rt2x00: Optimize configuration handling
[linux-block.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
CommitLineData
95ea3627 1/*
811aa9ca 2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
95ea3627
ID
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
25 */
26
95ea3627
ID
27#include <linux/delay.h>
28#include <linux/etherdevice.h>
29#include <linux/init.h>
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/pci.h>
33#include <linux/eeprom_93cx6.h>
34
35#include "rt2x00.h"
36#include "rt2x00pci.h"
37#include "rt2500pci.h"
38
39/*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
0e14f6d3 52static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
53{
54 u32 reg;
55 unsigned int i;
56
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
62 }
63
64 return reg;
65}
66
0e14f6d3 67static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
68 const unsigned int word, const u8 value)
69{
70 u32 reg;
71
72 /*
73 * Wait until the BBP becomes ready.
74 */
75 reg = rt2500pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
79 }
80
81 /*
82 * Write the data into the BBP.
83 */
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91}
92
0e14f6d3 93static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
94 const unsigned int word, u8 *value)
95{
96 u32 reg;
97
98 /*
99 * Wait until the BBP becomes ready.
100 */
101 reg = rt2500pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
105 }
106
107 /*
108 * Write the request into the BBP.
109 */
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117 /*
118 * Wait until the BBP becomes ready.
119 */
120 reg = rt2500pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
125 }
126
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128}
129
0e14f6d3 130static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
131 const unsigned int word, const u32 value)
132{
133 u32 reg;
134 unsigned int i;
135
136 if (!word)
137 return;
138
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
144 }
145
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
148
149rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
158}
159
160static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161{
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
164
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173}
174
175static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176{
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
179
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
186
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188}
189
190#ifdef CONFIG_RT2X00_LIB_DEBUGFS
191#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
0e14f6d3 193static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
194 const unsigned int word, u32 *data)
195{
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197}
198
0e14f6d3 199static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
200 const unsigned int word, u32 data)
201{
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203}
204
205static const struct rt2x00debug rt2500pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2500pci_read_csr,
209 .write = rt2500pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
212 },
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
218 },
219 .bbp = {
220 .read = rt2500pci_bbp_read,
221 .write = rt2500pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
224 },
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2500pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
230 },
231};
232#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
58169529 234#ifdef CONFIG_RT2X00_LIB_RFKILL
95ea3627
ID
235static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236{
237 u32 reg;
238
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241}
81873e9c
ID
242#else
243#define rt2500pci_rfkill_poll NULL
58169529 244#endif /* CONFIG_RT2X00_LIB_RFKILL */
95ea3627 245
771fd565 246#ifdef CONFIG_RT2X00_LIB_LEDS
a2e1d52a 247static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
a9450b70
ID
248 enum led_brightness brightness)
249{
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
a9450b70
ID
253 u32 reg;
254
255 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
256
a2e1d52a 257 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
a9450b70 258 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
a2e1d52a
ID
259 else if (led->type == LED_TYPE_ACTIVITY)
260 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
a9450b70
ID
261
262 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
263}
a2e1d52a
ID
264
265static int rt2500pci_blink_set(struct led_classdev *led_cdev,
266 unsigned long *delay_on,
267 unsigned long *delay_off)
268{
269 struct rt2x00_led *led =
270 container_of(led_cdev, struct rt2x00_led, led_dev);
271 u32 reg;
272
273 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
274 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
275 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
276 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
277
278 return 0;
279}
475433be
ID
280
281static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
282 struct rt2x00_led *led,
283 enum led_type type)
284{
285 led->rt2x00dev = rt2x00dev;
286 led->type = type;
287 led->led_dev.brightness_set = rt2500pci_brightness_set;
288 led->led_dev.blink_set = rt2500pci_blink_set;
289 led->flags = LED_INITIALIZED;
290}
771fd565 291#endif /* CONFIG_RT2X00_LIB_LEDS */
a9450b70 292
95ea3627
ID
293/*
294 * Configuration handlers.
295 */
3a643d24
ID
296static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
297 const unsigned int filter_flags)
298{
299 u32 reg;
300
301 /*
302 * Start configuration steps.
303 * Note that the version error will always be dropped
304 * and broadcast frames will always be accepted since
305 * there is no filter for it at this time.
306 */
307 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
308 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
309 !(filter_flags & FIF_FCSFAIL));
310 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
311 !(filter_flags & FIF_PLCPFAIL));
312 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
313 !(filter_flags & FIF_CONTROL));
314 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
315 !(filter_flags & FIF_PROMISC_IN_BSS));
316 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
e0b005fa
ID
317 !(filter_flags & FIF_PROMISC_IN_BSS) &&
318 !rt2x00dev->intf_ap_count);
3a643d24
ID
319 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
320 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
321 !(filter_flags & FIF_ALLMULTI));
322 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
323 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
324}
325
6bb40dd1
ID
326static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
327 struct rt2x00_intf *intf,
328 struct rt2x00intf_conf *conf,
329 const unsigned int flags)
95ea3627 330{
e58c6aca 331 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
6bb40dd1 332 unsigned int bcn_preload;
95ea3627
ID
333 u32 reg;
334
6bb40dd1 335 if (flags & CONFIG_UPDATE_TYPE) {
6bb40dd1
ID
336 /*
337 * Enable beacon config
338 */
339 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
340 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
341 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
342 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
343 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
95ea3627 344
6bb40dd1
ID
345 /*
346 * Enable synchronisation.
347 */
348 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
fd3c91c5 349 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
6bb40dd1 350 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
fd3c91c5 351 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
6bb40dd1
ID
352 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
353 }
354
355 if (flags & CONFIG_UPDATE_MAC)
356 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
357 conf->mac, sizeof(conf->mac));
358
359 if (flags & CONFIG_UPDATE_BSSID)
360 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
361 conf->bssid, sizeof(conf->bssid));
95ea3627
ID
362}
363
3a643d24
ID
364static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
365 struct rt2x00lib_erp *erp)
95ea3627 366{
5c58ee51 367 int preamble_mask;
95ea3627 368 u32 reg;
95ea3627 369
5c58ee51
ID
370 /*
371 * When short preamble is enabled, we should set bit 0x08
372 */
72810379 373 preamble_mask = erp->short_preamble << 3;
95ea3627
ID
374
375 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
72810379
ID
376 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
377 erp->ack_timeout);
378 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
379 erp->ack_consume_time);
95ea3627
ID
380 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
381
95ea3627 382 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
44a9809b 383 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
95ea3627
ID
384 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
385 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
386 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
387
388 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
5c58ee51 389 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
95ea3627
ID
390 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
391 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
392 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
393
394 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
5c58ee51 395 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
95ea3627
ID
396 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
397 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
398 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
399
400 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
5c58ee51 401 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
95ea3627
ID
402 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
403 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
404 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
e4ea1c40
ID
405
406 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
407
408 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
409 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
410 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
411
412 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
413 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
414 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
415 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
416
417 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
418 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
419 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
420 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
95ea3627
ID
421}
422
e4ea1c40
ID
423static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
424 struct antenna_setup *ant)
95ea3627 425{
e4ea1c40
ID
426 u32 reg;
427 u8 r14;
428 u8 r2;
429
430 /*
431 * We should never come here because rt2x00lib is supposed
432 * to catch this and send us the correct antenna explicitely.
433 */
434 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
435 ant->tx == ANTENNA_SW_DIVERSITY);
436
437 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
438 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
439 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
440
441 /*
442 * Configure the TX antenna.
443 */
444 switch (ant->tx) {
445 case ANTENNA_A:
446 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
447 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
448 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
449 break;
450 case ANTENNA_B:
451 default:
452 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
453 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
454 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
455 break;
456 }
457
458 /*
459 * Configure the RX antenna.
460 */
461 switch (ant->rx) {
462 case ANTENNA_A:
463 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
464 break;
465 case ANTENNA_B:
466 default:
467 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
468 break;
469 }
470
471 /*
472 * RT2525E and RT5222 need to flip TX I/Q
473 */
474 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
475 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
476 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
477 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
478 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
479
480 /*
481 * RT2525E does not need RX I/Q Flip.
482 */
483 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
484 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
485 } else {
486 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
487 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
488 }
489
490 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
491 rt2500pci_bbp_write(rt2x00dev, 14, r14);
492 rt2500pci_bbp_write(rt2x00dev, 2, r2);
95ea3627
ID
493}
494
495static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
5c58ee51 496 struct rf_channel *rf, const int txpower)
95ea3627 497{
95ea3627
ID
498 u8 r70;
499
95ea3627
ID
500 /*
501 * Set TXpower.
502 */
5c58ee51 503 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
95ea3627
ID
504
505 /*
506 * Switch on tuning bits.
507 * For RT2523 devices we do not need to update the R1 register.
508 */
509 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
5c58ee51
ID
510 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
511 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
95ea3627
ID
512
513 /*
514 * For RT2525 we should first set the channel to half band higher.
515 */
516 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
517 static const u32 vals[] = {
518 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
519 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
520 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
521 0x00080d2e, 0x00080d3a
522 };
523
5c58ee51
ID
524 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
525 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
526 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
527 if (rf->rf4)
528 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
95ea3627
ID
529 }
530
5c58ee51
ID
531 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
532 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
533 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
534 if (rf->rf4)
535 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
95ea3627
ID
536
537 /*
538 * Channel 14 requires the Japan filter bit to be set.
539 */
540 r70 = 0x46;
5c58ee51 541 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
95ea3627
ID
542 rt2500pci_bbp_write(rt2x00dev, 70, r70);
543
544 msleep(1);
545
546 /*
547 * Switch off tuning bits.
548 * For RT2523 devices we do not need to update the R1 register.
549 */
550 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
5c58ee51
ID
551 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
552 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
95ea3627
ID
553 }
554
5c58ee51
ID
555 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
556 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
95ea3627
ID
557
558 /*
559 * Clear false CRC during channel switch.
560 */
5c58ee51 561 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
95ea3627
ID
562}
563
564static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
565 const int txpower)
566{
567 u32 rf3;
568
569 rt2x00_rf_read(rt2x00dev, 3, &rf3);
570 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
571 rt2500pci_rf_write(rt2x00dev, 3, rf3);
572}
573
e4ea1c40
ID
574static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
575 struct rt2x00lib_conf *libconf)
95ea3627
ID
576{
577 u32 reg;
95ea3627 578
e4ea1c40
ID
579 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
580 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
581 libconf->conf->long_frame_max_tx_count);
582 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
583 libconf->conf->short_frame_max_tx_count);
584 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
95ea3627
ID
585}
586
587static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
5c58ee51 588 struct rt2x00lib_conf *libconf)
95ea3627
ID
589{
590 u32 reg;
591
95ea3627
ID
592 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
593 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
594 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
595 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
596
597 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
5c58ee51
ID
598 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
599 libconf->conf->beacon_int * 16);
600 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
601 libconf->conf->beacon_int * 16);
95ea3627
ID
602 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
603}
604
605static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
6bb40dd1
ID
606 struct rt2x00lib_conf *libconf,
607 const unsigned int flags)
95ea3627 608{
e4ea1c40 609 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
5c58ee51
ID
610 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
611 libconf->conf->power_level);
e4ea1c40
ID
612 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
613 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
5c58ee51
ID
614 rt2500pci_config_txpower(rt2x00dev,
615 libconf->conf->power_level);
e4ea1c40
ID
616 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
617 rt2500pci_config_retry_limit(rt2x00dev, libconf);
618 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
5c58ee51 619 rt2500pci_config_duration(rt2x00dev, libconf);
95ea3627
ID
620}
621
95ea3627
ID
622/*
623 * Link tuning
624 */
ebcf26da
ID
625static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
626 struct link_qual *qual)
95ea3627
ID
627{
628 u32 reg;
629
630 /*
631 * Update FCS error count from register.
632 */
633 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
ebcf26da 634 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
95ea3627
ID
635
636 /*
637 * Update False CCA count from register.
638 */
639 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
ebcf26da 640 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
95ea3627
ID
641}
642
643static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
644{
645 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
646 rt2x00dev->link.vgc_level = 0x48;
647}
648
649static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
650{
651 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
652 u8 r17;
653
654 /*
655 * To prevent collisions with MAC ASIC on chipsets
656 * up to version C the link tuning should halt after 20
6bb40dd1 657 * seconds while being associated.
95ea3627 658 */
755a957d 659 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
6bb40dd1 660 rt2x00dev->intf_associated &&
95ea3627
ID
661 rt2x00dev->link.count > 20)
662 return;
663
664 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
665
666 /*
667 * Chipset versions C and lower should directly continue
6bb40dd1
ID
668 * to the dynamic CCA tuning. Chipset version D and higher
669 * should go straight to dynamic CCA tuning when they
670 * are not associated.
95ea3627 671 */
6bb40dd1
ID
672 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
673 !rt2x00dev->intf_associated)
95ea3627
ID
674 goto dynamic_cca_tune;
675
676 /*
677 * A too low RSSI will cause too much false CCA which will
678 * then corrupt the R17 tuning. To remidy this the tuning should
679 * be stopped (While making sure the R17 value will not exceed limits)
680 */
681 if (rssi < -80 && rt2x00dev->link.count > 20) {
682 if (r17 >= 0x41) {
683 r17 = rt2x00dev->link.vgc_level;
684 rt2500pci_bbp_write(rt2x00dev, 17, r17);
685 }
686 return;
687 }
688
689 /*
690 * Special big-R17 for short distance
691 */
692 if (rssi >= -58) {
693 if (r17 != 0x50)
694 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
695 return;
696 }
697
698 /*
699 * Special mid-R17 for middle distance
700 */
701 if (rssi >= -74) {
702 if (r17 != 0x41)
703 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
704 return;
705 }
706
707 /*
708 * Leave short or middle distance condition, restore r17
709 * to the dynamic tuning range.
710 */
711 if (r17 >= 0x41) {
712 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
713 return;
714 }
715
716dynamic_cca_tune:
717
718 /*
719 * R17 is inside the dynamic tuning range,
720 * start tuning the link based on the false cca counter.
721 */
ebcf26da 722 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
95ea3627
ID
723 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
724 rt2x00dev->link.vgc_level = r17;
ebcf26da 725 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
95ea3627
ID
726 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
727 rt2x00dev->link.vgc_level = r17;
728 }
729}
730
731/*
732 * Initialization functions.
733 */
837e7f24 734static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
181d6902 735 struct queue_entry *entry)
95ea3627 736{
b8be63ff 737 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
c4da0048 738 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
95ea3627
ID
739 u32 word;
740
b8be63ff 741 rt2x00_desc_read(entry_priv->desc, 1, &word);
c4da0048 742 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
b8be63ff 743 rt2x00_desc_write(entry_priv->desc, 1, word);
95ea3627 744
b8be63ff 745 rt2x00_desc_read(entry_priv->desc, 0, &word);
837e7f24 746 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
b8be63ff 747 rt2x00_desc_write(entry_priv->desc, 0, word);
95ea3627
ID
748}
749
837e7f24 750static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
181d6902 751 struct queue_entry *entry)
95ea3627 752{
b8be63ff 753 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
754 u32 word;
755
b8be63ff 756 rt2x00_desc_read(entry_priv->desc, 0, &word);
837e7f24
ID
757 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
758 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
b8be63ff 759 rt2x00_desc_write(entry_priv->desc, 0, word);
95ea3627
ID
760}
761
181d6902 762static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
95ea3627 763{
b8be63ff 764 struct queue_entry_priv_pci *entry_priv;
95ea3627
ID
765 u32 reg;
766
95ea3627
ID
767 /*
768 * Initialize registers.
769 */
770 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
181d6902
ID
771 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
772 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
773 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
774 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
95ea3627
ID
775 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
776
b8be63ff 777 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
95ea3627 778 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
30b3a23c 779 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
b8be63ff 780 entry_priv->desc_dma);
95ea3627
ID
781 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
782
b8be63ff 783 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
95ea3627 784 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
30b3a23c 785 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
b8be63ff 786 entry_priv->desc_dma);
95ea3627
ID
787 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
788
b8be63ff 789 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
95ea3627 790 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
30b3a23c 791 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
b8be63ff 792 entry_priv->desc_dma);
95ea3627
ID
793 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
794
b8be63ff 795 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
95ea3627 796 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
30b3a23c 797 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
b8be63ff 798 entry_priv->desc_dma);
95ea3627
ID
799 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
800
801 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
802 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
181d6902 803 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
95ea3627
ID
804 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
805
b8be63ff 806 entry_priv = rt2x00dev->rx->entries[0].priv_data;
95ea3627 807 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
b8be63ff
ID
808 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
809 entry_priv->desc_dma);
95ea3627
ID
810 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
811
812 return 0;
813}
814
815static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
816{
817 u32 reg;
818
819 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
820 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
821 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
822 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
823
824 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
825 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
826 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
827 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
828 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
829
830 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
831 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
832 rt2x00dev->rx->data_size / 128);
833 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
834
835 /*
836 * Always use CWmin and CWmax set in descriptor.
837 */
838 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
839 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
840 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
841
1f909162
ID
842 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
843 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
844 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
845 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
846 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
847 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
848 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
849 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
850 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
851 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
852
95ea3627
ID
853 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
854
855 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
856 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
857 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
858 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
859 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
860 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
861 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
862 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
863 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
864 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
865
866 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
867 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
868 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
869 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
870 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
871 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
872
873 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
874 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
875 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
876 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
877 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
878 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
879
880 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
881 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
882 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
883 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
884 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
885 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
886
887 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
888 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
889 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
890 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
891 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
892 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
893 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
894 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
895 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
896 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
897
898 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
899 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
900 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
901 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
902 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
903 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
904 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
905 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
906 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
907
908 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
909
910 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
911 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
912
913 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
914 return -EBUSY;
915
916 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
917 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
918
919 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
920 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
921 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
922
923 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
924 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
925 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
926 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
927 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
928 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
929 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
930 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
931
932 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
933
934 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
935
936 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
937 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
938 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
939 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
940 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
941
942 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
943 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
944 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
945 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
946
947 /*
948 * We must clear the FCS and FIFO error count.
949 * These registers are cleared on read,
950 * so we may pass a useless variable to store the value.
951 */
952 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
953 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
954
955 return 0;
956}
957
2b08da3f 958static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
959{
960 unsigned int i;
95ea3627
ID
961 u8 value;
962
963 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
964 rt2500pci_bbp_read(rt2x00dev, 0, &value);
965 if ((value != 0xff) && (value != 0x00))
2b08da3f 966 return 0;
95ea3627
ID
967 udelay(REGISTER_BUSY_DELAY);
968 }
969
970 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
971 return -EACCES;
2b08da3f
ID
972}
973
974static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
975{
976 unsigned int i;
977 u16 eeprom;
978 u8 reg_id;
979 u8 value;
980
981 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
982 return -EACCES;
95ea3627 983
95ea3627
ID
984 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
985 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
986 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
987 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
988 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
989 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
990 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
991 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
992 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
993 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
994 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
995 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
996 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
997 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
998 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
999 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1000 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1001 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1002 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1003 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1004 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1005 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1006 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1007 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1008 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1009 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1010 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1011 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1012 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1013 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1014
95ea3627
ID
1015 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1016 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1017
1018 if (eeprom != 0xffff && eeprom != 0x0000) {
1019 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1020 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
95ea3627
ID
1021 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1022 }
1023 }
95ea3627
ID
1024
1025 return 0;
1026}
1027
1028/*
1029 * Device state switch handlers.
1030 */
1031static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1032 enum dev_state state)
1033{
1034 u32 reg;
1035
1036 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1037 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
2b08da3f
ID
1038 (state == STATE_RADIO_RX_OFF) ||
1039 (state == STATE_RADIO_RX_OFF_LINK));
95ea3627
ID
1040 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1041}
1042
1043static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1044 enum dev_state state)
1045{
1046 int mask = (state == STATE_RADIO_IRQ_OFF);
1047 u32 reg;
1048
1049 /*
1050 * When interrupts are being enabled, the interrupt registers
1051 * should clear the register to assure a clean state.
1052 */
1053 if (state == STATE_RADIO_IRQ_ON) {
1054 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1055 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1056 }
1057
1058 /*
1059 * Only toggle the interrupts bits we are going to use.
1060 * Non-checked interrupt bits are disabled by default.
1061 */
1062 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1063 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1064 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1065 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1066 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1067 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1068 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1069}
1070
1071static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1072{
1073 /*
1074 * Initialize all registers.
1075 */
2b08da3f
ID
1076 if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1077 rt2500pci_init_registers(rt2x00dev) ||
1078 rt2500pci_init_bbp(rt2x00dev)))
95ea3627 1079 return -EIO;
95ea3627 1080
95ea3627
ID
1081 return 0;
1082}
1083
1084static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1085{
1086 u32 reg;
1087
95ea3627
ID
1088 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1089
1090 /*
1091 * Disable synchronisation.
1092 */
1093 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1094
1095 /*
1096 * Cancel RX and TX.
1097 */
1098 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1099 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1100 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
95ea3627
ID
1101}
1102
1103static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1104 enum dev_state state)
1105{
1106 u32 reg;
1107 unsigned int i;
1108 char put_to_sleep;
1109 char bbp_state;
1110 char rf_state;
1111
1112 put_to_sleep = (state != STATE_AWAKE);
1113
1114 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1115 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1116 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1117 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1118 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1119 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1120
1121 /*
1122 * Device is not guaranteed to be in the requested state yet.
1123 * We must wait until the register indicates that the
1124 * device has entered the correct state.
1125 */
1126 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1127 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1128 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1129 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1130 if (bbp_state == state && rf_state == state)
1131 return 0;
1132 msleep(10);
1133 }
1134
95ea3627
ID
1135 return -EBUSY;
1136}
1137
1138static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1139 enum dev_state state)
1140{
1141 int retval = 0;
1142
1143 switch (state) {
1144 case STATE_RADIO_ON:
1145 retval = rt2500pci_enable_radio(rt2x00dev);
1146 break;
1147 case STATE_RADIO_OFF:
1148 rt2500pci_disable_radio(rt2x00dev);
1149 break;
1150 case STATE_RADIO_RX_ON:
61667d8d 1151 case STATE_RADIO_RX_ON_LINK:
95ea3627 1152 case STATE_RADIO_RX_OFF:
61667d8d 1153 case STATE_RADIO_RX_OFF_LINK:
2b08da3f
ID
1154 rt2500pci_toggle_rx(rt2x00dev, state);
1155 break;
1156 case STATE_RADIO_IRQ_ON:
1157 case STATE_RADIO_IRQ_OFF:
1158 rt2500pci_toggle_irq(rt2x00dev, state);
95ea3627
ID
1159 break;
1160 case STATE_DEEP_SLEEP:
1161 case STATE_SLEEP:
1162 case STATE_STANDBY:
1163 case STATE_AWAKE:
1164 retval = rt2500pci_set_state(rt2x00dev, state);
1165 break;
1166 default:
1167 retval = -ENOTSUPP;
1168 break;
1169 }
1170
2b08da3f
ID
1171 if (unlikely(retval))
1172 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1173 state, retval);
1174
95ea3627
ID
1175 return retval;
1176}
1177
1178/*
1179 * TX descriptor initialization
1180 */
1181static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
dd3193e1 1182 struct sk_buff *skb,
61486e0f 1183 struct txentry_desc *txdesc)
95ea3627 1184{
181d6902 1185 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
b8be63ff 1186 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
dd3193e1 1187 __le32 *txd = skbdesc->desc;
95ea3627
ID
1188 u32 word;
1189
1190 /*
1191 * Start writing the descriptor words.
1192 */
4de36fe5 1193 rt2x00_desc_read(entry_priv->desc, 1, &word);
c4da0048 1194 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
4de36fe5
GW
1195 rt2x00_desc_write(entry_priv->desc, 1, word);
1196
95ea3627
ID
1197 rt2x00_desc_read(txd, 2, &word);
1198 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
181d6902
ID
1199 rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1200 rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1201 rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
95ea3627
ID
1202 rt2x00_desc_write(txd, 2, word);
1203
1204 rt2x00_desc_read(txd, 3, &word);
181d6902
ID
1205 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1206 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1207 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1208 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
95ea3627
ID
1209 rt2x00_desc_write(txd, 3, word);
1210
1211 rt2x00_desc_read(txd, 10, &word);
1212 rt2x00_set_field32(&word, TXD_W10_RTS,
181d6902 1213 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
95ea3627
ID
1214 rt2x00_desc_write(txd, 10, word);
1215
1216 rt2x00_desc_read(txd, 0, &word);
1217 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1218 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1219 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
181d6902 1220 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95ea3627 1221 rt2x00_set_field32(&word, TXD_W0_ACK,
181d6902 1222 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
95ea3627 1223 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
181d6902 1224 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
95ea3627 1225 rt2x00_set_field32(&word, TXD_W0_OFDM,
181d6902 1226 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
95ea3627 1227 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
181d6902 1228 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
95ea3627 1229 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
61486e0f 1230 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
bf4634af 1231 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
95ea3627
ID
1232 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1233 rt2x00_desc_write(txd, 0, word);
1234}
1235
1236/*
1237 * TX data initialization
1238 */
bd88a781
ID
1239static void rt2500pci_write_beacon(struct queue_entry *entry)
1240{
1241 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1242 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1243 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1244 u32 word;
1245 u32 reg;
1246
1247 /*
1248 * Disable beaconing while we are reloading the beacon data,
1249 * otherwise we might be sending out invalid data.
1250 */
1251 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1252 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1253 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1254 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1255 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1256
1257 /*
1258 * Replace rt2x00lib allocated descriptor with the
1259 * pointer to the _real_ hardware descriptor.
1260 * After that, map the beacon to DMA and update the
1261 * descriptor.
1262 */
1263 memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1264 skbdesc->desc = entry_priv->desc;
1265
1266 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1267
1268 rt2x00_desc_read(entry_priv->desc, 1, &word);
1269 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1270 rt2x00_desc_write(entry_priv->desc, 1, word);
1271}
1272
95ea3627 1273static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
e58c6aca 1274 const enum data_queue_qid queue)
95ea3627
ID
1275{
1276 u32 reg;
1277
e58c6aca 1278 if (queue == QID_BEACON) {
95ea3627
ID
1279 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1280 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
8af244cc
ID
1281 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1282 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
95ea3627
ID
1283 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1284 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1285 }
1286 return;
1287 }
1288
1289 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
e58c6aca
ID
1290 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1291 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1292 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
95ea3627
ID
1293 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1294}
1295
1296/*
1297 * RX control handlers
1298 */
181d6902
ID
1299static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1300 struct rxdone_entry_desc *rxdesc)
95ea3627 1301{
b8be63ff 1302 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1303 u32 word0;
1304 u32 word2;
1305
b8be63ff
ID
1306 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1307 rt2x00_desc_read(entry_priv->desc, 2, &word2);
95ea3627 1308
4150c572 1309 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
181d6902 1310 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
4150c572 1311 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
181d6902
ID
1312 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1313
89993890
ID
1314 /*
1315 * Obtain the status about this packet.
1316 * When frame was received with an OFDM bitrate,
1317 * the signal is the PLCP value. If it was received with
1318 * a CCK bitrate the signal is the rate in 100kbit/s.
1319 */
181d6902
ID
1320 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1321 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1322 entry->queue->rt2x00dev->rssi_offset;
181d6902 1323 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
19d30e02 1324
19d30e02
ID
1325 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1326 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
6c6aa3c0
ID
1327 else
1328 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
19d30e02
ID
1329 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1330 rxdesc->dev_flags |= RXDONE_MY_BSS;
95ea3627
ID
1331}
1332
1333/*
1334 * Interrupt functions.
1335 */
181d6902 1336static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
e58c6aca 1337 const enum data_queue_qid queue_idx)
95ea3627 1338{
181d6902 1339 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
b8be63ff 1340 struct queue_entry_priv_pci *entry_priv;
181d6902
ID
1341 struct queue_entry *entry;
1342 struct txdone_entry_desc txdesc;
95ea3627 1343 u32 word;
95ea3627 1344
181d6902
ID
1345 while (!rt2x00queue_empty(queue)) {
1346 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
b8be63ff
ID
1347 entry_priv = entry->priv_data;
1348 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627
ID
1349
1350 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1351 !rt2x00_get_field32(word, TXD_W0_VALID))
1352 break;
1353
1354 /*
1355 * Obtain the status about this packet.
1356 */
fb55f4d1
ID
1357 txdesc.flags = 0;
1358 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1359 case 0: /* Success */
1360 case 1: /* Success with retry */
1361 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1362 break;
1363 case 2: /* Failure, excessive retries */
1364 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1365 /* Don't break, this is a failed frame! */
1366 default: /* Failure */
1367 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1368 }
181d6902 1369 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
95ea3627 1370
d74f5ba4 1371 rt2x00lib_txdone(entry, &txdesc);
95ea3627 1372 }
95ea3627
ID
1373}
1374
1375static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1376{
1377 struct rt2x00_dev *rt2x00dev = dev_instance;
1378 u32 reg;
1379
1380 /*
1381 * Get the interrupt sources & saved to local variable.
1382 * Write register value back to clear pending interrupts.
1383 */
1384 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1385 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1386
1387 if (!reg)
1388 return IRQ_NONE;
1389
0262ab0d 1390 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
95ea3627
ID
1391 return IRQ_HANDLED;
1392
1393 /*
1394 * Handle interrupts, walk through all bits
1395 * and run the tasks, the bits are checked in order of
1396 * priority.
1397 */
1398
1399 /*
1400 * 1 - Beacon timer expired interrupt.
1401 */
1402 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1403 rt2x00lib_beacondone(rt2x00dev);
1404
1405 /*
1406 * 2 - Rx ring done interrupt.
1407 */
1408 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1409 rt2x00pci_rxdone(rt2x00dev);
1410
1411 /*
1412 * 3 - Atim ring transmit done interrupt.
1413 */
1414 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
e58c6aca 1415 rt2500pci_txdone(rt2x00dev, QID_ATIM);
95ea3627
ID
1416
1417 /*
1418 * 4 - Priority ring transmit done interrupt.
1419 */
1420 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
e58c6aca 1421 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
95ea3627
ID
1422
1423 /*
1424 * 5 - Tx ring transmit done interrupt.
1425 */
1426 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
e58c6aca 1427 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
95ea3627
ID
1428
1429 return IRQ_HANDLED;
1430}
1431
1432/*
1433 * Device probe functions.
1434 */
1435static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1436{
1437 struct eeprom_93cx6 eeprom;
1438 u32 reg;
1439 u16 word;
1440 u8 *mac;
1441
1442 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1443
1444 eeprom.data = rt2x00dev;
1445 eeprom.register_read = rt2500pci_eepromregister_read;
1446 eeprom.register_write = rt2500pci_eepromregister_write;
1447 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1448 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1449 eeprom.reg_data_in = 0;
1450 eeprom.reg_data_out = 0;
1451 eeprom.reg_data_clock = 0;
1452 eeprom.reg_chip_select = 0;
1453
1454 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1455 EEPROM_SIZE / sizeof(u16));
1456
1457 /*
1458 * Start validation of the data that has been read.
1459 */
1460 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1461 if (!is_valid_ether_addr(mac)) {
1462 random_ether_addr(mac);
e174961c 1463 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
95ea3627
ID
1464 }
1465
1466 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1467 if (word == 0xffff) {
1468 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
362f3b6b
ID
1469 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1470 ANTENNA_SW_DIVERSITY);
1471 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1472 ANTENNA_SW_DIVERSITY);
1473 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1474 LED_MODE_DEFAULT);
95ea3627
ID
1475 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1476 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1477 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1478 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1479 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1480 }
1481
1482 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1483 if (word == 0xffff) {
1484 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1485 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1486 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1487 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1488 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1489 }
1490
1491 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1492 if (word == 0xffff) {
1493 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1494 DEFAULT_RSSI_OFFSET);
1495 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1496 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1497 }
1498
1499 return 0;
1500}
1501
1502static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1503{
1504 u32 reg;
1505 u16 value;
1506 u16 eeprom;
1507
1508 /*
1509 * Read EEPROM word for configuration.
1510 */
1511 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1512
1513 /*
1514 * Identify RF chipset.
1515 */
1516 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1517 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1518 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1519
1520 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1521 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1522 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1523 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1524 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1525 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1526 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1527 return -ENODEV;
1528 }
1529
1530 /*
1531 * Identify default antenna configuration.
1532 */
addc81bd 1533 rt2x00dev->default_ant.tx =
95ea3627 1534 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
addc81bd 1535 rt2x00dev->default_ant.rx =
95ea3627
ID
1536 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1537
1538 /*
1539 * Store led mode, for correct led behaviour.
1540 */
771fd565 1541#ifdef CONFIG_RT2X00_LIB_LEDS
a9450b70
ID
1542 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1543
475433be
ID
1544 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1545 if (value == LED_MODE_TXRX_ACTIVITY)
1546 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1547 LED_TYPE_ACTIVITY);
771fd565 1548#endif /* CONFIG_RT2X00_LIB_LEDS */
95ea3627
ID
1549
1550 /*
1551 * Detect if this device has an hardware controlled radio.
1552 */
58169529 1553#ifdef CONFIG_RT2X00_LIB_RFKILL
95ea3627 1554 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
066cb637 1555 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
58169529 1556#endif /* CONFIG_RT2X00_LIB_RFKILL */
95ea3627
ID
1557
1558 /*
1559 * Check if the BBP tuning should be enabled.
1560 */
1561 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1562
1563 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1564 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1565
1566 /*
1567 * Read the RSSI <-> dBm offset information.
1568 */
1569 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1570 rt2x00dev->rssi_offset =
1571 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1572
1573 return 0;
1574}
1575
1576/*
1577 * RF value list for RF2522
1578 * Supports: 2.4 GHz
1579 */
1580static const struct rf_channel rf_vals_bg_2522[] = {
1581 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1582 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1583 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1584 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1585 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1586 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1587 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1588 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1589 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1590 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1591 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1592 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1593 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1594 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1595};
1596
1597/*
1598 * RF value list for RF2523
1599 * Supports: 2.4 GHz
1600 */
1601static const struct rf_channel rf_vals_bg_2523[] = {
1602 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1603 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1604 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1605 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1606 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1607 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1608 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1609 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1610 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1611 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1612 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1613 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1614 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1615 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1616};
1617
1618/*
1619 * RF value list for RF2524
1620 * Supports: 2.4 GHz
1621 */
1622static const struct rf_channel rf_vals_bg_2524[] = {
1623 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1624 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1625 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1626 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1627 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1628 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1629 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1630 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1631 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1632 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1633 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1634 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1635 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1636 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1637};
1638
1639/*
1640 * RF value list for RF2525
1641 * Supports: 2.4 GHz
1642 */
1643static const struct rf_channel rf_vals_bg_2525[] = {
1644 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1645 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1646 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1647 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1648 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1649 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1650 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1651 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1652 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1653 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1654 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1655 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1656 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1657 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1658};
1659
1660/*
1661 * RF value list for RF2525e
1662 * Supports: 2.4 GHz
1663 */
1664static const struct rf_channel rf_vals_bg_2525e[] = {
1665 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1666 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1667 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1668 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1669 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1670 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1671 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1672 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1673 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1674 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1675 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1676 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1677 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1678 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1679};
1680
1681/*
1682 * RF value list for RF5222
1683 * Supports: 2.4 GHz & 5.2 GHz
1684 */
1685static const struct rf_channel rf_vals_5222[] = {
1686 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1687 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1688 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1689 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1690 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1691 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1692 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1693 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1694 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1695 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1696 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1697 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1698 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1699 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1700
1701 /* 802.11 UNI / HyperLan 2 */
1702 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1703 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1704 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1705 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1706 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1707 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1708 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1709 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1710
1711 /* 802.11 HyperLan 2 */
1712 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1713 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1714 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1715 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1716 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1717 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1718 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1719 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1720 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1721 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1722
1723 /* 802.11 UNII */
1724 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1725 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1726 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1727 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1728 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1729};
1730
8c5e7a5f 1731static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
1732{
1733 struct hw_mode_spec *spec = &rt2x00dev->spec;
8c5e7a5f
ID
1734 struct channel_info *info;
1735 char *tx_power;
95ea3627
ID
1736 unsigned int i;
1737
1738 /*
1739 * Initialize all hw fields.
1740 */
566bfe5a
BR
1741 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1742 IEEE80211_HW_SIGNAL_DBM;
1743
95ea3627 1744 rt2x00dev->hw->extra_tx_headroom = 0;
95ea3627 1745
14a3bf89 1746 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
95ea3627
ID
1747 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1748 rt2x00_eeprom_addr(rt2x00dev,
1749 EEPROM_MAC_ADDR_0));
1750
95ea3627
ID
1751 /*
1752 * Initialize hw_mode information.
1753 */
31562e80
ID
1754 spec->supported_bands = SUPPORT_BAND_2GHZ;
1755 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
95ea3627
ID
1756
1757 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1758 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1759 spec->channels = rf_vals_bg_2522;
1760 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1761 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1762 spec->channels = rf_vals_bg_2523;
1763 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1764 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1765 spec->channels = rf_vals_bg_2524;
1766 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1767 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1768 spec->channels = rf_vals_bg_2525;
1769 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1770 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1771 spec->channels = rf_vals_bg_2525e;
1772 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
31562e80 1773 spec->supported_bands |= SUPPORT_BAND_5GHZ;
95ea3627
ID
1774 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1775 spec->channels = rf_vals_5222;
95ea3627 1776 }
8c5e7a5f
ID
1777
1778 /*
1779 * Create channel information array
1780 */
1781 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1782 if (!info)
1783 return -ENOMEM;
1784
1785 spec->channels_info = info;
1786
1787 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1788 for (i = 0; i < 14; i++)
1789 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1790
1791 if (spec->num_channels > 14) {
1792 for (i = 14; i < spec->num_channels; i++)
1793 info[i].tx_power1 = DEFAULT_TXPOWER;
1794 }
1795
1796 return 0;
95ea3627
ID
1797}
1798
1799static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1800{
1801 int retval;
1802
1803 /*
1804 * Allocate eeprom data.
1805 */
1806 retval = rt2500pci_validate_eeprom(rt2x00dev);
1807 if (retval)
1808 return retval;
1809
1810 retval = rt2500pci_init_eeprom(rt2x00dev);
1811 if (retval)
1812 return retval;
1813
1814 /*
1815 * Initialize hw specifications.
1816 */
8c5e7a5f
ID
1817 retval = rt2500pci_probe_hw_mode(rt2x00dev);
1818 if (retval)
1819 return retval;
95ea3627
ID
1820
1821 /*
c4da0048 1822 * This device requires the atim queue and DMA-mapped skbs.
95ea3627 1823 */
181d6902 1824 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
c4da0048 1825 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
95ea3627
ID
1826
1827 /*
1828 * Set the rssi offset.
1829 */
1830 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1831
1832 return 0;
1833}
1834
1835/*
1836 * IEEE80211 stack callback functions.
1837 */
95ea3627
ID
1838static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1839{
1840 struct rt2x00_dev *rt2x00dev = hw->priv;
1841 u64 tsf;
1842 u32 reg;
1843
1844 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1845 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1846 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1847 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1848
1849 return tsf;
1850}
1851
95ea3627
ID
1852static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1853{
1854 struct rt2x00_dev *rt2x00dev = hw->priv;
1855 u32 reg;
1856
1857 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1858 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1859}
1860
1861static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1862 .tx = rt2x00mac_tx,
4150c572
JB
1863 .start = rt2x00mac_start,
1864 .stop = rt2x00mac_stop,
95ea3627
ID
1865 .add_interface = rt2x00mac_add_interface,
1866 .remove_interface = rt2x00mac_remove_interface,
1867 .config = rt2x00mac_config,
1868 .config_interface = rt2x00mac_config_interface,
3a643d24 1869 .configure_filter = rt2x00mac_configure_filter,
95ea3627 1870 .get_stats = rt2x00mac_get_stats,
471b3efd 1871 .bss_info_changed = rt2x00mac_bss_info_changed,
95ea3627
ID
1872 .conf_tx = rt2x00mac_conf_tx,
1873 .get_tx_stats = rt2x00mac_get_tx_stats,
1874 .get_tsf = rt2500pci_get_tsf,
95ea3627
ID
1875 .tx_last_beacon = rt2500pci_tx_last_beacon,
1876};
1877
1878static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1879 .irq_handler = rt2500pci_interrupt,
1880 .probe_hw = rt2500pci_probe_hw,
1881 .initialize = rt2x00pci_initialize,
1882 .uninitialize = rt2x00pci_uninitialize,
837e7f24
ID
1883 .init_rxentry = rt2500pci_init_rxentry,
1884 .init_txentry = rt2500pci_init_txentry,
95ea3627 1885 .set_device_state = rt2500pci_set_device_state,
95ea3627 1886 .rfkill_poll = rt2500pci_rfkill_poll,
95ea3627
ID
1887 .link_stats = rt2500pci_link_stats,
1888 .reset_tuner = rt2500pci_reset_tuner,
1889 .link_tuner = rt2500pci_link_tuner,
1890 .write_tx_desc = rt2500pci_write_tx_desc,
1891 .write_tx_data = rt2x00pci_write_tx_data,
bd88a781 1892 .write_beacon = rt2500pci_write_beacon,
95ea3627
ID
1893 .kick_tx_queue = rt2500pci_kick_tx_queue,
1894 .fill_rxdone = rt2500pci_fill_rxdone,
3a643d24 1895 .config_filter = rt2500pci_config_filter,
6bb40dd1 1896 .config_intf = rt2500pci_config_intf,
72810379 1897 .config_erp = rt2500pci_config_erp,
e4ea1c40 1898 .config_ant = rt2500pci_config_ant,
95ea3627
ID
1899 .config = rt2500pci_config,
1900};
1901
181d6902
ID
1902static const struct data_queue_desc rt2500pci_queue_rx = {
1903 .entry_num = RX_ENTRIES,
1904 .data_size = DATA_FRAME_SIZE,
1905 .desc_size = RXD_DESC_SIZE,
b8be63ff 1906 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
1907};
1908
1909static const struct data_queue_desc rt2500pci_queue_tx = {
1910 .entry_num = TX_ENTRIES,
1911 .data_size = DATA_FRAME_SIZE,
1912 .desc_size = TXD_DESC_SIZE,
b8be63ff 1913 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
1914};
1915
1916static const struct data_queue_desc rt2500pci_queue_bcn = {
1917 .entry_num = BEACON_ENTRIES,
1918 .data_size = MGMT_FRAME_SIZE,
1919 .desc_size = TXD_DESC_SIZE,
b8be63ff 1920 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
1921};
1922
1923static const struct data_queue_desc rt2500pci_queue_atim = {
1924 .entry_num = ATIM_ENTRIES,
1925 .data_size = DATA_FRAME_SIZE,
1926 .desc_size = TXD_DESC_SIZE,
b8be63ff 1927 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
1928};
1929
95ea3627 1930static const struct rt2x00_ops rt2500pci_ops = {
2360157c 1931 .name = KBUILD_MODNAME,
6bb40dd1
ID
1932 .max_sta_intf = 1,
1933 .max_ap_intf = 1,
95ea3627
ID
1934 .eeprom_size = EEPROM_SIZE,
1935 .rf_size = RF_SIZE,
61448f88 1936 .tx_queues = NUM_TX_QUEUES,
181d6902
ID
1937 .rx = &rt2500pci_queue_rx,
1938 .tx = &rt2500pci_queue_tx,
1939 .bcn = &rt2500pci_queue_bcn,
1940 .atim = &rt2500pci_queue_atim,
95ea3627
ID
1941 .lib = &rt2500pci_rt2x00_ops,
1942 .hw = &rt2500pci_mac80211_ops,
1943#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1944 .debugfs = &rt2500pci_rt2x00debug,
1945#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1946};
1947
1948/*
1949 * RT2500pci module information.
1950 */
1951static struct pci_device_id rt2500pci_device_table[] = {
1952 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1953 { 0, }
1954};
1955
1956MODULE_AUTHOR(DRV_PROJECT);
1957MODULE_VERSION(DRV_VERSION);
1958MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1959MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1960MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1961MODULE_LICENSE("GPL");
1962
1963static struct pci_driver rt2500pci_driver = {
2360157c 1964 .name = KBUILD_MODNAME,
95ea3627
ID
1965 .id_table = rt2500pci_device_table,
1966 .probe = rt2x00pci_probe,
1967 .remove = __devexit_p(rt2x00pci_remove),
1968 .suspend = rt2x00pci_suspend,
1969 .resume = rt2x00pci_resume,
1970};
1971
1972static int __init rt2500pci_init(void)
1973{
1974 return pci_register_driver(&rt2500pci_driver);
1975}
1976
1977static void __exit rt2500pci_exit(void)
1978{
1979 pci_unregister_driver(&rt2500pci_driver);
1980}
1981
1982module_init(rt2500pci_init);
1983module_exit(rt2500pci_exit);