 switch (ns->head->pi_type) {
8093f7ca
ML
989 case NVME_NS_DPS_PI_TYPE3:
990 control |= NVME_RW_PRINFO_PRCHK_GUARD;
991 break;
992 case NVME_NS_DPS_PI_TYPE1:
993 case NVME_NS_DPS_PI_TYPE2:
994 control |= NVME_RW_PRINFO_PRCHK_GUARD |
995 NVME_RW_PRINFO_PRCHK_REF;
240e6ee2
KB
996 if (op == nvme_cmd_zone_append)
997 control |= NVME_RW_APPEND_PIREMAP;
4020aad8 998 nvme_set_ref_tag(ns, cmnd, req);
8093f7ca
ML
999 break;
1000 }
8093f7ca
ML
1001 }
1002
1003 cmnd->rw.control = cpu_to_le16(control);
1004 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
ebe6d874 1005 return 0;
8093f7ca
ML
1006}
1007
f7f1fc36
MG
1008void nvme_cleanup_cmd(struct request *req)
1009{
f7f1fc36 1010 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
fc97e942 1011 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
cb5b7262 1012
3973e15f 1013 if (req->special_vec.bv_page == ctrl->discard_page)
fc97e942 1014 clear_bit_unlock(0, &ctrl->discard_page_busy);
cb5b7262 1015 else
3973e15f 1016 kfree(bvec_virt(&req->special_vec));
f7f1fc36
MG
1017 }
1018}
1019EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1020
f4b9e6c9 1021blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
8093f7ca 1022{
f4b9e6c9 1023 struct nvme_command *cmd = nvme_req(req)->cmd;
fc17b653 1024 blk_status_t ret = BLK_STS_OK;
8093f7ca 1025
9c3d2929 1026 if (!(req->rq_flags & RQF_DONTPREP))
c03fd85d 1027 nvme_clear_nvme_request(req);
987f699a 1028
aebf526b
CH
1029 switch (req_op(req)) {
1030 case REQ_OP_DRV_IN:
1031 case REQ_OP_DRV_OUT:
f4b9e6c9 1032 /* these are setup prior to execution in nvme_init_request() */
aebf526b
CH
1033 break;
1034 case REQ_OP_FLUSH:
8093f7ca 1035 nvme_setup_flush(ns, cmd);
aebf526b 1036 break;
240e6ee2
KB
1037 case REQ_OP_ZONE_RESET_ALL:
1038 case REQ_OP_ZONE_RESET:
1039 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1040 break;
1041 case REQ_OP_ZONE_OPEN:
1042 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1043 break;
1044 case REQ_OP_ZONE_CLOSE:
1045 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1046 break;
1047 case REQ_OP_ZONE_FINISH:
1048 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1049 break;
e850fd16 1050 case REQ_OP_WRITE_ZEROES:
6e02318e
CK
1051 ret = nvme_setup_write_zeroes(ns, req, cmd);
1052 break;
aebf526b 1053 case REQ_OP_DISCARD:
8093f7ca 1054 ret = nvme_setup_discard(ns, req, cmd);
aebf526b
CH
1055 break;
1056 case REQ_OP_READ:
240e6ee2
KB
1057 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1058 break;
aebf526b 1059 case REQ_OP_WRITE:
240e6ee2
KB
1060 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1061 break;
1062 case REQ_OP_ZONE_APPEND:
1063 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
aebf526b
CH
1064 break;
1065 default:
1066 WARN_ON_ONCE(1);
fc17b653 1067 return BLK_STS_IOERR;
aebf526b 1068 }
8093f7ca 1069
e7006de6 1070 cmd->common.command_id = nvme_cid(req);
5d87eb94 1071 trace_nvme_setup_cmd(req, cmd);
8093f7ca
ML
1072 return ret;
1073}
1074EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1075
ae5e6886
KB
1076/*
1077 * Return values:
1078 * 0: success
1079 * >0: nvme controller's cqe status response
1080 * <0: kernel error in lieu of controller response
1081 */
62281b9e 1082int nvme_execute_rq(struct request *rq, bool at_head)
ae5e6886
KB
1083{
1084 blk_status_t status;
1085
b84ba30b 1086 status = blk_execute_rq(rq, at_head);
ae5e6886
KB
1087 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1088 return -EINTR;
1089 if (nvme_req(rq)->status)
1090 return nvme_req(rq)->status;
1091 return blk_status_to_errno(status);
1092}
62281b9e 1093EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
ae5e6886 1094
4160982e
CH
1095/*
1096 * Returns 0 on success. If the result is negative, it's a Linux error code;
1097 * if the result is positive, it's an NVM Express status code
1098 */
1099int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
d49187e9 1100 union nvme_result *result, void *buffer, unsigned bufflen,
bd2687f2 1101 int qid, nvme_submit_flags_t flags)
4160982e
CH
1102{
1103 struct request *req;
1104 int ret;
bd2687f2 1105 blk_mq_req_flags_t blk_flags = 0;
4160982e 1106
bd2687f2
HR
1107 if (flags & NVME_SUBMIT_NOWAIT)
1108 blk_flags |= BLK_MQ_REQ_NOWAIT;
1109 if (flags & NVME_SUBMIT_RESERVED)
1110 blk_flags |= BLK_MQ_REQ_RESERVED;
39dfe844 1111 if (qid == NVME_QID_ANY)
bd2687f2 1112 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
39dfe844 1113 else
bd2687f2 1114 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
b10907b8 1115 qid - 1);
e559398f 1116
4160982e
CH
1117 if (IS_ERR(req))
1118 return PTR_ERR(req);
e559398f 1119 nvme_init_request(req, cmd);
48dae466
HR
1120 if (flags & NVME_SUBMIT_RETRY)
1121 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
4160982e 1122
21d34711
CH
1123 if (buffer && bufflen) {
1124 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1125 if (ret)
1126 goto out;
4160982e
CH
1127 }
1128
bd2687f2 1129 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
ae5e6886 1130 if (result && ret >= 0)
d49187e9 1131 *result = nvme_req(req)->result;
4160982e
CH
1132 out:
1133 blk_mq_free_request(req);
1134 return ret;
1135}
eb71f435 1136EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
4160982e
CH
1137
1138int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1139 void *buffer, unsigned bufflen)
1140{
6b46fa02 1141 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
bd2687f2 1142 NVME_QID_ANY, 0);
4160982e 1143}
576d55d6 1144EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
4160982e 1145
df21b6b1
LG
1146u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1147{
1148 u32 effects = 0;
1149
1150 if (ns) {
cc115cbe 1151 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
df21b6b1 1152 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
ed4a854b 1153 dev_warn_once(ctrl->device,
831ed60c 1154 "IO command:%02x has unusual effects:%08x\n",
ed4a854b 1155 opcode, effects);
df21b6b1 1156
831ed60c
CH
1157 /*
1158 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1159 * which would deadlock when done on an I/O command. Note that
1160 * We already warn about an unusual effect above.
1161 */
1162 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1163 } else {
cc115cbe 1164 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
29f69753
KB
1165
1166 /* Ignore execution restrictions if any relaxation bits are set */
1167 if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1168 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
831ed60c 1169 }
df21b6b1
LG
1170
1171 return effects;
1172}
1173EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1174
62281b9e 1175u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
df21b6b1
LG
1176{
1177 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1178
1179 /*
1180 * For simplicity, IO to all namespaces is quiesced even if the command
1181 * effects say only one namespace is affected.
1182 */
af0f446d 1183 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
df21b6b1
LG
1184 mutex_lock(&ctrl->scan_lock);
1185 mutex_lock(&ctrl->subsys->lock);
1186 nvme_mpath_start_freeze(ctrl->subsys);
1187 nvme_mpath_wait_freeze(ctrl->subsys);
1188 nvme_start_freeze(ctrl);
1189 nvme_wait_freeze(ctrl);
1190 }
1191 return effects;
1192}
62281b9e 1193EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
df21b6b1 1194
31a59782 1195void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
bc8fb906 1196 struct nvme_command *cmd, int status)
df21b6b1 1197{
af0f446d 1198 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
df21b6b1
LG
1199 nvme_unfreeze(ctrl);
1200 nvme_mpath_unfreeze(ctrl->subsys);
1201 mutex_unlock(&ctrl->subsys->lock);
df21b6b1
LG
1202 mutex_unlock(&ctrl->scan_lock);
1203 }
1e37a307 1204 if (effects & NVME_CMD_EFFECTS_CCC) {
d0dd594b
BL
1205 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1206 &ctrl->flags)) {
1207 dev_info(ctrl->device,
1e37a307 1208"controller capabilities changed, reset may be required to take effect.\n");
d0dd594b 1209 }
1e37a307 1210 }
df21b6b1
LG
1211 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1212 nvme_queue_scan(ctrl);
1213 flush_work(&ctrl->scan_work);
1214 }
31a59782 1215 if (ns)
1216 return;
b58da2d2
TS
1217
1218 switch (cmd->common.opcode) {
1219 case nvme_admin_set_features:
1220 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1221 case NVME_FEAT_KATO:
1222 /*
1223 * Keep alive commands interval on the host should be
1224 * updated when KATO is modified by Set Features
1225 * commands.
1226 */
1227 if (!status)
1228 nvme_update_keep_alive(ctrl, cmd);
1229 break;
1230 default:
1231 break;
1232 }
1233 break;
1234 default:
1235 break;
1236 }
df21b6b1 1237}
bc8fb906 1238EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
df21b6b1 1239
a70b81bd
HR
1240/*
1241 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1242 *
1243 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1244 * accounting for transport roundtrip times [..].
1245 */
ea4d453b
US
1246static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1247{
1248 unsigned long delay = ctrl->kato * HZ / 2;
1249
1250 /*
1251 * When using Traffic Based Keep Alive, we need to run
1252 * nvme_keep_alive_work at twice the normal frequency, as one
1253 * command completion can postpone sending a keep alive command
1254 * by up to twice the delay between runs.
1255 */
1256 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1257 delay /= 2;
1258 return delay;
1259}
1260
a70b81bd 1261static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
4160982e 1262{
136cfcb8
MD
1263 unsigned long now = jiffies;
1264 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1265 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1266
1267 if (time_after(now, ka_next_check_tm))
1268 delay = 0;
1269 else
1270 delay = ka_next_check_tm - now;
1271
1272 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
21d34711
CH
1273}
1274
de671d61
JA
1275static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1276 blk_status_t status)
038bd4cb
SG
1277{
1278 struct nvme_ctrl *ctrl = rq->end_io_data;
86880d64
JS
1279 unsigned long flags;
1280 bool startka = false;
c7275ce6
US
1281 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1282 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1283
1284 /*
1285 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1286 * at the desired frequency.
1287 */
1288 if (rtt <= delay) {
1289 delay -= rtt;
1290 } else {
1291 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1292 jiffies_to_msecs(rtt));
1293 delay = 0;
1294 }
038bd4cb
SG
1295
1296 blk_mq_free_request(rq);
1297
2a842aca 1298 if (status) {
038bd4cb 1299 dev_err(ctrl->device,
2a842aca
CH
1300 "failed nvme_keep_alive_end_io error=%d\n",
1301 status);
de671d61 1302 return RQ_END_IO_NONE;
038bd4cb
SG
1303 }
1304
774a9636 1305 ctrl->ka_last_check_time = jiffies;
6e3ca03e 1306 ctrl->comp_seen = false;
86880d64
JS
1307 spin_lock_irqsave(&ctrl->lock, flags);
1308 if (ctrl->state == NVME_CTRL_LIVE ||
1309 ctrl->state == NVME_CTRL_CONNECTING)
1310 startka = true;
1311 spin_unlock_irqrestore(&ctrl->lock, flags);
1312 if (startka)
c7275ce6 1313 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
de671d61 1314 return RQ_END_IO_NONE;
038bd4cb
SG
1315}
1316
038bd4cb
SG
1317static void nvme_keep_alive_work(struct work_struct *work)
1318{
1319 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1320 struct nvme_ctrl, ka_work);
6e3ca03e 1321 bool comp_seen = ctrl->comp_seen;
06c3c336 1322 struct request *rq;
6e3ca03e 1323
774a9636
US
1324 ctrl->ka_last_check_time = jiffies;
1325
6e3ca03e
SG
1326 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1327 dev_dbg(ctrl->device,
1328 "reschedule traffic based keep-alive timer\n");
1329 ctrl->comp_seen = false;
a70b81bd 1330 nvme_queue_keep_alive_work(ctrl);
6e3ca03e
SG
1331 return;
1332 }
038bd4cb 1333
e559398f
CH
1334 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1335 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
06c3c336 1336 if (IS_ERR(rq)) {
038bd4cb 1337 /* allocation failure, reset the controller */
985c5a32 1338 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
39bdc590 1339 nvme_reset_ctrl(ctrl);
038bd4cb
SG
1340 return;
1341 }
e559398f 1342 nvme_init_request(rq, &ctrl->ka_cmd);
06c3c336
CH
1343
1344 rq->timeout = ctrl->kato * HZ;
e2e53086 1345 rq->end_io = nvme_keep_alive_end_io;
06c3c336 1346 rq->end_io_data = ctrl;
e2e53086 1347 blk_execute_rq_nowait(rq, false);
038bd4cb
SG
1348}
1349
00b683db 1350static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
038bd4cb
SG
1351{
1352 if (unlikely(ctrl->kato == 0))
1353 return;
1354
a70b81bd 1355 nvme_queue_keep_alive_work(ctrl);
038bd4cb 1356}
038bd4cb
SG
1357
1358void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1359{
1360 if (unlikely(ctrl->kato == 0))
1361 return;
1362
1363 cancel_delayed_work_sync(&ctrl->ka_work);
1364}
1365EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1366
b58da2d2
TS
1367static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1368 struct nvme_command *cmd)
1369{
1370 unsigned int new_kato =
1371 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1372
1373 dev_info(ctrl->device,
1374 "keep alive interval updated from %u ms to %u ms\n",
1375 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1376
1377 nvme_stop_keep_alive(ctrl);
1378 ctrl->kato = new_kato;
1379 nvme_start_keep_alive(ctrl);
1380}
1381
b9a5c3d4
CH
1382/*
1383 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1384 * flag, thus sending any new CNS opcodes has a big chance of not working.
1385 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1386 * (but not for any later version).
1387 */
1388static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1389{
1390 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1391 return ctrl->vs < NVME_VS(1, 2, 0);
1392 return ctrl->vs < NVME_VS(1, 1, 0);
1393}
1394
3f7f25a9 1395static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
21d34711
CH
1396{
1397 struct nvme_command c = { };
1398 int error;
1399
1400 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1401 c.identify.opcode = nvme_admin_identify;
986994a2 1402 c.identify.cns = NVME_ID_CNS_CTRL;
21d34711
CH
1403
1404 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1405 if (!*id)
1406 return -ENOMEM;
1407
1408 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1409 sizeof(struct nvme_id_ctrl));
7e80eb79 1410 if (error) {
21d34711 1411 kfree(*id);
7e80eb79
KB
1412 *id = NULL;
1413 }
21d34711
CH
1414 return error;
1415}
1416
ad95a613 1417static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
71010c30 1418 struct nvme_ns_id_desc *cur, bool *csi_seen)
ad95a613
CK
1419{
1420 const char *warn_str = "ctrl returned bogus length:";
1421 void *data = cur;
1422
1423 switch (cur->nidt) {
1424 case NVME_NIDT_EUI64:
1425 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1426 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1427 warn_str, cur->nidl);
1428 return -1;
1429 }
00ff400e
CH
1430 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1431 return NVME_NIDT_EUI64_LEN;
ad95a613
CK
1432 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1433 return NVME_NIDT_EUI64_LEN;
1434 case NVME_NIDT_NGUID:
1435 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1436 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1437 warn_str, cur->nidl);
1438 return -1;
1439 }
00ff400e
CH
1440 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1441 return NVME_NIDT_NGUID_LEN;
ad95a613
CK
1442 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1443 return NVME_NIDT_NGUID_LEN;
1444 case NVME_NIDT_UUID:
1445 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1446 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1447 warn_str, cur->nidl);
1448 return -1;
1449 }
00ff400e
CH
1450 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1451 return NVME_NIDT_UUID_LEN;
ad95a613
CK
1452 uuid_copy(&ids->uuid, data + sizeof(*cur));
1453 return NVME_NIDT_UUID_LEN;
71010c30
NC
1454 case NVME_NIDT_CSI:
1455 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1456 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1457 warn_str, cur->nidl);
1458 return -1;
1459 }
1460 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1461 *csi_seen = true;
1462 return NVME_NIDT_CSI_LEN;
ad95a613
CK
1463 default:
1464 /* Skip unknown types */
1465 return cur->nidl;
1466 }
1467}
1468
1a893c2b
CH
1469static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1470 struct nvme_ns_info *info)
3b22ba26
JT
1471{
1472 struct nvme_command c = { };
71010c30
NC
1473 bool csi_seen = false;
1474 int status, pos, len;
3b22ba26 1475 void *data;
3b22ba26 1476
8b7c0ff2
CH
1477 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1478 return 0;
5bedd3af
CH
1479 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1480 return 0;
1481
3b22ba26 1482 c.identify.opcode = nvme_admin_identify;
1a893c2b 1483 c.identify.nsid = cpu_to_le32(info->nsid);
3b22ba26
JT
1484 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1485
1486 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1487 if (!data)
1488 return -ENOMEM;
1489
cdbff4f2 1490 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
3b22ba26 1491 NVME_IDENTIFY_DATA_SIZE);
fb314eb0
CH
1492 if (status) {
1493 dev_warn(ctrl->device,
aa9d7295 1494 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1a893c2b 1495 info->nsid, status);
3b22ba26 1496 goto free_data;
fb314eb0 1497 }
3b22ba26
JT
1498
1499 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1500 struct nvme_ns_id_desc *cur = data + pos;
1501
1502 if (cur->nidl == 0)
1503 break;
1504
1a893c2b 1505 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
ad95a613 1506 if (len < 0)
71010c30 1507 break;
3b22ba26
JT
1508
1509 len += sizeof(*cur);
1510 }
71010c30
NC
1511
1512 if (nvme_multi_css(ctrl) && !csi_seen) {
1513 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1a893c2b 1514 info->nsid);
71010c30
NC
1515 status = -EINVAL;
1516 }
1517
3b22ba26
JT
1518free_data:
1519 kfree(data);
1520 return status;
1521}
1522
a1a825ab 1523int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1a893c2b 1524 struct nvme_id_ns **id)
21d34711
CH
1525{
1526 struct nvme_command c = { };
1527 int error;
1528
1529 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
778f067c
MG
1530 c.identify.opcode = nvme_admin_identify;
1531 c.identify.nsid = cpu_to_le32(nsid);
986994a2 1532 c.identify.cns = NVME_ID_CNS_NS;
21d34711 1533
331813f6
SG
1534 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1535 if (!*id)
1536 return -ENOMEM;
21d34711 1537
331813f6 1538 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
cdbff4f2 1539 if (error) {
d0de579c 1540 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
0dd6fff2 1541 kfree(*id);
7e80eb79 1542 *id = NULL;
cdbff4f2 1543 }
1a893c2b
CH
1544 return error;
1545}
00ff400e 1546
1a893c2b
CH
1547static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1548 struct nvme_ns_info *info)
1549{
1550 struct nvme_ns_ids *ids = &info->ids;
1551 struct nvme_id_ns *id;
1552 int ret;
1553
1554 ret = nvme_identify_ns(ctrl, info->nsid, &id);
1555 if (ret)
1556 return ret;
0dd6fff2
CH
1557
1558 if (id->ncap == 0) {
1559 /* namespace not allocated or attached */
1560 info->is_removed = true;
e3139cef
ML
1561 ret = -ENODEV;
1562 goto error;
0dd6fff2
CH
1563 }
1564
1a893c2b
CH
1565 info->anagrpid = id->anagrpid;
1566 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1e4ea66a 1567 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1a893c2b 1568 info->is_ready = true;
00ff400e
CH
1569 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1570 dev_info(ctrl->device,
1571 "Ignoring bogus Namespace Identifiers\n");
1572 } else {
1573 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1574 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1a893c2b 1575 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
00ff400e
CH
1576 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1577 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1a893c2b 1578 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
00ff400e 1579 }
e3139cef
ML
1580
1581error:
1a893c2b 1582 kfree(id);
e3139cef 1583 return ret;
21d34711
CH
1584}
1585
1a893c2b
CH
1586static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1587 struct nvme_ns_info *info)
354201c5 1588{
1a893c2b 1589 struct nvme_id_ns_cs_indep *id;
354201c5
CH
1590 struct nvme_command c = {
1591 .identify.opcode = nvme_admin_identify,
1a893c2b 1592 .identify.nsid = cpu_to_le32(info->nsid),
354201c5
CH
1593 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1594 };
1595 int ret;
1596
1a893c2b
CH
1597 id = kmalloc(sizeof(*id), GFP_KERNEL);
1598 if (!id)
354201c5
CH
1599 return -ENOMEM;
1600
1a893c2b
CH
1601 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1602 if (!ret) {
1603 info->anagrpid = id->anagrpid;
1604 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1e4ea66a 1605 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1a893c2b 1606 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
354201c5 1607 }
1a893c2b
CH
1608 kfree(id);
1609 return ret;
354201c5
CH
1610}
1611
1a87ee65
KB
1612static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1613 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
21d34711 1614{
15755854 1615 union nvme_result res = { 0 };
cc72c442 1616 struct nvme_command c = { };
1cb3cce5 1617 int ret;
21d34711 1618
1a87ee65 1619 c.features.opcode = op;
21d34711
CH
1620 c.features.fid = cpu_to_le32(fid);
1621 c.features.dword11 = cpu_to_le32(dword11);
1622
d49187e9 1623 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
bd2687f2 1624 buffer, buflen, NVME_QID_ANY, 0);
9b47f77a 1625 if (ret >= 0 && result)
d49187e9 1626 *result = le32_to_cpu(res.u32);
1cb3cce5 1627 return ret;
21d34711
CH
1628}
1629
1a87ee65
KB
1630int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1631 unsigned int dword11, void *buffer, size_t buflen,
1632 u32 *result)
1633{
1634 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1635 buflen, result);
1636}
1637EXPORT_SYMBOL_GPL(nvme_set_features);
1638
1639int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1640 unsigned int dword11, void *buffer, size_t buflen,
1641 u32 *result)
1642{
1643 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1644 buflen, result);
1645}
1646EXPORT_SYMBOL_GPL(nvme_get_features);
1647
9a0be7ab
CH
1648int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1649{
1650 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1651 u32 result;
1652 int status, nr_io_queues;
1653
1a6fe74d 1654 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
9a0be7ab 1655 &result);
f5fa90dc 1656 if (status < 0)
9a0be7ab
CH
1657 return status;
1658
f5fa90dc
CH
1659 /*
1660 * Degraded controllers might return an error when setting the queue
1661 * count. We still want to be able to bring them online and offer
1662 * access to the admin queue, as that might be only way to fix them up.
1663 */
1664 if (status > 0) {
f0425db0 1665 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
f5fa90dc
CH
1666 *count = 0;
1667 } else {
1668 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1669 *count = min(*count, nr_io_queues);
1670 }
1671
9a0be7ab
CH
1672 return 0;
1673}
576d55d6 1674EXPORT_SYMBOL_GPL(nvme_set_queue_count);
9a0be7ab 1675
c0561f82 1676#define NVME_AEN_SUPPORTED \
85f8a435
SG
1677 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1678 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
c0561f82
HR
1679
1680static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1681{
fa441b71 1682 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
c0561f82
HR
1683 int status;
1684
fa441b71
WZ
1685 if (!supported_aens)
1686 return;
1687
1688 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1689 NULL, 0, &result);
c0561f82
HR
1690 if (status)
1691 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
fa441b71 1692 supported_aens);
93da4023
SG
1693
1694 queue_work(nvme_wq, &ctrl->async_event_work);
c0561f82
HR
1695}
1696
f5b9a51d 1697static int nvme_ns_open(struct nvme_ns *ns)
c225b610 1698{
c225b610 1699
32acab31 1700 /* should never be called due to GENHD_FL_HIDDEN */
30897388 1701 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
85088c4a 1702 goto fail;
4c74d1f8 1703 if (!nvme_get_ns(ns))
85088c4a
NC
1704 goto fail;
1705 if (!try_module_get(ns->ctrl->ops->module))
1706 goto fail_put_ns;
1707
c6424a90 1708 return 0;
85088c4a
NC
1709
1710fail_put_ns:
1711 nvme_put_ns(ns);
1712fail:
1713 return -ENXIO;
1673f1f0
CH
1714}
1715
f5b9a51d 1716static void nvme_ns_release(struct nvme_ns *ns)
1673f1f0 1717{
85088c4a
NC
1718
1719 module_put(ns->ctrl->ops->module);
1720 nvme_put_ns(ns);
1673f1f0
CH
1721}
1722
05bdb996 1723static int nvme_open(struct gendisk *disk, blk_mode_t mode)
f5b9a51d 1724{
d32e2bf8 1725 return nvme_ns_open(disk->private_data);
f5b9a51d
CH
1726}
1727
ae220766 1728static void nvme_release(struct gendisk *disk)
f5b9a51d
CH
1729{
1730 nvme_ns_release(disk->private_data);
1731}
1732
1496bd49 1733int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1673f1f0
CH
1734{
1735 /* some standard values */
1736 geo->heads = 1 << 6;
1737 geo->sectors = 1 << 5;
1738 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1739 return 0;
1740}
1741
f467b48e 1742static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head)
1673f1f0 1743{
cc72c442 1744 struct blk_integrity integrity = { };
1673f1f0 1745
414c62e2
CH
1746 blk_integrity_unregister(disk);
1747
f467b48e
CH
1748 if (!head->ms)
1749 return true;
1750
1751 /*
1752 * PI can always be supported as we can ask the controller to simply
1753 * insert/strip it, which is not possible for other kinds of metadata.
1754 */
1755 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1756 !(head->features & NVME_NS_METADATA_SUPPORTED))
1757 return nvme_ns_has_pi(head);
1758
d386aedc 1759 switch (head->pi_type) {
1673f1f0 1760 case NVME_NS_DPS_PI_TYPE3:
d386aedc 1761 switch (head->guard_type) {
4020aad8
KB
1762 case NVME_NVM_NS_16B_GUARD:
1763 integrity.profile = &t10_pi_type3_crc;
1764 integrity.tag_size = sizeof(u16) + sizeof(u32);
1765 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1766 break;
1767 case NVME_NVM_NS_64B_GUARD:
1768 integrity.profile = &ext_pi_type3_crc64;
1769 integrity.tag_size = sizeof(u16) + 6;
1770 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1771 break;
1772 default:
1773 integrity.profile = NULL;
1774 break;
1775 }
1673f1f0
CH
1776 break;
1777 case NVME_NS_DPS_PI_TYPE1:
1778 case NVME_NS_DPS_PI_TYPE2:
d386aedc 1779 switch (head->guard_type) {
4020aad8
KB
1780 case NVME_NVM_NS_16B_GUARD:
1781 integrity.profile = &t10_pi_type1_crc;
1782 integrity.tag_size = sizeof(u16);
1783 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1784 break;
1785 case NVME_NVM_NS_64B_GUARD:
1786 integrity.profile = &ext_pi_type1_crc64;
1787 integrity.tag_size = sizeof(u16);
1788 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1789 break;
1790 default:
1791 integrity.profile = NULL;
1792 break;
1793 }
1673f1f0
CH
1794 break;
1795 default:
1796 integrity.profile = NULL;
1797 break;
1798 }
4020aad8 1799
d386aedc 1800 integrity.tuple_size = head->ms;
921e81db 1801 integrity.pi_offset = head->pi_offset;
39b7baa4 1802 blk_integrity_register(disk, &integrity);
f467b48e 1803 return true;
1673f1f0 1804}
1673f1f0 1805
e6c9b130 1806static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1673f1f0 1807{
e6c9b130 1808 struct nvme_ctrl *ctrl = ns->ctrl;
3831761e 1809
b35ba01e
CH
1810 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1811 NVME_DSM_MAX_RANGES);
1812
e6c9b130
CH
1813 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1814 lim->max_hw_discard_sectors =
1815 nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1816 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1817 lim->max_hw_discard_sectors = UINT_MAX;
1818 else
1819 lim->max_hw_discard_sectors = 0;
1820
1821 lim->discard_granularity = lim->logical_block_size;
3831761e 1822
3b946fe1 1823 if (ctrl->dmrl)
e6c9b130 1824 lim->max_discard_segments = ctrl->dmrl;
3b946fe1 1825 else
e6c9b130 1826 lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1673f1f0
CH
1827}
1828
002fab04
CH
1829static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1830{
1831 return uuid_equal(&a->uuid, &b->uuid) &&
1832 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
71010c30
NC
1833 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1834 a->csi == b->csi;
002fab04
CH
1835}
1836
c6fce9f1
CH
1837static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1838 struct nvme_id_ns_nvm **nvmp)
d4609ea8 1839{
c6fce9f1
CH
1840 struct nvme_command c = {
1841 .identify.opcode = nvme_admin_identify,
1842 .identify.nsid = cpu_to_le32(nsid),
1843 .identify.cns = NVME_ID_CNS_CS_NS,
1844 .identify.csi = NVME_CSI_NVM,
1845 };
4020aad8 1846 struct nvme_id_ns_nvm *nvm;
c6fce9f1 1847 int ret;
d4609ea8 1848
4020aad8
KB
1849 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1850 if (!nvm)
1851 return -ENOMEM;
d4609ea8 1852
d386aedc 1853 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
4020aad8 1854 if (ret)
c6fce9f1
CH
1855 kfree(nvm);
1856 else
1857 *nvmp = nvm;
1858 return ret;
1859}
4020aad8 1860
27cb91a3 1861static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
e5ea00a5 1862 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
d4609ea8 1863{
27cb91a3 1864 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
4020aad8
KB
1865
1866 /* no support for storage tag formats right now */
1867 if (nvme_elbaf_sts(elbaf))
27cb91a3 1868 return;
4020aad8 1869
d386aedc
DW
1870 head->guard_type = nvme_elbaf_guard_type(elbaf);
1871 switch (head->guard_type) {
4020aad8 1872 case NVME_NVM_NS_64B_GUARD:
d386aedc 1873 head->pi_size = sizeof(struct crc64_pi_tuple);
4020aad8
KB
1874 break;
1875 case NVME_NVM_NS_16B_GUARD:
d386aedc 1876 head->pi_size = sizeof(struct t10_pi_tuple);
4020aad8
KB
1877 break;
1878 default:
1879 break;
1880 }
4020aad8
KB
1881}
1882
e5ea00a5
CH
1883static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1884 struct nvme_ns_head *head, struct nvme_id_ns *id,
1885 struct nvme_id_ns_nvm *nvm)
4020aad8 1886{
d386aedc 1887 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
27cb91a3
CH
1888 head->pi_type = 0;
1889 head->pi_size = 0;
1890 head->pi_offset = 0;
1891 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
d386aedc 1892 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
e5ea00a5 1893 return;
363f6368 1894
27cb91a3
CH
1895 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1896 nvme_configure_pi_elbas(head, id, nvm);
1897 } else {
1898 head->pi_size = sizeof(struct t10_pi_tuple);
1899 head->guard_type = NVME_NVM_NS_16B_GUARD;
1900 }
1901
1902 if (head->pi_size && head->ms >= head->pi_size)
1903 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1904 if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1905 head->pi_offset = head->ms - head->pi_size;
363f6368 1906
d4609ea8
CH
1907 if (ctrl->ops->flags & NVME_F_FABRICS) {
1908 /*
1909 * The NVMe over Fabrics specification only supports metadata as
1910 * part of the extended data LBA. We rely on HCA/HBA support to
1911 * remap the separate metadata buffer from the block layer.
1912 */
1913 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
e5ea00a5 1914 return;
d39ad2a4 1915
d386aedc 1916 head->features |= NVME_NS_EXT_LBAS;
d39ad2a4
KB
1917
1918 /*
1919 * The current fabrics transport drivers support namespace
1920 * metadata formats only if nvme_ns_has_pi() returns true.
1921 * Suppress support for all other formats so the namespace will
1922 * have a 0 capacity and not be usable through the block stack.
1923 *
1924 * Note, this check will need to be modified if any drivers
1925 * gain the ability to use other metadata formats.
1926 */
d386aedc
DW
1927 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1928 head->features |= NVME_NS_METADATA_SUPPORTED;
d4609ea8
CH
1929 } else {
1930 /*
1931 * For PCIe controllers, we can't easily remap the separate
1932 * metadata buffer from the block layer and thus require a
1933 * separate metadata buffer for block layer metadata/PI support.
1934 * We allow extended LBAs for the passthrough interface, though.
1935 */
1936 if (id->flbas & NVME_NS_FLBAS_META_EXT)
d386aedc 1937 head->features |= NVME_NS_EXT_LBAS;
d4609ea8 1938 else
d386aedc 1939 head->features |= NVME_NS_METADATA_SUPPORTED;
d4609ea8 1940 }
d4609ea8
CH
1941}
1942
152694c8 1943static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
658d9f7c 1944{
152694c8
CH
1945 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1946}
658d9f7c 1947
e6c9b130
CH
1948static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1949 struct queue_limits *lim)
658d9f7c 1950{
e6c9b130
CH
1951 lim->max_hw_sectors = ctrl->max_hw_sectors;
1952 lim->max_segments = min_t(u32, USHRT_MAX,
1953 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1954 lim->max_integrity_segments = ctrl->max_integrity_segments;
1955 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1956 lim->max_segment_size = UINT_MAX;
1957 lim->dma_alignment = 3;
658d9f7c
CH
1958}
1959
e6c9b130
CH
1960static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1961 struct queue_limits *lim)
24b0b58c 1962{
a5b1cd61 1963 struct nvme_ns_head *head = ns->head;
d386aedc 1964 u32 bs = 1U << head->lba_shift;
68ab60ca 1965 u32 atomic_bs, phys_bs, io_opt = 0;
a5b1cd61 1966 bool valid = true;
24b0b58c 1967
13f0b26b
CH
1968 /*
1969 * The block layer can't support LBA sizes larger than the page size
74fbc88e
KB
1970 * or smaller than a sector size yet, so catch this early and don't
1971 * allow block I/O.
13f0b26b 1972 */
01d550f0 1973 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
01fa0174 1974 bs = (1 << 9);
a5b1cd61 1975 valid = false;
01fa0174 1976 }
f9d5f457 1977
68ab60ca 1978 atomic_bs = phys_bs = bs;
81adb863
BVA
1979 if (id->nabo == 0) {
1980 /*
1981 * Bit 1 indicates whether NAWUPF is defined for this namespace
1982 * and whether it should be used instead of AWUPF. If NAWUPF ==
1983 * 0 then AWUPF must be used instead.
1984 */
92decf11 1985 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
81adb863
BVA
1986 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1987 else
a5b1cd61 1988 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
81adb863 1989 }
31fdad7b 1990
92decf11 1991 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
81adb863 1992 /* NPWG = Namespace Preferred Write Granularity */
31fdad7b 1993 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
81adb863 1994 /* NOWS = Namespace Optimal Write Size */
31fdad7b 1995 io_opt = bs * (1 + le16_to_cpu(id->nows));
81adb863
BVA
1996 }
1997
81adb863
BVA
1998 /*
1999 * Linux filesystems assume writing a single physical block is
2000 * an atomic operation. Hence limit the physical block size to the
2001 * value of the Atomic Write Unit Power Fail parameter.
2002 */
e6c9b130
CH
2003 lim->logical_block_size = bs;
2004 lim->physical_block_size = min(phys_bs, atomic_bs);
2005 lim->io_min = phys_bs;
2006 lim->io_opt = io_opt;
a5b1cd61 2007 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
e6c9b130 2008 lim->max_write_zeroes_sectors = UINT_MAX;
63dfa100 2009 else
e6c9b130 2010 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
a5b1cd61 2011 return valid;
24b0b58c
CH
2012}
2013
1e4ea66a
CH
2014static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2015{
2016 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2017}
2018
e83d776f
KB
2019static inline bool nvme_first_scan(struct gendisk *disk)
2020{
2021 /* nvme_alloc_ns() scans the disk prior to adding it */
50b4aecf 2022 return !disk_live(disk);
e83d776f
KB
2023}
2024
e6c9b130
CH
2025static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2026 struct queue_limits *lim)
e83d776f
KB
2027{
2028 struct nvme_ctrl *ctrl = ns->ctrl;
2029 u32 iob;
2030
2031 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2032 is_power_of_2(ctrl->max_hw_sectors))
2033 iob = ctrl->max_hw_sectors;
2034 else
0372dd4e 2035 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
e83d776f
KB
2036
2037 if (!iob)
2038 return;
2039
2040 if (!is_power_of_2(iob)) {
2041 if (nvme_first_scan(ns->disk))
2042 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2043 ns->disk->disk_name, iob);
2044 return;
2045 }
2046
2047 if (blk_queue_is_zoned(ns->disk->queue)) {
2048 if (nvme_first_scan(ns->disk))
2049 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2050 ns->disk->disk_name);
2051 return;
2052 }
2053
e6c9b130 2054 lim->chunk_sectors = iob;
e83d776f
KB
2055}
2056
eb867ee9
JG
2057static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2058 struct nvme_ns_info *info)
2059{
e6c9b130
CH
2060 struct queue_limits lim;
2061 int ret;
2062
eb867ee9 2063 blk_mq_freeze_queue(ns->disk->queue);
e6c9b130
CH
2064 lim = queue_limits_start_update(ns->disk->queue);
2065 nvme_set_ctrl_limits(ns->ctrl, &lim);
2066 ret = queue_limits_commit_update(ns->disk->queue, &lim);
eb867ee9
JG
2067 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2068 blk_mq_unfreeze_queue(ns->disk->queue);
2069
eb867ee9 2070 /* Hide the block-interface for these devices */
e6c9b130
CH
2071 if (!ret)
2072 ret = -ENODEV;
2073 return ret;
eb867ee9
JG
2074}
2075
1a893c2b
CH
2076static int nvme_update_ns_info_block(struct nvme_ns *ns,
2077 struct nvme_ns_info *info)
ac81bfa9 2078{
d60c23e4 2079 bool vwc = ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT;
e6c9b130 2080 struct queue_limits lim;
e5ea00a5 2081 struct nvme_id_ns_nvm *nvm = NULL;
1a893c2b 2082 struct nvme_id_ns *id;
a5b1cd61 2083 sector_t capacity;
1a893c2b 2084 unsigned lbaf;
240e6ee2 2085 int ret;
1673f1f0 2086
1a893c2b
CH
2087 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2088 if (ret)
2089 return ret;
2090
d8b90d60
EM
2091 if (id->ncap == 0) {
2092 /* namespace not allocated or attached */
2093 info->is_removed = true;
2094 ret = -ENODEV;
46e7422c 2095 goto out;
d8b90d60
EM
2096 }
2097
e5ea00a5
CH
2098 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2099 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2100 if (ret < 0)
2101 goto out;
d8b90d60
EM
2102 }
2103
f9d5f457 2104 blk_mq_freeze_queue(ns->disk->queue);
1a893c2b 2105 lbaf = nvme_lbaf_index(id->flbas);
9419e71b 2106 ns->head->lba_shift = id->lbaf[lbaf].ds;
a1a825ab 2107 ns->head->nuse = le64_to_cpu(id->nuse);
a5b1cd61 2108 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
73d90386 2109
e6c9b130
CH
2110 lim = queue_limits_start_update(ns->disk->queue);
2111 nvme_set_ctrl_limits(ns->ctrl, &lim);
e5ea00a5 2112 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm);
e6c9b130
CH
2113 nvme_set_chunk_sectors(ns, id, &lim);
2114 if (!nvme_update_disk_info(ns, id, &lim))
a5b1cd61 2115 capacity = 0;
e6c9b130
CH
2116 nvme_config_discard(ns, &lim);
2117 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2118 ns->head->ids.csi == NVME_CSI_ZNS) {
2119 ret = nvme_update_zone_info(ns, lbaf, &lim);
e06b425b
CH
2120 if (ret) {
2121 blk_mq_unfreeze_queue(ns->disk->queue);
2122 goto out;
2123 }
71010c30 2124 }
e6c9b130
CH
2125 ret = queue_limits_commit_update(ns->disk->queue, &lim);
2126 if (ret) {
2127 blk_mq_unfreeze_queue(ns->disk->queue);
2128 goto out;
2129 }
a5b1cd61
CH
2130
2131 /*
2132 * Register a metadata profile for PI, or the plain non-integrity NVMe
2133 * metadata masquerading as Type 0 if supported, otherwise reject block
2134 * I/O to namespaces with metadata except when the namespace supports
2135 * PI, as it can strip/insert in that case.
2136 */
2137 if (!nvme_init_integrity(ns->disk, ns->head))
2138 capacity = 0;
2139
2140 set_capacity_and_notify(ns->disk, capacity);
71010c30 2141
1b96f862
CH
2142 /*
2143 * Only set the DEAC bit if the device guarantees that reads from
2144 * deallocated data return zeroes. While the DEAC bit does not
2145 * require that, it must be a no-op if reads from deallocated data
2146 * do not return zeroes.
2147 */
2148 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
9419e71b 2149 ns->head->features |= NVME_NS_DEAC;
1e4ea66a 2150 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
d60c23e4 2151 blk_queue_write_cache(ns->disk->queue, vwc, vwc);
e7d65803 2152 set_bit(NVME_NS_READY, &ns->flags);
f9d5f457 2153 blk_mq_unfreeze_queue(ns->disk->queue);
1673f1f0 2154
3a9967ba 2155 if (blk_queue_is_zoned(ns->queue)) {
1b2f5d5d 2156 ret = blk_revalidate_disk_zones(ns->disk, NULL);
8685699c 2157 if (ret && !nvme_first_scan(ns->disk))
e06b425b 2158 goto out;
b29f8485
MG
2159 }
2160
e06b425b
CH
2161 ret = 0;
2162out:
e5ea00a5 2163 kfree(nvm);
1a893c2b 2164 kfree(id);
240e6ee2
KB
2165 return ret;
2166}
2167
1a893c2b
CH
2168static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2169{
46e7422c
CH
2170 bool unsupported = false;
2171 int ret;
2172
1a893c2b
CH
2173 switch (info->ids.csi) {
2174 case NVME_CSI_ZNS:
2175 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
eb867ee9
JG
2176 dev_info(ns->ctrl->device,
2177 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
1a893c2b 2178 info->nsid);
46e7422c
CH
2179 ret = nvme_update_ns_info_generic(ns, info);
2180 break;
1a893c2b 2181 }
46e7422c
CH
2182 ret = nvme_update_ns_info_block(ns, info);
2183 break;
1a893c2b 2184 case NVME_CSI_NVM:
46e7422c
CH
2185 ret = nvme_update_ns_info_block(ns, info);
2186 break;
1a893c2b 2187 default:
eb867ee9
JG
2188 dev_info(ns->ctrl->device,
2189 "block device for nsid %u not supported (csi %u)\n",
2190 info->nsid, info->ids.csi);
46e7422c
CH
2191 ret = nvme_update_ns_info_generic(ns, info);
2192 break;
2193 }
2194
2195 /*
2196 * If probing fails due an unsupported feature, hide the block device,
2197 * but still allow other access.
2198 */
2199 if (ret == -ENODEV) {
2200 ns->disk->flags |= GENHD_FL_HIDDEN;
2201 set_bit(NVME_NS_READY, &ns->flags);
2202 unsupported = true;
2203 ret = 0;
1a893c2b 2204 }
46e7422c
CH
2205
2206 if (!ret && nvme_ns_head_multipath(ns->head)) {
f7e0a545
CH
2207 struct queue_limits lim;
2208
46e7422c
CH
2209 blk_mq_freeze_queue(ns->head->disk->queue);
2210 if (unsupported)
2211 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2212 else
2213 nvme_init_integrity(ns->head->disk, ns->head);
2214 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2215 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2216 nvme_mpath_revalidate_paths(ns);
46e7422c 2217
f7e0a545
CH
2218 lim = queue_limits_start_update(ns->head->disk->queue);
2219 queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2220 ns->head->disk->disk_name);
2221 ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
46e7422c 2222 blk_mq_unfreeze_queue(ns->head->disk->queue);
1a893c2b 2223 }
46e7422c
CH
2224
2225 return ret;
1a893c2b
CH
2226}
2227
a98e58e5 2228#ifdef CONFIG_BLK_SED_OPAL
94cc781f 2229static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
4f1244c8 2230 bool send)
a98e58e5 2231{
4f1244c8 2232 struct nvme_ctrl *ctrl = data;
cc72c442 2233 struct nvme_command cmd = { };
a98e58e5 2234
a98e58e5
SB
2235 if (send)
2236 cmd.common.opcode = nvme_admin_security_send;
2237 else
2238 cmd.common.opcode = nvme_admin_security_recv;
a98e58e5 2239 cmd.common.nsid = 0;
b7c8f366
CK
2240 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2241 cmd.common.cdw11 = cpu_to_le32(len);
a98e58e5 2242
6b46fa02 2243 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
bd2687f2 2244 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
a98e58e5 2245}
94cc781f
CH
2246
2247static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2248{
2249 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2250 if (!ctrl->opal_dev)
2251 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2252 else if (was_suspended)
2253 opal_unlock_from_suspend(ctrl->opal_dev);
2254 } else {
2255 free_opal_dev(ctrl->opal_dev);
2256 ctrl->opal_dev = NULL;
2257 }
2258}
2259#else
2260static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2261{
2262}
a98e58e5
SB
2263#endif /* CONFIG_BLK_SED_OPAL */
2264
8b4fb0f9
CH
2265#ifdef CONFIG_BLK_DEV_ZONED
2266static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2267 unsigned int nr_zones, report_zones_cb cb, void *data)
2268{
2269 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2270 data);
2271}
2272#else
2273#define nvme_report_zones NULL
2274#endif /* CONFIG_BLK_DEV_ZONED */
2275
942e21c0 2276const struct block_device_operations nvme_bdev_ops = {
1673f1f0
CH
2277 .owner = THIS_MODULE,
2278 .ioctl = nvme_ioctl,
a25d4261 2279 .compat_ioctl = blkdev_compat_ptr_ioctl,
1673f1f0
CH
2280 .open = nvme_open,
2281 .release = nvme_release,
2282 .getgeo = nvme_getgeo,
240e6ee2 2283 .report_zones = nvme_report_zones,
1673f1f0
CH
2284 .pr_ops = &nvme_pr_ops,
2285};
2286
e6d275de
CH
2287static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2288 u32 timeout, const char *op)
5fd4ce1b 2289{
e6d275de
CH
2290 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2291 u32 csts;
5fd4ce1b
CH
2292 int ret;
2293
2294 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
0df1e4f5
KB
2295 if (csts == ~0)
2296 return -ENODEV;
e6d275de 2297 if ((csts & mask) == val)
5fd4ce1b
CH
2298 break;
2299
3e98c244 2300 usleep_range(1000, 2000);
5fd4ce1b
CH
2301 if (fatal_signal_pending(current))
2302 return -EINTR;
354201c5 2303 if (time_after(jiffies, timeout_jiffies)) {
1b3c47c1 2304 dev_err(ctrl->device,
94d2e705 2305 "Device not ready; aborting %s, CSTS=0x%x\n",
e6d275de 2306 op, csts);
5fd4ce1b
CH
2307 return -ENODEV;
2308 }
2309 }
2310
2311 return ret;
2312}
2313
285b6e9b 2314int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
5fd4ce1b
CH
2315{
2316 int ret;
2317
2318 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
285b6e9b
CH
2319 if (shutdown)
2320 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2321 else
2322 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
5fd4ce1b
CH
2323
2324 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2325 if (ret)
2326 return ret;
54adc010 2327
285b6e9b
CH
2328 if (shutdown) {
2329 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2330 NVME_CSTS_SHST_CMPLT,
2331 ctrl->shutdown_timeout, "shutdown");
2332 }
b5a10c5f 2333 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
54adc010 2334 msleep(NVME_QUIRK_DELAY_AMOUNT);
e6d275de
CH
2335 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2336 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
5fd4ce1b 2337}
576d55d6 2338EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
5fd4ce1b 2339
c0f2f45b 2340int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
5fd4ce1b 2341{
6c3c05b0 2342 unsigned dev_page_min;
354201c5 2343 u32 timeout;
5fd4ce1b
CH
2344 int ret;
2345
c0f2f45b
SG
2346 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2347 if (ret) {
2348 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2349 return ret;
2350 }
2351 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2352
6c3c05b0 2353 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
1b3c47c1 2354 dev_err(ctrl->device,
5fd4ce1b 2355 "Minimum device page size %u too large for host (%u)\n",
6c3c05b0 2356 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
5fd4ce1b
CH
2357 return -ENODEV;
2358 }
2359
71010c30
NC
2360 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2361 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2362 else
2363 ctrl->ctrl_config = NVME_CC_CSS_NVM;
354201c5 2364
6cc834ba
KB
2365 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2366 ctrl->ctrl_config |= NVME_CC_CRIME;
354201c5 2367
6c3c05b0 2368 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
60b43f62 2369 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
5fd4ce1b 2370 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
aa41d2fe
NC
2371 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2372 if (ret)
2373 return ret;
5fd4ce1b 2374
aa41d2fe
NC
2375 /* Flush write to device (required if transport is PCI) */
2376 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2377 if (ret)
2378 return ret;
2379
6cc834ba
KB
2380 /* CAP value may change after initial CC write */
2381 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2382 if (ret)
2383 return ret;
2384
2385 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2386 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2387 u32 crto, ready_timeout;
2388
2389 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2390 if (ret) {
2391 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2392 ret);
2393 return ret;
2394 }
2395
2396 /*
2397 * CRTO should always be greater or equal to CAP.TO, but some
2398 * devices are known to get this wrong. Use the larger of the
2399 * two values.
2400 */
2401 if (ctrl->ctrl_config & NVME_CC_CRIME)
2402 ready_timeout = NVME_CRTO_CRIMT(crto);
2403 else
2404 ready_timeout = NVME_CRTO_CRWMT(crto);
2405
2406 if (ready_timeout < timeout)
2407 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2408 crto, ctrl->cap);
2409 else
2410 timeout = ready_timeout;
2411 }
2412
aa41d2fe 2413 ctrl->ctrl_config |= NVME_CC_ENABLE;
5fd4ce1b
CH
2414 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2415 if (ret)
2416 return ret;
e6d275de
CH
2417 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2418 (timeout + 1) / 2, "initialisation");
5fd4ce1b 2419}
576d55d6 2420EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
5fd4ce1b 2421
dbf86b39
JD
2422static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2423{
2424 __le64 ts;
2425 int ret;
2426
2427 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2428 return 0;
2429
2430 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2431 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2432 NULL);
2433 if (ret)
2434 dev_warn_once(ctrl->device,
2435 "could not set timestamp (%d)\n", ret);
2436 return ret;
2437}
2438
4020aad8 2439static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
49cd84b6
KB
2440{
2441 struct nvme_feat_host_behavior *host;
4020aad8 2442 u8 acre = 0, lbafee = 0;
49cd84b6
KB
2443 int ret;
2444
2445 /* Don't bother enabling the feature if retry delay is not reported */
4020aad8
KB
2446 if (ctrl->crdt[0])
2447 acre = NVME_ENABLE_ACRE;
2448 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2449 lbafee = NVME_ENABLE_LBAFEE;
2450
2451 if (!acre && !lbafee)
49cd84b6
KB
2452 return 0;
2453
2454 host = kzalloc(sizeof(*host), GFP_KERNEL);
2455 if (!host)
2456 return 0;
2457
4020aad8
KB
2458 host->acre = acre;
2459 host->lbafee = lbafee;
49cd84b6
KB
2460 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2461 host, sizeof(*host), NULL);
2462 kfree(host);
2463 return ret;
2464}
2465
ebd8a93a
AB
2466/*
2467 * The function checks whether the given total (exlat + enlat) latency of
2468 * a power state allows the latter to be used as an APST transition target.
2469 * It does so by comparing the latency to the primary and secondary latency
2470 * tolerances defined by module params. If there's a match, the corresponding
2471 * timeout value is returned and the matching tolerance index (1 or 2) is
2472 * reported.
2473 */
2474static bool nvme_apst_get_transition_time(u64 total_latency,
2475 u64 *transition_time, unsigned *last_index)
2476{
2477 if (total_latency <= apst_primary_latency_tol_us) {
2478 if (*last_index == 1)
2479 return false;
2480 *last_index = 1;
2481 *transition_time = apst_primary_timeout_ms;
2482 return true;
2483 }
2484 if (apst_secondary_timeout_ms &&
2485 total_latency <= apst_secondary_latency_tol_us) {
2486 if (*last_index <= 2)
2487 return false;
2488 *last_index = 2;
2489 *transition_time = apst_secondary_timeout_ms;
2490 return true;
2491 }
2492 return false;
2493}
2494
60df5de9
CH
2495/*
2496 * APST (Autonomous Power State Transition) lets us program a table of power
2497 * state transitions that the controller will perform automatically.
ebd8a93a
AB
2498 *
2499 * Depending on module params, one of the two supported techniques will be used:
2500 *
2501 * - If the parameters provide explicit timeouts and tolerances, they will be
2502 * used to build a table with up to 2 non-operational states to transition to.
2503 * The default parameter values were selected based on the values used by
2504 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2505 * regeneration of the APST table in the event of switching between external
2506 * and battery power, the timeouts and tolerances reflect a compromise
2507 * between values used by Microsoft for AC and battery scenarios.
2508 * - If not, we'll configure the table with a simple heuristic: we are willing
2509 * to spend at most 2% of the time transitioning between power states.
2510 * Therefore, when running in any given state, we will enter the next
2511 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2512 * microseconds, as long as that state's exit latency is under the requested
2513 * maximum latency.
60df5de9
CH
2514 *
2515 * We will not autonomously enter any non-operational state for which the total
2516 * latency exceeds ps_max_latency_us.
2517 *
2518 * Users can set ps_max_latency_us to zero to turn off APST.
2519 */
634b8325 2520static int nvme_configure_apst(struct nvme_ctrl *ctrl)
c5552fde 2521{
c5552fde 2522 struct nvme_feat_auto_pst *table;
60df5de9 2523 unsigned apste = 0;
fb0dc399 2524 u64 max_lat_us = 0;
60df5de9 2525 __le64 target = 0;
fb0dc399 2526 int max_ps = -1;
60df5de9 2527 int state;
c5552fde 2528 int ret;
ebd8a93a 2529 unsigned last_lt_index = UINT_MAX;
c5552fde
AL
2530
2531 /*
2532 * If APST isn't supported or if we haven't been initialized yet,
2533 * then don't do anything.
2534 */
2535 if (!ctrl->apsta)
634b8325 2536 return 0;
c5552fde
AL
2537
2538 if (ctrl->npss > 31) {
2539 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
634b8325 2540 return 0;
c5552fde
AL
2541 }
2542
2543 table = kzalloc(sizeof(*table), GFP_KERNEL);
2544 if (!table)
634b8325 2545 return 0;
c5552fde 2546
76a5af84 2547 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
c5552fde 2548 /* Turn off APST. */
fb0dc399 2549 dev_dbg(ctrl->device, "APST disabled\n");
60df5de9
CH
2550 goto done;
2551 }
c5552fde 2552
60df5de9
CH
2553 /*
2554 * Walk through all states from lowest- to highest-power.
2555 * According to the spec, lower-numbered states use more power. NPSS,
2556 * despite the name, is the index of the lowest-power state, not the
2557 * number of states.
2558 */
2559 for (state = (int)ctrl->npss; state >= 0; state--) {
2560 u64 total_latency_us, exit_latency_us, transition_ms;
da87591b 2561
60df5de9
CH
2562 if (target)
2563 table->entries[state] = target;
c5552fde 2564
c5552fde 2565 /*
60df5de9
CH
2566 * Don't allow transitions to the deepest state if it's quirked
2567 * off.
c5552fde 2568 */
60df5de9
CH
2569 if (state == ctrl->npss &&
2570 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2571 continue;
fb0dc399 2572
60df5de9
CH
2573 /*
2574 * Is this state a useful non-operational state for higher-power
2575 * states to autonomously transition to?
2576 */
2577 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2578 continue;
fb0dc399 2579
60df5de9
CH
2580 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2581 if (exit_latency_us > ctrl->ps_max_latency_us)
2582 continue;
c5552fde 2583
60df5de9
CH
2584 total_latency_us = exit_latency_us +
2585 le32_to_cpu(ctrl->psd[state].entry_lat);
fb0dc399 2586
60df5de9 2587 /*
ebd8a93a
AB
2588 * This state is good. It can be used as the APST idle target
2589 * for higher power states.
60df5de9 2590 */
ebd8a93a
AB
2591 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2592 if (!nvme_apst_get_transition_time(total_latency_us,
2593 &transition_ms, &last_lt_index))
2594 continue;
2595 } else {
2596 transition_ms = total_latency_us + 19;
2597 do_div(transition_ms, 20);
2598 if (transition_ms > (1 << 24) - 1)
2599 transition_ms = (1 << 24) - 1;
2600 }
60df5de9
CH
2601
2602 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2603 if (max_ps == -1)
2604 max_ps = state;
2605 if (total_latency_us > max_lat_us)
2606 max_lat_us = total_latency_us;
c5552fde
AL
2607 }
2608
60df5de9
CH
2609 if (max_ps == -1)
2610 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2611 else
2612 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2613 max_ps, max_lat_us, (int)sizeof(*table), table);
2614 apste = 1;
2615
2616done:
c5552fde
AL
2617 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2618 table, sizeof(*table), NULL);
2619 if (ret)
2620 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
c5552fde 2621 kfree(table);
634b8325 2622 return ret;
c5552fde
AL
2623}
2624
2625static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2626{
2627 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2628 u64 latency;
2629
2630 switch (val) {
2631 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2632 case PM_QOS_LATENCY_ANY:
2633 latency = U64_MAX;
2634 break;
2635
2636 default:
2637 latency = val;
2638 }
2639
2640 if (ctrl->ps_max_latency_us != latency) {
2641 ctrl->ps_max_latency_us = latency;
e6e7f7ac 2642 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
53fe2a30 2643 nvme_configure_apst(ctrl);
c5552fde
AL
2644 }
2645}
2646
bd4da3ab
AL
2647struct nvme_core_quirk_entry {
2648 /*
2649 * NVMe model and firmware strings are padded with spaces. For
2650 * simplicity, strings in the quirk table are padded with NULLs
2651 * instead.
2652 */
2653 u16 vid;
2654 const char *mn;
2655 const char *fr;
2656 unsigned long quirks;
2657};
2658
2659static const struct nvme_core_quirk_entry core_quirks[] = {
c5552fde 2660 {
be56945c
AL
2661 /*
2662 * This Toshiba device seems to die using any APST states. See:
2663 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2664 */
2665 .vid = 0x1179,
2666 .mn = "THNSF5256GPUK TOSHIBA",
c5552fde 2667 .quirks = NVME_QUIRK_NO_APST,
cb32de1b
ML
2668 },
2669 {
2670 /*
2671 * This LiteON CL1-3D*-Q11 firmware version has a race
2672 * condition associated with actions related to suspend to idle
2673 * LiteON has resolved the problem in future firmware
2674 */
2675 .vid = 0x14a4,
2676 .fr = "22301111",
2677 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
5a6254d5
EM
2678 },
2679 {
2680 /*
2681 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2682 * aborts I/O during any load, but more easily reproducible
2683 * with discards (fstrim).
2684 *
2685 * The device is left in a state where it is also not possible
2686 * to use "nvme set-feature" to disable APST, but booting with
2687 * nvme_core.default_ps_max_latency=0 works.
2688 */
2689 .vid = 0x1e0f,
2690 .mn = "KCD6XVUL6T40",
2691 .quirks = NVME_QUIRK_NO_APST,
e6487833
CH
2692 },
2693 {
2694 /*
2695 * The external Samsung X5 SSD fails initialization without a
2696 * delay before checking if it is ready and has a whole set of
2697 * other problems. To make this even more interesting, it
2698 * shares the PCI ID with internal Samsung 970 Evo Plus that
2699 * does not need or want these quirks.
2700 */
2701 .vid = 0x144d,
2702 .mn = "Samsung Portable SSD X5",
2703 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2704 NVME_QUIRK_NO_DEEPEST_PS |
2705 NVME_QUIRK_IGNORE_DEV_SUBNQN,
be56945c 2706 }
bd4da3ab
AL
2707};
2708
2709/* match is null-terminated but idstr is space-padded. */
2710static bool string_matches(const char *idstr, const char *match, size_t len)
2711{
2712 size_t matchlen;
2713
2714 if (!match)
2715 return true;
2716
2717 matchlen = strlen(match);
2718 WARN_ON_ONCE(matchlen > len);
2719
2720 if (memcmp(idstr, match, matchlen))
2721 return false;
2722
2723 for (; matchlen < len; matchlen++)
2724 if (idstr[matchlen] != ' ')
2725 return false;
2726
2727 return true;
2728}
2729
2730static bool quirk_matches(const struct nvme_id_ctrl *id,
2731 const struct nvme_core_quirk_entry *q)
2732{
2733 return q->vid == le16_to_cpu(id->vid) &&
2734 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2735 string_matches(id->fr, q->fr, sizeof(id->fr));
2736}
2737
ab9e00cc
CH
2738static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2739 struct nvme_id_ctrl *id)
180de007
CH
2740{
2741 size_t nqnlen;
2742 int off;
2743
6299358d
JD
2744 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2745 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2746 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
a8817cc0 2747 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
6299358d
JD
2748 return;
2749 }
180de007 2750
6299358d
JD
2751 if (ctrl->vs >= NVME_VS(1, 2, 1))
2752 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2753 }
180de007 2754
1abc6961
LB
2755 /*
2756 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2757 * Base Specification 2.0. It is slightly different from the format
2758 * specified there due to historic reasons, and we can't change it now.
2759 */
ab9e00cc 2760 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
3da584f5 2761 "nqn.2014.08.org.nvmexpress:%04x%04x",
180de007 2762 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
ab9e00cc 2763 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
180de007 2764 off += sizeof(id->sn);
ab9e00cc 2765 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
180de007 2766 off += sizeof(id->mn);
ab9e00cc
CH
2767 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2768}
2769
e654dfd3 2770static void nvme_release_subsystem(struct device *dev)
ab9e00cc 2771{
e654dfd3
LG
2772 struct nvme_subsystem *subsys =
2773 container_of(dev, struct nvme_subsystem, dev);
2774
733e4b69 2775 if (subsys->instance >= 0)
8b850475 2776 ida_free(&nvme_instance_ida, subsys->instance);
ab9e00cc
CH
2777 kfree(subsys);
2778}
2779
ab9e00cc
CH
2780static void nvme_destroy_subsystem(struct kref *ref)
2781{
2782 struct nvme_subsystem *subsys =
2783 container_of(ref, struct nvme_subsystem, ref);
2784
2785 mutex_lock(&nvme_subsystems_lock);
2786 list_del(&subsys->entry);
2787 mutex_unlock(&nvme_subsystems_lock);
2788
ed754e5d 2789 ida_destroy(&subsys->ns_ida);
ab9e00cc
CH
2790 device_del(&subsys->dev);
2791 put_device(&subsys->dev);
2792}
2793
2794static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2795{
2796 kref_put(&subsys->ref, nvme_destroy_subsystem);
2797}
2798
2799static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2800{
2801 struct nvme_subsystem *subsys;
2802
2803 lockdep_assert_held(&nvme_subsystems_lock);
2804
c26aa572
JS
2805 /*
2806 * Fail matches for discovery subsystems. This results
2807 * in each discovery controller bound to a unique subsystem.
2808 * This avoids issues with validating controller values
2809 * that can only be true when there is a single unique subsystem.
2810 * There may be multiple and completely independent entities
2811 * that provide discovery controllers.
2812 */
2813 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2814 return NULL;
2815
ab9e00cc
CH
2816 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2817 if (strcmp(subsys->subnqn, subsysnqn))
2818 continue;
2819 if (!kref_get_unless_zero(&subsys->ref))
2820 continue;
2821 return subsys;
2822 }
2823
2824 return NULL;
2825}
2826
5ab25a32
SG
2827static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2828{
2829 return ctrl->opts && ctrl->opts->discovery_nqn;
2830}
2831
1b1031ca
CH
2832static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2833 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
b837b283 2834{
1b1031ca 2835 struct nvme_ctrl *tmp;
b837b283 2836
32fd90c4
CH
2837 lockdep_assert_held(&nvme_subsystems_lock);
2838
1b1031ca 2839 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
e7c43fea 2840 if (nvme_state_terminal(tmp))
1b1031ca
CH
2841 continue;
2842
2843 if (tmp->cntlid == ctrl->cntlid) {
2844 dev_err(ctrl->device,
16cc33b2
KB
2845 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2846 ctrl->cntlid, dev_name(tmp->device),
2847 subsys->subnqn);
1b1031ca
CH
2848 return false;
2849 }
b837b283 2850
92decf11 2851 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
5ab25a32 2852 nvme_discovery_ctrl(ctrl))
1b1031ca
CH
2853 continue;
2854
2855 dev_err(ctrl->device,
2856 "Subsystem does not support multiple controllers\n");
2857 return false;
b837b283 2858 }
b837b283 2859
1b1031ca 2860 return true;
b837b283
IR
2861}
2862
ab9e00cc
CH
2863static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2864{
2865 struct nvme_subsystem *subsys, *found;
2866 int ret;
2867
2868 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2869 if (!subsys)
2870 return -ENOMEM;
733e4b69
KB
2871
2872 subsys->instance = -1;
ab9e00cc
CH
2873 mutex_init(&subsys->lock);
2874 kref_init(&subsys->ref);
2875 INIT_LIST_HEAD(&subsys->ctrls);
ed754e5d 2876 INIT_LIST_HEAD(&subsys->nsheads);
ab9e00cc
CH
2877 nvme_init_subnqn(subsys, ctrl, id);
2878 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2879 memcpy(subsys->model, id->mn, sizeof(subsys->model));
ab9e00cc
CH
2880 subsys->vendor_id = le16_to_cpu(id->vid);
2881 subsys->cmic = id->cmic;
954ae166
HR
2882
2883 /* Versions prior to 1.4 don't necessarily report a valid type */
2884 if (id->cntrltype == NVME_CTRL_DISC ||
2885 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2886 subsys->subtype = NVME_NQN_DISC;
2887 else
2888 subsys->subtype = NVME_NQN_NVME;
2889
20e8b689
HR
2890 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2891 dev_err(ctrl->device,
2892 "Subsystem %s is not a discovery controller",
2893 subsys->subnqn);
2894 kfree(subsys);
2895 return -EINVAL;
2896 }
81adb863 2897 subsys->awupf = le16_to_cpu(id->awupf);
e3d34794 2898 nvme_mpath_default_iopolicy(subsys);
ab9e00cc 2899
ab21f3d9 2900 subsys->dev.class = &nvme_subsys_class;
ab9e00cc 2901 subsys->dev.release = nvme_release_subsystem;
1e496938 2902 subsys->dev.groups = nvme_subsys_attrs_groups;
733e4b69 2903 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
ab9e00cc
CH
2904 device_initialize(&subsys->dev);
2905
2906 mutex_lock(&nvme_subsystems_lock);
2907 found = __nvme_find_get_subsystem(subsys->subnqn);
2908 if (found) {
e654dfd3 2909 put_device(&subsys->dev);
ab9e00cc 2910 subsys = found;
32fd90c4 2911
1b1031ca 2912 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
ab9e00cc 2913 ret = -EINVAL;
32fd90c4 2914 goto out_put_subsystem;
ab9e00cc 2915 }
ab9e00cc
CH
2916 } else {
2917 ret = device_add(&subsys->dev);
2918 if (ret) {
2919 dev_err(ctrl->device,
2920 "failed to register subsystem device.\n");
8c36e66f 2921 put_device(&subsys->dev);
ab9e00cc
CH
2922 goto out_unlock;
2923 }
ed754e5d 2924 ida_init(&subsys->ns_ida);
ab9e00cc
CH
2925 list_add_tail(&subsys->entry, &nvme_subsystems);
2926 }
2927
bc4f6e06
DC
2928 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2929 dev_name(ctrl->device));
2930 if (ret) {
ab9e00cc
CH
2931 dev_err(ctrl->device,
2932 "failed to create sysfs link from subsystem.\n");
32fd90c4 2933 goto out_put_subsystem;
ab9e00cc
CH
2934 }
2935
733e4b69
KB
2936 if (!found)
2937 subsys->instance = ctrl->instance;
32fd90c4 2938 ctrl->subsys = subsys;
ab9e00cc 2939 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
32fd90c4 2940 mutex_unlock(&nvme_subsystems_lock);
ab9e00cc
CH
2941 return 0;
2942
32fd90c4
CH
2943out_put_subsystem:
2944 nvme_put_subsystem(subsys);
ab9e00cc
CH
2945out_unlock:
2946 mutex_unlock(&nvme_subsystems_lock);
ab9e00cc 2947 return ret;
180de007
CH
2948}
2949
be93e87e 2950int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
0e98719b 2951 void *log, size_t size, u64 offset)
c627c487
KB
2952{
2953 struct nvme_command c = { };
71fb90eb 2954 u32 dwlen = nvme_bytes_to_numd(size);
70da6094
MB
2955
2956 c.get_log_page.opcode = nvme_admin_get_log_page;
0e98719b 2957 c.get_log_page.nsid = cpu_to_le32(nsid);
70da6094 2958 c.get_log_page.lid = log_page;
0e98719b 2959 c.get_log_page.lsp = lsp;
70da6094
MB
2960 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2961 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
7ec6074f
MB
2962 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2963 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
be93e87e 2964 c.get_log_page.csi = csi;
c627c487
KB
2965
2966 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2967}
2968
be93e87e
KB
2969static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2970 struct nvme_effects_log **log)
84fef62d 2971{
f6224b86 2972 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
84fef62d
KB
2973 int ret;
2974
be93e87e
KB
2975 if (cel)
2976 goto out;
84fef62d 2977
be93e87e
KB
2978 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2979 if (!cel)
2980 return -ENOMEM;
84fef62d 2981
46d2613e 2982 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
f6224b86 2983 cel, sizeof(*cel), 0);
84fef62d 2984 if (ret) {
be93e87e
KB
2985 kfree(cel);
2986 return ret;
84fef62d 2987 }
be93e87e 2988
f6224b86 2989 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
be93e87e 2990out:
f6224b86 2991 *log = cel;
be93e87e 2992 return 0;
180de007
CH
2993}
2994
5befc7c2 2995static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
7fd8930f 2996{
8609c63f 2997 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
7fd8930f 2998
8609c63f
BVA
2999 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3000 return UINT_MAX;
3001 return val;
5befc7c2
KB
3002}
3003
3004static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3005{
3006 struct nvme_command c = { };
3007 struct nvme_id_ctrl_nvm *id;
3008 int ret;
3009
5befc7c2
KB
3010 /*
3011 * Even though NVMe spec explicitly states that MDTS is not applicable
3012 * to the write-zeroes, we are cautious and limit the size to the
3013 * controllers max_hw_sectors value, which is based on the MDTS field
3014 * and possibly other limiting factors.
3015 */
3016 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3017 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3018 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3019 else
3020 ctrl->max_zeroes_sectors = 0;
3021
def84ab6 3022 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
c917dd96
KB
3023 nvme_ctrl_limited_cns(ctrl) ||
3024 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
5befc7c2
KB
3025 return 0;
3026
3027 id = kzalloc(sizeof(*id), GFP_KERNEL);
3028 if (!id)
bcaf434b 3029 return -ENOMEM;
5befc7c2
KB
3030
3031 c.identify.opcode = nvme_admin_identify;
3032 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3033 c.identify.csi = NVME_CSI_NVM;
3034
3035 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3036 if (ret)
3037 goto free_data;
3038
3b946fe1 3039 ctrl->dmrl = id->dmrl;
1a86924e 3040 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
5befc7c2
KB
3041 if (id->wzsl)
3042 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3043
3044free_data:
c917dd96
KB
3045 if (ret > 0)
3046 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
5befc7c2
KB
3047 kfree(id);
3048 return ret;
3049}
3050
cc115cbe
KB
3051static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3052{
3053 struct nvme_effects_log *log = ctrl->effects;
3054
3055 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3056 NVME_CMD_EFFECTS_NCC |
3057 NVME_CMD_EFFECTS_CSE_MASK);
3058 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3059 NVME_CMD_EFFECTS_CSE_MASK);
3060
baff6491
KB
3061 /*
3062 * The spec says the result of a security receive command depends on
3063 * the previous security send command. As such, many vendors log this
3064 * command as one to submitted only when no other commands to the same
3065 * namespace are outstanding. The intention is to tell the host to
3066 * prevent mixing security send and receive.
3067 *
3068 * This driver can only enforce such exclusive access against IO
3069 * queues, though. We are not readily able to enforce such a rule for
3070 * two commands to the admin queue, which is the only queue that
3071 * matters for this command.
3072 *
3073 * Rather than blindly freezing the IO queues for this effect that
3074 * doesn't even apply to IO, mask it off.
3075 */
c0c33b94 3076 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
baff6491 3077
cc115cbe
KB
3078 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3079 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3080 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3081}
3082
3083static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3084{
3085 int ret = 0;
3086
3087 if (ctrl->effects)
3088 return 0;
3089
3090 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3091 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3092 if (ret < 0)
3093 return ret;
3094 }
3095
3096 if (!ctrl->effects) {
3097 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3098 if (!ctrl->effects)
3099 return -ENOMEM;
3100 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3101 }
3102
3103 nvme_init_known_nvm_effects(ctrl);
3104 return 0;
3105}
3106
68999d1d
GL
3107static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3108{
3109 /*
3110 * In fabrics we need to verify the cntlid matches the
3111 * admin connect
3112 */
3113 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3114 dev_err(ctrl->device,
3115 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3116 ctrl->cntlid, le16_to_cpu(id->cntlid));
3117 return -EINVAL;
3118 }
3119
3120 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3121 dev_err(ctrl->device,
3122 "keep-alive support is mandatory for fabrics\n");
3123 return -EINVAL;
3124 }
3125
7642138e 3126 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
2fcd3ab3
GL
3127 dev_err(ctrl->device,
3128 "I/O queue command capsule supported size %d < 4\n",
3129 ctrl->ioccsz);
3130 return -EINVAL;
3131 }
3132
7642138e 3133 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
2fcd3ab3
GL
3134 dev_err(ctrl->device,
3135 "I/O queue response capsule supported size %d < 1\n",
3136 ctrl->iorcsz);
3137 return -EINVAL;
3138 }
3139
49995681
GL
3140 if (!ctrl->maxcmd) {
3141 dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3142 return -EINVAL;
3143 }
3144
68999d1d
GL
3145 return 0;
3146}
3147
44ef5611 3148static int nvme_init_identify(struct nvme_ctrl *ctrl)
7fd8930f 3149{
e6c9b130 3150 struct queue_limits lim;
7fd8930f 3151 struct nvme_id_ctrl *id;
a229dbf6 3152 u32 max_hw_sectors;
76a5af84 3153 bool prev_apst_enabled;
5befc7c2 3154 int ret;
f3ca80fc 3155
7fd8930f
CH
3156 ret = nvme_identify_ctrl(ctrl, &id);
3157 if (ret) {
1b3c47c1 3158 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
7fd8930f
CH
3159 return -EIO;
3160 }
3161
a89fcca8
GP
3162 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3163 ctrl->cntlid = le16_to_cpu(id->cntlid);
3164
bd4da3ab 3165 if (!ctrl->identified) {
44ef5611 3166 unsigned int i;
ab9e00cc 3167
bd4da3ab
AL
3168 /*
3169 * Check for quirks. Quirk can depend on firmware version,
3170 * so, in principle, the set of quirks present can change
3171 * across a reset. As a possible future enhancement, we
3172 * could re-scan for quirks every time we reinitialize
3173 * the device, but we'd have to make sure that the driver
3174 * behaves intelligently if the quirks change.
3175 */
bd4da3ab
AL
3176 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3177 if (quirk_matches(id, &core_quirks[i]))
3178 ctrl->quirks |= core_quirks[i].quirks;
3179 }
6f2d7152
PR
3180
3181 ret = nvme_init_subsystem(ctrl, id);
3182 if (ret)
3183 goto out_free;
cc115cbe
KB
3184
3185 ret = nvme_init_effects(ctrl, id);
3186 if (ret)
3187 goto out_free;
bd4da3ab 3188 }
a8eb6c1b
KB
3189 memcpy(ctrl->subsys->firmware_rev, id->fr,
3190 sizeof(ctrl->subsys->firmware_rev));
bd4da3ab 3191
c35e30b4 3192 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
f0425db0 3193 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
c35e30b4
AL
3194 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3195 }
3196
49cd84b6
KB
3197 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3198 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3199 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3200
8a9ae523 3201 ctrl->oacs = le16_to_cpu(id->oacs);
43e2d08d 3202 ctrl->oncs = le16_to_cpu(id->oncs);
2d466c7a 3203 ctrl->mtfa = le16_to_cpu(id->mtfa);
c0561f82 3204 ctrl->oaes = le32_to_cpu(id->oaes);
400b6a7b
GR
3205 ctrl->wctemp = le16_to_cpu(id->wctemp);
3206 ctrl->cctemp = le16_to_cpu(id->cctemp);
3207
6bf25d16 3208 atomic_set(&ctrl->abort_limit, id->acl + 1);
7fd8930f 3209 ctrl->vwc = id->vwc;
7fd8930f 3210 if (id->mdts)
5befc7c2 3211 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
7fd8930f 3212 else
a229dbf6
CH
3213 max_hw_sectors = UINT_MAX;
3214 ctrl->max_hw_sectors =
3215 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
7fd8930f 3216
e6c9b130
CH
3217 lim = queue_limits_start_update(ctrl->admin_q);
3218 nvme_set_ctrl_limits(ctrl, &lim);
3219 ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3220 if (ret)
3221 goto out_free;
3222
07bfcd09 3223 ctrl->sgls = le32_to_cpu(id->sgls);
038bd4cb 3224 ctrl->kas = le16_to_cpu(id->kas);
0d0b660f 3225 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3e53ba38 3226 ctrl->ctratt = le32_to_cpu(id->ctratt);
07bfcd09 3227
86c2457a
MB
3228 ctrl->cntrltype = id->cntrltype;
3229 ctrl->dctype = id->dctype;
3230
07fbd32a
MP
3231 if (id->rtd3e) {
3232 /* us -> s */
f5af577d 3233 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
07fbd32a
MP
3234
3235 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3236 shutdown_timeout, 60);
3237
3238 if (ctrl->shutdown_timeout != shutdown_timeout)
1a3838d7 3239 dev_info(ctrl->device,
07fbd32a
MP
3240 "Shutdown timeout set to %u seconds\n",
3241 ctrl->shutdown_timeout);
3242 } else
3243 ctrl->shutdown_timeout = shutdown_timeout;
3244
c5552fde 3245 ctrl->npss = id->npss;
76a5af84
KHF
3246 ctrl->apsta = id->apsta;
3247 prev_apst_enabled = ctrl->apst_enabled;
c35e30b4
AL
3248 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3249 if (force_apst && id->apsta) {
f0425db0 3250 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
76a5af84 3251 ctrl->apst_enabled = true;
c35e30b4 3252 } else {
76a5af84 3253 ctrl->apst_enabled = false;
c35e30b4
AL
3254 }
3255 } else {
76a5af84 3256 ctrl->apst_enabled = id->apsta;
c35e30b4 3257 }
c5552fde
AL
3258 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3259
d3d5b87d 3260 if (ctrl->ops->flags & NVME_F_FABRICS) {
07bfcd09
CH
3261 ctrl->icdoff = le16_to_cpu(id->icdoff);
3262 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3263 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3264 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3265
68999d1d
GL
3266 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3267 if (ret)
634b8325 3268 goto out_free;
07bfcd09 3269 } else {
fe6d53c9
CH
3270 ctrl->hmpre = le32_to_cpu(id->hmpre);
3271 ctrl->hmmin = le32_to_cpu(id->hmmin);
044a9df1
CH
3272 ctrl->hmminds = le32_to_cpu(id->hmminds);
3273 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
07bfcd09 3274 }
da35825d 3275
5e1f6899 3276 ret = nvme_mpath_init_identify(ctrl, id);
0d0b660f 3277 if (ret < 0)
44ef5611 3278 goto out_free;
0d0b660f 3279
76a5af84 3280 if (ctrl->apst_enabled && !prev_apst_enabled)
c5552fde 3281 dev_pm_qos_expose_latency_tolerance(ctrl->device);
76a5af84 3282 else if (!ctrl->apst_enabled && prev_apst_enabled)
c5552fde
AL
3283 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3284
44ef5611
CK
3285out_free:
3286 kfree(id);
3287 return ret;
3288}
3289
3290/*
3291 * Initialize the cached copies of the Identify data and various controller
3292 * register in our nvme_ctrl structure. This should be called as soon as
3293 * the admin queue is fully up and running.
3294 */
94cc781f 3295int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
44ef5611
CK
3296{
3297 int ret;
3298
3299 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3300 if (ret) {
3301 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3302 return ret;
3303 }
3304
3305 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3306
3307 if (ctrl->vs >= NVME_VS(1, 1, 0))
3308 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3309
3310 ret = nvme_init_identify(ctrl);
3311 if (ret)
3312 return ret;
3313
634b8325
KB
3314 ret = nvme_configure_apst(ctrl);
3315 if (ret < 0)
3316 return ret;
95d54bd1 3317
dbf86b39
JD
3318 ret = nvme_configure_timestamp(ctrl);
3319 if (ret < 0)
3320 return ret;
634b8325 3321
4020aad8 3322 ret = nvme_configure_host_options(ctrl);
49cd84b6
KB
3323 if (ret < 0)
3324 return ret;
3325
94cc781f
CH
3326 nvme_configure_opal(ctrl, was_suspended);
3327
5ab25a32 3328 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
6b8cf940
CH
3329 /*
3330 * Do not return errors unless we are in a controller reset,
3331 * the controller works perfectly fine without hwmon.
3332 */
59e330f8 3333 ret = nvme_hwmon_init(ctrl);
6b8cf940 3334 if (ret == -EINTR)
59e330f8
KB
3335 return ret;
3336 }
400b6a7b 3337
d0dd594b 3338 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
bd4da3ab 3339 ctrl->identified = true;
c5552fde 3340
4733b65d
HR
3341 nvme_start_keep_alive(ctrl);
3342
634b8325 3343 return 0;
7fd8930f 3344}
f21c4769 3345EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
7fd8930f 3346
f3ca80fc 3347static int nvme_dev_open(struct inode *inode, struct file *file)
1673f1f0 3348{
a6a5149b
CH
3349 struct nvme_ctrl *ctrl =
3350 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
1673f1f0 3351
e6e7f7ac 3352 switch (nvme_ctrl_state(ctrl)) {
2b1b7e78 3353 case NVME_CTRL_LIVE:
2b1b7e78
JW
3354 break;
3355 default:
a6a5149b 3356 return -EWOULDBLOCK;
2b1b7e78
JW
3357 }
3358
52a3974f 3359 nvme_get_ctrl(ctrl);
4bab6909
CK
3360 if (!try_module_get(ctrl->ops->module)) {
3361 nvme_put_ctrl(ctrl);
52a3974f 3362 return -EINVAL;
4bab6909 3363 }
52a3974f 3364
a6a5149b 3365 file->private_data = ctrl;
f3ca80fc
CH
3366 return 0;
3367}
3368
52a3974f
CK
3369static int nvme_dev_release(struct inode *inode, struct file *file)
3370{
3371 struct nvme_ctrl *ctrl =
3372 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3373
3374 module_put(ctrl->ops->module);
3375 nvme_put_ctrl(ctrl);
3376 return 0;
3377}
3378
f3ca80fc
CH
3379static const struct file_operations nvme_dev_fops = {
3380 .owner = THIS_MODULE,
3381 .open = nvme_dev_open,
52a3974f 3382 .release = nvme_dev_release,
f3ca80fc 3383 .unlocked_ioctl = nvme_dev_ioctl,
1832f2d8 3384 .compat_ioctl = compat_ptr_ioctl,
58e5bdeb 3385 .uring_cmd = nvme_dev_uring_cmd,
f3ca80fc
CH
3386};
3387
5974ea7c 3388static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
ed754e5d
CH
3389 unsigned nsid)
3390{
3391 struct nvme_ns_head *h;
3392
5974ea7c 3393 lockdep_assert_held(&ctrl->subsys->lock);
ed754e5d 3394
5974ea7c
SM
3395 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3396 /*
3397 * Private namespaces can share NSIDs under some conditions.
3398 * In that case we can't use the same ns_head for namespaces
3399 * with the same NSID.
3400 */
3401 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
9edceaf4
DW
3402 continue;
3403 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
ed754e5d
CH
3404 return h;
3405 }
3406
3407 return NULL;
3408}
3409
fd8099e7
CH
3410static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3411 struct nvme_ns_ids *ids)
ed754e5d 3412{
e2724cb9
CH
3413 bool has_uuid = !uuid_is_null(&ids->uuid);
3414 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3415 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
ed754e5d
CH
3416 struct nvme_ns_head *h;
3417
3418 lockdep_assert_held(&subsys->lock);
3419
3420 list_for_each_entry(h, &subsys->nsheads, entry) {
e2724cb9
CH
3421 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3422 return -EINVAL;
3423 if (has_nguid &&
3424 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3425 return -EINVAL;
3426 if (has_eui64 &&
3427 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
ed754e5d
CH
3428 return -EINVAL;
3429 }
3430
3431 return 0;
3432}
3433
be5eb933
AM
3434static void nvme_cdev_rel(struct device *dev)
3435{
8b850475 3436 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
be5eb933
AM
3437}
3438
2637baed
MI
3439void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3440{
3441 cdev_device_del(cdev, cdev_device);
be5eb933 3442 put_device(cdev_device);
2637baed
MI
3443}
3444
3445int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3446 const struct file_operations *fops, struct module *owner)
3447{
3448 int minor, ret;
3449
8b850475 3450 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
2637baed
MI
3451 if (minor < 0)
3452 return minor;
3453 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
ab21f3d9 3454 cdev_device->class = &nvme_ns_chr_class;
be5eb933 3455 cdev_device->release = nvme_cdev_rel;
2637baed
MI
3456 device_initialize(cdev_device);
3457 cdev_init(cdev, fops);
3458 cdev->owner = owner;
3459 ret = cdev_device_add(cdev, cdev_device);
be5eb933 3460 if (ret)
3596a065 3461 put_device(cdev_device);
be5eb933 3462
2637baed
MI
3463 return ret;
3464}
3465
3466static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3467{
3468 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3469}
3470
3471static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3472{
3473 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3474 return 0;
3475}
3476
3477static const struct file_operations nvme_ns_chr_fops = {
3478 .owner = THIS_MODULE,
3479 .open = nvme_ns_chr_open,
3480 .release = nvme_ns_chr_release,
3481 .unlocked_ioctl = nvme_ns_chr_ioctl,
3482 .compat_ioctl = compat_ptr_ioctl,
456cba38 3483 .uring_cmd = nvme_ns_chr_uring_cmd,
585079b6 3484 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
2637baed
MI
3485};
3486
3487static int nvme_add_ns_cdev(struct nvme_ns *ns)
3488{
3489 int ret;
3490
3491 ns->cdev_device.parent = ns->ctrl->device;
3492 ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3493 ns->ctrl->instance, ns->head->instance);
3494 if (ret)
3495 return ret;
be5eb933
AM
3496
3497 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3498 ns->ctrl->ops->module);
2637baed
MI
3499}
3500
ed754e5d 3501static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
1a893c2b 3502 struct nvme_ns_info *info)
ed754e5d
CH
3503{
3504 struct nvme_ns_head *head;
f3334447 3505 size_t size = sizeof(*head);
ed754e5d
CH
3506 int ret = -ENOMEM;
3507
f3334447
CH
3508#ifdef CONFIG_NVME_MULTIPATH
3509 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3510#endif
3511
3512 head = kzalloc(size, GFP_KERNEL);
ed754e5d
CH
3513 if (!head)
3514 goto out;
8b850475 3515 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
ed754e5d
CH
3516 if (ret < 0)
3517 goto out_free_head;
3518 head->instance = ret;
3519 INIT_LIST_HEAD(&head->list);
fd92c77f
MG
3520 ret = init_srcu_struct(&head->srcu);
3521 if (ret)
3522 goto out_ida_remove;
ed754e5d 3523 head->subsys = ctrl->subsys;
1a893c2b
CH
3524 head->ns_id = info->nsid;
3525 head->ids = info->ids;
3526 head->shared = info->is_shared;
a1a825ab
DW
3527 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3528 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
ed754e5d
CH
3529 kref_init(&head->ref);
3530
be93e87e
KB
3531 if (head->ids.csi) {
3532 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3533 if (ret)
3534 goto out_cleanup_srcu;
3535 } else
3536 head->effects = ctrl->effects;
3537
32acab31
CH
3538 ret = nvme_mpath_alloc_disk(ctrl, head);
3539 if (ret)
3540 goto out_cleanup_srcu;
3541
ed754e5d 3542 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
12d9f070
JW
3543
3544 kref_get(&ctrl->subsys->ref);
3545
ed754e5d
CH
3546 return head;
3547out_cleanup_srcu:
3548 cleanup_srcu_struct(&head->srcu);
fd92c77f 3549out_ida_remove:
8b850475 3550 ida_free(&ctrl->subsys->ns_ida, head->instance);
ed754e5d
CH
3551out_free_head:
3552 kfree(head);
3553out:
538af88e
SG
3554 if (ret > 0)
3555 ret = blk_status_to_errno(nvme_error_status(ret));
ed754e5d
CH
3556 return ERR_PTR(ret);
3557}
3558
2079f41e
CH
3559static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3560 struct nvme_ns_ids *ids)
3561{
3562 struct nvme_subsystem *s;
3563 int ret = 0;
3564
3565 /*
3566 * Note that this check is racy as we try to avoid holding the global
3567 * lock over the whole ns_head creation. But it is only intended as
3568 * a sanity check anyway.
3569 */
3570 mutex_lock(&nvme_subsystems_lock);
3571 list_for_each_entry(s, &nvme_subsystems, entry) {
3572 if (s == this)
3573 continue;
3574 mutex_lock(&s->lock);
3575 ret = nvme_subsys_check_duplicate_ids(s, ids);
3576 mutex_unlock(&s->lock);
3577 if (ret)
3578 break;
3579 }
3580 mutex_unlock(&nvme_subsystems_lock);
3581
3582 return ret;
3583}
3584
1a893c2b 3585static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
ed754e5d
CH
3586{
3587 struct nvme_ctrl *ctrl = ns->ctrl;
ed754e5d 3588 struct nvme_ns_head *head = NULL;
2079f41e
CH
3589 int ret;
3590
1a893c2b 3591 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
2079f41e 3592 if (ret) {
ac522fc6
CH
3593 /*
3594 * We've found two different namespaces on two different
3595 * subsystems that report the same ID. This is pretty nasty
3596 * for anything that actually requires unique device
3597 * identification. In the kernel we need this for multipathing,
3598 * and in user space the /dev/disk/by-id/ links rely on it.
3599 *
3600 * If the device also claims to be multi-path capable back off
3601 * here now and refuse the probe the second device as this is a
3602 * recipe for data corruption. If not this is probably a
3603 * cheap consumer device if on the PCIe bus, so let the user
3604 * proceed and use the shiny toy, but warn that with changing
3605 * probing order (which due to our async probing could just be
3606 * device taking longer to startup) the other device could show
3607 * up at any time.
3608 */
2f0dad17 3609 nvme_print_device_info(ctrl);
ac522fc6
CH
3610 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3611 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3612 info->is_shared)) {
3613 dev_err(ctrl->device,
3614 "ignoring nsid %d because of duplicate IDs\n",
3615 info->nsid);
3616 return ret;
3617 }
3618
3619 dev_err(ctrl->device,
3620 "clearing duplicate IDs for nsid %d\n", info->nsid);
3621 dev_err(ctrl->device,
3622 "use of /dev/disk/by-id/ may cause data corruption\n");
3623 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3624 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3625 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3626 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
2079f41e 3627 }
ed754e5d
CH
3628
3629 mutex_lock(&ctrl->subsys->lock);
1a893c2b 3630 head = nvme_find_ns_head(ctrl, info->nsid);
ed754e5d 3631 if (!head) {
1a893c2b 3632 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
e2d77d2e
CH
3633 if (ret) {
3634 dev_err(ctrl->device,
2079f41e 3635 "duplicate IDs in subsystem for nsid %d\n",
1a893c2b 3636 info->nsid);
e2d77d2e
CH
3637 goto out_unlock;
3638 }
1a893c2b 3639 head = nvme_alloc_ns_head(ctrl, info);
ed754e5d
CH
3640 if (IS_ERR(head)) {
3641 ret = PTR_ERR(head);
3642 goto out_unlock;
3643 }
ed754e5d 3644 } else {
6623c5b3 3645 ret = -EINVAL;
1a893c2b 3646 if (!info->is_shared || !head->shared) {
9ad1927a 3647 dev_err(ctrl->device,
1a893c2b
CH
3648 "Duplicate unshared namespace %d\n",
3649 info->nsid);
6623c5b3 3650 goto out_put_ns_head;
9ad1927a 3651 }
1a893c2b 3652 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
ed754e5d
CH
3653 dev_err(ctrl->device,
3654 "IDs don't match for shared namespace %d\n",
1a893c2b 3655 info->nsid);
6623c5b3 3656 goto out_put_ns_head;
ed754e5d 3657 }
ce8d7861 3658
2110a6bc 3659 if (!multipath) {
ce8d7861
CH
3660 dev_warn(ctrl->device,
3661 "Found shared namespace %d, but multipathing not supported.\n",
1a893c2b 3662 info->nsid);
ce8d7861
CH
3663 dev_warn_once(ctrl->device,
3664 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3665 }
ed754e5d
CH
3666 }
3667
772ea326 3668 list_add_tail_rcu(&ns->siblings, &head->list);
ed754e5d 3669 ns->head = head;
6623c5b3
CH
3670 mutex_unlock(&ctrl->subsys->lock);
3671 return 0;
ed754e5d 3672
6623c5b3
CH
3673out_put_ns_head:
3674 nvme_put_ns_head(head);
ed754e5d
CH
3675out_unlock:
3676 mutex_unlock(&ctrl->subsys->lock);
3677 return ret;
3678}
3679
24493b8b 3680struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
5bae7f73 3681{
32f0c4af 3682 struct nvme_ns *ns, *ret = NULL;
69d3b8ac 3683
765cc031 3684 down_read(&ctrl->namespaces_rwsem);
5bae7f73 3685 list_for_each_entry(ns, &ctrl->namespaces, list) {
ed754e5d 3686 if (ns->head->ns_id == nsid) {
4c74d1f8 3687 if (!nvme_get_ns(ns))
2dd41228 3688 continue;
32f0c4af
KB
3689 ret = ns;
3690 break;
3691 }
ed754e5d 3692 if (ns->head->ns_id > nsid)
5bae7f73
CH
3693 break;
3694 }
765cc031 3695 up_read(&ctrl->namespaces_rwsem);
32f0c4af 3696 return ret;
5bae7f73 3697}
24493b8b 3698EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
5bae7f73 3699
298ba0e3
CH
3700/*
3701 * Add the namespace to the controller list while keeping the list ordered.
3702 */
3703static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3704{
3705 struct nvme_ns *tmp;
3706
3707 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3708 if (tmp->head->ns_id < ns->head->ns_id) {
3709 list_add(&ns->list, &tmp->list);
3710 return;
3711 }
3712 }
3713 list_add(&ns->list, &ns->ctrl->namespaces);
3714}
3715
1a893c2b 3716static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
5bae7f73
CH
3717{
3718 struct nvme_ns *ns;
3719 struct gendisk *disk;
9953ab0c 3720 int node = ctrl->numa_node;
5bae7f73
CH
3721
3722 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3723 if (!ns)
1a893c2b 3724 return;
5bae7f73 3725
27e32cd2 3726 disk = blk_mq_alloc_disk(ctrl->tagset, NULL, ns);
5f432cce 3727 if (IS_ERR(disk))
ed754e5d 3728 goto out_free_ns;
5f432cce
CH
3729 disk->fops = &nvme_bdev_ops;
3730 disk->private_data = ns;
3731
3732 ns->disk = disk;
3733 ns->queue = disk->queue;
e0596ab2 3734
7d30c81b 3735 if (ctrl->opts && ctrl->opts->data_digest)
1cb039f3 3736 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
958f2a0f 3737
8b904b5b 3738 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
2f859441
LG
3739 if (ctrl->ops->supports_pci_p2pdma &&
3740 ctrl->ops->supports_pci_p2pdma(ctrl))
e0596ab2
LG
3741 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3742
5bae7f73 3743 ns->ctrl = ctrl;
5bae7f73 3744 kref_init(&ns->kref);
5bae7f73 3745
1a893c2b 3746 if (nvme_init_ns_head(ns, info))
5f432cce 3747 goto out_cleanup_disk;
ac81bfa9 3748
9953ab0c 3749 /*
b739e137
CH
3750 * If multipathing is enabled, the device name for all disks and not
3751 * just those that represent shared namespaces needs to be based on the
3752 * subsystem instance. Using the controller instance for private
3753 * namespaces could lead to naming collisions between shared and private
3754 * namespaces if they don't use a common numbering scheme.
3755 *
3756 * If multipathing is not enabled, disk names must use the controller
3757 * instance as shared namespaces will show up as multiple block
3758 * devices.
9953ab0c 3759 */
35e797b0 3760 if (nvme_ns_head_multipath(ns->head)) {
b739e137
CH
3761 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3762 ctrl->instance, ns->head->instance);
3763 disk->flags |= GENHD_FL_HIDDEN;
3764 } else if (multipath) {
3765 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3766 ns->head->instance);
3767 } else {
9953ab0c
CH
3768 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3769 ns->head->instance);
b739e137 3770 }
3dc87dd0 3771
1a893c2b 3772 if (nvme_update_ns_info(ns, info))
5f432cce 3773 goto out_unlink_ns;
5bae7f73 3774
765cc031 3775 down_write(&ctrl->namespaces_rwsem);
839a40d1
BH
3776 /*
3777 * Ensure that no namespaces are added to the ctrl list after the queues
3778 * are frozen, thereby avoiding a deadlock between scan and reset.
3779 */
3780 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3781 up_write(&ctrl->namespaces_rwsem);
3782 goto out_unlink_ns;
3783 }
298ba0e3 3784 nvme_ns_add_to_ctrl_list(ns);
765cc031 3785 up_write(&ctrl->namespaces_rwsem);
d22524a4 3786 nvme_get_ctrl(ctrl);
ac81bfa9 3787
83ac678e 3788 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
ab3994f6
LC
3789 goto out_cleanup_ns_from_list;
3790
2637baed
MI
3791 if (!nvme_ns_head_multipath(ns->head))
3792 nvme_add_ns_cdev(ns);
32acab31 3793
1a893c2b 3794 nvme_mpath_add_disk(ns, info->anagrpid);
a3646451 3795 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
0d0b660f 3796
9f079dda
AA
3797 /*
3798 * Set ns->disk->device->driver_data to ns so we can access
e8c263ed
CK
3799 * ns->head->passthru_err_log_enabled in
3800 * nvme_io_passthru_err_log_enabled_[store | show]().
9f079dda
AA
3801 */
3802 dev_set_drvdata(disk_to_dev(ns->disk), ns);
3803
adce7e98 3804 return;
5f432cce 3805
ab3994f6
LC
3806 out_cleanup_ns_from_list:
3807 nvme_put_ctrl(ctrl);
3808 down_write(&ctrl->namespaces_rwsem);
3809 list_del_init(&ns->list);
3810 up_write(&ctrl->namespaces_rwsem);
ed754e5d
CH
3811 out_unlink_ns:
3812 mutex_lock(&ctrl->subsys->lock);
3813 list_del_rcu(&ns->siblings);
d5675729
KB
3814 if (list_empty(&ns->head->list))
3815 list_del_init(&ns->head->entry);
ed754e5d 3816 mutex_unlock(&ctrl->subsys->lock);
a63b8370 3817 nvme_put_ns_head(ns->head);
5f432cce 3818 out_cleanup_disk:
8b9ab626 3819 put_disk(disk);
5bae7f73
CH
3820 out_free_ns:
3821 kfree(ns);
3822}
3823
3824static void nvme_ns_remove(struct nvme_ns *ns)
3825{
5396fdac
HR
3826 bool last_path = false;
3827
646017a6
KB
3828 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3829 return;
69d3b8ac 3830
e7d65803 3831 clear_bit(NVME_NS_READY, &ns->flags);
0a05226a 3832 set_capacity(ns->disk, 0);
a3646451 3833 nvme_fault_inject_fini(&ns->fault_inject);
2181e455 3834
d6d67427
CL
3835 /*
3836 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3837 * this ns going back into current_path.
3838 */
3839 synchronize_srcu(&ns->head->srcu);
3840
3841 /* wait for concurrent submissions */
3842 if (nvme_mpath_clear_current_path(ns))
3843 synchronize_srcu(&ns->head->srcu);
3844
2181e455
AE
3845 mutex_lock(&ns->ctrl->subsys->lock);
3846 list_del_rcu(&ns->siblings);
9edceaf4
DW
3847 if (list_empty(&ns->head->list)) {
3848 list_del_init(&ns->head->entry);
3849 last_path = true;
3850 }
2181e455 3851 mutex_unlock(&ns->ctrl->subsys->lock);
d5675729 3852
041bd1a1 3853 /* guarantee not available in head->list */
899d2a05 3854 synchronize_srcu(&ns->head->srcu);
041bd1a1 3855
5eba2005
CH
3856 if (!nvme_ns_head_multipath(ns->head))
3857 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3858 del_gendisk(ns->disk);
32f0c4af 3859
765cc031 3860 down_write(&ns->ctrl->namespaces_rwsem);
5bae7f73 3861 list_del_init(&ns->list);
765cc031 3862 up_write(&ns->ctrl->namespaces_rwsem);
32f0c4af 3863
5396fdac
HR
3864 if (last_path)
3865 nvme_mpath_shutdown_disk(ns->head);
5bae7f73
CH
3866 nvme_put_ns(ns);
3867}
3868
4450ba3b
CH
3869static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3870{
3871 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3872
3873 if (ns) {
3874 nvme_ns_remove(ns);
3875 nvme_put_ns(ns);
3876 }
3877}
3878
1a893c2b 3879static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
b2dc748a 3880{
d95c1f41 3881 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
b2dc748a 3882
1a893c2b 3883 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
af5d6f7b 3884 dev_err(ns->ctrl->device,
b2dc748a 3885 "identifiers changed for nsid %d\n", ns->head->ns_id);
1a893c2b 3886 goto out;
b2dc748a
CH
3887 }
3888
1a893c2b 3889 ret = nvme_update_ns_info(ns, info);
b2dc748a
CH
3890out:
3891 /*
0a05226a 3892 * Only remove the namespace if we got a fatal error back from the
b2dc748a 3893 * device, otherwise ignore the error and just move on.
0a05226a
CH
3894 *
3895 * TODO: we should probably schedule a delayed retry here.
b2dc748a 3896 */
d95c1f41 3897 if (ret > 0 && (ret & NVME_SC_DNR))
0a05226a 3898 nvme_ns_remove(ns);
b2dc748a
CH
3899}
3900
04c170f6 3901static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
540c801c 3902{
1a893c2b 3903 struct nvme_ns_info info = { .nsid = nsid };
540c801c 3904 struct nvme_ns *ns;
0dd6fff2 3905 int ret;
540c801c 3906
1a893c2b 3907 if (nvme_identify_ns_descs(ctrl, &info))
8b7c0ff2 3908 return;
540c801c 3909
1a893c2b 3910 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
71882e7d
CH
3911 dev_warn(ctrl->device,
3912 "command set not reported for nsid: %d\n", nsid);
3913 return;
3914 }
3915
354201c5 3916 /*
1a893c2b
CH
3917 * If available try to use the Command Set Idependent Identify Namespace
3918 * data structure to find all the generic information that is needed to
3919 * set up a namespace. If not fall back to the legacy version.
354201c5 3920 */
eb867ee9 3921 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
0dd6fff2
CH
3922 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3923 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3924 else
3925 ret = nvme_ns_info_from_identify(ctrl, &info);
3926
3927 if (info.is_removed)
3928 nvme_ns_remove_by_nsid(ctrl, nsid);
354201c5 3929
1a893c2b
CH
3930 /*
3931 * Ignore the namespace if it is not ready. We will get an AEN once it
3932 * becomes ready and restart the scan.
3933 */
0dd6fff2 3934 if (ret || !info.is_ready)
354201c5
CH
3935 return;
3936
32f0c4af 3937 ns = nvme_find_get_ns(ctrl, nsid);
8b7c0ff2 3938 if (ns) {
1a893c2b 3939 nvme_validate_ns(ns, &info);
8b7c0ff2 3940 nvme_put_ns(ns);
1a893c2b
CH
3941 } else {
3942 nvme_alloc_ns(ctrl, &info);
8b7c0ff2 3943 }
540c801c
KB
3944}
3945
47b0e50a
SB
3946static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3947 unsigned nsid)
3948{
3949 struct nvme_ns *ns, *next;
6f8e0d78 3950 LIST_HEAD(rm_list);
47b0e50a 3951
765cc031 3952 down_write(&ctrl->namespaces_rwsem);
47b0e50a 3953 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4f17344e 3954 if (ns->head->ns_id > nsid)
6f8e0d78 3955 list_move_tail(&ns->list, &rm_list);
47b0e50a 3956 }
765cc031 3957 up_write(&ctrl->namespaces_rwsem);
6f8e0d78
JW
3958
3959 list_for_each_entry_safe(ns, next, &rm_list, list)
3960 nvme_ns_remove(ns);
3961
47b0e50a
SB
3962}
3963
4005f28d 3964static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
540c801c 3965{
aec459b4 3966 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
540c801c 3967 __le32 *ns_list;
4005f28d
CH
3968 u32 prev = 0;
3969 int ret = 0, i;
540c801c 3970
42595eb7 3971 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
540c801c
KB
3972 if (!ns_list)
3973 return -ENOMEM;
3974
4005f28d 3975 for (;;) {
7b153362
CH
3976 struct nvme_command cmd = {
3977 .identify.opcode = nvme_admin_identify,
3978 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
3979 .identify.nsid = cpu_to_le32(prev),
3980 };
3981
3982 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3983 NVME_IDENTIFY_DATA_SIZE);
f781f3dd
MI
3984 if (ret) {
3985 dev_warn(ctrl->device,
3986 "Identify NS List failed (status=0x%x)\n", ret);
47b0e50a 3987 goto free;
f781f3dd 3988 }
540c801c 3989
aec459b4 3990 for (i = 0; i < nr_entries; i++) {
4005f28d 3991 u32 nsid = le32_to_cpu(ns_list[i]);
540c801c 3992
4005f28d
CH
3993 if (!nsid) /* end of the list? */
3994 goto out;
04c170f6 3995 nvme_scan_ns(ctrl, nsid);
4450ba3b
CH
3996 while (++prev < nsid)
3997 nvme_ns_remove_by_nsid(ctrl, prev);
540c801c 3998 }
540c801c
KB
3999 }
4000 out:
47b0e50a
SB
4001 nvme_remove_invalid_namespaces(ctrl, prev);
4002 free:
540c801c
KB
4003 kfree(ns_list);
4004 return ret;
4005}
4006
4005f28d 4007static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
5bae7f73 4008{
4005f28d
CH
4009 struct nvme_id_ctrl *id;
4010 u32 nn, i;
4011
4012 if (nvme_identify_ctrl(ctrl, &id))
4013 return;
4014 nn = le32_to_cpu(id->nn);
4015 kfree(id);
5bae7f73 4016
540c801c 4017 for (i = 1; i <= nn; i++)
04c170f6 4018 nvme_scan_ns(ctrl, i);
540c801c 4019
47b0e50a 4020 nvme_remove_invalid_namespaces(ctrl, nn);
5bae7f73
CH
4021}
4022
f493af37 4023static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
30d90964
CH
4024{
4025 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4026 __le32 *log;
f493af37 4027 int error;
30d90964
CH
4028
4029 log = kzalloc(log_size, GFP_KERNEL);
4030 if (!log)
f493af37 4031 return;
30d90964 4032
f493af37
CH
4033 /*
4034 * We need to read the log to clear the AEN, but we don't want to rely
4035 * on it for the changed namespace information as userspace could have
4036 * raced with us in reading the log page, which could cause us to miss
4037 * updates.
4038 */
be93e87e
KB
4039 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4040 NVME_CSI_NVM, log, log_size, 0);
f493af37 4041 if (error)
30d90964
CH
4042 dev_warn(ctrl->device,
4043 "reading changed ns log failed: %d\n", error);
30d90964 4044
30d90964 4045 kfree(log);
30d90964
CH
4046}
4047
5955be21 4048static void nvme_scan_work(struct work_struct *work)
5bae7f73 4049{
5955be21
CH
4050 struct nvme_ctrl *ctrl =
4051 container_of(work, struct nvme_ctrl, scan_work);
78288665 4052 int ret;
5bae7f73 4053
5d02a5c1 4054 /* No tagset on a live ctrl means IO queues could not created */
e6e7f7ac 4055 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
5955be21
CH
4056 return;
4057
78288665
CK
4058 /*
4059 * Identify controller limits can change at controller reset due to
4060 * new firmware download, even though it is not common we cannot ignore
4061 * such scenario. Controller's non-mdts limits are reported in the unit
4062 * of logical blocks that is dependent on the format of attached
4063 * namespace. Hence re-read the limits at the time of ns allocation.
4064 */
4065 ret = nvme_init_non_mdts_limits(ctrl);
4066 if (ret < 0) {
4067 dev_warn(ctrl->device,
4068 "reading non-mdts-limits failed: %d\n", ret);
4069 return;
4070 }
4071
77016199 4072 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
30d90964 4073 dev_info(ctrl->device, "rescanning namespaces.\n");
f493af37 4074 nvme_clear_changed_ns_log(ctrl);
30d90964
CH
4075 }
4076
e7ad43c3 4077 mutex_lock(&ctrl->scan_lock);
811f4de0 4078 if (nvme_ctrl_limited_cns(ctrl)) {
4005f28d 4079 nvme_scan_ns_sequential(ctrl);
811f4de0
US
4080 } else {
4081 /*
4082 * Fall back to sequential scan if DNR is set to handle broken
4083 * devices which should support Identify NS List (as per the VS
4084 * they report) but don't actually support it.
4085 */
4086 ret = nvme_scan_ns_list(ctrl);
4087 if (ret > 0 && ret & NVME_SC_DNR)
4088 nvme_scan_ns_sequential(ctrl);
4089 }
e7ad43c3 4090 mutex_unlock(&ctrl->scan_lock);
5955be21 4091}
5bae7f73 4092
32f0c4af
KB
4093/*
4094 * This function iterates the namespace list unlocked to allow recovery from
4095 * controller failure. It is up to the caller to ensure the namespace list is
4096 * not modified by scan work while this function is executing.
4097 */
5bae7f73
CH
4098void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4099{
4100 struct nvme_ns *ns, *next;
6f8e0d78 4101 LIST_HEAD(ns_list);
5bae7f73 4102
0157ec8d
SG
4103 /*
4104 * make sure to requeue I/O to all namespaces as these
4105 * might result from the scan itself and must complete
4106 * for the scan_work to make progress
4107 */
4108 nvme_mpath_clear_ctrl_paths(ctrl);
4109
1b95e817
ML
4110 /*
4111 * Unquiesce io queues so any pending IO won't hang, especially
4112 * those submitted from scan work
4113 */
4114 nvme_unquiesce_io_queues(ctrl);
4115
f6c8e432
SG
4116 /* prevent racing with ns scanning */
4117 flush_work(&ctrl->scan_work);
4118
0ff9d4e1
KB
4119 /*
4120 * The dead states indicates the controller was not gracefully
4121 * disconnected. In that case, we won't be able to flush any data while
4122 * removing the namespaces' disks; fail all the queues now to avoid
4123 * potentially having to clean up the failed sync later.
4124 */
e6e7f7ac 4125 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
cd50f9b2 4126 nvme_mark_namespaces_dead(ctrl);
0ff9d4e1 4127
ecca390e
SG
4128 /* this is a no-op when called from the controller reset handler */
4129 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4130
765cc031 4131 down_write(&ctrl->namespaces_rwsem);
6f8e0d78 4132 list_splice_init(&ctrl->namespaces, &ns_list);
765cc031 4133 up_write(&ctrl->namespaces_rwsem);
6f8e0d78
JW
4134
4135 list_for_each_entry_safe(ns, next, &ns_list, list)
5bae7f73
CH
4136 nvme_ns_remove(ns);
4137}
576d55d6 4138EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
5bae7f73 4139
23680f0b 4140static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
a42f42e5 4141{
23680f0b 4142 const struct nvme_ctrl *ctrl =
a42f42e5
SG
4143 container_of(dev, struct nvme_ctrl, ctrl_device);
4144 struct nvmf_ctrl_options *opts = ctrl->opts;
4145 int ret;
4146
4147 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4148 if (ret)
4149 return ret;
4150
4151 if (opts) {
4152 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4153 if (ret)
4154 return ret;
4155
4156 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4157 opts->trsvcid ?: "none");
4158 if (ret)
4159 return ret;
4160
4161 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4162 opts->host_traddr ?: "none");
3ede8f72
MB
4163 if (ret)
4164 return ret;
4165
4166 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4167 opts->host_iface ?: "none");
a42f42e5
SG
4168 }
4169 return ret;
4170}
4171
20d64911
MB
4172static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4173{
4174 char *envp[2] = { envdata, NULL };
4175
4176 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4177}
4178
e3d7874d
KB
4179static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4180{
4181 char *envp[2] = { NULL, NULL };
4182 u32 aen_result = ctrl->aen_result;
4183
4184 ctrl->aen_result = 0;
4185 if (!aen_result)
4186 return;
4187
4188 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4189 if (!envp[0])
4190 return;
4191 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4192 kfree(envp[0]);
4193}
4194
f866fc42
CH
4195static void nvme_async_event_work(struct work_struct *work)
4196{
4197 struct nvme_ctrl *ctrl =
4198 container_of(work, struct nvme_ctrl, async_event_work);
4199
e3d7874d 4200 nvme_aen_uevent(ctrl);
0fa0f99f
SG
4201
4202 /*
4203 * The transport drivers must guarantee AER submission here is safe by
4204 * flushing ctrl async_event_work after changing the controller state
4205 * from LIVE and before freeing the admin queue.
4206 */
e6e7f7ac 4207 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
0fa0f99f 4208 ctrl->ops->submit_async_event(ctrl);
f866fc42
CH
4209}
4210
b6dccf7f
AD
4211static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4212{
4213
4214 u32 csts;
4215
4216 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4217 return false;
4218
4219 if (csts == ~0)
4220 return false;
4221
4222 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4223}
4224
4225static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4226{
b6dccf7f 4227 struct nvme_fw_slot_info_log *log;
f0377ff9 4228 u8 next_fw_slot, cur_fw_slot;
b6dccf7f
AD
4229
4230 log = kmalloc(sizeof(*log), GFP_KERNEL);
4231 if (!log)
4232 return;
4233
be93e87e 4234 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
983a338b 4235 log, sizeof(*log), 0)) {
0e98719b 4236 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
983a338b
DW
4237 goto out_free_log;
4238 }
4239
f0377ff9
ML
4240 cur_fw_slot = log->afi & 0x7;
4241 next_fw_slot = (log->afi & 0x70) >> 4;
4242 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
983a338b
DW
4243 dev_info(ctrl->device,
4244 "Firmware is activated after next Controller Level Reset\n");
4245 goto out_free_log;
4246 }
4247
f0377ff9 4248 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
983a338b
DW
4249 sizeof(ctrl->subsys->firmware_rev));
4250
4251out_free_log:
b6dccf7f
AD
4252 kfree(log);
4253}
4254
4255static void nvme_fw_act_work(struct work_struct *work)
4256{
4257 struct nvme_ctrl *ctrl = container_of(work,
4258 struct nvme_ctrl, fw_act_work);
4259 unsigned long fw_act_timeout;
4260
f6fe0b2d
ML
4261 nvme_auth_stop(ctrl);
4262
b6dccf7f
AD
4263 if (ctrl->mtfa)
4264 fw_act_timeout = jiffies +
4265 msecs_to_jiffies(ctrl->mtfa * 100);
4266 else
4267 fw_act_timeout = jiffies +
4268 msecs_to_jiffies(admin_timeout * 1000);
4269
9f27bd70 4270 nvme_quiesce_io_queues(ctrl);
b6dccf7f
AD
4271 while (nvme_ctrl_pp_status(ctrl)) {
4272 if (time_after(jiffies, fw_act_timeout)) {
4273 dev_warn(ctrl->device,
4274 "Fw activation timeout, reset controller\n");
4c75f877
KB
4275 nvme_try_sched_reset(ctrl);
4276 return;
b6dccf7f
AD
4277 }
4278 msleep(100);
4279 }
4280
4c75f877 4281 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
b6dccf7f
AD
4282 return;
4283
9f27bd70 4284 nvme_unquiesce_io_queues(ctrl);
a806c6c8 4285 /* read FW slot information to clear the AER */
b6dccf7f 4286 nvme_get_fw_slot_info(ctrl);
371a982c
KB
4287
4288 queue_work(nvme_wq, &ctrl->async_event_work);
b6dccf7f
AD
4289}
4290
2c61c97f
MK
4291static u32 nvme_aer_type(u32 result)
4292{
4293 return result & 0x7;
4294}
4295
4296static u32 nvme_aer_subtype(u32 result)
4297{
4298 return (result & 0xff00) >> 8;
4299}
4300
371a982c 4301static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
868c2392 4302{
2c61c97f 4303 u32 aer_notice_type = nvme_aer_subtype(result);
371a982c 4304 bool requeue = true;
09bd1ff4
CK
4305
4306 switch (aer_notice_type) {
868c2392 4307 case NVME_AER_NOTICE_NS_CHANGED:
77016199 4308 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
868c2392
CH
4309 nvme_queue_scan(ctrl);
4310 break;
4311 case NVME_AER_NOTICE_FW_ACT_STARTING:
4c75f877
KB
4312 /*
4313 * We are (ab)using the RESETTING state to prevent subsequent
4314 * recovery actions from interfering with the controller's
4315 * firmware activation.
4316 */
f50fff73 4317 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
371a982c 4318 requeue = false;
4c75f877 4319 queue_work(nvme_wq, &ctrl->fw_act_work);
f50fff73 4320 }
868c2392 4321 break;
0d0b660f
CH
4322#ifdef CONFIG_NVME_MULTIPATH
4323 case NVME_AER_NOTICE_ANA:
4324 if (!ctrl->ana_log_buf)
4325 break;
4326 queue_work(nvme_wq, &ctrl->ana_work);
4327 break;
4328#endif
85f8a435
SG
4329 case NVME_AER_NOTICE_DISC_CHANGED:
4330 ctrl->aen_result = result;
4331 break;
868c2392
CH
4332 default:
4333 dev_warn(ctrl->device, "async event result %08x\n", result);
4334 }
371a982c 4335 return requeue;
868c2392
CH
4336}
4337
2c61c97f
MK
4338static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4339{
2c61c97f
MK
4340 dev_warn(ctrl->device, "resetting controller due to AER\n");
4341 nvme_reset_ctrl(ctrl);
4342}
4343
7bf58533 4344void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
287a63eb 4345 volatile union nvme_result *res)
f866fc42 4346{
7bf58533 4347 u32 result = le32_to_cpu(res->u32);
2c61c97f
MK
4348 u32 aer_type = nvme_aer_type(result);
4349 u32 aer_subtype = nvme_aer_subtype(result);
371a982c 4350 bool requeue = true;
f866fc42 4351
ad22c355 4352 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
f866fc42
CH
4353 return;
4354
6622b76f 4355 trace_nvme_async_event(ctrl, result);
09bd1ff4 4356 switch (aer_type) {
868c2392 4357 case NVME_AER_NOTICE:
371a982c 4358 requeue = nvme_handle_aen_notice(ctrl, result);
868c2392 4359 break;
e3d7874d 4360 case NVME_AER_ERROR:
2c61c97f
MK
4361 /*
4362 * For a persistent internal error, don't run async_event_work
4363 * to submit a new AER. The controller reset will do it.
4364 */
4365 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4366 nvme_handle_aer_persistent_error(ctrl);
4367 return;
4368 }
4369 fallthrough;
e3d7874d
KB
4370 case NVME_AER_SMART:
4371 case NVME_AER_CSS:
4372 case NVME_AER_VS:
4373 ctrl->aen_result = result;
7bf58533
CH
4374 break;
4375 default:
4376 break;
f866fc42 4377 }
371a982c
KB
4378
4379 if (requeue)
4380 queue_work(nvme_wq, &ctrl->async_event_work);
f866fc42 4381}
f866fc42 4382EXPORT_SYMBOL_GPL(nvme_complete_async_event);
f3ca80fc 4383
fe60e8c5 4384int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
db45e1a5 4385 const struct blk_mq_ops *ops, unsigned int cmd_size)
fe60e8c5 4386{
e6c9b130 4387 struct queue_limits lim = {};
fe60e8c5
CH
4388 int ret;
4389
4390 memset(set, 0, sizeof(*set));
4391 set->ops = ops;
4392 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4393 if (ctrl->ops->flags & NVME_F_FABRICS)
4394 set->reserved_tags = NVMF_RESERVED_TAGS;
4395 set->numa_node = ctrl->numa_node;
db45e1a5
CH
4396 set->flags = BLK_MQ_F_NO_SCHED;
4397 if (ctrl->ops->flags & NVME_F_BLOCKING)
4398 set->flags |= BLK_MQ_F_BLOCKING;
fe60e8c5
CH
4399 set->cmd_size = cmd_size;
4400 set->driver_data = ctrl;
4401 set->nr_hw_queues = 1;
4402 set->timeout = NVME_ADMIN_TIMEOUT;
4403 ret = blk_mq_alloc_tag_set(set);
4404 if (ret)
4405 return ret;
4406
e6c9b130 4407 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
fe60e8c5
CH
4408 if (IS_ERR(ctrl->admin_q)) {
4409 ret = PTR_ERR(ctrl->admin_q);
4410 goto out_free_tagset;
4411 }
4412
4413 if (ctrl->ops->flags & NVME_F_FABRICS) {
9ac4dd8c 4414 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
fe60e8c5
CH
4415 if (IS_ERR(ctrl->fabrics_q)) {
4416 ret = PTR_ERR(ctrl->fabrics_q);
4417 goto out_cleanup_admin_q;
4418 }
4419 }
4420
4421 ctrl->admin_tagset = set;
4422 return 0;
4423
4424out_cleanup_admin_q:
4739824e 4425 blk_mq_destroy_queue(ctrl->admin_q);
2b3f056f 4426 blk_put_queue(ctrl->admin_q);
fe60e8c5 4427out_free_tagset:
fd62678a
ML
4428 blk_mq_free_tag_set(set);
4429 ctrl->admin_q = NULL;
4430 ctrl->fabrics_q = NULL;
fe60e8c5
CH
4431 return ret;
4432}
4433EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4434
4435void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4436{
4437 blk_mq_destroy_queue(ctrl->admin_q);
2b3f056f
CH
4438 blk_put_queue(ctrl->admin_q);
4439 if (ctrl->ops->flags & NVME_F_FABRICS) {
fe60e8c5 4440 blk_mq_destroy_queue(ctrl->fabrics_q);
2b3f056f
CH
4441 blk_put_queue(ctrl->fabrics_q);
4442 }
fe60e8c5
CH
4443 blk_mq_free_tag_set(ctrl->admin_tagset);
4444}
4445EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4446
4447int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
db45e1a5 4448 const struct blk_mq_ops *ops, unsigned int nr_maps,
fe60e8c5
CH
4449 unsigned int cmd_size)
4450{
4451 int ret;
4452
4453 memset(set, 0, sizeof(*set));
4454 set->ops = ops;
33b93727 4455 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
93b24f57
CH
4456 /*
4457 * Some Apple controllers requires tags to be unique across admin and
4458 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4459 */
4460 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4461 set->reserved_tags = NVME_AQ_DEPTH;
4462 else if (ctrl->ops->flags & NVME_F_FABRICS)
b794d1c2 4463 set->reserved_tags = NVMF_RESERVED_TAGS;
fe60e8c5 4464 set->numa_node = ctrl->numa_node;
db45e1a5
CH
4465 set->flags = BLK_MQ_F_SHOULD_MERGE;
4466 if (ctrl->ops->flags & NVME_F_BLOCKING)
4467 set->flags |= BLK_MQ_F_BLOCKING;
fe60e8c5
CH
4468 set->cmd_size = cmd_size,
4469 set->driver_data = ctrl;
4470 set->nr_hw_queues = ctrl->queue_count - 1;
4471 set->timeout = NVME_IO_TIMEOUT;
dcef7727 4472 set->nr_maps = nr_maps;
fe60e8c5
CH
4473 ret = blk_mq_alloc_tag_set(set);
4474 if (ret)
4475 return ret;
4476
4477 if (ctrl->ops->flags & NVME_F_FABRICS) {
9ac4dd8c 4478 ctrl->connect_q = blk_mq_alloc_queue(set, NULL, NULL);
fe60e8c5
CH
4479 if (IS_ERR(ctrl->connect_q)) {
4480 ret = PTR_ERR(ctrl->connect_q);
4481 goto out_free_tag_set;
4482 }
98d81f0d
CL
4483 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4484 ctrl->connect_q);
fe60e8c5
CH
4485 }
4486
4487 ctrl->tagset = set;
4488 return 0;
4489
4490out_free_tag_set:
4491 blk_mq_free_tag_set(set);
6fbf13c0 4492 ctrl->connect_q = NULL;
fe60e8c5
CH
4493 return ret;
4494}
4495EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4496
4497void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4498{
2b3f056f 4499 if (ctrl->ops->flags & NVME_F_FABRICS) {
fe60e8c5 4500 blk_mq_destroy_queue(ctrl->connect_q);
2b3f056f
CH
4501 blk_put_queue(ctrl->connect_q);
4502 }
fe60e8c5
CH
4503 blk_mq_free_tag_set(ctrl->tagset);
4504}
4505EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4506
d09f2b45 4507void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
576d55d6 4508{
0d0b660f 4509 nvme_mpath_stop(ctrl);
f50fff73 4510 nvme_auth_stop(ctrl);
3af755a4 4511 nvme_stop_keep_alive(ctrl);
8c4dfea9 4512 nvme_stop_failfast_work(ctrl);
f866fc42 4513 flush_work(&ctrl->async_event_work);
b6dccf7f 4514 cancel_work_sync(&ctrl->fw_act_work);
f7f70f4a
RL
4515 if (ctrl->ops->stop_ctrl)
4516 ctrl->ops->stop_ctrl(ctrl);
d09f2b45
SG
4517}
4518EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4519
4520void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4521{
93da4023
SG
4522 nvme_enable_aen(ctrl);
4523
f46ef9e8
SG
4524 /*
4525 * persistent discovery controllers need to send indication to userspace
4526 * to re-read the discovery log page to learn about possible changes
4527 * that were missed. We identify persistent discovery controllers by
4528 * checking that they started once before, hence are reconnecting back.
4529 */
2eb94dd5 4530 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
f46ef9e8
SG
4531 nvme_discovery_ctrl(ctrl))
4532 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4533
d09f2b45
SG
4534 if (ctrl->queue_count > 1) {
4535 nvme_queue_scan(ctrl);
9f27bd70 4536 nvme_unquiesce_io_queues(ctrl);
a4a6f3c8 4537 nvme_mpath_update(ctrl);
d09f2b45 4538 }
20d64911
MB
4539
4540 nvme_change_uevent(ctrl, "NVME_EVENT=connected");
2eb94dd5 4541 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
d09f2b45
SG
4542}
4543EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5955be21 4544
d09f2b45
SG
4545void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4546{
ed7770f6 4547 nvme_hwmon_exit(ctrl);
f79d5fda 4548 nvme_fault_inject_fini(&ctrl->fault_inject);
510a405d 4549 dev_pm_qos_hide_latency_tolerance(ctrl->device);
a6a5149b 4550 cdev_device_del(&ctrl->cdev, ctrl->device);
726612b6 4551 nvme_put_ctrl(ctrl);
53029b04 4552}
576d55d6 4553EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
53029b04 4554
8168d23f
KB
4555static void nvme_free_cels(struct nvme_ctrl *ctrl)
4556{
4557 struct nvme_effects_log *cel;
4558 unsigned long i;
4559
8f8ea928 4560 xa_for_each(&ctrl->cels, i, cel) {
8168d23f
KB
4561 xa_erase(&ctrl->cels, i);
4562 kfree(cel);
4563 }
4564
4565 xa_destroy(&ctrl->cels);
4566}
4567
d22524a4 4568static void nvme_free_ctrl(struct device *dev)
53029b04 4569{
d22524a4
CH
4570 struct nvme_ctrl *ctrl =
4571 container_of(dev, struct nvme_ctrl, ctrl_device);
ab9e00cc 4572 struct nvme_subsystem *subsys = ctrl->subsys;
f3ca80fc 4573
192f6c29 4574 if (!subsys || ctrl->instance != subsys->instance)
8b850475 4575 ida_free(&nvme_instance_ida, ctrl->instance);
be8e82ca 4576 key_put(ctrl->tls_key);
8168d23f 4577 nvme_free_cels(ctrl);
0d0b660f 4578 nvme_mpath_uninit(ctrl);
f50fff73
HR
4579 nvme_auth_stop(ctrl);
4580 nvme_auth_free(ctrl);
092ff052 4581 __free_page(ctrl->discard_page);
94cc781f 4582 free_opal_dev(ctrl->opal_dev);
f3ca80fc 4583
ab9e00cc 4584 if (subsys) {
32fd90c4 4585 mutex_lock(&nvme_subsystems_lock);
ab9e00cc 4586 list_del(&ctrl->subsys_entry);
ab9e00cc 4587 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
32fd90c4 4588 mutex_unlock(&nvme_subsystems_lock);
ab9e00cc 4589 }
f3ca80fc
CH
4590
4591 ctrl->ops->free_ctrl(ctrl);
f3ca80fc 4592
ab9e00cc
CH
4593 if (subsys)
4594 nvme_put_subsystem(subsys);
f3ca80fc
CH
4595}
4596
4597/*
4598 * Initialize a NVMe controller structures. This needs to be called during
4599 * earliest initialization so that we have the initialized structured around
4600 * during probing.
4601 */
4602int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4603 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4604{
4605 int ret;
4606
e6e7f7ac 4607 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
9f079dda 4608 ctrl->passthru_err_log_enabled = false;
8c4dfea9 4609 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
bb8d261e 4610 spin_lock_init(&ctrl->lock);
e7ad43c3 4611 mutex_init(&ctrl->scan_lock);
f3ca80fc 4612 INIT_LIST_HEAD(&ctrl->namespaces);
1cf7a12e 4613 xa_init(&ctrl->cels);
765cc031 4614 init_rwsem(&ctrl->namespaces_rwsem);
f3ca80fc
CH
4615 ctrl->dev = dev;
4616 ctrl->ops = ops;
4617 ctrl->quirks = quirks;
4fea243e 4618 ctrl->numa_node = NUMA_NO_NODE;
5955be21 4619 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
f866fc42 4620 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
b6dccf7f 4621 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
c5017e85 4622 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
c1ac9a4b 4623 init_waitqueue_head(&ctrl->state_wq);
f3ca80fc 4624
230f1f9e 4625 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
8c4dfea9 4626 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
230f1f9e
JS
4627 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4628 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
136cfcb8 4629 ctrl->ka_last_check_time = jiffies;
230f1f9e 4630
cb5b7262
JA
4631 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4632 PAGE_SIZE);
4633 ctrl->discard_page = alloc_page(GFP_KERNEL);
4634 if (!ctrl->discard_page) {
4635 ret = -ENOMEM;
4636 goto out;
4637 }
4638
8b850475 4639 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
9843f685 4640 if (ret < 0)
f3ca80fc 4641 goto out;
9843f685 4642 ctrl->instance = ret;
f3ca80fc 4643
d22524a4
CH
4644 device_initialize(&ctrl->ctrl_device);
4645 ctrl->device = &ctrl->ctrl_device;
f68abd9c
JG
4646 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4647 ctrl->instance);
ab21f3d9 4648 ctrl->device->class = &nvme_class;
d22524a4 4649 ctrl->device->parent = ctrl->dev;
86adbf0c
CH
4650 if (ops->dev_attr_groups)
4651 ctrl->device->groups = ops->dev_attr_groups;
4652 else
4653 ctrl->device->groups = nvme_dev_attr_groups;
d22524a4
CH
4654 ctrl->device->release = nvme_free_ctrl;
4655 dev_set_drvdata(ctrl->device, ctrl);
4656 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4657 if (ret)
f3ca80fc 4658 goto out_release_instance;
f3ca80fc 4659
b780d741 4660 nvme_get_ctrl(ctrl);
a6a5149b
CH
4661 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4662 ctrl->cdev.owner = ops->module;
4663 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
d22524a4
CH
4664 if (ret)
4665 goto out_free_name;
f3ca80fc 4666
c5552fde
AL
4667 /*
4668 * Initialize latency tolerance controls. The sysfs files won't
4669 * be visible to userspace unless the device actually supports APST.
4670 */
4671 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4672 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4673 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4674
f79d5fda 4675 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5e1f6899 4676 nvme_mpath_init_ctrl(ctrl);
193a8c7e
SG
4677 ret = nvme_auth_init_ctrl(ctrl);
4678 if (ret)
4679 goto out_free_cdev;
f79d5fda 4680
f3ca80fc 4681 return 0;
193a8c7e 4682out_free_cdev:
3a12a0b8 4683 nvme_fault_inject_fini(&ctrl->fault_inject);
7ed5cf8e 4684 dev_pm_qos_hide_latency_tolerance(ctrl->device);
193a8c7e 4685 cdev_device_del(&ctrl->cdev, ctrl->device);
d22524a4 4686out_free_name:
b780d741 4687 nvme_put_ctrl(ctrl);
d6a2b953 4688 kfree_const(ctrl->device->kobj.name);
f3ca80fc 4689out_release_instance:
8b850475 4690 ida_free(&nvme_instance_ida, ctrl->instance);
f3ca80fc 4691out:
cb5b7262
JA
4692 if (ctrl->discard_page)
4693 __free_page(ctrl->discard_page);
f3ca80fc
CH
4694 return ret;
4695}
576d55d6 4696EXPORT_SYMBOL_GPL(nvme_init_ctrl);
f3ca80fc 4697
cd50f9b2
CH
4698/* let I/O to all namespaces fail in preparation for surprise removal */
4699void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
69d9a99c
KB
4700{
4701 struct nvme_ns *ns;
4702
765cc031 4703 down_read(&ctrl->namespaces_rwsem);
cf39a6bc 4704 list_for_each_entry(ns, &ctrl->namespaces, list)
cd50f9b2 4705 blk_mark_disk_dead(ns->disk);
765cc031 4706 up_read(&ctrl->namespaces_rwsem);
69d9a99c 4707}
cd50f9b2 4708EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
69d9a99c 4709
302ad8cc
KB
4710void nvme_unfreeze(struct nvme_ctrl *ctrl)
4711{
4712 struct nvme_ns *ns;
4713
765cc031 4714 down_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4715 list_for_each_entry(ns, &ctrl->namespaces, list)
4716 blk_mq_unfreeze_queue(ns->queue);
765cc031 4717 up_read(&ctrl->namespaces_rwsem);
839a40d1 4718 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
302ad8cc
KB
4719}
4720EXPORT_SYMBOL_GPL(nvme_unfreeze);
4721
7cf0d7c0 4722int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
302ad8cc
KB
4723{
4724 struct nvme_ns *ns;
4725
765cc031 4726 down_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4727 list_for_each_entry(ns, &ctrl->namespaces, list) {
4728 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4729 if (timeout <= 0)
4730 break;
4731 }
765cc031 4732 up_read(&ctrl->namespaces_rwsem);
7cf0d7c0 4733 return timeout;
302ad8cc
KB
4734}
4735EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4736
4737void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4738{
4739 struct nvme_ns *ns;
4740
765cc031 4741 down_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4742 list_for_each_entry(ns, &ctrl->namespaces, list)
4743 blk_mq_freeze_queue_wait(ns->queue);
765cc031 4744 up_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4745}
4746EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4747
4748void nvme_start_freeze(struct nvme_ctrl *ctrl)
4749{
4750 struct nvme_ns *ns;
4751
839a40d1 4752 set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
765cc031 4753 down_read(&ctrl->namespaces_rwsem);
302ad8cc 4754 list_for_each_entry(ns, &ctrl->namespaces, list)
1671d522 4755 blk_freeze_queue_start(ns->queue);
765cc031 4756 up_read(&ctrl->namespaces_rwsem);
302ad8cc
KB
4757}
4758EXPORT_SYMBOL_GPL(nvme_start_freeze);
4759
9f27bd70 4760void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
363c9aac 4761{
ba0718a6
CH
4762 if (!ctrl->tagset)
4763 return;
98d81f0d
CL
4764 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4765 blk_mq_quiesce_tagset(ctrl->tagset);
4766 else
4767 blk_mq_wait_quiesce_done(ctrl->tagset);
363c9aac 4768}
9f27bd70 4769EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
363c9aac 4770
9f27bd70 4771void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
363c9aac 4772{
ba0718a6
CH
4773 if (!ctrl->tagset)
4774 return;
98d81f0d
CL
4775 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4776 blk_mq_unquiesce_tagset(ctrl->tagset);
363c9aac 4777}
9f27bd70 4778EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
363c9aac 4779
9f27bd70 4780void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
a277654b 4781{
9e6a6b12
ML
4782 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4783 blk_mq_quiesce_queue(ctrl->admin_q);
26af1cd0 4784 else
483239c7 4785 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
a277654b 4786}
9f27bd70 4787EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
a277654b 4788
9f27bd70 4789void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
a277654b 4790{
9e6a6b12
ML
4791 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4792 blk_mq_unquiesce_queue(ctrl->admin_q);
a277654b 4793}
9f27bd70 4794EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
a277654b 4795
04800fbf 4796void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
d6135c3a
KB
4797{
4798 struct nvme_ns *ns;
4799
4800 down_read(&ctrl->namespaces_rwsem);
4801 list_for_each_entry(ns, &ctrl->namespaces, list)
4802 blk_sync_queue(ns->queue);
4803 up_read(&ctrl->namespaces_rwsem);
04800fbf
CL
4804}
4805EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
03894b7a 4806
04800fbf
CL
4807void nvme_sync_queues(struct nvme_ctrl *ctrl)
4808{
4809 nvme_sync_io_queues(ctrl);
03894b7a
EN
4810 if (ctrl->admin_q)
4811 blk_sync_queue(ctrl->admin_q);
d6135c3a
KB
4812}
4813EXPORT_SYMBOL_GPL(nvme_sync_queues);
4814
b2702aaa 4815struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
f783f444 4816{
b2702aaa
CK
4817 if (file->f_op != &nvme_dev_fops)
4818 return NULL;
4819 return file->private_data;
f783f444 4820}
b2702aaa 4821EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
f783f444 4822
81101540
CH
4823/*
4824 * Check we didn't inadvertently grow the command structure sizes:
4825 */
4826static inline void _nvme_check_size(void)
4827{
4828 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4829 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4830 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4831 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4832 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4833 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4834 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4835 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4836 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4837 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4838 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4839 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4840 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
354201c5
CH
4841 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4842 NVME_IDENTIFY_DATA_SIZE);
240e6ee2 4843 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4020aad8 4844 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
240e6ee2 4845 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5befc7c2 4846 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
81101540
CH
4847 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4848 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4849 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4850 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4020aad8 4851 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
81101540
CH
4852}
4853
4854
893a74b7 4855static int __init nvme_core_init(void)
5bae7f73 4856{
b227c59b 4857 int result = -ENOMEM;
5bae7f73 4858
81101540
CH
4859 _nvme_check_size();
4860
9a6327d2
SG
4861 nvme_wq = alloc_workqueue("nvme-wq",
4862 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4863 if (!nvme_wq)
b227c59b
RS
4864 goto out;
4865
4866 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4867 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4868 if (!nvme_reset_wq)
4869 goto destroy_wq;
4870
4871 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4872 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4873 if (!nvme_delete_wq)
4874 goto destroy_reset_wq;
9a6327d2 4875
f68abd9c
JG
4876 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4877 NVME_MINORS, "nvme");
f3ca80fc 4878 if (result < 0)
b227c59b 4879 goto destroy_delete_wq;
f3ca80fc 4880
ab21f3d9
RM
4881 result = class_register(&nvme_class);
4882 if (result)
f3ca80fc 4883 goto unregister_chrdev;
f3ca80fc 4884
ab21f3d9
RM
4885 result = class_register(&nvme_subsys_class);
4886 if (result)
ab9e00cc 4887 goto destroy_class;
2637baed
MI
4888
4889 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4890 "nvme-generic");
4891 if (result < 0)
4892 goto destroy_subsys_class;
4893
ab21f3d9
RM
4894 result = class_register(&nvme_ns_chr_class);
4895 if (result)
2637baed 4896 goto unregister_generic_ns;
ab21f3d9 4897
9d77eb52
HR
4898 result = nvme_init_auth();
4899 if (result)
706add13 4900 goto destroy_ns_chr;
5bae7f73 4901 return 0;
f3ca80fc 4902
e481fc0a 4903destroy_ns_chr:
ab21f3d9 4904 class_unregister(&nvme_ns_chr_class);
2637baed
MI
4905unregister_generic_ns:
4906 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4907destroy_subsys_class:
ab21f3d9 4908 class_unregister(&nvme_subsys_class);
ab9e00cc 4909destroy_class:
ab21f3d9 4910 class_unregister(&nvme_class);
9a6327d2 4911unregister_chrdev:
f68abd9c 4912 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
b227c59b
RS
4913destroy_delete_wq:
4914 destroy_workqueue(nvme_delete_wq);
4915destroy_reset_wq:
4916 destroy_workqueue(nvme_reset_wq);
9a6327d2
SG
4917destroy_wq:
4918 destroy_workqueue(nvme_wq);
b227c59b 4919out:
f3ca80fc 4920 return result;
5bae7f73
CH
4921}
4922
893a74b7 4923static void __exit nvme_core_exit(void)
5bae7f73 4924{
e481fc0a 4925 nvme_exit_auth();
ab21f3d9
RM
4926 class_unregister(&nvme_ns_chr_class);
4927 class_unregister(&nvme_subsys_class);
4928 class_unregister(&nvme_class);
2637baed 4929 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
f68abd9c 4930 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
b227c59b
RS
4931 destroy_workqueue(nvme_delete_wq);
4932 destroy_workqueue(nvme_reset_wq);
9a6327d2 4933 destroy_workqueue(nvme_wq);
2637baed 4934 ida_destroy(&nvme_ns_chr_minor_ida);
f41cfd5d 4935 ida_destroy(&nvme_instance_ida);
5bae7f73 4936}
576d55d6
ML
4937
4938MODULE_LICENSE("GPL");
4939MODULE_VERSION("1.0");
92b0b0ff 4940MODULE_DESCRIPTION("NVMe host core framework");
576d55d6
ML
4941module_init(nvme_core_init);
4942module_exit(nvme_core_exit);