wl12xx: reserve buffer for partition command in struct wl12xx
[linux-block.git] / drivers / net / wireless / wl12xx / spi.c
CommitLineData
2f01a1f5
KV
1/*
2 * This file is part of wl12xx
3 *
4 * Copyright (C) 2008 Nokia Corporation
5 *
6 * Contact: Kalle Valo <kalle.valo@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/crc7.h>
26#include <linux/spi/spi.h>
27
28#include "wl12xx.h"
29#include "wl12xx_80211.h"
30#include "reg.h"
31#include "spi.h"
32#include "ps.h"
33
34static int wl12xx_translate_reg_addr(struct wl12xx *wl, int addr)
35{
36 /* If the address is lower than REGISTERS_BASE, it means that this is
37 * a chip-specific register address, so look it up in the registers
38 * table */
39 if (addr < REGISTERS_BASE) {
40 /* Make sure we don't go over the table */
41 if (addr >= ACX_REG_TABLE_LEN) {
42 wl12xx_error("address out of range (%d)", addr);
43 return -EINVAL;
44 }
45 addr = wl->chip.acx_reg_table[addr];
46 }
47
48 return addr - wl->physical_reg_addr + wl->virtual_reg_addr;
49}
50
51static int wl12xx_translate_mem_addr(struct wl12xx *wl, int addr)
52{
53 return addr - wl->physical_mem_addr + wl->virtual_mem_addr;
54}
55
56
57void wl12xx_spi_reset(struct wl12xx *wl)
58{
59 u8 *cmd;
60 struct spi_transfer t;
61 struct spi_message m;
62
63 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
64 if (!cmd) {
65 wl12xx_error("could not allocate cmd for spi reset");
66 return;
67 }
68
69 memset(&t, 0, sizeof(t));
70 spi_message_init(&m);
71
72 memset(cmd, 0xff, WSPI_INIT_CMD_LEN);
73
74 t.tx_buf = cmd;
75 t.len = WSPI_INIT_CMD_LEN;
76 spi_message_add_tail(&t, &m);
77
78 spi_sync(wl->spi, &m);
79
80 wl12xx_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
81}
82
83void wl12xx_spi_init(struct wl12xx *wl)
84{
85 u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
86 struct spi_transfer t;
87 struct spi_message m;
88
89 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
90 if (!cmd) {
91 wl12xx_error("could not allocate cmd for spi init");
92 return;
93 }
94
95 memset(crc, 0, sizeof(crc));
96 memset(&t, 0, sizeof(t));
97 spi_message_init(&m);
98
99 /*
100 * Set WSPI_INIT_COMMAND
101 * the data is being send from the MSB to LSB
102 */
103 cmd[2] = 0xff;
104 cmd[3] = 0xff;
105 cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
106 cmd[0] = 0;
107 cmd[7] = 0;
108 cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
109 cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;
110
111 if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
112 cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY;
113 else
114 cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;
115
116 cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
117 | WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;
118
119 crc[0] = cmd[1];
120 crc[1] = cmd[0];
121 crc[2] = cmd[7];
122 crc[3] = cmd[6];
123 crc[4] = cmd[5];
124
125 cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
126 cmd[4] |= WSPI_INIT_CMD_END;
127
128 t.tx_buf = cmd;
129 t.len = WSPI_INIT_CMD_LEN;
130 spi_message_add_tail(&t, &m);
131
132 spi_sync(wl->spi, &m);
133
134 wl12xx_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
135}
136
137/* Set the SPI partitions to access the chip addresses
138 *
139 * There are two VIRTUAL (SPI) partitions (the memory partition and the
140 * registers partition), which are mapped to two different areas of the
141 * PHYSICAL (hardware) memory. This function also makes other checks to
142 * ensure that the partitions are not overlapping. In the diagram below, the
143 * memory partition comes before the register partition, but the opposite is
144 * also supported.
145 *
146 * PHYSICAL address
147 * space
148 *
149 * | |
150 * ...+----+--> mem_start
151 * VIRTUAL address ... | |
152 * space ... | | [PART_0]
153 * ... | |
154 * 0x00000000 <--+----+... ...+----+--> mem_start + mem_size
155 * | | ... | |
156 * |MEM | ... | |
157 * | | ... | |
158 * part_size <--+----+... | | {unused area)
159 * | | ... | |
160 * |REG | ... | |
161 * part_size | | ... | |
162 * + <--+----+... ...+----+--> reg_start
163 * reg_size ... | |
164 * ... | | [PART_1]
165 * ... | |
166 * ...+----+--> reg_start + reg_size
167 * | |
168 *
169 */
8d47cdb6 170int wl12xx_set_partition(struct wl12xx *wl,
2f01a1f5
KV
171 u32 mem_start, u32 mem_size,
172 u32 reg_start, u32 reg_size)
173{
2f01a1f5
KV
174 struct wl12xx_partition *partition;
175 struct spi_transfer t;
176 struct spi_message m;
8d47cdb6 177 size_t len, cmd_len;
2f01a1f5 178 u32 *cmd;
2f01a1f5
KV
179 int addr;
180
8d47cdb6
KV
181 cmd_len = sizeof(u32) + 2 * sizeof(struct wl12xx_partition);
182 cmd = kzalloc(cmd_len, GFP_KERNEL);
183 if (!cmd)
184 return -ENOMEM;
185
2f01a1f5
KV
186 spi_message_init(&m);
187 memset(&t, 0, sizeof(t));
2f01a1f5 188
8d47cdb6 189 partition = (struct wl12xx_partition *) (cmd + 1);
2f01a1f5
KV
190 addr = HW_ACCESS_PART0_SIZE_ADDR;
191 len = 2 * sizeof(struct wl12xx_partition);
192
193 *cmd |= WSPI_CMD_WRITE;
194 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
195 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
196
197 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
198 mem_start, mem_size);
199 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
200 reg_start, reg_size);
201
202 /* Make sure that the two partitions together don't exceed the
203 * address range */
204 if ((mem_size + reg_size) > HW_ACCESS_MEMORY_MAX_RANGE) {
205 wl12xx_debug(DEBUG_SPI, "Total size exceeds maximum virtual"
206 " address range. Truncating partition[0].");
207 mem_size = HW_ACCESS_MEMORY_MAX_RANGE - reg_size;
208 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
209 mem_start, mem_size);
210 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
211 reg_start, reg_size);
212 }
213
214 if ((mem_start < reg_start) &&
215 ((mem_start + mem_size) > reg_start)) {
216 /* Guarantee that the memory partition doesn't overlap the
217 * registers partition */
218 wl12xx_debug(DEBUG_SPI, "End of partition[0] is "
219 "overlapping partition[1]. Adjusted.");
220 mem_size = reg_start - mem_start;
221 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
222 mem_start, mem_size);
223 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
224 reg_start, reg_size);
225 } else if ((reg_start < mem_start) &&
226 ((reg_start + reg_size) > mem_start)) {
227 /* Guarantee that the register partition doesn't overlap the
228 * memory partition */
229 wl12xx_debug(DEBUG_SPI, "End of partition[1] is"
230 " overlapping partition[0]. Adjusted.");
231 reg_size = mem_start - reg_start;
232 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
233 mem_start, mem_size);
234 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
235 reg_start, reg_size);
236 }
237
238 partition[0].start = mem_start;
239 partition[0].size = mem_size;
240 partition[1].start = reg_start;
241 partition[1].size = reg_size;
242
243 wl->physical_mem_addr = mem_start;
244 wl->physical_reg_addr = reg_start;
245
246 wl->virtual_mem_addr = 0;
247 wl->virtual_reg_addr = mem_size;
248
8d47cdb6
KV
249 t.tx_buf = cmd;
250 t.len = cmd_len;
2f01a1f5
KV
251 spi_message_add_tail(&t, &m);
252
253 spi_sync(wl->spi, &m);
8d47cdb6
KV
254
255 kfree(cmd);
256
257 return 0;
2f01a1f5
KV
258}
259
260void wl12xx_spi_read(struct wl12xx *wl, int addr, void *buf,
261 size_t len)
262{
263 struct spi_transfer t[3];
264 struct spi_message m;
265 char busy_buf[TNETWIF_READ_OFFSET_BYTES];
266 u32 cmd;
267
268 cmd = 0;
269 cmd |= WSPI_CMD_READ;
270 cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
271 cmd |= addr & WSPI_CMD_BYTE_ADDR;
272
273 spi_message_init(&m);
274 memset(t, 0, sizeof(t));
275
276 t[0].tx_buf = &cmd;
277 t[0].len = 4;
278 spi_message_add_tail(&t[0], &m);
279
280 /* Busy and non busy words read */
281 t[1].rx_buf = busy_buf;
282 t[1].len = TNETWIF_READ_OFFSET_BYTES;
283 spi_message_add_tail(&t[1], &m);
284
285 t[2].rx_buf = buf;
286 t[2].len = len;
287 spi_message_add_tail(&t[2], &m);
288
289 spi_sync(wl->spi, &m);
290
291 /* FIXME: check busy words */
292
293 wl12xx_dump(DEBUG_SPI, "spi_read cmd -> ", &cmd, sizeof(cmd));
294 wl12xx_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
295}
296
297void wl12xx_spi_write(struct wl12xx *wl, int addr, void *buf,
298 size_t len)
299{
300 struct spi_transfer t[2];
301 struct spi_message m;
302 u32 cmd;
303
304 cmd = 0;
305 cmd |= WSPI_CMD_WRITE;
306 cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
307 cmd |= addr & WSPI_CMD_BYTE_ADDR;
308
309 spi_message_init(&m);
310 memset(t, 0, sizeof(t));
311
312 t[0].tx_buf = &cmd;
313 t[0].len = sizeof(cmd);
314 spi_message_add_tail(&t[0], &m);
315
316 t[1].tx_buf = buf;
317 t[1].len = len;
318 spi_message_add_tail(&t[1], &m);
319
320 spi_sync(wl->spi, &m);
321
322 wl12xx_dump(DEBUG_SPI, "spi_write cmd -> ", &cmd, sizeof(cmd));
323 wl12xx_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
324}
325
326void wl12xx_spi_mem_read(struct wl12xx *wl, int addr, void *buf,
327 size_t len)
328{
329 int physical;
330
331 physical = wl12xx_translate_mem_addr(wl, addr);
332
333 wl12xx_spi_read(wl, physical, buf, len);
334}
335
336void wl12xx_spi_mem_write(struct wl12xx *wl, int addr, void *buf,
337 size_t len)
338{
339 int physical;
340
341 physical = wl12xx_translate_mem_addr(wl, addr);
342
343 wl12xx_spi_write(wl, physical, buf, len);
344}
345
346u32 wl12xx_mem_read32(struct wl12xx *wl, int addr)
347{
348 return wl12xx_read32(wl, wl12xx_translate_mem_addr(wl, addr));
349}
350
351void wl12xx_mem_write32(struct wl12xx *wl, int addr, u32 val)
352{
353 wl12xx_write32(wl, wl12xx_translate_mem_addr(wl, addr), val);
354}
355
356u32 wl12xx_reg_read32(struct wl12xx *wl, int addr)
357{
358 return wl12xx_read32(wl, wl12xx_translate_reg_addr(wl, addr));
359}
360
361void wl12xx_reg_write32(struct wl12xx *wl, int addr, u32 val)
362{
363 wl12xx_write32(wl, wl12xx_translate_reg_addr(wl, addr), val);
364}