iwl-trans: move dev_cmd_offs, page_offs to a common trans header
[linux-block.git] / drivers / net / wireless / intel / iwlwifi / iwl-nvm-parse.c
CommitLineData
b1e1adfa
JB
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
51368bf7 8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
5f0d98f2 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
29108495 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
7691fa69 11 * Copyright(c) 2018 - 2019 Intel Corporation
b1e1adfa
JB
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
b1e1adfa 22 * The full GNU General Public License is included in this distribution
410dc5aa 23 * in the file called COPYING.
b1e1adfa
JB
24 *
25 * Contact Information:
d01c5366 26 * Intel Linux Wireless <linuxwifi@intel.com>
b1e1adfa
JB
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *
29 * BSD LICENSE
30 *
51368bf7 31 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
5f0d98f2 32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
29108495 33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
7691fa69 34 * Copyright(c) 2018 - 2019 Intel Corporation
b1e1adfa
JB
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
63#include <linux/types.h>
64#include <linux/slab.h>
65#include <linux/export.h>
9f32e017 66#include <linux/etherdevice.h>
1e0b393a 67#include <linux/pci.h>
9c4f7d51 68#include <linux/firmware.h>
813df5ce 69
48e29340 70#include "iwl-drv.h"
b1e1adfa
JB
71#include "iwl-modparams.h"
72#include "iwl-nvm-parse.h"
afd5b170 73#include "iwl-prph.h"
17c867bf
SS
74#include "iwl-io.h"
75#include "iwl-csr.h"
813df5ce 76#include "fw/acpi.h"
9c4f7d51 77#include "fw/api/nvm-reg.h"
4c625c56
ST
78#include "fw/api/commands.h"
79#include "fw/api/cmdhdr.h"
80#include "fw/img.h"
b1e1adfa
JB
81
82/* NVM offsets (in words) definitions */
44fd09da 83enum nvm_offsets {
b1e1adfa 84 /* NVM HW-Section offset (in words) definitions */
01a9c948 85 SUBSYSTEM_ID = 0x0A,
b1e1adfa
JB
86 HW_ADDR = 0x15,
87
77db0a3c 88 /* NVM SW-Section offset (in words) definitions */
b1e1adfa
JB
89 NVM_SW_SECTION = 0x1C0,
90 NVM_VERSION = 0,
91 RADIO_CFG = 1,
92 SKU = 2,
93 N_HW_ADDRS = 3,
94 NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
95
77db0a3c 96 /* NVM calibration section offset (in words) definitions */
b1e1adfa 97 NVM_CALIB_SECTION = 0x2B8,
44fd09da
CRI
98 XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
99
100 /* NVM REGULATORY -Section offset (in words) definitions */
101 NVM_CHANNELS_SDP = 0,
b1e1adfa
JB
102};
103
7042678d 104enum ext_nvm_offsets {
77db0a3c 105 /* NVM HW-Section offset (in words) definitions */
7042678d 106 MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
77db0a3c
EH
107
108 /* NVM SW-Section offset (in words) definitions */
7042678d
SS
109 NVM_VERSION_EXT_NVM = 0,
110 RADIO_CFG_FAMILY_EXT_NVM = 0,
5dd9c68a
EG
111 SKU_FAMILY_8000 = 2,
112 N_HW_ADDRS_FAMILY_8000 = 3,
ce500071 113
77db0a3c 114 /* NVM REGULATORY -Section offset (in words) definitions */
7042678d
SS
115 NVM_CHANNELS_EXTENDED = 0,
116 NVM_LAR_OFFSET_OLD = 0x4C7,
117 NVM_LAR_OFFSET = 0x507,
118 NVM_LAR_ENABLED = 0x7,
77db0a3c
EH
119};
120
b1e1adfa
JB
121/* SKU Capabilities (actual values from NVM definition) */
122enum nvm_sku_bits {
5f0d98f2
EG
123 NVM_SKU_CAP_BAND_24GHZ = BIT(0),
124 NVM_SKU_CAP_BAND_52GHZ = BIT(1),
125 NVM_SKU_CAP_11N_ENABLE = BIT(2),
126 NVM_SKU_CAP_11AC_ENABLE = BIT(3),
127 NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
b1e1adfa
JB
128};
129
b1e1adfa
JB
130/*
131 * These are the channel numbers in the order that they are stored in the NVM
132 */
b15ef67c 133static const u16 iwl_nvm_channels[] = {
b1e1adfa
JB
134 /* 2.4 GHz */
135 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136 /* 5 GHz */
137 36, 40, 44 , 48, 52, 56, 60, 64,
138 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139 149, 153, 157, 161, 165
140};
141
b15ef67c 142static const u16 iwl_ext_nvm_channels[] = {
77db0a3c 143 /* 2.4 GHz */
9b1c9a66 144 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
77db0a3c
EH
145 /* 5 GHz */
146 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148 149, 153, 157, 161, 165, 169, 173, 177, 181
149};
150
b15ef67c
ST
151static const u16 iwl_uhb_nvm_channels[] = {
152 /* 2.4 GHz */
153 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
154 /* 5 GHz */
155 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
156 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
157 149, 153, 157, 161, 165, 169, 173, 177, 181,
158 /* 6-7 GHz */
222ccf5e
TM
159 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
160 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
161 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
162 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
b15ef67c
ST
163};
164
9c4f7d51
ST
165#define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
166#define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
b15ef67c 167#define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels)
749f1fe1 168#define NUM_2GHZ_CHANNELS 14
749f1fe1
EH
169#define FIRST_2GHZ_HT_MINUS 5
170#define LAST_2GHZ_HT_PLUS 9
ce500071 171#define N_HW_ADDR_MASK 0xF
b1e1adfa 172
b1e1adfa
JB
173/* rate data (static) */
174static struct ieee80211_rate iwl_cfg80211_rates[] = {
175 { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
176 { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
177 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
178 { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
179 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
180 { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
181 .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
182 { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
183 { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
184 { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
185 { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
186 { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
187 { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
188 { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
189 { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
190};
191#define RATES_24_OFFS 0
192#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
193#define RATES_52_OFFS 4
194#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
195
196/**
197 * enum iwl_nvm_channel_flags - channel flags in NVM
198 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
199 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
200 * @NVM_CHANNEL_ACTIVE: active scanning allowed
201 * @NVM_CHANNEL_RADAR: radar detection required
9ee6dace
DS
202 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
203 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
204 * on same channel on 2.4 or same UNII band on 5.2
b823cf3b
LC
205 * @NVM_CHANNEL_UNIFORM: uniform spreading required
206 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
207 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
208 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
209 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
210 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
b1e1adfa
JB
211 */
212enum iwl_nvm_channel_flags {
b823cf3b
LC
213 NVM_CHANNEL_VALID = BIT(0),
214 NVM_CHANNEL_IBSS = BIT(1),
215 NVM_CHANNEL_ACTIVE = BIT(3),
216 NVM_CHANNEL_RADAR = BIT(4),
217 NVM_CHANNEL_INDOOR_ONLY = BIT(5),
218 NVM_CHANNEL_GO_CONCURRENT = BIT(6),
219 NVM_CHANNEL_UNIFORM = BIT(7),
220 NVM_CHANNEL_20MHZ = BIT(8),
221 NVM_CHANNEL_40MHZ = BIT(9),
222 NVM_CHANNEL_80MHZ = BIT(10),
223 NVM_CHANNEL_160MHZ = BIT(11),
224 NVM_CHANNEL_DC_HIGH = BIT(12),
b1e1adfa
JB
225};
226
2763bba6
HD
227/**
228 * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
229 * domain.
230 * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
231 * 2.4Ghz band is allowed.
232 * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
233 * 5Ghz band is allowed.
234 * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
235 * for this regulatory domain (valid only in 5Ghz).
236 * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
237 * for this regulatory domain (valid only in 5Ghz).
238 * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
239 * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
240 * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
241 * for this regulatory domain (valid only in 5Ghz).
242 * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
a224883c 243 * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
2763bba6
HD
244 */
245enum iwl_reg_capa_flags {
246 REG_CAPA_BF_CCD_LOW_BAND = BIT(0),
247 REG_CAPA_BF_CCD_HIGH_BAND = BIT(1),
248 REG_CAPA_160MHZ_ALLOWED = BIT(2),
249 REG_CAPA_80MHZ_ALLOWED = BIT(3),
250 REG_CAPA_MCS_8_ALLOWED = BIT(4),
251 REG_CAPA_MCS_9_ALLOWED = BIT(5),
252 REG_CAPA_40MHZ_FORBIDDEN = BIT(7),
253 REG_CAPA_DC_HIGH_ENABLED = BIT(9),
a224883c 254 REG_CAPA_11AX_DISABLED = BIT(10),
2763bba6
HD
255};
256
e27c506a
GA
257/**
258 * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
259 * domain (version 2).
260 * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
261 * disabled.
262 * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
263 * 2.4Ghz band is allowed.
264 * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
265 * 5Ghz band is allowed.
266 * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
267 * for this regulatory domain (valid only in 5Ghz).
268 * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
269 * for this regulatory domain (valid only in 5Ghz).
270 * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
271 * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
272 * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
273 * 126, 122) are disabled.
274 * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
275 * for this regulatory domain (uvalid only in 5Ghz).
276 * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
277 */
278enum iwl_reg_capa_flags_v2 {
279 REG_CAPA_V2_STRADDLE_DISABLED = BIT(0),
280 REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1),
281 REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2),
282 REG_CAPA_V2_160MHZ_ALLOWED = BIT(3),
283 REG_CAPA_V2_80MHZ_ALLOWED = BIT(4),
284 REG_CAPA_V2_MCS_8_ALLOWED = BIT(5),
285 REG_CAPA_V2_MCS_9_ALLOWED = BIT(6),
286 REG_CAPA_V2_WEATHER_DISABLED = BIT(7),
287 REG_CAPA_V2_40MHZ_ALLOWED = BIT(8),
288 REG_CAPA_V2_11AX_DISABLED = BIT(13),
289};
290
291/*
292* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
293* MCC update command response.
294*/
295#define REG_CAPA_V2_RESP_VER 6
296
297/**
298 * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
299 * handling the different APIs of reg_capa_flags.
300 *
301 * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
302 * for this regulatory domain (valid only in 5Ghz).
303 * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
304 * for this regulatory domain (valid only in 5Ghz).
305 * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
306 * for this regulatory domain (valid only in 5Ghz).
307 * @disable_11ax: 11ax is forbidden for this regulatory domain.
308 */
309struct iwl_reg_capa {
310 u16 allow_40mhz;
311 u16 allow_80mhz;
312 u16 allow_160mhz;
313 u16 disable_11ax;
314};
315
d8c73e45 316static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
2785ce00 317 int chan, u32 flags)
d8c73e45 318{
b1e1adfa 319#define CHECK_AND_PRINT_I(x) \
d8c73e45
JB
320 ((flags & NVM_CHANNEL_##x) ? " " #x : "")
321
322 if (!(flags & NVM_CHANNEL_VALID)) {
323 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
324 chan, flags);
325 return;
326 }
327
328 /* Note: already can print up to 101 characters, 110 is the limit! */
329 IWL_DEBUG_DEV(dev, level,
330 "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
331 chan, flags,
332 CHECK_AND_PRINT_I(VALID),
333 CHECK_AND_PRINT_I(IBSS),
334 CHECK_AND_PRINT_I(ACTIVE),
335 CHECK_AND_PRINT_I(RADAR),
336 CHECK_AND_PRINT_I(INDOOR_ONLY),
337 CHECK_AND_PRINT_I(GO_CONCURRENT),
338 CHECK_AND_PRINT_I(UNIFORM),
339 CHECK_AND_PRINT_I(20MHZ),
340 CHECK_AND_PRINT_I(40MHZ),
341 CHECK_AND_PRINT_I(80MHZ),
342 CHECK_AND_PRINT_I(160MHZ),
343 CHECK_AND_PRINT_I(DC_HIGH));
344#undef CHECK_AND_PRINT_I
345}
b1e1adfa 346
e878325a 347static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
2785ce00 348 u32 nvm_flags, const struct iwl_cfg *cfg)
770ceda6
AN
349{
350 u32 flags = IEEE80211_CHAN_NO_HT40;
351
e878325a 352 if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
770ceda6
AN
353 if (ch_num <= LAST_2GHZ_HT_PLUS)
354 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
355 if (ch_num >= FIRST_2GHZ_HT_MINUS)
356 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
b15ef67c 357 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
770ceda6
AN
358 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
359 flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
360 else
361 flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
362 }
363 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
364 flags |= IEEE80211_CHAN_NO_80MHZ;
365 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
366 flags |= IEEE80211_CHAN_NO_160MHZ;
367
368 if (!(nvm_flags & NVM_CHANNEL_IBSS))
369 flags |= IEEE80211_CHAN_NO_IR;
370
371 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
372 flags |= IEEE80211_CHAN_NO_IR;
373
374 if (nvm_flags & NVM_CHANNEL_RADAR)
375 flags |= IEEE80211_CHAN_RADAR;
376
377 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
378 flags |= IEEE80211_CHAN_INDOOR_ONLY;
379
380 /* Set the GO concurrent flag only in case that NO_IR is set.
381 * Otherwise it is meaningless
382 */
383 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
384 (flags & IEEE80211_CHAN_NO_IR))
06f207fc 385 flags |= IEEE80211_CHAN_IR_CONCURRENT;
770ceda6
AN
386
387 return flags;
388}
389
e878325a
TM
390static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
391{
392 if (ch_idx >= NUM_2GHZ_CHANNELS)
393 return NL80211_BAND_5GHZ;
394 return NL80211_BAND_2GHZ;
395}
396
b1e1adfa
JB
397static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
398 struct iwl_nvm_data *data,
2785ce00
ST
399 const void * const nvm_ch_flags,
400 u32 sbands_flags, bool v4)
b1e1adfa
JB
401{
402 int ch_idx;
403 int n_channels = 0;
404 struct ieee80211_channel *channel;
2785ce00 405 u32 ch_flags;
e878325a 406 int num_of_ch;
b15ef67c 407 const u16 *nvm_chan;
77db0a3c 408
b15ef67c
ST
409 if (cfg->uhb_supported) {
410 num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
411 nvm_chan = iwl_uhb_nvm_channels;
412 } else if (cfg->nvm_type == IWL_NVM_EXT) {
9c4f7d51 413 num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
b15ef67c
ST
414 nvm_chan = iwl_ext_nvm_channels;
415 } else {
416 num_of_ch = IWL_NVM_NUM_CHANNELS;
417 nvm_chan = iwl_nvm_channels;
77db0a3c 418 }
b1e1adfa 419
77db0a3c 420 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
e878325a
TM
421 enum nl80211_band band =
422 iwl_nl80211_band_from_channel_idx(ch_idx);
01a9c948 423
2785ce00
ST
424 if (v4)
425 ch_flags =
426 __le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
427 else
428 ch_flags =
429 __le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
c5128654 430
e878325a
TM
431 if (band == NL80211_BAND_5GHZ &&
432 !data->sku_cap_band_52ghz_enable)
a76f3bfe 433 continue;
c5128654 434
01a9c948 435 /* workaround to disable wide channels in 5GHz */
4b82455c 436 if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
e878325a 437 band == NL80211_BAND_5GHZ) {
01a9c948
LC
438 ch_flags &= ~(NVM_CHANNEL_40MHZ |
439 NVM_CHANNEL_80MHZ |
440 NVM_CHANNEL_160MHZ);
441 }
442
4896d764
GG
443 if (ch_flags & NVM_CHANNEL_160MHZ)
444 data->vht160_supported = true;
445
4b82455c
LC
446 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
447 !(ch_flags & NVM_CHANNEL_VALID)) {
a76f3bfe
EP
448 /*
449 * Channels might become valid later if lar is
450 * supported, hence we still want to add them to
451 * the list of supported channels to cfg80211.
452 */
d8c73e45
JB
453 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
454 nvm_chan[ch_idx], ch_flags);
b1e1adfa
JB
455 continue;
456 }
457
458 channel = &data->channels[n_channels];
459 n_channels++;
460
77db0a3c 461 channel->hw_value = nvm_chan[ch_idx];
e878325a 462 channel->band = band;
b1e1adfa
JB
463 channel->center_freq =
464 ieee80211_channel_to_frequency(
465 channel->hw_value, channel->band);
466
b1e1adfa
JB
467 /* Initialize regulatory-based run-time data */
468
88f2fd73
MG
469 /*
470 * Default value - highest tx power value. max_power
471 * is not used in mvm, and is used for backwards compatibility
472 */
22d059a5 473 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
770ceda6
AN
474
475 /* don't put limitations in case we're using LAR */
4b82455c 476 if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
770ceda6 477 channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
e878325a 478 ch_idx, band,
b281c93d 479 ch_flags, cfg);
770ceda6
AN
480 else
481 channel->flags = 0;
482
d8c73e45
JB
483 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
484 channel->hw_value, ch_flags);
485 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
486 channel->hw_value, channel->max_power);
b1e1adfa
JB
487 }
488
489 return n_channels;
490}
491
d8913b80 492static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
33158fef 493 struct iwl_nvm_data *data,
6ca89f1f
JB
494 struct ieee80211_sta_vht_cap *vht_cap,
495 u8 tx_chains, u8 rx_chains)
33158fef 496{
d8913b80 497 const struct iwl_cfg *cfg = trans->cfg;
6ca89f1f
JB
498 int num_rx_ants = num_of_ant(rx_chains);
499 int num_tx_ants = num_of_ant(tx_chains);
c064ddf3
EH
500 unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
501 IEEE80211_VHT_MAX_AMPDU_1024K);
48e6de61 502
33158fef
EL
503 vht_cap->vht_supported = true;
504
505 vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
506 IEEE80211_VHT_CAP_RXSTBC_1 |
507 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
e36b766d 508 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
c064ddf3
EH
509 max_ampdu_exponent <<
510 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
33158fef 511
4896d764 512 if (data->vht160_supported)
fbbd4859
GG
513 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
514 IEEE80211_VHT_CAP_SHORT_GI_160;
4896d764 515
e48c947f
SS
516 if (cfg->vht_mu_mimo_supported)
517 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
518
a3576ff2
ES
519 if (cfg->ht_params->ldpc)
520 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
521
5f0d98f2
EG
522 if (data->sku_cap_mimo_disabled) {
523 num_rx_ants = 1;
524 num_tx_ants = 1;
525 }
526
6ca89f1f 527 if (num_tx_ants > 1)
5f7a6f9b 528 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
6ca89f1f
JB
529 else
530 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
5f7a6f9b 531
6c4fbcbc 532 switch (iwlwifi_mod_params.amsdu_size) {
4bdd4dfe 533 case IWL_AMSDU_DEF:
7d34a7d7 534 if (trans->trans_cfg->mq_rx_supported)
4bdd4dfe
EG
535 vht_cap->cap |=
536 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
537 else
538 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
539 break;
1a4968d1 540 case IWL_AMSDU_2K:
7d34a7d7 541 if (trans->trans_cfg->mq_rx_supported)
1a4968d1
GBA
542 vht_cap->cap |=
543 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
544 else
545 WARN(1, "RB size of 2K is not supported by this device\n");
546 break;
6c4fbcbc
EG
547 case IWL_AMSDU_4K:
548 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
549 break;
550 case IWL_AMSDU_8K:
33158fef 551 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
6c4fbcbc
EG
552 break;
553 case IWL_AMSDU_12K:
554 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
555 break;
556 default:
557 break;
558 }
33158fef
EL
559
560 vht_cap->vht_mcs.rx_mcs_map =
561 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
562 IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
563 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
564 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
565 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
566 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
567 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
568 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
569
6ca89f1f
JB
570 if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
571 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
33158fef
EL
572 /* this works because NOT_SUPPORTED == 3 */
573 vht_cap->vht_mcs.rx_mcs_map |=
574 cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
575 }
576
577 vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
7691fa69
JB
578
579 vht_cap->vht_mcs.tx_highest |=
580 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
33158fef
EL
581}
582
57a3a454
ST
583static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
584 {
585 .types_mask = BIT(NL80211_IFTYPE_STATION),
586 .he_cap = {
587 .has_he = true,
588 .he_cap_elem = {
589 .mac_cap_info[0] =
590 IEEE80211_HE_MAC_CAP0_HTC_HE |
591 IEEE80211_HE_MAC_CAP0_TWT_REQ,
592 .mac_cap_info[1] =
593 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
594 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
595 .mac_cap_info[2] =
38af8d5a 596 IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
57a3a454
ST
597 .mac_cap_info[3] =
598 IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
599 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
600 .mac_cap_info[4] =
601 IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
602 IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
603 .mac_cap_info[5] =
604 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
605 IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
77ff2c6b
LK
606 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
607 IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
608 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
57a3a454
ST
609 .phy_cap_info[0] =
610 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
611 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
612 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
613 .phy_cap_info[1] =
614 IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
615 IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
77ff2c6b 616 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
57a3a454 617 .phy_cap_info[2] =
77ff2c6b 618 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
57a3a454 619 .phy_cap_info[3] =
77ff2c6b 620 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
57a3a454 621 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
77ff2c6b 622 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
57a3a454
ST
623 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
624 .phy_cap_info[4] =
625 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
626 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
627 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
628 .phy_cap_info[5] =
629 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
77ff2c6b 630 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
57a3a454 631 .phy_cap_info[6] =
57a3a454
ST
632 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
633 .phy_cap_info[7] =
634 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
635 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
636 IEEE80211_HE_PHY_CAP7_MAX_NC_1,
637 .phy_cap_info[8] =
638 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
639 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
640 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
641 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
77ff2c6b 642 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
57a3a454
ST
643 .phy_cap_info[9] =
644 IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
645 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
77ff2c6b
LK
646 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
647 IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
57a3a454
ST
648 },
649 /*
650 * Set default Tx/Rx HE MCS NSS Support field.
651 * Indicate support for up to 2 spatial streams and all
652 * MCS, without any special cases
653 */
654 .he_mcs_nss_supp = {
655 .rx_mcs_80 = cpu_to_le16(0xfffa),
656 .tx_mcs_80 = cpu_to_le16(0xfffa),
657 .rx_mcs_160 = cpu_to_le16(0xfffa),
658 .tx_mcs_160 = cpu_to_le16(0xfffa),
659 .rx_mcs_80p80 = cpu_to_le16(0xffff),
660 .tx_mcs_80p80 = cpu_to_le16(0xffff),
661 },
662 /*
663 * Set default PPE thresholds, with PPET16 set to 0,
664 * PPET8 set to 7
665 */
666 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
514c3069 667 },
57a3a454
ST
668 },
669 {
670 .types_mask = BIT(NL80211_IFTYPE_AP),
671 .he_cap = {
672 .has_he = true,
673 .he_cap_elem = {
674 .mac_cap_info[0] =
7360f99e 675 IEEE80211_HE_MAC_CAP0_HTC_HE,
57a3a454
ST
676 .mac_cap_info[1] =
677 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
678 IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
679 .mac_cap_info[2] =
38af8d5a 680 IEEE80211_HE_MAC_CAP2_BSR,
57a3a454
ST
681 .mac_cap_info[3] =
682 IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
683 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
684 .mac_cap_info[4] =
685 IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
77ff2c6b
LK
686 .mac_cap_info[5] =
687 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
57a3a454
ST
688 .phy_cap_info[0] =
689 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
690 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
691 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
692 .phy_cap_info[1] =
77ff2c6b 693 IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
57a3a454 694 .phy_cap_info[2] =
77ff2c6b 695 IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
57a3a454 696 .phy_cap_info[3] =
77ff2c6b 697 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
57a3a454 698 IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
77ff2c6b 699 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
57a3a454
ST
700 IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
701 .phy_cap_info[4] =
702 IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
703 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
704 IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
705 .phy_cap_info[5] =
706 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
77ff2c6b 707 IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
57a3a454 708 .phy_cap_info[6] =
57a3a454
ST
709 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
710 .phy_cap_info[7] =
711 IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
712 IEEE80211_HE_PHY_CAP7_MAX_NC_1,
713 .phy_cap_info[8] =
714 IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
715 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
716 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
717 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
77ff2c6b 718 IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
57a3a454
ST
719 .phy_cap_info[9] =
720 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
77ff2c6b
LK
721 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
722 IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
57a3a454
ST
723 },
724 /*
725 * Set default Tx/Rx HE MCS NSS Support field.
726 * Indicate support for up to 2 spatial streams and all
727 * MCS, without any special cases
728 */
729 .he_mcs_nss_supp = {
730 .rx_mcs_80 = cpu_to_le16(0xfffa),
731 .tx_mcs_80 = cpu_to_le16(0xfffa),
732 .rx_mcs_160 = cpu_to_le16(0xfffa),
733 .tx_mcs_160 = cpu_to_le16(0xfffa),
734 .rx_mcs_80p80 = cpu_to_le16(0xffff),
735 .tx_mcs_80p80 = cpu_to_le16(0xffff),
736 },
737 /*
738 * Set default PPE thresholds, with PPET16 set to 0,
739 * PPET8 set to 7
740 */
741 .ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
514c3069 742 },
514c3069
LC
743 },
744};
745
df658908
JB
746static void iwl_init_he_hw_capab(struct iwl_trans *trans,
747 struct iwl_nvm_data *data,
748 struct ieee80211_supported_band *sband,
514c3069
LC
749 u8 tx_chains, u8 rx_chains)
750{
186e6c87 751 sband->iftype_data = iwl_he_capa;
57a3a454 752 sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
514c3069
LC
753
754 /* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
755 if ((tx_chains & rx_chains) != ANT_AB) {
57a3a454
ST
756 int i;
757
758 for (i = 0; i < sband->n_iftype_data; i++) {
759 iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
760 ~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
761 iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
762 ~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
763 iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
764 ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
765 }
514c3069
LC
766 }
767}
768
d8913b80 769static void iwl_init_sbands(struct iwl_trans *trans,
4c625c56 770 struct iwl_nvm_data *data,
2785ce00
ST
771 const void *nvm_ch_flags, u8 tx_chains,
772 u8 rx_chains, u32 sbands_flags, bool v4)
b1e1adfa 773{
d8913b80
ST
774 struct device *dev = trans->dev;
775 const struct iwl_cfg *cfg = trans->cfg;
77db0a3c 776 int n_channels;
b1e1adfa
JB
777 int n_used = 0;
778 struct ieee80211_supported_band *sband;
779
29108495 780 n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
2785ce00 781 sbands_flags, v4);
57fbcce3
JB
782 sband = &data->bands[NL80211_BAND_2GHZ];
783 sband->band = NL80211_BAND_2GHZ;
b1e1adfa
JB
784 sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
785 sband->n_bitrates = N_RATES_24;
786 n_used += iwl_init_sband_channels(data, sband, n_channels,
57fbcce3 787 NL80211_BAND_2GHZ);
7d34a7d7 788 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
9ce4fa72 789 tx_chains, rx_chains);
b1e1adfa 790
230ba6c5 791 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
df658908 792 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
514c3069 793
57fbcce3
JB
794 sband = &data->bands[NL80211_BAND_5GHZ];
795 sband->band = NL80211_BAND_5GHZ;
b1e1adfa
JB
796 sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
797 sband->n_bitrates = N_RATES_52;
798 n_used += iwl_init_sband_channels(data, sband, n_channels,
57fbcce3 799 NL80211_BAND_5GHZ);
7d34a7d7 800 iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
9ce4fa72 801 tx_chains, rx_chains);
0d0985ad 802 if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
d8913b80 803 iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
6ca89f1f 804 tx_chains, rx_chains);
b1e1adfa 805
230ba6c5 806 if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
df658908 807 iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
514c3069 808
b1e1adfa
JB
809 if (n_channels != n_used)
810 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
811 n_used, n_channels);
812}
813
5dd9c68a
EG
814static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
815 const __le16 *phy_sku)
77db0a3c 816{
44fd09da 817 if (cfg->nvm_type != IWL_NVM_EXT)
77db0a3c 818 return le16_to_cpup(nvm_sw + SKU);
ce500071 819
5dd9c68a 820 return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
77db0a3c
EH
821}
822
5dd9c68a 823static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
77db0a3c 824{
44fd09da 825 if (cfg->nvm_type != IWL_NVM_EXT)
77db0a3c
EH
826 return le16_to_cpup(nvm_sw + NVM_VERSION);
827 else
828 return le32_to_cpup((__le32 *)(nvm_sw +
7042678d 829 NVM_VERSION_EXT_NVM));
77db0a3c
EH
830}
831
5dd9c68a
EG
832static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
833 const __le16 *phy_sku)
77db0a3c 834{
44fd09da 835 if (cfg->nvm_type != IWL_NVM_EXT)
77db0a3c 836 return le16_to_cpup(nvm_sw + RADIO_CFG);
ce500071 837
7042678d 838 return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
ce500071 839
77db0a3c
EH
840}
841
5dd9c68a 842static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
77db0a3c 843{
ce500071
EH
844 int n_hw_addr;
845
44fd09da 846 if (cfg->nvm_type != IWL_NVM_EXT)
77db0a3c 847 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
ce500071 848
5dd9c68a 849 n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
ce500071
EH
850
851 return n_hw_addr & N_HW_ADDR_MASK;
77db0a3c
EH
852}
853
854static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
855 struct iwl_nvm_data *data,
856 u32 radio_cfg)
857{
44fd09da 858 if (cfg->nvm_type != IWL_NVM_EXT) {
77db0a3c
EH
859 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
860 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
861 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
862 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
77db0a3c
EH
863 return;
864 }
865
866 /* set the radio configuration for family 8000 */
7042678d
SS
867 data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
868 data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
869 data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
870 data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
871 data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
872 data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
77db0a3c
EH
873}
874
17c867bf
SS
875static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
876{
877 const u8 *hw_addr;
878
879 hw_addr = (const u8 *)&mac_addr0;
880 dest[0] = hw_addr[3];
881 dest[1] = hw_addr[2];
882 dest[2] = hw_addr[1];
883 dest[3] = hw_addr[0];
884
885 hw_addr = (const u8 *)&mac_addr1;
886 dest[4] = hw_addr[1];
887 dest[5] = hw_addr[0];
888}
889
4c625c56
ST
890static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
891 struct iwl_nvm_data *data)
17c867bf 892{
6dece0e9
LC
893 __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
894 __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
17c867bf 895
a6c934b3
HD
896 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
897 /*
898 * If the OEM fused a valid address, use it instead of the one in the
899 * OTP
900 */
901 if (is_valid_ether_addr(data->hw_addr))
902 return;
903
6dece0e9
LC
904 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
905 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
17c867bf
SS
906
907 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
908}
909
afd5b170 910static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
6a68a39f 911 const struct iwl_cfg *cfg,
9f32e017
EH
912 struct iwl_nvm_data *data,
913 const __le16 *mac_override,
8fe34b06 914 const __be16 *nvm_hw)
9f32e017
EH
915{
916 const u8 *hw_addr;
917
918 if (mac_override) {
18f84673
LK
919 static const u8 reserved_mac[] = {
920 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
921 };
922
9f32e017 923 hw_addr = (const u8 *)(mac_override +
7042678d 924 MAC_ADDRESS_OVERRIDE_EXT_NVM);
9f32e017 925
be88a1ad
LK
926 /*
927 * Store the MAC address from MAO section.
928 * No byte swapping is required in MAO section
929 */
930 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
9f32e017 931
18f84673
LK
932 /*
933 * Force the use of the OTP MAC address in case of reserved MAC
934 * address in the NVM, or if address is given but invalid.
935 */
936 if (is_valid_ether_addr(data->hw_addr) &&
937 memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
9f32e017 938 return;
6a68a39f 939
afd5b170
SS
940 IWL_ERR(trans,
941 "mac address from nvm override section is not valid\n");
9f32e017
EH
942 }
943
6a68a39f 944 if (nvm_hw) {
afd5b170
SS
945 /* read the mac address from WFMP registers */
946 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
947 WFMP_MAC_ADDR_0));
948 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
949 WFMP_MAC_ADDR_1));
17c867bf
SS
950
951 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1e0b393a 952
6a68a39f
EH
953 return;
954 }
9f32e017 955
afd5b170
SS
956 IWL_ERR(trans, "mac address is not found\n");
957}
958
17c867bf
SS
959static int iwl_set_hw_address(struct iwl_trans *trans,
960 const struct iwl_cfg *cfg,
8fe34b06 961 struct iwl_nvm_data *data, const __be16 *nvm_hw,
17c867bf 962 const __le16 *mac_override)
afd5b170 963{
17c867bf
SS
964 if (cfg->mac_addr_from_csr) {
965 iwl_set_hw_address_from_csr(trans, data);
44fd09da 966 } else if (cfg->nvm_type != IWL_NVM_EXT) {
afd5b170
SS
967 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
968
969 /* The byte order is little endian 16 bit, meaning 214365 */
970 data->hw_addr[0] = hw_addr[1];
971 data->hw_addr[1] = hw_addr[0];
972 data->hw_addr[2] = hw_addr[3];
973 data->hw_addr[3] = hw_addr[2];
974 data->hw_addr[4] = hw_addr[5];
975 data->hw_addr[5] = hw_addr[4];
976 } else {
977 iwl_set_hw_address_family_8000(trans, cfg, data,
978 mac_override, nvm_hw);
979 }
17c867bf
SS
980
981 if (!is_valid_ether_addr(data->hw_addr)) {
982 IWL_ERR(trans, "no valid mac address was found\n");
983 return -EINVAL;
984 }
985
4409e72b
LC
986 IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
987
17c867bf 988 return 0;
9f32e017
EH
989}
990
01a9c948 991static bool
7d34a7d7 992iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
8fe34b06 993 const __be16 *nvm_hw)
01a9c948
LC
994{
995 /*
996 * Workaround a bug in Indonesia SKUs where the regulatory in
997 * some 7000-family OTPs erroneously allow wide channels in
998 * 5GHz. To check for Indonesia, we take the SKU value from
999 * bits 1-4 in the subsystem ID and check if it is either 5 or
1000 * 9. In those cases, we need to force-disable wide channels
1001 * in 5GHz otherwise the FW will throw a sysassert when we try
1002 * to use them.
1003 */
7d34a7d7 1004 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
01a9c948
LC
1005 /*
1006 * Unlike the other sections in the NVM, the hw
1007 * section uses big-endian.
1008 */
8fe34b06 1009 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
01a9c948
LC
1010 u8 sku = (subsystem_id & 0x1e) >> 1;
1011
1012 if (sku == 5 || sku == 9) {
7d34a7d7 1013 IWL_DEBUG_EEPROM(trans->dev,
01a9c948
LC
1014 "disabling wide channels in 5GHz (0x%0x %d)\n",
1015 subsystem_id, sku);
1016 return true;
1017 }
1018 }
1019
1020 return false;
1021}
1022
b1e1adfa 1023struct iwl_nvm_data *
afd5b170 1024iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
f06021a1 1025 const struct iwl_fw *fw,
8fe34b06 1026 const __be16 *nvm_hw, const __le16 *nvm_sw,
77db0a3c 1027 const __le16 *nvm_calib, const __le16 *regulatory,
ce500071 1028 const __le16 *mac_override, const __le16 *phy_sku,
f06021a1 1029 u8 tx_chains, u8 rx_chains)
b1e1adfa
JB
1030{
1031 struct iwl_nvm_data *data;
afd5b170
SS
1032 bool lar_enabled;
1033 u32 sku, radio_cfg;
4b82455c 1034 u32 sbands_flags = 0;
d0d15197 1035 u16 lar_config;
afd5b170 1036 const __le16 *ch_section;
77db0a3c 1037
c8cfa08e
TM
1038 if (cfg->uhb_supported)
1039 data = kzalloc(struct_size(data, channels,
1040 IWL_NVM_NUM_CHANNELS_UHB),
1041 GFP_KERNEL);
1042 else if (cfg->nvm_type != IWL_NVM_EXT)
6b367c9f
GS
1043 data = kzalloc(struct_size(data, channels,
1044 IWL_NVM_NUM_CHANNELS),
1045 GFP_KERNEL);
77db0a3c 1046 else
6b367c9f
GS
1047 data = kzalloc(struct_size(data, channels,
1048 IWL_NVM_NUM_CHANNELS_EXT),
1049 GFP_KERNEL);
b1e1adfa
JB
1050 if (!data)
1051 return NULL;
1052
77db0a3c 1053 data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
b1e1adfa 1054
5dd9c68a 1055 radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
77db0a3c 1056 iwl_set_radio_cfg(cfg, data, radio_cfg);
a0544272
MH
1057 if (data->valid_tx_ant)
1058 tx_chains &= data->valid_tx_ant;
1059 if (data->valid_rx_ant)
1060 rx_chains &= data->valid_rx_ant;
b1e1adfa 1061
5dd9c68a 1062 sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
28e9c00f
LC
1063 data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1064 data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
b1e1adfa
JB
1065 data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1066 if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1067 data->sku_cap_11n_enable = false;
2926f958
EP
1068 data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1069 (sku & NVM_SKU_CAP_11AC_ENABLE);
5f0d98f2 1070 data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
b1e1adfa 1071
5dd9c68a 1072 data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
b1e1adfa 1073
44fd09da 1074 if (cfg->nvm_type != IWL_NVM_EXT) {
77db0a3c
EH
1075 /* Checking for required sections */
1076 if (!nvm_calib) {
afd5b170
SS
1077 IWL_ERR(trans,
1078 "Can't parse empty Calib NVM sections\n");
1270c416 1079 kfree(data);
77db0a3c
EH
1080 return NULL;
1081 }
44fd09da
CRI
1082
1083 ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1084 &regulatory[NVM_CHANNELS_SDP] :
1085 &nvm_sw[NVM_CHANNELS];
1086
77db0a3c
EH
1087 /* in family 8000 Xtal calibration values moved to OTP */
1088 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1089 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
afd5b170 1090 lar_enabled = true;
77db0a3c 1091 } else {
f5528631 1092 u16 lar_offset = data->nvm_version < 0xE39 ?
7042678d
SS
1093 NVM_LAR_OFFSET_OLD :
1094 NVM_LAR_OFFSET;
f5528631
AN
1095
1096 lar_config = le16_to_cpup(regulatory + lar_offset);
d0d15197 1097 data->lar_enabled = !!(lar_config &
7042678d 1098 NVM_LAR_ENABLED);
afd5b170 1099 lar_enabled = data->lar_enabled;
7042678d 1100 ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
77db0a3c 1101 }
b1e1adfa 1102
17c867bf
SS
1103 /* If no valid mac address was found - bail out */
1104 if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1105 kfree(data);
1106 return NULL;
1107 }
1108
f06021a1
LC
1109 if (lar_enabled &&
1110 fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
4b82455c
LC
1111 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1112
7d34a7d7 1113 if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
4b82455c
LC
1114 sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1115
d8913b80 1116 iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
2785ce00 1117 sbands_flags, false);
33b2f684 1118 data->calib_version = 255;
b1e1adfa
JB
1119
1120 return data;
1121}
48e29340 1122IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
af45a900 1123
b15ef67c 1124static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
b281c93d 1125 int ch_idx, u16 nvm_flags,
e27c506a 1126 struct iwl_reg_capa reg_capa,
b281c93d 1127 const struct iwl_cfg *cfg)
af45a900
AN
1128{
1129 u32 flags = NL80211_RRF_NO_HT40;
1130
1131 if (ch_idx < NUM_2GHZ_CHANNELS &&
1132 (nvm_flags & NVM_CHANNEL_40MHZ)) {
1133 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1134 flags &= ~NL80211_RRF_NO_HT40PLUS;
1135 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1136 flags &= ~NL80211_RRF_NO_HT40MINUS;
b15ef67c 1137 } else if (nvm_flags & NVM_CHANNEL_40MHZ) {
af45a900
AN
1138 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1139 flags &= ~NL80211_RRF_NO_HT40PLUS;
1140 else
1141 flags &= ~NL80211_RRF_NO_HT40MINUS;
1142 }
1143
1144 if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1145 flags |= NL80211_RRF_NO_80MHZ;
1146 if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1147 flags |= NL80211_RRF_NO_160MHZ;
1148
af45a900
AN
1149 if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1150 flags |= NL80211_RRF_NO_IR;
1151
1152 if (nvm_flags & NVM_CHANNEL_RADAR)
1153 flags |= NL80211_RRF_DFS;
1154
1155 if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1156 flags |= NL80211_RRF_NO_OUTDOOR;
1157
1158 /* Set the GO concurrent flag only in case that NO_IR is set.
1159 * Otherwise it is meaningless
1160 */
1161 if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1162 (flags & NL80211_RRF_NO_IR))
1163 flags |= NL80211_RRF_GO_CONCURRENT;
1164
2763bba6 1165 /*
e27c506a 1166 * reg_capa is per regulatory domain so apply it for every channel
2763bba6
HD
1167 */
1168 if (ch_idx >= NUM_2GHZ_CHANNELS) {
e27c506a 1169 if (!reg_capa.allow_40mhz)
2763bba6
HD
1170 flags |= NL80211_RRF_NO_HT40;
1171
e27c506a 1172 if (!reg_capa.allow_80mhz)
2763bba6
HD
1173 flags |= NL80211_RRF_NO_80MHZ;
1174
e27c506a 1175 if (!reg_capa.allow_160mhz)
2763bba6
HD
1176 flags |= NL80211_RRF_NO_160MHZ;
1177 }
e27c506a 1178 if (reg_capa.disable_11ax)
a224883c
HD
1179 flags |= NL80211_RRF_NO_HE;
1180
af45a900
AN
1181 return flags;
1182}
1183
e27c506a
GA
1184static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1185{
1186 struct iwl_reg_capa reg_capa;
1187
1188 if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1189 reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1190 reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1191 reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1192 reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1193 } else {
1194 reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1195 reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1196 reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1197 reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1198 }
1199 return reg_capa;
1200}
1201
af45a900 1202struct ieee80211_regdomain *
162ee3c9 1203iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
77e30e10 1204 int num_of_ch, __le32 *channels, u16 fw_mcc,
e27c506a 1205 u16 geo_info, u16 cap, u8 resp_ver)
af45a900
AN
1206{
1207 int ch_idx;
92b0f7b2
EG
1208 u16 ch_flags;
1209 u32 reg_rule_flags, prev_reg_rule_flags = 0;
b15ef67c 1210 const u16 *nvm_chan;
77e30e10 1211 struct ieee80211_regdomain *regd, *copy_rd;
af45a900 1212 struct ieee80211_reg_rule *rule;
57fbcce3 1213 enum nl80211_band band;
af45a900 1214 int center_freq, prev_center_freq = 0;
38cb87ee 1215 int valid_rules = 0;
af45a900 1216 bool new_rule;
b15ef67c 1217 int max_num_ch;
e27c506a 1218 struct iwl_reg_capa reg_capa;
b15ef67c
ST
1219
1220 if (cfg->uhb_supported) {
1221 max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1222 nvm_chan = iwl_uhb_nvm_channels;
1223 } else if (cfg->nvm_type == IWL_NVM_EXT) {
1224 max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1225 nvm_chan = iwl_ext_nvm_channels;
1226 } else {
1227 max_num_ch = IWL_NVM_NUM_CHANNELS;
1228 nvm_chan = iwl_nvm_channels;
1229 }
af45a900 1230
4557eaba
AN
1231 if (WARN_ON(num_of_ch > max_num_ch))
1232 num_of_ch = max_num_ch;
1233
4c816b21
ST
1234 if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1235 return ERR_PTR(-EINVAL);
1236
af45a900
AN
1237 IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1238 num_of_ch);
1239
1240 /* build a regdomain rule for every valid channel */
78d722b1 1241 regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
af45a900
AN
1242 if (!regd)
1243 return ERR_PTR(-ENOMEM);
1244
77e30e10
HD
1245 /* set alpha2 from FW. */
1246 regd->alpha2[0] = fw_mcc >> 8;
1247 regd->alpha2[1] = fw_mcc & 0xff;
1248
e27c506a
GA
1249 /* parse regulatory capability flags */
1250 reg_capa = iwl_get_reg_capa(cap, resp_ver);
1251
af45a900
AN
1252 for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1253 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
c2cf318d 1254 band = iwl_nl80211_band_from_channel_idx(ch_idx);
af45a900
AN
1255 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1256 band);
1257 new_rule = false;
1258
1259 if (!(ch_flags & NVM_CHANNEL_VALID)) {
d8c73e45
JB
1260 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1261 nvm_chan[ch_idx], ch_flags);
af45a900
AN
1262 continue;
1263 }
1264
92b0f7b2 1265 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
e27c506a 1266 ch_flags, reg_capa,
2763bba6 1267 cfg);
92b0f7b2 1268
af45a900 1269 /* we can't continue the same rule */
92b0f7b2 1270 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
af45a900
AN
1271 center_freq - prev_center_freq > 20) {
1272 valid_rules++;
1273 new_rule = true;
1274 }
1275
1276 rule = &regd->reg_rules[valid_rules - 1];
1277
1278 if (new_rule)
1279 rule->freq_range.start_freq_khz =
1280 MHZ_TO_KHZ(center_freq - 10);
1281
1282 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1283
1284 /* this doesn't matter - not used by FW */
1285 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
02a50495
EP
1286 rule->power_rule.max_eirp =
1287 DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
af45a900 1288
92b0f7b2 1289 rule->flags = reg_rule_flags;
af45a900
AN
1290
1291 /* rely on auto-calculation to merge BW of contiguous chans */
1292 rule->flags |= NL80211_RRF_AUTO_BW;
1293 rule->freq_range.max_bandwidth_khz = 0;
1294
af45a900 1295 prev_center_freq = center_freq;
92b0f7b2 1296 prev_reg_rule_flags = reg_rule_flags;
af45a900 1297
d8c73e45
JB
1298 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1299 nvm_chan[ch_idx], ch_flags);
77e30e10
HD
1300
1301 if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1302 band == NL80211_BAND_2GHZ)
1303 continue;
1304
38cb87ee 1305 reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
af45a900
AN
1306 }
1307
1308 regd->n_reg_rules = valid_rules;
1309
77e30e10
HD
1310 /*
1311 * Narrow down regdom for unused regulatory rules to prevent hole
1312 * between reg rules to wmm rules.
1313 */
78d722b1
Y
1314 copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1315 GFP_KERNEL);
a2a120a9 1316 if (!copy_rd)
77e30e10 1317 copy_rd = ERR_PTR(-ENOMEM);
77e30e10 1318
77e30e10
HD
1319 kfree(regd);
1320 return copy_rd;
af45a900
AN
1321}
1322IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
9c4f7d51
ST
1323
1324#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
1325#define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc
1326#define MAX_NVM_FILE_LEN 16384
1327
1328void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1329 unsigned int len)
1330{
1331#define IWL_4165_DEVICE_ID 0x5501
1332#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1333
1334 if (section == NVM_SECTION_TYPE_PHY_SKU &&
1335 hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1336 (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1337 /* OTP 0x52 bug work around: it's a 1x1 device */
1338 data[3] = ANT_B | (ANT_B << 4);
1339}
1340IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1341
1342/*
1343 * Reads external NVM from a file into mvm->nvm_sections
1344 *
1345 * HOW TO CREATE THE NVM FILE FORMAT:
1346 * ------------------------------
1347 * 1. create hex file, format:
1348 * 3800 -> header
1349 * 0000 -> header
1350 * 5a40 -> data
1351 *
1352 * rev - 6 bit (word1)
1353 * len - 10 bit (word1)
1354 * id - 4 bit (word2)
1355 * rsv - 12 bit (word2)
1356 *
1357 * 2. flip 8bits with 8 bits per line to get the right NVM file format
1358 *
1359 * 3. create binary file from the hex file
1360 *
1361 * 4. save as "iNVM_xxx.bin" under /lib/firmware
1362 */
1363int iwl_read_external_nvm(struct iwl_trans *trans,
1364 const char *nvm_file_name,
1365 struct iwl_nvm_section *nvm_sections)
1366{
1367 int ret, section_size;
1368 u16 section_id;
1369 const struct firmware *fw_entry;
1370 const struct {
1371 __le16 word1;
1372 __le16 word2;
1373 u8 data[];
1374 } *file_sec;
1375 const u8 *eof;
1376 u8 *temp;
1377 int max_section_size;
1378 const __le32 *dword_buff;
1379
1380#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1381#define NVM_WORD2_ID(x) (x >> 12)
1382#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1383#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1384#define NVM_HEADER_0 (0x2A504C54)
1385#define NVM_HEADER_1 (0x4E564D2A)
1386#define NVM_HEADER_SIZE (4 * sizeof(u32))
1387
1388 IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1389
1390 /* Maximal size depends on NVM version */
1391 if (trans->cfg->nvm_type != IWL_NVM_EXT)
1392 max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1393 else
1394 max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1395
1396 /*
1397 * Obtain NVM image via request_firmware. Since we already used
1398 * request_firmware_nowait() for the firmware binary load and only
1399 * get here after that we assume the NVM request can be satisfied
1400 * synchronously.
1401 */
1402 ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1403 if (ret) {
1404 IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1405 nvm_file_name, ret);
1406 return ret;
1407 }
1408
1409 IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1410 nvm_file_name, fw_entry->size);
1411
1412 if (fw_entry->size > MAX_NVM_FILE_LEN) {
1413 IWL_ERR(trans, "NVM file too large\n");
1414 ret = -EINVAL;
1415 goto out;
1416 }
1417
1418 eof = fw_entry->data + fw_entry->size;
1419 dword_buff = (__le32 *)fw_entry->data;
1420
1421 /* some NVM file will contain a header.
1422 * The header is identified by 2 dwords header as follow:
1423 * dword[0] = 0x2A504C54
1424 * dword[1] = 0x4E564D2A
1425 *
1426 * This header must be skipped when providing the NVM data to the FW.
1427 */
1428 if (fw_entry->size > NVM_HEADER_SIZE &&
1429 dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1430 dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1431 file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1432 IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1433 IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1434 le32_to_cpu(dword_buff[3]));
1435
1436 /* nvm file validation, dword_buff[2] holds the file version */
286ca8eb 1437 if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
9c4f7d51
ST
1438 CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1439 le32_to_cpu(dword_buff[2]) < 0xE4A) {
1440 ret = -EFAULT;
1441 goto out;
1442 }
1443 } else {
1444 file_sec = (void *)fw_entry->data;
1445 }
1446
1447 while (true) {
1448 if (file_sec->data > eof) {
1449 IWL_ERR(trans,
1450 "ERROR - NVM file too short for section header\n");
1451 ret = -EINVAL;
1452 break;
1453 }
1454
1455 /* check for EOF marker */
1456 if (!file_sec->word1 && !file_sec->word2) {
1457 ret = 0;
1458 break;
1459 }
1460
1461 if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1462 section_size =
1463 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1464 section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1465 } else {
1466 section_size = 2 * EXT_NVM_WORD2_LEN(
1467 le16_to_cpu(file_sec->word2));
1468 section_id = EXT_NVM_WORD1_ID(
1469 le16_to_cpu(file_sec->word1));
1470 }
1471
1472 if (section_size > max_section_size) {
1473 IWL_ERR(trans, "ERROR - section too large (%d)\n",
1474 section_size);
1475 ret = -EINVAL;
1476 break;
1477 }
1478
1479 if (!section_size) {
1480 IWL_ERR(trans, "ERROR - section empty\n");
1481 ret = -EINVAL;
1482 break;
1483 }
1484
1485 if (file_sec->data + section_size > eof) {
1486 IWL_ERR(trans,
1487 "ERROR - NVM file too short for section (%d bytes)\n",
1488 section_size);
1489 ret = -EINVAL;
1490 break;
1491 }
1492
1493 if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1494 "Invalid NVM section ID %d\n", section_id)) {
1495 ret = -EINVAL;
1496 break;
1497 }
1498
1499 temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1500 if (!temp) {
1501 ret = -ENOMEM;
1502 break;
1503 }
1504
1505 iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1506
1507 kfree(nvm_sections[section_id].data);
1508 nvm_sections[section_id].data = temp;
1509 nvm_sections[section_id].length = section_size;
1510
1511 /* advance to the next section */
1512 file_sec = (void *)(file_sec->data + section_size);
1513 }
1514out:
1515 release_firmware(fw_entry);
1516 return ret;
1517}
1518IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
4c625c56
ST
1519
1520struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1521 const struct iwl_fw *fw)
1522{
1523 struct iwl_nvm_get_info cmd = {};
4c625c56
ST
1524 struct iwl_nvm_data *nvm;
1525 struct iwl_host_cmd hcmd = {
1526 .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1527 .data = { &cmd, },
1528 .len = { sizeof(cmd) },
1529 .id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1530 };
1531 int ret;
e7eeee08 1532 bool empty_otp;
4c625c56
ST
1533 u32 mac_flags;
1534 u32 sbands_flags = 0;
2785ce00
ST
1535 /*
1536 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1537 * in v3, except for the channel profile part of the
1538 * regulatory. So we can just access the new struct, with the
1539 * exception of the latter.
1540 */
1541 struct iwl_nvm_get_info_rsp *rsp;
1542 struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1543 bool v4 = fw_has_api(&fw->ucode_capa,
1544 IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1545 size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1546 void *channel_profile;
4c625c56
ST
1547
1548 ret = iwl_trans_send_cmd(trans, &hcmd);
1549 if (ret)
1550 return ERR_PTR(ret);
1551
2785ce00 1552 if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
4c625c56
ST
1553 "Invalid payload len in NVM response from FW %d",
1554 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1555 ret = -EINVAL;
1556 goto out;
1557 }
1558
1559 rsp = (void *)hcmd.resp_pkt->data;
e7eeee08
NG
1560 empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1561 NVM_GENERAL_FLAGS_EMPTY_OTP);
1562 if (empty_otp)
4c625c56
ST
1563 IWL_INFO(trans, "OTP is empty\n");
1564
6b367c9f 1565 nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
4c625c56
ST
1566 if (!nvm) {
1567 ret = -ENOMEM;
1568 goto out;
1569 }
1570
1571 iwl_set_hw_address_from_csr(trans, nvm);
1572 /* TODO: if platform NVM has MAC address - override it here */
1573
1574 if (!is_valid_ether_addr(nvm->hw_addr)) {
1575 IWL_ERR(trans, "no valid mac address was found\n");
1576 ret = -EINVAL;
1577 goto err_free;
1578 }
1579
1580 IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1581
1582 /* Initialize general data */
1583 nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
e7eeee08
NG
1584 nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1585 if (nvm->n_hw_addrs == 0)
1586 IWL_WARN(trans,
1587 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1588 empty_otp);
4c625c56
ST
1589
1590 /* Initialize MAC sku data */
1591 mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1592 nvm->sku_cap_11ac_enable =
1593 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1594 nvm->sku_cap_11n_enable =
1595 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
514c3069
LC
1596 nvm->sku_cap_11ax_enable =
1597 !!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
4c625c56
ST
1598 nvm->sku_cap_band_24ghz_enable =
1599 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1600 nvm->sku_cap_band_52ghz_enable =
1601 !!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1602 nvm->sku_cap_mimo_disabled =
1603 !!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1604
1605 /* Initialize PHY sku data */
1606 nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1607 nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1608
f06021a1
LC
1609 if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1610 fw_has_capa(&fw->ucode_capa,
1611 IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
4c625c56
ST
1612 nvm->lar_enabled = true;
1613 sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1614 }
1615
2785ce00
ST
1616 rsp_v3 = (void *)rsp;
1617 channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1618 (void *)rsp_v3->regulatory.channel_profile;
1619
d8913b80 1620 iwl_init_sbands(trans, nvm,
14cf9bc6 1621 channel_profile,
4c625c56
ST
1622 nvm->valid_tx_ant & fw->valid_tx_ant,
1623 nvm->valid_rx_ant & fw->valid_rx_ant,
2785ce00 1624 sbands_flags, v4);
4c625c56
ST
1625
1626 iwl_free_resp(&hcmd);
1627 return nvm;
1628
1629err_free:
1630 kfree(nvm);
1631out:
1632 iwl_free_resp(&hcmd);
1633 return ERR_PTR(ret);
1634}
1635IWL_EXPORT_SYMBOL(iwl_get_nvm);